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1

Introduction

Don’t Panic. It’s the first helpful or intelligible thing
anybody’s said to me all day.

— Douglas Adams

The Hitchhiker’s Guide to the Galaxy (1979)

In this dissertation, we study denotational semantics of rewrite systems based on
terms. That is, we study maps from terms to some mathematical domain. More
specifically, we define classes of denotational semantics that satisfy certain inter-
esting properties.

Given that rewrite systems based on terms can be considered to represent pro-
gramming languages, where terms are programs, it follows that our approach to
denotational semantics differs from the usual approach. In the usual approach, one
picks a particular programming language and one defines denotational semantics
for this language. Subsequently, one studies the properties of the defined denota-
tional semantics. Examples of the usual approach can be found in the work by
De Bakker and De Vink [BV96], by Plotkin [Plo77], and by Winskel [Win93], who
all define denotational semantics for ‘toy’ languages. It can also be found in the
work by Jacobs and Poll [JP03] who define denotational semantics for the Java
programming language.

Before we can pursue the approach to denotational semantics as taken in this
dissertation, i.e., before we can define classes of denotational semantics for rewrite
systems, four questions need to be answered:

– Which notion of rewrite systems is employed?
– Which mathematical domain is chosen?
– Which objects from the domain are assigned to which terms?
– What are interesting properties of denotational semantics?

The above questions are answered in Section 1.1. In Section 1.2, we briefly survey
the results that have previously been obtained with respect to the approach to
denotational semantics as taken in this dissertation. Thereafter, in Section 1.3, we
discuss the contributions of this dissertation. Finally, in Section 1.4, we outline the
contents of the remaining chapters.

1.1 Domain of Discourse

We next discuss in turn the four questions mentioned above. We start with the
employed rewrite systems. Following this, we discuss the mathematical domain
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and the way in which we roughly want to assign objects to terms. Finally, we
discuss the properties we want our classes of denotational semantics to satisfy.

1.1.1 Rewrite Systems

With respect to rewrite systems based on terms, there are essentially two options:
Term Rewriting Systems (TRSs) and Higher-Order Rewriting Systems (HORSs).
Given the options, we prefer to use TRSs in most of this dissertation. The reason is
pragmatic. Thus far, very little theory has been developed regarding the approach
to denotational semantics as taken in this dissertation (see Section 1.2). Hence,
since TRSs are simpler than HORSs, as they do not allow variable binding, it
seems most sensible to first develop more theory regarding TRSs and to consider
HORSs only thereafter.

The relative preference of TRSs over HORSs is reflected by the contents of this
dissertation: In the main part of this dissertation, theory is developed for TRSs.
Only in the last chapter do we consider HORSs. More specifically, in the last chapter
Higher-Order Rewrite Systems (HRSs) are considered. These systems are a special
flavour of HORSs developed by Nipkow [Nip91].

Besides TRSs and HORSs, there is a third option with respect to the employed
rewrite systems: Abstract Reduction Systems (ARSs). However, as ARSs are not
based on terms, they have little to do with programming languages. Hence, we
disregard them here.

There is also a more pragmatic reason to disregard ARSs: Two of the properties
of denotational semantics we are interested in, congruence and sequentiality (see
Section 1.1.3), explicitly make use of terms. Hence, to be able to scrutinize these
properties in the context of ARSs requires a generalisation of the properties that
is independent of terms. Since the development of such independent definitions
is notoriously difficult, employing terms seems more sensible in view of obtaining
actual results regarding classes of denotational semantics.

1.1.2 Mathematical Domain and Denotational Semantics

Regarding the mathematical domain whose objects we assign to terms, we prefer
to take a minimalistic stance. That is, we prefer to choose a mathematical domain
we have already available, thereby avoiding the introduction of any new domains.

Given that we consider rewrite systems based on terms, our minimalistic stance
implies that there is one obvious choice for the mathematical domain: the set of
terms. This immediately suggests a possible way of assigning objects to terms,
taken into account the reduction rules of the considered (confluent) rewrite sys-
tem: Assign to each term its normal form with respect to the considered rewrite
system. Unfortunately, this way of assigning objects to terms has one very impor-
tant shortcoming: not every term needs to have a normal form.

The above shortcoming may manifest itself in one of two ways: either terms
grow unbounded or they have non-erasable subterms whose reducts always reduce
to a redex. The first way in which the shortcoming may manifest itself can be
observed when considering the following rewrite rule:
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c→ f(c) .

The rewrite rule yields the reduction:

c→ f(c)→ f(f(c))→ f(f(f(c)))→ · · · ,

where the dots mean that the reduction continues ad infinitum. Obviously, as c
occurs as a subterm of each of the terms in the reduction, we have that none of the
terms is a normal form.

The second way in which the shortcoming may manifest itself can be observed
when considering the following two rewrite rules:

a→ b

b→ a

These rewrite rules yield the reduction:

a→ b→ a→ b→ · · · .

That is, both a and b reduce to themselves in two steps. Since these are the only
possible reductions, neither a nor b has a normal form.

In the case of unbounded growth, we can think of the result of the reduction
as a term consisting of an infinite nesting of f symbols. Obviously, we can deal
with this manifestation of not having a normal form by allowing terms that are
infinitely large. That is, by allowing infinite terms or infinite trees (that are finitely
branching). The intuition is that terms that grow unbounded represent programs
that return an infinite amount of data in an infinite amount of time. Hence, they
should be represented in the chosen mathematical domain. Of course, by allowing
terms to be infinite, the usual inductive definition of terms no longer suffices.

In the case of the subterm whose reducts always reduce to a redex, we can
deal with the lack of having a normal form by replacing the ‘offending’ subterm by
⊥, where ⊥ is some fresh symbol. With respect to the example, this implies that
both a and b must be replaced by ⊥. The intuition is that terms whose reducts
always reduce to a redex represent programs that do not return any result. Hence,
we cannot distinguish between such programs from the outside and we may assign
identical objects to these programs.

Given the above, we choose as our mathematical domain the set of infinite terms
over the assumed signature extended with a fresh symbol ⊥. Hence, a denotational
semantics in this dissertation is understood to be a map from a set of terms to a
set of infinite terms. The map assigns to each term its ‘normal form’, which may
be infinite and which may only exist in case certain subterms are replaced by ⊥.
Of course, factually, this only defines a single denotational semantics. We obtain
different denotational semantics by also replacing by ⊥ certain selected subterms
whose reducts do not always reduce to a redex.

The denotational semantics presented above derives from a particular approach
to denotational semantics that occurs in the λβ-calculus: The so-called Böhm trees
[Lév78, Bar84], Lévy-Longo trees [Lév75, Lon83], and Berarducci trees [Ber96] each
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define a denotational semantics in the above sense. The trees differ in the particular
subterms replaced by ⊥.

Collectively we call the trees of the λβ-calculus the Böhm-like trees, named after
the Böhm trees, which are most well-known. This also explains the title of this
dissertation: Since the denotational semantics we consider derives from the Böhm-
like trees of the λβ-calculus, we prefer to call our denotational semantics Böhm-like
trees for TRSs and Böhm-like trees for HORSs. Hence, in general, Böhm-like trees
for rewriting.

1.1.3 Properties

Since our approach to denotational semantics originates in the Böhm-like tree ap-
proach of the λβ-calculus, it is natural to derive the properties we want our denota-
tional semantics to satisfy from the properties satisfied by (some of) the Böhm-like
trees of the λβ-calculus. This is exactly what we do.

Denoting the set of terms and infinite terms respectively by Ter and Ter∞ and
representing a denotational semantics in our sense by BLT : Ter → Ter∞, we
briefly discuss the properties derived from the Böhm-like trees of the λβ-calculus
that are studied in this dissertation.

Model. The λβ-calculus, and also TRSs and HORSs, are essentially (higher-order)
equational logics in which the equations have been directed. Correspondingly, we
have the property of the denotational semantics being a model of the rewrite system
under consideration. By definition of a model, this actually implies the existence
of two properties:

Preservation. This property states that the object assigned to a term is preserved
under rewriting:

s→∗ t implies BLT(s) = BLT(t) ,

where s, t ∈ Ter and where→∗ denotes the transitive-reflexive closure of the rewrite
relation.

Congruence. This property states that equality of objects assigned to terms is
preserved under contexts:

BLT(s) = BLT(t) implies BLT(C[s]) = BLT(C[t]) ,

where s, t ∈ Ter and where C[�] is a context. Remark that this property requires
the syntactic notion of a context, as hinted at in Section 1.1.1 when ruling out
ARSs.

Technical Properties. Proving that a certain denotational semantics satisfy con-
gruence often involves the study of certain properties of a technical nature. A pre-
requisite for the formulation of these properties is the existence of an order on both
terms and infinite terms, where the assumed signature is extended with a fresh
symbol ⊥. In both instances ⊥ must be the least element with respect to the order
and, denoting the order by 4, it must also hold that f(s1, . . . , sn) 4 f(t1, . . . , tn)
if and only if si 4 ti for all 1 6 i 6 n.
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The technical properties are as follows:

Monotonicity. This property states that the denotational semantics preserves the
order on terms:

s 4 t implies BLT(s) 4 BLT(t) ,

where s, t ∈ Ter.

Continuity. This property states that the denotational semantics is continuous:

BLT(s) =
⊔

{BLT(t) | t 4 s} ,

where s ∈ Ter, where
⊔

denotes the least upper bound, and where it is of course
required that the least upper bound exists. The property derives from the order
theoretic notion of continuity, as explained, e.g., by Amadio and Curien [AC98].

Syntactic Continuity. Assuming that the set of terms can be embedded in the
set of infinite terms by means of a map ι, this property states that contexts are
continuous:

BLT(C[s]) =
⊔

{BLT(C[t]) | ι(t) 4 BLT(s)} ,

where s ∈ Ter, where C[�] is a context, and where it is again required that the least
upper bound exists. The property is easily shown to imply congruence. Contrary,
however, it is possible to define denotational semantics that satisfy congruence but
not syntactic continuity. As in the case of continuity, this property derives from the
order theoretic notion of continuity, as also explained by, e.g., Amadio and Curien
[AC98].

Sequentiality. Some rewrite systems are inherently non-concurrent. Hence, they
are sequential. The sequentiality property expresses this fact. The actual definition
of the property is quite complex. Therefore, it is not described here any further. A
thorough explanation can be found in Chapter 8. Note, however, that the property
depends on the presence of terms, as hinted at in Section 1.1.1 when ruling out
ARSs.

1.2 Previous Work

The previous work concerning Böhm-like trees for rewriting, i.e., concerning the
approach to denotational semantics as outlined above, can roughly be divided into
two categories depending on the way in which the trees are actually defined. We
deal with each of these in turn.

Direct Approximants. To define Böhm-like trees by means of direct approxi-
mants requires the definition of a map that assigns to each term a ‘partial’ term.
Here, a partial term consists of that part of a term that also occurs in its ‘normal
form’. The Böhm-like tree of a term is now defined as the set of partial terms as-
signed to the reducts of the term under consideration. Different Böhm-like trees are
obtained by varying the definition of the map that assigns partial terms to terms.

Regarding the direct approximant definition, the following results have previ-
ously been obtained:
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Preservation. Boudol [Bou85], Blom [Blo01], and Ariola and Blom [AB02] each
have defined Böhm-like trees satisfying preservation under rewriting. In the case of
Boudol’s work, this concerns Böhm-like trees for TRSs. In the case of both Blom’s
work and the work by Ariola and Blom, this concerns Böhm-like trees for ARSs.

Monotonicity and Continuity. The Böhm-like trees defined by Boudol [Bou85] do
not only satisfy preservation under rewriting, but also monotonicity and continuity.

Congruence and Syntactic Continuity. Ariola [Ari96] has defined a concrete Böhm-
like tree for TRSs which satisfies both congruence of Böhm-like tree equality and
syntactic continuity. Blom [Blo01] has done the same for Combinatory Reduction
Systems (CRSs), a particular kind of HORSs developed by Klop [Klo80].

Infinitary Rewriting. To define Böhm-like trees by means of infinitary rewriting
requires the extension of the considered rewrite system with both infinite terms and
infinite reductions. Moreover, it requires the addition of a number of rewrite rules
ensuring that each term has a normal form. As such, the object assigned to a term
is defined as the normal form of the term with respect to the extended system.
Different Böhm-like trees are obtained by varying the rules which ensure that each
term has a normal form.

Regarding the infinitary rewriting definition, the following result has previously
been obtained:

Preservation and Congruence. Kennaway, Van Oostrom, and De Vries [KOV99]
have defined Böhm-like trees that satisfy both preservation under rewriting and
congruence.

1.3 Contributions

The two most important contributions of this dissertation are as follows:

– Employing direct approximants, a number of Böhm-like trees for TRSs are de-
fined. Incrementally, the trees satisfy preservation under rewriting, monotonicity
and continuity, congruence and syntactic continuity, and sequentiality. The def-
initions are such that most results previously obtained are generalised.

– A comparison is made between Böhm-like trees defined by means of direct ap-
proximants and Böhm-like trees defined by means of infinitary rewriting. It is
shown that all Böhm-like trees definable by means of infinitary rewriting can
also be defined by means of direct approximants.

In addition to the above, the following contributions are also made:

– Three well-known representations of infinite terms are compared with the help
of coalgebras. It is shown that the three definitions are equivalent. In addition, it
is shown that the same holds for three particular maps defined on infinite terms.

– Known definitions and properties of the three Böhm-like trees of the λβ-calculus
are surveyed. In addition, a number of Böhm-like trees for PCF and the λβη-
calculus are presented.
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– The Böhm-like trees for TRSs, as defined by means of direct approximants,
are extended to HRSs as far as preservation of rewriting, monotonicity, and
continuity are concerned.

1.4 Outline

The dependencies between the chapters that make up the remainder of this dis-
sertation are depicted in Figure 1.1. The dotted arrows in the figure denote a
dependency on properties satisfied by the Böhm-like trees of the λβ-calculus. The
arrows labelled with a section number denote a dependency on a particular section.

2

3

3.2

3.4

4

5

6

7 8 9

Figure 1.1. Dependencies between chapters

The contents of each of the chapters is roughly as follows:

Chapter 2. The notions and notation employed in the other chapters of this dis-
sertation are established.

Chapter 3. A general coalgebraic definition of infinite terms is given and it is shown
for three well-known representations of infinite terms that they define final coalge-
bras.

Chapter 4. The known Böhm-like trees of the λβ-calculus and their properties are
surveyed. In addition, a number of Böhm-like trees for PCF and the λβη-calculus
are presented.

Chapter 5. A general definition of Böhm-like trees for TRSs is presented of which
it is shown that it satisfies preservation under rewriting. In addition, Böhm-like
trees are defined that satisfy monotonicity and continuity.

Chapter 6. Böhm-like trees are defined which satisfy both congruence and syntactic
continuity.
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Chapter 7. The Böhm-like trees defined in Chapters 5 and 6 are compared with
the Böhm-like trees for TRSs defined by means of infinitary rewriting.

Chapter 8. Böhm-like trees are defined that are sequential. Sequentiality is also
defined in this chapter, as it is not used anywhere else in this dissertation.

Chapter 9. The general definition of Böhm-like trees for TRSs, as presented in
Chapter 5, is extended to HRSs. The same is done for Böhm-like trees that satisfy
monotonicity and continuity.



2

Preliminaries

This is incredible! I heard rumors about it before!

— Douglas Adams

The Hitchhiker’s Guide to the Galaxy (1979)

We establish the notions and notation employed throughout this dissertation. It is
explicitly not the aim of this chapter to explain in depth each notion introduced.
If the reader wishes to gain more knowledge of a particular subject, he or she is
advised to consult the cited works.

2.1 Sets, Strings, and Topologies

In this section, we introduce the preliminaries regarding sets, strings, and topolo-
gies. With respect to sets Halmos’ classic textbook [Hal60] suffices for this disser-
tation. Of course, any basic text on axiomatic set theory, such as Chapter 9 of
Shoenfield’s book [Sho67], will also do. With respect to strings any textbook on
formal language theory may be consulted, e.g., those by Linz [Lin96] and by Davis,
Sigal, and Weyuker [DSW94]. Finally, with respect to topologies any textbook on
general topology, such as the one by Kelley [Kel75], suffices.

2.1.1 Sets

The following table summarises the notation employed for particular sets:

Notation Meaning

∅ the empty set
℘(X) the power set of X
X × Y the Cartesian product of X and Y
X − Y the difference of X and Y

N the set of natural numbers including 0
R the set of real numbers

R
+ the set of positive real numbers

In addition to the above, we use #X to denote the cardinality of a set X. We
call a set finite if it has finite cardinality. Otherwise, we call it infinite.

By α, β, γ, and κ we denote arbitrary ordinals. A limit ordinal is any ordinal
α such that α 6= 0 and such that there does not exist an ordinal β with α = β + 1.
We denote the first limit ordinal by ω.
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Remember that each ordinal α denotes the set of all ordinals smaller than α.
In accordance, we sometimes write β ∈ α for β < α and we also employ α as the
(co)domain of certain maps.

Given a map f : X → Y and a set Z ⊆ Y , the inverse image of Z under f is
defined as:

f−1[Z] = {x ∈ X | f(x) ∈ Z} .

A (binary) relation over sets X and Y is a set R ⊆ X × Y . If (x, y) ∈ R, then
we write x R y. The converse of a relation R over X and Y is the relation over Y
and X denoted R−1. We have x R−1 y if and only if y R x.

A sequence over a set X is a map from some ordinal α to X. We denote a
sequence by (xκ)κ<α. Moreover, we denote (xκ)κ<α(γ) by xγ for all γ < α. A
sequence (xκ)κ<α is called finite if α < ω.

A subsequence of (xκ)κ<α is a sequence (yκ)κ<β such that there exists a map
ι : β → α with yγ = xι(γ) for all γ < β, and ι(γ1) < ι(γ2) if and only if γ1 < γ2. A
subsequence is called an initial sequence, if ι(γ) = γ for all γ < β.

2.1.2 Strings

A string over a setX is a finite sequence over X. In this caseX is called an alphabet.
The set of all strings over X is denoted X∗. The empty string, i.e., the sequence
whose domain is 0, is denoted ε. Usually, we write x0x1 · · ·xn−1 for a string (xi)i<n.
The length of a string s = (xi)i<n, denoted |s|, is n.

Given s = (xi)i<m and t = (yi)i<n, we define the concatenation of s and t,
denoted s · t, as the sequence (zi)i<m+n such that zj = xj for all j < m and
zj = yj−m for all m 6 j < m + n. The concatenation of an element x ∈ X and a
string s is defined as the concatenation of the string (xi)i<1, where x0 = x, and
s. The empty string is the neutral element with respect to concatenation. That is,
ε · s = s = s · ε.

For each s ∈ X∗ and n ∈ N we inductively define the exponentiation of s to n,
denoted sn, as:

sn =

{

ε if n = 0

s · sn−1 if n > 0

Strings have an associated prefix order : The string s is a prefix of a string t,
denoted s 6 t, if there exists a string u such that s · u = t. If s 6 t, we also write
t > s. Moreover, if s 6 t and s 6= t, then we write s < t and t > s. We say that s
and t are parallel, denoted s ‖ t, if neither s 6 t nor t 6 s.

Given a string s and a natural number n, we define the truncation to n of s,
denoted s[n], as:

s[n] =

{

ε if n = 0 or s = ε

x · (s′[n− 1]) if n > 0 and s = x · s′

Lifting the above definition to sets of strings, we define the truncation to n of set
S of strings, denoted S[n], as:

S[n] = {s[n] | s ∈ S} .
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Finally, given a set of strings S ⊆ X∗ and an element x ∈ X, define the set of
suffixes of S with respect to x, denoted S|x, as:

S|x = {s ∈ X∗ | x · s ∈ S} .

2.1.3 Topologies

A topology for a set X is a set T ⊆ ℘(X) such that:

1. ∅,X ∈ T ,
2. if O ⊆ T such that O is finite, then

⋂

O ∈ T , and
3. if O ⊆ T , then

⋃

O ∈ T .

The pair (X, T ) is called a topological space. The elements of T are called open
sets. A set C ⊆ X is called closed if X −C is open. The set ℘nc(X) is the set of all
non-empty closed subsets of X. If Y ⊆ X, then the closure of Y , denoted Cl(Y ),
is defined as:

Cl(Y ) =
⋂

{C | C closed and Y ⊆ C}

It is a well-known fact that Y is closed if and only if Y = Cl(Y ).
Given a topological space (X, T ), we call a set B ⊆ ℘(X) a basis of T , if:

1. B ⊆ T , and
2. for every O ∈ T there exists a B′ ⊆ B such that O =

⋃

B′∈B′ B′.

For each basis B, if B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists a B ∈ B such
that x ∈ B ⊆ B1 ∩B2.

A typical example of a basis is the one of the order topology for an ordinal α.
The basis is the set of all open intervals. That is, it consists of the sets:

(β, γ) = {κ ∈ α | β < κ < γ}

(β,→) = {κ ∈ α | κ > β}

(←, β) = {κ ∈ α | κ < β}

(←,→) = α

The topological space consisting of an ordinal α and the order topology for α is
called the ordinal space of α.

If (X, TX) and (Y, TY ) are topological spaces, then a map f : X → Y is called
continuous if for all O ∈ TY it holds that f−1[O] ∈ TX . Moreover, f is called a
homeomorphism if f is an isomorphism and if both f and f−1 are continuous.

Given a set X, a map d : X ×X → R is called a metric or distance function on
X, if for all x, y, z ∈ X it holds that:

1. d(x, y) > 0,
2. d(x, y) = 0 if and only if x = y,
3. d(x, y) = d(y, x), and
4. d(x, y) + d(y, z) > d(x, z) (triangle inequality).

A metric space is a pair (X, d) such that d is a metric or distance function on X.
In the remainder of this dissertation we are mostly interested in metric spaces.
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Given a set X, the discrete metric dd is defined for all x, y ∈ X as:

dd(x, y) =

{

0 if x = y

1 if x 6= y

A proof that dd is actually a metric can be found in any text on metric topology.
Given a metric space (X, d), we define for all x ∈ X and r ∈ R

+ the open ball
of x with radius r:

B(x, r) = {y ∈ X | d(x, y) < r} .

The set B(x, r) is sometimes also called the open sphere of x with radius r.
It is a well-known fact that each metric space (X, d) defines a topological space

(X, Td), where O ∈ Td if and only if there exists for every x ∈ O a real number
r ∈ R

+ such that B(x, r) ⊆ O. Moreover, it is well-known that the set:

{B(x, r) | r ∈ R
+ and x ∈ X}

is a basis of Td.
Given a metric space (X, d) such that there exists an r ∈ R

+ with d(x, y) < r
for all x, y ∈ X, the Hausdorff metric dH over the set ℘nc(X) is defined as:

dH(Y,Z) =
l
{r | Y ⊆ Vr(Z) and Z ⊆ Vr(Y )} ,

where
d

denotes the greatest lower bound (see also Section 2.3) and where Vr is
defined as:

Vr(Y ) = {x ∈ X | d(x, Y ) < r}

with d(x, Y ) as follows:

d(x, Y ) =
l
{d(x, y) | y ∈ Y } .

A proof that the Hausdorff metric actually is a metric can, e.g., be found in Kelley’s
book [Kel75] and also in the book by De Bakker and De Vink [BV96].

We next define convergence, limits, and continuity. The definitions slightly gen-
eralise the usual ones by allowing sequences of arbitrary ordinal length. Although
we shall not explore this matter any further here, the definitions given below, and
the usual ones too, are instances of even more general definitions. These definitions
are based the notion of a net. More on this subject can be found in Kelley’s book
[Kel75].

Definition 2.1.1. Let (X, d) be a metric space, α an ordinal, and (xκ)κ<α a se-
quence over X. The sequence is convergent, if there exists an element x ∈ X such
that for every ε ∈ R

+ an ordinal βε < α exists with d(x, xγ) < ε for all βε < γ < α.
The element x, also denoted lim (xκ)κ<α, is called a limit of the sequence.

Alternatively, but equivalently, x is called a limit if there exists for every ε ∈ R
+

an ordinal βε < α such that:

{xγ | βε < γ < α} ⊆ B(x, ε) .

It is a well-known fact that a sequence can have at most one limit. Hence, we can
speak of the limit of a sequence, if the sequence has a limit.
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Definition 2.1.2. Let (X, d) be a metric space and α an ordinal. A sequence
(xκ)κ<α of elements of X is continuous, if for every limit ordinal β < α it holds
that xβ is the limit of the initial sequence (xκ)κ<β of (xκ)κ<α.

Convergence of a continuous sequence of length α can be expressed by means
of continuity: There must exist a continuous sequence of length α+1 such that the
original sequence is an initial sequence.

That the definition of continuity is correct, given the definition of continuous
functions, is the contents of the following proposition:

Proposition 2.1.3. Let (X, d) be a metric space. A sequence (xκ)κ<α is continu-
ous if and only if the map f from the ordinal space of α to (X, Td) defined for all
β < α by f(β) = xβ is continuous.

Proof. Let (xκ)κ<α be a continuous sequence and suppose B(x, r) is an open ball
of (X, d). By definition of the sequence, f−1[B(x, r)] consists of a union of open
intervals. Hence, as the set of open intervals is a basis of the order topology on α,
we have that f−1[B(x, r)] is open. Since the set of open balls forms a basis of Td,
it follows that f is continuous.

Now suppose f is continuous and let γ < α be a limit ordinal. For an arbitrary
ε ∈ R

+ consider the open ball B(f(γ), ε). By definition of continuity and the order
topology, we have that f−1[B(f(γ), ε)] consists of a number of open intervals. As
γ ∈ f−1[B(f(γ), ε)], there must exist an open interval (βε, γ) ⊆ f−1[B(f(γ), ε)].
Hence, {xκ | βε < κ < γ} ⊆ B(f(γ), ε). As ε was arbitrary, we have that f(γ) = xγ
is the limit of the initial sequence (xκ)κ<γ . ut

Besides continuous sequences, we also need Cauchy sequences. Contrary to the
definition of continuous sequences, we do not generalise the definition of Cauchy
sequences to arbitrary ordinals. This is not required in the remaining chapters of
this dissertation. For a generalised definition based on nets, see again Kelley’s book
[Kel75].

Definition 2.1.4. Let (X, d) be a metric space. A sequence (xκ)κ<ω of elements
of X is called a Cauchy sequence of X, if there exists for every ε ∈ R

+ an ordinal
βε < ω such that d(xγ1 , xγ2) < ε for all βε < γ1, γ2 < ω. The metric space is called
complete if every Cauchy sequence has a limit.

