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Abstract

We construct and derive the properties of an estimator of welfare which takes
advantage of the detailed nature of information about living standards available in
small household surveys and the comprehensive coverage of a census. By combining
the strengths of each, our estimator can be used at a disaggregated level. It has a
clear interpretation; it can be expanded in a consistent way to any welfare measure;
and can be assessed for reliability using standard statistical theory. Because unit
record census data present some computational hurdles, we explore simulation and
numerical integration approaches, as well as the use of distributional approxima-
tions. For non-separable inequality measures we derive speci¯c formulas to allow
the use of `shortcut' computational methods. Using data from Ecuador we obtain
estimates of welfare measures which are very reliable for populations of 5,000 house-
holds, `town's, and in many cases for those as small as 500. We provide simple
illustrations of their use. In the longer run, such estimates open up the possibility
of estimating and testing, at a more convincing intra-country level, the many recent
models relating welfare distributions to growth and a variety of socioeconomic and
political outcomes.
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1 Introduction

Recent theoretical advances have brought income and wealth distributions back into
a prominent position in growth and development theories.2 Distributions of well-
being are also considered determinants of many socio-economic outcomes, such as
health or levels of violence. Empirical testing of the importance of these relation-
ships, however, has been held back by the poor quality of distributional data, even at
the country level. Time series data are sparse, constraining most econometric anal-
yses to a cross-section of countries. Not only may these data be non-comparable,
but such estimations require strong assumptions about the stability of structural
relationships across large geographical areas and political units.3 Further, many
of the hypothesized relationships are more obviously relevant for smaller groups or
areas. For example, as noted by Deaton (1999), while it is not clear why country-
wide inequality should directly a®ect an individual's health, a link could be made
to the degree of inequality within his reference group.

The di±culty confronted is that the detailed household surveys which include
reasonable measures of income or consumption are samples which are rarely rep-
resentative at lower levels of aggregation, nor do they cover a su±cient number
of households to yield statistically reliable estimates when disaggregated. At the
same time, census data either have no information about income or consumption, or
measure these variables poorly.4 This paper presents a fully-developed statistical

2The models in this growing literature describe a wide variety of linkages between distributions
and growth. For example, inequality (or poverty) limits the size of markets which slows growth when
there are scale economies (Murphy, Shleifer and Vishny, 1989); with imperfect capital markets,
greater inequality limits those able to make productive investment and occupational choices (Galor
and Zeira, 1993; Banerjee and Newman, 1993). Aghion and Bolton (1997) endogenize inequality,
with growth having a feedback e®ect on the distribution of wealth via its a®ect on credit, or labour,
markets. Political economy models such as Alesina and Rodrik (1994) and Persson and Tabellini
(1994) suggest that, in democratic regimes, inequality will lead to distortionary redistributive
policies which slow growth.

3The state-of-the-art data set for this purpose, compiled by Deininger and Squire (1996), goes
a long way towards establishing comparability but the critique by Atkinson and Brandolini (1999)
shows it remains very far from ideal. (See also Fields, 1989 and 2000, on data.)
Bruno, Ravallion and Squire (1998) give examples of country-level estimation of growth models.

Although they do not include distributional variables, Barro and Sala-i-Martin estimate a growth
model using U.S. state-level data where the fact that it is a better controlled situation is emphasized
(see Comments and Discussion in Barro and Sala-i-Martin, 1991). Ravaillion (1997) points out
that aggregation alone can bias estimates of the relationship between asset inequality and income
growth derived from country-level data, and demonstrates this using county-level panel data from
China. For a more general identi¯cation critique of cross-country models see Banerjee and Du°os
(1999).

4For example, a single question regarding individuals' incomes in the 1996 South African cen-
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procedure to combine the two data sources, which takes advantage of the detailed
information available in household sample surveys and the comprehensive coverage
of a census. Using the survey to impute missing information in the census, we gen-
erate reliable estimates of poverty and inequality at a very disaggregated level. We
estimate, for instance, headcount rates of poverty for `towns' of 5,000 households
with 95% con¯dence bounds of just §0.012, or 2% of the point estimate. Our esti-
mates of the inequality within `towns' are similarly reliable: With accurate welfare
measures for groups the size of towns or villages, even neighborhoods, researchers
should be able to test hypotheses at an appropriate level of disaggregation, where
assumptions about a stable underlying structure are more tenable.

In addition to econometric testing, better local measures of poverty and inequal-
ity should also be useful to those attempting to target development assistance or
understand the tradeo®s involved in decentralizing these spending decisions. While
it is bene¯cial to take advantage of local information about community needs and
priorities, if local inequalities are large and decisions are taken by the elite, projects
may not bene¯t the poorest. Local level inequality measures, together with data
on project choices, make it possible to shed light on this potential cost of decentral-
ization.

We measure poverty and inequality at a disaggregated level based on a household
per-capita measure of expenditure, yh. The idea is straightforward. First a
model of yh is estimated using the sample survey data, restricting explanatory
variables to those common to both sets of data. Then, letting W represent an
indicator of poverty or inequality, we estimate the expected level of W given the
census-based observable characteristics of the population of interest using parameter
estimates from the ¯rst-stage model of y. The same approach could be used with
other household measures of well-being, such as per-capita expenditure adjusted
by equivalence scales, or to estimate inequalities in the distribution of household
characteristics other than expenditure, such as assets or unemployment. It could
also be readily extended to large sample census-type datasets. In addition to
estimates of welfare, we also want an understanding of their reliability. Properties
of the estimators are derived for a general case in the following section and for
speci¯c, commonly used, measures in Section 4.

Datasets have been combined to ¯ll in missing information or avoid sampling
biases in a variety of contexts. Recent examples include Arellano and Meghir
(1992) who estimate a labour supply model combining two samples. They use the

sus generates an estimate of national income just 83% the size of the national expenditure esti-
mate derived from a representative household survey, and a per-capita poverty rate 25% higher,
with discrepancies systematically related to characteristics such as household location (Alderman,
et.al.,2000).
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UK Family Expenditure Survey (FES) to estimate ¯rst-stage models of wages and
other income conditioning on variables common across the two samples. Hours
and job search information from the much larger Labour Force Survey is then sup-
plemented by predicted ¯nancial information. In a similar spirit, Angrist and
Krueger (1992) combine data from two U.S. censuses. They estimate a model of
educational attainment as a function of school entry age, where the ¯rst variable is
available in only in one census and the second in another, but an instrument, birth
quarter, is common to both. Lusardi (1996) applies this two-sample IV estimator
in a model of consumption behaviour. Hellerstein and Imbens (1999) estimate
weighted wage regressions using the U.S. National Longitudinal Survey, but incor-
porate aggregate information from the U.S. census by constructing weights which
force moments in the weighted sample to match those in the census. In an exam-
ple where, as here, census and sample data are combined to estimate disaggregated
poverty rates, Bramley and Smart (1996) take the oppposite tack. Having assumed
that local income distributions are lognormal, they relate the distributional param-
eters to census-based community characteristics and choose the parameters of that
relationship so as to ¯t the implied national distribution of income to that derived
from the UK FES, a representative sample.

Although the idea behind our approach is straightforward its execution is not.
Censuses run to millions of observations and the computational demands are sig-
ni¯cant. To make these estimators of practical use, we propose and test a variety
of simplifying approximations which can speed up the required calculations by or-
ders of magnitude at little cost in accuracy. These enable all of the calculations
to be performed on a standard laptop computer. Section 3 outlines four di®er-
ent computational options that are straightforward to implement and in Section 4
we investigate how each performs empirically for the various measures. Section 5
considers extensions, in particular generalizing the ¯rst-stage model of expenditure
given below. In Section 6 we illustrate the use of our disaggregated measures in a
number of settings. Section 7 concludes.

2 De¯nitions and Properties of Estimators

In this section we begin by de¯ning the ¯rst-stage model of expenditure, the welfare
indicators and our estimators. We then discuss the properties of these estimators.
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2.1 De¯nitions

The basis of the approach is that household expenditure is related to a set of ob-
servable household characteristics about which the same questions have been asked
in both the sample survey and the census. Thus we model observed per-capita
household expenditure, yh, as a function of a vector of variables xh found in both
the survey and census:5

ln yh = x
0
h¯+"h; (1)

where ¯ is a vector of k parameters and "h is a disturbance term which is assumed
to be normally distributed across households in the population: "h s iid N

¡
0; ¾2

¢
.

It is straightforward to relax this functional form assumption. We discuss this in
Section 5, where we also consider modi¯cations to allow less restrictive assumptions
regarding heteroscedasticity and spatial autocorrelation.

The model in (1) is estimated using sample data for s households. We are
interested in using these estimates to calculate welfare for a population for which we
do not have expenditure information. Although the disaggregation may be along
any dimension - not necessarily geographic - for convenience we will refer to our
target populations as 'villages'. There areMv households in village v and household
h has mh family members. The characteristics xh and the family size mh of
each household are drawn independently from a village-speci¯c constant distribution
function Gv(x;m):

6

While the unit of observation for expenditure in these data is typically the
household, we are more often interested in poverty and inequality measures based
on individuals. These measures depend on both household per-capita expenditures

5The explanatory variables are observed values and thus need to have the same degree of accu-
racy in addition to the same de¯nitions across data sources. Comparing distributions of reponses
at a level where the survey is representative is a check that we have found to be important in
practice.
From the point of view of mapping poverty and inequality it does not matter whether these

variables are exogeneous. However, if the resulting poverty or inequality estimates are to be
used in subsequent analyses, consideration should be given to the relationship between potential
x variables and the disturbances in those estimations. For example, suppose that one would
like an estimate of village inequality as an explanatory variable in a household level regression for
education, and that education is a potential x variable. One could choose not to use it in the
estimation of inequality and lose whatever precision it would have contributed to those estimates.
Alternatively, one could construct, for each household, \leave-one-out" village inequality estimates
which do not include that element for the given household.

6The characteristics xh and the size mh of each household are ¯xed and given for each village
and we calculate the various statistics conditional on them. However, when analyzing asymptotics
for increasingly large populations, we interpret the actual values as independent draws from a
village-speci¯c but constant distribution function Gv(x;m):
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and the number of individuals in each household. Thus we writeW (mv;Xv;¯;"v);
where mv is an Mv vector of household sizes in village v; Xv is a Mv £ k matrix of
observable characteristics and "v is an Mv¡vector of disturbances.7

Because the vector of disturbances for the target population, "v, is always un-
known, we consider estimating the expected value of the indicator given the village
households' observable characteristics and the model of expenditure in (1). We
denote this expectation as

¹v = E[W jmv;Xv; ³]; (2)

where ³ is the k + 1 vector of parameters f¯, ¾2g. For most poverty measures,
including all of those considered below, the independence of the "h across households
implies that W can be written as an additively separable function of household
poverty rates, w(xh, ¯; "h); and that ¹v can be written:

¹v =
1

Nv

X
h2Hv

mh

Z
"h

wh(xh;¯;"h)dN ("h) ; (3)

where Hv is the set of all households in village v and Nv =
P
h2Hv mh is the total

number of individuals. WhenW is an inequality measure, however, the contribution
of one household depends on the level of well-being of other households and W is
no longer separable. Then we need the more general form,

¹v =

Z
"1

:::

Z
"Mv

W (mv;Xv;¯; "v)dN ("Mv):::dN ("1) ; (4)

where "1:::"Mv are the disturbance terms for the Mv households in village v:
In constructing an estimator of ¹v we replace the unknown vector ³ with con-

sistent estimators, b³, from the ¯rst-stage expenditure regression. This yields b¹v =
E[W j mv;Xv;

b³]. Because this expectation is analytically intractable we consider
various methods of computation in Section 3, each giving us an estimator denotede¹v .

