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Abstract

A new empirical reduced-form model for credit rating transitions is introduced. It is
a parametric intensity-based duration model with multiple states and driven by exoge-
nous covariates and latent dynamic factors. The model has a generalized semi-Markov
structure designed to accommodate many of the stylized facts of credit rating migrations.
Parameter estimation is based on Monte Carlo maximum likelihood methods for which
the details are discussed in this paper. A simulation experiment is carried out to show
the effectiveness of the estimation procedure. An empirical application is presented for
transitions between investment grade, subinvestment grade, and default ratings for U.S.
corporates. The model strongly suggests the presence of a common dynamic component
that can be interpreted as the credit cycle. We also show that the impact of this credit
cycle is asymmetric with respect to downgrade and upgrade probabilities.
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1 Introduction

Ratings play a prominent role in the credit industry. Their key purpose is to provide a simple

qualitative classification of the solidity, solvency and prospects of a debt issuer. The impor-

tance of credit ratings has increased significantly with the introduction of the new regulatory

framework known as Basel II (BCBS, 2004). In this framework, ratings can be used directly to

determine the size of a bank’s capital buffer. As capital constitutes a relatively costly source

of funding for a bank, ratings and rating changes directly affect the banks’ willingness to grant

credit to individual firms. Moreover, if ratings and thus capital requirements co-vary with

the business cycle, economic fluctuations may be exacerbated by capital becoming increasingly

scarce in adverse economic conditions, precisely when it is needed most. It is clear that a good

understanding of the dynamic behavior of ratings and rating changes is therefore important

from both a regulatory and financial industry perspective.

In this paper we introduce a new model for rating transitions. The main novelty of our model

is that rating transitions are modeled continuously in event time rather than calendar time and

are subject to common dynamic latent factors. Although the model is relatively complex, we

show that it can be estimated efficiently using modern importance sampling techniques for

non-Gaussian models in state space form.

The literature on modeling credit events such as defaults and rating changes has grown

rapidly over the past 10 years. Wilson (1997a,b) modeled default rates using logistic regressions

with macroeconomic explanatory variables. Nickell, Perraudin and Varotto (2000) and Bangia

et al. (2002) show that upgrade, downgrade, and default probabilities differ over different

economic regimes, whether characterized by NBER business cycle classifications or by GDP

growth rates. Default and downgrade intensities are higher during recessions. In the same spirit,

Kavvathas (2001), Carling, Jacobson, Lindé and Roszbach (2002), and Couderc and Renault

(2004) use a duration approach conditional on observed macro-variables and they show that

average times-to-default decrease if economic activity decreases. Koopman and Lucas (2005)

and Koopman, Lucas and Klaassen (2005) have adopted a direct time series approach and

identified the time-varying cyclical nature of default rates over a long historical period. Also

Fledelius, Lando and Nielsen (2004) corroborate the existence of time-fluctuations for credit

rating migration rates.

Whereas some of the contributions in the literature introduce observed macro-variables to

capture co-variation in default intensities between firms and industries, an alternative approach

is to estimate the common components of default risk directly from the data. An advantage of

such an approach is that one is less prone to misspecification caused by the use of an incorrect
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macroeconomic proxy for the credit cycle. Couderc and Renault (2004) tested a large number

of macroeconomic variables for their predictive ability and found five significant factors. Still,

a large part of the fluctuations in systematic default probabilities could not be accounted for.

Second, by estimating the default dynamics directly from the data, one obtains an integrated

framework for capital determination and risk management, see Koopman, Lucas and Klaassen

(2005). By contrast, if observed macroeconomic variables are used, one needs an auxiliary

forecasting model for such variables.

Suggestions for dynamic models with latent components are Gagliardini and Gourieroux

(2004), McNeil and Wendin(2004), and Koopman, Lucas and Daniels (2005). These models,

however, are all set in a calendar time framework: rating transitions are observed empirically

over discrete time slots, e.g., years or quarters. The observed frequencies are subsequently

modeled by non-Gaussian time series processes. By contrast, in this paper we use a duration

model with unobserved components. This is the more natural approach in the current context,

where durations to transitions are endogenous rather than exogenous. In this way, we are

able to use all the information in the data-set (Lando and Skødeberg, 2002, provide a detailed

discussion of the advantages of the continuous-time approach). Our model can be regarded as

a multi-state extension of the Latent Factor Intensity (LFI) model of Bauwens and Hautsch

(2003). The LFI model is a point process model for stock transactions in tick-time. Durations

in the LFI model are the time to the next trade. By contrast, in our model it is not only the

time to the next rating event that is unknown, but also the type of event that is going to occur,

e.g., upgrade, downgrade, or default. In that sense, our model is set in the so-called competing

risks framework. Given a firm’s initial rating, there are multiple states for the firm’s next

rating. Each of these states has its own duration process and we observe only the minimum of

those. This leads to a more complicated likelihood structure than considered by Bauwens and

Hautsch (2003).

The likelihood function of our model contains a high dimensional integral involving the

latent common risk factor. In this way, our parameter driven model differs from well-known

observation driven counterparts like the Autoregressive Conditional Duration model (ACD) of

Engle and Russell (1998), or the Autoregressive Conditional Intensity model (ACI) of Russell

(1999). We evaluate the likelihood using a multivariate extension of the Monte Carlo techniques

that are developed by Durbin and Koopman (1997, 2001). We demonstrate the effectiveness of

the method by means of a simulation experiment.

The model is estimated for the CreditPro6.2 data set from Standard & Poor’s, containing

all issuer ratings over the period 1981 – 2002. We classify firms as Investment grade or Subin-

vestment grade and specify a dynamic model for upgrades, downgrades, and defaults using all
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available data. This yields a data set including almost 7000 firms and more than 4000 infor-

mative rating events. The estimation results lead to some interesting empirical findings. First,

there is significant evidence of a persistent common component in rating transitions. We are

able to recover this component from default and rating data at daily frequencies. We further

show that the impact of this common component with respect to downgrade and upgrade prob-

abilities is asymmetric. Upgrades are idiosyncratic to a large extent, whereas downgrades and

defaults tend to cluster together in time.

The paper is organized as follows. In Section 2, the model is presented. In Section 3 we

develop the estimation methodology for this model. Section 4 discusses how to obtain default

probabilities over finite time periods from the event time specification. Section 5 contains the

results of a Monte Carlo study. Section 6 presents our empirical illustration. We conclude in

Section 7.

2 The Multi-State Latent Factor Intensity model

The multi-state latent factor intensity (MLFI) model is a multi-state generalization for mul-

tivariate point processes of the latent factor intensity (LFI) model of Bauwens and Hautsch

(2003). Consider a set of K units (or firms) whose event-histories can be adequately described

by the history of transitions between a finite set of states. The states in our empirical appli-

cation will be the set of credit ratings for issuers as assigned by Standard and Poor’s (S&P).

The data set, has a clear panel structure and consists of the exact dates and the correspond-

ing type of the rating changes recorded for each firm in the sample. In order to account for

unobserved dependence between the transition histories in a parsimonious way, we introduce a

common factor ψ(t). We assume that conditional on ψ(t), rating events are independent across

firms (i.e., along the cross section dimension). This assumption is standard in the credit risk

literature and is used to prevent the model’s corresponding joint state-space becoming quickly

unmanageable due to its size. Gagliardini and Gourieroux (2004) provide a short discussion of

this curse of dimensionality problem.