Each metric space (X, dd), with dd the discrete metric, is complete.
Given that a map f : X → Y between metric spaces (X, dX) and (Y, dY ) is

called isometric if for all x1, x2 ∈ X it holds that dX(x1, x2) = dY (f(x1), f(x2)),
the following theorem is well-known:

Theorem 2.1.5. Let (X, d) be a metric space. There exists a complete metric space
(X?, d?) and an isometric map e : (X, d) → (X?, d?) such that (X?, d?) is unique
up to isometric homeomorphisms.

The set X? can be defined as the set of all equivalence classes of Cauchy se-
quences over X, where two Cauchy sequences (xκ)κ<ω and (yκ)κ<ω are equal if
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and only if limκ→ω d(xκ, yκ) = 0. The equivalence class with (xκ)κ<ω as a rep-
resentative is denoted J(xκ)κ<ωK. As such, d?(J(xκ)κ<ωK, J(yκ)κ<ωK) is defined as
limκ→ω d(xκ, yκ). The value of d?(J(xκ)κ<ωK, J(yκ)κ<ωK) does not depend on the
chosen representatives.

For a proof of the above, see, e.g., Theorem 6.27 in Kelley’s book [Kel75]. The
metric space (X?, d?) is called the metric completion of (X, d).

2.2 Term Rewriting

In this section, we give the relevant definitions regarding term rewriting. The section
consists of two parts: The first part deals with terms. The second part deals with
rewriting. Relevant books on term rewriting are Baader and Nipkow’s textbook
[BN98] and the book by Terese [Ter03].

2.2.1 Terms

A signature Σ is a set of elements called function symbols. Each function symbol
is assigned a natural number, called the arity of the symbol. Function symbols of
arity zero are called nullary function symbols. Function symbols of arity one and
two are called respectively unary and binary function symbols.

If f ∈ Σ, we denote the arity of f by ar(f). We also write:

Σn = {f ∈ Σ | ar(f) = n} .

By f , g, h, . . . we denote arbitrary function symbols and by a, b, c, . . . arbitrary
nullary function symbols.

The set Ter(Σ, V ) of terms over a signature Σ and a countably infinite set of
variables V is inductively defined as follows:

– x ∈ Ter(Σ, V ), if x ∈ V , and
– f(s1, . . . , sn) ∈ Ter(Σ, V ), if n ∈ N, f ∈ Σn, and s1, . . . , sn ∈ Ter(Σ, V ).

By x, y, z, . . . we denote arbitrary variables and by s, t, . . . arbitrary terms. We
call s ∈ Ter(Σ, V ) linear if each variable occurs at most once in s.

We next define a number of maps on Ter(Σ, V ). In the definition the set N
∗,

i.e., the set of all the strings over the natural numbers, is employed.

Definition 2.2.1. Let s, t ∈ Ter(Σ, V ) and let p ∈ N
∗.

– The root symbol of s, denoted root(s), is defined as:

root(s) =

{

x if s = x and x ∈ V

f if s = f(s1, . . . , sn)

– The set of variables of s, denoted Var(s), is inductively defined as:

Var(s) =

{

{x} if s = x and x ∈ V
⋃n
i=1 Var(si) if s = f(s1, . . . , sn)
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– The set of positions of s, denoted Pos(s), is inductively defined as:

Pos(s) =

{

{ε} if s ∈ V

{ε} ∪
⋃n
i=1{i · p | p ∈ Pos(si)} if s = f(s1, . . . , sn)

– If p ∈ Pos(s), then the subterm of s at position p, denoted s|p, is inductively
defined as:

s|p =

{

s if p = ε

si|q if p = i · q and s = f(s1, . . . , sn)

where |p| is called the depth of s|p in s.
– If p ∈ Pos(s), then the replacement by t of the subterm at position p in s, denoted
s[t]p, is inductively defined as:

s[t]p =











t if p = ε

f(t1, . . . , tn) if s = f(s1, . . . , sn), p = i · q, ti = si[t]q,

and tj = sj for all j 6= i

Let Σ be a signature and � a fresh nullary function symbol, i.e., nullary function
symbol that does not occur in Σ. A (one-hole) context is a term over the signature
Σ ∪ {�} in which � occurs precisely once. We denote a context by C[�]. We call
the unique nullary function symbol � in C[�] the hole of the context. Given a term
s, we denote by C[s] the context C[�] with � replaced by s. In terms of subterm
replacement: C[s] = (C[�])[s]p if C[�]|p = �.

A substitution is a map σ : V → Ter(Σ, V ), with σ(x) 6= x for only a finite
number of variables x. Substitutions are homomorphically extended to terms. That
is, the application of σ to a term s, denoted σ(s), is defined as:

σ(s) =

{

σ(x) if s = x and x ∈ V

f(σ(s1), . . . , σ(sn)) if s = f(s1, . . . , sn)

In some cases we employ x[x1 := s1;x2 := s2] to denote the substitution σ defined
as:

σ(x) =

{

si if x = xi for i ∈ {1, 2}

x otherwise

A renaming is a substitution σ such that for all x ∈ V it holds that σ(x) ∈ V .
A unifier of terms s and t is a substitution σ such that σ(s) = σ(t) under

assumption that Var(s) ∩ Var(t) = ∅. A unifier σ is said to be more general than
a unifier τ , if there exists a substitution ρ such that σ ◦ ρ = τ . A unifier is a most
general unifier (mgu) is it is more general than all other unifiers. It is a well-known
fact that the existence of a unifier implies the existence of a most general unifier.

We say that s and t overlap if one of the following two cases holds:

– a position p ∈ Pos(s) exists such that s|p 6∈ V and s|p and t unifiable, or
– a position p ∈ Pos(t) exists such that t|p 6∈ V and t|p and s unifiable.

In the first case we also say that t overlaps s at p ∈ Pos(s). In the second case we
also say that s overlaps t at p ∈ Pos(t).



16 2 Preliminaries

2.2.2 Rewriting

We first introduce the relevant notions from abstract rewriting. Thereafter, the
relevant notions from term rewriting are introduced.

An Abstract Reduction System (ARS) is a pair A = (A, {→i | i ∈ I}) with
A a set and each →i, indexed by I, a relation on A × A called a rewrite relation.
In later chapters we mostly employ ARSs with #I = 1. We denote these ARSs
by A = (A,→). Only in one instance are we interested in ARSs with #I > 1 (in
Section 5.5). In this case we actually have #I = 2 and we write A = (A,→i,→j)
for some i and j.

Let A = (A,→) be an ARS. The reflexive and transitive-reflexive closures of→
are denoted respectively →= and →∗. Moreover, (←) = (→)−1, (=←) = (→=)−1,
and (∗←) = (→∗)−1. In case a→∗ b, we say that a can be reduced or rewritten to
b and that b is a reduct of a.

With respect to ARSs, the following properties are important in this disserta-
tion:

Definition 2.2.2. Let A = (A,→) be an ARS. The ARS A is subcommutative,
if for every b1 ← a → b2 there exist a′ ∈ A such that b1 →

= a′ =← b2 (see Figure
2.1). Moreover, the ARS A is confluent, if for every b1

∗← a →∗ b2 there exist
a′ ∈ A such that b1 →

∗ a′ ∗← b2 (see Figure 2.2).

a

b1

=

b2

=

a′

Figure 2.1. Subcommutativity

a
∗∗

b1

∗

b2

∗

a′

Figure 2.2. Confluence

It is a well-known that an ARS A = (A,→) is confluent if it is subcommutative.
See, e.g., Lemma 2.7.4 in Baader and Nipkow’s book [BN98].

Let A = (A,→) be an ARS. A finite reduction or finite rewrite sequence of
length n ∈ N, denoted a0 →

n an, is a sequence (ai)i<n+1 of elements of A such
that ai → ai+1 for all i 6 n. The finite reduction is said to start in a0 and end
in an. Obviously, a →∗ b if and only if there exists a finite reduction which starts
in a and ends in b. An infinite reduction or infinite rewrite sequence is a sequence
(ai)i<ω of elements of A such that ai → ai+1 for all i ∈ N. A reduction or rewrite
sequence is either a finite or an infinite reduction.

An ARS A = (A,→) is called terminating if all reductions are finite. An element
a ∈ A is called a normal form of A if there exists no b ∈ A such that a → b. By
NFA we denote the set of all normal forms of A. An ARS A = (A,→) is called
normalising if for each a ∈ A there exists a reduction starting in a and ending in
a normal form of A.
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A rewrite rule is a pair of terms (l, r) ∈ Ter(Σ, V )× Ter(Σ, V ), denoted l→ r,
such that root(l) 6∈ V and Var(l) ⊇ Var(r). The term l is called the left-hand
side of the rewrite rule and r is called the right-hand side. A rewrite rule is called
left-linear, if its left-hand side is linear.

Given a rewrite rule l → r and a substitution σ, we call σ(l) an l → r-redex.
If s = C[σ(l)] for some l → r-redex and context C[�], with C[�]|p = �, then we
say that an l → r-redex, or simply a redex, occurs at position p in s. Moreover,
if q ∈ Pos(s), then q is said to occur in the redex pattern of the l → r redex at
position p in s whenever q > p and not q > p · p′ with p′ ∈ Pos(l) such that
root(l|p′) ∈ Var(l).

A pair of terms (s, t), denoted s → t, defines a rewrite step over Ter(Σ, V ), if
s = C[σ(l)], t = C[σ(r)], and if l→ r is a rewrite rule. An l→ r-redex is contracted
in such a step. A set of rewrite steps defines a rewrite relation, denoted →.

A Term Rewriting System (TRS) over a signature Σ and a set of rewrite rules
R is a pair R = (Σ, R). We call R left-linear, if all its rewrite rules are left-linear.
The rewrite relation of R, denoted either →R or →, is the set of all possible
rewrite steps over Ter(Σ, V ) with respect to the rewrite rules in R. Obviously,
R′ = (Ter(Σ, V ),→R) is an ARS.

We call a term s root-active if every reduct of the term can be reduced to a redex.
Moreover, we call s root-stable if we cannot rewrite s to a redex. We call a subterm
s|p root-stable if for all q 6 p we have that s|q is root-stable. Remark that root-
stability is undecidable. This follows easily by the undecidability of termination.

Three classes of TRSs are of particular interest to us: (weakly) orthogonal TRSs,
constructor TRSs, and approximations.

To define (weakly) orthogonal TRSs, we first define critical pairs. To do so,
suppose l1 → r1 and l2 → r2 are rewrite rules. If, after renaming the variables in the
rules such that Var(l1)∩Var(l2) = ∅, it holds that l2 overlaps l1 at p ∈ Pos(l1) with
σ as mgu and either the rewrite rules are different or p 6= ε, then 〈σ(l1[r2]p), σ(r1)〉
is called a critical pair. The critical pair is called trivial if σ(l1[r2]p) = σ(r1).

We have the following definition:

Definition 2.2.3. A TRS R = (Σ, R) is called orthogonal if all rewrite rules are
left-linear and if there are no critical pairs. The TRS is called weakly orthogonal
if all rewrite rules are left-linear and if all critical pairs are trivial.

Our interest in (weakly) orthogonal TRSs has to do with the well-known fact these
TRSs are confluent.

We next define constructor TRSs:

Definition 2.2.4. Given a TRS R = (Σ, R), define the following two sets:

– the set D = {root(l) | l→ r ∈ R} of defined symbols, and

– the set C = Σ−D of constructors.

A rule f(s1, . . . , sn) → r is called a constructor rule if f ∈ D and s1, . . . , sn ∈
Ter(C, V ). Moreover, a TRS is called a constructor TRS if all its rewrite rules are
constructor rules.
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Approximations are defined as follows, where it is no longer required for a
rewrite rule l→ r to satisfy Var(l) ⊇ Var(r):

Definition 2.2.5. Let R and S be TRSs over the same signature. The TRS S is
called an approximation of R, if →∗

R ⊆ →
∗
S and NFR = NFS .

Above, →∗
R and →∗

S denote the transitive-reflexive closures of →R and →S , re-
spectively. Observe, by definition of approximations, that each reduction to normal
form in R can be ‘mimicked’ by S. That is, for each reduction to normal form in
R there exists a reduction to normal form in S.

Example 2.2.6. Let Σ be a signature that consists of the nullary function symbols
a and b and let R = (Σ, R) with a→ b the sole element of R. The TRS S = (Σ, S),
with a → x the sole element of S, is an approximation of R. To see this, first
remark that the only reduction possible in R, i.e., a → b, can be mimicked in S
by defining σ(x) = b and considering σ(a) → σ(x). Next, remark that all normal
forms of R, i.e., all variables and the function symbol b, are also normal forms of
S, becuase the left-hand side of the rewrite rule a→ x applies neither to variables
nor to b.

Additional details on approximations can be found in the papers by Jacquemard
[Jac96] and by Durand and Middeldorp [DM97].

We next define descendants:

Definition 2.2.7. Let R = (Σ, R) be an orthogonal TRS, s, t ∈ Ter(Σ, V ), and
p ∈ Pos(s). Let s→ t be such that an l → r-redex is contracted at position q in s.
The set of (static) descendants of p across s→ t, denoted p/(s→ t), is defined as:

p/(s→ t) =











{p} if p < q or p ‖ q

{q · qr · qp | r|qr
= l|ql

} if p = q · ql · qp with l|ql
∈ V

∅ otherwise

Let s0 →
n sn be a reduction of length n. The set of (static) descendants of p across

s0 →
n sn, denoted p/(s0 →

n sn), is defined as:

p/(s0 →
n sn) =

{

{p} if n = 0
⋃

q∈p/(s0→msm) q/(sm → sn) if n = m+ 1

With the help of descendants, we can define inside-out reductions:

Definition 2.2.8 (Inside-Out). Let R = (Σ, R) be an orthogonal TRS, and let

s0 →p1 s1 →p2 · · · →pi
si →pi+1

· · · →pn
sn

be a reduction such that the subscript pi denotes the position of the redex contracted
in si−1 → si. The reduction is called inside-out if there do not exist 1 6 j < k 6 n
with a redex at a position q > pj in sj−1 such that pk ∈ q/(sj−1 →

k−j sk−1).

For all n ∈ N, we denote by s →∗
io t, reductions s →n t which are inside-out.

With respect to inside-out reductions, Ariola [Ari96, Theorem 4.22] proves:
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Lemma 2.2.9. Let R = (Σ, R) be an orthogonal TRS and let s, t ∈ Ter(Σ, V ). If
s→∗ t, then there exist r ∈ Ter(Σ, V ) such that s→∗

io r
∗← t (see Figure 2.3).

s
∗

∗

io r

t

∗

Figure 2.3. Lemma 2.2.9

2.3 Partial Orders

We next discuss the notions and notation needed with respect to partial orders.
More details on partial orders can be found in the textbooks by Stoltenberg-Hansen,
Lindström, and Griffor [SHLG94], by Davey and Priestley [DP02], and by Amadio
and Curien [AC98].

By P = (P,v) we denote a partial order v over a set P , i.e., a reflexive,
transitive, and anti-symmetric relation over P . If Q ⊆ P , then Q is said to be
consistent, if there exist p ∈ P such that for all q ∈ Q it holds that q v p.

An element p ∈ Q ⊆ P is called the least element of Q, if it is the unique
element of Q such that for all q ∈ Q it holds that p v q. The element p is called
the greatest element of Q, if it is the unique element of Q such that for all q ∈ Q
it holds that q v p.

An element p ∈ P is called the least upper bound of a set Q ⊆ P , if p is the
least element of {q ∈ P | ∀r ∈ Q : r v q}. Moreover, p is called the greatest lower
bound of Q, if p is the greatest element of {q ∈ P | ∀r ∈ Q : q v r}. The least
upper bound of Q, respectively the greatest lower bound of Q, is denoted

⊔

Q,
respectively

d
Q. In case Q = {p, q} we also write p t q, respectively p u q.

The least upper bound of Q, respectively the greatest lower bound of Q, is
called the maximum of Q, respectively the minimum of Q, if it is an element of
Q. If it exists, we denote the maximum of Q, respectively the minimum of Q, by
maxQ, respectively minQ.

We call a non-empty set D ⊆ P directed, if for all p, q ∈ D there exist r ∈ D
such that p v r and q v r. Moreover, we call a non-empty set D ⊆ P downward
closed, if for all p v q with p ∈ P and q ∈ D we have p ∈ D.

A partial order P = (P,v) is called a Complete Partial Order (CPO), if P has
a least element and if every directed subset of P has a least upper bound.

A partial order P = (P,v) is called a Conditional Upper Semi-lattice with Least
element (CUSL), if P has a least element and if every consistent subset of P has
a least upper bound. A set I ⊆ P is an ideal if it is downward closed and if every
{p, q} ⊆ I is consistent and has a least upper bound in I.

For every directed set D ⊆ P in a CUSL P = (P,v) we can define an ideal,
denoted ↓D, called the downward closure of D:
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↓D = {p ∈ P | ∃q ∈ D : p v q} .

Moreover, if P∞ = {I ⊆ P | I is an ideal of P} and if ⊆ denotes subset inclusion,
then P∞ = (P∞,⊆) is a CPO. The partial order P∞ is called the ideal completion
of P. The least upper bound of a directed set Q ⊆ P∞ is

⋃

Q. It must be remarked
that the partial order P∞ is actually a domain, see, e.g., Theorem 2.3 in the
textbook by Stoltenberg-Hansen, Lindström, and Griffor [SHLG94]. We do not
define domains here, as we do not make use of them.

2.4 Category Theory

In this section, we discuss the category theoretical notions and notation needed in
Chapter 3. Most of the needed material is discussed in the textbook by Barr and
Wells [BW99]. However, this textbook does not discuss coalgebras, which we also
require. A good introduction to coalgebras is the tutorial on this topic by Jacobs
and Rutten [JR97].

A category C is a collection of objects and morphisms. Each morphism has
two associated objects called its domain and codomain. Given a morphism f with
domain A and codomain B, we write f : A→ B. Each object A has an associated
morphism 1A : A → A called its identity. Given morphisms f : A → B and
g : B → C, it is possible to compose f and g into a morphism g ◦ f : A → C.
Composition must satisfy the following two requirements, given the morphisms f ,
g, and h with appropriate domains and codomains:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

f ◦ 1A = f = 1B ◦ f

An example of a category is the category of sets, denoted Set, which has sets as
objects and total maps between sets as morphisms. The composition of morphisms
in the category of sets is the usual composition of total maps.

An isomorphism is a morphism f : A→ B, such that there exists a morphism
f−1 : B → A for which it holds that:

f−1 ◦ f = 1A

f ◦ f−1 = 1B

It is a well-known fact that f−1 is unique.
A final object, denoted 1, is an object such that there exists for each object A

a unique morphism with A as domain and the final object as codomain. Terminal
objects are unique up to isomorphisms. In Set each singleton set is a terminal
object. We employ the symbol ∗ to denote the unique member of the singleton set
we choose to represent 1.

Given objects A and B, the product of A and B is defined as an object, denoted
A×B, together with a pair morphisms, denoted π1 : A×B → A and π2 : A×B → B,
such that there exists for each object C and for each pair of morphisms f : C → A
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C

〈f,g〉

f g
A × B

π1 π2

A B

Figure 2.4. Product diagram

and g : C → B a unique morphism 〈f, g〉 that makes the diagram in Figure 2.4
commute.

Products, if they exist, are unique up to isomorphisms. The morphisms π1 and
π2 are called projections. In Set, the product of two objects always exists and
corresponds to the Cartesian product, as the notation already suggests.

Analogous to the product of a pair objects, we can define the product of n
objects A1, . . . , An. We write

∏n
i=1Ai for the object of the product and πi with

1 6 i 6 n for the projections. As in the case of the product of two objects, products
of n objects are unique up to isomorphisms. If Ai = A for all 1 6 i 6 n, we write
An, where A0 = 1 and A1 = A.

For notational convenience, we write A×Bn for a product
∏n+1
i=1 Ci with C1 = A

and Cj = B for all 2 6 j 6 n + 1. In addition, we write A × Bm × C × Dn for
∏m+n+2
i=1 Ei where E1 = A, Ej = B for all 2 6 j 6 m+ 1, Em+2 = C, and Ek = D

for all m+ 3 6 k 6 m+ n+ 2.
Given objects A and B, the sum of A and B is defined as an object, denoted

A + B, together with a pair morphisms, denoted inl : A → A + B and inr : B →
A + B, such that there exists for each object C and for each pair of morphisms
f : A → C and g : B → C a unique morphism [f, g] that makes the diagram in
Figure 2.5 commute.

A

inl

f

B

inr

g
A + B

[f,g]

C

Figure 2.5. Sum diagram

Sums, if they exist, are unique up to isomorphisms. In Set, the sum of two
objects always exists and corresponds to the disjoint union.

One particular example of a sum is the sum of the terminal object with itself,
i.e., 1 + 1. We denote 1 + 1 by 2. In the case of Set, we have that 2 is a set with
precisely two elements. We denote the two elements by 0 and 1.
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Let I be some set, the sum of objects Ai for all i ∈ I is defined analogous to
the sum of a pair objects. We write

∐

i∈I Ai for the object of the sum and ini with
i ∈ I for the morphisms. As in the case of the sum of two objects, sums of n objects
are unique up to isomorphisms.

Let C and D be two categories. A functor F from C to D is a pair of maps,
one from the objects of C to the objects of D and one from the morphisms of C
to the morphisms of D, both denoted F , such that:

– if f : A→ B a morphism of C, then F (f) : F (A)→ F (B) a morphism of D,
– F (1A) = 1F (A) for all objects A of C, and
– if f ◦ g a morphism of C, then F (f ◦ g) = F (f) ◦ F (g) a morphism of D.

A functor F is called an endofunctor, if D is equal to C. In this case we say that
F is an endofunctor over C.

Let F be an endofunctor over a category C. The category of F -algebras is
the category whose objects are pairs (A,α), called F -algebras, with A an object
of C and α : F (A) → A, and whose morphisms, called F -homomorphisms, are
morphisms of C such that f is a morphism from (A,α) to (B, β) if the following
diagram commutes:

F (A)
α

F (f)

A

f

F (B)
β

B

An F -algebra is called initial if there exists a unique homomorphism to any other
F -algebra. It is a well-known fact that the morphism that is part of an initial algebra
is an isomorphism. In addition, initial algebras are unique up to isomorphisms.

Dual to F -algebras, the category of F -coalgebras is the category whose objects
are pairs (A,α), called F -coalgebras, with A an object of C and α : A → F (A),
and whose morphisms, also called homomorphisms, are morphisms of C such that
f is a morphism from (A,α) to (B, β) if the following diagram commutes:

A
α

f

F (A)

F (f)

B
β

F (B)

An F -coalgebra is called final, if there exists a unique homomorphism from any
other F -coalgebra. It is a well-known fact that the morphism that is part of a
final coalgebra is an isomorphism. In addition, final coalgebras are unique up to
isomorphisms.

Let F be an endofunctor over Set. A bisimulation between F -coalgebras (A,α)
and (B, β) is an F -coalgebra (R, ρ) together with a pair of homomorphisms π1 :
(R, ρ)→ (A,α) and π2 : (R, ρ)→ (B, β) such that R ⊆ A×B.

It is a well-known fact that for each pair of homomorphisms f : (A,α)→ (B, β)
and g : (A,α) → (C, γ) it holds that {(f(a), g(a)) | a ∈ A} is a bisimulation.
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Moreover, for all coalgebras (A,α) and (B, β) there exists a greatest bisimulation,
denoted ∼, which is the union of all other bisimulations between (A,α) and (B, β).
If (A,α) = (B, β), then ∼ is a symmetric relation. Rutten [Rut00, Section 5] gives
proofs of all these facts. A generalisation to categories other than Set can be found
in Hughes’ dissertation [Hug01].
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3

Infinite Terms

Infinite: Bigger than the biggest thing ever and then some.
Much bigger than that in fact, really amazingly immense,

a totally stunning size, “wow, that’s big”, time.
Infinity is just so big that by comparison,

bigness itself looks really titchy.

— Douglas Adams

The Restaurant at the End of the Universe (1980)

In this chapter, we introduce infinite terms, sometimes called trees or infinite trees.
Both infinite first-order terms and infinite λ-terms are introduced.

Infinite Terms. We can think of infinite terms as consisting of a root symbol and
a finite number of subterms, where the number of subterms is equal to the arity
of the root symbol and where the subterms are again infinite terms. As such, the
process of recursively selecting subterms in an infinite term may continue forever.
However, the process does not necessarily continue forever, as nullary function
symbols and variables may occur.

The above implies that infinite terms differ from the terms defined in Chap-
ter 2. Selecting subterms in those terms always ends after a finite number of steps,
because the terms are finite. Of course, since selecting subterms of infinite terms
does not necessarily continue forever, we may consider the set of terms defined in
Chapter 2 to be a subset of the set of infinite terms.

Given that the set of (finite) terms defined in Chapter 2 can be considered to
be a subset of the set of infinite terms, it might be said that the adjective ‘infinite’
in infinite terms somewhat inappropriate. Although this is the case, we stick with
the adjective for two reasons:

– Using the adjective is common practice throughout the literature. Hence, it
avoids confusion.

– In later chapters we need to be able to distinguish between the terms defined in
Chapter 2 and the terms defined in the current chapter. The adjective provides
a way to accomplish this goal.

We sometimes do omit the adjective if it is clear from the context that infinite
terms are intended.

Coalgebras. Formally, we can define infinite terms as the final coalgebra of some
functor. To understand why this is the case, one needs to be familiar with the
usual interpretation of coalgebras in the category of sets and total functions. In
this category, a morphism α of a coalgebra (A,α) is usually considered to be a map
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that deconstructs the elements of A in their respective components. Hence, as we
can think of infinite terms as consisting of their respective components, the root
symbols and subterms, we are essentially dealing with a coalgebra. Requiring the
coalgebra to be final makes sure that all infinite terms are represented.

Supposing that there are multiple representations of infinite terms, we obviously
want to prove that the representations are isomorphic. A coalgebraic approach
facilitate such a proof: If we show for all representations of infinite terms that they
are final coalgebras of the same functor, then the result follows immediately, as
final coalgebras are isomorphic (see Section 2.4).