7Our target is the level of welfare that could be calculated if we were fortunate enough to have
observations on expenditure for all households in a population. Clearly because expenditures are
measured with error this may di®er from a measure based on true expenditures. See Chesher and
Schluter (1999) for methods to estimate the sensitivity of welfare measures to mismeasurement in
y:
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2.2 Properties

The di®erence between e¹, our estimator of the expected value of W for the village,
and the actual level of welfare for the village may be written:

W ¡ e¹ = (W ¡ ¹) + (¹¡ b¹) + (b¹¡ e¹): (5)

(The subscript v is suppressed here and below). Thus the prediction error has three
components: the ¯rst due to the presence of a disturbance term in the ¯rst-stage
model which causes households' actual expenditures to deviate from their expected
values (idiosyncratic error); the second due to variance in the ¯rst-stage estimates
of the parameters of the expenditure model (model error); and the last due to using
an inexact method to compute b¹ (computation error). We consider the properties
of each:

Idiosyncratic Error - (W ¡ ¹) Given the parameters of the model, we only know
the per-capita expenditure of each household up to an unobserved component, "h.
The actual value of the indicator for a village deviates from its expected value, ¹,
as a result of the realizations of the unobserved component of expenditure in that
village.

WhenW is a separable measure, it is a weighted sum of household contributions.
Thus, we can write:

(W ¡ ¹) = 1

mM

1

M

X
h2Hv

mh

·
w(xh;¯; "h)¡

Z
"h

w(xh;¯; "h)dN ("h)
¸
; (6)

where mM =N/M is the mean household size among M village households. As
the village population size increases, new values of x, m and " are drawn from
the constant distribution functions Gv(x;m) and N (0, ¾2): Assuming that mM
converges in probability to E[m],

p
M(¹¡W ) d!N (0;§I) as M !1; (7)

where

§I =
1

(E[m])2
E[m2hVar(wjxh; ¯)]. (8)

When W is a non-separable inequality measure we note that, for each measure
below save the Gini coe±cient, there is some pair of functions f and g; such that
W may be written in the general form

W = f(y; g); (9)
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where y = 1
N

P
h2Hv mhyh and g =

1
N

P
h2Hv mhg(yh) are means of independent

random variables. The latter may be written

g =
1

mM

1

M

X
h2Hv

mhg(yh) (10)

which is the ratio of means of M iid random variables gh = mhg(yh) and mh. As-
suming that the second moments of gh exist, g converges to its mean and is asymp-
totically normal. The same remark holds for y: Thus, non-separable measures of
welfare also converge as in (7). Making use of the fact that f is a di®erentiable
function of sample averages, we can use the delta method to obtain an estimate of
§I.

That the idiosyncratic component of the variance in our estimator, VI = §I=M;
falls approximately proportionately inM is a feature we will observe in the empirical
results below. It is the fact that this component of the error in our estimator
of welfare increases as one focuses on smaller target populations that limits the
degree of disaggregation possible. How quickly this part of the error variance
becomes unacceptably large depends on the explanatory power of the x variables
in the expenditure model and, correspondingly, the importance of the remaining
idiosyncratic component of expenditure.

Model Error - (¹¡ b¹) b¹ is a continuous and di®erentiable function of b³, which are
consistent estimators of the ¯rst-stage parameters. Thus b¹ is a consistent estimator
of ¹ and: p

s(¹¡ b¹) d!N (0;§M) as s!1: (11)

We use the delta method to calculate the variance §M; taking advantage of the fact
that ¹ admits of continuous ¯rst-order partial derivatives with respect to ³: In some
cases they have a simple analytical form and can be calculated directly (see Section
4.1 Headcount, below), and in others we use numerical approximations. The vector
5= [@¹ /@³]jb³ is a consistent estimator of the (k +1)-dimensional derivative vector.
We use this to estimate the model variance, VM = §M/s ¼ 5TV(b³)5, where V(b³)
is the asymptotic variance-covariance matrix of the ¯rst-stage parameter estimators.

Because this component of the error in our estimator of welfare is determined by
the properties of the ¯rst-stage estimators, it does not increase or fall systematically
as the population size changes. Its magnitude depends, in general, only on the ¯t of
the ¯rst-stage model of expenditure and the sensitivity of the indicator to deviations
in household expenditure. For a given village v its magnitude will also depend on
the distance of the explanatory x variables for households in that village from the
levels of those variables in the sample data.
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Computation Error - (b¹¡ e¹) The distribution of this component of the prediction
error depends, of course, on the method of computation used. In the following
section we describe several approaches, and discuss this error in detail there. In cases
using simulation, this error has a variance, denoted VC, and it is straightforward
to give a general form for the asymptotic distribution of this component of the
total prediction error. In other cases we instead explore the importance of the
computation error for various indicators using empirical examples.

Unlike the previous two sources of error, with su±cient computational resources
or time this error can be made as small as desired.

The computational error in calculating the expectation, b¹, is uncorrelated with
both the error in the ¯rst-stage estimators, and therefore the model error, and the
idiosyncratic component of expenditure. There may be some correlation between
the model error, which arises from the disturbances in the sample survey data, and
the idiosyncratic error, which arises from disturbances in the census. Any sampled
households which are in the target population will necessarily be in the census, so
this will certainly be the case for data collected for the same time period, or when the
survey and census are separated in time but disturbances in y are autocorrelated.
However, the approach described here is necessary precisely because the number
of sampled households which are part of the target population is very small. It
follows that there will be many census households in the target population which
are outside of the sample and, further, that there will be many households in the
sample survey which are not in the target population. Thus we assume that the
correlation between the model and idiosyncratic error is negligible.

The variance of the prediction error, W ¡ e¹, can now be written
E[(W ¡ e¹)2] = VM +VI + ´: (12)

where ´ is the contribution due to computation error. We use both Monte Carlo
simulation and numerical integration methods to calculate e¹. When using simula-
tion, at least one part of the last term is the variance VC: Other approximations
introduce non-stochastic elements. Because the size of ´ is often in the control of
the analyst it is usually assumed to be negligible and ignored. It may not be small,
however. Since one of our goals is to determine what steps are necessary to make
this a valid assumption, we examine this component of the variance explicitly.

3 Computational Strategies

In this section we consider strategies to calculate: b¹, the expected value of our
poverty or inequality measure conditional on the ¯rst-stage model of expenditure;
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VI, the variance inW due to the idiosyncratic component of household expenditures;
and, for use in determining the model variance, the gradient vector 5 = [@¹/@³]jb³ .
Each strategy will entail di®erent types of computation error.

For convenience in the following discussion we de¯ne bt = Xb̄, the predicted
levels of log per-capita expenditure of the M village households. In constructing
our estimator of expected welfare, e¹, we condition either on the actual distribution
of bt in the village or on an approximate frequency distribution. We either simulate
or use numerical integration to estimate the e®ect of the idiosyncratic component
of expenditure on the expected level of the indicator W . The two treatments of bt
and " can be combined giving four di®erent approaches to obtaining e¹:

Monte Carlo simulation of the distribution ofW conditional on the actual vector
of log per-capita expenditures, bt, is both straightforward and requires no approxi-
mations. However, the alternative methods of calculation become important when
the number of households included in the set of villages is large. In most cases
we require numerical derivatives and therefore need to evaluate e¹ not just once per
target population to obtain the point estimate but an additional (k+1) times (or
2(k+1) times if a central di®erence gradient estimator is used). With a (reason-
able) vector of 38 ¯rst-stage x variables, 1000 villages, and 300 simulation draws per
village this would imply twelve million evaluations ofW: While possible, taking this
approach might be both costly and unnecessary - we show below that alternatives
result in little loss in accuracy.

The best approach to use in any given situation will depend on the size and
number of target populations, desired accuracy, and the programming skills and
computational resources available. It is also possible, and sometimes useful, to use
di®erent approaches when calculating a point estimate and its variance. Because
it is very sensitive to speci¯c datasets and resources, we do not systematically
investigate the computational time associated with di®erent approaches. However,
at various points in the following section we discuss brie°y our own experience with
speci¯c measures.8

8Census data are rarely in a form amenable to analysis at the unit record level. When estimating
local welfare measures for a range of countries it has been our experience that by far the most
time-consuming part of the procedure comes at the stage of managing and combining the census
and survey data. Below we use a combination of SAS and Mathematica, taking advantage of
their respective strengths (large database management for SAS and sophisticated mathematical
procedures for Mathematica).
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3.0.1 Approach 1: True bt and simulated distribution of ":
Let the vector er be the rth random draw from our estimated disturbance distri-
bution. It is constructed by taking a random draw from an Mv-variate standard
normal distribution and multiplying the draw by b¾. With each vector of simu-
lated disturbances we construct a value for the indicator, cWr = W (m;bt;er): The
simulated expected value for the indicator is the mean over the R replications:

e¹ = 1

R

RX
r=1

cWr: (13)

An asymptotic estimator of the variance ofW around its expected value ¹ due to
the idiosyncratic component of expenditures can be calculated in a straightforward
manner using the same simulated values:

eVI = 1

R

RX
r=1

(cWr ¡ e¹)2: (14)

Simulated numerical gradient estimators are constructed as follows: We make a
positive perturbation to a parameter estimate, say b̄k, by adding ±jb̄kj, and then
calculate bt+; followed by cW+

r =W (m;bt+;er), and e¹+. A negative perturbation of
the same size is used to obtain e¹¡. The simulated central distance estimator of the
derivative @¹=@¯kjb³ is (e¹+ ¡ e¹¡)=(2±j b̄kj): To construct an estimator of @¹/@¾jb³
we make similar forward and backward perturbations to b¾ and calculate e+r and e¡r
again using the same standard normal draws as those used in the construction of
er. cW+

r =W (m;bt; e+r ) is used to calculate e¹+ and similarly for e¹¡. As we use the
same simulation draws in the calculation of e¹, e¹+and e¹¡, these gradient estimators
are consistent as long as ± is speci¯ed to fall su±ciently rapidly as R!1. Having
thus derived an estimate of the gradient vector 5 = [@¹=@³]jb³ , we can calculateeVM =5TV(b³)5.

