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Abstract

This paper provides alink between car following theory and the economic theory of
road congestion by means of atheory of speed choice. According to this theory speed
choice is based on atrade-off between the benefits (shorter travel time) and cost
(higher accident risk) of driving faster. Accident risk isrelated to the distance to the
‘leader’ and by elaborating this relationship a number of car-following models can be
derived from this theory of speed choice. Wit homogeneous traffic, steady state
analysis leadsto a model that generalizes the conventional Pigou-Knight analysis: it
has an endogenous speed choice curve and requires the incorporation of accident risk
in the value of travel time. A further generalization of this model to steady states with
heterogeneous traffic is possible and leads to the conclusion that first best tolls will in
general require differentiation over groups of drivers. Finally a general bottleneck
model is discussed that contains Vickrey’'s (1969) and Verhoef’ s (2002) versions as
special cases. Thisresultsin aclarification of Verhoef’ s finding that implementation
of the optimal Vickrey toll can result in a deterioration of welfare.
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1 Introduction

Traffic problems are analyzed from various perspectives. Economists are mainly
interested in the external effects involved, such as congestion, and have devel oped
models that bring out the issuesinvolved as clearly as possible. Traffic engineers have
been interested in, for instance, the stability of traffic flows and have developed
models that concentrate on phenomena such as shock waves and car following
behavior. As aresult, various branches of literature have developed separately. It is
usually difficult to connect research results that originate from different branches
since each has developed its own set of models based on different simplifying
assumptions. One may nevertheless, conjecture that the various schools of thought
might benefit from each other’ s results. The present paper attempts to substantiate this
conjecture by means of an integration of car following theory, which is an important
element of the traffic engineering literature, with the Pigou-Knight and bottleneck
models of traffic congestion, which are important elements of the economic analysis
of traffic problems. The paper intends to make three contributions. The first isto
provide atheory of speed choice from which a number of car following models can be
derived, thereby providing economic content to this model. The second isto use this
economic interpretation of car following theory to develop a generalization of the
Pigou-Knight model to heterogeneous traffic. The third isto clarify the relation
between Verhoef’ s (2002) recent bottleneck model based on simple car following
theory and the bottleneck model of Vickrey and Arnott, de Palmaand Lindsey.
Thelink between the car following model and the economic modelsis provided by an
economic theory of speed choice. According to this theory, a driver chooses his speed
by trading of the benefits of a higher speed (reduced travel time) against the cost
(higher accident risk). The accident risk is related to traffic speed and density.

In the Pigou-Knight model traffic density determines traffic speed by means of an
aggregate relationship (the speed flow curve or related concepts such as the
fundamental diagram) that is often interpreted as a technological one, even though
one would expect that a strong behavioral element isinvolved. The theory of speed
choice makes this behavioral content explicit at the individual level. For the
individual driver aggregate traffic density and speed are less relevant, but the distance
to hisleader and his speed can be regarded as appropriate equivalents. Since car
following theory uses these variables to explain acceleration behavior, this leads one
to conjecture that such models can aso be connected to the theory of speed choice.
This connection will be formally established below for a number of car-following
models.

The static Pigou-Knight model of traffic congestion refers to the stationary state
behavior of apopulation of homogeneous drivers using the same road. This stationary
state can be derived from amodel in which individual drivers behave in accordance
with the speed choice theory. The model with speed choiceis richer than the origina
Pigou-Knight model since the speed-flow relationship is now endogenous. It will be
shown below that with an intuitive specification of the cost function the extended
model |eads to the conventional conclusions with respect to optimal tolling if the cost
of accident risk isincorporated in the value of travel time.

The Pigou-Knight model with homogeneous driversis often used to model actual
situations in which vehicles are heterogeneous. Sometimes this heterogeneity is taken
into account by using passenger car equivalents in order to homogenize the driver
population. The integrated model developed in the present paper allows for an
investigation of the adequacy of this conjecture by means of aformal analysis of a
model with heterogeneous drivers. In the generalized model the drivers are



differentiated in the values of the parameters of their utility function and thereforein
their car-following behavior. In the generalized model first best congestion taxes are
in general different for vehicles belonging to different groups. The differentiation of
the toll is proportional to the road space occupied by the vehicles, which is the sum of
the vehicle length and the space between two subsequent vehicles. The latter is
determined by differencesin driver behavior that are not necessarily correlated with
easily observable characteristics of the vehicles or their drivers. Thisimplies that first
best congestion taxes may be difficult to implement in practice.

Verhoef’s (2002) analysis of congestion uses a bottleneck model that looks similar to
that of Vickrey (1969) and Arnott, de Palma and Lindsey (e.g. 1990) in many
respects. Its main novel element is the use of simple car following theory in order to
model the behavior of driversin the queue and in the bottleneck in amore explicit
way. Hisresults are in some respects strikingly different from theirs. In particular, he
shows that in the context of his model the first best tolling scheme proposed by
Arnott, de Palmaand Lindsey resultsin a deterioration of welfare. In order to clarify
this difference, which is apparently due to the use of car following theory, the present
paper formulates a more general model that isidentical to Verhoef’s model for one
particular value of a parameter. When this parameter approximates a particular
limiting value the model exhibits a number of characteristics of the alternative model.
It isthen shown that in Verhoef’s model the flow of cars through the bottleneck isless
than the maximum possible flow if the congestion toll removes al queuing in front of
the bottleneck, asis optimal in the alternative model. Removing all congestion in
Verhoef’s model implies therefore that scheduling delay cost will be higher than they
are when thereis aqueue in front of the bottleneck. Thisis aconsequence of his use
of the simple car following theory.

The paper is organized as follows. Section 2 contains a brief discussion of car
following theory, concentrating on the so called GM-model that covers a number of
other specifications as special cases. Section 3 exposes the theory of speed choice. It
starts with a general discussion and concentrates on a specific example of the travel
cost function. In section 4 the two theories are integrated by using the distance to the
‘leader’ asthe relevant measure of traffic density. It is shown that the speed choice
theory leads to a relation between speed and distance to the leader and that
differentiation of this relationship leads to the car-following relationship of the GM-
model if the sensitivity coefficient of the latter can be interpreted as the first
derivative of optimal speed with respect to the distance to the leader. Some other car-
following theories that use the relation between distance to the leader and speed asa
primitive concept, and for these theories integration with the theory of speed choiceis
trivial.

Section 5 starts with the derivation of the travel cost function under steady-state
conditions. Thisrelationship can be derived from the model on the basis of the
optimizing behavior with respect to speed choice. In order to analyze the congestion
externality, the model is extended with a demand curve. If the specific form of the
travel cost function isvalid, maximization of consumer surplus gives the conventional
Pigouvian toll provided that the cost associated with accident risk isincorporated in
the value of travel time. The model can therefore be regarded as an extension of the
conventional Pigou-Knight model that takes the cost function as a primitive concept.
Further generalization is possible by allowing for traffic heterogeneity and leads to the
result that the composition of traffic will in general be important for the speed-flow
relationship and that first best tolls are differentiated.



Section 6 deals with a generalization of Verhoef’s (2002) model that allows usto
study the reasons behind the substantial difference between his conclusions with
respect to optimal tolling and those reached by Vickrey and Arnott, de Palma and
Lindsey. The generalization is a more flexible formulation of the simple car-following
theory that treats one of its parameters as a variable whose value may change. Section
7 concludes.