Overview. We introduce infinite (first-order) terms in two steps. In the first step,
as presented in Section 3.1, we define infinite terms as a final coalgebra of a certain
functor. We do not give a concrete set theoretic representation of the final coalge-
bra. However, we do provide, for infinite terms, categorical definitions of positions,
subterms, and replacements of subterms. That is, we define the relevant maps in a
categorical fashion.

In the second step, which encompasses Sections 3.2, 3.3, and 3.4, we discuss
three representations of infinite terms that occur throughout the literature. The
three representations can be summarised as ideal completion, partial functions,
and metric completion. In all three cases we show that a final coalgebra for the
functor introduced in Section 3.1 is defined. We also show that the usual defini-
tions of positions, subterms, and replacements of subterms that exist for the three
representations coincide with the categorical definitions.

In Section 3.5, we introduce infinite λ-terms, following the same two steps as
in the case of infinite first-order terms. Infinite λ-terms are required in Chapter 4,
where the Böhm-like trees of the λ-calculus are surveyed.

It must be noted that is not required for the remaining chapters of this disser-
tation to have knowledge of all material presented in this chapter. Only in Chapter
4 is knowledge of most of the material required. In Chapters 5 through 9, with the
exception of Chapter 7, only knowledge of Sections 3.2.1 and 3.2.2 is required. In
Chapter 7, knowledge of Sections 3.2.1, 3.2.2, and 3.4.2 is required.

Throughout this chapter we assume that Σ is an arbitrary signature and that V
is a countably infinite set of variables. Moreover, to explain the definitions we make
use of the signature of Combinatory Logic (CL). That is, the signature defined as
ΣCL = {S,K, I, ·} with S,K, and I nullary function symbols and · a binary function
symbol. As usual, given terms s and t, we shall write s t instead of ·(s, t). Moreover,
assuming left-associativity, parentheses are omitted accordingly. For more details
on CL see, e.g., Barendregt’s book [Bar84] or the book by Terese [Ter03].

3.1 Coalgebraic Definitions

In Section 3.1.1 we define the functor whose final coalgebra represents infinite
terms. In the same section we also define a functor that has as its final coalgebra
all sets of strings over N, i.e., ℘(N∗). Strings over N are needed to define positions
of infinite terms.
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In Sections 3.1.2, 3.1.3, and 3.1.4, we give categorical definitions of positions,
subterms, and replacements of subterms that apply to infinite terms. In the defini-
tions, the functors defined in Section 3.1.1 are employed.

Throughout the current section we assume we are working with Set, the cate-
gory of sets and total maps. Doing so avoids the need to generalise the concepts of
signatures and variables. Generalising the concepts is very well possible, as shown,
e.g., by Robinson [Rob94] and Gahni, Lüth, De Marchi, and Power [GLMP03].

Working with Set also allows for some notational conveniences. For example,
given a set X, we can write x ∈ X instead of x : 1 → X. Moreover, given sets X
and Y such that X ∩ Y = ∅, we can differentiate between the elements of X + Y ,
as coming from X and Y , by writing x ∈ X and y ∈ Y .

3.1.1 Infinite Terms and Sets of Positions

Infinite Terms. As is well-known, see, e.g., Turi’s dissertation [Tur96], it is pos-
sible to define Ter(Σ, V ), i.e., the set of (finite) terms over Σ and V , as the initial
algebra of the term functor :

FΣ(X) = V +
∐

n∈N

Σn ×X
n ,

which is obviously an endofunctor over Set.

Example 3.1.1. Given the signature ΣCL, the term functor becomes:

FΣCL
(X) = V + {S,K, I} × 1 + {·} ×X2 ,

where {S,K, I}×1 is actually {S,K, I}×X0. We denote the elements of {S,K, I}×
1 by S, K, and I instead of by (S, ∗), (K, ∗), and (I, ∗), for the second member of
each pair is always ∗.

Given an endofunctor, it is well-known, see, e.g., the tutorial by Jacobs and
Rutten [JR97], that ‘infinite structures’ are obtained through dualisation. That is,
by considering final coalgebras instead of initial algebras. For this reason, we define
the set of infinite terms as the final coalgebra of the term functor.

We denote the final FΣ-coalgebra by:

(Ter∞(Σ, V ), ϕ∞) ,

where ϕ∞ is a map from Ter∞(Σ, V ) to FΣ(Ter∞(Σ, V )). In Sections 3.2, 3.3, 3.4
we discuss three representations of the final coalgebra.

To avoid notational clutter, we usually denote (Ter∞(Σ, V ), ϕ∞) plainly by
Ter∞(Σ, V ). Moreover, by S, T , . . . we denote arbitrary elements of Ter∞(Σ, V ).
This allows us to keep them apart from the elements of Ter(Σ, V ), which we denote
by s, t, . . . (see Section 2.2.1).

Recall that a morphism α of a coalgebra (A,α) is usually considered to be a
map that deconstructs the elements of A in their respective components. As such,
there is a very clear interpretation of the map ϕ∞. If we apply ϕ∞ to an infinite
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term which is not a variable, then we obtain the root symbol f ∈ Σn and the n
subterms, i.e., we obtain an element of Σn × Ter

∞(Σ, V )n. Otherwise, if we apply
ϕ∞ to a variable, then we obtain that variable, i.e., an element of V .

As we shall see, the concrete definitions of ϕ∞ as given in Sections 3.2, 3.3, and
3.4 agree with above description.

Remark that nothing in the above interpretation of ϕ∞ forbids the occurrence
of a certain function symbol at the root of an infinite term obtained by repeatedly
applying ϕ∞ and selecting one of the acquired subterms. Hence, the elements of
Ter∞(Σ, V ) can actually represent infinite objects: There is no reason why the
process of repeatedly applying ϕ∞ and selecting subterms should terminate.

Example 3.1.2. Assume Iω denotes the infinite term that is the unique solution of
the following equation:

x = Ix .

We have:
ϕ∞(KIω) = (·,K, Iω) .

Hence, · is the root symbol and K and Iω are its two subterms. We also have:

π1 ◦ ϕ∞(KIω) = ·

π2 ◦ ϕ∞(KIω) = K

ϕ∞ ◦ π3 ◦ ϕ∞(KIω) = (·, I, Iω)

The term Iω can be defined in a coalgebraic fashion. To see this, consider the
following commutative diagram:

1

m

ϕ1

FΣCL
(1)

FΣCL
(m)

Ter∞(ΣCL, V )
ϕ∞

FΣCL
(Ter∞(ΣCL, V ))

where ϕ1 is defined as:
ϕ1(∗) = (·, I, ∗) .

When thinking of ∗ as representing the variable x, it is obvious we can think of ϕ1

as representing the recursive equation.
Because Ter∞(ΣCL, V ) is a final coalgebra, there exists a unique homomorphism

m that makes the above diagram commute. Since m has 1 as its domain, it singles
out a unique element of Ter∞(ΣCL, V ). Whence, m can be seen the unique solution
to the recursive equation and it thus defines Iω.

We do not give a formal treatment of recursive equations, like the one in the
above example, as we do not use them in the remaining chapters of this dissertation.
However, it should be noted that commutative diagrams similar to the one above
are employed below to define positions, subterms, and replacements.

To finalise our discussion of infinite terms, as far as this section goes, we give
a concrete definition of a bisimulation for FΣ-coalgebras. The definition is easily
seen to instantiate the general definition given in Chapter 2.
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Definition 3.1.3. Let (A,α) and (B, β) be FΣ-coalgebras. A bisimulation between
(A,α) and (B, β) is a relation R ⊆ A×B such that a R b implies:

1. α(a), β(b) ∈ V and α(a) = β(b), or
2. α(a) ∈ Σn ×A

n and β(b) ∈ Σn ×B
n for some n ∈ N and:

– π1 ◦ α(a) = π1 ◦ β(b), and
– πi+1 ◦ α(a) R πi+1 ◦ β(b) for all 1 6 i 6 n.

Sets of Positions. As in the case of (finite) terms, we denote the positions of
infinite terms by strings over N. We do not need strings of infinite length: Between
the root of an infinite term and each of its function symbols, there can only be a
finite number of other function symbols. Of course, since an infinite term can be
infinitely large, the set of all positions of an infinite term can be infinite.

Subsets of N
∗, as described above, are of course elements of ℘(N∗). Since we

want to define, in Section 3.1.2, a homomorphism from infinite terms to ℘(N∗) in a
fashion similar to Iω in Example 3.1.2, we need to define ℘(N∗) as the final coalgebra
of some functor. Rutten [Rut98, Rut00] provides a solution to this problem.

Given a set A, Rutten defines the functor:

DA(X) = 2×XA .

All DA-coalgebras can be viewed as deterministic automata with A as input alpha-
bet. That is, DA-coalgebras are pairs (S, 〈o, t〉), with S a set of states, o : S → 2 an
output function, and t : S → SA a transition function. With regard to o, we assume
that a state x ∈ S is accepting if o(x) = 1 and that it is non-accepting otherwise.

A final DA-coalgebra is the deterministic automaton (℘(A∗), 〈oA, tA〉), with oA
defined as:

oA(X) =

{

0 if ε 6∈ X

1 if ε ∈ X

and, with tA defined, for each a ∈ A, as:

tA(X)(a) = X|a ,

where X|a denotes the set of suffixes of X with respect to a.
In case of A = N, the final coalgebra specialises to:

(℘(N∗), 〈oN, tN〉) .

Hence, we have a final coalgebra representing ℘(N∗), as we required.
To see how we can employ the final coalgebra to represent some subset of N

∗,
consider the following example:

Example 3.1.4. Suppose we want to represent the set {ε, 1, 2, 21} ⊆ N
∗. To do so,

assume 3 = {a, b, c} and consider the following commutative diagram:

1 + 3
〈o3,t3〉

m

DN(1 + 3)

DN(m)

℘(N∗)
〈oN,tN〉

DN(℘(N∗))
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with o3 defined as:

o3(x) =

{

0 if x ∈ 1

1 if x ∈ 3

and with t3 defined as:

t3(x)(i) =















































∗ if x = ∗

b if x = a and i = 1

c if x = a and i = 2

∗ if x = a and i 6= 1 and i 6= 2

∗ if x = b

b if x = c and i = 1

∗ if x = c and i 6= 1

The pair (1+3, 〈o3, t3〉) represents the deterministic automaton depicted in Figure
3.1. The states a, b, and c are accepting states and the state ∗ is a trap state (see,
e.g., Linz’ book [Lin96]). For each state, the outgoing arrows are labelled with
pairwise disjoint subsets of N. A transition along one of the arrows is possible,
whenever one of the elements in its label is encountered.

a

N−{1,2}

{1}

{2}

b

N

c

N−{1}

{1}

∗

N

Figure 3.1. Automaton accepting {ε, 1, 2, 21} from state a

Since ℘(N∗) is a final coalgebra, there exists a unique homomorphism m from
1 + 3 to ℘(N∗). It is readily shown that m is the following map:

m(x) =



















∅ if x = ∗

{ε, 1, 2, 21} if x = a

{ε} if x = b

{ε, 1} if x = c

Hence, given the map a : 1→ 3 defined by a(∗) = a, we can represent {ε, 1, 2, 21}
by m ◦ a(∗).

Remark 3.1.5. As is easily inferred from the definition in the next section, not every
subset of N

∗ corresponds to the set of positions of some term. The sets obtained
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are always downward closed with respect to the prefix order on strings. The use of
℘(N∗) stems from the wish to be explicit about the fact that each set of positions
is a subset of N

∗.

3.1.2 Positions

In this section, we define the morphism Pos : Ter∞(Σ, V )→ ℘(N∗) that maps each
infinite term to the sets of its positions. Given an infinite term S, this means that
Pos maps S to the set that contains both ε and i · p for all subterms πi+1 ◦ϕ∞(S)
of S and positions p ∈ Pos(πi+1 ◦ ϕ∞(S)). This is similar to the map Pos defined
for (finite) terms in Section 2.2.1.

To define Pos, we mimic Example 3.1.4, where 3 is replaced by Ter∞(Σ, V ). As
such, we first define a deterministic automaton on 1 + Ter∞(Σ, V ), which implies
the existence of a homomorphism Pos′ : 1+Ter∞(Σ, V )→ ℘(N∗). Thereafter, Pos
is defined based on Pos′.

In analogy to Example 3.1.4, we employ the unique element ∗ ∈ 1 as a trap
state. The trap state is used to deal with two phenomena:

– If a variable occurs at the root, then there are no subterms. This means ε is the
only position. Hence, only ε should be accepted and the trap state should be
reached in any other case.

– If a function symbol of arity n occurs at the root of S, then there are no subterms
other than πi+1 ◦ ϕ∞(S) for all 1 6 i 6 n. Hence, besides accepting ε the only
transitions to other accepting states should be to states accepting the positions
of the subterms πi+1 ◦ϕ∞(S) for all 1 6 i 6 n. Once again, the trap state should
be reached in any other case.

Hence, the trap state is reached in case a certain string over N does not correspond
to a position of a subterm. Moreover, any other state, i.e., any infinite term, is an
accepting state.

To define Pos′, consider the following commutative diagram:

1 + Ter∞(Σ, V )

Pos′

〈op,tp〉
DN(1 + Ter∞(Σ, V ))

DN(Pos′)

℘(N∗)
〈oN,tN〉

DN(℘(N∗))

where op is defined as:

op(x) =

{

0 if x ∈ 1

1 if x ∈ Ter∞(Σ, V )

and where tp = [t1p, t
T
p ] with:

t1p(x)(i) = ∗
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tTp (x)(i) =











∗ if ϕ∞(x) ∈ V

∗ if π1 ◦ ϕ∞(x) ∈ Σn with i > n

πi+1 ◦ ϕ∞(x) if π1 ◦ ϕ∞(x) ∈ Σn with 1 6 i 6 n

Since ℘(N∗) is a finalDN-coalgebra, there exists a unique homomorphism Pos′ from
1+Ter∞(Σ, V ) to ℘(N∗). Hence, we can define the following map from Ter∞(Σ, V )
to ℘(N∗), which we denote by Pos:

Pos(S) = Pos′ ◦ inr(S) ,

where S ∈ Ter∞(Σ, V ).
By definition of 〈op, tp〉, it is fairly easy to see that Pos satisfies the requirements

given at the beginning of this section. However, to obtain some insight in why
Pos actually defines the set of positions of an infinite term, consider the following
example:

Example 3.1.6. In case of Iω ∈ Ter∞(ΣCL, V ), as defined in Example 3.1.2, it is
obvious that we should have:

Pos(Iω) = {2n, 2n · 1 | n ∈ N} ,

where 20 = ε, 21 = 2, and 22 = 22, etc. That the equality actually holds, is
straightforwardly checked with the help of Figure 3.2. The figure depicts a fragment
of the automaton accepting Pos′(x) for each x ∈ 1+Ter∞(ΣCL, V ), as follows easily
by inspection of the definition of 〈op, tp〉.

Iω

{2}

N−{1,2}

{1}

I

N

∗

N

Figure 3.2. Fragment of the automaton accepting Pos′(x)

3.1.3 Subterms

We next define for each S ∈ Ter∞(Σ, V ) and p ∈ Pos(S) the subterm at position
p in S. That is, we define a morphism from T P to Ter∞(Σ, V ), where:

T P = {(S, p) | S ∈ Ter∞(Σ, V ) and p ∈ Pos(S)} ,

a subset of Ter∞(Σ, V )× ℘(N∗). We denote the morphism by | .
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Analogous to the definition of | for (finite) terms (see Chapter 2), we want
the subterm at position p in S to be equal to S whenever p = ε and we want it to
be equal to (πi+1 ◦ ϕ∞(S))|q whenever p = i · q. In the second case, πi+1 ◦ ϕ∞(S)
exists, since q · i ∈ Pos(S) implies 1 6 i 6 n with π1 ◦ϕ∞(S) ∈ Σn by definition of
〈op, tp〉.

Remark that the above explanation is in terms of positions, which are defined
by means of an initial algebra. As such, we also employ initiality in the definition
of | . That is, we proceed in a fashion that is dual to that of previous section.

The initial algebra we employ is not the initial algebra of positions. It is an initial
algebra that defines T P. To see that T P can actually be defined by initiality, first
consider for all n ∈ N and 1 6 i 6 n the endofunctor TPni defined as:

TPni (X) = Σn × Ter
∞(Σ, V )i−1 ×X × Ter∞(Σ, V )n−i

and define:

TP (X) = Ter∞(Σ, V ) +
∐

n∈N−{0}





∐

16i6n

TPni (X)



 .

Now, consider the pair:
(T P, ψtp) ,

where ψtp is the map from TP (T P) to T P defined as:

ψtp(x) =



















(x, ε) if x ∈ Ter∞(Σ, V )

(S, i · p) if x ∈ TPni (T P) with π1 ◦ ϕ(S) = π1(x),

(πi+1 ◦ ϕ∞(S), p) = πi+1(x), and

πj+1 ◦ ϕ∞(S) = πj+1(x) for all j 6= i

That the infinite term S in the pair (S, i · p) actually exists follows by induction
on the length of i · p, employing in the induction step a construction similar to the
one in Example 3.1.2.

As required, the pair (T P, ψtp) is an initial algebra of the endofunctor TP . This
follows easily by induction on the length of the positions that occur in the pairs of
T P.

To define | , we first construct a homomorphism, which we denote |′ . Employ-
ing the initial algebra just defined, we construct an algebra homomorphism. This
is different from what we did in the case of Pos, which was defined by means of a
coalgebra homomorphism.

Consider the following commutative diagram:

TP (T P)

TP ( |′)

ψtp

T P

|′

TP (Ter∞(Σ, V )× T P)
ψs

Ter∞(Σ, V )× T P
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where ψs is defined as:

ψs(x) =































(x, (x, ε)) if x ∈ Ter∞(Σ, V )

(S, (T, i · p)) if x ∈ TPni (Ter∞(Σ, V )× T P) with

π1 ◦ ϕ∞(T ) = π1(x),

(S, (πi+1 ◦ ϕ∞(T ), p)) = πi+1(x), and

πj+1 ◦ ϕ∞(T ) = πj+1(x) for all j 6= i

That the infinite term T in the pair (T, i · p) actually exists follows by induction
on the length of i · p, employing in the induction step a construction similar to the
one in Example 3.1.2.

By initiality of T P, there exists a unique homomorphism |′ from T P to
Ter∞(Σ, V )×T P. Hence, we can define a map from T P to Ter∞(Σ, V ), which we
denote by | :

S|p = | (S, p) = π1 ◦ |
′(S, p) ,

where (S, p) ∈ T P. By definition of |′ , it is fairly easy to see that | satisfies the
requirements given at the beginning of this section.

Remark 3.1.7. If we would categorically define subterms of (finite) terms, then a
definition can be given that is almost identical to the one above. We would only
have to replace each occurrence of Ter∞(Σ, V ) by Ter(Σ, V ).

We end this section with an example:

Example 3.1.8. Given the term KIω ∈ Ter∞(Σ, V ) from Example 3.1.2, we have
the following set of positions:

Pos(KIω) = {2n, 2n · 1 | n ∈ N} ,

as is easily deduced from Example 3.1.6. Hence, we also have:

KIω|ε = KIω

KIω|1 = K|ε = K

KIω|2 = Iω|ε = Iω

KIω|21 = Iω|1 = I|ε = I

KIω|22 = Iω|2 = Iω|ε = Iω

3.1.4 Replacements of Subterms

Given infinite terms S and T and a position p ∈ Pos(S), we next define the re-
placement of the subterm in S at position p by T . That is, we define a morphism
from T PT to Ter∞(Σ, V ), where:

T PT = {(S, p, T ) | S, T ∈ Ter∞(Σ, V ) and p ∈ Pos(S)} .

We denote the morphism by [ ] .
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As in the case of replacements in (finite) terms (see Chapter 2), we want S[T ]ε =
T . Moreover, we want S[T ]i·p = (f, S1, . . . , Sn) if π1 ◦ ϕ∞(S) = f ∈ Σn, Si =
(πi+1 ◦ ϕ∞(S))[T ]p, and Sj = πj+1 ◦ ϕ∞(S) for all j 6= i.

In analogy to the previous sections, we proceed by first defining a homomor-
phism [ ]′ . Consider the following commutative diagram:

Ter∞(Σ, V ) + T PT

[ ]′

ϕr

FΣ(Ter∞(Σ, V ) + T PT )

FΣ( [ ]′)

Ter∞(Σ, V )
ϕ∞

FΣ(Ter∞(Σ, V ))

and define ϕr as:

ϕr(x) =







































FΣ(inl) ◦ ϕ∞(x) if x ∈ Ter∞(Σ, V )

FΣ(inl) ◦ ϕ∞(T ) if x = (S, ε, T ) ∈ T PT

(f, y1, . . . , yn) if x = (S, i · p, T ) ∈ T PT with

π1 ◦ ϕ∞(S) = f ∈ Σn,

yi = (πi+1 ◦ ϕ∞(S), p, T ), and

yj = πj+1 ◦ ϕ∞(S) for all j 6= i

By finality of Ter∞(Σ, V ), there exists a unique homomorphism [ ]′ from T PT +
Ter∞(Σ, V ) to Ter∞(Σ, V ). Hence, we can define the following map from T PT to
Ter∞(Σ, V ), which we denote by [ ] :

S[T ]p = [ ] (S, p, T ) = [ ]′ ◦ inr(S, p, T ) ,

where (S, p, T ) ∈ T PT . By definition of [ ]′ , it is fairly easy to see that [ ] satisfies
the requirements given at the beginning of this section.

To gain some more insight in the reason why [ ] is defined as expected, consider
the following example:

Example 3.1.9. Given the nullary function symbol K, the positions ε, 1, 2, 22 ∈
Pos(S), and the infinite term Iω, as defined in Example 3.1.2, we obtain:

Iω[K]ε = Iω[K]′ε = K

Iω[K]1 = Iω[K]′1 = (I[K]′ε)I
ω = KIω

Iω[K]2 = Iω[K]′2 = I(Iω[K]′ε) = IK

Iω[K]22 = Iω[K]′22 = I(Iω[K]′2) = I(IK)

3.2 Ideal Completion†

Given a term s, a prefix of s is obtained by omitting zero or more subterms from s.
That is, a number of subterms of s is left unspecified. Obviously, any (finite) term

†This section is partially based on earlier work by the author [Ket04].
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can be represented by the set of all its prefixes. Moreover, ordering the prefixes
based on the subterms that are left unspecified, three properties are readily proved
with respect to the set containing all prefixes of a (finite) term:

1. the set is finite,
2. the set is downward closed, and
3. for each pair of elements in the set, the least upper bound is also in the set.

Hence, the set containing all of prefixes of a (finite) term is a finite ideal.
The above observations provide the idea for the representation of infinite terms

that we discuss in this section. That is, to represent the infinite terms as finite and
infinite ideals over the set of terms. In other words, to use ideal completion.

The prefix relation and infinite terms are defined respectively in Sections 3.2.1
and 3.2.2. In Sections 3.2.3 and 3.2.4, we prove respectively that ideal comple-
tion defines a final FΣ-coalgebra and that the morphisms defined in Section 3.1
correspond to the ones usually defined in the case of ideal completion.

Bibliographic Notes. A number of publications on denotational semantics of
recursive program schemes employ ideal completion to define infinite terms, e.g.,
the paper by Berry and Lévy [BL79]. In the context of TRSs, infinite terms defined
by means of ideal completion are employed, e.g., by Ariola [Ari96]. In each case,
there are strong connections with domains as defined by Scott [Sco72, Sco76].

3.2.1 Partial Terms

To represent unspecified subterms we extend the signature Σ with a fresh nullary
function symbol ⊥. That is, we extend the signature with a function symbol that
occurs neither in Σ nor in V . We call the subterms that are equal to ⊥ the unspec-
ified subterms. Moreover, we call the set of terms Ter(Σ⊥, V ) over the signature
Σ⊥ = Σ∪{⊥} the set of partial terms. We drop the adjective partial if it is obvious
from the context that partial terms are considered.

With the help of ⊥ we can define two prefix orders on terms, where a term s is
understood to be a prefix of a term t when there exist unspecified subterms in s
that are specified in t, but not the other way around (see Figure 3.3 for a graphic
representation).

Definition 3.2.1. Let Σ be a signature and V a set of variables.

1. The prefix order on Ter(Σ⊥, V ), denoted 4, is the smallest binary relation such
that:
(a) x 4 x, if x ∈ V ,
(b) ⊥ 4 s, if s ∈ Ter(Σ⊥, V ), and
(c) f(s1, . . . , sn) 4 f(t1, . . . , tn), if f ∈ Σn and si 4 ti for all 1 6 i 6 n.

2. The strict prefix order on Ter(Σ⊥, V ), denoted ≺, is the smallest binary relation
such that for all s, t ∈ Ter(Σ⊥, V ) it holds that:

s ≺ t⇐⇒ (s 4 t and t 64 s) .
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•

•
⊥

•
⊥

4

•

• •
•
⊥

Figure 3.3. Prefix order on Ter(Σ⊥, V )

If we have s 4 t, respectively s ≺ t, then we call s a prefix of t, respectively a strict
prefix of t. Moreover, by < and � we denote respectively the converse of the prefix
order and the converse of the strict prefix order.

Example 3.2.2. In the case of Ter(ΣCL,⊥, V ) we have:

⊥ ≺ I I⊥ ≺ II

⊥⊥ 4 ⊥⊥ IK 64 II

With respect to the prefix order and the strict prefix order, the subsequent
lemma holds:

Lemma 3.2.3. The pairs PO = (Ter(Σ⊥, V ),4) and SPO = (Ter(Σ⊥, V ),≺) are
respectively a CUSL and a strict partial order.

Proof. In the case of PO, it follows by induction on the structure of terms that
4 is reflexive, transitive, and anti-symmetric. The existence of a least element, the
nullary function symbol ⊥, follows by the second clause of Definition 3.2.1.(1) and
anti-symmetry. Moreover, it follows by induction on the structure of terms, again
with the help of the second clause of Definition 3.2.1.(1) and anti-symmetry, that
each consistent set of terms has a least upper bound. Hence, PO is a CUSL.

In the case of SPO, it follows by induction of the structure of terms that ≺ is
transitive and irreflexive. Hence, SPO is a strict partial order. ut

By the above lemma, we have for each s ∈ Ter(Σ⊥, V ) that:

{t ∈ Ter(Σ⊥, V ) | t 4 s}

is a finite ideal. We already observed this property in the introduction of this
section. The ideal is called the principal ideal of s.

The following relations hold with regard to positions and the (strict) prefix
order:

Proposition 3.2.4. Let s, t ∈ Ter(Σ⊥, V ).

