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Abstract

This paper proposes a new model-based method to obtain a coincident indicator for
the business cycle. A dynamic factor model with trend components and a common cy-
cle component is considered which can be estimated using standard maximum likelihood
methods. The multivariate unobserved components model includes a stationary higher
order cycle. Also higher order trends can be part of the analysis. These generalisations
lead to a business cycle that is similar to a band-pass one. Furthermore, cycle shifts for
individual time series are incorporated within the model and estimated simultaneously
with the remaining parameters. This feature permits the use of leading, coincident and
lagging variables to obtain the business cycle coincident indicator without prior analy-
sis of their lead-lag relationship. Besides the business cycle indicator, the model-based
approach also allows to get a growth rate indicator. In the empirical analysis for the
Euro area, both indicators are obtained based on nine key economic time series including
gross domestic product, industrial production, unemployment, confidence indicators and
interest rate spread. This analysis contrasts sharply with earlier multivariate approaches.
In particular, our more parsimonious approach leads to a growth rate indicator for the
Euro area that is similar to the one of EuroCOIN. The latter is based on a more involved
approach by any standard and uses hundreds of time series from individual countries be-
longing to the Euro area.
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1 Introduction

Undertaking fiscal and monetary policies requires information about the state of the economy.

Given the importance of this knowledge for the policymaker, a clear economic picture needs to

be present at any time. However, the assessment of the economic situation can be a challenging

task when one faces noisy data giving mixed signals about the overall state of the economy. In

order to avoid a solely judgemental based procedure in the economic analysis one should be able

to extract the relevant information through a statistical rigorous method capable of providing a

clear signal regarding current and future economic developments. Moreover, since data is often

not available at the same and/or desired frequency, one has also to be able to reconcile a high

frequency business cycle indicator without disregarding data recorded at a lower frequency.

The crucial example refers to gross domestic product (GDP). Real GDP is undoubtedly one

of the most important variables for business cycle assessments but it is usually discarded in

the construction of composite indicators presumably because it is available only on a quarterly

basis (see, for example, Stock and Watson (1989)). Others, such as Altissimo, Bassanetti,

Cristadoro, Forni, Lippi, Reichlin, and Veronese (2001), overcome this shortcoming by using a

GDP monthly series obtained through the linear interpolation of the quarterly figures. In order

to avoid such an ad-hoc procedure we will treat quarterly series as monthly series with missing

observations. It allows the construction of a business cycle indicator that is based on both

quarterly and monthly series without prior transformation of the data. A similar approach for

the construction of the coincident index of Stock and Watson (1989) is proposed by Mariano

and Murasawa (2003).

In this paper we propose a new method for obtaining a business cycle indicator. It is a model-

based approach and the model falls within the class of multivariate unobserved components time

series models which can be expressed in state-space form and estimated by maximum likelihood

via the Kalman filter; see, for example, Harvey (1989) and Durbin and Koopman (2001). The

model enables the decomposition of the time series into trend, cycle and irregular components.

Recently, Harvey and Trimbur (2003) have presented a new class of model-based filters for

extracting trends and cycles in economic time series. The main feature of these model-based

filters is that it is possible to extract a smooth cycle from economic time series, likewise a

band-pass filter. They have shown that the implied filters from such models include, as special

cases, some of the filters used in business cycle analysis (such as the Hodrick and Prescott

(1997) filter) and since they are model-based they provide a mutually consistent way to extract

trends and cycles even at the beginning and end of the series. In view of this, they overcome

one of the major drawbacks of the well-known Baxter and King (1999) band-pass filter for real-

time macroeconomic analysis. Although recently Christiano and Fitzgerald (2003) provide a

solution to the endpoints problem, such an univariate approach does not exploit the information

stemming from several economic time series, which can be available at different frequencies.

Apart from modelling trends and cycles of individual time series in a multivariate context,

interest does also focus on modelling lead-lag relationships between variables and the business

2



cycle. For this purpose the multivariate cycle model is generalised to allow individual cycles

to be shifted with respect to a base cycle, see Rünstler (2002). This generalisation enables

the simultaneous modelling of leading, coincident and lagging indicators for the business cycle

without their a priori classification, i.e. the phase shifts are estimated as parameters of the

model. The resulting common factor for the cycle is the business cycle indicator. This contrasts

with previous literature on multivariate unobserved components time series models where the

coincident indicator is defined as the common factor of a small set of coincident variables

identified prior to estimation (see, for example, Stock and Watson (1989)). The simultaneous

treatment of phase shifts in a model-based approach allows to exploit the information contained

in both lagging and leading variables to obtain the business cycle coincident indicator.

This novel approach to business cycle and growth tracking is applied to Euro area economic

data. By pooling information from nine key economic variables (including GDP, industrial

production, retail sales, confidence indicators, among others) it is possible to obtain a business

cycle indicator in line with common wisdom regarding Euro area business cycle developments.

Besides the business cycle indicator, which can be seen as a monthly proxy for the output gap,

one can obtain as a by-product the corresponding growth rate indicator. The resulting growth

rate indicator can be compared with EuroCOIN, which is a coincident indicator for the Euro

area economic activity suggested by Altissimo, Bassanetti, Cristadoro, Forni, Lippi, Reichlin,

and Veronese (2001). EuroCOIN is based on a generalised dynamic factor model resorting to

frequency domain analysis to account for phase shifts between the variables and uses as input

almost a thousand series. We find that our more parsimonious approach leads to similar results.