Here, using Approach I, e¹ is a sample mean of R independent random draws
from the distribution of (W jm;bt; b¾), so the central limit theorem implies that

p
R(e¹¡ b¹) d!N (0;§C) as R!1; (15)

where §C =Var(W jm;bt; b¾):9
9E±ciency can be improved using a minimum discrepancy simulation estimator, where draws are

made systematically from the disturbance distribution. In experiments estimating the headcount
measure of poverty, we found that, for R < 100,

p
VC for this estimator was 74-78% of its value

for Monte Carlo simulation. 50 Monte Carlo simulation draws were needed to obtain the same
compuational variance as that of the mimimum discrepancy estimator based on 30 draws.
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3.0.2 Approach 2: Approximate bt and simulated distribution of ":
This approach, and (4) below, are based on an approximation of the vector of
expected log per-capita expenditures, bt: This has great advantages in reducing
computation time. Rather than calculating over vectors where each household en-
ters individually, the households are aggregated into a far smaller number of classes.
This approximation requires that W be additively separable. So as to be able to
take advantage of this useful shortcut when calculating (non-separable) inequality
measures, we have determined speci¯c, very accurate, separable approximations for
measures discussed in Section 4. (See also the Appendix.)

In this approach the range of bt is divided into D equally spaced intervals with
boundaries b = fb0; :::; bDg.10 The dth interval includes households with bd¡1 ·bth < bd. The log per-capita expenditure of each household in the dth interval
is approximated by the midpoint of the interval, ¿d, plus a common stochastic
component, "d; distributed iid N (0, ¾2). The D-vector of these midpoint values
is denoted ¿D. The total number of individuals in households falling in the dth
interval is denoted md, with D-vector mD, and the sum of squared household sizes
in the dth interval is denoted [m2]d.

Simulation proceeds as in Approach 1. Again er;D, now a D¡vector, is the rth
random draw from the distribution N(0, b§) where b§ is a D £D diagonal matrix
with diagonal entries b¾2: With each vector of simulated disturbances we calculate
the value of the indicator cWr;D =W (mD; ¿D;er;D): The simulated expected value
for the indicator is calculated as in equation (13).

The idiosyncratic variance for truly separable measures can be estimated using
equation (14), although not directly. To use equation (14) would amount to assum-
ing that all households in a given interval have the same unobserved component of
log per-capita expenditure. In fact these di®er so that there is an idiosyncratic vari-
ance among households in each interval. VI can be estimated for poverty measures
as a weighted average of simulated within interval variances:

eVI = 1

RN2

DX
d=1

[m2]d

RX
r=1

(w(¿d;er;d)¡ e¹d)2; (16)

where e¹d = 1=RPr w(¿d; er;d) is the expected value of the indicator w for a house-

hold with th = ¿d. The expected value of eVI approaches VI as D ! 1 and, as
the examples below demonstrate, it gives good approximations at levels of D which

10The width 2¸ of the intervals is determined by 2¸ = (max[bthjh 2 Hv]¡min[bthjh 2 Hvg=(D¡1).
The boundaries are given by bi = min[bthjh 2 Hv] + (2i¡ 1)¸, for i = 0; : : : ;D. This implies that
the lower and upper bounds are ¸ below and above the lowest and highest values of bt, respectively.
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are practical to implement. The separating approximations of the non-separable
inequality measures used below, while they give accurate point estimates, cannot
be used in (16) to obtain an estimate of VI: Thus we have derived speci¯c variance
formulas for those measures.

Simulated numerical gradient estimators can be constructed as described under
Approach 1, making the obvious changes in notation. We hold constant the set
of boundary values b across perturbations so that changes in the intervals, and
therefore frequencies and midpoint values ¿d, are not driven by changes to single
endpoint values of bt. As a result, the perturbed values e¹+ and e¹¡ di®er from e¹
only as households move across interval boundaries. Given this, for the accuracy
of the numerical derivative vector to improve with a decrease in the size of the
perturbation factor ± requires a concommitant increase in the number of intervals
D.

For the same number of simulation draws, R, the expected computational error
using an approximate distribution for bt is equal or greater than that in Approach
1, but its distribution approaches that in equation (15) as D!1: As we will see,
the loss of precision is small.

3.0.3 Approach 3: True bt and numerical integration of "
With this approach e¹ is again described by equations (3) and (4) above, but with the
integrals approximated numerically. Calculating non-separable measures directly
using this approach is complex because of the nested nature of the integrals so we
again make use of the separable approximations given below.

A consistent estimator of the idiosyncratic variance of a separable poverty mea-
sure is eVI = 1

N2

X
h2Hv

m2h

Z
(wh(bth;"h)¡ e¹h)2dN ("h) (17)

(see equation (8)). As in Approach 2, however, if a separating approximation is
used to calculate the point estimate of a non-separable measure, (17) should not be
used to obtain an estimate of VI:

When elements of the gradient vector 5 have a simple analytical form they can
be estimated directly using numerical integration. Otherwise we use a numerical
gradient estimator as described under Approach 1.

The size of the computation error depends on the quality of the numerical in-
tegration algorithm. We have opted for the default algorithm of Mathematica 3.0
which over samples regions of rapid change in the integrand. It is easy both to use
and performs well (see examples in Section 4).
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3.0.4 Approach 4: Approximate bt and numerical integration of ":
An approximate distribution for bt is constructed as in Approach 2. Then the point
estimator of the expected value of W is calculated as:

e¹ = 1

N

DX
d=1

Z
"d

mdw(¿d;"d)dN ("d); (18)

with, for poverty measures,

eVI = 1

N2

DX
d=1

[m2]d

Z
"d

(w(¿d;"d)¡ e¹d)2dN ("d): (19)

When using this approach to estimate poverty measures we also investigate a simpler
variance formula ¡ one which bounds VI¡ obtained from replacing the household-
level expected values of the indicator, e¹d;with the population expected value, e¹:
We ¯nd that it is often very close.

As in Approach 3, gradient estimators may be constructed by numerically in-
tegrating an explicit analytical form or using numerical di®erence methods. The
computation error is the same or greater than that in Approach 3 when using the
same numerical integration algorithm.

When using Approach 4 one can take advantage of the discrete Fourier transform
to speed computations dramatically. This technique is used to create a convolution
of the two distributions, of t and ", and integration is then over the resulting (single)
unconditioned distribution for y. It is commonly used in other ¯elds and sub-routine
software is readily available.

4 The Measures { with Examples.

This section presents estimates of commonly used poverty and inequality measures
using data from Ecuador. The household survey is the Ecuadorian Encuesta Sobre
Las Condiciones de Vida, 1994, and the census data are from the closest available
year, 1991. The analysis in this section uses only data from the rural Costa re-
gion. The R2 of the ¯rst-stage log per-capita expenditure regression was 0.53 (see
Appendix Table A.1 and Hentschel, Lanjouw, Lanjouw and Poggi, 2000, for further
details).

We randomly draw four nested populations, with 50 to 50,000 households, from
the census data. Each of Tables 1 to 7 gives results for a given measure W;
using each computational approach with the di®erent populations. In all cases we
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adjust for outliers. Although poverty measures automatically give zero weight to
expenditure levels above the poverty line, and are not very sensitive to variations in
log-expenditure at negative values, inequality measures are sometimes very sensitive
to outlying values. In standard situations, where the analyst has direct information
about y; it is common to have outliers in that variable due to mismeasurement,
inputing errors, etc. The problem is typically dealt with by discarding suspect
observations. Here we have an analoguous problem with respect to the x variables
used to infer expenditure levels, and we deal with it in the usual way.11 In addition
to the standard \dirty data" problem, having assumed a normal distribution for
" there is also a certain (in the case of numerical integration) or at least non-zero
(in the case of simulation) probability of getting at least one very large positive
or negative disturbance, and therefore value for yh; in the process of estimating ¹:
This problem is resolved by using a truncated normal to describe the distribution
of ". Since it is the best information we have, we use the minimum and maximum
residuals from our ¯rst-stage log-expenditure regression as truncation points.12 For
notational simplicity we do not, however, indicate this adjustment in the formulas
which follow.

The ¯rst rows of each table give values for the expected value of the indicator;
the estimated standard deviation of the total predication error; and the estimated
standard deviation of each component: These are calculated using Approach 1 with
a su±cient number of simulation draws to ensure that the standard deviation of the
variance due to computation is less than 0.001. This is at most 1% of the value of
the estimate e¹, and usually far less. The estimates resulting from these simulations
are then treated as the `truth' (conditional on b³). Subsequent rows give the point
estimates for e¹ and VI obtained using each of the four methods of computation.13
Where applicable, values for the idiosyncratic variance using upper bound formulas
are given.

Thus, looking across columns one can see how the variance of the estimator
changes with the size of the target population. Looking down the rows one can
compare the results of the various computational approaches.

11We delete households with predicted per-capita expenditure, bth; outside the range of observed
per-capita expenditure in the household survey, losing less than 0.5% of our total census observa-
tions as a result.
12Although they are in line with common practice, both steps of this procedure are admittedly

somewhat ad hoc. Addressing the standard problem of mismeasurement in yh; Cowell and Victoria-
Feser (1996) suggest leaving suspected outliers in the data when estimating inequality and using
weighting to lessen their importance. A similar approach could be taken here.
13Because the point estimates are very close, calculations of VM using the various approaches

are also very close. In the tables we provide the values for VM calculated only using Approach 1,
or Approach 4 in the case of the Gini coe±cient.
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4.1 Poverty Measure 1: Headcount Ratio

This measure of the incidence of poverty is de¯ned as

W =
1

N

X
h2Hv

mh1(yh < z); (20)

where z is a poverty line de¯ned in per-capita expenditure terms and 1( ) is an
indicator function taking on the value of one if the expression inside of the brackets
is true and zero otherwise. Given our distribution for "h,

b¹ = 1

N

X
h2Hv

mh©((ln z ¡ bth)=b¾); (21)

where ©(.) is the standard normal distribution function. Denote by b¹h the expected
welfare indicator of household h with expected log per-capita expenditure bth. Then,

bVI = 1

N2

X
h2Hv

m2hb¹h(1¡ b¹h): (22)

In this case there is an analytic form for the estimator of the gradient vector:

5T = ¡ 1
N

X
h2Hv

mhb¾ Á
Ã
ln z ¡ bthb¾

!"
xTh ;

ln z ¡ bthb¾
#

(23)

Table 1 gives results for the headcount measure. Looking across the rows marked
`Truth' we see that the standard error of the headcount estimator is reasonable
even for the population of just 500 households and very small for that of 5,000
households (about 4 and 1 percent of the point estimate, respectively). The piece
of the standard error due to the idiosyncratic component of population expenditures
is substantial for the population of ¯fty households but it drops o® quickly as one
adds households. The piece due to the ¯rst-stage model error, while constant,
is small. Although large numbers of simulation draws were taken to ensure an
accurate `Truth', R = 30 su±ces to give a computation error which contributes only
negligibly to the overall standard error in the estimator. The results for Approach
(2) indicate that there is almost no loss in accuracy associated with moving from
the true distribution of predicted expenditures, bt; to an approximate frequency
distribution with 128 intervals, either in the calculation of the point estimate (and
hence VM) or in the calculation of the idiosyncratic variance, VI: The results
for Approaches (3) and (4) indicate that evaluating integrals numerically with a
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standard software routine gives accurate estimates. We found, however, that it
was very slow when the evaluation had to be done at a large number of t values.
Thus approximating the distribution of t; which works well with a population of
500 households, is the feasible approach for larger populations.