1. For all s 4 t it holds that:
– Pos(s) ⊆ Pos(t), and
– root(s|p) = root(t|p), if p ∈ Pos(s) and s|p 6= ⊥.

2. For all s ≺ t there exist p ∈ Pos(s) such that s|p = ⊥ and t|p 6= ⊥.

Proof. By induction on the structure of terms. ut
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Employing the above proposition, we can prove:

Proposition 3.2.5. The strict prefix order on Ter(Σ⊥, V ) is well-founded.

Proof. Let s, t ∈ Ter(Σ⊥, V ) with s ≺ t. By Proposition 3.2.4 it follows that:

#{p | p ∈ Pos(s) and s|p 6= ⊥} < #{p | p ∈ Pos(t) and t|p 6= ⊥} .

Hence, as < is a well-founded relation on N, the result follows. ut

With respect to the prefix order, we have the following property:

Proposition 3.2.6. Let S ⊆ Ter(Σ⊥, V ). The set S has a greatest lower bound
with respect to the prefix order.

Proof. By induction on the structure of terms. ut

We next extend the prefix order to substitutions by means of a pointwise defi-
nition:

Definition 3.2.7. Let σ and τ be substitutions. Define:

σ 4 τ ⇐⇒ (σ(x) 4 τ(x) for all x ∈ V ) .

By induction on the structure of terms it is easily shown that the above definition
implies that σ 4 τ if and only if σ(s) 4 τ(s) for all s ∈ Ter(Σ⊥, V ).

Employing the prefix order on substitutions, we can also extend the strict prefix
order to substitutions:

σ ≺ τ ⇐⇒ (σ 4 τ and σ(x) ≺ τ(x) for some x ∈ V ) .

Thus, for all variables we must have σ(x) 4 τ(x) and for at least one variable we
must also have σ(x) ≺ τ(x).

The extensions of the prefix order and the strict prefix order to substitutions
are respectively a partial order and a strict partial order. This follows easily from
their respective definitions and the fact that the prefix order and the strict prefix
order on terms are respectively a partial order and a strict partial order.

The strict prefix order on substitutions is not well-founded. In other words, for
each substitution σ there exists a substitution τ such that σ ≺ τ . To see that this
is the case, consider an arbitrary substitution σ and recall that by definition of
substitutions there exist x ∈ V such that σ(x) = x. If we define τ(x) = ⊥ and
τ(y) = σ(y) for all y 6= x, then τ ≺ σ.

3.2.2 Infinite Terms

We define the set of infinite terms by means of ideal completion:

Definition 3.2.8. The set of infinite terms, denoted Ter∞i (Σ⊥, V ), is defined as:

Ter∞i (Σ⊥, V ) = {I ⊆ Ter(Σ⊥, V ) | I is an ideal of PO} .
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Since PO is a CUSL, it follows that Ti = (Ter∞i (Σ⊥, V ),⊆) is a CPO (see Chap-
ter 2). Moreover, it follows for each directed set D ⊆ Ter∞i (Σ⊥, V ) that

⋃

D is the
least upper bound.

To be notational consistent with (finite) terms, we write S 4 T instead of S ⊆ T
and

⊔

D instead of
⋃

D. Moreover, in later chapters we denote Ter∞i (Σ⊥, V ) by
Ter∞(Σ⊥, V ) if it is obvious from the context that Ter∞i (Σ⊥, V ) is intended.

Remark 3.2.9. Employing ideals as infinite terms, instead of arbitrary sets of par-
tial terms, has two consequences. First, by employing downward closure and the
least upper bound properties of ideals, each (finite) term corresponds to precisely
one finite element of Ter∞i (Σ⊥, V ). Not requiring downward closure would allow
both {⊥, I} and {I} to correspond to I. Moreover, not requiring the least upper
bound properties would allow both {⊥, I⊥,⊥K, IK} and {⊥, I⊥,⊥K} to corre-
spond to KI.

Second, consistency of ideals ensures that each finite element of Ter∞i (Σ⊥, V )
actually corresponds to a (finite) term. Not requiring consistency, would allow us
to define the set {⊥, I,K} ⊆ Ter∞(ΣCL,⊥, V ) and it is unclear to which finite term
this set should correspond.

The next characterisation of S 4 T is employed numerous times in the following
chapters:

Proposition 3.2.10. For all S, T ∈ Ter∞i (Σ⊥, V ) it holds that S 4 T if and only
if for all s ∈ S there exist t ∈ T such that s 4 t.

Proof. This follows immediately by the fact that 4 is subset inclusion and the fact
that S and T are downward closed. ut

We give an example of an infinite term:

Example 3.2.11. In case of Ter∞i (ΣCL,⊥, V ), we can define the following ideal:

Iω = ↓{In⊥ | n ∈ N} ,

where ↓ denotes downward closure (see Chapter 2) and where In⊥ is defined as:

In⊥ =

{

⊥ if n = 0

I(In−1⊥) otherwise

We have for all n ∈ N that:
↓{In} 4 Iω

Moreover, we have that:

Iω =
⊔

n∈N

↓{In} .

The infinite term Iω defined in the above example is identical to the infinite term
Iω defined in Example 3.1.2, as we show in the next section. No proof is given here,
as we are first required to show that Ter∞i (ΣCL,⊥, V ) is a final FΣCL,⊥

-coalgebra.
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With respect to the elements of Ter∞i (Σ⊥, V ), we next define the notions of
root symbol, positions, subterms, and replacements of subterms. As all elements of
Ter∞i (Σ⊥, V ) are subsets of Ter(Σ⊥, V ), it is most natural to employ the notions
of root symbol, positions, subterms, and replacements of subterms as defined for
Ter(Σ⊥, V ), which is exactly what we do:

Definition 3.2.12. Let S, T ∈ Ter∞i (Σ⊥, V ).

– The root symbol of S, denoted root(S), is defined as:

root(S) =

{

⊥ if S − {⊥} = ∅

root(s) if s ∈ S − {⊥}

– The set of positions of S, denoted Pos(S), is defined as:

Pos(S) =
⋃

s∈S
Pos(s) .

– If p ∈ Pos(S), then the subterm at position p, denoted S|p is defined as:

S|p = {s|p | s ∈ S, p ∈ Pos(s)} .

– If p ∈ Pos(S), then the replacement of the subterm at position p by T , denoted
S[T ]p, is defined as:

S[T ]p = {s[t]p | s ∈ S, p ∈ Pos(s), t ∈ T} ∪ {s | s ∈ S, p 6∈ Pos(s)} .

With respect to the above definition, we next establish that root is well-defined,
that Pos(S) is downward closed, which implies that infinite terms are well-formed,
and that S|p and S[T ]p are again infinite terms:

Proposition 3.2.13. Let S, T ∈ Ter∞i (Σ⊥, V ). The map root is well-defined, the
set Pos(S) is downward closed, and if p ∈ Pos(S), then S|p, S[T ]p ∈ Ter

∞
i (Σ⊥, V ).

Proof. That root is well-defined follows by Proposition 3.2.4. By the same propo-
sition and the fact that S is an ideal, it follows that Pos(S) is downward closed.
That S|p and S[T ]p are ideals follows immediately by the fact that S and T are
ideals. ut

Besides the above, it should be immediately obvious that Pos(S), S|p, and S[T ]p
are finite in case both S and T are finite. Moreover, in case root(S) ∈ Σn we have
that:

Pos(S) = {ε} ∪ {i · p | p ∈ Pos(S|i) with 1 6 i 6 n}

and, if p = i · q, then we have that:

S|p = (S|i)|q

S[T ]p = (S|i)[T ]q

Finally, the following two properties also hold:
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Proposition 3.2.14. Let f ∈ Σn and Si ∈ Ter
∞
i (Σ⊥, V ) for all 1 6 i 6 n. If the

set S is defined as follows:

S = {⊥} ∪ {f(s1, . . . , sn) | si ∈ Si} .

then S ∈ Ter∞i (Σ⊥, V ).

Proof. That S is an ideal follows immediately by the fact that Si is an ideal for
each 1 6 i 6 n. ut

Proposition 3.2.15. Let S, T ∈ Ter∞i (Σ⊥, V ). If root(S) = f = root(T ) with
f ∈ Σn and if S|i 4 T |i for all 1 6 i 6 n, then S 4 T .

Proof. If root(S) = f = root(T ), then, obviously:

S = {⊥} ∪ {f(s1, . . . , sn) | si ∈ S|i}

and

T = {⊥} ∪ {f(t1, . . . , tn) | ti ∈ T |i} .

Hence, the result follows by the fact that S|i 4 T |i for all 1 6 i 6 n. ut

More insight in the relation between Ter(Σ⊥, V ) and Ter∞i (Σ⊥, V ) can be ob-
tained by defining a map, denoted ι, from Ter(Σ⊥, V ) to Ter∞i (Σ⊥, V ) that assigns
to each term its principal ideal. That is, ι is defined as:

ι(s) = ↓{s} = {t ∈ Ter(Σ⊥, V ) | t 4 s} ,

where s ∈ Ter(Σ⊥, V ).
It is readily shown that ι is an isomorphism between Ter(Σ⊥, V ) and the finite

ideals of Ter∞i (Σ⊥, V ). The inverse of ι assigns to each finite ideal I ∈ Ter∞i (Σ⊥, V )
its least upper bound:

ι−1(I) =
⊔

I .

The existence of the least upper bound of I is immediate by the fact that each
finite ideal has a maximal element.

In case s and t are terms in Ter(Σ⊥, V ) and S and T are finite ideals of
Ter∞i (Σ⊥, V ), a number of properties hold:

s 4 t⇔ ι(s) 4 ι(t) S 4 T ⇔ ι−1(S) 4 ι−1(T )

root(s) = root(ι(s)) root(S) = root(ι−1(S))

Pos(s) = Pos(ι(s)) Pos(S) = Pos(ι−1(S))

ι(s|p) = ι(s)|p ι−1(S|p) = ι−1(S)|p

ι(s[t]p) = ι(s)[ι(t)]p ι−1(S[T ]p) = ι−1(S)[ι−1(T )]p

Employing Proposition 3.2.10, all properties follow easily from their respective
definitions.



42 3 Infinite Terms

3.2.3 Final Coalgebra

In this section, we show that Ter∞i (Σ⊥, V ) is a final FΣ⊥
-coalgebra. We concern

ourselves with FΣ⊥
-coalgebras instead FΣ-coalgebras, as we employ FΣ⊥

-coalgebras,
and not FΣ-coalgebras, in Chapters 5 through 8.

Recall that any FΣ⊥
-coalgebra is a pair (A,α), with A a set and α a total map

from A to FΣ⊥
(A). Hence, we cannot actually show that Ter∞i (Σ⊥, V ) is a final

FΣ⊥
-coalgebra. Instead, what we need to do, is to define a map from Ter∞i (Σ⊥, V )

to FΣ⊥
(Ter∞i (Σ⊥, V )) and to show that Ter∞i (Σ⊥, V ) together with the map defines

a final FΣ⊥
-coalgebra.

We define the map from Ter∞i (Σ⊥, V ) to FΣ⊥
(Ter∞i (Σ⊥, V )), denoted ϕi, as

follows, supposing S ∈ Ter∞i (Σ⊥, V ):

ϕi(S) =

{

x if root(S) = x ∈ V

(f, S|1, . . . , S|n) if root(S) = f ∈ Σn

The definition agrees with the informal description of ϕ∞ in Section 3.1.1: If we
apply ϕi to an infinite term which is not a variable, then we obtain the root symbol
f ∈ Σn and its n subterms. Otherwise, if we apply ϕi to a variable, then we obtain
that variable.

The above explanation of ϕi also clarifies why we do not show that Ter∞i (Σ⊥, V )
is a final FΣ-coalgebra: There are no maps from Ter∞i (Σ⊥, V ) to FΣ(Ter∞i (Σ⊥, V ))
that agree with the informal description of ϕ∞. To understand this, observe that
⊥ 6∈ Σ implies ⊥ 6∈ FΣ(Ter∞i (Σ⊥, V )). As such, it is impossible to define a map
from Ter∞i (Σ⊥, V ) to FΣ(Ter∞i (Σ⊥, V )) which allows us to obtain ⊥ whenever we
apply the map to the infinite term {⊥}. Hence, any map from Ter∞i (Σ⊥, V ) to
FΣ(Ter∞i (Σ⊥, V )) will disagree with the informal description of ϕ∞.

Remark 3.2.16. It is easy to define a subset of Ter∞i (Σ⊥, V ) for which there does
exist a map that agrees with the informal description of ϕ∞. Denoting the subset
by Ter∞i (Σ, V ), we define:

Ter∞i (Σ, V ) = {S ∈ Ter∞i (Σ⊥, V ) | ∀p ∈ Pos(S) : S|p 6= {⊥}} .

As follows immediately by definition of ϕi, the informal description of ϕ∞ is satisfied
by restriction of ϕi to Ter∞i (Σ, V ).

The set Ter∞i (Σ, V ) and the restriction of ϕi define a final FΣ-coalgebra. To
prove this, an argument is required that is very similar to the one below showing
that Ter∞i (Σ⊥, V ) and ϕi define a final FΣ⊥

-coalgebra.

Now define the following pair:

(Ter∞i (Σ⊥, V ), ϕi)

We next prove that the pair forms a final FΣ⊥
-coalgebra. To facilitate the proof,

we define for each S ∈ Ter∞i (Σ⊥, V ) the restriction of S to depth n ∈ N, denoted
S�n:

S�n = {s ∈ S | ∀p ∈ Pos(s) : |p| 6 n} .

With respect to restrictions, we have:
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Proposition 3.2.17. If S ∈ Ter∞i (Σ⊥, V ) and n ∈ N, then it holds that S�n ∈
Ter∞i (Σ⊥, V ).

Proof. That ⊥ is an element of S�n is immediate by Pos(⊥) = {ε} and |ε| = 0.
Consistency and the existence of a least upper bound for each {s, t} ⊆ S�n follows
by the fact that {s, t} ⊆ S and by the fact that S is an ideal. Finally, that stt ∈ S�n
follows by observing that p ∈ Pos(s t t) implies either p ∈ Pos(s) or p ∈ Pos(t).

ut

To prove that Ter∞i (Σ⊥, V ) is a final FΣ⊥
-coalgebra, we first prove for infinite

terms that bisimilarity (see Definition 3.1.3) implies equality. That is, we first prove
that S ∼ T implies S = T . Remark that the reverse, i.e., S = T implies S ∼ T , is
immediate by definition of equality.

Lemma 3.2.18. Let S, T ∈ Ter∞i (Σ⊥, V ). If S ∼ T , then S = T .

Proof. Suppose S ∼ T . To start, we prove by induction on n ∈ N that S�n 4 T for
all n.

Base Case. Let n = 0. The only possibilities for S�0 are {⊥}, {⊥, x} and {⊥, c}
with x ∈ V and c ∈ Σ0.

If S�0 = {⊥}, then we immediately have S�0 4 T since T is an ideal. Otherwise,
if S�0 = {⊥, t} with either t = x or t = c, then we have ϕi(S�0) = t and, by defi-
nition of ideals, S = S�0. Hence, as S ∼ T , it follows by definition of bisimulation
for FΣ-coalgebras that ϕi(T ) = t and T = {⊥, t}. Thus, S�0 4 T .

Induction Step. Suppose the result holds for some n > 0. We prove the result
for n + 1. As n + 1 > 0, we have either S�n+1 = S�n or S�n+1 6= S�n. In the first
case, S�n+1 4 T is immediate by the induction hypothesis.

In the second case, we have that root(S�n+1) = root(S) = f for some f ∈ Σm
and m > 0. Otherwise, the first case holds. Since S ∼ T , we have by definition of
bisimulation that root(T ) = f and that S|i ∼ T |i for all 1 6 i 6 m. Moreover, by
the induction hypothesis, (S�n+1)|i = (S|i)�n 4 T |i for all 1 6 i 6 m. Hence, we
have by Proposition 3.2.15 that S�n+1 4 T .

As we have for all s ∈ S that there exists an m ∈ N such that |p| 6 m for all
p ∈ Pos(s), it follows that S =

⊔

n∈N
S�n. Hence, S ∼ T implies S 4 T . Since

S ∼ T implies T ∼ S, it also follows that T 4 S and S = T , as required. ut

Employing the above lemma, we next prove the main theorem of this section:

Theorem 3.2.19. The pair (Ter∞i (Σ⊥, V ), ϕi) is a final FΣ⊥
-coalgebra.

Proof. Let (A,α) be a FΣ⊥
-coalgebra. We define a map from A to Ter∞i (Σ⊥, V ),

denoted tnA, supposing a ∈ A and n ∈ N:

t0A(a) = {⊥}

tn+1
A (a) =











{⊥, x} if α(a) = x with x ∈ V

{⊥} ∪ {f(s1, . . . , sm) | si ∈ Si} if π1 ◦ α(a) = f with f ∈ Σm

and Si = tnA(πi+1 ◦ α(a))
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By induction on n, employing Propositions 3.2.14 and 3.2.15, it follows that tnA(a)
is an ideal and that tnA(a) 4 tn+1

A (a). Hence, as Ti = (Ter∞i (Σ⊥, V ),4) is a CPO,
we have that the ideal

⊔

{tnA(a) | n ∈ N} exists and we can define:

tA(a) =
⊔

{tnA(a) | n ∈ N} .

By definition of ϕi and tnA it follows easily that tA is an FΣ⊥
-homomorphism.

Hence, there exists a homomorphism from each FΣ⊥
-coalgebra to Ter∞i (Σ⊥, V ).

To show that the homomorphism is unique, suppose for some coalgebra (A,α)
that there exist two homomorphisms from A to Ter∞i (Σ⊥, V ), denote them f and g.
Define the relation R = {(f(a), g(a)) | a ∈ A}. As noted in Chapter 2, the relation
R is a bisimulation. Because R ⊆∼, we have by Lemma 3.2.18 that f(a) = g(a) for
all a ∈ A. Hence, f = g and the homomorphism tA is unique. ut

The above method of proving that Ter∞i (Σ⊥, V ) is a final FΣ⊥
-coalgebra is fairly

standard: Rutten [Rut98], e.g., gives an almost identical proof to show that ℘(A∗)
is a final DA-coalgebra.

Example 3.2.20. Let m be the map from 1 to Ter∞i (ΣCL,⊥, V ) such that we ob-
tain Iω, as defined in Example 3.2.11, whenever we apply m to ∗. The map m is
the unique homomorphism that makes the diagram in Example 3.1.2 commute,
assuming that Ter∞i (ΣCL,⊥, V ) is the employed final coalgebra. That m makes the
diagram commute is immediate by its definition. Uniqueness of m follows by the
fact that Ter∞i (ΣCL,⊥, V ) is a final FΣCL,⊥

-coalgebra.
By the properties of m, we have that the infinite term Iω, as defined in Example

3.1.2, is identical to Iω, as defined in Example 3.2.11, in case Ter∞i (ΣCL,⊥, V ) is
employed as final coalgebra, as already hinted at just below Example 3.2.11.

3.2.4 Homomorphisms

We next show for Ter∞i (Σ⊥, V ) that the usual definitions of positions, subterms,
and replacements of subterms are identical to the definitions given in Sections 3.1.2,
3.1.3, and 3.1.4. The reasoning employed in the proofs is very similar to that of the
example in the previous section.

Positions. To prove that the definition of Pos for Ter∞i (Σ⊥, V ) corresponds to
Pos as defined in Section 3.1.2, we define a map Pos′ from 1 + Ter∞i (Σ⊥, V ) to
℘(N∗):

Pos′(x) =

{

∅ if x ∈ 1

Pos(x) if x ∈ Ter∞i (Σ⊥, V )

Obviously, Pos(S) = Pos′ ◦ inr(S) for S ∈ Ter∞i (Σ⊥, V ). Hence, we only need to
prove:

Lemma 3.2.21. Let Ter∞i (Σ⊥, V ) be employed as final coalgebra. The map:

Pos′ : 1 + Ter∞i (Σ⊥, V )→ ℘(N∗)

is the unique homomorphism defined in Section 3.1.2.
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Proof. To prove that Pos′ is a homomorphism we have to show for all x ∈ 1 +
Ter∞i (Σ⊥, V ) that DN(Pos′) ◦ 〈op, tp〉(x) = 〈oN, tN〉 ◦ Pos

′(x). There are two cases
to consider, depending on x: Either x ∈ 1 or x ∈ Ter∞i (Σ⊥, V ).

In case x ∈ 1, we have x = ∗, op(∗) = 0, tp(∗)(i) = ∗, and Pos′(∗) = ∅. Hence,
for all i ∈ N:

12 ◦ op(∗) = 0 = oN ◦ Pos
′(∗)

Pos′ ◦ tp(∗)(i) = ∅ = tN ◦ Pos
′(∗)(i)

This implies DN(Pos′) ◦ 〈op, tp〉(x) = 〈oN, tN〉 ◦ Pos
′(x) whenever x = ∗.

In case x ∈ Ter∞i (Σ⊥, V ), assume x = S. There are two possibilities: Either
root(S) ∈ V or root(S) ∈ Σn. However, in both cases we have that ε ∈ Pos′(S) =
Pos(S), which implies:

12 ◦ op(S) = 1 = oN ◦ Pos
′(S) .

If we have root(S) ∈ V or i > n, then tp(S)(i) = ∗ and Pos(S)|i = ∅, which gives:

Pos′ ◦ tp(S)(i) = ∅ = tN ◦ Pos
′(S)(i) .

Otherwise, if root(S) ∈ Σn and 1 6 i 6 n, then tp(S)(i) = S|i, which gives:

Pos′ ◦ tp(S)(i) = Pos(S|i) = tN ◦ Pos
′(S)(i) ,

where we employ the fact that Pos′(S|i) = Pos(S|i) = Pos′(S)|i. Thus, x = S
implies DN(Pos′) ◦ 〈op, tp〉(x) = 〈oN, tN〉 ◦ Pos

′(x). Combining this result with the
result for x = ∗, we obtain that Pos′ is a homomorphism. Uniqueness of the ho-
momorphism follows by the fact that ℘(N∗) is a final coalgebra. ut

Subterms. To prove that the definition of S|p for Ter∞i (Σ⊥, V ) corresponds to
S|p as defined in Section 3.1.3, we proceed in a similar fashion as in the case of
Pos. We define a map |′ from T P to Ter∞i (Σ⊥, V )× T P:

|′(S, p) = (S|p, (S, p)) .

Obviously, S|p = π1 ◦ |
′(S, p) for (S, p) ∈ T P and we only need the following:

Lemma 3.2.22. Let Ter∞i (Σ⊥, V ) be employed as final coalgebra. The map:

|′ : T P → Ter∞i (Σ⊥, V )× T P

is the unique homomorphism defined in Section 3.1.3.

Proof. To prove that |′ is a homomorphism we have to show for all x ∈ TP (T P)
that |′ ◦ ψtp(x) = ψs ◦ TP ( |′)(x). There are two cases to consider, depending on
x: Either x ∈ Ter∞i (Σ⊥, V ) or x ∈ TPni (T P).

In case x ∈ Ter∞i (Σ⊥, V ), assume x = S. We have ψtp(S) = (S, ε) and
TP ( |′)(S) = S, which gives:

|′ ◦ ψtp(S) = (S, (S, ε)) = ψs ◦ TP ( |′)(S) .

Hence, |′ ◦ ψtp(x) = ψs ◦ TP ( |′)(x) whenever x = S with S ∈ Ter∞i (Σ⊥, V ).
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In case x ∈ TPni (T P), assume x = (f, y1, . . . , yn) with yi = (Si, p) and yj = Sj
for all j 6= i. We have ψtp(x) = (S, i · p) with S = {f(s1, . . . , sn) | sk ∈ Sk for 1 6

k 6 n}, and TP ( |′)(x) = (f, y′1, . . . , y
′
n) with y′i = (Si|p, (Si, p)) and y′j = Sj for

all j 6= i. This gives:

|′ ◦ ψtp(x) = (Si|p, (S, i · p)) = ψs ◦ TP ( |′)(x) ,

where we employ that S|i·p = Si|p. Thus, x ∈ TPni (T P) implies |′ ◦ ψtp(x) =
ψs ◦TP ( |′)(x). Combining this result with the result for x ∈ Ter∞i (Σ⊥, V ) implies
that |′ is a homomorphism. Uniqueness of the homomorphism follows by the fact
that T P is an initial algebra. ut

Replacements of Subterms. As before, we prove that the definition of S[T ]p for
Ter∞i (Σ⊥, V ) corresponds to S[T ]p as defined in Section 3.1.4 by defining another
map. In this case, we define a map [ ]′ from Ter∞i (Σ⊥, V )+T PT to Ter∞i (Σ⊥, V ):

[ ]′(x)

{

x if x ∈ Ter∞i (Σ⊥, V )

S[T ]p if x = (S, p, T ) ∈ T PT

Obviously, S[T ]p = [ ]′ ◦ inr(S, p, T ) for all (S, p, T ) ∈ T PT . Hence, we only need
to prove:

Lemma 3.2.23. Let Ter∞i (Σ⊥, V ) be employed as final coalgebra. The map:

[ ]′ : Ter∞i (Σ⊥, V ) + T PT → Ter∞i (Σ⊥, V )

is the unique homomorphism defined in Section 3.1.4.

Proof. To prove that [ ]′ is a homomorphism we have to show that FΣ⊥
( [ ]′) ◦

ϕr(x) = ϕi ◦ [ ]′(x) for all x ∈ Ter∞i (Σ⊥, V ) + T PT . There are two cases to
consider, depending on x: Either x ∈ Ter∞i (Σ⊥, V ) or x ∈ T PT .

In case x ∈ Ter∞i (Σ⊥, V ), assume x = S. We have ϕr(S) = FΣ⊥
(inl)◦ϕi(S) and

[ ]′(S) = S, which gives:

FΣ⊥
( [ ]′) ◦ ϕr(S) = ϕi(S) = ϕi ◦ [ ]′(S) .

Hence, x ∈ Ter∞i (Σ⊥, V ) implies FΣ⊥
( [ ]′) ◦ ϕr(x) = ϕi ◦ [ ]′(x).

In case x ∈ T PT , assume x = (S, p, T ). There are two cases to consider,
depending on p: Either p = ε or p = i · q. In the first case, we have ϕr(S, p, T ) =
FΣ⊥

(inl) ◦ ϕi(T ) and [ ]′(S, p, T ) = T , which gives:

FΣ⊥
( [ ]′) ◦ ϕr(S, p, T ) = ϕi(T ) = ϕi ◦ [ ]′(S, p, T ) .