2 Car following theory

The intuitive idea that forms the basis of car following theory is that drivers react to
the behavior of the vehicle immediately in front of them so as to avoid accidents. This
idea was not elaborated by means of a model in which costs and benefits associated
with a particular choice of their speed are traded-off against each other leading to a
decision to accelerate or decelerate, as an economist would be inclined to do. Instead,
It was used as a motivation for finding a descriptive device for driver behavior. In this
section we discuss the main components of an important example of this theory, viz.
the GM model.*

Car following theory? deals with the behavior of a series of drivers1,2,...,n,... ona
road. The location of the n-th driver at timet is denoted as x,(t). The speed of this

driver is denoted aan(t) =dx, /dt, and the change in speed (acceleration or

deceleration) as xn(t) = d*x/dt?. The behavioral equations formulated in car
following theory concentrate on the relationship between changes in the speed of the
n-th driver and the difference between the speed of the n-th driver and his leader, the
(n-1)-th driver. Thetwo arerelated by a sensitivity coefficient A:

Xn (t) = A E&H(t) _ xn(t)Q (1)

This equation says that there will be no acceleration or deceleration if avehicle
proceeds with the same speed as its leader. Speed differences |ead to changesin speed
that are proportional to these differences with a sensitivity coefficient A. This
sensitivity coefficient is not a constant, but depends on the speed of the n-th driver
and on the distance between the n-th and (n-1)-th driver. According to the general
formulation of the GM model (see Gazis et a., 1961) , this sensitivity coefficient can

be specified as.
FeoH
O O

A % 0) @

This equation says that drivers react stronger to speed differences with their leader if
their own speed is higher and if the distance to the leader is shorter. Intuition suggests
that the parameters m and | should both be nonnegative, but in applications sometimes
other values are used as will be noted below.

Substitution of (2) in (1) gives:

1 GM means General Motors, presumably the employer of the developers of this theory.
% See e.g. May (1990) for areview and Zhang and Jarret (2001) for a recent contribution.



Xn(t) = A,

(Xn—l(t) -x (t))l 5 n-1(t) — Xn(t) - A3)

Earlier studies formulated models that are special cases of the GM specification:
Chandler et a. (1958) had mand | equal to O; Gazis et a. (1959) had m=0 and 1=1;
Edie (1961) hasm=1 and 1=2.3

In car following theory it is usually assumed that drivers react to speed differences
with some delay 4t. The reason isthat it takes drivers some time to recognize speed
differences and react to them. Here we interpret the car following equation as
referring to the intentions of the drivers. That is: we interpret the car following
equation without delay as reflecting the driver’ s preferences with respect to reactions
to speed differences at given values of the own speed and the distance to the leader.
Attempts to estimate the parameters of car following models seem to be scarce. May
and Keller (1967) fitted the model both with integer values of m and | and with non-
integer values. They found m=1 and |=3 the best integer values and m=0.8 and 1=2.8
the best not necessarily integer values. Ozaki (1993) found m=-0.2 and |=0.2 for
acceleration and m=0.9 and |=1.0 for deceleration. Subramanian (1996) reports m=-
1.67 and 1=-0.88 for acceleration and m=1.09 and 1=1.66 for deceleration.”

The equations given above reflect the notation used in the literature on car following
theory. In what follows we will use a different notation that is more convenient for the
present purposes. We concentrate on asingle driver or to situationsin which all
drivers belonging to the same group behave in the same way, so thereis no need for
using the suffix n for individual cars. Instead we use an upper index O to refer to
variables of the leader. We use the symbol sfor speed. Moreover, it will be
convenient to have asingle symbol for the distance with the leader and we will use &
for that purpose. We interpret this distance as the ‘ nose-to-tail’ distance, that is: asthe
extent of the open space between two cars. Finally, we use a for acceleration or
deceleration. With this alternative notation, we can rewrite equations (1), (2) and (3)
as.

a=A (so—s) (1)
— Sm 1
A—/\oy 2)
a:)\o‘;'T(sO— ) 3)

where s° denotes the (not necessarily constant) speed of the leader.

% A review of car following modelsis beyond the scope of this paper, see e.g. May (1990).
* These results are summarized in Ahmed (1999).



3 Speed choice by minimization of travel cost

This section discusses a theory about speed choice that was introduced in Verhoef and
Rouwendal (2001) in order to endogenize speed in models of traffic congestion. The
basic ideaisthat speed is chosen so as to minimize generalized travel costs, which
consist of time cost and accident risk. This theory allows one to derive the speed flow
curve, which isusually regarded as atechnical relationship, on the basis of driver
behavior. The model that results from this approach gives an integral treatment of
congestion and traffic safety and leads to conclusions that differ from those of the
conventional approach. Here we use the theory in amicroscopic setting, i.e. we
interpret the theory as referring to instantaneous speed choice instead of average
speed on aroad segment.

Soeed choice by minimization of travel costs
Consider adriver at location x who has to determine his speed. The costs ¢, of driving
a x are afunction of the driver’s speed s and some measure of traffic density r:

c, =c(s,,r,) 4

with ¢, adifferentiable function defined for nonnegative values of sand r. In what
follows we will usually suppress the location index x. However, it should be kept in
mind that c refersto the cost at one point in space and that integration over x has to
take place in order to arrive at the total cost of atrip.

The specification of the cost function given in (4) isin some respects a restrictive one.
For instance, it includes only the driver’s own speed and not that of other drivers as an
argument. This excludes the possibility that speed differences (which are probably an
important element of accident risk) are a determinant of speed choice. The reason for
using (4) isapurely pragmatic one: the purposes of the paper can be reached with this
specification. The possibility to generalize these results by using alternative
specifications of the cost function will be discussed briefly in the concluding section.
The function c should be convex in sfor every possible value of r. In the next section
the appropriate measure of traffic density in the context of the present paper will be
considered in some detail. For the moment it suffices to remark that the driver is
assumed to take traffic density (however defined) as given. Speed is chosen
instantaneously so as to minimize the costs at the given density:

s(r) = argmin(c(s,r)) (5)

where s(r) denotes the optimal (i.e. cost minimizing) speed, which is afunction of
traffic density. If speed is positive, S(r) isthe solution of the first order condition

Jc
— =0 6
3 (6)

Since the function c is convex in s (by assumption) the second-order conditions for a
minimum are also fulfilled. We can derive the optimal (=minimal) cost as a function
of traffic density by substituting (5) into (4).”

® The myopic behavior implied by (5) is consistent with minimization of total travel cost [c,dx if (a) an
individual driver cannot influence the density r, and (b) there are no binding constraints this
minimization due to, for instance, limits on engine capacity (acceleration) and braking power.



It may be noted that (5) implies that we have derived arelationship between adriver's
speed and the density as perceived by him from an economic theory of speed choice.
In section 5 we will show how this relationship can be used to derive an analogous
aggregate relationship under stationary state conditions.

We now formulate two requirements that the optimal speed function should obey:

(i) s(r) should be increasing in traffic density r.

We expect that the optimal speed decreases if traffic density increases. Thiswill be
the caseif dc/Os isincreasing inr. This can be interpreted as saying that it becomes
more costly to increase a given speed if traffic density is higher, which seems
reasonable to assume.

(i1) the free flow speed s* isfinite
The free flow speed s* is defined to be the one that would be chosen if the density of
traffic approaches O:

st =lim; _ os(r) @)

A specific case
An intuitively appealing specification for the cost function is:

c="% by s? ®)
S

where vot and b are both positive.

This equation states that the costs are determined by travel time and safety
considerations. Travel time cost is proportional to the inverse of speed and the cost
associated with safety is assumed to be quadratic in speed. The parameter vot can be
interpreted as the value of time; b(r) must be increasing in traffic density.

The relation between speed and density that follows from (5) is:

s(r) = E‘Z:)a )

It is easy to verify that this speed choice function satisfies requirements (i) and (ii)
listed aboveif b(r) is positive for all nonnegative densities.

The speed-density relation s(r) can be empirically observed. This relation can be used
to identify the parameter b(r) in (8) as can be seen by rewriting (9) as:

_ 1 vot

SLRTey:

(10)

Condition (a) is not satisfied in our car following version of the speed choice theory, see the discussion
following equation (13) below. Condition (b) seems often satisfied in actual driving situations and will
be ignored.



This means that the parameters of the cost function (8) are identified if we know the
value of time a and the speed-density relation s(r).

