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1 Introduction

Nash (1953) started the research agenda of �nding mutually reinforcing axiomatic bargaining

solutions and equilibrium outcomes of strategic bargaining procedures. At present, the best

known equivalence is between the axiomatic Nash bargaining solution (NBS) and the limit

of the unique equilibrium outcome in the strategic alternating o¤ers model with discounting

when the time between bargaining rounds vanishes, see e.g. Binmore et al. (1986). The limit

bargaining weights depend upon the players�time preferences and every individually rational

and Pareto e¢ cient utility pair can be sustained as the limit outcome by an appropriate

choice of these preferences. However, the limit outcome and bargaining weights lack any

quanti�cation in terms of the bargaining procedure.

Bargaining procedures can be quanti�ed by the stochastic bargaining procedure proposed

in Merlo and Wilson (1995), see also Binmore (1987b), Merlo and Wilson (1998) and Muthoo

(1999), where integer-like f0; 1g branches of the game tree in the alternating o¤ers model

are replaced by quanti�able state-dependent moves by nature governing the stochastic order

of proposing players. Stochastic orders of proposing players include as special cases the

alternating o¤ers in Rubinstein (1982), the random proposing players in Hoel (1987) and

Muthoo (1999), and the one-sided o¤ers.1 Due to the generality and complexity of the

model in Merlo and Wilson (1995), who also assume a stochastic surplus,2 attention mainly

focussed upon stationary SPE outcomes and su¢ cient conditions for SPE outcomes featuring

uniqueness and Pareto e¢ cient delays. It seems that the generality and complexity of this

model diverged attention away from the issue of limit results for vanishing time between

rounds. Such limit results are at the heart of this paper. However, in understanding some

of the well-known bargaining models it turns out that the seemingly innocuous issue of

modelling the limit of stochastic orders matters. For that reason, we focus on the standard

1In their survey, Houba and Bolt (2002) investigate the limit of a less general stochastic process for the
ad hoc introduced class of continuous-time Markov processes, but their analysis requires substantial revision
because their framework fails to include the bargaining models from the literature and they do not realize
that the risk of breakdown might not vanish in the limit. So, they report (22) below instead of (24).

2Furusawa and Wen (2002) assume a stochastic surplus modelled as a stochastic disagreement point.
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class of bargaining problems in utility representation.

A prerequisite of any analysis is a precise embedding of stochastic orders in continuous

time. Insisting on a class of stochastic processes that includes the bargaining procedures

mentioned, it su¢ ces to assume transition probabilities that are continuous functions in

the time between proposals, especially in the limit when the time between rounds goes

to zero. Even in the limit, the mentioned bargaining procedures require positive transition

probabilities on the current and other states. However, this violates the underlying de�nition

of transition probabilities as conditional probabilities indicating the likelihood of a transition

to another state during a single time interval between two subsequent rounds conditional

upon being in the current state. In the limit as this interval shrinks to an �instant�of time,

this conditional probability becomes the probability that the state is in another state at

the �end�of this instant while the state is in a particular state at the �start�of this instant.

Since a state cannot be in a �ux between states at each instant of time, limit transition

probabilities to another state have to be zero. Only the subclass of continuous-time Markov

processes, as surveyed in e.g. Karlin and Taylor (1975), obeys this fundamental property

and is properly embedded in probability theory when the time between proposals vanishes.

As an independent side matter on transition probabilities, we also argue that the common

discounting as assumed in Merlo and Wilson (1995) is automatically captured by a positive

risk of ine¢ cient breakdown.

One main result establishes the strategic equivalence between the stochastic order bar-

gaining model and the standard alternating o¤ers model. This immediately establishes a

unique subgame perfect equilibrium (SPE) in stationary strategies. Furthermore, the equiv-

alence requires a continuous transformation of the transition probabilities into the standard

players�risk of breakdown equal to the probability of becoming the next proposer relative

to the probability that the current proposer looses his privilege to propose (to either his

opponent or a permanent breakdown). So, we obtain an explicit formula expressing the

players�bargaining positions in terms of the transition probabilities of a switch in the pro-
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posers (quantifying the bargaining procedure) and the exogenous risk of breakdown (the

�time preferences�). Another property states that it is advantageous to be the proposing

player.

For the characterization of limit SPE outcomes we propose a novel and transparent

method that is based upon the equivalence between the �xed point problem for the standard

alternating o¤ers model and the Nash bargaining solution of a modi�ed convex bargaining

problem in which the Pareto frontier shifts outward and coincides with the proposer�s best re-

sponse functions. This equivalence holds for both zero and positive time between bargaining

rounds. Thus, the familiar �xed point satis�es the three axioms for the asymmetric Nash�s

bargaining solution in Kalai (1977) for this modi�ed bargaining problem. This equivalence is

powerful, because it allows to invoke the Maximum Theorem that automatically establishes

the existence and convergence to the limit equilibrium outcome given by the asymmetric

Nash bargaining solution corresponding to the limit of the modi�ed bargaining problem.

For all stochastic processes, except for the subclass of continuous-time Markov processes,

the limit bargaining problem is the initial bargaining problem. For the latter subclass, the

transformed risks of breakdown in the equivalent alternating o¤ers model remain positive in

the limit and depend upon the relative speed by which the underlying transition probabilities

out of the current state vanish. For small but positive time between proposals, this subclass

of processes has transition probabilities out of the current state that are very small in ab-

solute magnitude, but conditional on a switch out of the current state, the responding player

faces a relatively high risk to end up in the worst state. As a consequence, the advantage of

being the proposer remains in the limit of continuous-time Markov processes.

This note is organized as follows. In Section 2, the bargaining model with a stochastic

order is embedded in continuous time and four special cases are introduced. The equivalence

of the stochastic order model and the standard alternating o¤ers model is derived in Section 4,

which establishes uniqueness in SPE strategies. The subsequent section deals with the limit

results. Since the equivalence between the �xed point problem in the standard alternating
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o¤ers model and the maximization of the Nash product in a modi�ed bargaining problem

has some interest of its own, it is presented separately in Section 3.