For Approaches (2) and (4) we include results for the population of 50 households
even though it may not seem reasonable to approximate the distribution of their
expenditures with 128 frequency intervals. In the case of Approach (4), if the fast
Fourier transform is used to obtain an approximate distribution for y this method
is actually faster than basing calculations on the actual distribution even with just
50 households. On the other hand, it would never be sensible to use Approach
(2) if calculations were being done only for a single population of 50 households.
However, most often estimates will be required for many populations, some possibly
large and others small, and it may be easiest to use the same approach for all of
them.

4.2 Poverty Measure 2: FGT(c) Measures

This measure of the severity of poverty is de¯ned for each choice of c > 0 as

Wc =
1

N

X
h2Hv

mh(1¡ yh
z
)c1(yh < z): (24)

Thus b¹c = 1

N

X
h2Hv

mh

Z ln z¡bth
¡1

(1¡ ebth+"h¡ln z)cdN ("h): (25)

When using approaches which involve numerical integration (3 and 4), one can
use the formulas for the idiosyncratic variance, VI, given in equations (17) and (19).
However, VI is bounded by the simpler formula

VI · 1

N
(e¹2c ¡ e¹2c); (26)

which is derived from replacing household with population expected poverty as
discussed following equation (19).

Results for FGT(1) and FGT(2) are in Tables 2 and 3. Again the estimated
standard errors of the poverty measures are reasonable for the population of 500
households and are small once the population has reached 5,000 households. Again,
too, all approaches to calculating the estimator work equally well. Calculations of
the bound on VI; de¯ned in equation (26), are in the ¯nal row of each table labelled
`Upper Idiosyncratic'. For both measures the bound is very close.

16



4.3 Inequality Measure 1: Variance of Log Expenditure

This commonly used measure of inequality is:

W =
1

N

X
h2Hv

mh(ln yh ¡ ln y)2 = (27)

1

N

X
h2Hv

mh(th ¡ t)2 + 1

N

X
h2Hv

mh("h ¡ ")2 + 2

N

X
h2Hv

mh(th ¡ t)("h ¡ ");

where village means t and " are weighted by household size. We denote these
variances and covariances in the village population as

W = v(t) + v(") + 2cv(t; ") (28)

and note that the last two terms are random variables because they depend on
realizations of the vector ": Because the expected value of the covariance term is
zero

b¹ = v(bt) + b¾2
241¡ 1

N2

X
h2Hv

m2h

35 : (29)

This can be obtained directly so there is no computation error and e¹ = b¹:
When de¯ning the idiosyncratic variance we use Var() to indicate that we are

taking expectations over the theoretical distribution of ": Likewise, here and below
E[.jt] represents E[.j t;m; ¾2]: Then

VI = Var(W jt) = E[W 2jt] - ¹2: (30)

The ¯rst term can be written

E[W 2jt] = v(t)2 +E[v(")2] + 4E[cv(t; ")2jt] + 2v(t)E[v(")]: (31)

Writing ¹ =v(t)+E[v(")] and substituting this and (31) into (30), it follows that

VI = Var(v(")) + 4E[cv(t; ")
2jt] = Var(v(")) + 4¾

2

N2

X
h2Hv

m2h(th ¡ t)2:

It can be shown that

Var(v(")) = (E["4h]¡ ¾4)
8<:X
h2Hv

m2h
N2

¡ 2
X
h2Hv

m3h
N3

+
X
h2Hv

m4h
N4

9=; : (32)
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In practice, the last two terms are of order M¡2 and M¡3, respectively and can be
dropped for moderate values of M: Doing so, and with "h distributed normally, we
have the simple formula

Var(v(")) ¼ 2¾4
X
h2Hv

m2h
N2
: (33)

Results for this measure are in Table 4. Compared to the poverty estimators, the
estimator of the variance of log expenditure is somewhat less accurate at low levels
of disaggregation. Nevertheless, good estimates are obtained for \towns" of 5,000
households. Further, because a smaller share of the total standard error of this
estimator is due to the idiosyncratic component of expenditures in the population,
there is less to be lost from disaggregating to that level.

4.4 Inequality Measure 2: Atkinson Index

The Atkinson measure with inequality aversion parameter c ¸ 0 (6= 1) is de¯ned
as:14

Wc = 1¡
8<: 1

N

X
h2Hv

mh(
yh
y
)1¡c

9=;
1

1¡c

; (34)

where, again, the village mean expenditure, y; is weighted by household size. This
measure clearly does not share the separability property of the poverty measures,
nor does its expectation have a convenient analytical form like the variance of log
expenditure. Thus, when approximating the distribution of t or using numerical
integration we use the following separable approximation to the expectation ¹. It
is based on replacing the reciprocal of average per-capita expenditure, 1=y; by an
approximation to its conditional expectation, 1=E[yjt]:15

¹sep = 1¡
8<: 1

N

1

E[yjt]
X
h2Hv

mh(E[y
1¡cjth])

9=;
1

1¡c

: (35)

14As usual with CES-type functions, the singularity at c = 1 is overcome by (smoothly) switching
to the Cobb-Douglas function. The assumption c 6= 1 is made for editorial rather than technical
reasons.
15This expectation is calculated per draw when simulation is used. We experimented with

replacing 1
y
with the second-order Taylor series approximation 1

E[yjt]+
h

1
E[yjt]

i3
Var([yjt]) : For some

measures this re¯nement led to lower computation error and for others the error increased. Thus,
until further testing with other datasets we would recommend use of the simpler approximation.
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In the Appendix, Part A, we show that

E[¹sep ¡ ¹] = O
·
¾2

M

¸
: (36)

Thus the error associated with this approximation falls rapidly in M and, as we
shall see below, it is very accurate for population sizes likely to be used in practice.

With "h distributed normally, an estimator of the idiosyncratic variance for this
measure is

eVI = ·(1¡ ¹sep)c
(1¡ c)N

¸2
e(1¡c)

2¾2
h
e(1¡c)

2¾2 ¡ 1
i MX
h2Hv

m2h

µ
eth

E[yjt]
¶2(1¡c)

: (37)

This approximation is very accurate for values of c ¸ 1:5 (for c < 1:5 it gives
an overestimate and so is conservative). Again, see the Appendix, Part A, for
the derivation, and a similar formula for cases using an approximate frequency
distribution for t:

Table 5 gives results for the Atkinson measure. One can see from Approaches
(2)-(4) that the separable approximation given in equation (35) gives point estimates
which are very precise for target populations of 500 households or more and within
about one standard deviation of the true value for the 50 household population. It
is slightly more accurate when using numerical integration. The estimator for the
idiosyncratic variance is similarly precise across approaches. As with the poverty
measures, the estimator gives reasonable results for the Atkinson index even for
villages as small as 500 households (with a standard error of about 4% of the point
estimate).

4.5 Inequality Measure 3: Gini Coe±cient

The Gini coe±cient can be written

W = 1¡ 2

Ny

NX
i=1

q(i)

µ
1¡ i

N

¶
; (38)

where qi denotes the per-capita expenditure of person i such that qi = yh if person
i is in household h, and q(i) denotes the ith order statistic, i:e:, q(i) comes i

th if the
sample is sorted in increasing order (with individuals having the same qi randomly
ranked). The expectation ofW is, like the other inequality measures, non-separable.
We derive in the Appendix, Part B, the simpler separatable approximation:

¹sep = 1¡ 2

NE[yjt]
X
h2Hv

mhyh(1¡E[H(yhjt)]): (39)
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where E[H(yhjt)] is the cumulative distribution of per-capita expenditure obtained
from a convolution of the distribution of " and the actual distribution of t. While
E[H(yhjt)] can be estimated using simulation, it is very time consuming so we do
not use Approach (2) for this measure.

Results for the Gini Coe±cient are in Table 6. The separable approximation to
the Gini used in Approaches (3) and (4) again works very well for even moderately
sized values of M . This is a particularly useful ¯nding with this measure, as the
repeated sorting of the data required when using simulation is very slow. The
¯rst approach becomes unattractive for any but small populations. (For this reason
we use Approach (4) in calculating the `truth' point estimates and model variance
estimates for our populations of 5,000 households or greater.) Note that, as with
all of the inequality measures, the separable approximation used to calculate the
point estimate cannot be used to estimate the idiosyncratic variance. In this one
case we have not found an acceptable approximation, so Approach (1) must be used
to obtain an estimate of VI: However, because the prediction error is typically used
only to assess `how many digits' of a welfare estimate are signi¯cant, the degree
of accuracy needed in its calculation, and therefore the idiosyncratic component, is
typically much lower than that desired in the point estimate and will thus require
far fewer simulation draws.

4.6 Inequality Measure 4: General Entropy Class

The general entropy measure with parameter c > 0 (6= 1) is de¯ned as

Wc =
1

c(1¡ c)

8<:1¡ 1

N

X
h2Hv

mh(
yh
y
)c

9=; : (40)

As with the Atkinson measure, simply replacing y by E[yjt] makes the measure
separable and yields an approximation which rapidly converges to ¹ as the size of
the population grows.

A good approximation of VI for 0:1 · c · 0:9 is obtained by using a Taylor
approximation of the true general entropy measure, taken around the vector of
expected expenditure values, E[yjt]: This gives:
eVI =

X
h2Hv

Var(yhjth)£ (41)

0@ mh
c(1¡ c)N

24 1

E[yhjth]
µ
E[yhjth]
E[yjt]

¶c
¡ 1

E[yjt]N
X
k2Hv

mk(
E[ykjtk]
E[yjt] )

c

351A2 :
20



See the Appendix, Part C, for details, and a similar formula for the cases using an
approximate frequency distribution for t.

Results for the general entropy measure with c = 0.5 are in Table 7. We again
obtain very accurate estimates of both ¹ and VI using the separable approximations
for Approaches (2) - (4). Like the variance of log expenditure measure, reliable
estimates for this measure are obtained for populations beginning at about 5,000
households.

5 Model Extensions

Obtaining an accurate model of the conditional distribution of per-capita expendi-
ture from the ¯rst-stage estimations is clearly crucial. This can be tackled in many
ways. The one we have taken here uses classical methods which will be familiar to
most economists. We specify a parametric linear regression model with disturbances
which have a convenient form. (Tests for the normality and homoskedasticity of the
residuals in the ¯rst-stage regressions could not reject either hypothesis - see notes
Table A.1). This approach has the large advantage of being easily implemented.
However, there are alternatives or extensions which allow more °exibility in the
model estimation, °exibility which may sometimes be important. These include:

Semi-Parametric Estimation - Non-Normality: When using simulation to
approximate the distribution of the disturbances one can avoid making any assump-
tion about its functional form by taking simulation draws from the actual ¯rst-stage
residuals. In our case, because the residuals are very close to normally distributed,
it of course makes little di®erence. Estimating the Headcount and Atkinson (2)
measures for 50 households in this way we obtain values within two percent of those
presented above, and the idiosyncratic variance estimates are the same.