The cost function (8) generalizes of the conventional approach in traffic congestion
analysis where travel cost are usually be assumed to be equal to the value of travel
time. In this approach, only the first term on the right-hand-side of (8) isrelevant. The
difference between this traditional approach and the one adopted here can be clarified
by substituting (10) into (8). This gives the minimum instantaneous travel cost at
density r as:

min sy _ 3 VOt
c™(r) = 250 (11)

This equation says that the appropriate cost equals 150% of the value of travel time.?
The traditional approach therefore underestimates the cost of travel time (and
congestion) by one third. Another interpretation isthat equation (11) says that the
appropriate value of travel timeis 50% higher than the ‘pure’ vaue of time because of
the accident risk involved in travelling. If the value of accident risk isincorporated
into the value of travel time, the right-hand-side can till be interpreted as the value of
travel, and the difference with the conventional approach appears |ess fundamental.
The reason behind the ambiguity implied by the possibility of two different
interpretationsisthat it is not always clear whether empirical estimates of travel time
incorporate the accident risk associated with traveling or should be interpreted as a
measure of the ‘pure’ value of time.

4 Speed choice and car following theory
This section is concerned with the question: can the car following theory be derived
from the theory of speed choice discussed in the previous section?

Traffic density and the distance with the leading vehicle

The theory of section 2 takes traffic density as one of the determinants of speed
choice. Density of traffic is usually measured as the ratio between the number of cars
on aroad segment and its length. However, it may be noticed that the relevant
measure of density from the microscopic viewpoint adopted here is the one
experienced by the driver. This suggests that traffic density should refer to aroad
segment of limited length in front of adriver or that cars that are closeto adriver
contribute more to traffic density as experienced by him than cars at alarger distance,
that cars driving in front of him are more relevant than those driving behind, et cetera.
In some circumstances the distance to the vehicle immediately in front of him solely
determines adriver's experience of traffic density. Thiswill be especialy the case if
the driver is unable to look further ahead. Also in other cases the distance to the driver
immediately in front may be the major determinant of adriver’s experience of traffic
density as far as speed choice is concerned.

Moreover, we note that car following theory links the behavior of adriver only with
that of hisleader and this suggests that we should focus exclusively on the distance
with the leader in order to integrate the theory of speed choice with that of car
following. We may, for instance, specify:

® See Verhoef and Rouwendal (2001) for further discussion of this result and related issues concerning
speed policy.
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r= . 12
Y (12)
with the length of a car. More generally, we may postul ate:
r=1(9) (22)

for some decreasing function f.

After substitution of (12’) into the function s(r) we arrive at a relationship between
speed and the distance between two subsequent cars, to be denoted as (o). The
implied relation between speed and distance to the leader is:

s=5(9) (13)

A possible objection to the specification of traffic density as perceived by an
individual driver isthat thisdriver isin full control of the distance to his leader. It
may therefore be questioned whether it is appropriate to assume that a driver takes
this distance as given when choosing his speed. The answer to this objection is that
when adriver isat x and has a distance ¢ to his leader, he can only control the future
value of this distance by means of choosing his present speed. In other words: speed
choice isthe instrument available to him to adapt the distance to the leader according
to hiswishes at locations downstream of x. When speed at location x has to be chosen,
the distance to leader isindeed given (i.e. cannot be changed immediately).

If the driver is not (purely) myopic, he may take into account that his present speed
choice will influence future values of the headway distance. For instance, instead of
behaving purely myopically, the driver may choose alower speed at the beginning of
his trip and a higher speed at the end. The result may be that total travel time is equal
to that under purely myopic behavior, while during most of the trip safety costs are
lower. The net result may be a decrease in travel cost under the ssmplified conditions
considered here. This behavior can only be successful if the follower can predict the
behavior of hisleader with considerable accuracy, which is usually not the case in
actual situations. Moreover, overtaking cars or cars that enter between a car and its
leader will in practice often disturb such behavior. For this reason it will not be
considered here.

Equation (13) gives arelationship between speed and distance to the leader, whereas
car following theory postulates a relationship between changes in speed and speed
differences. We have therefore not yet reached the goal of deriving car following
theory from the theory of speed choice. Neverthel ess, we have taken an important step
towards this goal by relating traffic density to the distance between a car and its
leader.

Compatibility of the speed choice model and the GM car following model
We shall now clarify the relation between car following theory as discussed in section
2, and equation (13). In order to do so, we first note that:

dd
2 =g"-5s 14
ot (14



This equation says that the headway changes if speeds differ. If we differentiate both
sides of (13) with respect to time and substitute (14), we then find:

_Gdsf,
a—dd[s s] (15)

Thisis equal to the equation of the standard car following framework (3') with a
sensitivity coefficient that equals ds/dd. Note that the interpretation of this derivative
as a sengitivity coefficient makes perfect sense from the viewpoint of the theory of
speed choice discussed in the previous section. The partial derivative ds/ddis a
measure of the sensitivity of the optimal speed to changesin the headway distance.
Changes in the headway distance imply larger changes of speed if this partial
derivativeislarger. Delaysin this reaction are costly in terms of travel cost and it
seems therefore natural that the drivers react stronger to a given changein the
headway distance if the derivativeislarger. Thisimplies that the sensitivity
coefficient in the car following equation is larger asisthe caseif both variables are
equal.

In order to demonstrate formally the compatibility of the speed choice theory outlined
earlier with the standard car following theory discussed in section 2 we have to show
that the derivative ds/dd can indeed be equal to the sensitivity coefficient A as
specified in equation (2') which corresponds to the GM model that incorporates a
number of other versions of car following theory as specia cases. Substituting ds/dd
for Ain (10'), we have:

ds s"

— = A, = 16

ds °d (10)
This differential equation is separable and can be rewritten as:

ds do ,

S_m = /]O ? (16 )

It is solved (integrating both sides of the equation separately) by the following
functions:

-1
%ﬁo—_ld'(") A zlm#z1
-1 0
+

S:Eexp(Aol(l ~1)5')+c)  I#lm=1 (17)
O 1
D/\O(m—l)ln(a')+c) w1 =1m#1
mrc,c>0 l=1m=1

where c is an integration constant.

The solution is only meaningful if it satisfies the two requirements for a speed choice
function listed in section 3. For the indicator of traffic density used here, these
requirements imply that optimal speed should be increasing in the distance to the
leader and approach afinite ‘free flow’ speed when this distance becomes infinitely



large. It is easy to see that the special cases for which mor | or both are equal to 1 will
violate at least one of these requirements. We are therefore left with the generic case
in which both parameters differ from 1. The first derivative can be computed as:

ds _ A0
=g 21
do Aorln : 50D ¢

(18)

We distinguish three cases.

(i) m>1,1>1

Itiseasily verified that first derivative is always positiveif c>0. Moreover, in this
case the derivative approaches the value O if ¢ getslarge. For alarge headway

distance speed can be shown to approach alimit equal to s*=1/c*™? . We have

therefore found one case in which the two requirements are fulfilled. If cis negative
the derivative may be negative.

(i m<1,I<1

In this case the derivative is aso always positive for ¢ positive, but it does not
approach the value O if the headway distance gets large. For c<O0 the derivative may be
negative.

@iii) m<1,1>10ror m>1,1<1

The denominator on the right-hand-side of (18) has to be positive. Thisimplies that
the headway distance has to be smaller than some finite positive value if c is positive
(if cisnegative thisis never the case). When approaching that value both speed and
itsfirst derivative increase without bound.

We have to conclude that only the first case satisfies our requirementswhen cis
positive. It may be noted that empirical studies mentioned in section 2 have not
aways found values for | and mthat are larger than 1. However, note also that the
specification of the sensitivity parametersis|ess appealing to intuition with | or m
smaller than 1.

Other approachesto car following

In the literature on car following other models than the GM model discussed in
section 2 are sometimes proposed. Newell (1960) suggested an approach in which the
speed-headway relation is taken as the primitive concept and studied the following
specification (given in the present notation) in detail:

s(r) = s* —s* exp(- A, 0/ s*) (19)

where s* isthe maximum (free flow) speed. It isimmediately clear that this car
following theory also fits within the speed choice framework proposed here.