2 The bargaining procedure

Consider two players, indexed i = 1; 2. The subject of their negotiations is the essential

and convex bargaining problem in utility representation (S; d), where S 2 R2 is a nonempty,

compact, strongly comprehensive and convex set, d 2 S is the the disagreement point and

there exists an s 2 S such that s > d. Without loss of generality, assume S = SIR where

SIR = fs 2 Sjs � dg. Billera and Bixby (1973) show that these bargaining problems are

�rmly rooted within two-person exchange economies. The Pareto frontier of S can be de-

scribed by the curve si = fi (sj), i; j = 1; 2, i 6= j, where fi is a strictly decreasing and

concave function. Furthermore, f2 is the inverse function of f1 and visa versa.

Time is treated as a continuous variable, but the actual negotiations only take place

at equidistant points in time, called bargaining rounds that are indexed t 2 N. The time

elapsing between two bargaining rounds is denoted as � � 0, where we explicitly include

0 for the purpose of taking the limit � goes to 0. A homogeneous Markov process governs

which player proposes at round t and whether the negotiations permanently break down. So,

there are three states, indexed k = 1; 2; 3. State k = i, i = 1; 2, at round t is the transitional

state indicating player i is the proposing player at this round who proposes st 2 S and his

opponent, denoted j, j = 1; 2 and j 6= i, is the responding player who either accepts or rejects

player i�s proposal. State k = 3 is an absorbing state representing perpetual disagreement.

The probability that the stochastic process switches from state k at round t to state k0 at

round t+1 is given by the stationary transition probability pkk0 (�) 2 [0; 1]. The assumptions

made impose the following matrix P (�) of transition probabilities:

P (�) =

24 1� p12 (�)� p13 (�) p12 (�) p13 (�)
p21 (�) 1� p21 (�)� p23 (�) p23 (�)
0 0 1

35 : (1)

As mentioned, the properties of these bargaining models at � = 0 with vanishing risk of
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breakdown are of special interest. Therefore, we assume that the �limit�matrix at � = 0

exists and has the following form

P (0) =

24 1� p12 p12 0
p21 1� p21 0
0 0 1

35 ; p12; p21 2 [0; 1]: (2)

We assume the following.

Assumption 1 Each element of P (�) is a continuous function in � � 0, P (�) has a

structure similar as in (1) and P (0) as in (2).

At later stages of the analysis, we impose the stronger assumption of continuously di¤er-

entiable functions at � = 0. In that case, there exists a 3�3 matrix Q whose (k; k0)-element

qkk0 is equal to p0kk0 (0). Obviously, p
0
3k0 (�) = 0 for all � � 0 and the Q-matrix is of the form

Q =

24 q11 q12 q13
q21 q22 q23
0 0 0

35 : (3)

Assumption 2 Each element of P (�) is a continuously di¤erentiable function in � � 0,

P (�) has a structure similar as in (1), P (0) as in (2), Q as in (3) and qij + qi3 > 0,

i; j = 1; 2, j 6= i.

Four special cases are of interest, each satisfying Assumption 2: Three bargaining models

and a class of continuous-time Markov processes popular in Operations Research. In order

to describe these cases, we denote player i�s subjective rate of time preferences as ri � 0,

i = 1; 2, with the convention that we drop the subscript in case of common time preferences.

The four cases are:

1. Alternating o¤ers with discounting as in Rubinstein (1982) assumes

PA (�) =

24 0 e�r2� 1� e�r2�
e�r1� 0 1� e�r1�
0 0 1

35 ; QA =

24 0 �r2 r2
�r1 0 r1
0 0 0

35 : (4)
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2. Random proposing players with discounting in Binmore (1987b),3 Muthoo (1999) and

(the symmetric case) in Hoel (1987) assumes

PR (�) =

24 q1e�r2� q2e
�r2� 1� e�r2�

q1e
�r1� q2e

�r1� 1� e�r1�
0 0 1

35 ; QR =

24 �q1r2 �q2r2 r2
�q1r1 �q2r1 r1
0 0 0

35 ; (5)

where q1 + q2 = 1 and q1; q2 � 0.

3. One-sided o¤ers (by player 1) with discounting assumes

PO (�) =

24 e�r� 0 1� e�r�
e�r� 0 1� e�r�
0 0 1

35 ; QO =

24 �r 0 r
�r 0 r
0 0 0

35 : (6)

4. Continuous-time Markov processes as in e.g. Karlin and Taylor (1975) assumes

PM (0) = I; QM ; where qMkk � 0 and qMkk0 � 0; k0 6= k (7)

The restrictions onQM follow from PM (0) = I, because this property implies pMkk (�) �

1 is nonincreasing for � > 0 su¢ ciently close to 0, while pMkk0 (�) � 0, k0 6= k, is

nondecreasing.

These special cases make clear that the boundary p12 (�) = 0, p21 (�) 2 [0; 1] for � � 0

and its reverse case should be part of any analysis, which includes p12 = 0, p21 2 [0; 1]

or p12 2 [0; 1], p21 = 0. Some terminology from the literature on continuous-time Markov

processes also captures these boundaries. A state k is called stable if pkk (0) = 1 and qkk is

�nite, whereas, a state k is called instantaneous if pkk (0) = 1 and qkk in�nite. The Markov

process is called stable if all states are stable, which can only hold for matrices of the form

P (0) = I.

A serious matter of concern is that the mathematically well-de�ned P (0) lacks a fun-

damental probability-theoretic property underlying continuous-time Markov processes at

� = 0. To see this, the transition probability Pij (�) is implicitly de�ned as the conditional

3Binmore (1987b) assumes random proposing players with di¤erent probabilities in even and odd bar-
gaining rounds, which fall outside the class of stochastic processes introduced in Section 2 except when
probabilities in odd and even rounds coincide.
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probability Pr (k (�) = jjk (0) = i), where k (�) and k (0) denote the state at time 0 and

�. As � goes to 0, the conditional probability converges to Pr (k (0) = jjk (0) = i). The

limit transition probabilities of the continuous-time Markov processes have the property that

P (0) = I, see e.g. Karlin and Taylor (1975). This makes perfect sense: At each instant of

time, the stochastic process is in exactly one state. So, conditional on being in state k = i,

the conditional probability distribution over all states at the same instant contracts all prob-

ability mass on the current state. Therefore, any P (0) 6= I describes a limit stochastic

process that is in some kind of �ux between several states like in quantum mechanics. Then,

at any moment in time, it is not clear what role each player has, what the status of each

proposal is and what acceptance of a proposal means. Continuous-time Markov processes as-

sume that it takes some positive (stochastic) time to leave a state. Nevertheless, we proceed

with stochastic processes featuring P (0) 6= I in order to unify the convergence results in the

literature, but we see these results as purely mathematical lacking a probability theoretic

foundation.