The remaining of the paper is organised as follows. In section 2 we present the underlying

unobserved components basic model and the corresponding extensions. In section 3 we proceed

to the empirical application for the Euro area. Section 4 concludes.

2 The stochastic common cycle model

2.1 Basic model

Assume that a panel of N economic time series are collected in the N × 1 vector yt and that

we observe n data points over time, that is t = 1, . . . , n. The i-th element of the observation

vector at time t is denoted by yit.

The basic unobserved components time series model for measuring the business cycle from

a panel of economic time series can be based on the specification

yit = µit + δiψt + εit, i = 1, . . . , N, t = 1, . . . , n, (1)

where µit is the individual trend component for the ith time series and the business cycle

component (common to all time series) is denoted by ψt. For each series the contribution of

the cycle is measured by the coefficient δi for i = 1, . . . , N . The idiosyncratic disturbance εit is

assumed normal and independent from εjs for i 6= j and/or t 6= s. The variance of the irregular
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disturbance varies for the different individual series, that is

εit ∼ NID(0, σ2
i,ε), i = 1, . . . , N. (2)

Each trend component from the panel time series is specified as the local linear trend

component (see Harvey, 1989), that is

µi,t+1 = µit + βit + ηit, ηit ∼ NID(0, σ2
i,η),

βi,t+1 = βit + ζ it, ζ it ∼ NID(0, σ2
i,ζ),

(3)

for i = 1, . . . , N . The disturbances ηit and ζ it are serially and mutually independent of each

other, and other disturbances, at all time points and across the N equations. The trends are

therefore independent of each other within the panel. A smooth trend specification is obtained

by setting σ2
i,η = 0 so that the trend component reduces to an integrated random walk process.

Since our focus is on the business cycle we do not attempt to find common dynamics in the trend

components. However, it can be done in this setting of multivariate models; see Harvey and

Koopman (1997). The dynamic (nonstationary) properties of a single local linear trend model

are well established and explored in Harvey (1989) and used in empirical work, for example, by

Harvey and Jaeger (1993).

The cycle component is common to all time series in the panel and can be specified as an

autoregressive model with polynomial coefficients that have complex roots. Specifically, we

enforce this restriction by formulating the cycle time series process as a trigonometric process,

that is (
ψt+1

ψ+
t+1

)
= φ

[
cosλ sinλ

− sinλ cosλ

](
ψt
ψ+
t

)
+

(
κt
κ+
t

)
,

κt
i.i.d.∼ N(0, σ2

κ),

κ+
t

i.i.d.∼ N(0, σ2
κ),

(4)

where κt and κ+
t are white noise disturbances and mutually independent of each other at all

time points for t = 1, . . . , n. The damping term 0 < φ ≤ 1 ensures that the stochastic process

ψt is stationary or fixed as the cycle variance is specified as σ2
κ = (1 − φ2)σ2

ψ where σ2
ψ is the

variance of the cycle. The overall frequency of the stochastic cycle is 0 ≤ λ ≤ π which implies

that the period of the cycle is 2π/λ. The initial distribution of the cycle is given by

ψ1
i.i.d.∼ N(0, σ2

ψ), ψ+
1
i.i.d.∼ N(0, σ2

ψ), (5)

where σ2
ψ = σ2

κ/(1 − φ2). The dynamic properties of the cycle can be characteristed via the

autocovariance function which is given by

γ(τ) = E(ψtψt−τ ) = σ2
κφ

τ (1− φ2)−1 cos(λτ),

for τ = 0, 1, 2, . . ..

The model falls within the class of multivariate unobserved components time series models

(or multivariate structural time series models) and can be casted in state space form. Estimation
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of parameters (including variances associated with the disturbances of the model and loading

factor coefficients) and estimation of unobservables such as trends and cycles can be based on

Kalman filter and associated smoothing methods. An introduction to such techniques is found

in, for example, Harvey (1989) and Durbin and Koopman (2001).

The basic structure of the model is simple but not adequate to capture the business cycle

for the following reasons. First, the individual cycles of the economic series in the panel will be

correlated with each other but not necessarily contemporaneously. Lead and lag relationships

may be more adequate as they are often found in empirical work. Model (1) does not account for

lead and lagged relationships between cycles. Stronger relations between cycles can be obtained

when cycles are leaded or lagged (that is, shifted forwards or backwards). To allow for shifted

cycles we follow a recent contribution of Rünstler (2002) that implements a modification of the

multivariate cycle component. It allows individual cycles to be shifted with respect to a base

cycle. In the next section we will discuss the details of this generalisation. Second, the model

may have difficulty in capturing the business cycle dynamics given the dominant role played

by low frequencies in macroeconomic time series. These frequencies may mask business cycle

dynamics. However, recently developed specifications for the trend and cycle can result in an

estimated cycle with properties that are closely associated with a band-pass filtered cycle; see

Gomez (2001) and Harvey and Trimbur (2003). In this paper we adopt the new formulations in

a multivariate setting and we generalise the multivariate common cycle model by introducing

shifts.