The same conclusion appliesto the *simple car following model’ recently proposed by
Verhoef (2001) in order to study the stability of equilibriain the standard static
models of traffic congestion. VVerhoef derives the speed-headway relation cf. equation
(13) above from the ‘fundamental diagram’. He refersto thisrelation as ‘ simple car-
following theory’ because classical car following theory as discussed in section 2 of
the present paper starts from changes in speed. However, as Verhoef (2001) notes,
equation (13) does not necessarily differ from the standard theory. For the purpose of
numerical illustration Verhoef uses the following specification (adapted to the present
notation):

10



[0 if (5+u)<5
1

0
s(0) = 833& —&(100—(5”,1))5 if 5<(5+u)<100  (20)
0 ° (100-5)° B

83! if (5+ 1) >100

This specifications (19) and (20) used by Newell and Verhoef cannot be derived
formally from the GM model of car following theory, discussed in the previous
sections. However, they can be approximated closely by the formula given in the first
line of the right hand side of (17) with m, I>1. Indeed this appears to be true for any
specification of simple car following theory, i.e. for any specification of arelationship
between headway distance and speed that is derived from the fundamental diagram.

5 Implicationsfor the static model of congestion tolling

In this section the implications of the integration of car following and speed choice
theory for congestion tolling will be considered. In order to do this, we impose
conditions that bring the model as close as possible to the static model of road
congestion developed on the basis of the insights provided in the first half of the
twentieth century by Pigou and Knight. This model iswidely used in transportation
economics as an appropriate analytical tool for studying congestion problems. It
seems therefore of some interest to show how this standard economic model can be
related to one of the standard models of traffic engineering, viz. car following theory.
Thisisdiscussed in subsection a. In the rest of the section an extension of the model
to situations in which traffic is heterogeneous is provided. Since the Pigou-Knight
model assumes homogenous traffic, application this model to real world congestion
problems presupposes that actual traffic heterogeneity that is present can be
conveniently ignored. Thisisonly the caseif this heterogeneity does not have
consequences for the value of the optimal toll. Arnott and Kraus (1999) have derived
conditions under which uniform congestion tolls are sufficient for reaching first-best
optimality and it would, of course, be aniceresult if it could be formally shown that
these conditions are relevant for the extension of the Pigou-Knight model to
heterogeneous traffic. This question is considered in detail below.

a) Homogeneous traffic

One implication of the synthesis between car following theory and the economic
theory of speed choice outlined aboveisthat it gives us a somewhat different look at
the standard analysis of congestion in the economic literature. The major differenceis
that the trip cost function becomes an endogenous part of the model.

In order to facilitate comparison with the Pigou-Knight type of analysis, we now
consider the implications of this synthesis for congestion analysisin a stationary stete.
In order to do so, we concentrate on a homogeneous road segment in a stationary
state. A stationary state is here defined by the following properties: (i) every t seconds
acar entersthe road and (ii) each car has a constant speed s on the whole road
segment. Since the headway distance determines speed, it must aso be constant.
Moreover, speed must be equal for al drivers, since speed differences would imply
changing headway distances and therefore non-constant speeds.

The stationary state is compatible with the model of individual driver behavior
developed above if the headway distance plus the length of the car (again denoted as
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L) isequal to st. This means that the stationary state is characterized by equation (13)
and:

o+ pu=st (21)

In the above we have referred to speed, cost et cetera as instantaneous units referring
to aparticular location. In order to derive the cost of atrip on the road segment we
should integrate over the total length of the road segment. Because the segment is (by
assumption) homogeneous, thisis easy to do: all that is needed is multiplication of the
localized variables by the length of the road segment. For convenience we take the
road segment to be of unit length, which implies that we can use our instantaneous
variables without further modification as referring to trips as well.

The flow of traffic on the road segment will be denoted as f and equals the inverse of
t:

f== (22)

Using equation (21), we find:

s=(u+A) f (23)

Figure 1 illustrates. We have reversed the axes of the figurein order to make it
comparable with Figure 3 below. The straight line in the figure is equation (23). It has
slope f. The other line pictures the headway-speed relationship, which is here assumed
to be concave.” The two lines cross each other at two pointsif the flow is not too
large. The equilibrium with the lowest speed corresponds to a state of
hypercongestion and has been shown by Verhoef (2001) to be dynamically unstable
as astationary state. Attention may therefore be concentrated on the equilibrium with
the highest speed.

It can be readily inferred from the picture (and confirmed by formal analysis) that
larger flows can only be accommodated at lower speeds. There is a unigue maximum
flow that corresponds with the situation in which the straight line (23) just touches the
headway-speed relation (13). This maximum flow can be interpreted as the capacity
of the road. This derivation makes clear that capacity is not only determined by the
technological characteristics of the road, but also by driver behavior.®

Equations (23) and (13) determine the speed-flow combinations that are feasible on
the road. Since travel timeisthe inverse of speed, the relation between flow and travel
time can easily be derived from this relation. Using the cost function (8) the travel
cost in astationary state can be described as a function of the traffic flow by means of
(11). This shows that the relation between generalized travel cost and flow isalso
derived endogenously in the present model. As noted above, the difference between
the standard approach is (which equalizes time cost and travel cost) isthat travel costs
are 50% higher than the ‘pure’ time costs, due to the effect of safety costs, when cost
function (8) is used.

".e. speed is a concave function of headway distance. Figure 1 pictures the inverse function, which is
Convex.
& We will return to this point in the next section.
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distance

Speed
Figure 1 Speed and flow in a stationary state

Once the derivation of the travel cost function is completed, the remaining analysis
becomes fairly standard.® The demand for tripsis given by an inverse demand
function and the price of atrip is given by the sum of the travel cost and a possible
toll. Maximization of consumer’s surplus under the condition that a user equilibrium
should obtain allows one to obtain the optimal value of the toll.

b) Steady state traffic with two types of vehicles

Although in economic analyses drivers are often assumed to be homogeneous, it
seems unlikely that in reality all drivers have the same values of the parameters of
their utility functions. Note that in the model developed in the previous sections these
parameters also include those of the car-following relationship. Verhoef et al. (1999)
and Rouwendal et al.(2002) have studied the consequences of traffic heterogeneity in
models where there are two groups of vehicles that differ in desired free flow
speeds.’ In these papers a simplified relation between speed and headway distance
was assumed: drivers always used their desired free flow speed unless the minimum
critical distance to the leader was reached and speed equals that of the leader if the
headway distance equals its minimum value. In what follows we use the more realistic
headway-speed relation based on car following theory derived earlier in this paper and
study the stationary state properties of the model.**

® A formal exposition seems unnecessary. For those who want it, it can be remarked that the
appropriate model is a specia case (with homogeneous drivers) of the model with to groups of drivers
discussed below.

19 These differences may be caused by the preferences of the drivers or by the characteristics of the
vehicles they use or by a combination of the two.

" The discussion in the present subsection assumes that the chosen speed will always beincreasing in
the headway distance, while approaching it s free flow value asymptotically. It is easy to consider also
situationsin which free flow speed is reached for afinite headway distance, asin eg. 20.
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Assume that there are two groups of vehicles with different headway-speed
relationships. Figure 2 illustrates this for a case in which for any value of the headway
distance, drivers of group 1 choose alower speed than drivers of group 2, but
situations in which the two curves cross each other are also admitted. Both groups use
the same road and overtaking isimpossible.

