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The non-parametric identification of lagged

duration dependence.
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Abstract

In this paper, I consider the identification of lagged duration de-
pendence in multiple spells without using the assumption that there
are additional regressors orthogonal to the individual effects. The
non-parametric identification strategy is applied to the multiple non-
employment spells of 2066 new entrants. The estimated lagged dura-

tion dependence function rises for the first 4 months and thereafter
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decreases, suggesting negative effects of non-employment for long pe-
riods of non-employment.

YEL-code: C41, C14, J64

1 Introduction

In this paper, the identification of lagged duration dependence in multiple
spells is considered theoretically and empirically. The main interest is to
examine the claims of some of the theories in the hysteresis literature (see
Roed, 1995) that hazard rates into employment decrease if previous spells of
non-employment were longer. The extension to the known results by Honoré
(1993), Ridder (1991) and Heckman (1990), is that identification is shown
without using the assumption that there are additional regressors orthogonal
to the individual effects. The ‘cost’ of this result is that we need to assume
that baseline functions are constant in the period under consideration.
After showing that the model is identified and after discussing some ex-
tensions, the model is estimated with a longitudinal administrative Dutch
Income Panel data set. From the 65,000 individuals followed over the pe-
riod 1989-1997, we focus on 2066 individuals who entered the labour market

during the period under consideration and have multiple spells. The result-



ing lagged duration dependence function rises for the first 4 months and
thereafter decreases, suggesting negative effects of non-employment for long
periods of non-employment. These results are somewhat in line with those

of Omori (1997) and Trivedi and Alexander (1989).

2 Lagged duration dependence in an MPH-

model

Suppose the hazard rate in an MPH-model has the form:

O(Ls,mltim—1,Ni) = N2 (tim)h(tim—1) (1)

whereby 6 denotes the hazard rate, ¢;,, denotes the time that individual i
has sofar spent in the current state in the m*” spell of that state, and h(tim—1)
denotes the lagged duration dependence function which depends on time
spent in the previous spell of the same state. The function z(¢;,,) denotes
the baseline hazard. Denote the cumulative distribution of the individual

effects \; as G.



This model is different from the ones discussed in the literature in one
important respect: there are no individual regressors x which are independent
of the individual effects. Such individual regressors are the main vehicle
for proving identification in the one-spell models of Heckman and Singer
(1984, RES), Ridder (1990), and Heckman (1991). Also in the identification
results for multiple spells by Honoré (1993, RES) or Heckman and Borjas
(1980), the models which allow for the hazard to depend on the length of
the previous spell, assume a set of independent regressors x which help to
identify the model. When individual observed characteristics are correlated
with individual effects, the question arises which assumptions are required
to identify the model in equation (1).

In the first period of new entrants into the labour market, there is no
previous spell and the lagged duration for the first spell is hence 0. In terms
of hazard rates, the hazard rates for the first two periods of new entrants

then equals:

91 (Zf1|)\) = )\h(O)Z/(tl) (2)

92 (Zf2|)\, Zfl) = )\h(fl)zl(tg)



If h(.) picks up loss-of-skill effects in the vein of Lungqvist and Sargent
(1998), then new entrants who have not been non-employed before cannot
have lost skills yet, and their previous duration of non-employment is zero.

By observing (t1,12) for an infinite number of individuals, the joint and
marginal distributions of #; and ¢, are known. Consider the following as-

sumption:

assumption 1: z(t) is a monotonically increasing continuous dif-

ferentiable function with z(0)=0 and z(oco)=0c.

Under this assumption, the model is identified:

Theorem 1 Under assumption 1, the function h(.), z(.) and the distribution
G of the model in equation (2) are non-parametrically identified up to two

scale-normalisations.

Proof:
Denote the unconditional distribution of ¢; as f(¢1). The following func-

tions will be needed:



Fi) = [ A0}/ () OIAG = h(O) () £6[h(0)x(1)

AR(0)2' (t1)e M=) AR(0)2! (£1 )e=*P(®)=(t1)
_ [ An(0)2/ (t1)e~2O)=(t1) gty . 1—e— (0)z(c0)
dG()\|t1) - )\h(O)z’(tl)e—*h(O)z(tl) deG - )\h(O)z’(tl)e_kh(O)z(tl) deG
f f)\h(O)z’(tl)e—kh(o)z(ﬁ)dtl f 1—_e—2h(0)z(c0)

)\e—)\h(O)z(tl)

FANOE

and

ftalt) = /)\Z'(t2

S(ta|t1) =

f(ti,t2) = 2(ta)h(t1)h

where £ denotes the Laplace transform. The basic idea of the identifi-
cation is that the distribution oft ¢, conditional on t; identifies the baseline
hazard and the function h(.), which in turns allows us to identify G. There

holds:



f(t1=t)
limy o S(ta=tlt1) Z’(t)

flti=0)  #(0)

and

lithlO f(lfl = t, tg) . h(lf)

limy, jo f(t1, 82 =1)  h(0)

Hence, we can identify 2/(¢1) up to the scalar 2/(0), and we can identify
h(t) up to the scalar h(0). With the functions z(¢) and h(t), we can find the
distribution G from the uniqueness of the Laplace transform. We can hence
find all the functions uniquely if we choose two out of the three values of ),
h(0) and 2/(0). Indeed, it can already be seen from the two hazard functions
that the set {\, h(.), z(.)} generates observations indistinguishable from those

generated by {a),bh(.), 22(.)} where a and b are positive constants.[]

We can apply this proof also to models incorporating cumulative effects.

