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Abstract

This paper provides series expansions of the stationary distribution of a finite Markov chain. This
leads to an efficient numerical algorithm for computing the stationary distribution of a finite Markov
chain. Numerical examples are given to illustrate the performance of the algorithm.
Key words: finite-state Markov chain – (Taylor) series expansion– measure-valued derivatives – coupled
processors

1 Introduction

Let P denote the transition kernel of a Markov chain defined on a finite state-
space S having unique stationary distribution πP . For example, think of P as
the embedded jump chain of an M/M/1/c queue, where c is a finite number
denoting the buffer capacity of the queue. What would be the effect on the
stationary behaviour of the queue if, for example, we increased the buffer
capacity or adjusted the service rate of the queue? Let Q denote the Markov
transition kernel of the Markov chain modeling the alternative system and
assume that Q has unique stationary distribution πQ. The question about the
effect of switching from P to Q on the stationary behavior is expressed by
πP −πQ, the difference between the stationary distributions. Let ‖·‖tv denote
the total variation norm, then the above problem can be phrased as follows:
Can ‖πP −πQ‖tv be approximated or bounded in terms of ‖P −Q‖tv? This is
known as perturbation analysis of Markov chains (PAMC) in the literature.

In this paper we will show that πP −πQ can be arbitrarily closely approxi-
mated by a polynomial in (Q−P )DP , where DP denotes the deviation matrix
associated with P , a precise definition will be given later on. Starting point
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is the representation

πQ =
k∑

n=0

πP ((Q− P )DP )n + πQ((Q− P )DP )k+1 , (1)

for any k ≥ 0, a proof of which will be given in Section 3.1. This series
expansion of πQ provides the means of approximating πQ by Q and entities
given via the P Markov chain only. A straightforward approach of achieving
this would be to apply the total variation norm to (1) and to conclude that

∥∥∥∥∥πQ −
k∑

n=0

πP ((Q− P )DP )n

∥∥∥∥∥
tv

≤ ‖(Q− P )DP‖k+1
tv ,

for any k. However, this is to no avail since the total variation norm of
(Q − P )DP is typically larger than one. In this paper, we propose to work
with the weighted supremum norm, denoted by ‖ · ‖v, where v is some vector
with positive non-zero elements, and for any w ∈ RS

||w||v def
= sup

i∈S

|w(i)|
v(i)

. (2)

We will show that

πQ(s)−
(

k∑
n=0

πP ((Q− P )DP )n

)
(s) ≤ d‖(Q− P )DP‖k+1

v ,

for any k ∈ N and any s ∈ S, where v can be any vector satisfying v(s) ≥ 1
for s ∈ S, and d is some finite computable constant. In particular, the above
error bound can be computed without knowledge of πQ. The key idea of our
approach is solve the optimization problem

min ‖((Q− P )DP )k‖v

subject to
v(s) ≥ 1 for s ∈ S .

(3)

The solution v∗ of the above optimization problem can be interpreted as the
optimal measure of the rate of convergence of the series in (1). Moreover,
the series in (1) tends to converge extremely fast which is due to the fact
that in many examples v∗ be found such that ‖(Q − P )DP‖v∗ << 1. Best
to our knowledge, the limit of the series (1) first appeared in [2], however,
neither upper bounds for the remainder term nor numerical examples were
given there.
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The use of series expansion for computational purposes is not new. It has
been used in various fields for different purposes, for instance in the field of
linear algebra [3]. In [1] the authors derive the power series for the stationary
distribution in a slightly different way than [7] and the approach we take
in this paper, but they don’t use it for real problems or real computations.
The novelty of our work is the fact that we combine the ideas obtained, and
extend them such that problems can be really solved.

The series expansion for the finite-state Markov chains in this paper is
derived in a very elegant manner using the Poisson equation. We remark that
this series expansion holds in a very general format under proper conditions.
The derivation of this has been done in [7], which is a generalization of [2].

The work presented in this paper is part of a major research project on nu-
merical algorithms based on series expansions of Markov chains. The present
paper establishes the main theoretical results. In a followup paper, we will
study our methodology for large scaled problems.

The paper is organized as follows. Section 2 presents basic facts on finite
Markov chains. The series expansion (1) is discussed in Section 3. In partic-
ular, numerical examples are provided. Section 4 presents the extension to
convex combinations of Markov chains.