Bargaining models are typically analyzed under the assumption of a �shrinking cake�prop-

erty for positive time between proposals, which holds in case of positive risks of breakdown.

Furthermore, we assume vanishing risk of breakdown as � goes to 0.

Assumption 3 p13 (�) ; p23 (�) > 0 for all � > 0 and p13 (0) = p23 (0) = 0.

This assumption slightly di¤ers from the setup in Merlo and Wilson (1995) and Merlo and

Wilson (1998), who additionally assume some common discount factor � < 1, which is

regarded as essential in order to have a shrinking cake property or contraction. However,

Assumption 3 and an essential bargaining problem su¢ ce to obtain a contraction, which

would also be present in case either p13 (�) or p23 (�) is zero (but not both). Furthermore,

discounting by � is equivalent to the following compound lottery: First, Nature draws with

probability � the outcome �continue�and with 1�� the outcome permanent breakdown with

payo¤ vector 0 as if it were a second disagreement point. If the realization is �continue�, then

Nature draws the new state by the stochastic process P (�). Either we set � = 1 and neglect
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this parameter (which avoids specifying the function �(�) for � � 0), or we extend P (�)

by introducing a second absorbing state and reduce the compound lottery to the simple

lottery over four states.4 Note that the simple lotteries (4)-(6) can also be reformulated as

state-dependent compound lotteries with �discount factor��k (�) = pk3 (�) > 0, for � > 0,

and second disagreement point equal to d. State-dependent simple lotteries over states are

all that matter.

3 Alternating o¤ers as a single convex program

In this section, we establish the equivalence between the set of �xed points for the standard

alternating o¤ers model and the maximizer of a single convex program in which the objective

is the asymmetric Nash product. In deriving limit results in Section 5 we will rely on the

properties of this program, but the equivalence also has merits on its own. Throughout this

section we assume that P (�) is given by (4) and we write �i, i = 1; 2, for e�ri� 2 (0; 1]

whenever convenient.

The main results derived in this section are illustrated by means of the following well-

known example. Consider the divide-the-dollar with transferable utility and common time

preferences. Formally, d = 0, f2 (s1) = 1 � s1 for s1 2 [0; 1], r1 = r2 = r meaning �1 =

�2 = � and � = 1 corresponding to � = 0. The SSPE utility pairs x = (x1; 1� x1) and

y = (1� y2; y2) solve the �xed point problem

x1 = 1� �y2;
y2 = 1� �x1;

�
) x1 = y2 =

1
1+�
: (8)

The solution Figure 1 provides a graphical illustration in the (s1; s2)-space of the curves

s1 = 1��s2 and s2 = 1��s1 and the Nash product (s1 � d1)
1
2 (s2 � d2)

1
2 through

�
1
1+�
; 1
1+�

�
.

Obviously, (x1; y2) maximizes this Nash product under the restrictions s1 � 1 � �s2 and

s2 � 1 � �s1. Moreover, it coincides with the intersection of these curves. Since this

maximization program is strictly convex for all � 2 [0; 1], the Maximum Theorem implies

4This compound lottery is also present in the general model in Merlo and Wilson (1995) and is equivalent
to a reduced simple lottery with positive state-dependent mass on an absorbing ine¢ cient state.
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Figure 1: (x1; y2) in (8) maximizes the Nash product (s1 � d1)
1
2 (s2 � d2)

1
2 .

that the maximizer is unique and is continuous in the parameter � (which includes � = 0).

The main result in this section generalizes this insight.

Before deriving the main result of this section, we brie�y summarize some relevant results

for the standard alternating o¤ers model. For � > 0, there exists a unique SPE in stationary

strategies. Such strategies feature a pair of state-dependent continuation SSPE payo¤s x; y 2

S, where x (y) refers to state k = 1 (k = 2). In the SSPE, player 1�s SSPE proposal s1 (y)

solves

s1 (y) 2 argmax
s2S

s1, s.t. s1 � f1 (s2) , s2 � (1� �2) d2 + �2y2: (9)

In the unique optimum (which exists), player 1 strictly prefers to make an acceptable o¤er,

both constraints are binding (which implies Pareto e¢ ciency), and, by de�nition of the

continuation payo¤, x = s1 (y). Similar,

y = s2 (x) = argmax
s2S

s2, s.t. s2 � f2 (s1) , s1 � (1� �1) d1 + �1x1: (10)

The binding constraints imply the familiar �xed point problem given by

x1 = f1 (y2) ; x2 = (1� �2) d2 + �2y2;
y1 = (1� �1) d1 + �1x1; y2 = f2 (y1) :

(11)

Furthermore, in every �xed point (x; y) of (11) the SSPE continuation payo¤s x and y have

the same (asymmetric) Nash product given by

(x1 � d1)� (x2 � d2)1�� = ��1 (x1 � d1)
� (y2 � d2)1�� = (y1 � d1)� (y2 � d2)1�� ; (12)
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where � � � (�1; �2) = ln �2(ln �1 + ln �2)
�1 = r2 (r1 + r2)

�1 2 [0; 1] for all � 2 [0;1),

provided (r1; r2) 6= (0; 0), see e.g. Binmore et al. (1986), Osborne and Rubinstein (1990),

van Damme (1991), Muthoo (1999) and Houba and Bolt (2002). Therefore, we assume

(r1; r2) 6= (0; 0) in this section whenever bargaining weights enter the analysis, except in

Lemma 4 and 5 below. Houba (1993) exploits (12) to establish a general proof for (11)

admitting a unique �xed point.