In the second case, we have ϕr(S, p, T ) = (f, y1, . . . , yn) with root(S) = f , f ∈ Σn,
yi = (S|i, q, T ), and yj = S|j for all j 6= i. Moreover, we have [ ]′(S, p, T ) = S[T ]p.
This gives:

FΣ⊥
( [ ]′) ◦ ϕr(S, p, T ) = (f, y′1, . . . , y

′
n) = ϕi ◦ [ ]′(S, p, T ) ,
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where y′i = (S|i)[T ]q and y′j = yj for all j 6= i. Here, we employ the fact that
(S[T ]i·q)|i = (S|i)[T ]q. Thus, x ∈ T PT implies FΣ⊥

( [ ]′) ◦ ϕr(x) = ϕi ◦ [ ]′(x).
Combining this result with the result for x ∈ Ter∞i (Σ⊥, V ) implies that [ ]′

is a homomorphism. Uniqueness of the homomorphism follows by the fact that
Ter∞i (Σ⊥, V ) is a final coalgebra. ut

3.3 Partial Functions

Besides representing a (finite) term by the set of all its prefixes, we can also rep-
resent it as a partial function s from N

∗ to Σ ∪ V . The partial function satisfies a
number of properties:

1. the set of values on which s is defined is downward closed and finite,
2. if s(p) ∈ V , then s(q) is undefined for all q > p, and
3. if s(p) ∈ Σn, then s(p · i) is defined for all 1 6 i 6 n and undefined otherwise.

Infinite terms are defined by dropping the finiteness restriction from the first clause.
As such, the approach is very similar to ideal completion.

The definition of infinite terms by means of partial functions is the subject of
Section 3.3.1. In Sections 3.3.2 and 3.3.3 we prove respectively that the partial
functions define a final FΣ-coalgebra and that the morphisms as defined in Section
3.1 correspond to the ones defined for partial functions.

Bibliographic Notes. Infinite terms defined by means of partial functions are dis-
cussed in the seminal paper by Goguen, Thatcher, Wagner, and Wright [GTWW77],
among other publications. They also figure in the papers on recursive program
schemes by Courcelle and Nivat [CN78] and Courcelle [Cou79]. A fundamental
study of infinite terms defined by means of partial functions occurs in a paper by
Courcelle [Cou83].

3.3.1 Infinite Terms

We define the set of infinite terms by means of partial functions:

Definition 3.3.1. The set Ter∞f (Σ, V ) is the set of all partial functions S : N
∗ ⇀

(Σ ∪ V ) satisfying:

1. the set of values on which S is defined is downward closed,
2. if S(p) ∈ V , then S(q) is undefined for all q > p, and
3. if S(p) ∈ Σn, then S(p · i) is defined for all 1 6 i 6 n and undefined otherwise,

where p ∈ N
∗.

Obviously, the elements of Ter(Σ, V ) form a subset of Ter∞f (Σ, V ), as those ele-
ments simply have a finiteness restriction added to the first clause.

Remark 3.3.2. The first clause of the above definition is similar to the requirement
that each ideal is downward closed (see Remark 3.2.9). The other clauses ensure
that the restrictions imposed by the signature are satisfied.
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We give an example of an infinite term:

Example 3.3.3. In case of ΣCL, define Iω as the following partial function:

Iω(p) =











· if p = 2n

I if p = 2n · 1

undefined otherwise

That Iω is an element of Ter∞f (ΣCL, V ) is easy to see: It is downward closed,
because 20 = ε, 2n−1 < 2n, and 2n < 2n · 1. Moreover, the other requirements are
satisfied, because ar(·) = 2 and ar(I) = 0.

After proving that Ter∞f (Σ, V ) is a final FΣ-coalgebra, we could show that Iω,
as defined above, is identical to the infinite term Iω defined in Example 3.1.2,
analogous to what we did in the case of Example 3.2.11. However, we omit such a
proof, as it is identical to the proof in Example 3.2.20.

We next define the notions of root symbol, positions, subterms, and replace-
ments of subterms for the elements of Ter∞f (Σ, V ):

Definition 3.3.4. Let S, T ∈ Ter∞f (Σ, V ).

– The root symbol of S, denoted root(S), is defined as:

root(S) = S(ε) .

– The set of positions of S, denoted Pos(S), is defined as:

Pos(S) = {p ∈ N
∗ | S(p) is defined} .

– If p ∈ Pos(S), then the subterm at position p, denoted S|p is defined, for all
q ∈ N

∗, as:
S|p(q) = S(p · q) .

– If p ∈ Pos(S), then the replacement of the subterm at position p by T , denoted
S[T ]p, is defined, for all q ∈ N

∗, as:

S[T ]p(q) =

{

S(q) if either q ‖ p or q < p

T (r) if p = q · r

We have the following:

Proposition 3.3.5. Let S, T ∈ Ter∞f (Σ, V ). The map root is well-defined, the set
Pos(S) is downward closed, and if p ∈ Pos(S), then S|p, S[T ]p ∈ Ter

∞
f (Σ, V ).

Proof. Immediate by the definitions. ut

It should be directly obvious that Pos(S), S|p, and S[T ]p are finite in case S
and T are finite. Moreover, in case root(S) ∈ Σn we have that:

Pos(S) = {ε} ∪ {i · p | p ∈ Pos(S|i) and 1 6 i 6 n}

and in case p = i · q we have that:

S|p = (S|i)|q

S[T ]p = (S|i)[T ]q
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3.3.2 Final Coalgebra

We next show that Ter∞f (Σ, V ) is a final FΣ-coalgebra. We proceed in a similar
fashion as in Section 3.2.3. That is, we prove that S ∼ T implies S = T before
proving that Ter∞f (Σ, V ) is a final FΣ-coalgebra.

Of course, we first need to define a map from Ter∞f (Σ, V ) to FΣ(Ter∞f (Σ, V )).
The map, denoted ϕf , is defined as follows, for all S ∈ Ter∞f (Σ, V ):

ϕf(S) =

{

x if root(S) = x ∈ V

(f, S|1, . . . , S|n) if root(S) = f ∈ Σn

As is easy to see, the map adheres to the informal description of ϕ∞ as presented
in Section 3.1.1, just like ϕi in Section 3.2.3.

We next show that
(Ter∞f (Σ, V ), ϕf)

is a final FΣ-coalgebra, following the steps mentioned above.

Lemma 3.3.6. Let S, T ∈ Ter∞f (Σ, V ). If S ∼ T , then S = T .

Proof. Suppose S ∼ T . We prove for all p ∈ N
∗ that S(p) and T (p) are both

undefined or that S(p) = T (p). The proof is by induction on |p|. That S = T then
follows, as all p ∈ N

∗ have finite length.
Base Case. In this case, p = ε. By definition of Ter∞f (Σ, V ) we have that S(ε)

and T (ε) are both defined. That S(ε) = T (ε) is immediate by S ∼ T .
Induction Step. Suppose the result holds for some |q| > 0. We prove the result

for p = q · i. By the induction hypothesis, there are two cases to consider: Either
S(q) and T (q) are both undefined or S(q) = T (q).

In case S(q) and T (q) are both undefined, we have by definition of Ter∞f (Σ, V )
that both S(p) and T (p) are undefined. Hence, the result follows.

In case S(q) = T (q), there are two possibilities: Either S(q) and T (q) are iden-
tical variables or they are identical function symbols. In case S(q) and T (q) are
identical variables, the result is immediate, as S(p) and T (p) are then both unde-
fined by definition Ter∞f (Σ, V ). In the other case, depending on the value of i, we
have that S(p) and T (p) are either both defined or both undefined. Hence, the re-
sult follows if we can prove S(p) = T (p) whenever S(p) and T (p) are both defined,
which is immediate by S ∼ T . ut

We next prove the main theorem of this section:

Theorem 3.3.7. The pair (Ter∞f (Σ, V ), ϕf) is a final FΣ-coalgebra.

Proof. Let (A,α) be a FΣ-coalgebra. We define a map from A to Ter∞f (Σ, V ),
denoted tA, given a ∈ A and p ∈ N

∗:

tA(a)(ε) =

{

x if α(a) = x with x ∈ V

f if π1 ◦ α(a) = f with f ∈ Σ

tA(a)(i · p) =

{

tA(πi+1 ◦ α(a))(p) if π1 ◦ α(a) ∈ Σn and 1 6 i 6 n

undefined otherwise
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By induction on the length of p ∈ N
∗ it follows that tA(a) ∈ Ter∞f (Σ, V ) for all

a ∈ A. Moreover, by definition of ϕf it follows easily that tA is a homomorphism.
Hence, there exists a homomorphism from each FΣ-coalgebra to Ter∞f (Σ, V ).

To show that the homomorphism is unique, suppose that for some coalgebra
(A,α) there exist two homomorphisms from A to Ter∞f (Σ, V ), denote them f and g.
Define the relation R = {(f(a), g(a)) | a ∈ A}. As noted in Chapter 2, the relation
R is a bisimulation. Because R ⊆∼, we have by Lemma 3.3.6 that f(a) = g(a) for
all a ∈ A. Hence, f = g and the homomorphism tA is unique. ut

3.3.3 Homomorphisms

We next prove that the definitions of positions, subterms, and replacements of
subterms as given for Ter∞f (Σ, V ) are identical to the definitions given in Sections
3.1.2, 3.1.3, and 3.1.4 in case Ter∞f (Σ, V ) is employed as final FΣ-coalgebra.

Positions. Define a map Pos′ from 1 + Ter∞f (Σ, V ) to ℘(N∗):

Pos′(x) =

{

∅ if x ∈ 1

Pos(x) if x ∈ Ter∞f (Σ, V )

Obviously, Pos(S) = Pos′ ◦ inr(S) for S ∈ Ter∞f (Σ, V ). Hence, we only need to
prove:

Lemma 3.3.8. Let Ter∞f (Σ, V ) be employed as final coalgebra. The map:

Pos′ : 1 + Ter∞f (Σ, V )→ ℘(N∗)

is the unique homomorphism defined in Section 3.1.2.

Proof. Completely analogous to the proof of Lemma 3.2.21. ut

Subterms. Define a map |′ from T P to Ter∞f (Σ, V )× T P:

|′(S, p) = (S|p, (S, p)) .

Obviously, S|p = π1 ◦ |
′(S, p) for (S, p) ∈ T P and we only need to prove:

Lemma 3.3.9. Let Ter∞f (Σ, V ) be employed as final coalgebra. The map:

|′ : T P → Ter∞f (Σ, V )× T P

is the unique homomorphism defined in Section 3.1.3.

Proof. Completely analogous to the proof of Lemma 3.2.22. ut

Replacements of Subterms. Define a map [ ]′ from Ter∞f (Σ, V ) + T PT to
Ter∞f (Σ, V ):

[ ]′(x)

{

x if x ∈ Ter∞f (Σ, V )

S[T ]p if x = (S, p, T ) ∈ T PT
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Obviously, S[T ]p = [ ]′ ◦ inr(S, p, T ) for all (S, p, T ) ∈ T PT . Hence, we only need
to prove:

Lemma 3.3.10. Let Ter∞f (Σ, V ) be employed as final coalgebra. The map:

[ ]′ : Ter∞f (Σ, V ) + T PT → Ter∞f (Σ, V )

is the unique homomorphism defined in Section 3.1.4.

Proof. Completely analogous to the proof of Lemma 3.2.23. ut

3.4 Metric Completion

The definition of infinite terms by means of metric completion is based on the
observation that two terms s and t are in some sense ‘close’ to each other when all
positions p ∈ Pos(s) ∩ Pos(t) with root(s|p) 6= root(t|p) occur at great depth. The
observation allows for the introduction of a metric. Hence, it becomes possible to
define Cauchy sequences of terms, which in turn allows for metric completion. The
infinite terms are defined as the elements of the space such obtained.

In Section 3.4.1, we define the metric spaces employed in the definitions of
infinite terms, root symbols, positions, subterms, and replacements of subterms.
Among the metric spaces is the metric space informally described above. In Sections
3.4.2 and 3.4.3, we respectively define infinite terms by means of metric completion
and we prove that the definition yields a final FΣ-coalgebra. Finally, in Section
3.4.4, we prove that the morphisms defined in Section 3.1 correspond to the ones
defined in the case of metric completion.

Bibliographic Notes. Defining infinite terms by means of metric completion finds
its origins in the work by Arnold and Nivat [AN80]. The definition is often employed
in infinitary rewriting, see, e.g., Chapter 12 in the book by Terese [Ter03] and the
papers on infinitary rewriting by Dershowitz, Kaplan, and Plaisted [DKP91] and
Kennaway, Klop, Sleep, and De Vries [KKSV95].

3.4.1 Metric Spaces

The metric spaces employed in Section 3.4.2 are summarised the table below. The
spaces that occur in the table but that have not yet been defined are defined next.

Space Remark

(Σ ∪ V, dd) dd is the discrete metric
(N∗, dB) dB is the Baire metric

(℘nc(N
∗), d+

B) ℘nc(N
∗) is the set of all closed subsets and d+

B

is the Hausdorff metric based on dB

(Ter(Σ, V ), dt) with dt the term metric
(Ter?(Σ, V ), d?t ) (Ter?(Σ, V ), d?t ) is the metric completion of

(Ter(Σ, V ), dt) (see Chapter 2)
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For arbitrary X with s, t ∈ X∗, the Baire metric dB is defined as:

dB(s, t) =

{

0 if s = t

2−k if s 6= t and k = max{|u| | u 6 s and u 6 t}

A proof that the Baire metric is actually a metric can be found, e.g., in the textbook
by De Bakker and De Vink [BV96].

It is easy to show the following:

max{|u| | u 6 s and u 6 t} = max{n | s[n] = t[n]}

where s[n] and t[n] truncations of s and t (see Chapter 2). Moreover, if we consider
elements of X∗ to be terms over a signature in which each element of X occurs as
a unary function symbol and in which a special nullary function symbol occurs to
end strings, then we also have:

max{|u| | u 6 s and u 6 t} = min{|p| | s and t conflict at p ∈ N
∗} ,

where s and t conflict at p ∈ N
∗ if p ∈ Pos(s) ∩ Pos(t) and root(s|p) 6= root(t|p).

We have for each string s:

B(s, 2−(|s|+1)) = {s} .

Hence, X − {s} is closed and for each Y ⊆ X∗ we have that Y = Cl(Y ). Thus,
each Y ⊆ X∗ is closed.

Observe that 0 6 dB(s, t) 6 1 for all strings s and t. Hence, we can define
the Hausdorff metric based on dB. As shown by De Bakker and De Vink [BV96,
Lemma 2.9], the Hausdorff metric dH based on dB is equal to the metric d+

B , which
is defined as follows, given an alphabet X and sets S, T ⊆ X∗:

d+
B(S, T ) =

{

0 if S = T

2−k if S 6= T and k = max{n | S[n] = T [n]}

The metric space (℘nc(N
∗), d+

B) is not a complete metric space. The Cauchy se-
quence ({0n})n<ω, e.g., would have the limit {0ω}, where the definition of 0n is
extended appropriately. However, 0ω 6∈ N

∗.
We next define the term metric, a metric on terms. The metric is easily seen

to correspond to the metric informally described in the introduction to the metric
completion approach. Moreover, it extends the Baire metric to terms over arbitrary
signatures.

Given s, t ∈ Ter(Σ, V ), the term metric, denoted dt, is defined as:

dt(s, t) =

{

0 if s = t

2−k if s 6= t and k = min{|p| | s and t conflict at p ∈ N
∗}

where s and t conflict at p ∈ N
∗ if p ∈ Pos(s) ∩ Pos(t) and root(s|p) 6= root(t|p).

A proof that dt is a metric can be found in the work of Arnold and Nivat [AN80].
As in the case of the Baire metric, we have 0 6 dt(s, t) 6 1 for all s, t ∈ Ter(Σ, V ).
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3.4.2 Infinite Terms

We define the set of infinite terms by means of metric completion:

Definition 3.4.1. The set Ter∞m (Σ, V ) is defined as Ter?(Σ, V ).

The set Ter?(Σ, V ) is part of the metric space (Ter?(Σ, V ), d?t ), the metric comple-
tion of (Ter(Σ, V ), dt). Thus, each element of Ter?(Σ, V ) is an equivalence class of
Cauchy sequences over Ter(Σ, V ) (see Chapter 2).

By definition of metric completion, we have that Ter(Σ, V ) is isomorphic to
a subset of Ter∞m (Σ, V ). Each member of the subset (an equivalence class) has a
representative (sκ)κ<ω for which there exists an ordinal β < ω such that for all
β < γ1, γ2 < ω we have sγ1 = sγ2 .

Example 3.4.2. In the case of ΣCL, we can define Iω as the following equivalence
class of Cauchy sequences:

J(In)n<ωK .
That (In)n<ω is a Cauchy sequence follows immediately by the fact that:

lim
n→ω

(min{|p| | In and In+1 conflict at p ∈ N
∗}) = ω .

As in the case of ideal completion and partial functions, we can show that Iω,
as defined above, is identical to the infinite term Iω defined in Example 3.1.2. Of
course, to show this, we first have to prove that Ter∞m (Σ, V ) is a final FΣ-coalgebra.
However, as in the case of partial functions, the proof is omitted, because it is very
similar to the proof given in Example 3.2.20.

We next define the notions of root symbol, positions, subterms, and replace-
ments of subterms for the elements of Ter∞m (Σ, V ). With respect to the repre-
sentatives of the elements of Ter∞m (Σ, V ), we employ the notions of root symbol,
positions, subterms, and replacements of subterms as defined for Ter(Σ, V ).

Definition 3.4.3. Let S, T ∈ Ter∞m (Σ, V ), with (sκ)κ<ω a representative of S and
(tκ)κ<ω a representative of T .

– The root symbol of S, denoted root(S), is defined as:

root(S) = lim (root(sκ))κ<ω ,

with (Σ ∪ V, dd) the employed metric space.
– The set of positions of S, denoted Pos(S), is defined as:

Pos(S) = lim (Pos(sκ))κ<ω ,

with (℘nc(N
∗), dH) the employed metric space.

– If p ∈ Pos(S), then the subterm at position p, denoted S|p is defined as:

S|p = J(sκ|∗p)κ<ωK ,
with (Ter∞m (Σ, V ), d?t ) the employed metric space and with:

s|∗p =

{

t if p 6∈ Pos(s) and t ∈ Ter(Σ, V )

s|p if p ∈ Pos(s)
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– If p ∈ Pos(S), then the replacement of the subterm at position p by T , denoted
S[T ]p, is defined as:

S[T ]p = J(sκ[tκ]∗p)κ<ωK ,
with (Ter∞m (Σ, V ), d?t ) the employed metric space and with:

s[t]∗p =

{

s if p 6∈ Pos(s)

s[t]p if p ∈ Pos(s)

We have the following:

Proposition 3.4.4. Let S, T ∈ Ter∞m (Σ, V ). The maps root and Pos are well-
defined, the set Pos(S) is downward closed, and if p ∈ Pos(S), then S|p, S[T ]p ∈
Ter∞m (Σ, V ).

Proof. Assume (sκ)κ<ω is a Cauchy sequence in the equivalence class of S. To prove
the well-definedness of root(S), observe there exist β < ω such that dt(sγ1 , sγ2) <

1
2

for all β < γ1, γ2 < ω. This implies, by definition of dt, that there exists a symbol
f ∈ Σ ∪ V such that for all sγ with β < γ < ω it holds that root(sγ) = f . Hence,
(root(sκ))κ<ω is a Cauchy sequence. Obviously, lim (root(sκ))κ<ω = f . Remark
that the actual representative chosen is irrelevant by definition of d?t . Hence, root(S)
is well-defined.

To prove the well-definedness of Pos(S), observe that the following value be-
comes arbitrary small for large enough γ < ω, since (sκ)κ<ω is a Cauchy sequence:

d+
B

(

Pos(sγ),
⋂

κ>γ

Pos(sκ)
)

.

By the same fact, we have for all γ1 6 γ2 that:

⋂

κ1>γ1

Pos(sκ1
) ⊆

⋂

κ2>γ2

Pos(sκ2
) ,

where the positions in
⋂

κ2>γ2
Pos(sκ2

) and not in
⋂

κ1>γ1
Pos(sκ1

) are at greater
depths for larger values of γ1 and γ2. Hence, for large enough γ < ω we have that
the following value becomes arbitrary small:

d+
B

(

⋂

κ>γ

Pos(sκ),
⋃

γ′<ω

⋂

κ′>γ′

Pos(sκ′)
)

.

By the triangle inequality we now have that the next value also becomes arbitrary
small for large enough γ < ω:

d+
B

(

Pos(sγ),
⋃

γ′<ω

⋂

κ′>γ′

Pos(sκ′)
)

.

The above implies that:

lim (Pos(sκ))κ<ω =
⋃

γ′<ω

⋂

κ′>γ′

Pos(sκ′) .
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The set lim (Pos(sκ))κ<ω is a non-empty closed subset of N
∗: It is non-empty,

because at least ε is in the set. It is closed, because each subset of N
∗ is closed

in (℘nc(N
∗), d+

B). As in the case of root(S), the actual representative chosen is
irrelevant by definition of d?t . Hence, Pos(S) is well-defined.

That Pos(S) is downward closed follows immediately by the fact that sκ is
downward closed for each κ < ω.

Suppose (tκ)κ<ω is a Cauchy sequence in the equivalence class of T . It follows
immediately that (sκ|

∗
p)κ<ω and (sκ[tκ]

∗
p)κ<ω are both Cauchy sequences. Hence,

J(sκ|∗p)κ<ωK and J(sκ[tκ]∗p)κ<ωK are defined. As before, the actual representatives
chosen are irrelevant by definition of d?t . Hence, we have S|p, S[T ]p ∈ Ter

∞
m (Σ, V ).

ut

Remark 3.4.5. In the case of Pos(S) we can prove along similar lines as exhibited
above that

⋂

γ<ω

⋃

κ>γ Pos(sκ) is a limit of (Pos(si))κ<ω. As limits of sequences
are unique in metric spaces, we have:

⋃

γ<ω

⋂

κ>γ

Pos(sκ) =
⋂

γ<ω

⋃

κ>γ

Pos(sκ) .

3.4.3 Final Coalgebra

As in the case of ideal completion and partial functions, we define a map, denoted
ϕm, to turn Ter∞m (Σ⊥, V ) into an FΣ-coalgebra:

ϕm(S) =

{

x if root(S) = x ∈ V

(f, S|1, . . . , Sn) if root(S) = f ∈ Σn

where S ∈ Ter∞m (Σ⊥, V ). As before, the map adheres to the informal description
of ϕ∞, as presented in Section 3.1.1.

The main theorem of this section is as follows:

Theorem 3.4.6. The pair (Ter∞m (Σ⊥, V ), ϕm) is a final FΣ-coalgebra.

We do not prove the above theorem, as Barr [Bar93, Theorem 3.2] already gives
a proof.

By combining Theorem 3.4.6 with Theorem 3.3.7 and the fact that final coal-
gebras are unique up to isomorphisms, it follows that Ter∞m (Σ, V ) is isomorphic to
Ter∞f (Σ, V ). A more direct proof occurs as Theorem 12.2.1 in the book by Terese
[Ter03]. In addition, by adding a fresh nullary function symbol ⊥ to the signature
Σ, it follows by Theorem 3.2.19 that Ter∞m (Σ⊥, V ) and Ter∞f (Σ⊥, V ) are isomorphic
to Ter∞i (Σ⊥, V ).

3.4.4 Homomorphisms

We next prove that the definitions of positions, subterms, and replacements of
subterms as given for Ter∞m (Σ, V ) are identical to the definitions given in Sections
3.1.2, 3.1.3, and 3.1.4 in case Ter∞m (Σ, V ) is employed as final FΣ-coalgebra.



56 3 Infinite Terms

Positions. Define a map Pos′ from 1 + Ter∞m (Σ, V ) to → ℘(N∗):

Pos′(x) =

{

∅ if x ∈ 1

Pos(x) if x ∈ Ter∞m (Σ, V )

Obviously, Pos(S) = Pos′ ◦ inr(S) for S ∈ Ter∞m (Σ, V ). Hence, we only need to
prove:

Lemma 3.4.7. Let Ter∞m (Σ, V ) be employed as final coalgebra. The map:

Pos′ : 1 + Ter∞m (Σ, V )→ ℘(N∗)

is the unique homomorphism defined in Section 3.1.2.

Proof. Completely analogous to the proof of Lemma 3.2.21. ut

Subterms. Define a map |′ from T P to Ter∞m (Σ, V )× T P:

|′(S, p) = (S|p, (S, p)) .

Obviously, S|p = π1 ◦ |
′(S, p) for (S, p) ∈ T P and we only need to prove:

Lemma 3.4.8. Let Ter∞m (Σ, V ) be employed as final coalgebra. The map:

|′ : T P → Ter∞f (Σ, V )× T P

is the unique homomorphism defined in Section 3.1.3.

Proof. Completely analogous to the proof of Lemma 3.2.22. ut

Replacements of Subterms. Define the map [ ]′ from Ter∞m (Σ, V ) + T PT to
Ter∞m (Σ, V ):

[ ]′(x)

{

x if x ∈ Ter∞m (Σ, V )

S[T ]p if x = (S, p, T ) ∈ T PT

Obviously, S[T ]p = [ ]′ ◦ inr(S, p, T ) for all (S, p, T ) ∈ T PT . Hence, we only need
to prove:

Lemma 3.4.9. Let Ter∞m (Σ, V ) be employed as final coalgebra. The map:

[ ]′ : Ter∞m (Σ, V ) + T PT → Ter∞m (Σ, V )

is the unique homomorphism defined in Section 3.1.4.

Proof. Completely analogous to the proof of Lemma 3.2.23. ut

3.5 Infinite λ-Terms

In this section, we define infinite λ-terms, which we employ in Chapter 4. A subset
of the infinite λ-terms is formed by the (finite) λ-terms:
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Definition 3.5.1. The set of λ-terms, denoted Λ, is inductively defined as:

1. x ∈ Λ, if x ∈ V ,
2. λx.s ∈ Λ, if x ∈ V and s ∈ Λ, and
3. (s · t) ∈ Λ, if s, t ∈ Λ.

As usual, we write (s t) instead of (s · t) and λx1 . . . xn.s instead of λx1. . . . λxn.s.
Moreover, assuming left-associativity of ·, we omit parentheses whenever possible.
Finally, we say that a variable x is free in a term if it does not occur in a subterm
of the form λx.s.