2 Preliminaries on finite Markov chains

Let S denote a finite set with 0 < S < ∞ elements. For notational conve-
nience we will identify S with the set {1, . . . , S}. We consider Markov kernels
on state space S. Such a Markov kernel, say P , can be written as square ma-
trix P ∈ [0, 1]S×S. Element (i, j) of P is denoted by P (i, j) and represents the
probability of jump from state i to state j, which implies

∑
j∈S P (i, j) = 1,

for all i ∈ S. The probability to go from state i to state j in n steps is denoted
by P n(i, j), where the Markov kernel P n is simply obtained from taking the
nth power of P . Provided it exists, we denote the unique stationary distribu-
tion of P by πP and its ergodic projector by ΠP , that is, for any distribution
µ it holds that µΠP = πP . In order to simplify the notation, we will -with
slight abuse of notation- identify πP and πQ with ΠP and ΠQ, respectively.

Throughout the paper we assume that P is aperiodic and unichain, which
means that there is one closed irreducible set of states, and a (possibly empty)
set of transient states. We write |A|(i, j) to denote the (i, j)th element of the
matrix of absolute values of A ∈ RS×S, and additionally we use the notation
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|A| for the matrix of absolute values of A.
The main tool for our analysis is the weighted supremum norm, also called

v-norm, as defined in (2). For a matrix A ∈ RS×S the v-norm is given by

‖A‖v
def
= sup

i,||w||v≤1

∑S
j=1 |A(i, j)w(j)|

v(i)
.

Observe that

||A||v = sup
i

∑S
j=1 |A|(i, j)v(j)

v(i)
,

which is due to ‖v‖v = 1 and the fact that ‖w‖v ≤ 1 implies |w(i)| ≤ v(i),
for i ∈ S. Obviously, this implies

v(i)||A||v ≥
S∑

j=1

|A|(i, j)v(j) , i ∈ S,

and hence, using v(i) ≥ 1, i ∈ S, we obtain

max
j∈S

|A|(i, j) ≤ ||A||v v(i) , i ∈ S. (4)

From (4) it readily follows that v-norm convergence to 0 implies elementwise
convergence to 0. More precisely, let {A(n) ∈ RS×S, n = 1, 2, . . .} be given
such that limn→∞ ‖A(n)‖v = 0 exists, then limn→∞ |A(n)|(i, j) = 0 exists
∀ i, j ∈ S. Next we introduce v-geometric ergodicity (also called v-normed
ergodicity) of Pθ at θ ∈ [0, 1].

Definition 2.1 A Markov chain P is v-geometric ergodic if c < ∞, β < 1
and N < ∞ exist such that

‖P n − ΠP‖v ≤ cβn,

for all n ≥ N .

The following lemma shows that any finite-state aperiodic Markov chain
is v-geometric ergodic.

Lemma 2.2 For finite-state and aperiodic P a finite number N exists such
that

‖P n − ΠP‖v ≤ cβn,

for all n ≥ N , where c < ∞ and β < 1.
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Proof Because of the finite state space and aperiodicity,

lim
n→∞

P n(i, j) = ΠP (i, j) , i, j ∈ S.

Moreover, it is possible to take N sufficiently large such that

∀i ∈ S :

∑S
j=1 |PN − ΠP |(i, j)v(j)

v(i)
< ε,

with ε < 1. Because P n − ΠP = (P − ΠP )n for n ≥ 1, this means that

‖(P − ΠP )N‖v < ε. (5)

Taking appropriate integers n, k and l, such that n = kN + l we then find

‖P n − ΠP‖ ≤ εk‖P l − ΠP‖v, (6)

using norm inequalities. Define

c
def
= sup

l=0,...,N−1
‖P l − ΠP‖v, (7)

and β
def
= ε

1
N+1 . Since ε < 1, it follows that β < 1, which implies

εk = βkN+k ≤ βkN+l = βn, (8)

where we use the fact that 0 ≤ l < k. Inserting (7) and (8) in (6), we obtain
the stated. ¤

We write DP for the deviation matrix associated with P ; in symbols:

DP =
∞∑

m=0

(Pm − ΠP ) . (9)

Note that DP is finite for any aperiodic finite-state Markov chain, see
Lemma 2.2. Moreover, the deviation can be rewritten as