In the same spirit, when using numerical integration, the assumed normal dis-
tribution can be replaced by an empirical frequency distribution derived from the
residuals. This would, of course, increase the amount of programming necessary
because one could no longer rely on the numerical integration algorithms provided
in many statistical software packages.

Non-Parametric Estimation Rather than impose a log-linear, or other, para-
metric form on the conditional distribution of per-capita household expenditure
given the observables, xh; one could consider estimating the conditional expecta-
tion E(yjx) or the conditional density p(yjx) directly using kernel density estimation.
Estimating expenditure for each household in the population of interest (perhaps
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millions) based on a vector of say thirty observed characteristics, the main di±culty
to confront is in devising a method of weighting to minimize the computational bur-
den. (See Keyzer and Ermoliev, 2000, for an example of this strategy and further
discussion.) For separable measures, another practical approach might be along
the lines of Hellerstein and Imbens (1999). An estimate e¹ for each population could
be calculated from the expenditure information in weighted sample data, with, in
each case, weights constructed to ¯t a limited number of sample moments to census
moments. However, this approach would still be computationally complex with a
large number of target populations.

Spatial autocorrelation We assume, in equation (1) that the idiosyncratic com-
ponent of expenditures is distributed independently across households. However, if
the available data do not allow one to control for community characteristics in the
estimations, the omission could cause a substantial degree of spatial autocorrelation
in the conditional distribution of expenditures. Even with good controls for com-
munity characteristics one might still expect some degree of correlation to remain.
Expected poverty rates calculated under an (incorrect) assumption of independence
would remain be unbiased, although their idiosyncratic variance would be underes-
timated. However, ignoring the fact that a component of the disturbance is shared
within groups would cause expected inequality estimates to be biased upward.

Given the problem at hand, the independence assumption is a di±cult one to
relax. It is not possible to estimate or test general forms of spatial autocorrelation
in expenditure at local levels precisely because the problem is insu±cient data or,
for some localities, no data on expenditure. With some types of surveys it may be
possible to test, in a regression framework, the more restricted hypothesis that there
is a common community (village, region) correlation in the disturbances. If so, and
if a community random e®ect is found, the disturbance could then be decomposed
into community and household components in a straightforward way when using
either simulation or numerical integration. Not all survey data have appropriate
identi¯ers to do this very satisfactorily, however. The Ecuadorian survey data used
here, for example, include only cluster identi¯ers - allowing us to put households
into `neighborhoods' but not into larger groups. Thus we can only test whether
there is a correlation among households in very close proximity - where one would
have the highest expectation of ¯nding a relationship. Given this, it is remarkable
that, for eight di®erent regional estimations, we cannot reject that cluster random
e®ects are zero in all rural areas and both rural and urban Oriente. It appears
that our set of explanatory variables, while they are all household indicators, are
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adequate controls for common community characteristics.16 We do, however, get
signi¯cant (and sizable) cluster-level random e®ects in the other urban areas, which
may or may not indicate that there is a signi¯cant degree of autocorrelation at
the levels of aggregation at which we calculate our welfare measures. It suggests
caution and we return to this below in Section 6.

Incorporation of Multiple Data Sources In lieu of being able to estimate its
size, it is useful to minimize the magnitude of spatial autocorrelation in the distur-
bances by including an informative set of community-level variables, or household
level proxies, in the expenditure estimations. Census data are particularly limited
in this regard. However, with appropriate identi¯ers, other sources of information
could be merged with both census and survey datasets. For example, geographic
information system (GIS) databases allow a multitude of environmental and com-
munity characteristics (for example, the density of road networks or agroclimatic
characteristics) to be geographically de¯ned both comprehensively and with great
precision. The increasing availability of a variety of GIS, and other, data holds
great promise as a way to enrich household survey and census data and thereby
minimize the potential for spatial autocorrelation.

Ancillary data could be integrated into the analysis in other ways as well. As
an example, suppose that there was no information about schooling in the survey or
census, but that one had, from the analysis of other data, a model of the relationship
between expenditure levels and schooling decisions. Suppose further that one had
information about aggregate community schooling levels. These data could be
combined with the model of schooling decisions to provide additional information
about the likelihood of di®erent realizations of the vector ", and therefore y; for
each community.

6 Putting the Indicators to Work { Illustrations

In the following subsections we use estimates of distributional measures in several
types of applications. The measures have been calculated for all parroquias of
Ecuador using the full census.17 These are the lowest adminstrative units and over
95% (out of 1326 in total) have more than 100 households, a level of disaggregation
at which we obtain reasonably accurate estimates. The calculations are based on

16For example, indicators of household access to various types of infrastructure are likely to be
highly correlated with community supplies.
17Within the metropolitan areas of Quito and Guayaquil we disaggregate to the level of the zona.

For a poverty map of South Africa based on the same methodology see Alderman, et. al. (2000).
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eight separate regional ¯rst-stage consumption models (estimation results available
from the authors on request).

6.1 Geographical Maps of Welfare

A useful way of understanding the geographical spread of poverty or inequality is
to contruct a map using GIS data. Figure 1 provides an example. Comparisons
between the Costa, the coastal region of Ecuador, and the Sierra, the central moun-
tainous region, feature highly in popular political debate in Ecuador.18 The top
two maps in Figure 1 depict the spatial distribution of poverty across cantons19 on
the basis of two common measures: the headcount and the poverty gap, FGT(1).
The bottom two maps in Figure 1 indicate those instances where the two alterna-
tive poverty measures di®er in their ranking of cantons. The map on the lower left
shows that in the Costa a number of cantons are ranked poorer under the headcount
criterion than under the poverty gap. In contrast, in the Sierra, numerous cantons
are ranked more poor under the poverty gap criterion than under the headcount.
Thus, it is clear that views about the relative poverty of the regions will be a®ected
by the measure of poverty employed. Further, it is also clear that, irrespective of
poverty measure used, all cantons in the eastern part of Ecuador are particularly
poor.

This type of map could be used for targetting development e®orts, or for ex-
ploring relationships between welfare indicators and other variables. For example,
a poverty or inequality map could be overlaid with maps of other types of data, say
on agro-climatic or other environmental characteristics. The visual nature of the
maps may highlight unexpected relationships that would escape notice in a standard
regression analysis.

The map shows di®erences in the point estimates for expected poverty across
regions, say A and B: One can test whether di®erences across populations are
statistically signi¯cant using the statistic

(e¹A ¡ e¹B)2
Var[(e¹A ¡WA)¡ (e¹B ¡WB)]

; (42)

which is distributed asymptotically Â2(1) under the null hypothesis H0 :WA =WB.
The parts of the variance in the prediction error for populations A and B due to
computation and the idiosyncratic component of W are independent. However, if
the same ¯rst-stage model estimates are used to estimate th for households in both

18See, for example, \Under the Volcano", The Economist, November 27, 1999, p. 66.
19For visibility we have disaggregated only to the level of the canton, the administrative level

just above a parroquia.
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populations, then the model component of the prediction error will be correlated
across populations. Let Ã be a vector of all of the parameters used in the estimation
of either e¹A or e¹B; and let q be a vector of the partial derivatives [@(e¹A¡e¹B)=@Ã]jbÃ :
Then,

Var[(e¹A ¡WA)¡ (e¹B ¡WB)] ¼ qTV
³bÃ´q+VAI +VBI +VAC +VBC : (43)

If the ¯rst-stage parameter estimates used to estimate household expenditure di®er
across the two regions then the ¯rst term is simply VAM+V

B
M:

6.2 Are Neighbors Equal?: A Decomposition of Inequality

An important issue in the area of political economy and public policy is to de-
termine the appropriate level of government to give responsibility for public ser-
vices and their ¯nancing. The advantage of decentralizing to make use of better
community-level information about priorities and the characteristics of residents
may be o®set by a greater likelihood that the local governing body is controlled
by elites - to the detriment of weaker community members. In a recent paper,
Bardhan and Mookherjee (1999) highlight the roles of both the level and hetero-
geneity of local inequality (and poverty) as determinants of the relative likelihood of
capture at di®erent levels of government. As most of the theoretical predictions are
ambiguous, they stress the need for empirical research into the causes of political
capture - analysis which has been held back by a lack of empirical measures for
most variables.20 Our community-level welfare estimates can help to address this
problem.

We can answer, ¯rst, any number of questions about the level and heterogene-
ity of welfare at di®erent levels of government. For example, here we decompose
inequality in rural Ecuador into between- and within-group components and ex-
amine how within-group inequality evolves at progressively lower levels of regional
disaggregation. At one extreme, when a country-level perspective is taken, all in-
equality is, by de¯nition, within-group. At the other extreme, when each individual
household is taken as a separate group, the within-group contribution to overall
inequality is zero. But how rapidly does the within-group share fall? Is it reason-
able to suppose that at a su±ciently low level of disaggregation (say, a village or
neighbourhood) di®erences within groups are small, and most of overall inequality
is due to di®erences between groups?

20Ravallion and Galasso (2000), which compares the inter- vs intra-district targetting of school-
ing in Bangladesh, uses village-level inequality measures, but is limited to those sampled in the
household expenditure survey.
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We employ the General Entropy (0.5) inequality measure which can be straight-
forwardly decomposed. If N individuals are placed in one of J groups subscripted
by j, and the proportion of the population in the jth group, denoted fj, has weighted
mean per-capita expenditure yj and inequality !j ; then

W0:5 = 4

8<:1¡
JX
j=1

fj(
yj
y
)0:5

9=;+
JX
j=1

wjfj(
yj
y
)0:5; (44)

where the ¯rst term is the inequality between groups and the second is within groups
(Cowell, 1995). In stages we disaggregate the country down to the parroquia level.
Table 8 illustrates that even at a very high degree of spatial disaggregation, more
than 85% of overall rural inequality can still be attributed to di®erences within
groups.21

Thus, as often suggested by anecdotal evidence, even within local communities
there exists a considerable heterogeneity of living standards. In addition to a®ecting
the likelihood of political capture, this may have implications for the feasibility
of raising revenues locally, as well as for the extent to which residents of such
communities can be viewed as having similar demands and priorities.

Put together with either survey data on attitudes towards government or on the
allocation of public spending, disaggregated inequality estimates could be used to
directly assess the in°uence of welfare distributions on the political process. We
plan to explore this further in the context of the targetting of social fund programs.

6.3 Revisiting the Kuznets Curve

One of the classic questions in development economics concerns the relationship
between economic development and the distribution of well-being. (See Fields,
2000, for an exhaustive survey of empirical research on this topic.) It has been
postulated that inequality ¯rst rises with economic development, and then falls (a
pattern often called the \Kuznets' Inverted U-Curve" in association with Simon
Kuznets' pioneering work in the 1950s and early 1960s). Empirical investigations
of this relationship have, to date, been cross-country regressions or longitudinal
studies of individual countries. As noted in the introduction, the ¯rst type of
analysis implies the unattractive assumption that the countries can be viewed as
draws out of a common data generating process. More practically, cross-country
regressions require comparable data, and the degree to which such data exist is still

21We have con¯ned our attention to rural areas where there is no evidence of spatial autocorre-
lation in ": Results using all of Ecuador were very similar.
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debated. Longitudinal studies also raise concerns about data comparability and few
countries possess su±ciently rich historical detail to allow statistical investigations
of the Kuznets relationship.