In contrast to the equalities in �xed point problem (11), we focus on the four constraints

in (9) and (10) that enter as the constraints in the single convex program. Elementary

substitutions that preserve the inequality signs (because fi, i = 1; 2, decreasing) half the

number of variables and constraints:

x1 � f1 ((1� �2) d2 + �2y2) ;
y2 � f2 ((1� �1) d1 + �1x1) :

(13)

These two inequality constraints can be represented in the (s1; s2)-space. Each constraint

describes the proposing player�s best response given his opponent�s threshold level. Similar

as in Nash�s demand game, these best-response functions coincide with the Pareto frontier of

S at the �non-perturbed�situation �1 = �2 = 1 and each shifts above S for the perturbation

(�1; �2) 6= (1; 1) allowing for a unique �Nash equilibrium�, see e.g. Binmore (1987a) and,

especially, van Damme (1991). Under additional individual rationality, (13) de�nes the set

of feasible utility pairs

S (�1; �2) = fs � dj s1 � f1 ((1� �2) d2 + �2s2) ; s2 � f2 ((1� �1) d1 + �1s1)g : (14)

The constraints are also well-de�ned for either �1 or �2 (or both) equal to 1 (where �both�

coincides with � = 0). For our purposes, the following result is relevant.

Lemma 4 For all (�1; �2) 2 (0; 1]2, S (�1; �2) is a nonempty, compact and convex set. More-

over, S � S (�1; �2) and s � (f1 (d2) ; f2 (d1)) for all s 2 S (�1; �2).

Proof.

First, f1 and f2 decreasing imply f1 (s2) � f1 ((1� �2) d2 + �2s2) � f1 (d2) and f2 (s1) �
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f2 ((1� �1) d1 + �1s1) � f2 (d1), which proves the �moreover�part and S (�1; �2) is nonempty

and bounded. The weak inequalities imply S (�1; �2) is closed. Finally, f1 and f2 concave

imply convexity. �

Since every �xed point of (11) corresponds one-to-one to the intersection points of the

two curves describing the Pareto frontier of S (�1; �2) in (14), we de�ne the set of intersection

points as

I (�1; �2) = fs � dj s1 = f1 ((1� �2) d2 + �2s2) ; s2 = f2 ((1� �1) d1 + �1s1)g : (15)

Obviously, I (�1; �2) consists of a single intersection point that is contained in S (�1; �2),

which is stated in the following lemma.5

Lemma 5 For all (�1; �2) 2 (0; 1]2, I (�1; �2) � S (�1; �2) consists of a unique element.

Figure 1 suggests the equivalence between a unique intersection point and the unique

maximizer of the Nash product (9) over S (�1; �2). However, uniqueness of the maximizer

has not been established. Therefore, we de�ne the set of maximizers as

M (�1; �2) = argmax
s
(s1 � d1)� (s2 � d2)1�� ; s.t. s 2 S (�1; �2) ; (16)

where � = � (�1; �2) 2 [0; 1]. By Lemma 4, this program is convex and well-de�ned and

straightforward application of the Maximum Theorem, see e.g. Varian (1992), implies the

following result.

Lemma 6 Let (r1; r2) 6= (0; 0). Then, M (�1; �2) is a nonempty, compact, convex-valued and

upper semi-continuous correspondence in �1 and �2 (or r1, r2 and �).

The main step consists of relating the set of maximizers to the set of intersection points

and, simultaneously, showing that the set of maximizers consists of a unique element for

� > 0. The following theorem establishes that the insight of Figure 1 generally holds.
5A proof without reference to the properties of �xed point problem (11) would be based upon application

of the Mean Value Theorem for the rectangle given by given by s1 � d1, s1 � ��11 f1 (d2) � ��11 (1� �1) d1,
s2 � d2 and s2 � ��12 f2 (d1)� ��12 (1� �2) d2.
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Theorem 7 Let (r1; r2) 6= (0; 0). Then, M (�1; �2) � I (�1; �2). If additionally � > 0, then

M (�1; �2) = I (�1; �2) consists of a single element.

Proof.

First, consider � = 0. Then �1 = �2 = 1 implies that I (1; 1) coincides with the Pareto

frontier of S. For every � (1; 1) 2 [0; 1], the optimum of program (16) coincides with the

Nash bargaining solution, which is unique even for � (1; 1) = 0 or � (1; 1) = 1. Hence, the

singleton M (1; 1) is a strict subset of I (1; 1).

Second, consider � > 0, r1 = 0 and r2 > 0. Then �1 = 1 and �2 < 1 and � (1; �2) = 1. So,

S (1; �2) = S and I (1; �2) =M (1; �2) = f(f1 (d2) ; d2)g. This also establishes the case r1 > 0

and r2 = 0.

Finally, consider r1; r2;� > 0. Then (�1; �2) 2 (0; 1)2 and, thus, � (�1; �2) 2 (0; 1). In

essence, we reformulate the proof in e.g. Houba (1993). According to this proof: For

an arbitrary �xed point of (11) represented in S, the strictly quasi-concave Nash prod-

uct curve and the Pareto frontier of S intersect twice at the distinct points x and y (note

y1 = (1� �1) d1 + �1x1 < x1), namely where the �high end�enters S at y and where the

�low end�leaves S at x. Thus, the tangent of the Nash product curve at y = (y1; f2 (y1))

is steeper than any tangent of the Pareto frontier described by f2. Similar, the tangent to

the Nash product curve at x = (f1 (x2) ; x2) is less steep than the tangent of f1. These

facts imply s2 > f2 ((1� �1) d1 + �1s1) for the �high end�of the Nash product curve through

(x1; y2) 2 S (�1; �2), which holds for all s2 > y2 or, equivalently, all s1 < x1. By sym-

metry, s1 > f1 ((1� �2) d2 + �2s2) for all s1 > x1 on the �low end� of the Nash product

curve through (x1; y2) 2 S (�1; �2). So, both �ends� do not belong to S (�1; �2) and the

strictly quasi-concave Nash product curve at any arbitrary (x1; y2) 2 I (�1; �2) is tangent to

S (�1; �2). Hence, (x1; y2) 2 M (�1; �2) and I (�1; �2) � M (�1; �2). Finally, � (�1; �2) 2 (0; 1)

implies program (16) is strictly convex and admits a unique maximizer. Lemma 9 implies

I (�1; �2) =M (�1; �2) are both singletons. �
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From the proof it follows that particular parameter values induce either � = 0 or � =

1 and these values destroy the strict convexity of program (16), but never its convexity.