DP =
∞∑

m=0

(P − ΠP )m − ΠP ,

where
∑∞

m=0(P − ΠP )m is often referred to as the group inverse, see for
instance [2, 4]. A general definition which is valid for any, possibly periodic
Markov chain, can be found in, e.g., [12].
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3 Series Expansions

We are interested in the performance of a system when some of its parameters
or characteristics are changed. The system as given is modeled as a Markov
chain with kernel P , the changed system with kernel Q. We assume that
both Markov chains have a common finite state space S as defined earlier,
i.e., P, Q ∈ [0, 1]S×S. Note that sometimes states have to be added to Q or
P in order to achieve this. We also assume, as indicated earlier, that both
Markov kernels are aperiodic and unichain. The goal of Section 3.1 is to obtain
the stationary distribution of Q, denoted by πQ, via a series expansion in P .
In Section 3.2 we comment on the speed of convergence of this series. When
applying these concepts to actually compute the stationary distribution, we
have to solve the optimization problem stated in (3). We explain in Section 3.3
how to find an optimal solution. We summarize our results in an algorithm,
presented in Section 3.4. Finally, we illustrate our approach with numerical
examples in Section 3.5.

3.1 Series representation for πQ

Let P be unichain (not necessarily finite). Elementary calculation shows (use
the definition of DP in (9)):

(I − P )DP = I − ΠP .

This is the Poisson equation in matrix format. Multiply this equation by ΠQ.
Since P is unichain it holds ΠQΠP = ΠP , and we obtain

ΠQ(I − P )DP = ΠQ − ΠP .

Using that ΠQ = ΠQQ, we obtain

ΠQ = ΠP + ΠQ(Q− P )DP . (10)

Inserting (10) for ΠQ in the right-hand side of (10) we obtain

ΠQ = ΠP + ΠP (Q− P )DP + ΠQ((Q− P )DP )2.

Repeating this step k times yields,

ΠQ = ΠP

k∑
n=0

((Q− P )DP )n + ΠQ((Q− P )DP )k+1, (11)
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for k ≥ 0. Based on the above equation, we introduce the following notation.
Let k ≥ 0, then H(k), with

H(k)
def
= ΠP

k∑
n=0

((Q− P )DP )n,

is called a series approximation of degree k for ΠQ, T (k), with

T (k)
def
= ΠP ((Q− P )DP )k, (12)

denotes the kth element of H(k), and R(k), with

R(k)
def
= ΠQ((Q− P )DP )k+1,

is called the remainder term. Notice that the remainder term R(k) almost
equals the (k + 1)st term of H(k + 1), i.e., T (k + 1), except for the prefactor,
which is ΠQ in R(k) and ΠP in T (k + 1). The quality of the approximation
provided by H(k) is given through the remainder term R(k). This issue is
discussed in the next section.

3.2 Convergence of the series

In this section we investigate the limiting behavior of H(k) as k tends to ∞.
We first introduce our main technical condition.

(C) There exists a finite number N such that we can find δN ∈ (0, 1) which
satisfies:

‖((Q− P )DP )N‖v < δN ,

and we set

cδN

def
=

1

1− δN

∥∥∥∥∥
N−1∑

k=0

((Q− P )Dp)
k

∥∥∥∥∥
v

.

Lemma 3.1 The following assertions are equivalent:

(i) The series
∑∞

k=0((Q− P )DP )k is convergent.

(ii) (C)

(iii) There are κ and δ < 1 such that
∥∥((Q− P )DP )k

∥∥
v
≤ κδk for any k.

(iv) There are N and δ ∈ (0, 1) such that
∥∥((Q− P )DP )k

∥∥
v

< δk for any
k ≥ N .
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Proof We first show that (i) implies (ii). Provided that
∑∞

k=0((Q−P )DP )k

converges, it holds that

lim
k→∞

[
((Q− P )DP )k

]
(i, j) = 0

for i, j ∈ S. Since S is finite, it is possible to take k sufficiently large such
that∑

j∈S
∣∣((Q− P )DP )k

∣∣ (i, j) v(j)

v(i)
< 1,

which implies (C).