The multi-state feature of the model is represented as a set S of transition types, S =

{1, 2, . . . , S}. For example, in the case of three rating classes (AAA,AA,A), s = 1 denotes a

downgrade from AAA to AA, s = 2 from AAA to A, s = 3 an upgrade from AA to AAA,

. . ., up to s = S = 6 an upgrade from A to AA. Next, define the right-continuous counting

processes Nk(t) and N(t). The process N(t) makes a jump of unit size at each time there is a

rating event for one of the K units.1 Similarly, Nk(t) jumps at the times there is a credit event

1We assume there are no simultaneous rating transitions. In practice the S&P’s database is recorded at a
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for unit k such that

N(t) =
K∑

k=1

Nk(t).

These point processes are marked because at each event time we also observe the transition

type of the unit, i.e., the specific type of upgrade or downgrade. In fact, the counting process

Nk(t) can be expressed as the sum of S counting processes Nsk(t) that keep track of the total

number of transitions of type s for firm k. It follows that

Nk(t) =
S∑

s=1

Nsk(t), N(t) =
K∑

k=1

Nk(t) =
S∑

s=1

K∑

k=1

Nsk(t).

Corresponding to each of these point processes Nsk(t) we assume there is a finite stochastic

intensity λsk(t). In practical terms this intensity describes the instantaneous probability of unit

k experiencing a type s rating transition at time t conditional upon the information available

just before time t. Naturally, such transition intensities are only defined at time t if the unit

actually is ‘at risk’ for transition type s at t− < t, where t − t− is arbitrarily small. For

example, the downgrade intensity from AAA to AA for firm k at time t is only defined if firm

k actually has an AAA rating just prior to t. The intensity for each point process2 λsk(t) can

be (informally) defined by

λsk(t) = lim
∆↓0

P [Nsk((t+ ∆)−) −Nsk(t
−) > 0 | Ft− ]

∆
,

see for example Andersen et al. (1993, p. 51). The conditional information up to (but not

including) time t is represented by Ft− = ∪τ<tFτ for an appropriate filtration Fτ .

Define Rsk(t) as a dummy variable that takes the value one if unit k is ‘at risk’ for transition

type s ∈ S at time t−, and zero otherwise. Note that unit k can be at risk for multiple transition

types at the same time. For example, both the AAA to AA and the AAA to A transitions may

be at risk simultaneously. Obvious reasons for a transition type not to be at risk for firm k at

time t are that unit k has the incorrect current initial rating, has defaulted, or dropped out of

the sample earlier for other reasons.

The model specification for intensities is given by

λsk(t) = Rsk(t) · exp [ηs + γ′swk(t) + αsψ(t)] ·Hsk(t), (1)

daily frequency. This means multiple rating actions can be observed on a single day (for distinct firms). Our

likelihood specification in Section 3 incorporates this phenomenon.
2We assume Nsk(t) to be a conditionally orderly process, i.e., it satisfies

P [Nsk((t + ∆)−) − Nsk(t−) > 1 | Ft− ] = o (∆) P [Nsk((t + ∆)−) − Nsk(t−) = 1 | Ft− ], such that we can dis-

card the probability of a jump larger than 1 in Nsk(t).
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with s = 1, . . . , S and k = 1, . . . , K, where (i) scalar ηs, m×1 vector γs, and scalar αs are fixed

unknown coefficients, (ii) m × 1 vector wk(t) contains explanatory variables (covariates), (iii)

scalar ψ(t) represents a latent dynamic factor, and (iv) scalar function Hsk(t) represents the

generalized baseline hazard function, which can be used to model duration dependence of the

multivariate type. This specification encompasses for example the homogeneous continuous-

time Markov chain model that is frequently used in the empirical credit risk literature, see, for

example, Kavvathas (2001) and Lando and Skødeberg (2002).

A more detailed discussion of the intensity specification (1) follows below. The parameter

ηs represents the reference-level log-intensity of transition type s. It is independent of time

and common across all units k = 1, . . . , K. The parameter vector γs and scalar αs measure

the sensitivity of unit k’s log-intensity for transition type s with respect to observed covariates

wk(t) and the unobserved process ψ(t), respectively. The m-dimensional vector of covariates

wk(t) can contain unit-specific information such as leverage and profitability ratios, industry

dummies, stock volatilities or statistics depending on the rating process.3 Further, wk(t) can

include macroeconomic information such as economic growth rates, interest rate levels and term

structure variables. In this case superscript k can be dropped from the notation. Note that

phenomena like rating momentum can also be included in wk(t) such that past downgrades and

upgrades make subsequent downgrades and upgrades more likely, respectively.

The coefficients αs depends on the transition type s ∈ S. This implies αs can depend on

both the origin and the destination state. In the empirical literature it is common practice to

have αs parameters that depend on the origin state, i.e., the initial rating, only. Here, however,

the impact of the common risk factor ψ(t) depends on the type of transition, and therefore

on the destination state as well. For example, upgrades might be less subject to common risk

factors than downgrades, see Gagliardini and Gourieroux (2005). Restrictions on αs can be

tested explicitly using the maximum likelihood based procedure of Section 3.

Following the empirical work in the credit risk literature, we assume all intensities are subject

to the same unobserved dynamic common factor ψ(t). Relaxing this assumption by making

ψ(t), for example, rating or industry specific is conceptually straightforward in our modeling

framework. The latent process might even be unit specific as in Bauwens and Hautsch (2003).

In the case of rating transition data, however, specifying unit-specific processes is not really

feasible. The number of rating events for an individual firm is usually too small, even over a

prolonged period of time. This is a direct consequence of the rating agencies’ policy to provide

3The possible endogenous nature of a selection of (time-varying) covariates leads to an inference procedure

that can no longer be interpreted as full (conditional) maximum likelihood. Instead, we then have a partial

likelihood inference framework, see Lancaster (1990).
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stable ratings to the investment community.

Assume that ψ(t) only changes at observed event times ti for i = 1, . . . , N(T ) where T

denotes the time index of the last observation (right-censoring of type I). The specification of

ψ(t) as a stochastic process with piecewise constant (left-continuous) sample paths is intuitive

since the intensity of the pooled process (pooled over firms and transition types) is not identified

between two consecutive events. Moreover, in the context of credit rating transitions, ψ(t) is

intended to capture low-frequency co-movements in the vector of migration intensities. In

the empirical illustration of Section 6, the average duration of the pooled process is 1.8 days.

Therefore, no serious bias will arise from disregarding possible changes in the macroeconomic

variables over the almost bi-daily spells of the pooled process.

Let ψi = ψ(ti) denote the value of the common risk factor ψ(t) over the interval t ∈ (ti−1, ti].

In order to capture serial correlation in the intensity of the pooled process, the dynamic process

for ψi can be specified, for example, by a first order autoregressive (AR) equation

ψi = ρψi−1 + εi, (2)

where εi is a set of i.i.d. N(0, σ2) innovations and the AR parameter ρ ∈ [−1, 1]. More general

dynamic specifications for ψi can be easily incorporated in the state space framework of the

next subsection.

The baseline hazard Hsk(t) is specified by the deterministic function

Hsk(t) = Hs(t− t0k , t− t1k , . . . , t− tNk(t),k, ) (3)

where t − tik denotes the backward-recurrence time of unit k with respect to its past ith

transition moment. The function Hs(·) can be any non-negative function of its arguments.

The inclusion of Hsk(t) introduces duration dependence into the model and, therefore, relaxes

the Markov assumption. More precisely, if Hsk(t) is allowed to depend only on t − tNk(t),k,

then each unit follows a semi-Markov process. In the general case a generalized semi-Markov

process is obtained, see Glynn (1988). Possible choices for Hsk(t) include the hazard function

of a multivariate Weibull distribution, given by

Hs(x0, . . . , xN) =
N∑

i=0

asix
bs−1
i , (4)

with xi ≥ 0 and fixed coefficients asi > 0 and bs > 0 for i = 0, 1, . . . , N . Another valid

alternative is the self-excitation mechanism introduced by Hawkes (1971) and also considered

for the LFI model by Bauwens and Hautsch (2003).