2.2 Shifted cycles

By considering the cycle process (4) and by using a standard trigonometric identity, it can be

shown that a cycle is shifted ξ0 time periods to the right (when ξ0 > 0) or to the left (when

ξ0 < 0) by computing

cos(ξ0λ)ψt + sin(ξ0λ)ψ∗t ,

where −1
2
π < ξ0λ <

1
2
π. The shift is with respect to ψt and the restrictive parameter space

for ξ0 follows from the periodic nature of trigonometric functions. The cycle shift operation is

introduced by Rünstler (2002) for the multivariate structural time series model with a stochastic

similar cycle as introduced by Harvey and Koopman (1997). It is further shown that the shift

operation is also valid for a common cycle such as the one present in model (1). Shifted cycles

are introduced in the model via the formulation

yit = µit + δi
{
cos(ξiλ)ψt + sin(ξiλ)ψ+

t

}
+ εit, i = 1, . . . , N, t = 1, . . . , n, (6)

where the specifications for µit, ψt (with associated variable ψ+
t ) and εit remain unaltered as

in (3), (4) and (2), respectively. The shifts are modelled as shifts in the cross autocorrela-

tion function for different cycles. In case of the shifted common cycle component, the cross

autocovariance is given by

γij(τ) = E(ψitψj,t−τ )

= σ2
κφ

τ (1− φ2)−1δiδj cos{λ(τ + ξi − ξj)}, i, j = 1, . . . , N,
(7)
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for τ = 0, 1, . . . and where

ψit = δi
{
cos(ξiλ)ψt + sin(ξiλ)ψ+

t

}
.

This result is a direct consequence of the general results given in Rünstler (2002, Proposition 2).

The contemporaneous cross-correlation between two cycles is γij(0)/
√
γii(0)γjj(0) = cos{λ(ξi−

ξj)}. However, when cycles are shifted accordingly, the correlation is cos(0) = 1 as expected

from a common cycle specification. It is important to realise that a real-time shift ξi is rarely

estimated as an integer time point and since observed time series data can only be shifted at

discrete time intervals the contemporaneous cross-correlation of cycles associated with shifted

time series will usually not be one.

The individual cycles can only be shifted with respect to another cycle. Therefore the first

equation is subject to parameter restrictions ξ1 = 0 and δ1 = 1 and given by

y1t = µ1t + ψt + ε1t, t = 1, . . . , n.

The shifts and loads of the other equations are all relative to the cycle of the first equation. It

follows that this cycle is common to the other time series but scaled differently and shifted by

ξi time points. Of course, the parameter restrictions can also be applied to another equation.

Finally, the shift parameter ξi (i = 2, . . . , N) is identified and can be estimated by standard

maximum likelihood since the joint covariance structure of y1, . . . , yn is affected by ξi, which

follows from (7), provided that δi 6= 0 for equations i = 1, . . . , N .

2.3 Generalised components for model-based band-pass filtering

The basic trend plus cycle decomposition model (1) for time series i can be generalised such

that the model becomes the basis for extracting trends and cycles with band-pass filtering

properties. For example, the m-th order stochastic trend for series i can be considered which

is given by µit = µ
(m)
it where

∆mµ
(m)
i,t+1 = ζ it, ζ it ∼ NID(0, σ2

i,ζ), (8)

or

µ
(j)
i,t+1 = µ

(j)
it + µ

(j−1)
it , j = m,m− 1, . . . , 1, (9)

with µ
(0)
it = ζ it as given by (8) for i = 1, . . . , N and t = 1, . . . , n. The trend specifation (8) can

be taken as the model representation of the class of Butterworth filters that are commonly used

in engineering, see Gomez (2001). The special case of (8) with m = 2 reduces to the local linear

trend component (3) with σ2
i,η = 0 from which it follows that βit = µ

(1)
it . This specification is

sometimes referred to as the smooth linear trend or the integrated random walk, see Young

(1984) and Kitagawa and Gersch (1996). The effect of a higher value for m is pronounced in

the frequency domain since the low-pass gain function will have a sharper cut-off downwards

at a certain low frequency point. In the time domain the effect is evident since ∆mµ
(m)
i,t+1 = ζ it
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suggests that the time series yit implied by model (1) with (8) needs to be differenced m times

to become stationary. From this perspective, the choice of a relatively large m may therefore

not be realistic for most economic time series.

The generalised specification for the k-th order common cycle component is given by ψt =

ψ
(k)
t where(

ψ
(j)
t+1

ψ
+(j)
t+1

)
= φ

[
cosλ sinλ

− sinλ cosλ

](
ψ

(j)
t

ψ
+(j)
t

)
+

(
ψ

(j−1)
t

ψ
+(j−1)
t

)
, j = 1, . . . , k, (10)

with

ψ0
t = κt

i.i.d.∼ N(0, σ2
κ), ψ+0

t = κ+
t
i.i.d.∼ N(0, σ2

κ),

for t = 1, . . . , n. Different variations within this class of generalised cycles are discussed by

Harvey and Trimbur (2003) who refer to specification (10) as the balanced cyclical model.