We want to use the model with two groups in order to study stationary state traffic
with heterogeneous drivers. In order to define a stationary state in the present
situation, we have to revise our definition of such a state. The reason is that we can’t
have a constant time interval t between subsequent cars that enter the road and the
same constant speed for all cars. The stationary state will therefore now be defined as
referring to a situation in which all cars have identical constant speed. The headway
distance will therefore differ. This means also that the time interval between cars will
differ and let t; refer to the timeinterval before entrance of a car of typei (i=1,2).
Vehicles of one type drive closer to their |leaders than those of the other type. If the
headway distance of the two types at the stationary state speed is substantial,

Speed s
group 2
group 1
s
0 u & , headway distance &

Figure 2 Headway-speed relationships of two groups

stationary state traffic will take the form of single driving vehicleswith alarge (in a
relative sense) headway distance and platoons consisting of avehicle with alarge
headway distance followed by one or more vehicles with a shorter headway distance.
In order to compl ete the description of the stationary state, we have to determine the
length and frequency of the platoons. In order to do so, we have to specify the
mechanism by which cars enter the road.

This mechanism should be compatible with a stationary state. This means that if the
the headway distance should be that corresponding to the stationary state speed. Since
the cars are of different types this means that for one type this headway distance will
be larger than for the other. Since the speed of both types of vehiclesis equal, this
means that the time that passes before avehicle of type 1 enters must be different
from the time that enters before a vehicle of type 2 enters. We assume that there are
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fixed probabilities p; that the next car will be of type I1=1,2. If the vehicles belonging
to the first group have the shortest headway distance, there is a probability p,=(1-p1)
that avehicle of type 2 that has just entered the road drives single and a probability
p1"(1-p1) of aplatoon of length n.*?

Let us now consider the stationary state. In such a state all vehicles have the same
speed, but the composition of the flow is determined by the stochastic mechanism just
described. It implies that the total number of vehicles of each type that enter during a
unit of timeis also arandom variable, asisthetotal flow.”® Let f; be the expected
flow of vehicles of group 1 and f, the expected flow of vehicles of group 2. For given
values of these flows the equilibrium speed and headway distances can be determined
by the following three relations:

f f
(fl + fz)Eﬁ(dl +/~11) + f +2f (52 + /,12) E: S (24)
1 2 1 2

5(5)=s (25)

s,(9,)=s (26)

Thefirst of these equations (24) says that the product of the total flow and the average
road distance occupied by a car should be equal to the common steady state speed s.
We can simplify (24) and substitute the inverses of the headway speed relationships
(25) and (26) into that equation:

(futty + fot) +(,572(9) + £,57%(9)) = s 27)

The function s;™ gives the headway distance for vehicles of type 1 that corresponds
with speed s, and s,* has an analogous interpretation. These two inverse functions are
defined for nonnegative speeds; they are convex, equal to O when s=0 and increasing
ins. Figure 3illustrates the steady state equilibria by picturing the left- and right-
hand-sides of (27) as separate lines. The figure shows that there may be two
equilibria, just asin the case with homogeneous traffic. One of these can be
considered as hypercongested. The dynamic stability of these equilibriais studied in
the appendix. It is shown there that the hypercongested stationary state is dynamically
unstable. Attention can therefore be confined to the non-hypercongested case.

It may be noted that in the case of heterogeneous traffic, it isimpossible to identify
the capacity of the road as a unique number of vehicles that may pass through it per
unit of time. There may be various combinations of flows f; and f, for which the line
picturing the left-hand-side of (27) just touches that picturing the right-hand-side. For
any given value of f; that does not exceed the capacity of the road for homogeneous
traffic of type 1, one may derive flow f, at which the capacity of the road at which

12 Other mechanisms may also be defined. Deterministic ones (e.g. k; cars of type 1 are always
followed by k; cars of type 2, ky,k,>0) and mechanisms in which the probability that the next car is of
type 1 depends on the type of its leader are alternative possibilities. The mechanism used here can be
interpreted as resulting from a heterogeneous population of drivers who each take their decision to
enter the road independently of each other.

13 Note that the flows of the two types of vehicles are dependent upon each other: if one knows the flow
of one type, the flow of the other is also determined. However, the total number of vehiclesisnot a
deterministic variable.
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capacity is reached. Except in special cases, the total number of vehicles will be
different depending on the chosen value for f;.

The speed of the non-hypercongested steady state speed will in general also depend
on the composition of traffic and we may write:

s=s(f, f,) (28')
for this speed. If cost function (8) is used, generalized travel cost isinversely
proportional to this steady state speed and therefore aso dependent on the
composition of the total traffic flow.

It should be noted that (28) implies that there isin general no unique relation between
steady state speed and total traffic flow f1+f,. The exception occursif:

s=s(f, +f,), (29

|eft-hand-side
right-hand-side

fipa+foLh

Speed
Figure 3 Steady state equilibrium with two groups of vehicles

but it will be shown below that this specification cannot be valid in the model
developed here.

Finally, welr:ote that it can be shown that steady state speed is a decreasing function
of fl and f2.

14 See eq. 34 below.
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¢) Optimal congestion tolling with heterogeneous traffic

The standard Pigou-Knight model of static road congestion assumes homogeneous
traffic, but is often tacitly considered being a good approximation to actual situation
with heterogeneous traffic. The steady-state model with heterogeneous traffic
developed in the previous subsection allows a formal analysis of this conjecture.
We maximize the social surplus, i.e. the sum of the consumer’s surpluses of the
drivers of the two types and the toll revenues under the constraints that a user’s
equilibrium should be realized. We denote the inverse demand function as D, the
price of atrip (which equals the sum of travel cost and toll) as p and the toll as r and
add the appropriate suffixes. The Lagrangian is:

L= [D,($,)dg, + [D,(4,)d8, ~c.f, —c,f, + )
’71(p1 -G _T1)+’72(p2 —C - Tz)

with the 17’ s denoting Lagrange multipliers. The first order conditions lead to the
following expressions for the optimal tolls:

7. =f a_cl+ %

totaf, 7 of
(3D)

oc, oc,

r,=f —*+f,—2
2 tof,  ?of,

This shows that the optimal tolls for the two groups are different unless dci/ d1=adtil o,
for i=1,2. In order to see whether thisis the case, we use cost function (8), which
leads to the following expression for the optimal cost (cf. eq. 11):

3 a
ol 12, (32)

Differentiation shows that:

oc. 3a 0s . .
96 - 3805 495, 33
o~ 2sar, TH 33

I
In order to find the partial derivative of the steady state speed with respect to each

flow we fully differentiate (27) and compute the ratio of the two differentials. The
resultis:

0s _ ,uj +5j
of 1 1 (34)

P11, 1,
ds,/dJ, °ds,/dd,

The numerator of the right-hand-side is the distance occupied by avehicle of type| in
the steady state. It is different for the two types of vehicles and this shows that for the
model developed here the steady state relation between flows and speed cannot be
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described by (29). Hence there is no unique relation between speed and total traffic
flow in the model with heterogeneous drivers.

Returning now to the optimal tolls, we observe, using (33), that the fact that 5/ d;
depends on j impliesthat dci/ d1zdci/ oF,. This means that the optimal tolls for the two
types arein general different (cf. eq. 31). In the model with heterogeneous drivers
developed in this paper, first best tolling requires different treatment of the two types.
Uniform tolling is a second best solution.

The model with two types of vehicles developed in this and the previous subsection
generalizes the Pigou-Knight model to situations in which traffic is heterogeneous.
One important reason for developing this model was to investigate the validity of the
common practice to use the Pigou Knight approach as an approximation to situations
with heterogeneous traffic. We conclude that in one important respect the
approximation isinvalid: with heterogeneous traffic uniform tolling can in general
only be a second best measure.

¢) Discussion

It is easy to generalize the model of the previous two subsections to situationsin
which there is an arbitrarily large number of vehicle types. Such a generalization
seems to be needed in order to capture the diversity of driving styles and vehicles
characteristics that interfere with them in actual situations. Newell (2002) has recently
stressed the empirical relevance of steady state traffic as would be described by such a
model. He proposed a simplified car following theory “wherein, if an n-th vehicleis
following an (n-1)th vehicle on a homogeneous highway, the time-space trajectory of
the n-th vehicle is essentially the same as the (n-1)th vehicle except for atrandation in
space and time.” (p. 195, abstract), but where the headway distances between the
vehicles may be different. After exposing this (essentially steady state) theory he
motivates its empirical relevance by a number of references.