We note that k’s observed duration or spell tNk(t),k− tNk(t)−1,k is the minimum of
∑

sRsk(t)

latent durations corresponding to the set of feasible transitions ‘at risk’ for unit k at time t.
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We adopt the standard practice of assuming that the latent duration processes are mutually

independent conditional on the common factor ψt.
4 See van den Berg (2001) for a detailed

discussion on identification problems in this setting.

To complete the model specification, an additional set of identifying assumptions for the

parameters is required. The global identification of intensity specification (1) requires a sign

restriction for αs. Changing the sign simultaneously for all αs’s and for the complete path of

ψ(t) clearly yields the same path for intensity λsk(t). We therefore set αs < 0 for downgrades

and αs > 0 for upgrades. This specification is motivated by the empirical application of

Section 6. Moreover, as the parameters αs in (1) and σ in (2) are not simultaneously identified,

we normalize σ to unity. Equivalently, one can restrict one αs parameter to unity and estimate

σ > 0.

For a vector of unknown parameters θ, the likelihood function conditional on initial condi-

tions5 and on the complete path of the unobserved process, as defined by ΨN(T ) = {ψi}
N(T )
i=0 ,

can be written as

L
(
θ | FT ,ΨN(T )

)
=

N(T )∏

i=1

K∏

k=1

S∏

s=1

exp

(
Ysk(ti) ln{λsk(ti)} −Rsk(ti)

∫ ti

ti−1

λsk(t)dt

)
, (5)

where dummy variable Ysk(t) is one if unit k at time t experiences a rating event of type s,

and zero otherwise. We note that FT denotes the relevant observable filtration. The likelihood

function (5) has an intuitive interpretation. Unit k only contributes to the (conditional) likeli-

hood if it is at risk, that is if Rsk(ti) = 1. In this case, the likelihood contains the probability

of survival of unit k in its current state over each spell of the pooled point process if there was

no rating event for that unit. When rating event i takes place at the end of the spell of the

pooled process for firm k, that is if Ysk(ti) = 1, the survival probability is multiplied by the

hazard rate to yield the probability density of the rating event.

In order to estimate the parameter vector θ, the conditional likelihood function must be

integrated with respect to the complete path ΨN(T ) of the unobserved process ψ(t). The

maximum likelihood problem becomes

max
θ
L(θ | FT ), (6)

where

L(θ | FT ) =

∫
L
(
θ | FT ,ΨN(T )

)
p(ΨN(T ))dΨN(T ), (7)

and p(ΨN(T )) denotes the density function of ΨN(T ).

4If no exogenous covariates are included, as in the empirical illustration of Section 6, this is an innocuous

assumption, see Tsiatis (1975, Theorem 2).
5A discussion of the initial conditions problem in event-history models is provided by van den Berg (2001).
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3 Monte Carlo Maximum Likelihood Estimation

The main difficulty with maximum likelihood estimation in (7) is the computation of the high-

dimensional integral. In a typical application such as the one in section 6, this integral is more

than 4000 dimensional. McNeil and Wendin (2004) address a similar problem by adopting a

Bayesian perspective, albeit in a lower dimensional space (around 50). Bauwens and Hautsch

(2003) adopt the simulated maximum likelihood method of Liesenfeld and Richard (2003) for

the estimation of a single-state LFI model.

By contrast, in this paper, we adopt the general method of Monte Carlo maximum likelihood

for a multi-state LFI (MLFI) model. To overcome the inefficiency problem of direct Monte Carlo

estimation of the high-dimensional integral in equation (7) we use a combination of importance

sampling and the Kalman filter as described in Durbin and Koopman (Part II, 2001). It is

shown that the methodology can be made applicable for high-dimensional problems. In this

section, the model is formulated in state space form in Subsection 3.1. The Monte Carlo

simulation method for likelihood evaluation is discussed in Subsection 3.2.

3.1 Statistical model specification

The MLFI model considers the following three sources of stochastic variation: (i) the duration

between events in the pooled process, denoted by τi = ti− ti−1; (ii) the transition types s being

at risk at t−i for unit k, denoted by Rsk(ti); (iii) the specific transition type s at time ti for unit

k, denoted by Ysk(ti). These stochastic variables are collected in the vector zi for i = 1, . . . , N

with N = N(T ), where zi is defined as

zi = {τi , R11(ti) , . . . , RSK(ti) , Y11(ti) , . . . , YSK(ti)}
′ .

The vector zi can be constructed (or observed) at each event i = 1, . . . , N . The analogue of

the observation equation for zi is implied by the non-Gaussian conditional likelihood in (5). In

particular, for the ith event time of the pooled process, we have the conditional log-density

ln p(zi|ψi,Ft−i
) =

S∑

s=1

K∑

k=1

Ysk(ti) ln{λsk(ti)} −Rsk(ti)

∫ ti

ti−1

λsk(t)dt, (8)

for i = 1, . . . , N .

The intensity specification (1) can be formulated more generally via vector νi that contains

latent processes and fixed effects. We have

λsk(t) = Rsk(ti) · exp (Zskiνi) ·Hsk(t), for ti−1 < t ≤ ti, (9)
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where Zski is a fixed and known ‘selection’ vector, for s = 1, . . . , S, k = 1, . . . , K, and i =

1, . . . , N . In case Hsk(t) = 1, intensity λsk(t) is constant for ti−1 < t ≤ ti. To show that

specifications (1) and (9) can be equivalent, we take

νi = {η1 , . . . , ηS , γ
′
1 , . . . , γ

′
S , ψ(ti)}

′
,

Zski = {e′s , e
′
s ⊗ wk(ti)

′ , αs} ,

where es is the s-th column of IS. It follows that Zskiνi = ηs + γ′swk(ti) + αsψi. If another

specification for λsk(t) is considered, the specifications for Zski and νi need to be adjusted

accordingly.

The vector νi can contain both fixed unknown coefficients and dynamic latent processes.

We therefore model νi by the general Markovian process

νi = Tiνi−1 +Riηi, ηi ∼ NIID(0, Qi), i = 1, . . . , N, (10)

with initial condition ν0 ∼ N(a, P ). The vector a and the matrices Ti, Ri, Qi and P are fixed

matrices that may depend on the parameter vector θ. If the vector νi only consists of fixed

unknown coefficients, we set a = 0, Ti = Ri = I, Qi = 0 and Pi = κI, where κ is the so-called

diffuse prior constant. Usually, κ is set to some large value in numerical software, see Harvey

(1989, pp. 367-8). Exact solutions for κ → ∞ are available as well, see Durbin and Koopman

(2001, Ch. 4). If the vector νi only contains the latent autoregressive process (2), that is νi = ψi,

we set a = 0, Ti = ρ, Ri = 1, Qi = σ2 and Pi = σ2(1 − ρ2)−1. A combination of unknown

coefficients and latent time series processes can be incorporated in (10) in a straightforward

way. For example, in the case of (1) with wk(t) = 0, we have νi = (η1 , . . . , ηS , ψi)
′ with

a = 0,

Ti =



IS 0

0 ρ



 , Ri =



0

1



 , Qi = σ2, P =



κIS 0

0 σ2(1 − ρ2)−1



 .