Nevertheless, the maximizer is always unique. Theorem 7 implies the following strengthening

of Lemma 6.

Theorem 8 Let (r1; r2) 6= (0; 0). The unique (x1 (�1; �2) ; y2 (�1; �2)) 2 M (�1; �2) is contin-

uous in �1 and �2 (or r1, r2 and �). Moreover, (x1 (1; 1) ; y2 (1; 1)) exists and coincides with

the Nash bargaining solution with bargaining weight � = r2 (r1 + r2)
�1.

A similar continuity result also holds for the parameter d 2 S. Furthermore, the advan-

tage of being the proposing player vanishes in the limit, because (x1 (1; 1) ; f2 (x1 (1; 1))) =

(f1 (y2 (1; 1)) ; y2 (1; 1)).

The continuity also ensures that the limit solution exists in case either � or one (but

not both) of the ri�s goes to in�nity. Furthermore, this last theorem is more general than

existing convergence results, because it also allows for arbitrary continuous functions �i (�)

provided ln �2(�)(ln �1(�) + ln �2(�))�1 exists for all � 2 [0;1), which is the approach

taken in Section 5.

The optimum of program (16) yields the Nash bargaining solution for the modi�ed bar-

gaining problem with S (�1; �2) as the modi�ed feasible set. Therefore, the three axioms of

Pareto e¢ ciency, Independence of Irrelevant Alternatives and Invariance of A¢ ne Transfor-

mations in Kalai (1977) immediately axiomatizes the class of optima of program (16) for all

parameter values, not just at � = 0.

4 Uniqueness in SPE strategies

In this section, we establish for the stochastic order model the uniqueness in subgame perfect

equilibrium (SPE) strategies for �xed and positive time between negotiation rounds. The key

argument shows that the stochastic order bargaining is strategically equivalent to standard

alternating o¤ers and, therefore, the player-dependent proposals can be written as the convex

14



program (16). Since time between rounds is positive and �xed throughout this section we

drop � > 0 from our notation.

The starting point of the analysis is the derivation of a SSPE with the state-dependent

continuation payo¤s x and y 2 S. At state k = 1, player 2�s expected continuation payo¤

from rejecting s 2 S depends upon the three possible realizations of the stochastic process.

Accepting an arbitrary proposal s 2 S is a best response for player 2 if

s2 � p13d2 + p12y2 + (1� p12 � p13)x2: (17)

and player 1�s best possible agreement is given by

s1 (x; y) 2 argmax
s2S

s1; s.t. s1 � f1 (s2) , p13d2 + p12y2 + (1� p12 � p13)x2 � s2: (18)

As in Section 3, player 1 strictly prefers to propose the unique optimum of (18), x = s2 (x; y)

and both constraints are binding. Maintaining the inequalities in the optimum, we write

x1 � f1 (x2) ; x2 � p13d2 + p12y2 + (1� p12 � p13)x2: (19)

These inequalities can be further reduced, but �rst we de�ne �2 � �2 (p12; p13) =
p12

p12+p13
2

[0; 1), which is a continuous function in p12 2 [0; 1] and p13 > 0. Then solving the linear

constraint for x2 and, next, substitution of the solution into the nonlinear constraint (which

preserves the inequality signs) yields

x1 � f1 ((1� �2)d2 + �2y2) : (20)

Similar, for the continuous function �1 � �1 (p21; p23) = p21
p21+p23

2 [0; 1) we obtain

y2 � f2 ((1� �1)d1 + �1x1) : (21)

Obviously, the last two (in)equalities form �xed point problem (11) that admits a unique

�xed point (x1; y2) for all (�1; �2) 2 (0; 1]2, (�1; �2) 6= (1; 1). Since some bargaining mod-

els impose pij = 0 and, therefore, �j = 0, we must extend the analysis a little further.

Without loss of generality, �1 2 [0; 1) and �2 = 0 imply that the unique �xed point of (11)

15



is (f1 (d2) ; f2 ((1� �1) d1 + �1f1 (d2))). So, there exists a unique �xed point (x1; y2) for all

(�1; �2) 2 [0; 1]2, (�1; �2) 6= (1; 1).

Uniqueness in SPE strategies is established by applying the method in Shaked and Sutton

(1984). Formally, denote M1 2 S as player 1�s best SPE outcome in state k = 1 and m2

as 2�s worst SPE outcome in state k = 2. Then, player 1�s utility M1
1 is maximal when M

1

solves the following program

M1 2 argmax
st2S

st1; s.t. f1
�
st2
�
� st1, st2 � p13d2 + p12m2

2 + (1� p12 � p13)M1
2 ;

and, by similar arguments as before, we obtain

M1
1 � f1

�
(1� �2)d2 + �2m2

2

�
:

By symmetry and minimizing player 2�s utility m2
2 in order to obtain player 2�s worst SPE

outcome we solve

m2 2 argmin
st2S

st2; s.t. st2 � f2
�
st1
�
, st1 � p23d1 + p21M1

1 + (1� p21 � p23)m2
1;

which yields

m2
2 � f2

�
(1� �1)d1 + �1M1

1

�
:

Again, the familiar arguments for the standard alternating o¤ers model apply, see e.g. Os-

borne and Rubinstein (1990), van Damme (1991), Muthoo (1999) and Houba and Bolt

(2002), and we obtain M1 = m2 = (x1; y2). By symmetry, similar results hold for the other

two bounds.

The results thus far imply that the stochastic order bargaining model is strategically

equivalent to the standard alternating o¤ers model and only requires a proper transformation

from the probabilities in (1) into the risks of breakdown in the alternating o¤ers model. The

following result summarizes these �ndings.