They prefer the balanced specification since the time-domain properties of cycle ψt are more

straightforward to derive and since it tends to give a slightly better fit to a selection of U.S.

economic time series. Given the choice of the order of the cycle k, the number of unknown

parameters remain three as in (4), that is 0 < φ ≤ 1, 0 ≤ λ ≤ π and σ2
κ > 0. The initial

condition of the cycle component, that is the unconditional distribution of the cycle process

(10), can be obtained analytically, with details provided by Trimbur (2002), or numerically; see

Appendix A for more details. In the same paper the autocovariance function of the generalised

cycle is reported as

γ(τ) = σ2
κφ

τ cos(λτ)g(φ, τ), (11)

where

g(φ, τ) =
τ∑

i=k−τ

(1− φ2)1−i−k
(

τ

k − i

) i−1∑
j=0

φ2j

(
i− 1

j

)(
k − 1

j + k − i

)
,

for a k-th order cycle and for τ = 0, 1, 2, . . .; see Trimbur (2002, Proof of proposition 2).

In the case of two correlated cycles (whether correlation is perfect or not), it follows from

below that the shift mechanism of Rünstler (2002) can also be applied to the generalised cycle

specification. This means that cycles with band-pass filter properties can be subject to shifts

within a multivariate cycle model based on the generalised cycle component (10). In the case

of model (6), the properties of the cycle component for the first series in the panel will be

closely related to those of the univariate band-pass filtered series. However, the information

from the other series is also exploited in the estimation of the cycle component. Finally, the

cross autocovariance function of the generalised shifted cycle component is given by

γij(τ) = σ2
κφ

τδiδj cos{λ(τ + ξi − ξj)}g(φ, τ), (12)

for τ = 0, 1, 2, . . .. This result follows straightforwardly by applying Proposition 2 of Rünstler

(2002) to the proof of Proposition 2 of Trimbur (2002). Since the autocovariance function for

generalised cycles also applies to negative discrete values for τ and it is symmetric in τ = 0,

the shift mechanism has the desired effect on the autocovariance function of the shifted cycle;

see Rünstler (2002, Proof of Proposition 2).
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3 Empirical results for the Euro Area

3.1 Definition of business cycle and data

The multivariate framework presented in the previous section allows the simultaneous modelling

of leading, coincident and lagging indicators for the business cycle with phase shifts being esti-

mated as an integrated part of the modelling process. However, as a preliminary step, one has

to define the base cycle. We follow Stock and Watson (1999) who consider that “... fluctuations

in aggregate output are at the core of the business cycle so the cyclical component of real GDP

is a useful proxy for the overall business cycle ...”. Therefore, we impose a unit common cycle

loading and a zero phase shift for Euro area real GDP. The remaining series included in the

multivariate analysis are the most commonly used monthly indicators on Euro area economic

monitoring. This includes industrial production, retail sales, unemployment, several confidence

indicators (consumers, industrial, retail trade and construction) and interest rate spread1. As

it is well known, industrial production is highly correlated with the business cycle and it is

coincident or even slightly leading. On the other hand, retail sales provide information about

private consumption, which accounts for a large proportion of GDP. Unemployment is a coun-

tercyclical and lagging variable but it also displays a high correlation with the business cycle.

Confidence indicators provide information regarding economic agents’ assessment of current

and future economic situation so they are expected to present coincident or leading properties.

Finally, the interest rate spread has been widely recognised as a forward-looking indicator for

real activity. These time series are available for the period between 1986 and 2002 and graph-

ically presented in figure 1. The resulting dataset covers different economic sectors and it is

based on both quantitative and qualitative data as well as on both real and monetary variables.

As pointed out earlier, GDP is available only on quarterly basis whereas the other indicators

are monthly. However, as it is well known, one can deal with the missing observations problem

easily in the state space framework (see, for example, Harvey (1989)). Thus, this model-based

approach offers the advantage of avoiding the use of an ad-hoc interpolation procedure to get

a monthly GDP series prior to multivariate analysis.

3.2 Details of model and estimation

The empirical business cycle analysis for the Euro area will be based on model (6) with gener-

alised trend µit and common cycle ψt given by model specifications (8) and (10), respectively.

The first series in the panel is real GDP. The time index refers to months although specific series

(such as GDP) may be measured only every quarter. Since the model will be cast in state space

for estimation and signal extraction, the treatment of variables with different observation fre-

quencies in the panel can be handled straightforwardly using the Kalman filter. The treatment

of quarterly time series amounts to having two consecutive monthly observations as missing

followed by the actual quarterly observation. We do not allow for the accounting identity of

1Appendix B provides a detailed description of the data.
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Figure 1: Nine key economic variables for the Euro area between 1986 and 2002.

three months in one quarter as in Mariano and Murasawa (2003) since GDP is measured in

logs and we are merely interested in the cycle and growth dynamics of GDP.