A general framework for the MLFI model can be summarized by the observation log-density for

zi conditional on the vector νi. This is given by (8) where λsk(t) is given by (9) for ti−1 < t ≤ ti,

and where νi is modeled by (10) with i = 1, . . . , N . This set of equations makes up a nonlinear

non-Gaussian state space model as considered by Shephard and Pitt (1997) and Durbin and

Koopman (1997, 2001). A further complexity of the model is the highly multivariate nature of

the variables in zi. However the state space framework can easily accommodate this aspect of

the model. A significant advantage of this framework is the incorporation of a selection of fixed

and unknown coefficients in νi. The size of the parameter vector θ is therefore reduced. Since

θ needs to be estimated via the numerical optimization of the likelihood, computation time is

also reduced as a result. The estimation procedures are developed in the next subsection.
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3.2 Monte Carlo likelihood evaluation

Given the statistical model specification of the previous subsection, the likelihood function (7)

can be reformulated by

L(θ | FT ) =

∫ { N∏

i=1

p (zi |νi,Fi−1 )

}
p(ν | FT )dν, (11)

where p (zi |νi,Fi−1 ) is given by (8) and the model for ν = (ν ′1, . . . , ν
′
N)′ is implied by (10).

Both p (zi |νi,Fi−1 ) and p(ν|FT ) depend on the parameter vector θ for i = 1, . . . , N . An

analytical expression for (11) does not exist and therefore we rely on numerical techniques for

the evaluation of (11). For this purpose we explore the technique of Monte Carlo integration

using the method of importance sampling. The basic idea is simple. First, we simulate M paths

of ν from p(ν|FT ) denoted by ν1, . . . , νM where M is a large number. Second, we compute the

Monte Carlo estimator of (11) given by

L̂(θ | FT ) = M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
(12)

where νmi is the ith element from νm. The estimator (12) is poor since νm is simulated ‘uncon-

ditionally’ and is therefore likely to make little contribution to the likelihood. A more efficient

approach is to simulate from p(ν|z,FT ), but this is not feasible since no analytical expression

exists for this density. The idea of importance sampling is to replace p(ν|z,FT ) by the more

convenient Gaussian density pG(ν|z,FT ) for simulating ν’s. The basic algorithm is then ad-

justed as follows. First, simulate M paths of ν from pG(ν|z,FT ) denoted by ν1, . . . , νM where

M is a large number. Second, compute the Monte Carlo estimator of (11) as given by

L̂(θ | FT ) = M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
p(νm|FT )

pG(νm|z,FT )

= pG(z|FT )M−1

M∑

m=1

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}
1

pG(z|νm,FT )
, (13)

since pG(ν|FT ) = p(ν|FT ) and pG(ν|z,FT ) = pG(z|ν,FT ) pG(ν|FT )/pG(z|FT ). We refer to this

estimator as the Monte Carlo likelihood. The construction of pG(ν|z,FT ) and the evaluation

of the different densities is described in detail below.

Step 1: Simulate paths of ν from pG(ν|z,FT )

To build a device for simulating from the conditional Gaussian density pG(ν|z,FT ), an ap-

proximating linear Gaussian model needs to be formulated that represents the joint density

pG(ν, z|FT ). This density for the linear Gaussian model ideally resembles the true density
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p(ν, z|FT ) as close as possible because samples generated from the conditional Gaussian den-

sity pG(ν|z,FT ) may then be similar to samples from the conditional density p(ν|z,FT ). An

appropriate linear Gaussian model can be obtained using the method described in Durbin and

Koopman (2001, Part II) and is based on the linearization of the observational log-density using

a second-order Taylor expansion.

In the context of the model described in Subsection 3.1, the basic idea is to construct a

linear Gaussian state space model for the series of rating event indicators at event i as given by

{Y11i, . . . , YS1i, Y12i, . . . , YSKi} ,

where Yski ≡ Ysk(ti) and Ysk(ti) is one or zero to indicate whether a rating event of type s

has taken place for unit k at time ti. Such a rating event is triggered by the signal Zskiνi =

ηs + γ′swk(ti) + αsψi which determines the intensity λsk(t) for ti−1 < t ≤ ti, see Subsection

3.1. To establish an approximating Gaussian model that relates the signal Zskiνi to Yski, we

consider the linear Gaussian observation equation

Yski = cski + Zskiνi + ξski, ξski ∼ NIID (0, Cski) , (14)

for s = 1, . . . , S, k = 1, . . . , K and i = 1, . . . , N , where scalar constant cski and scalar variance

Cski are considered as auxiliary and unknown variables that need to be constructed in a con-

sistent fashion as is shown below. The observation Yski is linear in vector νi and modeled by

the linear Gaussian process (10). Therefore, observation equation (14) and the dynamic latent

process (10) make up a standard linear Gaussian state space model, see Durbin and Koopman

(2001, part I) for a detailed discussion on this class of models.

The constant cski and variance Cski of the observation equation (14) are constructed in

such a way that the conditional density of the model of interest p(z|ν,FT ) and the condi-

tional density of the approximating model pG(Y |ν,FT ) have the same mode for ν, where

Y = (Y111, . . . , YSKN)′. The joint solution for cski and Cski to obtain the mode denoted by

ν̄ can be obtained recursively, see the treatment in Durbin and Koopman (2001, Chapter 11).

The implementation of this procedure is relatively simple. An initial guess for the mode ν̄

needs to be found that is denoted by ν̂(0). The linear Gaussian model (14) is constructed for

j = 0 by

cski = Yski − Zskiν̂
(j)
i − CskiZski∇ ln p(z|ν,FT )i,

Cski = − [Zski∇
2 ln p(z|ν,FT )iZ

′
ski]

−1
,

(15)

where

∇ ln p(z|ν,FT )i =
∂ ln p(z|ν,FT )

∂νi

∣∣∣∣
ν=ν(j)

,
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∇2 ln p(z|ν,FT )i =
∂2 ln p(z|ν,FT )

∂νi∂ν ′i

∣∣∣∣
ν=ν(j)

.

A new guess of the mode for ν is obtained by estimating the conditional mean of ν conditional on

Y for the approximating linear Gaussian state space model (14) and (10). The conditional mean

of ν can be computed by the Kalman filter and smoothing (KFS) algorithm. More formally,

the KFS method computes EG(ν|Y ) where EG(·) is with respect to the approximating linear

Gaussian model. It is well-known that the mode and the mean are equivalent in a Gaussian

model. The new estimate of ν is denoted by ν̂(j+1). New guesses for the mode are obtained by

the KFS based on (15) for j = 1, 2, . . . until convergence is reached according to some metric.

Usually convergence takes place after 5 to 10 iterations.

The approximating linear Gaussian model now consists of (10) and (14), with joint density

pG(ν, z|FT ) and where (15) is evaluated at ν = ν̂ with ν̂ as the estimated mode. We adopt this

model to generate conditional samples for ν from pG(ν|z,FT ). Direct sampling from such a

high-dimensional Gaussian density requires many high-dimensional matrix operations. These

numerical problems can be overcome because the model is formulated as a linear Gaussian state

space model. Therefore, the simulation smoothing algorithms of de Jong and Shephard (1995)

or Durbin and Koopman (2002) can be used to generate conditional samples for ν, denoted as

νm for m = 1, . . . ,M .

Step 2: Compute the Monte Carlo likelihood (13)

Given a set of simulated samples from pG(ν|z,FT ) ≡ pG(ν|Y,FT ) and denoted by νm, the

computation of the Monte Carlo likelihood (13) is relatively simple. The Gaussian density

pG(z|ν,FT ) ≡ pG(Y |ν,FT ) is conditional on ν and its expression is well-known for the linear

model (14). Further, the observation density of interest p(zi|νi,Fi−1) is given by equation (8)

and can also be computed straightforwardly.