Theorem 9 Let (�1 (p21; p23) ; �2 (p12; p13)) 2 [0; 1]2 n f(1; 1)g. The unique SPE strategies in

the stochastic order bargaining model are stationary, player 1�s proposal in state k = 1 is

16



x = (x1; f2 (x1)), player 2�s proposal in state k = 2 is y = (f1 (y2) ; y2) and each proposal

is immediately accepted. Moreover, the pair (x1; y2) is the unique pair that solves (20) and

(21) with equal signs.

This theorem provides the following intuition. In state i = 1; 2, the responding player j�s

perceived probability of a next round is equal to �j (pij; pi3) 2 [0; 1). This probability is the

conditional probability of reaching player j�s most preferred state k = j with probability pij

conditional on leaving the less favorable state k = i with probability pij + pi3. Obviously,

�j (pij; pi3) is increasing in the probability pij of reaching the most preferred state k = j

and decreasing in the probability pi3 of ending up in his worst state k = 3. In that respect,

one-sided o¤ers with i as the proposing player (pij = 0) is the worst possible bargaining

situation for the responding player j, which includes the take-it-or-leave-it or ultimatum

bargaining situation with pi3 = 1 as a special case. Note also that an increase in pij shortens

the expected wait for player j to become the proposing player. These �ndings con�rm that

it is advantageous to have the initiative to propose in negotiations.

For the special cases we obtain the following:

1. Alternating o¤ers features pAij + p
A
i3 = 1 and, therefore, �

A
j = e

�rj� > 0, j = 1; 2. The

bargaining weight �
�
�A1 ; �

A
2

�
= r2 (r1 + r2)

�1, which is well-de�ned except at r1 = r2 =

0.

2. Random proposing players. Then �R1 =
�1q1

1��1(1�q1) =
�1q1
1��1q2 and �

R
2 =

�2q2
1��2(1�q2) =

�2q2
1��2q1 ,

where �j = e�rj�, j = 1; 2. Moreover, �
�
�R1 ; �

R
2

�
is well-de�ned, because either �R1 or

�R2 is positive. In particular, q1 = q2 =
1
2
and r1 = r2 = r imply �

R
1 = �

R
2 =

�
2�� , where

� = e�r�.

3. One-sided o¤ers (by player 1) implies �O1 = e
�r� > 0 and �O2 = 0. Player 1 has all the

bargaining power because lim�2!0 �
�
�O1 ; �2

�
= 1.

4. Continuous-time Markov processes imply �M1 = pM12
�
pM12 + p

M
13

��1
< 1 and �M2 =

17



pM21
�
pM21 + p

M
23

��1
< 1. The weight �

�
�M1 ; �

M
2

�
is well-de�ned, provided

�
pM12 ; p

M
21

�
6=

(0; 0).

In Section 5, limit results are derived based upon properties of the single convex pro-

gram (16) as stated in Theorem 8. Since some bargaining models impose pij = 0 and,

therefore, �j = 0, we need to extend the equivalence to this convex program and this

theorem. As mentioned, for �1 2 (0; 1) and �2 = 0 the unique �xed point of (11) is

(f1 (d2) ; f2 ((1� �1) d1 + �1f1 (d2))). However, lim�2!0 � (�1; �2) = 1 for all �1 2 (0; 1), in (16)

yields the convex set of maximizers given by s1 = f1 (d2) and s2 2 [d2; f2 ((1� �1) d1 + �1f1 (d2))],

which is a nondegenerate interval. Although the equivalence with program (16) breaks down

at the border cases, we mention that the unique �xed point of (11) corresponds to any limit

point as (positive) �2 goes to 0. The following result extends Theorem 8 and is a direct

consequence of the Maximum Theorem for convex programs, see e.g. Varian (1992). This

result still suites our purposes in Section 5.

Theorem 10 Let (�1; �2) 2 [0; 1]2, (�1; �2) 6= (0; 0) ; (1; 1). Program (16) is a convex pro-

gram and its set of maximizers f(x1 (�1; �2) ; y2 (�1; �2))g is a nonempty, compact, convex-

valued and upper semi-continuous correspondence in (�1; �2). Moreover, for (�1; �2) 2 (0; 1]2,

(�1; �2) 6= (1; 1), the correspondence is a continuous function and, by upper semi-continuity,

lim
�1!0

(x1 (�1; �2) ; y2 (�1; �2)) = (f1 ((1� �2) d2 + �2f2 (d1)) ; f2 (d1)) ;

lim
�2!0

(x1 (�1; �2) ; y2 (�1; �2)) = (f1 (d2) ; f2 ((1� �1) d1 + �1f1 (d2))) :

Continuity at (0; 0) or (1; 1) is only ensured for sequences of (�1; �2) such that lim(�1;�2)!(0;0) � (�1; �2),

respectively, lim(�1;�2)!(1;1) � (�1; �2) exist, which is one of the main issues in deriving limit

results in Section 5. Since �1 = �1 (p12; p13) and �2 = �2 (p21; p23) are continuous in the

transition probabilities, we immediately obtain upper semi-continuity in transition proba-

bilities and, under the additional restriction p12; p21 > 0, continuity. This implies that the

equilibrium outcomes gradually change in these probabilities, especially, if one moves for
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instance from alternating o¤ers to one-sided o¤ers implying that there is no abrupt change

or sensitivity to �small�changes in the game tree.

Finally, as established in Section 3, the optimum of program (16) yields the Nash bar-

gaining solution for the modi�ed bargaining problem with S (�1; �2) as the modi�ed feasible

set for all parameter values, not just at � = 0. This interpretation/axiomatization holds for

all parameter values whether expressed as (�1; �2) or indirectly as the elements of the matrix

P (�) with transition probabilities.

5 Limit results

A well-known result for the standard alternating o¤er model states the convergence of the

SSPE proposals to the Nash bargaining solution as the time between proposals vanishes, see

e.g. Binmore et al. (1986). In this section, we characterize such limit outcomes in case of

stochastic orders by employing Theorem 10.