We have set m = 2 and k = 6 since Harvey and Trimbur (2003) show that this choice leads

to estimated trend and cycle components with band-pass filtering properties similar to the ones

of Baxter and King (1999). The role of the trend component µit in model (6) is to capture

the persistence of the time series excluding the cycle. The order m of the trend (8) applies to

all time series in the panel. The frequency of the common cycle component is fixed to assure

that the cycle captures the typical business cycle period in the time series. The frequency is

therefore chosen as λ = 0.06545 which implies a period of 96 months (8 years), see Stock and

Watson (1999) for the U.S. and the ECB (2001) for the Euro area. The shift ξi is measured

in real-time so that ξiλ is measured in radians and due to the periodicity of trigonometric

functions the parameter space of ξi is within the range −1
2
π < ξiλ <

1
2
π for i = 2, . . . , N . For

example, it follows that when a cosine is shifted by xλ, its correlation with the base cosine is the

same as its correlation with a cosine that is shifted by (π − x)λ but with an opposite sign, for
1
2
π < xλ < π. Further, we note that δ1 and ξ1, the load and shift parameters associated with

the base series GDP, are restricted to one and zero, respectively. Apart from these restrictions,

the number of parameters to estimate for each equation is four (σ2
i,ζ , δi, ξi and σ2

i,ε) and for the

common cycle is two (φ and σ2
κ). The total number therefore is 4N (4 for each equation minus

two restrictions plus two for the common cycle).
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The model specification can be casted in state space for which the details are given in

Appendix A. The maximum likelihood estimates of the parameters are obtained by maximising

the loglikelihood function that is evaluated through the Kalman filter. This is a standard

exercise although computational complexities may arise because the parameter dimension rises

quickly as N increases. For example, with N = 9 the number of paramaters to be estimated

is 36. In principle, there is no difficulty of being able to empirically identify the parameters

from the data since the number of observations increases accordingly with N . It can however be

computationally and numerically cumbersome to obtain the maximum value of the loglikelihood

function in a 36 dimensional space2.

Once the model parameters are estimated, the trends and the common business cycle can

be extracted from the data using the Kalman filter and associating smoothing algorithms. The

Kalman filter is sometimes known to be slow for multivariate models, especially when specific

modifications are considered for the diffuse initialisations of nonstationary components such

as trends. However, we would like to stress that the implementation of the Kalman filter

for multivariate models as documented in Koopman and Durbin (2000) and implemented in

SsfPack3 was not slow nor numerically unstable.

3.3 The business cycle coincident indicator

The estimated components for Euro area real GDP are presented in figure 2. Several interesting

features become apparent. First, although GDP is recorded on a quarterly basis the estimated

components are monthly. These components can be seen as the outcome of the underlying

monthly GDP decomposition which can be recovered resorting to the information contained

in the remaining dataset. Second, by analysing the trend it seems that Euro area potential

growth has declined after the major recession that occurred in 1993. This feature becomes

clear by plotting the trend slope against the time axis. One can see that before the recession

monthly potential growth was around 0.3 per cent (3.7 per cent in annualised terms) while

afterwards it was closer to 0.2 per cent (2.4 per cent in annualised terms, which falls within the

2.0− 2.5 per cent GDP potential growth range underlying the ECB monetary policy). Third,

the resulting GDP cyclical component, i.e. our Euro area business cycle indicator, seems to be

in line with the common wisdom regarding Euro area business cycle developments (see ECB

(2002)). In particular, a major recession was recorded in 1993 (as German unification boost

2A practical and feasible approach to overcome some numerical difficulties is to obtain starting values from
univariate and bivariate models. Consecutively, the model dimension can be increased step by step and for
each step realistic starting values will be available from the earlier low-dimensional models. This approach can
be fully automated and different orderings in the panel of time series can be taken in order to be assured (at
least, to some extent) that the maximum is obtained. Further, the maximisation process is stopped at specific
parameter values and restarted at different and realistic values in order to safeguard the estimation process
from producing unrealistic model estimates.

3All computations for this paper are done using the object-oriented matrix language Ox of Doornik (2001)
together with the state space functions in version 3 of SsfPack as developed by Koopman, Shephard, and
Doornik (1999) (for later versions, see http://www.ssfpack.com).
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delayed the impact of the recessions in the United States and the United Kingdom in the early

1990s) while there was an economic slowdown in the late 1990s following the crisis in Asian

emerging market economies and the financial instability in Russia. Although the aim of the

suggested model-based approach is to obtain a coincident indicator for the business cycle, one

can also get a leading one. By repeatedly applying the Kalman filter prediction equations it is

possible to obtain multi-step prediction equations. Thus, one can define the leading indicator

as the h-step ahead forecast of the coincident indicator with h chosen as desired but typically

not implying a lead of more than half year (see, for example, Stock and Watson (1989)).

1990 1995 2000

13.9

14.0

14.1

14.2

GDP Euro Area Trend 

1990 1995 2000

0.001

0.002

0.003

slope 
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Figure 2: Decomposition of real GDP: GDP and trend, trend slope, cycle and irregular.

The variances of the trends and the damping factor and variance of the common cycle

are estimated. For the latter parameters we obtained estimates σ̂ω = 0.0066 and φ̂ = 0.57

which are typical values for a generalised cycle with m = 6, see the discussion in Harvey and

Trimbur (2003). The resulting properties of the estimated cycle are therefore similar to band-

pass filtered cycles such as the ones of Baxter and King (1999) and Christiano and Fitzgerald

(2003). The variances of the individual trends are also estimated and they vary from very

small values (suggesting that trend is fixed and may coincide with the fact that trend does

not exist in the series) to relatively high values (suggesting that trend and its corresponding

slope change throughout the series). Some key estimation results are presented in table 1. The

load factors are of interest since they indicate the relative contribution of the series to the

construction of the cycle component. Since the series have different scales of measurement, the
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reported loads are standardised by the sample variance of the corresponding differenced series.