Now suppose that (C) holds true, and set ε
def
=

∥∥((Q− P )DP )N
∥∥

v
. Let

k, m, l be integers such that k = mN + l. Then,

‖((Q− P )DP )k‖v=‖((Q− P )DP )mN+l‖v

≤‖((Q− P )DP )mN‖v ‖((Q− P )DP )l‖v

≤εm ‖((Q− P )DP )l‖v . (13)

Set

κ
def
= sup

i=0,...,N−1
‖((Q− P )DP )i‖v,

and δ = ε
1

N+1 . By (ii), ε < 1 and thus δ < 1. Hence, the following holds

δk = δmN+l ≥ δmN+N = εm,

where we use the fact that 0 ≤ l < N . Inserting the above in (13) yields (iii).
Suppose (iii) holds. In the case that κ ≤ 1, (iv) is immediate. In the case

κ > 1, let N and β < 1 be such that

κ1/nδ ≤ β , n ≥ N.

Then,

κδn ≤ βn , n ≥ N,

and (iv) is satisfied.
Suppose (iv), then

∞∑

k=0

‖((Q− P )DP )k‖v ≤ δN

1− δ
+

N−1∑

k=0

‖((Q− P )DP )k‖v.

Hence, the series is convergent with respect to the v-norm. Since v-norm
convergence implies elementwise convergence, (i) follows. ¤
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Remark 3.2 Note that the fact that the maximal eigenvalue of |(Q−P )DP |
is smaller than 1 is not necessary for

∑∞
k=0((Q−P )DP )k to converge, which

stems from the fact that ((Q− P )DP )k has positive and negative entries.

The following lemma establishes an upper bound for the remainder term
that is independent of ΠQ.

Lemma 3.3 Under (C) it holds that

(i) ‖R(k − 1)‖v ≤ cδN
‖T (k)‖v for all k,

(ii) limk→∞H(k) = ΠQ.

Proof By definition we have

‖R(k − 1)‖v =

∥∥∥∥∥πQ −
k−1∑

l=0

T (l)

∥∥∥∥∥
v

=

∥∥∥∥∥
∞∑

l=k

T (l)

∥∥∥∥∥
v

.

This is obviously equal to∥∥∥∥∥ΠP

∞∑

l=k

((Q− P )DP )l

∥∥∥∥∥
v

=

∥∥∥∥∥ΠP ((Q− P )DP )k
∞∑

l=0

((Q− P )DP )l

∥∥∥∥∥
v

≤‖T (k)‖v

∥∥∥∥∥
∞∑

l=0

((Q− P )DP )l

∥∥∥∥∥
v

≤‖T (k)‖v

∥∥∥∥∥
∞∑

l=0

((Q− P )DP )l N

∥∥∥∥∥
v

∥∥∥∥∥
N−1∑

k=0

((Q− P )DP )k

∥∥∥∥∥
v

≤ 1

1− δN
‖T (k)‖v

∥∥∥∥∥
N−1∑

k=0

((Q− P )DP )k

∥∥∥∥∥
v

,

which proves the first part of the lemma.
With (4) it is sufficient to show that we have v-norm convergence for

ΠQ −H(k). Using claim (i) we obtain

0 ≤ ‖R(k)‖v≤cδN
‖ΠP‖v‖((Q− P )DP )k+1‖v.

By Lemma 3.1 (iv) the right hand-side in the above inequality converges to
zero. This proves the claim. ¤

An example where the series H(k) fails to converge is illustrated in the
following.
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Example 3.4 Suppose the state space S = {0, 1, . . . , S}. Let P (i, j) = Q(i, j)
for i 6= 0 and all j, P (0, 0) = Q(0, S) = 1 , and P (i, i − 1) = 1 for i 6= 0.
Then

ΠP (i, 0) = 1

DP (i, j) =
∞∑

k=0

(P k − ΠP )(i, j) = 1,

for i ≥ j ≥ 1 and = 0 for i ≥ 1, i < j

DP (i, 0) = −(i− 1)

DP (0, j) = 0,

for all j ≥ 0. Hence, ((Q− P )D)(i, j) = 0 for i 6= 0 and

((Q− P )D)(0, j) = −(S − j),

for j ≥ 1 and

((Q− P )D)(0, 0) = −(S − 1)

and we have that

((Q− P )D)k(0, 0) = (−(S − 1))k.

Therefore, the series is divergent.

Remark 3.5 Provided that det(I − (Q − P)DP) 6= 0, (10) determines πQ

uniquely and one can obtain πQ from

πQ = ΠP (I − (Q− P )DP )−1.