The conclusion reached above that optimal congestion tolls should vary with vehicle
types implies that the Arnott-Kraus (1999) condition for the feasibility of marginal
cost pricing by means of uniform tolling are violated in the model developed above.
The reason is that the different types of vehicles contribute to congestion in different
ways. The essential difference is the amount of road space (14 + g )they occupy. It
should be noted that the amount of space in-between vehicles, g, will probably vary
with driving conditions and for this reason a differentiation of the tolls on the basis of
observable characteristics (such as vehicle length £4) will not be able to solve the
problem. Under severe congestion it may be the case that headway distances are more
or less equal for all types of vehicles, so that differences in space occupied are almost
completely determined by the length of the vehicles, which would justify a passenger
car equivalent rule based on observable characteristics. However, such aruleis
unlikely to be valid in general.

6 Bottleneck model

The leading economic model that does not refer to a stationary state is the bottleneck
model developed by Vickrey (1969) and studied extensively by Arnott-de Palma-
Lindsey (henceforth AdPL, see for instance there 1990 article). In arecent paper
Verhoef (2002) uses simple car following theory (his terminology refers to the
headway-speed relation given in (20)) to construct an alternative version of the
bottleneck model. The paper demonstrates some striking results and it is the purpose
of the present section to shed some light on one of its substantial findings, viz. that the
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tolling scheme proposed by AdPL may result in awelfare loss in the car-following
version of the model.

In this section a generalization of Verhoef’s (2002) model is developed that becomes
similar to a Vickrey/AdPL model when a parameter approaches a critical value. We
consider a population of N identical drivers who have to move from home to work
using the same road. The road starts with two lanes, but there is a bottleneck in which
only one laneis available. The two-lane road in front of the bottleneck is of sufficient
length to allow for a queue to develop. Driver behavior is given by the following
generalization of (20):

[0 if (5+4)<5
. 331 ,
S(O)=[B3L- TP (0*~(3+u)° f5<(@+ms<I*  (35)
0 2 (0*-5)
33! if (5+u)>0*

for some o* >5.

Itis easy to verify that S(J) is smooth and continuousin o if >5-4, in particular
around the value & - If J* iscloseto (but larger than) 5, drivers choose free flow
speed unless distance to their leader becomes very small, and in that case they have
the same speed as their leader.™ It will be shown below that in this limiting case
traffic behaves asin the AdPL bottleneck model. For 6* equal to 100 the model is
identical to that of Verhoef (2002).

If we use the speed choice theory discussed earlier in this paper with cost function (8)
the travel cost of driver nis:

ct(n) = j’a dx (36)

SX (n)

with o equal to 1.5 times the value of time.
Scheduling cost is given by the usual piecewise linear function:

cs(n) = Amin{0,t* —r(n} + ymif 0,7(n) -t} (37)

where t(n) denotes the arrival time of the n-th driver. The total travel cost of the n-th
driver, C(n) are therefore equal to:

C(n) = ct(n) +cs(n)

1

:}a =) dx + Amin{0,t* —7(n} + ymif 0,7(n) -t} (38)

Total trip cost is equal to the sum of the individual travel costs:

2| F=5+¢, and ¢is close to zero small differences between the speed of avehicle and its leader will
soon lead to a speed equal to O (if speed exceeds that of the leader) or free flow speed (if speed islower
than that of the leader).
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N

CT = C(n)
" (39)

- ict(n) + ics(n)

In auser equilibrium all drivers have equal trip cost. Equal trip cost for all drivers can
only be realized by compensating the inevitable differences in scheduling delay cost
by differencesin travel cost with the same magnitude, but opposite sign.

We now show that the present model, which isidentical to Verhoef’s model for if
0*=100, has the properties that are very similar to those of AdPL’s bottleneck model

if 0* |5 (see e.g. Arnott, de Palma and Lindsey, 1990 for comparison). In this situation
every driver chooses the free flow speed unlessif 6*=5, and then his speed is equal to
that of hisleader. With this behavior, capacity of the bottleneck is equal to the product
of the minimum headway distance at the free flow speed cap=6*s*. If the number of
cars that approach the bottleneck during one unit of time exceeds capacity, a queue
developsin front of the bottleneck.

All drivers want to arrive as close as possible to t* and it is therefore efficient to use
the full capacity during atime interval containing t* and chosen so asto minimize
total scheduling delay cost. Travel timeis equal to the free flow travel time plus
waiting time. The latter is the additional travel time caused by the lack of sufficient
capacity to let all traffic flow at free flow speed. In the limiting version of the model
studied now, this additional travel time is spent in a queue with distance to the leader
equal to the minimum headway distance. If t(n) is the departure time of the n-th
driver, queuing timeis equal to:

ct(n) = a%t* +E(n) ~t@) —Cgp% (40)

Travel time equals free flow travel time (while capacity is still completely used if t(n)-
t(1) equals n/cap for al n.

This discussion of the special case of the general model that occurs when 6* |5 shows
that the model has characteristics that are similar to Vickrey/AdPL’ s bottleneck
model. There also remains a difference, as Vickrey/AdPL assume that thereis no time
needed to travel the distance from home to the bottleneck or the tail of the queue. This
implies asimplification of the model, which may be interpreted as ‘vertical queuing’
of cars.’® It allows one to abstract for driver behavior between home and the tail of the
gueue and from ‘flow congestion’ on that part of the trip. Indeed, in important
element of Verhoef (2002) is the introduction of this element into the analysis of
bottleneck congestion. However, in the limiting case of car following theory
considered now this behavior becomes very simple: vehicles then use either free flow
speed (on the first uncongested part of the trip) or the speed of their |eader (after

18 Arnott, de Palmaand Lindsey (1990) state ‘an individual arrives at the bottleneck as soon as he
leaves home,” but make clear that they only introduce this unrealistic element in their analysis because
they can simplify by putting the fixed component of travel time (corresponding to the free flow travel
time in the setting of the present paper) at an arbitrary value. For convenience, they choose this value to
be equal to 0, but nothing that is essential would change in their analysisif they had adopted a different
(positive) value.
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entering the queue).'” The speed in the queue is constant and determined by the
capacity of the bottleneck. The delay caused by the presence of the queueis equa to
the length of the queue times the difference between free flow speed and speed in the
gueue. The number of carsin the queueis equal to the length of the queue divided by
the amount of road space used by each car at the speed prevailing in the queue. This
means that just as in the Vickrey/AdPL model there will be linear relationships
between departure rates, queue length, travel time and clock timein user equilibrium.
Since utility is here the same piecewise linear function asin Vickrey/AdPL, the user
equilibrium of the model considered here has similar characteristics as theirs. It
follows also that atime varying toll that is equal to the monetary value of additional
travel time caused by the presence of a queue in the user equilibrium will result in a
socia optimum.

This comparison leads us to the conclusion that the differences between Verhoef’s
model and Vickrey/AdPL’s model are apparently due to a different value of the
parameter 6*. So what changes in the model when 6* islarger than 5? The most
important difference seems to be that the capacity of the bottleneck is no longer
completely used when traffic proceeds at free flow speed. In order to derive the
maximum flow of traffic through the bottleneck we return to the model of the
previous section with homogeneous traffic. It can be inferred from Figure 1 and the
accompanying discussion that the maximum flow is reached when the straight line in
Figure 1 touches the bended line, but does not crossiit. This gives us two equations.
The first says that the combination of speed and headway distance should be on both
curvesin Figure 1.