Here we have constructed a cross-sectional dataset of inequality outcomes and
average expenditure levels at the level of communities. The indicators are con-
structed in an identical way avoiding completely problems of comparability. More-
over, the underlying assumption of a common data generating process is rather
less objectionable in this context. Figure 2 depicts a scatterplot of parroquia-level
inequality and average per-capita expenditure estimates for the Sierra region of
Ecuador. A quadratic regression curve of inequality on expenditure is overlaid
(with 95% con¯dence bounds), as well as a non-parametric regression curve based
using a Normal weight kernel ¯t. A number of interesting observations follow: i)
there does appear to be some evidence of inequality ¯rst rising with expenditure and
declining, or at least levelling o®, although inequality begins to decline as expendi-
ture increases only at a fairly high level of expenditure; ii) even con¯ning attention
to a single region there is considerable heterogeneity.

This latter point is con¯rmed in Table 9 where, in the basic model, only about
12% of the variation in parroquia-level inequality is explained by per-capita expendi-
ture and its squared term. When we include demographic variables and a full set of
regional interaction terms the inverted U relationship remains and the R2 improves
substantially in all regions.22 Deaton and Paxson (1994, 1997) and Higgins and
Williamson (1999) have noted the importance of including population demographics
in this type of analysis. Demographic e®ects di®er across regions, although it does
appear that the larger the population share in the higher working age group (40
to 60 years) the lower is inequality. A possible mechanism driving this ¯nding is
that in areas with large numbers of older, more experienced workers, there is a lower

22Because the regressor `average per-capita expenditure' is correlated with its own estimation
error (mismeasurement), and with that in the dependent variable, OLS estimators are biased.
However, we have seen that the magnitude of the estimation errors is very small. We examine
the size of the coe±cent bias arising from the idiosyncratic component of the prediction error
by re-estimating the model with 30 simulated populations and ¯nd that each coe±cient estimate
presented is within ¯ve percent of the mean of the thirty corresponding estimates. Future work
will further explore `mismeasurement' biases induced by the estimation of welfare indicators, in
particular relative to those induced by standard data mismeasurement.
All of the Sierra is included in the analysis even though there was some evidence of spatial

autocorrelation in " among neighboring households in the urban sector. If this were a source of bias
in our inequality estimates it would be upward - and work against ¯nding a Kuznets relationship.
To check robustness we re-estimated the inequality measures, decomposing " into parroquia and
household components with the share of the variance due to the ¯rst assumed (conservatively) to
be that estimated for clusters. The results hardly di®er. We also estimate the original model but
restricted to the rural sector and ¯nd that, qualitatively, the results remain.
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labor market premium on experience, resulting in lower aggregate inequality. While
age composition is statistically related to inequality, it is interesting to note that
community size is not. As in the previous subsection, there is again no support for
the view that smaller communities are likely to be less unequal than larger ones.

6.4 The Elasticity of Poverty with Respect to Growth and Redis-
tribution

The cross-sectional data set employed above can also be used to ask how sensi-
tive di®erent poverty measures are to changes in average consumption and overall
inequality. In Table 10 we regress (the log of) three di®erent expected poverty
measures on parroquia-level (log) expected average per-capita expenditure, (log)
expected inequality, demographic characteristics, and regional dummies.23

The elasticity of all three poverty measures with respect to average per-capita
consumption is signi¯cantly less than negative one: the poor in Ecuador are thus
not left behind in overall growth. As one would expect, an increase in inequality at
a given level of average consumption also increases poverty. Moving from FGT(0)
to FGT(2), such that the poverty measure becomes more sensitive to distance below
the poverty line, the elasticity of poverty with respect to changes in both `growth'
and inequality increases in absolute value. Further, if the focus is on the poor-
est, as captured by FGT(2), reducing inequality is as e®ective as raising average
expenditure.

7 Concluding Comments

In constructing disaggregated estimates of welfare we have explored a straightfor-
ward idea. We use detailed household survey data to estimate a model of per-capita
expenditure and then use the resulting parameter estimates to weight the census-
based characteristics of a target population in determining its expected welfare level.
While others have taken weighted combinations of variables in the census to esti-
mate household poverty, this merging of data sources has the advantage of yielding
an estimator with a clear interpretation via its link to household expenditure; one
which can be expanded in a consistent way to any welfare measure; and, perhaps
most importantly, can be assessed for reliability using standard statistical theory.

Dealing with unit record census data presents some computational hurdles.
Thus one of our goals was to determine methods of calculation which are accurate as

23As in Table 9, the estimated regressors (average per-capita consumption and inequality) and
the dependent variable will have correlated estimation errors, but again these errors are very small.
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well as feasible for researchers with standard software and a laptop computer. We
explore simulation and numerical integration approaches, as well as distributional
approximations. When calculating point estimates and variances for non-separable
inequality measures we derive speci¯c formulas to allow the use of `shortcut' com-
putational methods. All of the computational options, including those which make
use of several types of approximation, are shown to give very accurate results, so in
deciding which to use the most important consideration is their relative ease given
the resources available.

What is quite remarkable is how well this method of estimating welfare measures
works in practice. In our examples using Ecuadorian data we ¯nd that estimates
of all poverty and inequality measures are very reliable for populations as small
as 5,000 households, a `town', and in many cases they are quite good even for
populations as small as 500 households. This is only one country, of course, and
one could imagine that we were particularly lucky in the extent of overlap in census
and survey variables on which to base the estimations. However, experience using
this method to calculate headcount measures in South Africa and Panama suggest
that Ecuador is not an unusual case (see Alderman, et.al.,2000). And given these
promising initial results there is also no reason to be passive consumers of existing
data sets. Governments and surveying bodies can be encouraged to design both
census and survey instruments to correspond more closely for this purpose { and
they are doing so. (Nicaragua and Jamaica are two of which we are aware.)

So now that we have estimates of poverty and inequality in thousands of `towns'
or other groups, what can we do with them? The possibilities seem almost endless.
For many questions, intra-regional cross-town analysis could considerably enrich
the existing results of cross-country studies - our Kuznets' regressions are just one
example. At the micro-level increasing attention is being paid to ways in which
welfare distributions within groups relate to socioeconomic and political outcomes.
Of the resulting multitude of theories, most remain to be tested. Again, our ¯ndings
regarding the level and heterogeneity of well-being at di®erent levels of government,
features which have been linked in theory to political capture and the targetting
of public resources, are just one illustration of what is possible. Merging these
measures with data on crime, education, health, voting patterns, unemployment,
and so on, will open up many promising avenues for further research.

8 References

Aghion, Phillipe and Patrick Bolton (1997) \A Theory of Trickle Down Growth

29



and Development," Review of Economic Studies. Vol. 64, no. 2, pp. 151-72.
Alderman, Harold, Miriam Babita, Jean O. Lanjouw, Peter Lanjouw, Nthabiseng

Makhatha, Amina Mohamed, Berk Ozler,, and Olivia Qaba (2000) \Is Census
Income an Adequate Measure of Household Welfare? Combining Census and
Survey Data to Construct a Poverty Map of South Africa." Mimeo. The
World Bank, Washington, D.C.

Alesina, Alberto and Dani Rodrik (1994) \Distributive Politics and Economic
Growth," Quarterly Journal of Economics. Vol. 109, pp. 465-90.

Angrist, Joshua D. and Alan B. Krueger (1992), \The E®ect of Age of School
Entry on Educational Attainment: An Application of Instrumental Variables
with Moments from Two Samples", Journal of the American Statistical As-
sociation. Vol. 87, pp. 328-36.

Arellano, Manuel and Costas Meghir (1992), \Female Labour Supply and on the
Job Search: an Empirical Model Estimated using Complementary Data Sets,"
Review of Economic Studies. Vol. 59, pp. 537-59.

Atkinson, Anthony B. and Andrea Brandolini (1999) \Promise and Pitfalls in the
Use of Secondary Datasets: Income Inequality in OECD Countries." Mimeo.
Oxford University.

Banerjee, Abhijit and Esther Du°o (1999) \Inequality and Growth: What Can the
Data Say?" Mimeo. MIT.

Banerjee, Abhijit and Andrew Newman (1993) \Occupational Choice and the Pro-
cess of Development," Journal of Political Economy. Vol 101, no. 1, pp.
274-98.

Bardhan, Pranab and Dilip Mookherjee (1999) \Relative Capture of Local and
Central Governments," Mimeo. Boston University.

Barro, Robert and Xavier Sala-i-Martin (1991) \Convergence Across States and
Regions," Brookings Papers on Economic Activity. no. 1, pp. 107-82.

Bramley, G. and G. Smart (1996), \Modelling Local Income Distributions in
Britain," Regional Studies. Vol. 30, pp. 239-55.

Bruno, Michael, Martin Ravaillion and Lyn Squire (1998) \Equity and Growth in
Developing Countries: Old and New Perspectives on the Policy Issues," in
Vito Tanzi and Ke-Young Chu, eds., Income Distribution and High-Quality
Growth (Cambridge: MIT Press).

Chesher, Andrew and Christian Schluter (1999) \Welfare Measurement and Mea-
surement Error". Mimeo. University College London.

Clarke, George R.G. (1995) \More Evidence on Income Distribution and Growth,"
Journal of Development Economics. Vol. 47, p. 403-28.

Cowell, Frank and Maria-Pia Victoria-Feser (1996) \Robustness Properties of In-
equality Measures," Econometria. Vol. 64, no. 1, pp. 77-101.

30



Cowell, Frank (1995) The Measurement of Inequality. 2nd ed. (Hemel Hempstead:
Prentice Hall/Harvester Wheatsheaf).

Deaton, Angus (1999) \Inequalities in Income and in Health," NBER Working
paper no. 7141.

Deaton, Angus and Christina Paxson (1994) \Intertemporal Choice and Inequal-
ity," Journal of Political Economy. Vol. 102, no. 3, pp. 437-67.

Deaton, Angus and Christina Paxson (1997) \The E®ects of Economic and Popu-
lation Growth on National Saving and Inequality," Demography. Vol. 34, no.
1, pp 97-114.

Deininger, Klaus and Lyn Squire (1996) \A New Data Set Measuring Income
Inequality," The World Bank Economic Review. Vol. 10, 565-91.

Fields, Gary (1989) \A Compendium of Data on Inequality and Poverty for the
Developing World," Cornell University. Mimeo.

Fields, Gary (2000) \Economic Growth and Inequality: A Review of the Empirical
Evidence," Chapter 3 in Distribution and Development: A New Look at the
Developing World. (Russel Sage Foundation and MIT Press).