It is interesting to observe that industrial confidence tops the list of contributors (others than

GDP itself) to the construction of the estimated business cycle while industrial production,

consumer confidence and construction confidence are important too. Series related to retail

trade contribute relatively little to the estimated business cycle.

The ability to simultaneously identify and estimate cycle shifts within the model for a

given set of time series is a key development that is important for the current analysis. The

estimation results reveal that unemployment lags the business cycle by more than one year

(almost 16 months) while interest rate spread clearly leads the business cycle by almost 17

months. The common cycle component for the other series displays relatively small shifts,

confirming the coincident character of these series.

In order to provide some indication whether the multivariate trend-cycle model fits the

individual series successfully, we report goodness-of-fit statistics in table 1. The sum of squared

prediction errors is compared to the sample variance of the differenced time series for each

equation of the model. The reported statistics give evidence that in fact all time series (to

different degrees) are appropriately described by our model.

Table 1: Selected estimation results

time series stand. load shift goodness of fit

Gross domestic product – – 0.31

Industrial production 1.18 6.85 0.67

Unemployment -0.42 -15.9 0.78

Industrial confidence 2.46 7.84 0.47

Construction confidence 0.77 1.86 0.51

Retail trade confidence 0.26 -0.22 0.67

Consumer confidence 1.12 3.76 0.33

Retail sales 0.11 -4.70 0.86

Interest rate spread 0.57 16.8 0.22

The stand. load is the maximum likelihood estimate of coefficient δi divided by the standard deviation of

the differenced time series i. Shift is the maximum likelihood estimated of shift parameter ξi. Note that for

gross domestic product load δ1 is fixed at one and shift ξ1 is fixed at zero. Goodness of fit is the coefficient of

determination (R2) computed as one minus the ratio of the variance of the one-step ahead prediction residuals

for equation i (sample mean is substracted) and the sample variance of the differenced time series i.

One of the main focus of the paper is on extracting the business cycle using multiple eco-

nomic time series. Therefore, we present the business cycle coincident indicator once more in

figure 3 together with the Euro area business cycle turning points settled by the European

Central Bank, see ECB (2001). However, since the ECB dating was made on a quarterly basis,

the quarters where presumably occured a turning point are represented by a shaded area due to
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the monthly nature of the time axis. One can see that the suggested business cycle coincident

indicator tracks, in general, quite well the turning points. Only at the end of the sample it

seems to perform less satisfactorily. However, one should note that the ECB dating was made

using data only up to 2000. In particular, this can explain why the last peak dated by ECB is

not confirmed by our business cycle indicator since it suggests that the peak only occurred at

the beginning of 2001.

Some additional descriptive statistics of the extracted business cycle are reported in table

2. The historical minimum value of the business cycle is observed in August 1993, which falls

within the most severe recession period recorded in the Euro area, while the maximum value

is at January 2001.
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Figure 3: Coincident indicator for the Euro area business cycle with ECB datings.

3.4 A coincident indicator for growth

Up to now, the focus has been on the business cycle and how one can exploit the information

content of an economy-wide dataset for the assessment of the cyclical position of the economy

using a model-based approach. Nevertheless, the policymaker can also be interested in track-
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Table 2: Descriptive statistics for the business cycle and growth indicators

Indicator mean stand.dev minimum maximum

Business cycle 0.000086 0.0066 -0.017 0.01052

Growth 0.0051 0.0038 -0.0072 0.01156

ing economic activity growth. As a by-product, one can obtain a growth indicator with the

suggested model-based approach. This can be done by restoring the business cycle indicator

with the corresponding estimated trend component and then computing the growth rate. The

three-month change of the trend restored business cycle indicator is plotted in figure 4. The

resulting growth indicator can be interpreted as the latent monthly measure of GDP quarterly

growth. Some basic statistics of the growth indicator are reported in table 2. From figure 4,

one can see that the growth indicator tracks quite well the GDP quarterly growth. Moreover,

it is available on a monthly basis and avoids the erratic behaviour of GDP quarterly growth

rate which complicates the assessment of the current economic situation. By disregarding the

irregular component one allows to obtain a smooth growth indicator. In a similar fashion as

for the business cycle indicator, one can also use the h-step ahead forecast of the coincident

growth indicator as the leading one.

In figure 5, we plot our growth indicator together with EuroCOIN. The EuroCOIN indicator

was suggested by Altissimo, Bassanetti, Cristadoro, Forni, Lippi, Reichlin, and Veronese (2001)

and it is also intended to be a monthly coincident indicator for the Euro area economic growth.

It is based on a generalised dynamic factor model, see Forni, Hallin, Lippi, and Reichlin (2000),

and resorts to a huge dataset (almost a thousand series referring to the six major Euro area

countries). The model underlying EuroCOIN can be described briefly in the following way. Each

series in the dataset is modelled as the sum of two uncorrelated components, the common and

the idiosyncratic. The common component is driven by a small number of factors common to

all variables but possibly loaded with different lag structures, while the idiosyncratic component

is specific to each variable. EuroCOIN is the common component of the GDP growth rate4

after discarding its high frequency component. Although this approach allows for more general

cyclical dynamics when compared with our model, it also presents additional drawbacks. For

instance, it requires the detrending of the series prior to dynamic factor analysis and one cannot

use simultaneously series of different periodicity. Moreover, with the estimation of only two

parameters for each series, the common cycle factor load and the shift, we were able to get a

quite similar outcome.