(1 +3)f =s(3) (41)
and the second that the slopes of the two curves should be equal:

_ ds(9)
- dd

f

(42)

Since ds/do=0 in the present model whenever free flow speed is used, the second
condition immediately shows that capacity corresponds to a situation in which speed
is lower than its free flow value. For the present model the relationship between
headway-distance and speed is given by (35) and condition (42) becomes:

f=%5(5 *~(o+u)* (43)

If o* | 5, theleft hand side becomes infinitely large unless (3 + ) — J*, which
impliesthat for this case the Vickrey/AdPL situation obtains, as expected. However,
except for this limiting situation, the present model with car following behavior of the
drivers has the possibility that total trip cost can be reduced by letting traffic proceed
through the bottleneck at a speed lower than its free flow value. A toll that removes
all congestion and enables all driversto use their free flow speed can therefore in

Y This behavior isidentical to that supposed in the studies of speed differences by Verhoef et al (1999)
and Rouwendal et al (2002).
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genera not be expected to achieve full optimality. Indeed, Verhoef’ s surprising result
Isthat such atoll will actually result in an increase of the total trip cost CT.

In Verhoef’s model the flow through the bottleneck is maximal when there is a queue
in front of it. It istherefore clear that in his model removing all congestion implies
higher scheduling costs. In other words:. the presence of some congestion has the
beneficial effect of inducing driversto use the full capacity of road infrastructure and
istherefore not apure ‘bad’ asit isin the Vickrey/AdPL modél. In his approximate
socia optimum there isindeed a significant amount of queuing.

Table 1 shows what happens in the bottleneck if the parameter & approaches the
value 5 from above. The first column indicates the minimum distance needed to
induce vehiclesto drive at the free flow speed of 33,33 meters per second, whichis
equal to J*. The second column indicates the distance between cars (J+ 1, i.e. length
of the car isincluded) at which the flow through the bottleneck is maximal. The next
two columns indicate the free flow speed and the speed at which the flow is maximal.
Column 5 indicates the flow that results when al cars use the free flow speed and the
minimum headway distance alowing them to do so. Column 6 shows the maximum
possible flow. The last column indicates the ratio between the maximum flow at free
flow speed (column 5) and the maximum possible flow at any speed (column 6).

Table 1 Traffic characteristics at various values of & .

1 2 3 4 5 6 7

Minimum Headway Freeflow Speedat Maximum Maximum Ratio
freeflow  distance Speed maximum flow with  flow at between

headway at (km/hr) flow freeflow any speed maximum
distance maximum (km/hr) Speed (veh/hr) flows
(m) flow (m) (veh/hr)

100 18,19 120 63,18 1200 3472 0.346
50 13,50 120 77,89 2400 5768 0.416
25 10,14 120 92,78 4800 9155 0.524
12.5 7,66 120 106,52 9600 13912 0.690

6,25 5,68 120 117,64 19200 20710 0.927
5,50 5,32 120 119,17 21818 22421 0.973
5,25 517 120 119,64 22857 23133 0.988
5,10 5,07 120 119,88 23529 23622 0.996

Legend. Column 1 gives *, column 2 the value of (d+1) at the maximum flow, column 3 gives free
flow speed (33,33 m/sec) in kilometres per hour, column 4 the speed at the maximum flow, columns 5
and 6 give the ratio between speed and headway distance and column 7 the ratio between the two
flows.

The table shows that at the parameter values chosen in Verhoef (2002) the maximum
flow through the bottleneck at free flow speed is approximately one third of the
‘global’ maximum at any speed, which can be interpreted as the capacity of the
bottleneck. Scheduling costs will therefore be much higher (approximately three times
higher) when atoll is set so asto let traffic proceed at free flow speed. When J* has
lower values, the difference between the maximum flow that is possible under free
flow speed and the capacity of the bottleneck becomes smaller. When J&¢ approaches
its minimum value 5 the difference between the two flows becomes negligible, as
expected. In such circumstances atoll that removes all congestion is compatible with
the use of the full capacity of the bottleneck. The flows that are computed for the
lowest values of & are of course not realistic (it would be very dangerous to drivel20
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km/hr in a platoon with a— nose-to-nose - headway distance between the cars of just
above 5 meters). However, qualitatively similar results are obtained for higher values
of the parameter representing the minimum acceptabl e headway distance, which now
has the value 5.

The essentia difference between Verhoef’s (2002) and Vickrey/AdPL’s modelsis
that the capacity of the bottleneck is not always completely used in the former. What
happens before traffic passes the bottleneck is essentialy irrelevant aslong asits
capacity is completely used. If thisisthe case, scheduling delay cost cannot be
minimized further and a socia optimum can be realized by ‘tranglating’ the delays of
the user equilibrium (which is wasted time) into monetary revenues by tolling. In
Verhoef’s model capacity can only be used completely if there is some congestion
present in front of the bottleneck. That makes it more difficult to find the social
optimum: the simple rule according to which atime varying toll should be used that
just eliminates all congestion in front of the bottleneck is no longer valid.

A new trade-off emerges: eliminating all congestion increases scheduling costs. The
Vickrey/AdPL bottleneck model lacks this feature. The analysis of the present section
suggests that the reason is that it makes implicit assumptions about driver behavior
which may be not as unrealistic as ‘vertical queuing’ but which are less appealing to
intuition than those implied by (ssimple) car following theory. It would, of course, be
desirable to assess the empirical relevance of the alternative assumptions.

7 Conclusion

The main findings of the present paper may be summarized as follows:

1 The GM-model for car-following is, for a subset of the possible parameter values,
consistent with an economic model of speed choice in which drivers trade off the
shorter travel time against the higher risk associated with a higher speed.

2 Other approaches to car following that take the headway-speed relationship as a
primitive are also consistent with this theory.

3 In a steady state with homogeneous traffic this model provides a generalization of
the conventiona Pigou-Knight analysis under a specific choice of the generalized
travel cost function. In contrast with the conventional model, the integration between
speed choice and car following behavior implies that the speed flow relation is
endogenous. Moreover, the value of travel time should incorporate the cost of
accident risk.

4 The model can be generalized to situations with heterogeneous traffic. In this model
auniform congestion toll isin genera only second best optimal. First best optimality
requires differentiation of the toll on the basis of the road space occupied by the
vehicles, which eguals the sum of the vehicle length and the ‘ nose-to-tail’ distance
with the leader. The latter is determined by the speed-choice/car-following behavior.
The result implies that groups with different headway-speed rel ationships should in
genera betolled differently in order to achieve first best optimality. This result was
formally derived for amodel with two groups, but can be generalized to a model with
an arbitrary number of groups.

5 The speed choice — car following model can be used to develop a bottleneck model
that encompasses Vickrey/AdPL’s and Verhoef’s (2002) models as special cases.
This model shows that an important difference between the two is that in the latter
model scheduling cost can be minimized by allowing some congestion. The reason is
that with car-following behavior the full capacity of the bottleneck can only be used
when speed is lower than its free flow value, whereasin Vickrey/AdPL’ s model
(which isalimiting case) full capacity is reached with free flow speed.
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These results illustrate the potentia fruitfulness of integrating elements of the
transportation economics and traffic engineering literatures. Other work along these
lines may be fruitful. For instance, Newell (1961), argues that the car following theory
discussed in that paper (which takes the headway-speed relationship as a primitive) is
compatible with the Lighthill-Whitham-Richards theory of shock waves, which isthe
main element of modern traffic flow theory (see e.g. Daganzo, 1997).

The exposition in the previous section assumes that the relevant measure of traffic
density is (the inverse of) the space between to subsequent vehicles. Thisis of course
asimplifying assumption that is useful for the purposes of the present paper, but may
not be realistic in al circumstances. It may therefore be noticed that there have been
attempts to generalize car-following theory to situations in which driver behavior
(notably changes in speed) are related to the speeds of and distances between a
number of vehicles (see Bexelius, 1968).

The restriction of the analysis to stationary states in section 5 was convenient for the
purpose of analyzing the relationship with the Pigou-K night model. However, the car
following speed choice model is perfectly able to deal with other situations, for
instance those in which aroad is not homogeneous, for instance because of abend in
the road that induces vehiclesto slow down locally.