Galor, Oded and Joseph Zeira (1993) \Income Distribution and Macroeconomics,"
Review of Economic Studies. Vol. 60, pp. 35-52.

Galasso, Emanuela and Martin Ravallion (2000) \Distributional Outcomes of a
Decentralized Welfare Program," Mimeo. The World Bank. Washington,
DC.

Hellerstein, Judith and Guido Imbens (1999) \Imposing Moment Restrictions from
Auxiliary Data by Weighting," Review of Economics and Statistics. Vol 81,
no 1, pp. 1-14.

Hentschel, Jesko, Jean O. Lanjouw, Peter Lanjouw and Javier Poggi (2000) \Com-
bining Census and Survey Data to Study Spatial Dimensions of Poverty: A
Case Study of Ecuador," The World Bank Economic Review (forthcoming).

Higgins, Matthew and Je®rey Williamson (1999) \Explaining Inequality the World
Round: Cohort Size, Kuznets Curves, and Openness," NBER Working Paper
no. 7224.

Keyzer, Michiel and Yuri Ermoliev (2000) \Reweighting Survey Observations by
Monte Carlo Integration on a Census," Stichting Onderzoek Wereldvoed-
selvoorziening. Sta® Working Paper no. 00.04, the Vrije Universiteit, Ams-
terdam.

Lusardi, Annamaria (1996) \Permanent Income, Current Income and Consump-
tion: Evidence from Two Panel Data Sets," Journal of Business and Economic
Statistics. Vol. 14, no. 1.

Murphy, Kevin M., Shleifer, Andrea and R.C. Vishny (1989) \Income Distribution,
Market Size and Industrialization," Quarterly Journal of Economics. Vol.

31



104, pp. 537-64.
Persson, Torsten and Guido Tabellini (1994) \Is Inequality Harmful for Growth,"

American Economic Review. Vol. 84, pp. 600-21.
Ravallion, Martin (1997) \Does Aggregation Hide the Harmful E®ects of Inequality

on Growth?" Mimeo. The World Bank, Washington, D.C.

9 Appendix

9.0.1 Part A: The Separation Approximation to the Atkinson Inequality
Measure and its Idiosyncratic Variance

The Atkinson inequality measure de¯ned in equation (34)

Wc = 1¡ 1
y

8<: 1

N

X
h2Hv

mhy
1¡c
h

9=;
1
1¡c

; (31)

is not additively separable. However, the transformation

B = [y(1¡Wc)]
1¡c =

1

N

X
h2Hv

mhy
1¡c
h (45)

is separable. Thus our computational strategy is to use the expected value of
B (given households' expected log per-capita expenditure, t) as the basis of our
separable approximation to ¹;

¹sep = 1¡ 1

E[yjt] (E[Bjt])
1

1¡c : (46)

¹sep 6= ¹ because of the non-linearity of Wc, but the error is small since both ¹y and
B are averages and therefore have highly concentrated distributions. As M! 1,
Wc and ¹sep tend to ¹ (that is, plim(Wc ¡ ¹) = plim(¹sep ¡ ¹) = 0): In fact,
the approximation error (¹sep¡ ¹) falls as O(¾2 =M). To prove this, note that
for a twice continuously di®erentiable function W (y) it follows from a second-order
Taylor approximation that

E[W (y)jt] ¼W (E[yjt]) + 1
2

X
h2Hv

@2W

@y2h
jE[yjt]Var(yhjth): (47)

Applying this approximation of the expectation consecutively to the functions

a(y) =

µ
1

y
¡ 1

E[yjt]
¶8<: 1

N

X
h2Hv

mh y
1¡c
h

9=;
1

1¡c

(48)
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and

b(z) =
1

E[yjt]
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9=;
1

1¡c
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E[yjt]

8<: 1
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mh E[zhjth]
9=;

1
1¡c

; (49)

(where zh = y
1¡c
h ) one sees that both E[a(y)] and E[b(z)] are O(¾2=M). Thus, so

is (¹sep ¡ ¹) = E[a(y)jt] + E[b(z)jt]: Take, for instance, a(y) :

·
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¾2

M
);

since the term in braces is bounded (a.s.) given that both x and m are bounded
(a.s.).

An approximation for VI which works very well for c ¸ 1:5 can be derived as
follows. Note that

VI = Var

0B@1
y

8<: 1

N

X
h2Hv

mhy
1¡c
h

9=;
1

1¡c

jt

1CA : (52)

For a general random variable v;the variance of v
1

1¡c can be approximated by the
¯rst-order Taylor approximation:

Var
³
v

1
1¡c
´
¼
"
E[v]

c
1¡c

1¡ c

#2
Var(v): (53)
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Thus
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Replacing y by E[yjt], and substituting,

VI ¼
·
(1¡ ¹sep)c
1¡ c

¸2
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·
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The variance on the RHS is
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(56)
To arrive at the formula given in the text (equation 37), note that when "h is

normally distributed, Var
¡
e"(1¡c)

¢
= e(1¡c)2¾2

h
e(1¡c)2¾2 ¡ 1

i
:

Using the notation of section 3.0.2, when D frequency classes are used to ap-
proximate the distribution of th the formula analogous to (55)becomes:

VI ¼
·
(1¡ ¹sep)c
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¸2 1

N2

DX
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[m2]d
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e¿d
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9.0.2 Part B: The Separation Approximation to the Gini Inequality
Measure

The Gini coe±cient in equation (38)

W = 1¡ 2

Ny

NX
i=1

q(i)

µ
1¡ i

N

¶
; (35)

can be rewritten as

W = ¡1 + 2

Ny

NX
i=1

q(i)
i

N
: (58)

The contribution of household h to the Gini is

wh =
2

Ny
yh

ih+mhX
i=ih+1

i

N
=
2yh
Ny

mh(2ih +mh + 1)

2N
; (59)
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where ih =
P
kmk1(yk < yh) is the number of individuals poorer than members of

household h.24 For large populations this expression is approximately equal to

wh ¼ 2

Ny
yhmh

ih
N
; (60)

since (mh + 1)=N ! 0, as M !1. De¯ne

H(y) =
1

N

X
h2Hv

mh1(yh < y): (61)

Then ih = NH(yh), and

W ¼ ¡1 + 2

Ny

X
h2Hv

yhmhH(yh): (62)

Because H(y) is an average of independent random variables, it concentrates on its
expectation:

E[H(y)jt] = 1

N

X
h2Hv

mhPfyh · y jthg: (63)

Accordingly, we use the following separable approximation to the expected Gini
coe±cient:

¹sep = 1¡ 2

NE[yjt]
X
h2Hv

mhyh(1¡E[H(yh)jt]): (64)

To use the approximation in practice one must compute E[H(y)jt] and an attractive
way of doing this is based on the observation that it can be interpreted as

E[H(y)jt] = Pf%+ " · ln yg; (65)

where % and " are independent random variables, with % taking values th with
probability mh=N . Hence E[H(y)jt] is actually the cumulative distribution func-
tion obtained from a convolution of the distributions of % and ", which can be
conveniently computed using Fourier transforms.

24Since y has a continuous distribution, two households have di®erent per capita expenditures
with probability one.
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9.0.3 Part C: Idiosyncratic Variance of the General Entropy Measure

A good approximation of the idiosyncratic variance, VI;of the general entropy mea-
sure is obtained by using a Taylor approximation of the true formula, in equation
(40),

Wc =
1

c(1¡ c)

8<:1¡ 1
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X
h2Hv

mh

µ
yh
y

¶c9=; ; (37)

taken around the vector of expected expenditure values, E[yjt]. Letting rW
represent the vector of partial derivatives evaluated at E[yjt] with elements

@Wc
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we have
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jE[yhjth]

¶2
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(67)
where the last equality holds under the assumption that the yh are independent.

When D frequency classes are used to approximate the distribution of t the
formula becomes:

VI ¼ 1
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(68)
This approximation works well for 0.1· c · 0:9:
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Table 1: Headcount Measure of Poverty

Number of households in populationa

Approachb Estimates 50 500 5,000 50,000
No. Draws R 4000 400 300 100

µµµµ̂ 0.537 0.522 0.515 0.516

Estimated Standard
Error

0.064 0.019 0.006 0.003

Due to:c Model 0.003 0.002 0.002 0.002
Idiosyncratic 0.064 0.019 0.006 0.002

(1)
“Truth”

Computation <0.001 <0.001 <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.011 0.004 0.001 <0.001

µµµµ̂ 0.534 0.524 0.516 0.518(2): approx t̂
sim εεεε Idiosyncratic Error 0.064  0.019 0.006 0.002

µµµµ̂ 0.535 0.521(3): true t̂
NI εεεε Idiosyncratic Error 0.064 0.019

µµµµ̂ 0.535 0.521 0.515 0.516(4): approx t̂
NI εεεε Idiosyncratic Error 0.064 0.019 0.006 0.002

Table Notes – Tables 1 to 7:
a  These are household groups drawn randomly from the same sampling frame without replacement.
Smaller ‘population’ samples are subsets of the larger ‘populations’.
b Approach (1) uses the actual t̂  distribution and simulation for ε.
  Approach (2) uses an approximate distribution for t̂  with D = 128, and simulation for ε with R=500.
  Approach (3) uses the actual t̂  distribution and numerical integration for ε.
  Approach (4) uses an approximate distribution for t̂ with D=128, and numerical integration for ε.
cThese are the estimated standard deviations for each separate piece of the total variance, VM, VI and VC.
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Table 2: FGT(1) Measure of Povertya

Number of households in population
Approach Estimates 50 500 5,000 50,000

No. Draws R 1000 300 300 100
µµµµ̂ 0.192 0.193 0.193 0.194

Estimated standard
error

0.031 0.009 0.003 0.002

Due to:c Model 0.002 0.002 0.002 0.002
Idiosyncratic 0.031 0.009 0.003 <0.001

(1)
“Truth”

Computation <0.001 <0.001 <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.006 0.002 <0.001 <0.001

µµµµ̂ 0.193 0.192 0.192 0.194(2): approx t̂
sim εεεε Idiosyncratic Error 0.030 0.009 0.003 0.001

µµµµ̂ 0.190 0.192(3): true t̂
NI εεεε Idiosyncratic Error 0.030 0.009

µµµµ̂ 0.190 0.192 0.193 0.194

Idiosyncratic Error 0.030 0.009 0.003 0.001
(4): approx t̂

NI εεεε
Upper S.E. 0.033 0.011 0.003 0.001

Notes: a,b,c) See Table notes following Table 1.