Defining the set of infinite λ-terms, denoted Λ∞, is trivial, given the theory
developed in the previous sections. Ignoring α-equivalence, infinite λ-terms can be
defined as infinite (first-order) terms over the following infinite signature:

Σλ = {λx | x ∈ V } ∪ {·} ,

with each λx a unary function symbol and where · a binary function symbol. That
Σλ is infinite does not pose a problem: In the previous sections, no assumptions
were made regarding the cardinality of the assumed signature.

Since Chapter 4 draws heavily on infinite λ-terms, we spell out the three rep-
resentations infinite λ-terms, even though they follow trivially from the definitions
in the previous sections. In Sections 3.5.1, 3.5.2, and 3.5.3, we respectively de-
fine infinite λ-terms by means of ideal completion, partial functions, and metric
completion. In Section 3.5.4, we discuss α-equivalence.

Remark that the sets of infinite λ-terms defined by ideal completion, partial
functions, and metric completion are isomorphic, given the material presented in
the previous sections. That the signature is infinite, is again irrelevant.

Before proceeding with the definitions of infinite λ-terms, we spell out one more
definition for (finite) λ-terms:

Definition 3.5.2. The set of positions of a λ-term s, denoted Pos(s), is induc-
tively defined as:

Pos(s) =











{ε} if s = x ∈ V

{ε} ∪ {1 · p | p ∈ Pos(s′)} if s = λx.s′

{ε} ∪
⋃

i∈{1,2}{i · p | p ∈ Pos(si)} if s = s1s2

Given a λ-term s, we use s|p to denote the subterm at position p ∈ Pos(s). More-
over, by s[t]p we denote the replacement of the subterm at position p ∈ Pos(s) by
the λ-term t. The definitions are identical to those of first-order terms.

3.5.1 Ideal Completion

Adding a fresh nullary function symbol ⊥ to Σλ, obtaining the signature Σλ,⊥ =
Σλ ∪ {⊥}, we can de define the prefix order on Λ⊥ = Ter(Σλ,⊥, V ):

Definition 3.5.3. The prefix order on λ-terms, denoted 4, is the smallest binary
relation such that:
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1. x 4 x for all x ∈ V ,
2. ⊥ 4 s for all s ∈ Λ⊥,
3. λx.s 4 λx.t, if s 4 t and s, t ∈ Λ⊥, and
4. s1s2 4 t1t2, if s1 4 t1, s2 4 t2, and s1, s2, t1, t2 ∈ Λ⊥.

The prefix order defines a CUSL on Λ⊥, where each ⊥ denote an unspecified λ-
subterm.

We can now define infinite λ-terms by means of ideal completion:

Definition 3.5.4. The set of infinite λ-terms, denoted Λ∞
i,⊥, is defined as:

Λ∞
i,⊥ = {I ⊆ Λ⊥ | I is and ideal} .

The notions of root symbols, positions, subterms, and replacements of subterms
are defined exactly as in Section 3.2.2. As explained in the same section, we have
that Λ⊥ is isomorphic to:

{S | S ∈ Λ∞
i,⊥ with S finite} ⊆ Λ∞

i,⊥ .

The isomorphism assigns to each λ-term its principal ideal.

Example 3.5.5. The two infinite λ-terms informally depicted in Figure 3.4 corre-
spond respectively to the ideal:

{⊥, λx.⊥, λxy.⊥, λxyz.⊥, . . .}

and the ideal:
↓{(λx.y)((λx.y)(λx.⊥)), . . .} .

λx

λy

λz

...

·

λx ·

y λx λx

y ...

Figure 3.4. Two infinite λ-terms

Bibliographic Notes. Infinite λ-terms defined by means of ideal completion are
used in numerous publications on Böhm-like trees for the λ-calculus. Among the
publications are the ones by Berry [Ber78a], Hyland [Hyl75, Hyl76], Lévy [Lév75,
Lév78], Wadsworth [Wad76, Wad78], and Welch [Wel75].

3.5.2 Partial Functions

We next define infinite λ-terms as partial functions:

Definition 3.5.6. The set of infinite λ-terms, denoted Λ∞
f , is the set of all partial

functions S : N
∗ ⇀ (Σ ∪ V ) satisfying:
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1. the set of values on which S is defined is downward closed,
2. if S(p) ∈ V , then S(q) is undefined for all q > p,
3. if S(p) = λx, then S(p · i) is defined if i = 1 and undefined otherwise, and
4. if S(p) = ·, then S(p · i) is defined if i ∈ {1, 2} and undefined otherwise,

where p ∈ N
∗.

By restricting the set of infinite λ-terms to the terms that have a finite number of
defined values, we obtain a set of terms that is isomorphic to the set Λ of (finite)
λ-terms.

Example 3.5.7. The infinite λ-terms depicted in Figure 3.4 correspond respectively
to:

{ε 7→ λx, 1 7→ λy, 11 7→ λz, . . .}

and to:

{ε 7→ ·, 1 7→ λx, 11 7→ y, 2 7→ ·, 21 7→ λx, 22 7→ λx, 211 7→ y, . . .} .

Bibliographic Notes. The standard reference on infinite λ-terms defined by
means of partial functions is Barendregt’s book [Bar84].

3.5.3 Metric Completion

In case of metric completion, recall that the term metric is defined as follows:

Definition 3.5.8. Let s, t ∈ Λ. The term metric, denoted dt, is defined as:

dt(s, t) =

{

0 if s = t

2−k if s 6= t and k = min{|p| | s and t conflict at p ∈ N
∗}

where s and t conflict at p ∈ N
∗ if p ∈ Pos(s) ∩ Pos(t) and root(s|p) 6= root(t|p).

The infinite λ-terms are now defined as Λ∞
m = Λ?, where (Λ?, d?t ) is the metric

completion of (Λ, dt).
A number of subsets of Λ∞

m are defined by Kennaway, Klop, Sleep, and De
Vries [KKSV97]. As they show, these subsets can be defined by parameterising the
definition of the term metric. The parameterisation is as follows, where we slightly
generalise the definition by Kennaway, Klop, Sleep, and De Vries:

Definition 3.5.9. Let s, t ∈ Λ. The term metric, denoted dlt, is defined as:

dlt(s, t) =

{

0 if s = t

2−k if s 6= t and k = min{l(p, s) | s and t conflict at p ∈ N
∗}

where s and t conflict at p ∈ N
∗ if p ∈ Pos(s) ∩ Pos(t) and root(s|p) 6= root(t|p)

and where l : N
∗ × Λ→ N is such that for all p ∈ Pos(s):

– if s and t do not conflict at any q 6 p, then l(p, s) = l(p, t), and
– if q 6 p, then l(s, q) 6 l(s, p).

That dlt is a metric is easy to prove.
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With the help of parameterisation and a number of criteria for the ‘good’ be-
haviour of infinite λ-terms, four instantiations of dlt are singled out by Kennaway,
Klop, Sleep, and De Vries. Employing notation similar to that of Severi and De
Vries [SV02a] and assuming s ∈ Λ and p ∈ Pos(s), the four instantiations are as
follows:

Term Metric Map

dft f(p, s) = l000(p, s)
dut u(p, s) = l001(p, s)
dwt w(p, s) = l101(p, s)
dtt t(p, s) = l111(p, s)

where it is assumed that:

labc(ε, s) = 0

labc(i · p, s) =











a+ labc(p, s′) if s = λx.s′ and i = 1

b+ labc(p, s1) if s = s1s2 and i = 1

c+ labc(p, s2) if s = s1s2 and i = 2

Remark that f(p, s) = 0, independent of p and s and that t(p, s) = |p|.
As explained by Kennaway, Klop, Sleep, and De Vries, we have that each of the

metric completions of the spaces defined by the above metrics yields a subset of
Λ∞

m :

Term Metric Subset

dft Λ∞
f = Λ

dut Λ∞
u

dwt Λ∞
w

dtt Λ∞
t = Λ∞

m

Above, the set Λ∞
u is the set of infinite λ-terms in which no subterms of the forms

λx1.λx2. . . . λxn. . . . and ((. . . (. . . Sn) . . .)S2)S1 occur. Moreover, the set Λ∞
w is the

set of infinite λ-terms in which no subterms of the form ((. . . (. . . Sn) . . .)S2)S1

occur.
It is easy to see that the following relations hold between the sets of infinite

terms:
Λ = Λ∞

f ⊆ Λ∞
u ⊆ Λ∞

w ⊆ Λ∞
t = Λ∞

m .

Bibliographic Notes. The basic reference on the definition of infinite λ-terms by
means of metric completion is the paper by Kennaway, Klop, Sleep, and De Vries
[KKSV97]. Some of the details as presented in that paper can also be found in
Chapter 12 of the book by Terese [Ter03].

3.5.4 α-Equivalence

We next define α-equivalence for infinite λ-terms. The definition depends on a no-
tion of α-equivalence for (finite) λ-terms, which we define first (see also Barendregt’s
book [Bar84, Definition 2.1.11 and Convention 2.1.12]).
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To define α-equivalence for finite λ-terms, we first define a map from Λ×V ×V
to Λ, denoted s[x 7→ z]:

s[x 7→ z] =































z if s = x with x ∈ V

y if s = y with y ∈ V and y 6= x

λx.s′ if s = λx.s′

λy.(s′[x 7→ z]) if s = λy.s′ and y 6= x

(s1[x 7→ z])(s2[x 7→ z]) if s = s1s2

where s ∈ Λ and z 6∈ Vara(s), with:

Vara(s) =











{x} if s = x with x ∈ V

{x} ∪ Vara(s
′) if s = λx.s′

Vara(s1) ∪ Vara(s2) if s = s1s2

Two terms s, t ∈ Λ are now said to be α-equivalent, denoted s =α t if one
following holds:

– s = t with s, t ∈ V ,
– s = λx.s′, t = λy.t′, and s′[x 7→ z] =α t

′[y 7→ z] for z 6∈ Vara(s
′) ∪ Vara(t

′), or
– s = s1s2, t = t1t2, and s1 =α t1 and s2 =α t2.

As usual in the λ-calculus, we implicitly consider λ-terms modulo α-equivalence.
To define α-equivalence with respect to infinite λ-terms, we add to Σλ a fresh

nullary function symbol f. With the help of f, we can define a prefix order on the
infinite terms over Σλ,f analogous to what we did in the case of ideal completion.
Denoting by Λ∞

f
the infinite λ-terms over Σλ,f we next define:

Definition 3.5.10. Let S, T ∈ Λ∞
f

. The infinite λ-terms S and T are said to be
α-equivalent, denoted S =α T , if and only if each finite prefix of S is α-equivalent
to some finite prefix of T .

Although a finite prefix is not a (finite) λ-term (over Σλ,f), we have that the set of
finite prefixes is isomorphic to the set of λ-terms. Hence, under assumption of the
isomorphism that assigns to each λ-term its principal ideal, the above definition
suffices.

Remark that the set of infinite λ-terms Λ∞ is isomorphic to a subset of Λ∞
f

.
Hence, by the above definition, we also know whether two infinite λ-terms are α-
equivalent or not. Like in the case of (finite) λ-terms, we implicitly consider infinite
λ-terms modulo α-equivalence in the following chapters.

Remark 3.5.11. Two observations are to be made with respect to the above defi-
nition of α-equivalence:

– Alternatively to considering infinite λ-terms modulo α-equivalence it is also pos-
sible to define infinite λ-terms based on De Bruijn-indices [Bru72]. This is already
noted by Kennaway, Klop, Sleep, and De Vries [KKSV97].

– The above approach of dealing with α-equivalence falls outside the categorical
approach as described in Section 3.1. To capture α-equivalence in the categorical
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approach, the work by Fiore, Plotkin, and Turi [FPT99] is relevant. They provide
a categorical definition of finite λ-terms that takes into account α-equivalence.
Unfortunately, it is not possible to simply dualise their approach: Dualisation of
the functors they define only allows for infinite λ-terms with a finite number of
free variables.
Other relevant work is that by Gabbay and Pitts [GP02]. Their approach eas-
ily combines with our categorical approach to allow variable binding and α-
equivalence. However, the underlying category employed by Gabbay and Pitts
is not the category of sets and total functions. It is the Fraenkel-Mostowski per-
mutation model of set theory. In this model, the Axiom of Choice is no longer
valid.



4

λ-Calculus

“Listen you semi-evolved simian,” cut in Zaphod,
“go climb a tree will you?”

— Douglas Adams

The Restaurant at the End of the Universe (1980)

In this chapter, we survey the Böhm-like trees that have been defined for the λβ-
calculus. We also present a number of the trees that have been defined for two
interesting systems extending the λβ-calculus: PCF and the λβη-calculus.

It not the aim of this chapter to present every Böhm-like tree that has ever been
defined for any system extending the λβ-calculus. As such, no further mention is
made, e.g., of the Böhm-like tree defined by Dezani-Ciancaglini, Severi, and De
Vries [DCSV03]. Moreover, since this chapter has the character of a survey, all
proofs are omitted. They can be found in the cited literature.

As explained in Chapter 1, a Böhm-like tree of a term s is a sort of normal
form of s which takes into account infinite reductions. More precisely, it takes into
account maximal reductions, where a reduction is maximal if it is either a reduction
to normal form or an infinite reduction.

Two problems were observed regarding maximal reductions: Terms may become
infinitely large and, no matter how often a term is reduced, its root may always
become a redex again, i.e., it may never become root-stable. As we explain next,
both these problems can be observed in the λβ-calculus.

To understand that terms may become infinitely large, suppose that Y is a λ-
term that behaves like a fixed-point combinator, i.e., Ys→∗

β s(Ys). We now have
the following reduction:

Y(λxy.x)→∗
β λy1.Y(λxy.x)→∗

β λy1y2.Y(λxy.x)→∗
β · · · .

Obviously, the further this reduction progresses the larger the terms become. Hence,
considering reductions to be a limit process, the final λ-term will be infinite.

To understand that λ-terms may never become root stable, consider the λ-term
Ω = (λx.xx)(λx.xx). Starting with Ω, only the following reduction is possible:

(λx.xx)(λx.xx)→β (λx.xx)(λx.xx)→β (λx.xx)(λx.xx)→β · · · .

Hence, Ω reduces only to itself and not reduce to a root-stable term.
As remarked in Chapter 1, the above two problems may respectively be solved

by introducing infinite terms and a fresh nullary function symbol ⊥. Infinite λ-
terms, which are the infinite terms required in the case of the λβ-calculus, are
introduced in the last section of Chapter 3. The usage of the fresh function symbol
⊥ is detailed in the following sections.
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Besides the above two problems, there is an additional problem not discussed
in Chapter 1. To understand this problem, consider the following reduction:

Ω(Y(λxy.x))→β Ω(Y(λxy.x))→β Ω(Y(λxy.x))→β · · · ,

where the Ω-redex is contracted in each step. Although repeatedly contracting Ω
yields a maximal reduction, it is not a fair reduction: The redex Y(λxy.x) is ignored
forever. Hence, continuously contracting Ω says not all there is to say about the
shape of Ω(Y(λxy.x)) after other maximal reductions. To overcome this problem
we consider maximal fair reductions instead of just maximal reductions. Here, fair
means that no redex that occurs along a reduction is ignored forever. That is, each
redex is either contracted or erased at some point in the reduction.

Having highlighted all problems we will run into while defining the Böhm-
like trees of the λβ-calculus and related systems, we next give some preliminary
definitions related to the λβ-calculus in Section 4.1. Thereafter, in Section 4.2, we
define the Böhm-like trees of the λβ-calculus. The properties these trees have in
common are discussed in Section 4.3. In Section 4.4, we present two alternative,
but equivalent, ways of defining the Böhm-like trees of the λβ-calculus. Finally,
in Sections 4.5 and 4.6 we discuss a number of Böhm-like trees for PCF and the
λβη-calculus, respectively.

4.1 Preliminaries

The λβ-calculus defines only the following rewrite rule:

(λx.s)t→β s[x := t] ,

where (λx.s)t is called a β-redex and where s[x := t] is inductively defined as:

s[x := t] =



















t if s = x ∈ V

y if s = y ∈ V and y 6= x

λz.((s′[y 7→ z])[x := t]) if s = λy.s′ and z 6∈ Vara(s
′) ∪ Vara(t)

(s1[x := t])(s2[x := t]) if s = s1s2

Above, λz.((s′[y 7→ z])[x := t]) is often written as λy.(s′[x := t]), where it is
implicitly assumed that capturing of free variables is avoided (see also Convention
2.1.12 in Barendregt’s book [Bar84]). The definitions of s[x 7→ z] and Vara(s) can
be found in Section 3.5.4.

In the remainder of this chapter, we distinguish between three sets of λ-terms.
The sets encompass respectively the head normal forms, the weak head normal
forms and the root-stable terms and are defined as follows:

Definition 4.1.1. Let s be a (finite) λ-term.

1. If s = λx1 . . . xm.ys1 . . . sn, then s is a head normal form,
2. If s = λx.s′ or s = xs1 . . . sn, then s is a weak head normal from.
3. If s does not reduce to a β-redex, then s is a root-stable term.

By the above definition, it follows immediately that any head normal form is a
weak head normal form and that any weak head normal form is root-stable. These
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implications cannot be reversed. For example, λx.Ω is a weak head normal form
but not a head normal form, as root(λx.Ω|11) = root(λx.xx) 6∈ V . Moreover, ΩΩ is
root-stable but not a weak head normal form, as root(ΩΩ) 6= λx and root(ΩΩ|11) =
root(λx.xx) 6∈ V .

4.2 Böhm-Like Trees

We define three Böhm-like trees for the λβ-calculus: the Böhm trees, the Lévy-
Longo or lazy trees, and the Berarducci trees. Recall from Chapter 1 that the
generic name ‘Böhm-like tree’ derives from the most well-known of the three trees:
the Böhm tree.

Assuming that infinite λ-terms are defined by means of ideal completion, each
of the three Böhm-like trees is defined according to a three-step pattern:

1. A map ω from Λ⊥ to Λ⊥, called a direct approximant function, is defined.
2. For each s ∈ Λ⊥ a set, called the auxiliary set of s, is defined:

A(s) = {ω(t) | s→∗
β t} ,

where ω is the direct approximant function defined in the first step.
3. The Böhm-like tree of s ∈ Λ is defined:

BLT(s) = ↓A(s) ,

where ↓A(s) denotes the downward closure of A(s).

Regarding the first step, we call the value ω(s) obtained by applying a direct
approximant function ω to s the direct approximant of s. In the case of the three
direct approximant functions we present below, it holds that the direct approximant
of s is a root-stable prefix of s. That is, the direct approximant is a term t 4 s such
that for all t|p 6= ⊥ we have that s|p is a root-stable subterm of s.

Regarding the second step, we have that the auxiliary set of s contains for each
reduction starting in s the direct approximant of the final term of the reduction.
Hence, all terms that occur along maximal fair reductions of s are considered while
defining the auxiliary set of s. This implies that auxiliary sets help to overcome the
fairness problem identified in the introduction of this chapter.

Remark that auxiliary sets do not need to be ideals. For example, we have for all
three Böhm-like trees of the λβ-calculus that A(λx.y) = {λx.y}, as follows easily
from the discussion below. Obviously, {λx.y} is not an ideal, since ⊥ 6∈ {λx.y}.

Regarding the third step, we have that ↓A(s) is an ideal whenever A(s) is
directed. Hence, in this particular case we have that BLT(s) is an infinite λ-term.
As we will see below, it holds for each of the three Böhm-like trees of the λβ-calculus
that the auxiliary set is directed.

The Böhm-like trees of the λβ-calculus only represent subterms that become
root-stable, as required with respect to the root-stability problem mentioned in the
introduction of this chapter. To see that only root-stable subterms are represented,
recall from above that each direct approximant function only represents a root-
stable prefix and observe that root-stable prefixes can only become larger along
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reductions. If a root-stable prefix would become smaller, then a root-stable term
would become a β-redex again, which is impossible by definition of root-stability.

Remark 4.2.1. Given a direct approximant function ω, some authors, e.g., Hyland
[Hyl75] and Wadsworth [Wad76, Wad78], define the Böhm-like tree for each λ-term
s as:

BLT(s) = {t′ | s→∗
β t, t

′ 4 ω(t)} .

That is, the creation of auxiliary sets and taking there downward closure is com-
bined into a single step.

Given a λ-term s, the direct approximant functions of the three Böhm-like trees
of the λβ-calculus are defined as follows:

Böhm Direct Approximant The Böhm direct approximant of s, denoted by
ωB(s), is the greatest prefix of s, such that ωB(s) 4 s[⊥]p for all p ∈ Pos(s)
with s|p not a head normal form.

Lévy-Longo Direct Approximant The Lévy-Longo direct approximant of s,
denoted by ωLL(s), is the greatest prefix of s, such that ωLL(s) 4 s[⊥]p for all
p ∈ Pos(s) with s|p not a weak head normal form.

Berarducci Direct Approximant The Berarducci direct approximant of s, de-
noted by ωBe(t), is the greatest prefix of s, such that ωBe(s) 4 s[⊥]p for all
p ∈ Pos(s) with s|p not root-stable.

Since subterms in head normal form and weak head normal form are root-stable,
as remarked in Section 4.1, it follows that each direct approximant is a root-stable
prefix.

The Böhm direct approximant of a term s can also be defined as the unique
normal form of s with respect to the following confluent and terminating rewrite
system:

(λx.s)t→ω ⊥

⊥t→ω ⊥

λx.⊥ →ω ⊥

In case of the Lévy-Longo direct approximant, a confluent and terminating rewrite
system can also be defined: It consists of the first two of the above three rewrite
rules. With regard to the Berarducci direct approximant no finite rewrite system
exists that is confluent and terminating: Confluence and termination of such a
rewrite system would imply that root-stability is decidable, which it is not.

Example 4.2.2. Consider the following λ-term:

s = λx.x(λy.Ω)(⊥⊥) ,

where Ω = (λx.xx)(λx.xx). The values of the three direct approximants of s are:

ωB(t) = λx.x⊥⊥

ωLL(t) = λx.x(λy.⊥)⊥

ωBe(t) = λx.x(λy.⊥)(⊥⊥)
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In the above example, we have:

ωB(s) 4 ωLL(s) 4 ωBe(s) .

This relation holds for all λ-terms: Recall that every head normal form is a weak
head normal form, but not the other way around, and also recall that every weak
head normal form is root-stable, and again not the other way around.

Given the three-step approach explained above, auxiliary sets and Böhm-like
trees can be defined based on each of the three direct approximant functions. For
each λ-term s, the auxiliary sets and Böhm-like trees are as follows:

AB(s) = {ωB(t) | s→∗
β t} BLTB(s) = ↓AB(s)

ALL(s) = {ωLL(t) | s→∗
β t} BLTLL(s) = ↓ALL(s)

ABe(s) = {ωBe(t) | s→
∗
β t} BLTBe(s) = ↓ABe(s)

Since root-stable prefixes can only become larger and since the λβ-calculus is con-
fluent, it follows that the above auxiliary sets are directed. Hence, each Böhm-like
tree is an element of Λ∞

i,⊥, i.e., an infinite λ-term defined by ideal completion.
Given a λ-term s, we call the infinite λ-term BLTB(s) the Böhm tree of s, the

infinite λ-term BLTLL(s) the Lévy-Longo tree or lazy tree of s, and BLTBe(s) the
Berarducci tree of s.

Example 4.2.3. Consider the following λ-term:

s = (λz1.λz2.λx.xz1z2)(λy.Ω)(⊥⊥)

which reduces to the λ-term:

λx.x(λy.Ω)(⊥⊥) ,

as employed in Example 4.2.2. The three Böhm-like trees of s are as follows:

BLTB(s) = ↓{⊥, λx.x⊥⊥}

BLTLL(s) = ↓{⊥, λx.x(λy.⊥)⊥}

BLTBe(s) = ↓{⊥, λx.x(λy.⊥)(⊥⊥)}

Similar to what holds in case of the direct approximants, we have in the above
example that:

BLTB(s) 4 BLTLL(s) 4 BLTBe(s) .

This relation holds for all λ-terms, which is an immediate consequence of the fact
that for every λ-term s it holds that ωB(s) 4 ωLL(s) 4 ωBe(s) and the definitions
of auxiliary sets and downward closure.

The next example shows that the Böhm-like trees can become infinite:

Example 4.2.4. Consider the following λ-term:

s = Θ(λf.λx.xf) ,
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where Θ is Turing’s fixed-point combinator, i.e., Θ = AA with A = λxy.y(xxy)
(see, e.g., Definition 6.1.4 in Barendregt’s book [Bar84]). With respect to s we have
the following reduction:

s→∗
β λx1.x1s→

∗
β λx1.x1(λx2.x2s)→

∗
β · · ·

Since each term λxi.xit, with t some arbitrary λ-term, is a head normal form, we
have for s and all three of defined Böhm-like trees that the Böhm-like tree of s is
equal to:

↓{⊥, λx1.x1⊥, λx1.x1(λx2.x2⊥), . . .} .

As there is no bound on the size of the reducts of s, the Böhm-like tree of s must
be infinite.

Bibliographic Notes. As remarked by Barendregt [Bar84], Böhm trees were sug-
gested by the original proof of Böhm’s theorem [Böh68]. The definition of Böhm
trees as presented above, occurs in the work of Barendregt [Bar84], Hyland [Hyl75],
Lévy [Lév78], Wadsworth [Wad76, Wad78], and Welch [Wel75]. Barendregt also
provides an alternative coalgebraic definition, which is explained in Section 4.4.
The rewrite system that defines the Böhm direct approximants is discussed both
by Barendregt [Bar84] and Lévy [Lév78].

Lévy-Longo trees were first defined by Lévy [Lév75], who employs the above
definition. Longo [Lon83] gives an alternative coalgebraic definition, as explained
in Section 4.4. Longo [Lon83] also proves numerous properties regarding Lévy-
Longo trees. The rewrite system that defines the Lévy-Longo direct approximants
is discussed by Lévy [Lév75].

Finally, Berarducci trees were first defined by Berarducci [Ber96], employing
infinitary rewriting, as explained in Section 4.4.

4.3 Common Properties

We divide the properties the three Böhm-like trees of the λβ-calculus have in
common into two categories: The properties of the direct approximants and the
properties of the Böhm-like trees. The next two sections each deal with one of the
two categories.