Moreover, provided that the limit

lim
k→∞

H(k) = lim
k→∞

πP

∞∑
n=0

((Q− P )DP )n

exists (see Lemma 3.1 for sufficient conditions), it yields πQ as πP

∑∞
n=0((Q−

P )DP )n; see Lemma 3.3.

Remark 3.6 Note that a sufficient (but not necessary) condition for (C) is

‖(Q− P )DP‖v < δ, δ < 1. (14)
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We will present examples for which it turns out that ‖(Q − P )DP‖v > 1,
although (C) is satisfied for N ≥ 2. In [1, 3] it is even assumed that

‖(Q− P )‖v < g1, (15)

with g1 > 0 a finite constant, and

‖DP‖v <
c

1− β
, (16)

with c > 0 and 0 < β < 1 finite constants. If
g1c

1− β
< 1, (17)

then (14) and hence (C) is clearly fulfilled. However, we will illustrate with
some examples presented in Sections 3.5 and 4.1 that we cannot find v such
that both (15), (16), and (17) hold. Hence, for numerical purposes these con-
ditions are too strong.

3.3 Bounding the remainder term

Until now we haven’t specified v. The quality of approximation by H(k − 1)
is given by the remainder term R(k − 1) and in applications v should be
chosen such that it minimizes cδN

||T (k)||v, thus minimizing our upper bound
for the remainder term. Since cδN

is a constant, we focus on T (k) for finding
an optimal upper bound. Specifically, we have to find a bounding vector v
that minimizes ||T (k)||v uniformly w.r.t. k. As the following theorem shows,
the unit vector, denoted by 1, with all components equal to one, yields the
minimal value for ||T (k)||v for any k. The proof of the theorem is given in
the Appendix.

Theorem 3.7 The unit vector 1 minimizes ||T (k)||v uniformly over k, i.e.,

∀k ≥ 1 : inf
v
||T (k)||v = ||T (k)||1. (18)

Remark 3.8 As for the results in [1, 3], following the line of argument put
forward in the Appendix, it can be shown that the smallest g1 in (15) is the
maximal eigenvalue of |(Q−P )|, and the smallest c

1−β is precisely the maximal
eigenvalue of |DP |. Again we note that often the product of these maximal
eigenvalues is not smaller than 1. In Sections 3.5 and 4.1 we will present
examples for which cg1

1−β > 1. If this is the case, then according to [1, 3] we
cannot decide whether the series H(k) converges to ΠQ. Hence, their condition
is too restrictive for numerical purposes.
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3.4 Algorithm

In this section we describe a numerical approach to computing our up-
per bound for the remainder term R(k). We search for N such that

1 > δN
def
= ||((Q − P )DP )N ||1, which implies that (C) holds for N and δN .

Then the upper bound for R(k) is obtained from cδN
||((Q− P )DP )k+1||1.

Based on the above, we can now describe an algorithm that yields an
approximation for πQ with ε precision. The algorithm has two main parts.
First cδN

is computed. Then, the series can be computed in an iterative way
until a predefined level of precision is reached.

Algorithm 1

Chose precision ε > 0. Set k = 1, T (1) = ΠP (Q− P )DP and H(0) = ΠP .

Step 1: Find N such that ||((Q − P )DP )N ||1 < 1. Set δN = ||((Q −
P )DP )N ||1 and compute

cδN
=

1

1− δN

∥∥∥∥∥
N−1∑

k=0

((Q− P )Dp)
k

∥∥∥∥∥
1

.

Step 2: If

cδ ‖T (k)‖1 < ε,

the algorithm terminates and H(k − 1) yields the desired approximation.
Otherwise, go to step 3.

Step 3: Set H(k) = H(k − 1) + T (k). Set k := k + 1 and
T (k) = T (k − 1)(Q− P )DP . Go to step 2.

Lemma 3.9 Provided that
∑∞

k−0((Q− P )DP )k is finite, Algorithm 1 termi-
nates in a finite number of steps.