Table 3: FGT(2) Measure of Povertya

Number of households in population
Approach Estimates 50 500 5,000 50,000

No. Draws R 1000 300 300 100
µµµµ̂ 0.089 0.095 0.095 0.096

Estimated standard
error

0.019 0.006 0.003 0.002

Due to: c Model 0.002 0.001 0.002 0.002
Idiosyncratic 0.019 0.006 0.002 <0.001

(1)
“Truth”

Computation <0.001 <0.001 <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.004 0.001 <0.001 <0.001

µµµµ̂ 0.089 0.093 0.095 0.096(2): approx t̂
sim εεεε Idiosyncratic error 0.019 0.006 0.002 0.001

µµµµ̂ 0.089 0.094(3): true t̂
NI εεεε Idiosyncratic Error 0.020 0.006

µµµµ̂ 0.089 0.094 0.095 0.096

Idiosyncratic Error 0.020 0.007 0.002 <0.001
(4): approx t̂

NI εεεε
Upper S.E. 0.020 0.011 0.002 <0.001

Notes: a,b,c) See Table notes following Table 1.
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Table 4: Variance of log per-capita expenditurea

Number of households in population
Estimates 50 500 5,000 50,000

µµµµ̂ 0.569 0.522 0.561 0.567

Estimated standard
error

0.087 0.030 0.017 0.015

Due to: Model 0.016 0.014 0.015 0.015
Idiosyncratic 0.086 0.027 0.009 0.003

Notes: a) see Table notes following Table 1.

Table 5: Atkinson (2) Measure of Inequalitya

Number of households in population
Approach Estimates 50 500 5,000 50,000

No. Draws R 3000 300 300 100
µµµµ̂ 0.449 0.414 0.440 0.442

Estimated standard
error

0.051 0.018 0.009 0.006

Due to c: Model 0.007 0.005 0.006 0.006
Idiosyncratic 0.051 0.017 0.006 0.002

(1)
“Truth”

Computation <0.001 <0.001 <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.010 0.003 0.001 <0.001

µµµµ̂ 0.448 0.411 0.436 0.440(2): approx t̂
sim εεεε Idiosyncratic Error 0.047 0.017 0.005 0.002

µµµµ̂ 0.455 0.414 0.440 0.442(3): true t̂
NI εεεε Idiosyncratic Error 0.047 0.017 0.005 0.002

µµµµ̂ 0.455 0.414 0.440 0.443(4): approx t̂
NI εεεε Idiosyncratic Error 0.047 0.017 0.005 0.002

Notes: a,b,c) see Table notes following Table 1.
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Table 6: The Gini Coefficienta

Number of households in population
Approach Estimatesb 50 500 5,000 50,000

No. Draws R 1600 500
µµµµ̂ 0.464 0.419 0.441d 0.443

Estimated standard
error

0.039 0.013 0.008 0.007

Due to c: Model 0.009 0.006 0.006 0.007
Idiosyncratic 0.038 0.011 0.005 0.001

(1)
“Truth”

Computation <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.007 0.002 <0.001 <0.001

(3): true t̂
NI εεεε µµµµ̂ 0.472 0.420 0.441 0.443

(4): approx t̂
NI εεεε µµµµ̂ 0.472 0.420 0.441 0.443

Notes: a,b,c) see Table notes following Table 1.
d) The point estimate and model variance component are calculated using Approach (4) for

populations of 5,000 and 50,000.

Table 7: General Entropy (0.5) Measure of Inequalitya

Number of households in population
Approach Estimatesb 50 500 5,000 50,000

No. Draws R 7,000 700 300 100
µµµµ̂ 0.394 0.301 0.338 0.339

Estimated standard
error

0.078 0.021 0.014 0.011

Due to c: Model 0.016 0.009 0.011 0.011
Idiosyncratic 0.077 0.019 0.008 0.003

(1)
“Truth”

Computation <0.001 <0.001 <0.001 <0.001

No. Draws R 30 30 30 30(1): true t̂
sim εεεε Computation 0.015 0.004 0.001 <0.001

µµµµ̂ 0.392 0.302 0.336 0.337(2): approx t̂
sim εεεε Idiosyncratic Error 0.077 0.018 0.008 0.003

µµµµ̂ 0.399 0.302 0.338 0.339(3): true t̂
NI εεεε Idiosyncratic Error 0.077 0.018 0.008 0.003

µµµµ̂ 0.398 0.301 0.337 0.339(4): approx t̂
NI εεεε Idiosyncratic Error 0.077 0.018 0.008 0.003

Notes: a,b,c) see Table notes following Table 1.
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Table 8
Decomposition of Inequality in Rural Ecuador by Regional Sub-Group

General Entropy (0.5)

Level of Decomposition
No. of  sub-

groups
Within-Group

(%)
Between-Group

(%)
National 1 100 0
Sector and: Region (Costa, Sierra, Oriente) 3 96.5 3.5
                   Province 21 95.7 4.3
                   Canton 195 93.6 6.3
                   Parroquia 915 87.0 13.0
Household 955,985 0 100

Table 9
Kuznets Curve Regression:

Explaining Community (Parroquia) Level Inequality

Dependent Variable:  Atkinson (2) Inequality Measure
Augmented Modela

(t-value)
Parroquia-Level:

Basic Model
(t-value) Costa Sierra Oriente

Average Per-Capita
Consumption

 (hundreds of sucres)

0.18
(6.82)

0.50
(12.20)

0.40
(11.60)

0.69
(6.55)

Squared Per-Capita
Consumption

-0.052
(-3.74)

-0.181
(-8.90)

-0.150
(-9.84)

-0.453
(-5.35)

% Population 0-10 years
- 0.87

(14.75)
-0.10

(-1.26)
-0.48

(-3.19)

% Population 10-20 years
- 0.98

(13.20)
-0.30

(-3.75)
0.05

(0.28)

% Population 40-60 years
- -0.33

(-2.80)
0.14

(1.15)
-0.64

(-3.17)

% Population 60+  years
- 1.26

(11.14)
-0.64

(-6.81)
-0.71

(-2.48)
No. of Households

(thousands)
- -0.0013

(-1.60)
-0.0004
(-0.53)

-0.0002
(-0.03)

Constant 0.30
(29.54)

-0.36
(-8.48)

0.36
(6.88)

0.46
(4.33)

Adjusted R2 0.12 0.64
No. of  Observations 1325 1325

Note: a) Coefficient estimates are for the variable in the row interacted with a dummy variable for the
region indicated at the top of the column.  T-values are in parentheses.
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Table 10
Elasticity of Poverty with Respect to Consumption and Inequalitya

Parroquia-Level: Dependent Variable
Headcount

FGT(0) FGT(1) FGT(2)
 (log) Average Per-Capita

Consumption
-1.51

(-76.22)
-1.93

(-98.82)
-2.19

(-109.55)
(log) Atkinson (2) Inequality 1.20

(35.27)
1.74

(51.98)
2.16

(62.88)

% Population 0-10 years
-0.75

(-4.45)
-0.37

(-2.24)
-0.18

(-1.06)

% Population 10-20 years
1.14

(6.42)
0.90

(5.13)
0.80

(4.48)

% Population 40-60 years
-2.70

(-11.75)
-1.96

(-8.66)
-1.44

(-6.18)

% Population in 60+  years
1.46

(5.97)
1.10

(4.58)
0.79

(3.20)
No. of Households

(thousands)
0.0009
(0.50)

-0.00005
(-0.03)

-0.0015
(-0.80)

Adjusted R2 0.93 0.96 0.97
No. of  Observations 1325 1325 1325

Notes: a) (Unreported) coefficient estimates on region and sector dummy variables included in all
estimations were either insignificant or small.  T-values are in parentheses.
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Table A.1.
First-Stage Estimates for Per-Capita Expenditure: Rural Costaa

Parameter estimate P-value
Years of schooling of household

head
0.0106 0.33

Age of household head -0.0024 0.39
Years of schooling of  spouse of

head
0.0306 0.03

Age of spouse of head -0.0015 0.48
Years of schooling of:

eldest child (0 otherwise) 0.0040 0.73
2nd child (0 otherwise) -0.0068 0.72
3rd child (0 otherwise) -0.0094 0.72
4th child (0 otherwise) -0.0054 0.87
5th child (0 otherwise) 0.0154 0.67
6th child (0 otherwise) 0.1615 0.37
7th child (0 otherwise) -0.7031 0.13

Age of:
Eldest child (0 otherwise)

0.0113 0.01

2nd child (0 otherwise) 0.0010 0.88
3rd child (0 otherwise) 0.0028 0.80
4th child (0 otherwise) -0.0113 0.37
5th child (0 otherwise) -0.0121 0.48
6th child (0 otherwise) -0.0466 0.24
7th child (0 otherwise) 0.1978 0.11

Number of family members:
employed in agriculture 0.0679 0.08

Employed in low-productivity
non-agriculture

-0.0501 0.36

Employed in high productivity
non-agriculture 0.1534 0.02

Persons per bedroom -0.1197 0.34
Publically provided waste

collection 0.0062 0.03
Burn household waste 0.0011 0.13

Own connection to networked
sewage

0.0007 0.81

Shared connection to networked
sewage

0.0001 0.98

Own latrine 0.00027 0.76
Networked water connection -0.0015 0.47

Water from well -0.0007 0.28
Water delivered by truck 0.0002 0.87

Electricity connection 0.1805 0.01
Telephone connection 0.0120 <0.01

Walls of brick 0.0009 0.36
Walls of wood -0.0013 0.31

Cooking on gas fire 0.0041 0.17
Cooking with woodfuel 0.0045 0.14

Own shower/bath 0.0008 0.68
Rented home -0.0011 0.62
Owned home 0.0022 0.01

Indigenous language spoken 0.0030 0.12
Gender of household head 0.0020 0.16
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Family size -0.6718 <0.01
Use of septic tank 0.0008 0.80

Use of “blind well” for waste 0.0003 0.91
Family size squared 0.0662 <0.01
Family size cubed -0.0023 0.02

Persons per bedroom squared 0.0207 0.36
Persons per bedroom cubed -0.0010 0.40

R2 0.532
Number of observations 483

Notes:
a) Shapiro Wilk W test for normality of the disturbances:  P-value:  0.28 (after dropping two observations
with extremely high squared residuals).  We also do not reject homoskedasticity on the basis of a White
test: w = 53.5 ~χ(47).
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Figure 1
Rural Poverty by Canton: Headcount and Poverty Gap

0.13 - 0.48 0.04 - 0.17
0.48 - 0.54 0.17 - 0.20
0.54 - 0.59 0.20 - 0.24
0.59 - 0.64 0.24 - 0.28
0.64 - 0.85 0.28 - 0.45

Head count
index

Poverty gap
index

no data

Head count Poverty gap

Areas ranked
poorer using
head count

Areas ranked
poorer using
poverty gap

Notes:
1) The top two maps illustrate the geographical distribution of rural poverty across cantons based on

respectively, the headcount measure of poverty and the poverty gap index.
2) The shaded regions in the bottom two maps highlight those cantons where the rankings in the top two

maps are not the same.  The map on the left  highlights those cantons that are ranked lower (more
poor), according to the headcount measure, than they would be according to the poverty gap index.
The map on the right highlights those cantons that are ranked lower according to the poverty gap
index, than they would be according to the headcount measure.
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Figure 2
The Kuznets Curve in Ecuador’s Sierra Region

Kernel and Quadratic (with 95% C.I) Regression Models

Atkinson 2

Average Per Capita Expenditure Per Parroquia (1994 sucres/month)