The Monte Carlo likelihood is then maximized with respect to θ for a particular choice of

M . The maximization can be carried out by a numerical optimization procedure. For example,

a quasi-Newton method can be used for this purpose. To ensure a likelihood surface that is

continuous (or smooth) in θ, the same random numbers are used for the sampling in Step 1 of

the M signals from pG(ν|z,FT ).

Step 3: Smoothed estimates of the state vector

The state vector νi contains fixed unknown coefficients and dynamic latent processes. Estimat-

ing the state vector for each i leads to estimates of regression parameters and latent processes

such as ψi. A straightforward estimate of the state vector, given the data, is obtained by
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weighting each simulated state vector νmi by its contribution to the likelihood function, that is

ν̂i|N =

(
M∑

m=1

wm × νmi

)/(
M∑

m=1

wm

)
, (16)

where

wm =

{
N∏

i=1

p (zi |ν
m
i ,Fi−1 )

}/
pG(z|νm,FT ). (17)

Standard errors for ν̂i|N are obtained by taking the square root of

[{
M∑

m=1

wm × (νmi )2

}/(
M∑

m=1

wm

)]
− (ν̂i|N)2. (18)

4 Implied Short-term Transition Matrices

We now turn to the issue of estimating the short-term transition matrix given the Monte Carlo

maximum likelihood estimates of the parameters. Typical examples include 1-year transition

matrices as the ones published by Standard & Poor’s and Moody’s. We start by recalling the

connection for unit k between the infinitesimal generator matrix Gk(t) and the implied matrix

Pk of transition probabilities for a continuous-time finite-state Markov process.6 The matrix

Gk(t) contains the hazard rates for each origin and destination state combination. In particular,

the (i, j)th element of Gk(t) equals λsk(t) for s corresponding to a transition from origin state

i to destination state j. The diagonal elements of Gk(t) are such that the rows of Gk(t) sum

to zero. Consider an interval [T, T + ∆]. Then the matrix of transition probabilities over the

interval [T, T + ∆] is given by the product integral7

Pk (T, T + ∆) =

T+∆

T

(IS +Gk(t)dt) . (19)

For the MLFI model, a parametric form for Gk(t) conditional on observed regressors and

an unobserved factor is assumed. In Aalen and Johansen (1978), by contrast, Gk(t) is left

completely unspecified under the assumption that duration and self-excitation effects are absent.

We therefore use the Aalen Johansen estimator in our empirical section as a benchmark for

evaluating model adequacy. Note that the methodology for computing Pk(T, T + ∆) based

6For a Markov chain, the entries of the Generator matrix are either constants or (deterministic) functions

of time. However, for generalized semi-Markov processes the entries of the generator matrix are, in general,

stochastic processes.
7See Gill (2001) for an exposition on product integration. The product integral is the continuous counterpart

of the standard, discrete product operator, just as the integral is the continuous counterpart of the summation

operator. Informally, the product integral of a function f(t) over the interval [T, T + ∆] is
T+∆

T
(1 + df(t)) =

limn→∞

∏
n

i=1
(1 + f(ti) − f(ti−1)) for a partition T = t0 < t1 < . . . < tn = T + ∆.
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on parametric specifications of Gk(t) is also valid if duration and self-excitation effects are

present. This is particularly interesting in the light of the empirical evidence in for example

Kavvathas (2001) and Lando and Skødeberg (2002). In that case the individual entries of the

matrix Gk(t) are stochastic processes. We assume the elements of Gk(t) are adapted to the

observable filtration Ft. In this situation Pk(T, T + ∆) becomes a random variable, and we

want to compute its expectation conditional on FT . This expectation can be interpreted as the

transition matrix over the interval [T, T + ∆],

P̄k (T, T + ∆) = E [Pk (T, T + ∆) | FT ] = E




T+∆

T

(I +Gk(t)dt)

∣∣∣∣∣∣
FT



 . (20)

We propose a parametric bootstrap procedure for evaluating the conditional expectation

in (20). We start with the estimates of the unknown model parameters and the smoothed

estimates of the latent process, E[ψi|FT ] for i = 1, . . . , N(T ). Next, we simulate a large number

M of possible future sample paths over the [T, T + ∆] interval for the full panel of K firms as

well as for the unobserved risk factor ψi.
8 A consistent estimator for P̄k(T, T + ∆) is given by

ˆ̄Pk (T, T + ∆) =
1

M

M∑

m=1

T+∆

T

(I +Gm
k (t)dt) , (21)

where Gm
k (t) denotes unit k’s realized matrix of intensities for replication m.

The pooled process over [T, T + ∆] for replication m provides a partition T = tm0 < tm1 <

. . . < tmn = T + ∆, over which the product integral can be factored. Each of these factors can

then be evaluated separately by an appropriate truncation of the corresponding Péano series

expansion,

tmi

tmi−1

(I +Gm
k (t)dt) = I +

∞∑

p=1

∫
. . .

∫

tmi−16s1<...sp6tmi

Gm
k (s1)ds1 . . . G

m
k (sp)dsp,

see Andersen et al. (1993, p. 91). Due to the parametric assumption for Gk(t), the multiple

integral appearing as the general term of this series may in some cases be evaluated analytically.

For the empirical model in Section 6 these calculations become particularly manageable.

The estimates of P̄k[T, T +∆] can be used to compute several interesting risk measures. For

example, one can compute the average transition probabilities over a specific time interval for

a portfolio of firms,

P̄ [T, T + ∆] = K−1

K∑

k=1

P̄k[T, T + ∆].

8If weakly exogenous covariates were included in equation (1), then an auxiliary model is needed to forecast

the future path of these covariates (as mentioned in the introduction). One resulting possibility is the estimation

of scenario forecasts.
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One can also compute (non-linear) functions of the default probabilities in P̄k[T, T + ∆] to

obtain direct estimates of capital requirements according to the official Basel II regulations.

5 Simulation Results

To assess the performance of the Monte Carlo maximum likelihood method in a controlled

environment, a simulation experiment is carried out. The modeling framework resembles closely

the model specification of the empirical study in Section 6. The details of the simulation design

and results are presented in this section.

We consider three states. The states can be interpreted as investment grade, subinvestment

grade, and default. Default is an absorbing state. The intensities are specified as

λsk(t) = Rsk(t) · exp [ηs + αsψ(t)] ,

where ψ(t) is a step function that jumps at the endogenous event times ti as in (2). The firm

heterogeneity in this specification enters through the different parameters ηs for the different

transition types s. Another source of heterogeneity is the latent process ψ(t) that can be

interpreted as the macroeconomic effect. The benchmark model in this simulation exercise

abstracts from duration dependence by setting Hsk(t) ≡ 1. Further parsimony is introduced

by setting αs = −α < 0 for downgrades, and αs = α > 0 for upgrades. The parameter values

used for the simulation can be found in the top panel of Table 1. Experiments with different

parameter values yielded qualitatively similar results.