Proof By Lemma 3.1, finiteness of
∑∞

k−0((Q− P )DP )k implies (C). Thus,
we know from Lemma 3.3 that ‖R(k)‖1 ≤ cδN

‖T (k + 1)‖1 for any k. Since

‖T (k + 1)‖v ≤ ‖ΠP‖1 ‖((Q− P )DP )k‖1,
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the proof of the claim follows from the fact that limk→∞ ‖((Q−P )DP )k‖1 = 0,
see Lemma 3.1. ¤

3.5 Numerical Examples

Consider a model where customers have to be served first at station 1 and
after having successfully completed service, move on to station 2 to receive
service there. We assume that customers receive a successful service at sta-
tion 1 with probability 1 − p, i.e., a fraction p of the customers has to go
through station 1 again. Customers arrive at the system according to a Pois-
son process with rate λ, and are served at station i, i = 1, 2 with an exponen-
tial service time with rate µi. We assume the waiting capacity at both stations
to be finite, i.e., bi customers can be at station i (including the customer in
service), and that customers that find upon arrival or service completion no
free buffer places at the next station are lost. The current system with pa-
rameters λ, µ1, µ2, b1 and b2 is modeled as a uniformized embedded Markov
chain with kernel P , and its stationary distribution πP is known. We take in
all examples p = 0.25, µ1 = 2, µ2 = 2, and b1 = 10 = b2. We are interested in
the probability that customers find station 2 full; we call this probability by
overflow probability and denote it by pλ.

We want to investigate what happens when the waiting capacity of sta-
tion 2 is expanded to b2 + 1. Hence, kernel Q represents the uniformized
embedded Markov chain of the system with an additional buffer place at sta-
tion 2. Note that we created a phantom state b2 + 1 in the P -kernel, from
which a jump to b2 occurs with probability 1. In all numerical examples N

turned out to be 1. We denote the prediction for pλ based on H(k) by pλ(k).
Figure 1 shows the absolute relative error (in formula, |pλ − pλ(k)|/pλ) for
different values of k and different values for λ, i.e., different traffic loads. As
can be seen, the overflow probability can be predicted within an error of 1
percent through H(5), and in the light-traffic case even H(4) is sufficient.

We now turn to the numerical behavior of our upper bound for the re-
mainder term. For given λ, denote by rλ(k) the upper bound for R(k) given
in Lemma 3.3. Figure 2 illustrates the relative error of our upper bound (in
formula, (rλ(k)− (pλ − pλ(k)))/pλ) or various values of λ and different values
of k. For λ = 0.25, we obtained (C) for N = 3 and cδN

= 11.17; for λ = 1.0,
we obtained (C) for N = 4 and cδN

= 4.65; and for λ = 1.75, we obtained
(C) for N = 5 and cδN

= 15.397.
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Figure 1: Absolute relative error
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Figure 2: Relative error of the bound of the remainder term
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Figure 3: Relative error of the bound of the remainder term

To illustrate the decay of the relative error induced by the upper bound for
the remainder term, we show in Figure 3 relative error of our upper bound
for values of k between 11 and 20.

Remark 3.10 Let us turn to the condition of [1, 3]. For p = 0.5 for instance
the smallest g1 is 0.6718 and the smallest c

1−β is 6.5557, and hence, cg1

1−β > 1,
although (C) with N = 1.

4 A Power Series Approach

Let P and Q be given as in Section 2. In this section study the convex
combination

Pθ = (1− θ)P + θQ, θ ∈ [0, 1], (19)

of the two chains. We are now interested in the effect of changing θ to θ+∆ on
the stationary distribution of Pθ, denoted by πθ, and the corresponding pro-
jective operator, denoted by Πθ, respectively. Following the same procedure
as in Section 3.1, we obtain

Πθ+∆ = Πθ

k∑
n=0

((Pθ+∆ − Pθ)Dθ)
n + Πθ+∆((Pθ+∆ − Pθ)Dθ)

k+1,

for k ≥ 0. From (19) it is easily seen that

Pθ+∆ − Pθ = ∆(Q− P )

15



so that the above series can be written as

Πθ+∆ = Πθ

k∑
n=0

∆n((Q− P )Dθ)
n + Πθ+∆∆k+1((Q− P )Dθ)

k+1, (20)

for k ≥ 0. For k ≥ 0 we define the series approximation Hθ,∆(k) by

Hθ,∆(k)
def
= Πθ

k∑
n=0

∆n((Q− P )DPθ
)n, (21)

where we denote the kth element of the above series is denoted by

Tθ,∆(k)
def
= ∆kΠθ((Q− P )DPθ

)k,

and remainder term R∆(k) is given through

Rθ,∆(k)
def
= Πθ+∆∆k+1((Q− P )DPθ

)k+1 .

For the series Hθ,∆(k) to converge, ∆kTθ,∆(k) has to converge to zero as k

tends to ∞. This leads to the following adaptation of (C).