Consider for instance the following specification of the hazard rate:



O(timltim—1, - t1, M) = Nz (tim) [ [ 2tim—s)

Jj=1

For the pair of spells {¢;m,%im—1}, we can then define a new individual
effect 7;, which is defined as 7; = [[j_y Aih(tim—;). By interchanging ¢, with
to and t,,—1 with ¢1, we then get the same model as defined in equation (2)
with a different individual effect and with A(0) = 1. In fact, we can apply this
procedure to all the pairs of observations {t; ;,%; j_1}, j=1,..,m, of individual
i and use all these pairs to identify h(.) and z(.)'. With this kind of model,
we can trace the cumulative effect of all previous durations on current hazard
rates.

Can we allow for different baseline hazards in each spell? Consider the

following specification

IThere is then overidentifying information, because the individual effects for the set
of pairs {t;,t;_1}, equals the individual effects for the set of pairs {¢;_1,%;_o} multiplied
by h(t;_2). Given that h(.) is also identified from f(¢;,t,_1) and f(t;_1,%;_2) separately,
this in principle allows for a specification check.



61(11]1\) = AR(0)2' (1) (3)

Oa(tal X, 1) = Mh(t1)Z (12)

with 2'(t2) and 2/(15) two different baseline functions. Without the lagged
duration dependence function, Honoré (1993) showed that this model is iden-
tified. With the lagged duration dependence function, ¢;|\ is not independent
of 5 in the second spell however and the arguments of Honoré do not apply.

Take the following assumptions:

assumption 2. all moments of G are finite.

assumption 3. limg, 102"(¢1) and limy, |oh*(¢1) exist and are finite

for all ke NT.

The following now applies:

Theorem 2 The model above is identified up to scale normalizations under

assumptions 2 and 3.

proof: pick any positive 2/(0), 2/(0) and A(0). Then, FX is known from



limy, 1o f(t1) = h(0)2'(t1) EA. We have

d* f(t1)

= h(O){Z* (1) £6[(0)2(t1)] + k2" (t1)h(0) £¢[h(0)2(11))]

+. o+ 2 (0) LG R(0)2(1)]}

dkf(tl) |t1:0

5 = R(O){Z"THO)EX + E2®(0)h(0)2EN + .. + 2/ ()" h(0)FH ENFT)
1

Hence, d’;ﬁ?) depends on all the 1 to k+1 derivatives of 2(.) and £¢.

This implies that if all the derivatives of z(.) and £¢ up to and including

the k’th derivatives are known and either z**1(0) or £&[0] is known, that

the remaining 2*1(¢;) or £ 15+1[0] can be inferred from lime, o d’;{gl). This

however only applies if the derivatives of z at {; = 0 and the moments of A

are finite. Now,

F(ty, ta) |70 = 2/(0)Z'(0)A(0) h(0) EN®

and
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dkf(tlth)

TS |f182=0 = 2FH1(0)2(0)R(0)R(0) EA® + ... + 2(0)"T1 7 (0)h(0)h(0)F T ENF+?

Hence, by knowing all the k derivatives of z(.) at 0 and by knowing EA¥,

dkf(th)
dkitq

d* f{t1,t2)

I to

we can infer EA*! from limg, 4,10 . Then, we can use limt, o
find the k+1 derivative of z(.) at 0. Hence we can infer all the moments of
A, which allows us to uniquely identify the distribution function G. This in
turn allows us to identify z(.) from the distribution of ¢;. Knowing G, we
can infer h(.) by looking at f(¢1,t2) for limy,|o. Then, we can identify Z(.)
from the distribution of 5.1

This proof relies very heavily on strong assumptions about G and the

smoothness of the functions h and z. It is hence not very useful empirically.

In the empirical section, only the first model will therefore be considered.

3 An empirical application

The data set used derives from the Dutch Income Panel data set, which is an

administrative data set based on the tax records of about 65000 randomly
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picked Dutch citizens who are followed through the period 1989-1997. This
period is characterised by a lack of severe economic downturns, which sug-
gests that the assumption of a constant baseline function is not implausible
for this data set (see Frijters, Lindeboom and Van den Berg, 1999). Each
transition in and out of work is recorded to the day. We will focus on the
young cohort starting their labour market careers in this period, i.e., those
who have left school in this period, and address the hazard rates into em-
ployment as a function of present and lagged duration of non-employment.
Looking only at the first 2 spells of non-employment, we are left with 2066
individuals.