4As mentioned earlier, the GDP monthly series used as input was obtained through the linear interpolation
of the quarterly figures.
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Figure 4: Euro area quarterly GDP growth and its model-based monthly coincident indicator.
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Figure 5: EuroCOIN and our model-based coincident indicator for growth.
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3.5 Revisions
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Figure 6: Smoothed and filtered estimates of the business cycle coincident indicator.

A relevant issue regarding both business cycle and growth indicators refers to their real-time

reliability. In practice, the indicators are subject to revisions over time due to data revisions

and to their re-computation when new data becomes available. Although it is not possible

to evaluate the consequences of the first potential source of revisions, due to the lack of data

vintages, one can assess the second one by comparing the smoothed and the filtered versions

of the indicator. Since the filtered estimate is the one conditional on the information available

at each moment whereas the smoothed estimate is the one based on the full set of data, one

can compare them to evaluate the magnitude of the revisions. In figure 6 we plot both the

filtered and the smoothed versions of the business cycle coincident indicator. One can see that

the smoothed falls, in general, within the 95% confidence interval for the filtered and that the

resemblance is more pronounced in the second half of the sample. Additionally, we also compute

several measures to assess the importance of the revisions, namely, the cross-correlation between

the filtered and smoothed estimates of the indicator, the noise-to-signal ratio (i.e. the ratio of

the standard deviation of the revisions to the standard deviation of the smoothed estimate) and

the sign concordance (i.e. the proportion of time that smoothed and filtered estimates share

the same sign). The results are presented in table 3. The results’ analysis should take into

account that it is extremely hard to estimate the output gap in a real-time scenario since only

with the advance of time can one be increasingly more accurate about the cyclical position at a

16



given period. For example, Orphanides and van Norden (2002) have shown that the reliability

of real-time estimates of the output gap, whatever the method used to obtain it, is quite low.

Nevertheless, the filtered estimate presents a reasonable correlation with the smoothed one, in

particular, in the second half of the sample (0.75), as well as a relatively high sign concordance

(0.84).

Table 3: Revision and reliability statistics for the business cycle coincident indicator

Period mean stand.dev min max ratio corr. sign

stand.dev estimates conc.

1989–2002 -0.0011 0.0059 -0.015 0.0108 0.84 0.55 0.72

1993–2002 0.00099 0.0048 -0.0099 0.0108 0.66 0.75 0.84

The ratio stand.dev is the ratio of the standard deviation of the revisions against the standard deviation of the

final estimates. The correlation estimates (corr. estimates) is the contemporaneous correlation between the real

time (filtered) estimates and the final (smoothed) estimates of the business cycle. The sign concordance (sign

conc.) is the percentage of times that the sign of the real time and final estimates are equal.

The same evaluation can be done for the growth indicator (see figure 7 and table 4). In-

terestingly, the growth indicator seems to be less affected by revisions. It presents a higher

correlation (0.84) and a lower noise-to-signal ratio than its business cycle counterpart. Unfor-

tunately, one cannot compare the revisions of our growth indicator with the ones of EuroCOIN

since Altissimo, Bassanetti, Cristadoro, Forni, Lippi, Reichlin, and Veronese (2001) did not

perform this evaluation.

Although the indicators are inevitably affected by revisions the results as a whole seem quite

promising.

Table 4: Revision and reliability statistics for the growth indicator

Period mean stand.dev min max ratio corr.

stand.dev estimates

1989–2002 -0.000046 0.0024 -0.0086 0.0073 0.64 0.84

1993–2002 -0.000024 0.0020 -0.0056 0.0055 0.59 0.84

The ratio stand.dev is the ratio of the standard deviation of the revisions against the standard deviation of the

final estimates. The correlation estimates (corr. estimates) is the contemporaneous correlation between the real

time estimates and the final estimates of the growth indicator.
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Figure 7: Filtered and smoothed estimates of the coincident indicator for growth.

4 Conclusion

In this paper we propose a new model-based approach for obtaining growth and business cycle

indicators simultaneously. A multivariate unobserved components time series model is adopted

that incorporates two recent and relevant contributions: (i) the inclusion of a cycle component

with properties similar to those of band-pass filtered series, developed by Harvey and Trimbur

(2003); (ii) the incorporation of phase shifts within the cycle component, proposed by Rünstler

(2002). In particular, we consider the cycle component with band-pass filter properties by

having it as a common cycle component that allows for phase shifts. The resulting multivariate

model is used to extract trend and cycle components using several economic time series for

the Euro area. The innovations to the cycle component of each time series are common but

their contribution is derived from a filter that depends only on three parameters. One is the

frequency of the cycle, which we fix so as to assure that the typical business cycle frequencies are

captured. Other accounts for phase shifts and the other accounts for the relative contribution

of the cycle to the dynamics of the individual time series. The base cycle is associated with real