4.3.1 Direct Approximants

The three direct approximant functions, as defined for the λβ-calculus, have in
common the following three properties, which are related to root-stability:

1. ω(s) 4 s,
2. if s|p is a β-redex with p ∈ Pos(s), then ω(s) 4 s[⊥]p, and
3. if s→β t, the ω(s) 4 ω(t),

where s, t ∈ Λ⊥ and where ω is one of the three direct approximant functions.
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The first property states that a direct approximant of a λ-term is a prefix of
that term. This property holds, as direct approximants are root-stable prefixes. The
second property states that a β-redex cannot be a subterm of a direct approximant.
This property holds, as β-redexes are not root-stable. Note that the first property
is implied by the second one in case a β-redex occurs in s. The third property states
that direct approximants cannot become smaller along reductions. As before, this
property holds by root-stability.

It is readily proved from the three properties, that any direct approximant that
adheres to the properties must represent a root-stable prefix. In the case of a λ-
term in normal form, this follows by the first property. For every other λ-term, this
follows by the second and third property.

The Böhm and Lévy-Longo direct approximants also have in common the fol-
lowing property:

4. if s 4 t, then ω(s) 4 ω(t).

This property is a consequence of the fact that head normal forms and weak head
normal forms are preserved by the prefix order. We say that Böhm and the Lévy-
Longo direct approximants are monotone with respect to the prefix order.

Remark 4.3.1. The Berarducci direct approximant is not monotone with respect
to the prefix order. To see this, consider the λ-terms ⊥⊥ and Ω = (λx.xx)(λx.xx)
and remark:

⊥⊥ 4 Ω ,

The Berarducci direct approximants of these terms are respectively ⊥⊥ and ⊥.
Hence, we have:

ωBe(⊥⊥) = ⊥⊥ 64 ⊥ = ωBe(Ω) .

Given the rewrite systems that define the Böhm and Lévy-Longo direct approx-
imants, we can also identify a number of common properties. Denoting by d→ω e
an arbitrary rewrite rule of one of the rewrite systems, we obtain the following:

1. e = ⊥,
2. ⊥ is a normal form,
3. s→=

ω ⊥ for all s 4 d, and
4. (λx.s)t→ω ⊥.

Confluence and termination follow immediately from the properties, as do the four
properties of the Böhm and Lévy-Longo direct approximant functions when we
define the direct approximant of a term as its unique normal form.

4.3.2 Böhm-Like Trees

We next give an overview of properties the three Böhm-like trees of the λβ-calculus
have in common. The properties are summarised in Table 4.1. A checkmark (X)
indicates that a certain property holds, while a dash (-) indicates that a certain
property does not hold.
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Table 4.1. Properties of the three Böhm-like trees

Böhm-Like Tree
Property BLTB BLTLL BLTBe

Preservation X X X

Congruence X X X

Monotonicity X X –
Continuity X X –

Syntactic Continuity X X –
Sequentiality X X –

We next discuss each of the properties in the table. Moreover, we indicate
whether each of the properties is implied by the properties of the direct approximant
functions as discussed in the previous section. Of course, if a property is not implied,
ground exists to try to established additional properties. No attempt to establish
additional properties is made here; this is postponed to subsequent chapters.

Preservation. A property shared between all three Böhm-like trees is preservation
under rewriting. Given λ-terms s and t, the property states:

s→∗
β t implies BLT(s) = BLT(t) .

The validity of the property follows directly from the confluence of the λβ-calculus
and the third property of direct approximants functions mentioned in the previous
section.

Congruence. A second property of all three Böhm-like trees is congruence of
Böhm-like tree equality. That is, given λ-terms s and t and a context C[�], it holds
that:

BLT(s) = BLT(t) implies BLT(C[s]) = BLT(C[t]) .

The property does not follow from the properties mentioned in the previous section.
However, it does follow immediately whenever Böhm-like trees are defined by means
of infinitary rewriting, as discussed in Section 4.4.

Monotonicity and Continuity. Given two λ-terms s and t, monotonicity states
that:

s 4 t implies BLT(s) 4 BLT(t) .

Moreover, continuity states that:

BLT(s) =
⊔

{BLT(t) | t 4 s} .

Remark 4.3.2. The above formulation of continuity derives from usual formulation
that occurs in theory of partial orders, which states that BLT should be monotonic
and that:

BLT(
⊔

D) =
⊔

{BLT(d) | d ∈ D} ,

where D is any directed set that has a least upper bound. That our formulation
derives from the usual one is immediate by monotonicity and the observation that
⊔

{t | t 4 s} = s.
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For both Böhm and Lévy-Longo trees, monotonicity and continuity follows by
monotonicity of the direct approximants with respect to the prefix order and by
left-linearity of the λβ-calculus.

Remark 4.3.3. Monotonicity and continuity do not hold for Berarducci trees, as
noted, e.g., by Dezani-Ciancaglini, Severi, and De Vries [DCSV03]. To see that
monotonicity does not hold, consider the λ-terms ⊥⊥ and Ω = (λx.xx)(λx.xx),
which are also considered in Remark 4.3.1. Although it holds that:

⊥⊥ 4 Ω ,

the Berarducci trees of the λ-terms are respectively {⊥,⊥⊥} and {⊥}. Hence, we
have:

BLTBe(⊥⊥) = {⊥,⊥⊥} 64 {⊥} = BLTBe(Ω) .

To see that continuity does not hold for Berarducci trees, consider again the
λ-term Ω. It holds that:

{s | s 4 Ω} = ↓{⊥(λx.xx), (λx.xx)⊥,Ω} ,

Moreover, the following holds:

BLTBe(Ω) = ↓{⊥}

BLTBe(⊥(λx.xx)) = ↓{⊥(λx.xx)}

BLTBe((λx.xx)⊥) = ↓{⊥⊥}

Hence, we have:

BLTBe(Ω) = ↓{⊥} 6= ↓{⊥,⊥⊥,⊥(λx.xx)} =
⊔

{BLTBe(s) | s 4 Ω} .

Syntactic Continuity. Given a λ-term s and a context C[�], syntactic continuity
states:

BLT(C[s]) =
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

Remark the subtle difference with continuity: t ∈ BLT(s) is employed instead of
t 4 s. Irrespective of this subtle difference, the formulation of syntactic continuity
also derives from the concept of continuity as it is occurs in theory of partial
orders. An explanation of this can be found, e.g., in the book by Amadio and
Curien [AC98]. Essentially, it is to be understood as the continuity of contexts.

Syntactic continuity of Böhm and Lévy-Longo trees does not follow from the
properties established for direct approximants. A property which does imply syn-
tactic continuity is discussed in Chapter 6.

Remark 4.3.4. Syntactic continuity does not hold for Berarducci trees. To see this,
consider the λ-term λx.xx and the context C[�] = �(λx.xx). It holds that:

BLTBe(λx.xx) = ↓{λx.xx}

and that:
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BLTBe(C[λx.xx]) = BLTBe(Ω) = ↓{⊥} .

Hence, we have:

⊔

{BLTBe(C[s]) | s ∈ BLTBe(λx.xx)} = ↓{⊥(λx.xx)}

and we also have:
↓{⊥} 6= ↓{⊥(λx.xx)} .

Sequentiality. Given a λ-term s and a position p ∈ Pos(BLT(s)), where BLT(s) is
either the Böhm or Lévy-Longo tree of s, sequentiality states that BLT(s)|p = {⊥}
implies exactly one of the following:

1. for all λ-terms t, if t < s, then BLT(t)|p = {⊥}, or
2. there exists a unique position q ∈ Pos(s) with s|q = ⊥ such that for all λ-terms
t, if t < s and BLT(t)|p 6= {⊥}, then t|q 6= ⊥.

A further explanation of sequentiality can be found in the introduction of Chapter 8.
Similar to syntactic continuity, sequentiality does not follow from the properties
established thus far with respect to direct approximants.

Sequentiality was first shown to hold for Böhm trees by Berry [Ber78a]. A proof
of sequentiality of Böhm trees also occurs in Barendregt’s book [Bar84]. For Lévy-
Longo trees, a proof of sequentiality is easily constructed out of any of the proofs
for Böhm trees.

Remark 4.3.5. To see that sequentiality does not hold for Berarducci trees, it is
important to realise that sequentiality assumes for all t < s that p ∈ Pos(BLT(t)).
This property does not hold in the case of Berarducci trees, as it depends on
monotonicity.

4.4 Alternative Definitions

In this section, we discuss two alternative definitions of each of the three Böhm-
like trees of the λβ-calculus: the coalgebraic definition and the infinitary rewriting
definition.

Both the coalgebraic definition and the infinitary rewriting definition yield
Böhm-like trees that are identical to the Böhm-like trees of the approach pre-
sented in Section 4.2. That the trees are identical is readily proved using the fact
that head normal forms, weak head normal forms, and root-stability re-occur in all
three definitions.

4.4.1 Coalgebra

Coalgebraically, Böhm-like trees are defined according to the following pattern,
where s is a λ-term and where P is a property only satisfiable by root-stable λ-
terms:
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1. If s is not reducible to a term satisfying P , then the root of the Böhm-like tree
of s is equal to ⊥.

2. If s is reducible to a term t satisfying P , then the Böhm-like tree of s is T .
Here, T is constructed out of t by replacing those subterms of t that do not
satisfy P by their Böhm-like trees, where the Böhm-like trees of the subterms
are constructed in the same way as the Böhm-like tree of s.

Remark that a Böhm-like tree is defined in terms of itself. In other words, the
definition is coalgebraic. Remark too that all subterms to be replaced by their
Böhm-like trees are considered in parallel. Hence, as all subterms that satisfy P
are root-stable, it holds that all maximal fair reductions are considered.

Given that the coalgebraic definition requires infinite λ-terms to be partial
functions, the three Böhm-like trees of the λβ-calculus are as defined follows:

Böhm Tree. Let s ∈ Λ⊥. If s is not reducible to a head normal form, then define:

BLTB(s)(ε) = ⊥ .

Otherwise, if s is reducible to the head normal form t = λx1 . . . xm.yt1 . . . tn, then
define:

BLTB(s)(p) =

{

t(p) if p 6> q with t|q = ti for some i

BLTB(ti)(r) if p = q · r with t|q = ti for some i

Lévy-Longo Tree. Let s ∈ Λ⊥. If s is not reducible to a weak head normal form,
then define:

BLTLL(s)(ε) = ⊥ .

Otherwise, if s is reducible to the weak head normal form t = λx.t′, then define:

BLTLL(s)(p) =

{

t(p) if p 6> q with t|q = t′

BLTLL(t′)(r) if p = q · r with t|q = t′

Finally, s is reducible to the weak head normal form t = xt1 . . . tn, then define:

BLTLL(s)(p) =

{

t(p) if p 6> q with t|q = ti for some i

BLTLL(ti)(r) if p = q · r with t|q = ti for some i

Berarducci Tree. Let s ∈ Λ⊥. If s is not reducible to a root-stable λ-term, then
define:

BLTBe(s)(ε) = ⊥ .

Otherwise, if s is reducible to a root-stable λ-term t, then define:

BLTBe(s)(p) =











t(p) if t|p root-stable

BLTBe(t|q)(r) if p = q · r with t|q not root-stable

and t|q′ root-stable for all q′ < q.

Given s ∈ Λ⊥, it is readily shown by induction on the length of the positions
that all three Böhm-like trees define an element of Λ∞

f,⊥.
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Example 4.4.1. Consider once more the λ-term from Example 4.2.3:

s = (λz1.λz2.λx.xz1z2)(λy.Ω)(⊥⊥) .

In the current approach, the three Böhm-like trees of the λ-term are as follows:

BLTB(s) = S ∪ {112 7→ ⊥, 12 7→ ⊥}

BLTLL(s) = S ∪ {112 7→ λy., 1121 7→ ⊥, 12 7→ ⊥}

BLTBe(s) = S ∪ {112 7→ λy., 1121 7→ ⊥, 12 7→ ·, 121 7→ ⊥, 122 7→ ⊥}

where:
S = {ε 7→ λx., 1 7→ ·, 11 7→ ·, 111 7→ x} .

Bibliographic Notes. The coalgebraic definitions of Böhm trees and Lévy-Longo
trees occur respectively in Barendregt’s book [Bar84] and Longo’s work [Lon83].
That the definitions are actually coalgebraic definitions is remarked by Jacobs and
Rutten [JR97].

4.4.2 Infinitary Rewriting

To explain the infinitary rewriting definition of Böhm-like trees, we first need to
define what a reduction is in infinitary rewriting. This is covered by the following
definition, where it is assumed that the infinite λ-terms are defined by means of
metric completion:

Definition 4.4.2. A transfinite reduction of ordinal length α is a sequence of in-
finite λ-terms (Sκ)κ<α+1 such that Sκ → Sκ+1 for all κ < α. For each rewrite step
Sκ → Sκ+1, let dκ denote the depth of the contracted redex. The reduction is called
weakly convergent or Cauchy convergent if it is continuous in the sense of Defini-
tion 2.1.2. Furthermore, it is called strongly convergent if it is weakly convergent
and if dκ tends to infinity as κ approaches γ from below.

With respect to the above definition, substitution for infinite λ-terms must be de-
fined appropriately. This is done by Kennaway, Klop, Sleep, and De Vries [KKSV97].

Note that every weakly convergent reduction is strongly convergent. Moreover,
note that all finite reductions, as defined in Chapter 2, are weakly convergent; the
same cannot be said of all infinite reductions, as not every infinite reduction needs
to have a limit, which is required here.

The three Böhm-like trees are defined according to the following four-step pat-
tern:

1. A set U ⊆ Λ∞
m,⊥ is defined, which is assumed to contain all infinite λ-terms

whose Böhm-like tree is ⊥.
2. A set of rewrite rules is defined:

{(λx.S)T →β S[x := T ]} ∪ {S →⊥ ⊥ | S ∈ U} .

That is, the β-rule is lifted to infinite λ-terms and a rule is added for each
S ∈ U that reduces S to ⊥.

3. It is shown that the rewrite relation based on the strongly convergent reductions
of rewrite system defined in the previous step is confluent and normalising.
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4. Böhm-like trees of infinite λ-terms are defined to be the unique normal forms
with respect to the strongly convergent reductions, where the unique normal
forms exist by confluence and normalisation.

The above four-step pattern is slightly more general than both the other definitions
of Böhm-like trees: the trees are not just defined for the (finite) λ-terms, but for all
elements of Λ∞

m,⊥. Congruence of Böhm-like tree equality, as described in Section
4.3, is now immediate, since confluence implies:

C[s] � BLT(C[s]) = BLT(C[BLT(s)]) � C[BLT(s)] � C[s] ,

where � denotes a strongly convergent reduction and where BLT denotes the
defined Böhm-like tree.

As shown by Kennaway, Van Oostrom, and De Vries [KOV99], it holds that
the normalising strongly convergent reductions in the above four-step pattern are
maximal fair, as long as subterms that never become root-stable are not counted
towards fairness.

The sets U for the three Böhm-like trees of the λβ-calculus are defined as follows:

Böhm Tree UB = {s | s does not reduce to a head normal form}
Lévy-Longo Tree ULL = {s | s does not reduce to a weak head normal form}
Berarducci Tree UBe = {s | s does not reduce to a root-stable term}

Kennaway, Van Oostrom, and De Vries [KOV99] show that each of the above sets
gives rise to an (infinitary) confluent and normalising rewrite system.

Example 4.4.3. Consider again the λ-term from Example 4.2.3:

s = (λz1.λz2.λx.xz1z2)(λy.Ω)(⊥⊥)

Ignoring the fact that infinite λ-terms defined by metric completion are actually
equivalence classes of Cauchy sequences, we have that the three Böhm-like trees of
the λ-term are as follows:

BLTB(s) = λx.x⊥⊥

BLTLL(s) = λx.x(λy.⊥)⊥

BLTBe(s) = λx.x(λy.⊥)(⊥⊥)

where the reductions to normal form are:

s→∗
β λx.x(λy.Ω)(⊥⊥)→∗

⊥ λx.x⊥⊥

s→∗
β λx.x(λy.Ω)(⊥⊥)→∗

⊥ λx.x(λy.⊥)⊥

s→∗
β λx.x(λy.Ω)(⊥⊥)→∗

⊥ λx.x(λy.⊥)(⊥⊥)

Bibliographic Notes. The definition of Böhm and Lévy-Longo trees based on
infinitary rewriting is by Kennaway, Klop, Sleep, and De Vries [KKSV97]. In their
work, Böhm and Lévy-Longo trees are defined respectively for the infinite λ-terms
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in the sets Λ∞
u,⊥ and Λ∞

w,⊥ (see Section 3.5.3). The extension to Λ∞
m,⊥ is by Ken-

naway, Van Oostrom, and De Vries [KOV99]. The definition of Berarducci trees
based on infinitary rewriting is by Berarducci [Ber96].

The general four-step pattern sketched above is by Kennaway, Van Oostrom,
and De Vries [KOV99] (see also Chapter 7). They show that it is possible to for-
mulate a number of properties regarding the set U , such that confluence and nor-
malisation are implied whenever the properties are satisfied.

4.5 PCF

In this section and the next, we discuss a number of Böhm-like trees defined for
PCF and the λβη-calculus. Both PCF and the λβη-calculus are extensions of the
λβ-calculus.

To be exact, PCF is actually an extension of the simply typed λβ-calculus. It
has special types representing natural numbers and Booleans. Moreover, besides
the β-rule, PCF has a fixed-point rule and a number of rules that only apply to
natural numbers and Booleans.

Ignoring the types, terms are defined as follows for PCF:

Definition 4.5.1 (Terms). Given a countably infinite set of variables V and the
set of natural numbers N, the set of PCF terms is inductively defined as:

1. x is a PCF term, if x ∈ V ,
2. λx.s is a PCF term, if x ∈ V and s a PCF term,
3. (s · t) is a PCF term, if s and t are PCF terms,
4. n is a PCF term, if n ∈ N, and
5. Y, succ, pred, zero, cond, true, and false are PCF terms.

Thus, PCF terms are terms over the following signature:

ΣPCF = {λx | x ∈ V } ∪ {·} ∪ {n | n ∈ N}

∪ {Y, succ,pred, zero, cond, true, false} ,

where each λx is unary, · is binary, and all other function symbols are nullary.
Just as in the case of λ-terms, we usually omit · whenever it occurs in a PCF
term and we assume left-associativity of ·. Moreover, we assume to work modulo
α-equivalence (see Section 3.5.4).

The infinite PCF terms are defined by means of ideal completion, which requires
a fresh nullary function symbol ⊥ to be added to the signature. We omit the
definition, as it easily derived from the material in Chapter 3.

The rewrite rules of PCF are as follows, where types are again omitted:

(λx.s)t→ s[x := t]

Ys→ s (Ys)

succ n→ n+ 1

pred (n+ 1)→ n
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pred 0→ 0

zero (n+ 1)→ false

zero 0→ true

cond true s t→ s

cond false s t→ t

Above, n ∈ N and + denotes addition of natural numbers.

We next discuss two Böhm-like trees for PCF: one that covers the whole of PCF
and one that covers only a fragment.

PCF Böhm Tree. The PCF Böhm tree that occurs in the work by Amadio and
Curien [AC98] is defined along the same lines as the three Böhm-like trees of the
λβ-calculus in Section 4.2. That is, a direct approximant function is defined followed
by the definition of auxiliary sets and Böhm trees.

As in the case of the Böhm and Lévy-Longo trees, the direct approximant
function, denoted ωPCF can be defined by means of confluent and terminating
rewrite system. The rules of this system can be divided into two categories: those
with ⊥ as their right-hand side and those with another right-hand side.

The rules with ⊥ as their right-hand side are as follows:

(λx.s)t→ω ⊥ pred ⊥ →ω ⊥

⊥s→ω ⊥ zero n→ω ⊥

Ys→ω ⊥ zero ⊥ →ω ⊥

succ n→ω ⊥ cond true s t→ω ⊥

succ ⊥ →ω ⊥ cond false s t→ω ⊥

pred n→ω ⊥ cond ⊥ s t→ω ⊥

where n ∈ N. Remark that the above rewrite rules include for each left-hand side
of a PCF rewrite rule l→ r a rule l→ω ⊥.

There is only one rule whose right-hand side is not ⊥:

cond (cond s t1 t2) t
′
1 t

′
2 →ω cond s (cond t1 t

′
1 t

′
2) (cond t2 t

′
1 t

′
2) .

It is easy to show that the rewrite system that consists of the above rewrite
rules is confluent and terminating and that ⊥ is a normal form. Given these facts,
the direct approximant of a PCF term s, denoted ωPCF(s), is defined as the unique
normal form with respect to the rewrite system.

The direct approximant of a PCF term s does not need to be a prefix of s,
because of the rewrite rule whose right-hand side is not ⊥. This is different from
what we have in the case of the direct approximant functions of the λβ-calculus.
Consequently, it does not hold that the PCF Böhm tree (partially) represents the
root-stable part as created along maximal fair reductions. Adding the last rewrite
rule to PCF instead of to the direct approximant rewrite system overcomes this
problem.
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The definitions of the auxiliary set and the PCF Böhm tree are now simply
copies of the definitions for the three Böhm-like trees of the λβ-calculus. That is,
the auxiliary set is defined for each PCF terms s as:

A(s) = {ω(t) | s→∗ t}

and the PCF Böhm tree is defined as:

BLT(s) = ↓A(s) .

Remark 4.5.2. The Böhm tree defined by Amadio and Curien [AC98] actually dif-
fers slightly from the Böhm tree defined here. In their work, a number of Böhm trees
are identified by means of what they call an extensional collapse. The extensional
collapse allows them to prove full abstraction.

Böhm-Like Tree for Fragment of PCF. Ong [Ong95] defines a Böhm tree for
the fragment of PCF which only has the following rewrite rules:

(λx.s)t→ s[x := t]

Ys→ s (Ys)

The direct approximant function is again defined by means of a rewrite system:

(λx.s)t→ω ⊥

λx.⊥ →ω ⊥

⊥s→ω ⊥

Ys→ω ⊥

Hence, with respect to the fragment, the rewrite rules are those defined above with
the addition of a rule for the term λx.⊥. As before, the rewrite system is confluent
and terminating and direct approximants are defined as the unique normal forms.

The auxiliary set and Böhm-like tree are defined as usual.

Remark 4.5.3. Due to the rewrite rule λx.⊥ →ω ⊥, Ong’s Böhm-like tree is com-
parable to the Böhm tree of the λβ-calculus, while the absence of this rewrite
rule makes the PCF Böhm tree of Amadio and Curien more comparable to the
Lévy-Longo tree.

Bibliographic Notes. PCF, or the Programming language for Computable Func-
tions, was first formulated as a rewrite system by Plotkin [Plo77]. The language is
based on the simply typed λ-calculus as formulated by Church [Chu40]. An overview
of PCF and its properties can be found in Ong’s handbook chapter [Ong95].

4.6 λβη-Calculus

The λβη-calculus extends the λβ-calculus with the η-rule:

λx.sx→η s (x not free in s)
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With respect to this extended version of the λβ-calculus at least two Böhm-like
trees exist. Both trees are constructed by defining an equivalence relation on one
of the Böhm-like trees of the λβ-calculus and by working modulo the equivalence.

The defined equivalence relations are called the finite η-expansion and the infi-
nite η-expansion, where η-expansion is the reverse of η-reduction:

s→η̄λx.sx (x not free in s)

The following two sections each deal with one of the equivalence relations.

4.6.1 Finite η-Expansion

Finite η-expansion, denoted =η̄, is based on the Böhm tree of the λβ-calculus.
Given s, t ∈ Λ⊥, the expansion is defined as the smallest equivalence relation such
that BLTB(s) =η̄ BLTB(t) if:

1. both BLTB(s) = {⊥} and BLTB(t) = {⊥}, or
2. if s→∗

β λx1 . . . xm.ys1 . . . sk and t→∗
β λx1 . . . xn.zt1 . . . tl with k 6 l, then:

• (m− k) = (n− l),
• y = z, and
• λx1 . . . xm.ys1 . . . sk →

∗
η̄ λx1 . . . xn.ys1 . . . sks

′
k+1 . . . s

′
l such that:

– BLTB(si) =η̄ BLTB(ti) for all 1 6 i 6 k, and
– tj →

∗
β s

′
j for all k + 1 6 j 6 l.

In the above definition α-equivalence is implicitly taken into account. The name
finite η-expansion derives from the third item of the last clause: a finite number of
η-expansions is applied to the head normal form of s.

Given s ∈ Λ⊥, the Böhm-like tree BLTη̄(s) is defined as the equivalence class
of BLTB(s) with respect to the finite η-expansion.

Alternative Definition. With the help of infinitary rewriting, Severi and De
Vries [SV02a] give an alternative definition of the Böhm-like tree defined by finite
η-expansion. The main advantage of the infinitary rewriting approach is that each
Böhm-like tree is represented by a unique infinite term instead of an equivalence
class. Moreover, no equivalence relation is needed.

Contrary to the approach taken above, the infinitary rewriting approach em-
ploys η-reduction and not η-expansion. The rewrite rules are as follows:

(λx.S)T →β S[x := T ]

λx.Sx→η S (x not free in S)

S →⊥ ⊥ (S ∈ UB)

where S, T ∈ Λ∞
u,⊥ and where UB is the set of terms without head normal form.

As shown by Severi and De Vries confluence and normalisation hold with respect
to strongly convergent reduction sequences based on the above rewrite rules. They
also show that confluence would be lost if S, T ∈ Λ∞

⊥ was assumed instead of
S, T ∈ Λ∞

u,⊥. The Böhm-like trees are defined as the unique normal forms of the
λ-terms.
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4.6.2 Infinite η-Expansion

Like finite η-expansion, infinite η-expansion, denoted =η!, is based on the Böhm
trees of the λβ-calculus. Given s, t ∈ Λ⊥, it is defined as the smallest equivalence
relation such that BLTB(s) =η! BLTB(t) if:

1. both BLTB(s) = {⊥} and BLTB(t) = {⊥}, or
2. if s→∗

β λx1 . . . xm.ys1 . . . sk and t→∗
β λx1 . . . xn.zt1 . . . tl with k 6 l, then:

• (m− k) = (n− l),
• y = z, and
• λx1 . . . xm.ys1 . . . sk →

∗
η̄ λx1 . . . xn.ys1 . . . skxm+1 . . . xn such that:

– BLTB(si) =η! BLTB(ti) for all 1 6 i 6 k, and
– BLTB(xj) =η! BLTB(tj) for all m+ 1 6 j 6 n.