Since program (16) is a convex program, we may treat the optimum of this program as a

correspondence of � � 0 whose limit is investigated by letting � go to 0. The dependence

upon � is rather indirect through the transition probabilities in P (�) that specify the

reformulated probabilities �j, j = 1; 2, in Section 4 and these in turn specify the bargaining

weight � of Section 3. To reduce notation, we write �j (�), j = 1; 2, for �j (pij (�) ; pi3 (�)),

� (�) for player 1�s bargaining weight ln �2 (�) = (ln �1 (�) + ln �2 (�)) and (x1 (�) ; y2 (�))

for the �xed point (x1 (�1 (�) ; �2 (�)) ; y2 (�1 (�) ; �2 (�))).

Theorem 10 enhances characterizing the limit solution. First, it implies that it is su¢ cient

to establish continuity of �j and � at � = 0, because then the limit exists and convergence

is immediate. At � = 0, the limit solution corresponds to the optimum of program (16) for

�1 (0), �2 (0) and � (0) (although some attention should be give to �1 (0) = 0 or �2 (0) = 0 as

discussed in Section 4). In order to structure the discussion, we �rst investigate the relevant

properties of the function �j, before dealing with �. Furthermore, our results are derived

under Assumption 2, but our derivation also investigates whether Assumption 1 would be
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su¢ cient for these properties.

Continuity of �j(�) at � = 0 : Assumption 1 ensures the continuity of the function �j(�) =

pij (�) (pij (�) + pi3 (�))
�1 2 [0; 1) on (0;1), because pij (�) 2 [0; 1] and pi3 (�) > 0. If

pij (0) = pij > 0, then continuity also holds at � = 0 and simple substitution of limit

values yields �j (0) = 1. The boundary case pij = 0 requires the stronger Assumption 2

and application of L�Hôpital�s rule to obtain �j (0) = qij (qij + qi3)
�1 2 [0; 1]. Therefore,

�j : [0;1) ! [0; 1] is continuous requires Assumption 1 and, additionally, either pij > 0 or

Assumption 2.

Continuity of �(�) at � = 0 : Continuity of �(�) on [0;1) requires at least continuity of

the functions �j (�), j = 1; 2, but this is not su¢ cient because our earlier results indicate that

�1 (0) = �2 (0) = 1 for the generic class of parameter values and that �1 (0) = �2 (0) = 0 for

particular continuous-time Markov processes. Continuity of (�1 (�) ; �2 (�)) involves three

distinct cases: (p12; p21) 2 (0; 1]
2; the boundary p12 = 0; p21 2 (0; 1] (or its reverse case) and

(p12; p21) = (0; 0).

1. (p12; p21) 2 (0; 1]2 implies �1 (0) = �2 (0) = 1 under Assumption 1. So, � (0) = 0
0
.

Imposing Assumption 2 and application of L�Hôpital�s rule su¢ ces to obtain6

lim
�!0

� (�) =
�02 (0) �

�1
2 (0)

�01 (0) �
�1
1 (0) + �02 (0) �

�1
2 (0)

=
�q13p�112

�q23p�121 � q13p�112
=

q13p21
q23p12 + q13p21

2 [0; 1] ; (22)

provided (q13; q23) 6= (0; 0). Since �j (0) = 1, only the relative derivatives of �j at

� = 0 matter in the limit weight � (0). The bargaining weight in the last line are also

obtained in the standard alternating o¤er model with a risk of breakdown �j = e��qi3pji.

6This follows from

�0j (0) =
p0ij (0) pi3 (0)� pij (0) p0i3 (0)

(pij (0) + pi3 (0))
2 = � qi3

pij
:

20



So, player i�s bargaining position improves if either his limit probability of becoming

the proposer increases or if his opponent faces a higher risk of breakdown because

pi3 (�) � qi3�+ o (�) for su¢ ciently small � > 0. Finally, taking either the limit p12
or p21 goes to 0 (but not both) is also well-de�ned and yields � (0) = 1, respectively,

� (0) = 0.

2. p12 = 0; p21 2 (0; 1] implies �1 (0) = 1 and, by Assumption 2, �2 (0) = q12 (q12 + q13)
�1 2

[0; 1]. The interesting case is q13 > 0 and q12 > 0 with �2 (0) 2 (0; 1).7 Then direct

substitution yields

� (0) =
ln �2 (0)

ln �1 (0) + ln �2 (0)
= 1; (23)

which implies continuity of � in the parameter p12 at p12 = 0. Furthermore, the limit

q12 goes to 0 exists and yields � (0) = 1 at q12 = 0, provided q13 > 0. Also, q12 > 0 and

q13 = 0 imply � (0) = 1.

3. (p12; p21) = (0; 0). By Assumption 2 we have �j (0) = qij (qij + qi3)
�1 2 [0; 1], j = 1; 2.

The novel case that di¤ers from the previous two cases corresponds to (q13; q23) > (0; 0)

and, therefore, (�1 (0) ; �2 (0)) 2 [0; 1)2. If additionally q12; q21 > 0, then (�1 (0) ; �2 (0)) 2

(0; 1)2 and direct substitution yields

� (0) =
ln �1 (0)

ln �1 (0) + ln �2 (0)
2 (0; 1) : (24)

Letting q12 or q21 go to 0 (but not both simultaneously) yields � (0) = 1 and � (0) = 0,

respectively, provided q13 > 0 or q23 > 0.

From these three cases, we conclude that Assumption 2 and L�Hôpital�s rule were always

invoked. Obviously, Assumption 2 is su¢ cient, but not necessary. We have arrived at the

following convergence result.

Theorem 11 If Assumptions 2 and 3 hold, then lim�!0 f(x1 (�) ; y2 (�))g of program (16)

exists and converges to a subset of maximizers f(x1 (0) ; y2 (0))g of program (16) for (�1 (0) ; �2 (0))

2 [0; 1]2 and � (0) 2 [0; 1] corresponding to either (22), (23) and (24).
7The case q13 = 0 implies �2 (0) = 1 and is therefore already captured by the previous case.
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Figure 2: Representation of bargaining models and area �1 (0) = �2 (0) = 1 in (�p12; �p21) 2
[0; 1]2, where A, R, O and M refer to the four special cases.