(C)(θ) There exist finite numbers N and δθ
N ∈ (0, 1) such that

||((Q− P )Dθ)
N ||v ≤ δθ

N ,

and we set

cδθ
N

def
=

1

1− δθ
N

∥∥∥∥∥
N−1∑

k=0

((Q− P )Dθ)
k

∥∥∥∥∥
v

.

Condition (C)(θ) implies that Hθ,∆(k) converges at least for all ∆ with |∆| <
1/δθ

N . The following lemma is a straightforward adaptation of the result for
series expansion.

Lemma 4.1 For θ ∈ [0, 1], let (C)(θ) be satisfied for some δθ
N . Then it holds

for all |∆| < 1/δθ
N that

(i) ||Rθ,∆(k − 1) ≤ cδθ
N
||Tθ,∆(k)||v for all k;

(ii) limk→∞Hθ,∆(k) = Πθ+∆.

The above leads to the following algorithm that yields an approximation
for πθ+∆ with ε precision, where we make use of Theorem 3.7.

16



Algorithm 2

Chose precision ε > 0. Set k = 1, Tθ,∆(1) = ∆Πθ(Q − P )Dθ and
Hθ,∆(0) = Πθ.

Step 1: Find N such that ||((Q−P )Dθ)
N ||1 < 1. Set δθ

N = ||((Q−P )Dθ)
N ||1

and compute

cδθ
N

=
1

1− δθ
N

∥∥∥∥∥
N−1∑

k=0

((Q− P )Dθ)
k

∥∥∥∥∥
1

.

Step 2: If

cδθ
N
‖Tθ,∆(k)‖1 < ε,

the algorithm terminates and Hθ,∆(k − 1) yields the desired approximation.
Otherwise, go to step 3.

Step 3: Set

Tθ,∆(k + 1) = ∆Tθ,∆(k)(Q− P )DPθ

and Hθ,∆(k) = Hθ,∆(k − 1) + Tθ,∆(k). Let k := k + 1 and go to step 2.

The above algorithm is not guaranteed to yield the desired approximation,
which stems from the fact that |∆| may lay outside the radius of convergence
of the series in (21). However, 1/δθ

N as computed by the above algorithm yields
a lower bound for radius of convergence of Hθ,∆(k) and thus an indication of
the maximal value of |∆|.
Remark 4.2 Taking θ = 0 and ∆ = 1 we are in the situation of Section 3.1.
In symbols, H(k) = Hθ,1(k), for k ≥ 0.

The series given in (20) is obviously a power series. Moreover, it is shown
in [7] that under v-geometric ergodicity of Pθ, the term Πθ((Q− P )DPθ

)n is
equal to dΠθ

dθn . This means that (20) is a Taylor series.
Hence, Lemma 4.1 yields a lower bound for the radius of convergence of the

Taylor series Hθ,∆, i.e., Hθ,∆ converges to the right function on ∆ ∈ [0, 1
δθ
N
].

In other words, 1/δθ
N is lower bound for the domain of analyticity of Πθ.
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4.1 Numerical Example

We apply our theoretical results to the coupled processors model. Consider
a system with two finite queues, each with their own server. Customers for
queue i enter the system at a Poisson rate λi. As long as there are customers
in both queues, the server of queue i works at service rate µi. However if the
server of queue i is idle, it joins the non-idle server j making the average
service rate of the non-idle queue larger than µj.

There are but few analytical results for this model, see [5, 10] for a deriva-
tion of the moment generating function of the joint distribution. In particular,
no closed form solution for stationary distribution is known. In [9] a heavy-
traffic approximation was found, and in [8] a large deviation analysis is given.

We take for P the kernel of the system where customers arrive with rate
λi to queue i, and where each queue has its own server that serves at rate
µi, independent of the state of the other queue. We denote Markov kernel of
the embedded jump chain of the coupled processor model by Q. The kernel
Pθ (see (19) for the definition) represents then a system where the server of
an idle queue joins the non-idle queue with probability θ.