<INSERT TABLE 1 ABOUT HERE>

We simulate panels of different sizes, from 100 units up to 500 units. Each panel is generated

as follows. At time t0 = 0, the sample contains an equal number of firms in state 1 (investment

grade) and state 2 (subinvestment grade). The unobserved process ψ(t) is initialized by drawing

ψ1 = ψ(t1) from its unconditional distribution (the standard normal). Given the parameters,

this completely specifies the intensities up to the event date t1. For the time interval (ti−1, ti],

the intensity of the pooled process is defined by

λ∗(ti) =
K∑

k=1

S∑

s=1

λsk(ti), (22)

with λ∗(t1) applicable over the first spell (t0, t1]. The length of any spell in the pooled process

can therefore be drawn from the exponential distribution with intensity parameter λ∗(ti). Given

the durations of the spells (ti−1, ti] for i = 1, . . . , N(T ), the firm experiencing a rating event is
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drawn from the univariate Multinomial{π1(ti), . . . , πK(ti)} distribution where the probability

of drawing unit k is given by

πk(ti) = [λ∗(ti)]
−1

S∑

s=1

λsk(ti), k = 1, . . . , K. (23)

Next, the type of rating event for unit k is drawn from the multinomial distribution with the

probability of state s being drawn for unit k given by

πsk(ti) =

[
S∑

s=1

λsk(ti)

]−1

λsk(ti), (24)

for s = 1, . . . , S and k = 1, . . . , K. If the event is a default, the dummy variable Rik(t) jumps

to zero. Finally, the unobserved common risk factor ψi = ψ(ti) is updated using (2) with

ρ = 0.9 and where the disturbances εi, i = 1, . . . , N(T ), are drawn from a standard normal

distribution. This process is repeated until all units have entered the absorbing default state.

For each panel size, we performed 500 replications of the simulations. All calculations in this

paper were performed using the Ox matrix programming language of Doornik (2002) and the

estimation and smoothing routines in the package SsfPack of Koopman, Shephard and Doornik

(1999).

The simulation results for the Monte Carlo maximum likelihood procedure discussed in

Section 3 are shown in Figure 1 and in the lower panels of Table 1. We observe that the

parameters are recovered with a high degree of accuracy. This already holds for a moderate

panel size K. Note that the size of K in our empirical application in Section 6 is much larger,

that is K ≈ 7000. The Monte Carlo standard errors decrease if we increase the size of the

panel. This holds for all parameters. Note that if we increase the number of units in the

panel, we simultaneously increase the time series dimension of the panel, as it takes longer (in

expectation) for all firms to enter the absorbing default state.

<INSERT FIGURE 1 ABOUT HERE>

Table 1 and Figure 1 illustrate that the Monte Carlo likelihood procedure provides accurate

parameter estimates for the model at hand. It is also interesting to see how the methodology

performs in retracing the common factor ψ(t) from the data. As an illustration, we take a

single ‘representative’ simulation. The method for computing the smoothed estimate of the

state vector described in Section 3 (Step 3) is used for this purpose. The smoothed estimate

of ψ(ti) is presented in Figure 2. The algorithm clearly performs satisfactory in recovering the

characteristics of the true, unobserved ψ(t) process from the (simulated) data.

<INSERT FIGURE 2 ABOUT HERE>
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6 Empirical Results

A baseline MLFI model without explanatory covariates, wks(t) ≡ 0, and dependence on the

backward recurrence times, Hsk(t) ≡ 1, is considered for a database of ratings that covers a

period of more than 23 years. The simplification of the modeling framework implies that the

durations in the pooled process follow (non i.i.d.) exponential distributions. Due to the presence

of a common component, the duration until a default or rating migration for an individual firm

then follows a convolution of a (random) number of exponential distributions, see Andersen et

al. (1993).

6.1 Data

The data consist of rating transitions obtained from Standard & Poor’s. The rating histories

of all issuers are recorded in the CreditPro 6.2 database. The sample period is from the end of

1980 (the left-censoring time point) until the start of 2003, covering a total of 8035 days. We

express the durations of the pooled process as a fraction of the business year. Note that there

may be multiple rating events on a single day. This is captured by the variables Ysk(ti) in (5).

The rating histories in the data set distinguish between more than 18 different rating classes.

To illustrate our methodology, we consider only two broad classes, namely investment grade

(AAA down to BBB-) and subinvestment grade firms (BB+ and lower).

New firms enter the sample when they receive a rating for the first time. Firms leave the

sample when they enter the default state or when their rating is withdrawn. However, S&P

continues to track firms whose ratings are withdrawn. It is notified in the database when such

firms default at a later stage. This should substantially mitigate any biases caused by strategic

behavior of firms in maintaining a rating at S&P.

Some descriptive features of the data are as follows. The pooled process has a high intensity

of migrations, resulting in an average duration between transitions of 1.85 days with a standard

deviation of 0.006. There is a large number of downgrades and upgrades. The number of

transitions from investment to subinvestment grades (downgrades) is 773. Vise versa (upgrades)

it is 579. The number of transitions from subinvestment grade to a default state is 835 while

the number of defaulting investment grade firms is only 7. This small number of 7 defaults

limits the precision of estimates of the default intensity for investment grade firms.

<INSERT FIGURE 3 ABOUT HERE>

The first two plots in Figure 3 show the number of downgrades and defaults on a daily basis

since December 31, 1980, respectively. We can see that downgrades and defaults tend to cluster
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in time. This can be easily seen by noticing the concentration of vertical lines, which originate

dark and bright areas along the horizontal (time) axis. The lower plot in Figure 3 contains the

number of upgrades on any given day. Interestingly, these three plots complement each other.

When downgrades and defaults cluster, upgrades are scarce, and vise versa. This suggests that

the model specification used with a single common risk factor ψ(t) and the sign restrictions on

the factor loadings αs already captures the most salient features of the data.

6.2 Homogeneous continuous-time Markov chain model

To get a first impression of the adequacy of the empirical model specification, we consider the

MLFI model without any latent dynamics. In this case, the model specification has λsk(t) =

exp(ηs) and the MLFI model reduces simply to a homogeneous continuous-time Markov chain

(HCTMC) model. The maximum likelihood (ML) estimator of ηs for the HCTMC model has

a closed-form expression and is given by

η̂s = ln

(
N∑

i=1

K∑

k=1

Yski

)
− ln

(
N∑

i=1

K∑

k=1

tiRski

)
. (25)

Table 2 presents the parameter estimates based on (25) as well as the estimates obtained by

using the Monte Carlo methods of Section 3. As expected, the parameter estimates are almost

identical, reflecting the accuracy of the MC likelihood. The largest differences are for the

estimate of the default intensity of investment grade firms and for its standard error. However,

even these differences are marginal. If anything, the confidence intervals of the Monte Carlo

ML estimator appear slightly larger, making the inference procedure conservative in the sense

that it becomes more difficult to establish statistical significance. The estimated log-likelihood

using the Monte Carlo procedure is also accurate and almost exactly coincides with the ML

value.

<INSERT TABLE 2 ABOUT HERE>

6.3 Estimation results for the MLFI model

In this empirical illustration, we introduce the common component ψi as a random walk, i.e.,

with the AR parameter ρ set to unity. The common factor ψi is meant to capture changes

in general business conditions that are typically caused by the credit or business cycle. Such

changes evolve gradually over the years. The observations, on the other hand, are made at

a high-frequency. The average duration of a spell of the pooled process is less than 2 days,

see Subsection 6.1. To align the high-frequency nature of the data with the low-frequency
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characteristics of ψi, a priori imposing the unit root on the AR specification appears natural.

Otherwise, the ψi component might also pick up fluctuations at a higher frequency, which

are not of prime interest in our current application. Due to the restriction ρ = 1, ψ(t1) and

ηs for s = 1, . . . , S are not jointly identified. Therefore we start the latent process ψ(t) at

ψ1 = ψ(t1) = 0. This means that ψ(t) can be interpreted as a relative credit index compared

to its starting level in December 31, 1980.

For the intensity specification (1), we set αs < 0 for downgrades and αs > 0 for upgrades.

Since ψi is interpreted as the (unobserved) credit cycle, these sign restrictions on αs imply an

increase in the probability of downgrades and defaults if ψi is negative, and a simultaneous

decrease in the probability of rating upgrades. Conversely, if ψi is positive, it leads to an

increase in the probability of firms being upgraded.