Figure 2 and 3 illustrate the limit results in the (p12; p21) and (�1 (0) ; �2 (0)) spaces. The

�rst �gure indicates the position of the four special cases considered thus far and the area

that maps into �1 (0) = �2 (0) = 1, which is the area Northeast of the dashed lines. The

dashed border cases and the continuous-time Markov process in the origin required separate

analysis in the second and third case treated in front of Theorem 11. The second �gure shows

the space of discount factors at � = 0 and how the (p12; p21) space is mapped into it. The

area Southwest of the dashed lines, indicated by M , corresponds to the limit area that can

be attained by the continuous-time Markov process. Both �gures indicate that the results

obtained for continuous-time Markov processes are fundamentally di¤erent from those for

other processes.

Theorem 11 establishes the convergence to the limit set of outcomes of program (16), but

this program speci�es convergence to the Nash bargaining solution of themodi�ed bargaining

problem with the set of feasible utility pairs equal to S (�1 (0) ; �2 (0)). The obvious question

is: Under what conditions does the Nash bargaining solution for this limit set coincide with

the Nash bargaining solution for (S; d)? Imposing S (�1; �2) = S implies that at least one of

the �j�s should be equal to 1 and, by Figure 3, this means that it su¢ ces to have at least one

positive pij. So, we only fail convergence to the NBS of (S; d) for the �island�of continuous-

time Markov processes in Figure 2. These results also have consequences with respect to the
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Figure 3: Representation of limit results in (�1 (0) ; �2 (0)) 2 [0; 1]2, where M refers to the
special case �p12 = �p21 = 0.

advantage of being the proposer in the limit. To see this, recall that the state-dependent

equilibrium proposals are x (0) = (x1 (0) ; f2 (x1 (0))) and y (0) = (f1 (y2 (0)) ; y2 (0)) and, by

�xed point problem (11) and �2 (�) < 1, we can express the advantage as

x1 (�) = f1 ((1� �2 (�))d2 + �2 (�) y2 (�)) > f1 (y2 (�)) = y1 (�) ; � > 0: (25)

Then �2 (0) = 1 implies that the advantage disappears in the limit. However, for all stable

continuous-time Markov processes with q13 > 0 we have �2 (0) < 1 and, therefore, the state

dependent proposals x (�) and y (�) fail a common limit point, i.e., x (0) 6= y (0), meaning

the advantage remains present in the limit. Note that either q13 = q23 = 0 or, otherwise,

either k = 1 or k = 2 being an instantaneous state (q12 or q21 goes to in�nity) is needed to

have one of the �j�s equal to 1 at � = 0.

The reason that �j (0) < 1 for stable continuous-time Markov processes is directly related

to its property P (0) = I. For small " > 0 time between proposals, continuity implies

P (") � I and pkk0 (") = qkk0" + o ("). The explanation is not that this process shows

some inertia for a switch in states to occur that is re�ected in the high expected number of

bargaining rounds before a switch occurs. Rather, the conditional probabilities of the �new�

states conditional on a switch in states depends upon the risk of breakdown pi3 (") � qij"

and pij (") � qij". Therefore, �j (") � qij (qij + qi3)
�1 and, although pi3 (") and pij (") are

very small in absolute magnitude, a switch of states involves a relatively large risk for the
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responding player of ending up in his �worst�state. These considerations are not relevant

for instantaneous states with qij =1 or stochastic processes with pij > 0, because then the

jump to the responding player�s �best�state is in�nitely many times more likely than the

jump to his worst state.

Two remarks are in place. First, these results show that the qualitative results obtained in

the alternating and random o¤ers models are robust with respect to alternative bargaining

procedures captured by a stochastic process determining the order of proposers. Second,

multiplicity of maximizers is restricted to either �1 (0) 2 (0; 1) and �2 (0) = 0 (or the reverse

case), which requires the nongeneric condition p12 = p12 = 0 and either q12 = 0 or q21 = 0.

These cases correspond to the axes in Figure 3. So, in the generic case, program (16) yields

a unique maximizer.

Finally, for the four special cases mentioned earlier we obtain the following:

1. Alternating o¤ers. Then p12 = p21 = 1 implies �1 (0) = �2 (0) = 1. Then �
0

1 (0) = rj,

j = 1; 2, in (17) yields � (0) = r1
r1+r2

. Moreover, x (0) = y (0).

2. Random proposing players. Consider q1 2 (0; 1) �rst. Then p12 = p22 = q2 and

p11 = p21 = q1 are both positive, which implies �
R
1 (0) = �

R
2 (0) = 1. Next, substitution

of the parameter values into (22) yields � (0) = q1r2
q1r2+r1q2

2 (0; 1) as in Binmore (1987b)

and Muthoo (1999). In particular, symmetry q1 = q2 and r1 = r2 yields the symmetric

weight � (0) = 1
2
as in Hoel (1987). Finally, the border case q1 = 0 is also well de�ned

and results in the extreme bargaining weight � (0) = 0, which is in line with (23).

3. One-sided o¤ers (by player 1). �1 (0) = 1 and �2 (0) = 0 imply �(0) = 1. Moreover,

x (0) = y (0) = (f1 (d2) ; d2).

4. Continuous-time Markov processes. For this special case �j (0) = qij (qij + qi3)
�1 2

[0; 1], j = 1; 2, do not rely on the absolute values of pij (0) = 0 and pi3 (0) = 0, but

rather on the slopes by which pij (�) and pi3 (�) approach � = 0. As mentioned, the

advantage of being a proposers remains in the limit and, thus, x1 (0) > f1 (y2 (0)).
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6 Concluding remarks

The analysis in the previous sections revealed a fundamental problem. Several well-known

bargaining models nicely �t the unifying stochastic order bargaining procedure when time

between proposals is positive. However, in letting this time go to zero, the interpretation

of the limit model is ambiguous and describes a constant �ux over several states. Only

the �island�of continuous-time Markov processes, being �rmly rooted in probability theory,

o¤ers a safe haven but it cannot capture the well-known bargaining models and it yields

fundamentally di¤erent limit results. These subtle points must be taken care of in any

future analysis of limit outcomes in the general model proposed in Merlo and Wilson (1995).
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