First, consider the two functions

bandw e
/ f(lfl = t, tg = S)dS
0

and
bandw e
/ f(tg = t, Zfl = S)dS
0
bandw Tt io=s)ds . . .
Now, b(t) = Jo i =hi=s)ds g approach, up to a normalisation con-

e f(ta—t,t1=s)ds
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Lagged duration dependence with bandw=45 days

a0 |

= " lim t2-->0 f(t1=t,12)
—lim t1-->0 f(t1t2=t)

frequency

1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

duration in one month intervals

Figure 1:

stant, the lagged duration dependence function A(t) for a small enough bandw
and a large enough number of observations under assumption 1. In Figures
1 and 2 we show both functions for two choices of bandw, namely 45 days
and 30 days. The period of 30 days is the minimum period we need to
have enough observations to look at the function h(t). The results with a
bandwidth of 45 days are included to see whether the shape of h(t) changes
quickly as we move away from a bandw of zero. The functions have been

re-scaled such that the means coincide.
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Lagged duration dependence with bandw=30 days

= = lim t2-->0 f(t1=t,12)

frequency
"
5
~

—lim t1-->0 f(t1,t2=t)

V\ B A AN

(N V)

1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

duration in one month intervals

Figure 2:

Although the functions are somewhat eratic (especially with a lower band-
width), the shape of h(t) suggested by both pictures is a function increasing
at first, and then declining.

Similarly, we can look at the baseline hazard function by looking at the
functions f(t1 = t) and limy, ;o S(t2 = t|t1) in Figure 3 and 4, where the

functions have been normalised such that the means coincide.
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which both suggest a baseline hazard which first increases sharply and
thereafter decreases.

Looking somewhat closer at the lagged duration dependence function,
we face the problem that due to the limited number of observations, there

are points where fbandw f(ta =t,t; = s)ds = 0. For an estimate of b(t) we

0
can further examine, we therefore use the (Gaussian-smoothed) functions

0
fgo e—(@—0)%/wiy fooo e—(@—t)% /wiy

so rbandw o—(z—t)? /w t1:.'E,\t2=S dsdx so rbandw —(z—1)? /w t2:t,\tl:s dsdx
o Jo and £

. When w|
0 and bandw | 0 and the number of observations goes to infinity such that

f(ta,11) is approached arbitrarily well, standard limit theory arguments imply

_ fooo fobandw 6_(z_t)2/wf(t1:-'ﬂ,\t2=s)dsdm

fooo fobandw e_(z—t)Q/wf(t2:t7t1:S)dem

that b(t)

will aproach A(t) in each point t
as long as limy, o f (1,1 = t) > 0. Because the limit distribution of b(t) could
not be identified however, bootstrapping procedures will be used to obtain
confidence intervals.

The function b(t) is approximated by?2:

I;(t) — PotB1In(t)+5; I (H)+u

2Because t is looked at in natural multiples of months, there are no problems with In(¢)
at t=0.
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Now, weighing each point t by the numerator of b(f) and assuming that
Elu|t] = 0, the parameters (3 were estimated with least square techniques.
Least-absolute-deviation techniques were also tried, but revealed little differ-

ence. The least-squares results were:

Table 1: Regression results of the fitted lagged duration dependence function.

Bootstrapped confidence

intervals from 100 bootstraps

Point estimates 5% 95% R? N*
Bandw=45*
Bo —2.468 -2.615 -0.305
B4 6.088 3.329  6.630 0.39 121
By -1.978 -2.290 -1.527
Bandw=30**
Bo -1.598 -2.201 0.792
I 5.648 2933 6.749 0.38 52
By -2.108 -2.593 -1.813

% Number of individuals with t; < bandw.

From this table, we can see that I;(t) increases with the length of the pre-

17



vious non-work spell up to about 4 months, after which it drops. The boot-
strapped confidence intervals indicate that the general shape of the lagged
duration dependence function (first an increase, then a decrease), is quite
robust. Also, the difference between having a bandwidth of 45 or 30 days is
small in the sense that the coefficients of the two cases lie well within each
others confidence intervals, suggesting that the results change little as we get
even closer to zero with the bandwidth.

For hazard rates into employment, these results imply that hazard rates
are lower for those with longer previous spells of unemployment except for
very low non-employment durations. This is somewhat in line with the find-
ings of Omori (1997) and Trivedi and Alexander (1989), who also found
significant effects of the lengths of previous non-employment. Omori inter-

preted his findings as evidence of a stigma effect.

4 Conclusion

Lagged duration dependence in an MPH-model without independent regres-
sors was shown to be non-parametrically identified under mild assumptions

on the baseline hazard. Estimating the lageged duration dependence function

18



for a Dutch administrative panel data set revealed a significant degree of
lagged duration dependence: hazard rates into employment increased with
the length of previous non-employment for the first 4 months of previous

non-employment and decreased thereafter.
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