Four different specifications for the MLFI model with respect to αs are considered. The basic

MLFI specification is with a single coefficient αs per rating class. In the empirical illustration

this means that αs differs across the two states, Inv and Sub. The estimation results for this

specification are presented in the upper-right panel of Table 3.

<INSERT TABLE 3 ABOUT HERE>

The inclusion of a common risk component leads to a huge increase of the likelihood value.

The difference between the log-likelihood values that are presented in Table 2 and in the upper-

right panel of Table 3, is around 174 points. This is statistically significant at any conventional

level. The estimated loadings αs of the common factor for investment and subinvestment

grade firms show that the differences are small. We therefore also consider a model where the

common factor loading does not depend on the initial rating class. The estimation results are

presented in the upper-left part of the table. By comparing the parameter estimates for the two

specifications in the top-panels, it is clear that the estimated parameters are not significantly

different. This is confirmed by the likelihood values, which are also approximately equal.

The above result, however, hinges on the assumption of a single sensitivity parameter per

rating class. This may not hold empirically. For example, upgrades can be less sensitive to

common risk factors than downgrades and defaults, see the discussion in Kavvathas (2001). To

test for this phenomenon, the αs parameters are allowed to depend both on the input rating and

the output rating. The estimation results are in the lower-left panel of Table 3. Note that we

still impose the sign restrictions on αs for upgrades and downgrades. The log-likelihood value

increases by 16.6 points as a result at the expense of two additional parameters. This leads to

an overall statistically significant improvement at the 1% level. For investment grade firms, the

common factor sensitivity of downgrades appears much higher than for defaults. The sensitivity
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for default is even estimated as zero. This is due to the sign restriction imposed on the loadings.

The investment grade common factor sensitivity for a downgrade to subinvestment is −0.039

while it is −0.047 for a downgrade from subinvestment grade to default. These estimates are

not similar to the upper-panel results where αs is not different for different destination states.

In the case of upgrades from subinvestment to investment grades, the estimated common factor

loading is 0.017 and is less than 40% of the loading for downgrades −0.047, in absolute value.

Upgrades appear to be less driven by common risk than downgrades. This result is in line

with the results of Das et al. (2002) and Kavvathas (2001) based on observed macro-economic

variables as proxies for the common risk factor.

Finally, we investigate whether imposing the sign restrictions on the factor loadings αs

causes significant distortions in the estimation procedure. The lower-right panel of Table 3

presents the results for unrestricted αss, i.e., where we only impose αSub→Dflt < 0 to establish

identification. Comparing the log-likelihood values of the models in the lower panels clearly

reveals that there is no significant difference. The estimated sensitivity of the default intensity

for investment grade firms is estimated at the positive value 0.008. However, its confidence

interval clearly indicates that the estimated value is not significantly different from zero.

The smoothed estimates of ψi can be obtained using the Monte Carlo methods of step 3

in Section 3. These estimates are based on the parameter estimates of the lower-right panel

of Figure 4. The resulting estimates of ψi, denoted by ψ̂i for i = 1, . . . , N , show clear troughs

in the early and middle 80’s, early and late 90’s and early 2000’s. This is consistent with the

empirical dynamic patterns found in the empirical finance literature. These smoothed estimates

confirm the salient features in the data as presented in Figure 3. The peaks in ψ̂i correspond

to periods with clusters of upgrades while defaults and downgrades are relatively scarce in such

periods. Conversely, in periods with many defaults and downgrades, the ψ̂i is relatively small.

This feature corresponds with the interpretation of ψi as a common risk component in rating

transitions.

<INSERT FIGURE 4 ABOUT HERE>

6.4 Forecasting rating transition probabilities

To assess the impact of fluctuations in the estimated latent risk component for the implied

1-year transition/default probabilities, a recursive out-of-sample forecasting exercise is carried

out. The empirical results of this study are reported below. The details of the forecasting

study are as follows. First, a data window from end 1980 to end 1990 is considered for the

estimation of the parameters ηs and αs together with the latent factor ψi. Next, a forecast for
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the one-year transition probability matrix over the year 1991 is obtained from the MLFI model

using the parametric bootstrap method described in Section 4. We can also use the estimates

of the (constant) intensities from the HCTMC model over the estimation window to obtain an

implied one-year transition matrix. This historical transition probability matrix can then be

used as a naive estimate of the future transition rates. In order to assess the performance of

these two alternative forecasting methods we compute the nonparametric Aalen Johansen (AJ)

estimator of the transition probabilities over the year 1991. This empirical transition matrix

can be seen in the current context as a proxy for the ‘true’ or realized9 transition probabilities,

see Lando and Skødeberg (2002).

This exercise is repeated by consecutively enlarging the sample by one year until end 2001.

For each sample, two sets of transition probabilities for the next year are computed: the

parametric HCTMC estimates over the (increased) estimation window and the bootstrapped

MLFI forecasts. The resulting forecasted probabilities for the years 1991 to 2002 are presented

in Figure 5 against the actual 1-year AJ estimates over each of these years.

<INSERT FIGURE 5 ABOUT HERE>

The ex-ante forecasts of the MLFI model resemble the nonparametric ex-post AJ estimates

closely. Although the HCTMC model does not include a dynamic component, the forecasts

still adapt over the years due to the recursive nature of the procedure. The changes are

nevertheless insufficient. The forecast results in Figure 5 show that the increased flexibility of

the dynamic latent factor in the MLFI model leads to more realistic forecasts. This can be

seen by comparing both forecasts with the ‘realized’ transition probabilities as given by the

nonparametric AJ historical estimates.

For investment grade firms, the MLFI model appears somewhat more conservative than the

HCTMC model in that predicted default probabilities are higher. In particular this is the case

when observed default frequencies are high during the previous year. The MLFI forecast and

the AJ estimates are also quite similar for default probabilities of subinvestment grade firms.

In the case of subinvestment firms, the MLFI model misses the large number of upgrades in the

early nineties. On the other hand, it overpredicts the upgrade probabilities in the late 1990s

and the early years of the 2000s. In both cases, however, the forecasts can be regarded as more

prudent while still responding faster to the recently observed events as compared to those of the

HCTMC model. The prudent character of the MLFI forecasts needs to be studied from a risk

9The term realized is chosen deliberately here. Its well-known analogue is the nonparametric computation

of realized volatility in the empirical finance literature, see Andersen, Bollerslev, Diebold, Labys (2003). The

AJ estimator is its counterpart in the context of transition models.
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management perspective in more detail. For example, the dynamic specification of the model

can be extended, duration dependence can be included and heterogeneity can be accounted for

by incorporating observed covariates in the model. This is left for future research.

7 Conclusion

In this paper we have motivated and introduced a multi-state latent factor intensity (MLFI)

model for credit rating transitions. The model can be regarded as a generalization of the

latent factor intensity point process introduced in Bauwens and Hautsch (2003) to a situation

with multiple origin and destination states. However, the econometric issues related to this

generalization are intricate and the computational consequences are severe. We have discussed

the details for the estimation of the MLFI model using a Monte Carlo maximum likelihood

procedure that consists of a combination of importance sampling techniques and state space

methods, as outlined in Durbin and Koopman (1997, 2001). It is shown that this procedure can

be extended successfully to a multivariate class of non-Gaussian models. A simulation study is

carried out to show that the estimation procedure works well in recovering the parameters of

the MLFI model. Finally, we have applied the model to a real-world dataset of credit rating

migrations. A significant common risk factor in credit rating migrations is found. The impact of

this risk factor is higher for downgrades than for upgrades. This empirical result suggests that

upgrades are more subject to idiosyncratic shocks than downgrades. This finding is consistent

with the conclusions in the earlier studies of Kavvathas (2001) and Das et al. (2002).