Consider the following numerical example. Take λ1 = 1.9, λ2 = 1.8, µ1 =
µ2 = 2, b1 = 5 and b2 = 5. We are interested in the probability that queue 1
is full, and we call this the overflow probability. We denote the overflow prob-
ability given by Pθ by p̂θ. We develop the series at θ = 0, that is, DPθ

= DP

and Πθ+∆ = Π∆ with Πθ = ΠP . The series in (21) thus reads

H0,∆(k) = ΠP

k∑
n=0

∆n((Q− P )DP )n,

for k ≥ 0.
Let p̂∆(k) denote the prediction of the overflow probability based on

H0,∆(k). In all numerical examples N turned out to be 1. Figure 4 shows
the absolute relative error (in formula, |p̂∆ − p̂∆(k)|/p̂∆) of predicting the
overflow probability at queue 1 by H0,∆(k) for different values of k and dif-
ferent values for θ.

Figure 5 shows the absolute relative error of the remainder term (in for-
mula, (r̂∆(k)− (p̂∆ − p̂∆(k)))/p̂∆, where r̂∆(k) denotes our upper bound for
R0,∆(k)) for different values of k and different values of ∆. In all cases, con-
dition C(0) is satisfied for N = 2 and cδ0

N
= 0.84.

Remark 4.3 For this example it turns out that cg1

1−β = 0.3342× 14.1940 > 1.
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5 Conclusion

We presented a new algorithm for the approximative computation of char-
acteristics of finite Markov chains. It could be shown that under quite mild
conditions the algorithm approximates the true solution. Moreover, upper
bounds for the error of the approximations could be established. Numerical
examples illustrated that the fast convergence rate of our algorithm. Future
work we will study our methodology for large scaled problems.
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Appendix

We give a proof of Theorem 3.7. Let A = |ΠP ((Q− P )DP )k|, for k ∈ N. The
important case is when A has non-zero elements. Indeed, if A is identical to
the zero matrix, then its trivial that

0 = inf
v
||A||v = ||A||1.

Now suppose that A has non-zero elements. The key observation for the
proof is that any two rows of A are identical. Suppose that A has m non-zero
columns. Hence, after possible re-labeling of states, A is of the form

A =

(
A1 01

A2 02

)
,

where A1 is a m×m dimensional matrix with all elements larger than zero,
A2 is a (S−m)×m matrix with all elements larger than zero, and 01 and 02

are zero matrices of appropriate size.
The proof has two main steps. First, we will show that

λ = inf
v
||A1||v, (22)

where λ denotes the maximal eigenvalue of A1. In a second step, we will show
that (22) holds when A1 is replaced by the original matrix A.

We now turn to the proof of (22). Observe that solving (22) can be inter-
preted as finding the minimal value of ||A1||v. This problem can be translated
into an equivalent linear programming problem as follows. We have to find
the minimal value for δ such that the following problem

min
∑

i∈S

v(i) (23)

such that ( A1 − δI )v ≤ 0

and v ≥ 1,

returns a feasible solution v. The following lemma shows that the minimal δ

for which (23) has a solution is equal to the maximal eigenvalue of A1.
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Lemma 5.1 The linear programming problem (23) has for any δ ∈ [λ,∞)
has a solution, where λ > 0 is the maximal eigenvalue of A1.

Proof Note that A1 is a full matrix and thus irreducible. Furthermore, all
elements of A1 are larger than or equal to zero. Thus Theorem 4.5 in [11]
(Chapter 1) applies, which gives immediately that for any δ larger than or
equal to the maximal eigenvalue λ the linear programming problem (23) has
a solution. With the Perron Frobenius theorem it follows that λ > 0. Finally
use Corollary 4.2 and Theorem 4.4 (both are again in [11], Chapter 1) to
conclude that for any δ the feasible vector v is the rescaled unique positive
eigenvector associated with λ. ¤

Matrix A1 has identical rows, thus any eigenvector associated with the
maximal eigenvalue of A has identical components. This implies A11 = λ1
and, by Lemma 5.1,

λ = ||A1||1 = inf
v
||A1||v,

which establishes (22).
For the second part of the proof, suppose that (δ, v) is a solution of the

(overall) LP:

min
∑

i∈S

v(i)

such that ( A− δI )v ≤ 0

and v ≥ 1.

Denote the restriction of v to the first m elements of v by v1 and the restriction
of v to the elements m + 1 up to S by v2. Then,

A1v
1 ≤ δv1 and A2v

2 ≤ δv2.

Since δ ≥ λ and A1 and A2 have identical rows, we obtain

λ = ||A||1 = inf
v
||A||v,

which proves the claim.
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