A potentialy fruitful generalization that seems somewhat more difficult to analyze
concerns situations in which interaction between driversin situations that cannot be
described as car following. Examples are the decision to overtake, and the decision to
let avehicle enter in from of your car. Both situations effectively refer to the choice of
an alternative leader. This means that here we leave the realm of pure car following
theory and reach an area that has been relatively unexplored also by traffic flow
theorists.
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Appendix
Dynamic I nstability of Stationary States with Hyper congestion
The car following equation for the n-th car that is our starting point is:

5 (n) = 9,(3,(n))

with g an increasing function that approaches afinite free flow speed when the
headway distance becomes large. The suffix t indicates time. The suffix n attached to
the function g indicates that not all cars need to have the same car following
relationship. The derivations that follow are consistent with an arbitrary number of
groups, where each car that enters has afixed probability of belonging to each of
these groups. The main text of this paper assumes two groups, but the derivations
below is consistent with an arbitrarily large number.

A stationary state arrival mechanism is characterized by the fact that the time interval
between the arrivals of the n-th and (n-1)-th carsis exactly equal to S/4(s,n) where
5(s,n) is the headway distance that makes vehicle n drive with speed s and s isthe
speed in stationary state i. We will distinguish the stationary state mechanism before
the change (i=before) in which all car drive at the same speed " and an alternative
mechanism (i=after) that is relevant after the change. It is assumed that the free flow
speed of vehicles belonging to any group exceeds the stationary state speedsto be
considered. The last car that enters the road in the stationary state beforeis n=0, and
therefore (0)=s""® for all t. Thefirst car that enters after the change in arrival times
isn=1.

We study what happensiif the stationary state arrival mechanism changes suddenly
from beforeto after. In order to do this we concentrate attention on the first kilometer
(or an aternative distance unit) of aroad of infinite length where al cars proceed
initially at speed "¢,

Taking the time derivative of this equation gives:

ds (n) _ dg, -
i ag &(=h=s ().

We can rewrite this as:

BI04 (s, =2, (s (11

where a denotes the derivative of g with respect to d. This equation can be interpreted
asalinear differential equation with time-varying coefficients. The general solution to
this equation can be written as.

O t O
5,(n) = e [3* (n) + J'sr(n—l)a,(n)eA’(”)dT[L *)
t(n) D
In this equation t(n) denotes the time at which car n enters the road, s*(n) the speed of
the n-th car at the time t(n) when it enters the road and:
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t

A= fa (mdr.

)

For n=1, thisresultsin:

O t 0
s () =e ™z () +5s(0) [a, Wer*™drD
B B

t(n)

where the suffix t of the (constant) speed s(0) has been suppressed. Now note that:

d

A(n) — A, (n)
—e =a. (n)e
dr (")

s0 that:

t
J’ar(n)e’*f‘”’dr =M -1
t(n)

and use thisto write:
5 (1) =5(0) +[s* () - 5(0)] e
Now consider n=2. Substitution of the solution for n=1in (*) gives:

5(2) =(0) +
[s* (2) - s(0)]e @ +

t
[s* (@) - s(0)]e™*® Jar (2)e* @m0,
t

2)

Note that:

t
t(2

) J'a, (2eM?dr
t(2)

t
_1]t 2)
t

= [1_ e—A,(z)]e—A*(z‘l‘t)(l)
for some t*(2,1,t) between t(2) and t. This means that we can write:

5(2) =s(0) +
[s* (2) - s(0)]e*®
[S* M- S(O)][l— e_A’(Z)]e_A*(Zvlyt)(l)
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Next, consider n=3. Substitution of the solution for n=2 gives:

5(3) =s(0) +
[s* (3) - s(0)] e @ +
[S* (2 - S(O)] [1— e_A‘(3)]e_Af‘(3‘2,t)(2) +

[s* @) - s(0)] [1— e‘A‘:"] j’ar (et PerAgr
t(3)

where we have defined t(3,2,t) analogoudly to t(2,1,t). We can now define t(3,1,t) in
analogously in order to simplify the notation of the fourth line. It is not difficult to
verify that t(km;t), k>misincreasing in t. Thisleads to the following equation:

5(3) =s(0) +
[s* (3) - s(0)] e *® +
[S* 2) - s(O)] [1_ e—A(s)]e—A,(g,z,,)(z) N
[s* (1) - s(0)] [1— g™ (3)] [1_ e_Ar*(3,2,t)(2)] Az

Using this approach we can proceed further, but the regularity to be expected is now
sufficiently clear.

A more useful form of the above equationsis the following:

s@=s* Qe+
sOfi-e4®]

S(2=s* (2O +
S* (1)[1_ e—A,(Z)]e_A*(z,l,t)(l) +

s(0) [1— e A — [1_ e—A,(z)]e-Aa(z,l,t)(l)]_

s@=s*@Q)e"?+
s*(2) [1_ e‘A((3)]e‘Ar(3,z,t)(2) N
s* (1) [1— e_A‘(s)] [1— e_A'*<3v2v'>(2)] oA ® |
S(O)[L-eA® - [1_ e—A(3)] e Aean® _

[1_ oA (3)] [1_ e—A,*(g,z,t)(Z)] e Az 0]

or in general:

s (n) = zs (i)w(n,i,t)+s(0)%— w(n,i,t)E
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with all w' s positive and smaller than 1 and Zw<1. It is easy to verify that for any n
>wtendsto Oif t— co. Moreover, it is easy to verify that for any t 2w tendsto 1 if

n- oo, The first observation impliesthat al cars will ultimately tend to drive at speed
s(0). The reason is that any higher speed can only be maintained for afinite time since
car zeroisdriving in front of all carsthat follow at constant speed s(0) and cannot be
overtaken. The second observation implies that the importance of the first car for the
speed of those that follows tends to disappear completely for any finite time.

We now define the excess space of car n at timet as the difference between the actual
distance to its leader and the distance 6(s,n) needed to make it choose the speed s*"®:

&(n) =&,(n) —o(s™**,n)

Note that for each car that enters the road this distance is positive and at least equal to
S(S™ n)- 6(°9°" n). For n=1 it is exactly equal to thislower bound, for all cars that
enter later it islarger. To seethis, consider n=2 and not that car 1 continually
consumes some of its excess space since its speed is always larger than . The
excess space consumed by car 1 isadded to that of car 2, since car 1 isthe leader of
car 2. By continuing this reasoning for n=3,4,.. we see that the excess space of the
m-th car that entersis equal to the minimum value 6(*™,m)- §(s*°",m) plus the
amount that the (m-1)-th car has consumed of its own excess space after it entered the
road.

The total amount of excess space on the road increases with a fixed amount with each
car that enters. Since speed is determined by headway distance, thisimplies that the
average speed of all carsthat entered after car O must also increase. Since the speed

after

has an upper bound s, it follows that the average speed must approach this value.

The excess space available tot cars 1,...,m decreases as soon as m has entered the
road. We must therefore conclude that the speed at which cars enter the road will also
approach ™. But this requires that their leaders have also has driven at a speed
approaching s during the time interval between the times they entered, and so on.
We must therefore conclude that ultimately the new stationary state is approached
with cars driving at a constant speed s,

Now consider a situation in which the time interval before cars that enter the road
decreases. If there is a stationary state corresponding to a lower speed, similar
arguments as used above can be used to demonstrate convergence to this state. The
main difference is that excess space is now negative (it may be called deficit space)
but this does not change the argument.

However, if the starting situation is one with hypercongestion, there is no such lower
stationary speed. Therefore traffic cannot converge to a positive speed that is lower
than s, However, as deficit space continues to grow, average speed must decrease
when cars enter with time intervals determined by the unreachabl e stationary state.
Thisleads ultimately to a situation in which the headway distance at these arrival
times are too small to induce the driver to enter at a positive speed, implying that a
gueue will develop before the entrance of the road.
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In summary: we reach the same conclusions as Verhoef (2001) did for homogeneous
traffic: hypercongested stationary states are dynamically unstable whereas non-
hypercongested stationary states are stable.
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