Generalizations with respect to the current empirical specification are easily incorporated in

the structure of the MLFI model. For example, the general specification allows for the inclusion

of observed firm-specific and economic variables, self-exciting processes, and additional dynamic

components. A further interesting feature of the model is that it produces a high-frequency

credit cycle index estimated directly from default and rating migration data. Although the cur-

rent specification with a single latent factor is motivated by economic intuition, generalizations

toward multiple risk factors are straightforward. Furthermore it is possible to estimate and

test formally the number of latent factors driving the default and rating migration intensities.

To set up and use the model for credit risk simulations is straightforward given the integrated

structure of the model. The dynamics of the common risk factor are estimated simultaneously

with the development of default events conditional on this common risk factor. Therefore, they

can also be easily integrated in a forecasting exercise as in Section 6. As a final outlook, the

MLFI model may also provide a useful benchmark in modeling prices of defaultable securities

and credit risk premia.
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Table 1: Monte Carlo Results
This table contains parameter estimates for the baseline MLFI model,

λsk(t) = Rsk(t) · exp[ηs + αsψ(t)],

for k = 1, . . . ,K with K the number of units, s = 1, . . . , 6. The ηs and αs estimates are presented as matrices, the row of the matrix
representing the origin, and the column representing the destination state. The common factor ψ(t) follows an AR(1) process with
AR parameter ρ that only jumps at the event times ti. The true parameter values are given in the top panel of the table. The
bottom three panels contain simulation averages and standard errors of parameter estimates based on 500 replications for different
numbers of cross-sectional units K.

K η α ρ

Origin Destination state Destination state
state 1 2 3 1 2 3

True 1 -4.00 -5.00 -1.00 -1.00 0.90
Values 2 -4.50 -3.50 1.00 -1.00

100 1 -3.94 -4.96 -1.07 -1.07 0.87
(0.34) (0.38) (0.24) (0.24) (0.07)

2 -4.62 -3.47 1.07 -1.07
(0.38) (0.36) (0.24) (0.24)

200 1 -3.94 -4.95 -1.02 -1.02 0.89
(0.23) (0.26) (0.14) (0.14) (0.04)

2 -4.55 -3.46 1.02 -1.02
(0.26) (0.24) (0.14) (0.14)

500 1 -3.97 -4.97 -1.00 -1.00 0.90
(0.16) (0.18) (0.09) (0.09) (0.02)

2 -4.48 -3.47 1.00 -1.00
(0.17) (0.16) (0.09) (0.09)

Table 2: Parameter estimates of the HCTMC model
This table presents estimates of a homogeneous continuous-time Markov chain (HCTMC) model with intensities
λsk(t) = Rsk(t) exp(ηs). The left-hand panel presents the results for the Monte Carlo maximum likelihood procedure as discussed
in Section 3. The right-hand panel presents the closed-form maximum likelihood (ML) estimates from (25). The rows denote the
input rating: Inv for investment grade and Sub for subinvestment grade. The columns contain the output ratings: Inv, Sub or Dflt,
the latter for default. Optimization is performed using 100 importance samples. Computation of standard errors is based on 1,000
importance samples.

Monte Carlo ML ML
Inv Sub Dflt Inv Sub Dflt

η Inv -3.77 -8.54 -3.77 -8.48
[-3.84,-3.70] [-9.32,-7.76] [-3.84,-3.70] [-9.23,-7.72]

Sub -3.38 -3.02 -3.38 -3.01
[-3.46,-3.30] [-3.09,-2.96] [-3.46,-3.30] [-3.08,-2.95]

Log-lik -9644.0 -9643.9
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Table 3: Parameter estimates of the MLFI model
This table contains the parameter estimates of the baseline MLFI model,

λsk(t) = Rsk(t) exp[ηs + αsψ(t)],

for k = 1, . . . ,K with K the number of firms, s ∈ S = {Inv → Sub, Inv → Dflt, Sub→ Inv, Sub→ Dflt}, with Inv, Sub, and Dflt
for investment grade, subinvestment grade and default, respectively. The common factor ψi = ψ(ti) follows a random walk process
with ψ0 = 0 for i = 1, . . . , N . The numbers in square brackets denote the 95% confidence intervals. Four model specifications are
estimated with four different specifications for αs. In the upper-left panel, αs = α > 0 for upgrades and αs = −α otherwise. In
the upper-right panel, the magnitude of αs only depends on the origin state (the initial rating). In the lower-left panel, αs ≥ 0
for upgrades, and αs ≤ 0 for downgrades. In the lower-right panel, we only restrict αSub→Dflt < 0. Estimation is carried out by
the Monte Carlo methods of Section 3 and based on 100 importance samples for each likelihood evaluation. Standard errors are
computed using 1,000 samples.

Single α Row-wise restricted αs
Inv Sub Dflt Inv Sub Dflt

η Inv -4.12 -8.91 -4.13 -8.91
[-4.62,-3.63] [-9.91,-7.91] [-4.65,-3.61] [-9.92,-7.90]

Sub -3.19 -3.42 -3.20 -3.39
[-3.68,-2.69] [-3.92,-2.92] [-3.69,-2.72] [-3.88,-2.90]

α Inv -0.034 -0.034 -0.036 -0.036
[-0.054,-0.021] [-0.054,-0.021] [-0.060,-0.021] [-0.060,-0.021]

Sub 0.034 -0.034 0.033 -0.033
[0.021,0.054] [-0.054,0-.021] [0.021,0.054] [-0.054,-0.021]

Log-lik -9470.2 -9470.0

Sign restricted αs Unrestricted αs
Inv Sub Dflt Inv Sub Dflt

η Inv -4.15 -8.55 -4.15 -8.50
[-4.71,-3.58] [-9.33,-7.76] [-4.71,-3.58] [-9.27,-7.73]

Sub -3.28 -3.56 -3.28 -3.56
[3.54,-3.02] [-4.24,-2.87] [-3.54,-3.02] [-4.24,-2.87]

α Inv -0.039 0.000 -0.038 0.008
[-0.065,-0.023] [-1000,0.000] [-0.058,-0.019] [-0.068,0.052]

Sub 0.017 -0.047 0.017 -0.047
[0.010,0.031] [-0.075,-0.029] [0.007,0.027] [-0.075,-0.029]

Log-lik -9453.4 -9453.4
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Figure 1: Empirical distributions of SML estimators for the baseline MLFI model
The baseline model and the simulation set-up are the same as explained in the note to Table 1.
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Figure 2: True versus smoothed estimate of ψ(t)
The baseline model and the simulation set-up are the same as explained in the note to Table 1.

29



1985 1990 1995 2000

2

4

6

Downgrades

1985 1990 1995 2000

2

4

6

Defaults

1985 1990 1995 2000

2.5

5.0

7.5

10.0

Upgrades

Figure 3: Daily number of rating actions and recorded defaults
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Figure 4: Smoothed credit cycle ψi with 95% confidence band
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Figure 5: Forecasted transition probabilities
Using a recursive model and state estimation procedure with extending data window from Dec 1980–Dec

1990 to Dec 1980–Dec 2001. Transition probabilities are estimated using the methodology of Section 4 for the
MLFI model and the homogeneous continuous-time Markov chain (HCTMC) model. The Aalen-Johansen (AJ)
estimates for each year are also plotted as a proxy for the observed transition rates. The upper row of plots give
the probabilities from the origin state Investment grade (I) to Investment grade (upper-left), Subinvestment
grade (upper-middle), and Default (upper-right). The lower row of plots is similar, but for the origin state of
Subinvestment grade (S).
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