GDP and it resumes to our business cycle indicator. By discarding the irregular component

of GDP, a smooth growth indicator can also be constructed. Due to the modelling of phase

shifts, this approach allows to exploit information from multiple economic series, regardless

their coincident, leading or lagging nature, to obtain estimates of the current cyclical position
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and of the growth state of the economy. Moreover, despite the fact that GDP is only available

quarterly and the remaining indicators are monthly, we are able to incorporate information

from GDP without the ad-hoc construction of an artificial monthly GDP series. The use

of quarterly GDP together with monthly indicators is straightforward within the state space

framework. The resulting indicators are based on nine key economic time series and appear

to be in line with common wisdom regarding Euro area economic developments. In particular,

our growth indicator is very close to EuroCOIN, which is obtained using hundreds of series

as input and is based on a more involved approach. The revisions’ evaluation of our business

cycle indicator confirms the difficulty of assessing the cyclical position in real-time, as reported

by Orphanides and van Norden (2002). Nevertheless, the real-time reliability of the growth

indicator is shown to be substantially higher.

Appendix A: State space representation of model

A state space representation consists of two equations, the observation equation for yt and the

transition equation that describes the dynamic process through the state vector. The model

(6) requires the following state vector,

αt =

(
αµt
αψt

)
, αµt =


µ

(m)
t

µ
(m−1)
t

...

µ
(1)
t

 , αψt =



ψ
(k)
t

ψ
(k)+
t

ψ
(k−1)
t

ψ
(k−1)+
t

...

ψ
(1)+
t


,

with µ
(j)
t = (µ

(j)
1t , . . . , µ

(j)
Nt)

′ and µ
(j)
it as in (9) for i = 1, . . . , N , j = 1, . . . ,m and t = 1, . . . , n.

The observation equation is a linear combination of the state vector together with observation

noise, that is

yit =
{
ei 01×(m−1)N δi cos(λξi) δi sin(λξi) 01×2(k−1)

}
αt + εit, i = 1, . . . , N,

where ei is the i-th row of the N ×N identity matrix IN and 0p×q is the p× q matrix of zeros.

Define Ap as a p× p matrix with zero elements except for elements (i, i+ 1) that are equal

to unity for i = 1, . . . , p− 1. The transition equation for the state vector is then given by

αt+1 =

(
αµt+1

αψt+1

)
= (diag [Im ⊗ IN Ik ⊗ Tλ] + diag [Am ⊗ IN Ak ⊗ I2])αt + ηt,

where η′t = (01×(m−1)N , ζ1t . . . ζN,t, 01×2(k−1), κt, κ
+
t ),

Tλ =

[
cosλ sinλ

− sinλ cosλ

]
, Var(ηt) = diag

[
0(m−1)N×(m−1)N Σζ 02(k−1)×2(k−1) σ2

κI2
]
,
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and Σζ is a diagonal N × N matrix with σ2
i,ζ of (8) as its i-th diagonal element. We note

that diag [· ·] refers to a block diagonal matrix. The initial state vector αµ1 will be treated

as a diffuse vector and appropriate amendments to the Kalman filter and related algorithms

need to be made, see Durbin and Koopman (2001, Chapter 4) for a discussion. The stochastic

properties of the initial state vector αψ1 are implied by mean zero and variance matrix P which

is the solution of

P = [Ik ⊗ Tλ + Ak ⊗ I2]P [Ik ⊗ Tλ + Ak ⊗ I2]
′ + diag

[
02(k−1)×2(k−1) σ2

κI2
]
.

We note that the solution of A = BAB′ + C is vec(A) = (I − B ⊗ B)−1vec(C), see Magnus

and Neudecker (1988, Theorem 2, p.30). Explicit formulations for P are reported in Trimbur

(2002).

Appendix B: Data description

As far as possible, we used series from Euro area official statistical sources, i.e., Eurostat, the

European Commission and the European Central Bank. However, the available data regarding

the Euro area as a whole is rather limited, in particular, in terms of time span. Therefore,

in some cases, we had to chain the official time series with an Euro area aggregate proxy,

obtained by weighting country level data with 1995 (PPP) GDP weights, which were rescaled

whenever there was any missing data for a country. The sample runs from the beginning of

1986 up to the end of 2002. Regarding real GDP, the seasonally adjusted series provided by the

Eurostat only starts in the first quarter of 1991. Therefore, from 1991 backwards we used the

series provided by Fagan, Henry, and Mestre (2001) to obtain a quarterly series for the above

mentioned sample period. All confidence indicators are seasonally adjusted and provided by

the European Commission. The industrial production volume index is seasonally adjusted and

provided by the Eurostat. The unemployment series is also seasonally adjusted and provided

by the Eurostat. Since there is no official series before June 1991, an aggregate series was

obtained, in this particular case, by summing country level data. The retail sales volume index

is seasonally adjusted and provided by the Eurostat since 1996. To obtain a longer time span

series, we resorted to country level data provided by the OECD. Regarding nominal interest

rates, since both short and long-term interest rates are made available by the ECB only for the

period after January 1994, we had also to use OECD country level data. The nominal short-

term interest rate refers to the 3-month deposit money market rate and the nonimal long-term

interest rate refers to the 10-year government bond yield. The yield curve spread is given by the

difference between the long and the short-term interest rates. Excluding confidence indicators

and interest rate spread, all data are in logarithms.
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