As before, the definition implicitly takes into account α-equivalence. The name infi-
nite η-expansion derives from the third item of the second clause: a finite number of
η-expansions is applied to each head normal form of s, and this process is repeated
for the variables that are created during the η-expansion. Due to the repetition
there can occur an infinite number of η-expansions for each head normal form and
the result can be called an infinite η-expansion.

Similar to finite η-expansion, given s ∈ Λ⊥, the Böhm-like tree BLTη!(s) is
defined as equivalence class of BLTB(s) with respect to the infinite η-expansion.

Alternative Definition. As in the case of finite η-expansion, there is a paper
by Severi and De Vries [SV02b] which provides an alternative definition based on
infinitary rewriting. In this case, the rewrite rules are as follows:

(λx.S)T →β S[x := T ]

λx.S T →η! S (x �η̄ T and x not free in S)

S →⊥ ⊥ (S ∈ UB)

where S, T ∈ Λ∞
u,⊥. Here, �η̄ denotes a strongly convergent reduction consisting of

only η-expansions.
Severi and De Vries show that confluence and normalisation hold with respect

to strongly convergent reduction sequences based on the above rewrite rules. More-
over, they also show that confluence would be lost if S, T ∈ Λ∞

⊥ was assumed instead
of S, T ∈ Λ∞

u,⊥. Again, the Böhm-like trees are defined as the unique normal forms
of the λ-terms.

Bibliographic Notes. The Böhm-like tree based on infinite η-expansion was first
defined by Hyland [Hyl75, Hyl76]. It also occurs implicitly in the work of Wadsworth
[Wad76]. An alternative definition, based on infinitely branching trees, and not
presented here, occurs in the work of Nakajima [Nak75].
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Böhm-Like Trees†

He could sense, too, the thrill of being a tree,
which was something he hadn’t expected.

— Douglas Adams

So Long, and Thanks For All the Fish (1984)

In this chapter, we define Böhm-like trees for TRSs. The definition follows the three-
step pattern for the Böhm-like trees of the λβ-calculus as described in Section 4.2.
The definition of the direct approximant function is based on the three properties
established in Section 4.3.1. As such, all Böhm-like trees for TRSs partially repre-
sent the root-stable part of a term as created along maximal fair reductions, similar
to the Böhm-like trees of the λβ-calculus.

With respect to the TRSs considered in this chapter, and also in the next
chapters, one very important restriction is imposed:

All considered TRSs are left-linear.

Non-left-linear rules allow us to observe if two or more terms are equal, even in case
those terms are root-active. As such, root-active terms can contribute to the root-
stable part of a term as created along maximal fair reductions. Since it is rather
peculiar to have root-stability depend on root-activeness in this way, i.e., root-
stability depends on terms which by themselves can never become root-stable, we
choose to consider only left-linear systems. For similar reasons, left-linear systems
are the only systems considered by Kennaway, Van Oostrom, and De Vries [KOV99].

This chapter is structured as follows: We start in Section 5.1 by connecting
partial terms with TRSs. In Section 5.2, we define Böhm-like trees for TRSs. In
Section 5.3, we discuss monotonicity and continuity of Böhm-like trees. In Section
5.4, a class of direct approximant functions is defined which always yields Böhm-
like trees that are monotone and continuous. The class of Böhm-like trees is defined
by means of a class of TRSs. Finally, in Section 5.5, we discuss related work.

In the remainder of this chapter we assume that Σ is an arbitrary signature and
that V is a countably infinite set of variables. Moreover, to explain certain aspects
of the concepts that are introduced, the following rewrite rules from Combinatory
Logic (CL) are employed in some instances (see also Barendregt’s book [Bar84] or
the book by Terese [Ter03]):

Sxyz → xz(yz)

Kxy → x

Ix→ x

†This chapter is partially based on earlier work by the author [Ket04].
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The above three rewrite rules form an orthogonal TRS. Hence, left-linearity and
confluence are implied.

5.1 Partial Terms

Given a TRS R = (Σ, R) we can define a TRS S = (Σ⊥, R), where Σ⊥ = Σ ∪ {⊥}.
The definition of S is sound with respect to the rewrite rules of R, as Σ ⊆ Σ⊥.
Moreover, S has the same confluence and termination properties asR, which follows
immediately by considering ⊥ to be a variable which we have singled out.

We define root-stable prefixes for TRSs:

Definition 5.1.1. Let R = (Σ, R) be a TRS and s, t ∈ Ter(Σ⊥, V ). The term t
is a root-stable prefix of s, given that t 4 s and such that for all t|p 6= ⊥ with
p ∈ Pos(t) it holds that s|p is a root-stable subterm of s.

The following property holds with respect to the extension of the prefix order
to substitutions. The property plays an essential rôle in Section 5.4, where it helps
to establish, under certain assumptions, that s 4 t with t → t′ implies s →= s′

with s′ 4 t′

Lemma 5.1.2. Let s, t ∈ Ter(Σ⊥, V ) with t linear. If s 4 τ(t) for some substi-
tution τ , then there exist a term s′ ∈ Ter(Σ⊥, V ) and a substitution σ′ such that
s = σ′(s′), s′ 4 t, σ′ 4 τ , and s′ linear.

Proof. Suppose s 4 τ(t) for some substitution τ . We prove the result by induction
on the number of positions p ∈ Pos(s) such that s|p = ⊥ and τ(t)|p 6= ⊥.

Base Case. In this case there are no positions p such that s|p = ⊥ and τ(t)|p 6=
⊥. Hence, s = τ(t) and the result is immediate when we define s′ = t and σ′ = τ .

Induction Step. Suppose the result holds for some number of positions n > 0.
Let us prove the result for n+ 1 positions.

As n + 1 > 0, there exists a position p ∈ Pos(s) such that s|p = ⊥ and
τ(t)|p 6= ⊥. With respect to p there are two possibilities:

1. p ∈ Pos(t) and t|p 6∈ V , or
2. there exists a position q ∈ Pos(t) with t|q ∈ V and p = q · r.

In the first case, define:

t′ = t[⊥]p

τ ′(x) = τ(x) for all x ∈ V

In the second case, define:

t′ = t

τ ′(x) =

{

τ(x)[⊥]r if t|q = x

τ(x) otherwise

In both cases we have t′ 4 t, τ ′ 4 τ and t′ linear. Hence, s 4 τ ′(t′) ≺ τ(t) and
p is the only position such that τ ′(t′)|p = ⊥ and τ(t)|p 6= ⊥. Consequently, the



5.2 Böhm-Like Trees 83

number of positions p with s|p = ⊥ and τ ′(t′)|p 6= ⊥ is equal to n, and by the
induction hypothesis there exist s′ and σ′ such that s = σ′(s′), s′ 4 t′, σ′ 4 τ ′,
and s′ linear. The result now follows by transitivity of the prefix orders on terms
and substitutions (see Section 3.2.1). ut

Two remarks are in order regarding the previous lemma:

Remark 5.1.3. If the position p as employed in the induction step is a position of
a variable of t, then there is in fact more than one way to construct t′ and τ ′.
Consider, e.g., s = f(⊥, a), t = f(x, y), and τ = [x := a; y := a]. Following the
proof of the lemma, we have:

f(x, y)[x := ⊥; y := a] = f(⊥, a) 4 f(a, a) = f(x, y)[x := a; y := a] .

However, we also have:

f(⊥, y)[x := a; y := a] = f(⊥, a) 4 f(a, a) = f(x, y)[x := a; y := a] .

That is, in the first case t′ = f(x, y) and τ ′ = [x := ⊥; y := a] and in the second
case t′ = f(⊥, y) and τ ′ = [x := a; y := a].

Remark 5.1.4. If t is not assumed to be linear, then the lemma does not hold.
Consider, e.g., s = f(g(⊥), g(a)), t = f(x, x), and τ = [x := g(a)]. Although we
have:

f(g(⊥), g(a)) 4 f(g(a), g(a)) = f(x, x)[x := g(a)] ,

there does not exist a substitution σ′ such that σ′(f(x, x)) = f(g(⊥), g(a)), since
the first argument of s is not equal to the second argument.

In some circumstances it is still possible to define s′ and σ′ even though t is not
linear. Consider, e.g., s = f(⊥, a), t = f(x, x), and τ = [x := a]. In this case, we
have:

f(⊥, x)[x := a] = f(⊥, a) 4 f(a, a) = f(x, x)[x := a] .

Hence, we can choose s′ = f(⊥, x) and σ′ = [x := a]. Moreover, like in the linear
case, is it sometimes even possible to define more than one s′ and σ′. Consider,
e.g., s = f(⊥,⊥), t = f(x, x), and τ = [x := a]. We have:

f(x, x)[x := ⊥] = f(⊥,⊥) 4 f(a, a) = f(x, x)[x := a]

and:
f(⊥,⊥)[x := a] = f(⊥,⊥) 4 f(a, a) = f(x, x)[x := a] .

Thus, we can choose either s′ = f(x, x) and σ′ = [x := ⊥] or s′ = f(⊥,⊥) and
σ′ = [x := a].

5.2 Böhm-Like Trees

In this section, we define Böhm-like trees for TRSs. As a guide, we employ the
three-step pattern followed in the definition of the three Böhm-like trees of the
λβ-calculus (see Section 4.2).
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As we will see, the definition of Böhm-like trees for arbitrary left-linear TRSs is
slightly complicated by the fact that confluence does not necessarily hold. There-
fore, we start out in Section 5.2.1 by defining Böhm-like trees for confluent, left-
linear TRSs. In Section 5.2.2, we define Böhm-like trees for TRSs that are not
necessarily confluent.

5.2.1 Confluent Systems

Following the three-step pattern of Section 4.2, we first need to define a direct
approximant function from partial terms to partial terms. However, observing that
more than one direct approximant function can be defined for the λβ-calculus
and that the same may hold for TRSs, it seems inappropriate to define just a
single direct approximant function. Hence, we define a class of direct approximant
functions.

We require the value assigned to a term by a direct approximant function to
represent part of the root-stable prefix of the term, like in the case of the λβ-
calculus. This allows for the second and third step of the three-step pattern to be
copied verbatim. Moreover, it results in Böhm-like trees that partially represent
the root-stable part of a term as created along maximal fair reductions.

Given the explanation regarding the three properties stated at the beginning
of Section 4.3.1, we have for any map from Λ⊥ to Λ⊥ which satisfies the three
properties that the map has the root-stable prefix property we would also like to
obtain in the case of TRSs. Hence, we generalise the three properties as to obtain
our class of direct approximant functions:

Definition 5.2.1. Let R = (Σ, R) be confluent and left-linear. A direct approx-
imant function for R is a map ω : Ter(Σ⊥, V ) → Ter(Σ⊥, V ), such that for all
s, t ∈ Ter(Σ⊥, V ) and substitutions σ it holds that:

1. ω(s) 4 s,
2. if a redex occurs at position p in s, then ω(s) 4 s[⊥]p, and
3. if s→ t, then ω(s) 4 ω(t),

where ω(s) is called the direct approximant of s.

As is easy to see when comparing the above definition with the three properties
stated at the beginning of Section 4.3.1, the differences are minor: β-redexes and
β-reductions are replaced respectively by redexes and reductions of R.

Remark that the first clause in the above definition follows from the second one
in case s is not a normal form. Moreover, remark that any direct approximant is a
normal form of R by left-linearity.

Assuming in the remainder of this section that R = (Σ, R) is an arbitrary
confluent, left-linear TRS and that ω is a direct approximant function for R, we
immediately have the following, as intended:

Lemma 5.2.2. If s ∈ Ter(Σ⊥, V ), then ω(s) is a root-stable prefix of s.

Proof. Let s ∈ Ter(Σ⊥, V ). In case s is a normal form, the result is immediate by
the definition of root-stability and the first clause of Definition 5.2.1. Otherwise,
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the result is immediate by the definition of root-stability and the second and third
clause of Definition 5.2.1. ut

We consider three examples of direct approximant functions:

Example 5.2.3 (Trivial Direct Approximant). Let s ∈ Ter(Σ⊥, V ). Define the triv-
ial direct approximant as ωT(s) = ⊥. As ωT(s) = ⊥ for all s, we have that the
clauses of Definition 5.2.1 hold trivially.

Remark that ωT is minimal with respect to the prefix order in the sense that it
replaces all root-stable subterms by ⊥.

Example 5.2.4 (Normal Form Direct Approximant). Let s ∈ Ter(Σ⊥, V ). Define
the normal form direct approximant, denoted ωNF, as follows:

ωNF(s) =

{

s if s is a normal form

⊥ otherwise

Notice that the three clauses of Definition 5.2.1 follow trivially for this map and
that ωT(s) 4 ωNF(s) for all s. In the case of CL, we have:

ωNF(KI) = KI

ωNF(KII) = ⊥

ωNF(K(KII)) = ⊥

Example 5.2.5 (Berarducci-Like Direct Approximant). Let s ∈ Ter(Σ⊥, V ). Define
the Berarducci-like direct approximant as the map ωBeL that replaces precisely all
non-root-stable subterms of s by ⊥. By definition, the three clauses of Definition
5.2.1 hold trivially. In case of CL, we have:

ωBeL(KI) = KI

ωBeL(KII) = ⊥

ωBeL(K(KII)) = K⊥

Note that ωBeL is maximal with respect to the prefix order in the sense that it
replaces no root-stable subterms by ⊥. Moreover, since root-stability is in general
undecidable for TRSs, we have that ωBeL is in general incomputable.

The Berarducci-like direct approximant is the obvious generalisation, to arbi-
trary TRSs, of the Berarducci direct approximant defined for the λβ-calculus, as
described in Section 4.2: both replace precisely all non-root-stable subterms.

Having defined a class of direct approximant functions, we proceed with the
second step of the three-step pattern employed to define Böhm-like trees:

Definition 5.2.6. Let s ∈ Ter(Σ⊥, V ). The auxiliary set of s (based on ω), denoted
A(s), is defined as:

A(s) = {ω(t) | s→∗ t} .

Similar to the auxiliary sets of the λβ-calculus, the auxiliary sets of TRSs satisfy
the following property:
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Lemma 5.2.7. Let s ∈ Ter(Σ⊥, V ). The set A(s) is directed.

Proof. That A(s) is non-empty follows by the fact that ω(s) ∈ A(s). That for all
t1, t2 ∈ A(t) there exist r ∈ A(t) such that t1 4 r and t2 4 r follows by the third
clause of Definition 5.2.1 and the assumption that R is confluent. ut

As in the case of the λβ-calculus, A(s) is not necessarily an infinite term. To
see this, consider the CL-term I. Assuming the Berarducci-Like direct approximant
function, we have A(I) = {I}. This set is not an infinite CL-term, as ⊥ 6∈ {I}.
This brings us to the third and final step of the three-step pattern:

Definition 5.2.8. Let s ∈ Ter(Σ⊥, V ). The Böhm-like tree of s (based on ω),
denoted BLT(s), is defined as:

BLT(s) = ↓A(s) .

By Lemma 5.2.2 and the fact that root-stability is preserved under reduction, we
have that Böhm-like trees represent the root-stable part of a term as created along
reductions. That maximal fair reductions are considered is a consequence of the
definition of auxiliary sets, which takes into account all reductions starting from
the considered term.

SinceA(s) is directed, we have that ↓A(s) is an ideal over Ter(Σ⊥, V ). Moreover,
assuming ω to be fixed, it follows by definition of auxiliary sets and downward
closure that each term is associated with a unique ideal. Hence, BLT is a map from
Ter(Σ⊥, V ) to Ter∞(Σ⊥, V ).

We give three examples of Böhm-like trees:

Example 5.2.9 (Trivial Trees). Given the trivial direct approximant ωT from Ex-
ample 5.2.3, we can define the trivial trees, denoted BLTT, as the Böhm-like trees
based on ωT . We have for all s, t ∈ Ter(Σ⊥, V ) and s→∗ t that ωT(t) = ⊥. Hence,
A(s) = {⊥} and BLTT(s) = ↓A(s) = {⊥}.

Remark that trivial trees are minimal with respect to the prefix order on
Ter∞(Σ⊥, V ) in the sense that a trivial tree is always {⊥}.

Example 5.2.10 (Normal Form Trees). Given the normal form direct approximant
ωNF from Example 5.2.4, we can define the normal form trees, denoted BLTNF, as
the Böhm-like trees based on ωNF .

The following are normal form trees for CL:

BLTNF(K⊥) = {⊥,⊥⊥,K⊥}

BLTNF(Y K) = {⊥}

BLTNF(SII(SII)) = {⊥}

Here we assume Y is a fixed-point combinator, for example Curry’s paradoxical
combinator SSI(SB(KD)) with D = SII and B = S(KS)K (see, e.g., the book
by Terese [Ter03]). Note that SII(SII) does not have a normal form.

Example 5.2.11 (Berarducci-Like Trees). Given the Berarducci-like direct approx-
imant ωBeL from Example 5.2.5, we can define the Berarducci-like trees, denoted
BLTBeL, as the Böhm-like trees based on ωBeL.
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The following are Berarducci-like trees for CL:

BLTBeL(K⊥) = {⊥,⊥⊥,K⊥}

BLTBeL(Y K) = {⊥,⊥⊥,K⊥,⊥(⊥⊥), . . .}

BLTBeL(SII(SII)) = {⊥}

We have for every SII(SII) →∗ s that s →∗ SII(SII). Hence, no reduct of
SII(SII) is root-stable.

We end this section with a proof of preservation of Böhm-like trees under rewrit-
ing. That is, we prove that Böhm-like trees for confluent, left-linear TRSs satisfy
the first of the properties mentioned in Section 4.3.2 regarding the Böhm-like trees
of the λβ-calculus:

Theorem 5.2.12. Let s, t ∈ Ter(Σ⊥, V ). If s→∗ t, then BLT(s) = BLT(t).

Proof. Suppose s →∗ t. We prove BLT(s) 4 BLT(t) and BLT(t) 4 BLT(s). The
result is then immediate by the observation that the prefix order in fact represents
subset inclusion.

By definition of Böhm-like trees there exists for every s′ ∈ BLT(s) a term t′

such that s→∗ t′ and s′ 4 ω(t′). Moreover, as R is assumed to be confluent, there
exist r such that t′ →∗ r ∗← t. By definition, ω(r) ∈ A(t) ⊆ BLT(t) and, by the
third clause of Definition 5.2.1, ω(t′) 4 ω(r). Hence, by transitivity of the prefix
order we have s′ 4 ω(r) and BLT(s) 4 BLT(t).

As every reduct of t is also a reduct of s, we have A(t) ⊆ A(s). By definition of
downward closure ↓A(t) ⊆ ↓A(s). Hence, BLT(t) 4 BLT(s). ut

5.2.2 Arbitrary Systems

We next define Böhm-like trees for left-linear TRSs that are not necessarily conflu-
ent. To see that non-confluence complicates matters, consider a randomiser from a
functional programming language returning either 0 or 1:

Random → 0

Random → 1

Assuming there are no other rewrite rules, we obtain the following auxiliary set,
assuming the Berarducci-like direct approximant ωBeL from the previous section:

A(Random) = {0, 1} .

Unfortunately, this auxiliary set is not directed. Hence, closing it downward does
not yield an infinite term.

Assuming we want Böhm-like trees to be defined by means of downward closure,
there are at least three ways to approach the above problem, given some arbitrary
auxiliary set:
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1. Define the Böhm-like tree as the set containing the downward closure of each
maximal and directed subset of the auxiliary set, where maximal means that
adding one more element from the auxiliary set yields a set that is no longer
directed.

2. Define the Böhm-like tree as the downward closure of one of the maximal and
directed subsets of the auxiliary set.

3. Strengthen the definition a direct approximant function such that the auxiliary
set is directed even in case of a non-confluent TRS.

The first approach yields the infinite terms {⊥, 0} and {⊥, 1}, in the case of the
above example. Although this implies that every element of an auxiliary set occurs
in the Böhm-like tree, the approach also has a disadvantage: Böhm-like trees are
no longer infinite terms, instead the trees are sets of infinite terms. Hence, the
approach requires us to reformulate the properties that hold for the Böhm-like
trees of the λβ-calculus if we want to show that they hold with respect to a certain
Böhm-like tree for TRSs.

The second approach yields either the Böhm-like tree {⊥, 0} or the tree {⊥, 1},
in the case of the above example. Hence, given a maximal fair reduction, this
approach has the disadvantage that the root-stable part as created by the reduction
may be completely unrelated to the Böhm-like tree. For example, the maximal fair
reduction may be Random→ 0, while the Böhm-like tree is {⊥, 1}.

The third approach implies that not every root-stable prefix may occur as the
direct approximant of a term. This implies, in the case of the above example, that
we obtain either {⊥, 0}, {⊥, 1}, or {⊥}, where the first two sets suffer from the
same disadvantage as the second approach. The infinite term {⊥} represents a
more ‘uniform’ approach in the sense that the chosen maximal fair reduction now
becomes irrelevant. Of course, this approach has major disadvantage: The root-
stable part that is represented has become smaller.

We prefer a Böhm-like tree that consists of a single infinite term and that does
not behave counterintuitively with respect to maximal fair reductions. Hence, we
prefer the third of the above approaches. More in particular, we prefer the approach
exemplified by {⊥}.

The set {⊥} expresses the following principle: If a term reduces to a number of
terms without a common reduct, then the direct approximant of the term and all
terms it reduces to is equal to ⊥. This principle is formalised in the fourth clause of
the next definition, where it is taken into account that non-confluence is a property
not only exhibited by terms but also by subterms.

Definition 5.2.13. Let R = (Σ, R) be left-linear. A direct approximant function
for R is a map ω : Ter(Σ⊥, V )→ Ter(Σ⊥, V ), such that for all s, t, t′ ∈ Ter(Σ⊥, V )
and substitutions σ it holds that:

1. ω(s) 4 s,
2. if a redex occurs at position p in s, then ω(s) 4 s[⊥]p,
3. if s→ t, then ω(s) 4 ω(t), and
4. if t ∗← s →∗ t′, then there exist s′ ∈ Ter(Σ⊥, V ) such that t′ →∗ s′ and

ω(t) 4 ω(s′) (see Figure 5.1).
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The above definition is identical to Definition 5.2.1, except for the fourth clause,
which is added to cope with non-confluence in the way described above.

s
∗

∗

t′

∗

t

ω

s′

ω

ω(t) 4 ω(s′)

Figure 5.1. Definition 5.2.13.(4)

Definition 5.2.13 is implied by Definition 5.2.1 in case of confluent TRSs:

Proposition 5.2.14. Let R be a confluent, left-linear TRS. If ω is a direct ap-
proximant function for R in the sense of Definition 5.2.1, then ω is also a direct
approximant in the sense of Definition 5.2.13.

Proof. Suppose ω is a direct approximant function for R in the sense of Definition
5.2.1. As the first three clauses of Definitions 5.2.1 and 5.2.13 correspond, we only
need to prove that the fourth clause of Definition 5.2.13 is implied by the first three
in the case of a confluent TRS.

Suppose s, t, t′ ∈ Ter(Σ⊥, V ). We prove that t ∗← s →∗ t′ implies there exist
s′ ∈ Ter(Σ⊥, V ) such that t′ →∗ s′ and ω(t) 4 ω(s′). Obviously, by confluence we
have that there exist r such that t →∗ r ∗← t′. By the third clause of Definition
5.2.1 it follows that ω(t) 4 ω(r). Hence, the result is obtained by defining s′ = r.

ut

Assuming in the remainder of this section that R = (Σ, R) is a left-linear TRS
and that ω is a direct approximant function for R in the sense of Definition 5.2.13,
we prove the analogue of Lemma 5.2.2:

Lemma 5.2.15. If s ∈ Ter(Σ⊥, V ), then ω(s) is a root-stable prefix of s.

Proof. Identical to the proof of Lemma 5.2.2, since the proof does not depend on
the confluence of R. ut

We can also formalise the intuition behind the fourth clause:

Lemma 5.2.16. Let s, t, t′ ∈ Ter(Σ⊥, V ) and p ∈ Pos(t)∩Pos(t′). If t ∗← s→∗ t′

with t|p and t′|p root-stable and root(t|p) 6= root(t′|p), then there exist q ∈ Pos(ω(t))
and q′ ∈ Pos(ω(t′)) such that q, q′ 6 p and ω(t)|q = ω(t′)|q′ = ⊥.

Proof. Let t ∗← s→∗ t′. We only prove there exist q ∈ Pos(ω(t)) such that q 6 p
and ω(t)|q = ⊥. The other part of the proof is completely symmetric.

By the fourth clause of Definition 5.2.13 there exist s′ ∈ Ter(Σ⊥, V ) such that
t′ →∗ s′ and ω(t) 4 ω(s′). Moreover, as t′|p is root-stable, we have p ∈ Pos(s′),



90 5 Böhm-Like Trees

s′|p root-stable, and root(s′|p) = root(t′|p). Hence, root(s′|p) 6= root(t|p) and, by
the fact that ω(t) 4 ω(s′), there exists a position q ∈ Pos(ω(t)) ∩ Pos(ω(s′)) ⊆
Pos(ω(t)) such that q 6 p and ω(t)|q = ⊥. ut

For a further discussion of the fourth clause of Definition 5.2.13, in combination
with related work, see Section 5.5.

An example of a direct approximant function that satisfies Definition 5.2.13 is
the following:

Example 5.2.17 (Trivial Direct Approximant). The trivial direct approximant, as
defined in Example 5.2.3 is a direct approximant function in the sense of Definition
5.2.13, since ωT(s) = ⊥ for all terms s ∈ Ter(Σ⊥, V ).

It is readily proved that the normal form direct approximant and the Berarducci-
like direct approximant do not satisfy Definition 5.2.13 in case a non-confluent
TRS is considered. However, by Lemma 5.2.14 the definition is satisfied in case of
a confluent TRS.

Having defined direct approximant functions for arbitrary left-linear TRSs, we
pick up the three-step pattern employed in Section 4.2 to define the Böhm-like
trees of the λβ-calculus and we define auxiliary sets:

Definition 5.2.18. Let s ∈ Ter(Σ⊥, V ). The auxiliary set of s (based on ω), de-
noted A(t), is defined as:

A(s) = {ω(t) | s→∗ t} .

As in the case of confluent systems, but assuming the new definition of a direct
approximant function, we have the following:

Lemma 5.2.19. Let s ∈ Ter(Σ⊥, V ). The set A(s) is directed.

Proof. That A(s) is non-empty follows by the fact that ω(s) ∈ A(s). That for all
t1, t2 ∈ A(s) there exist r ∈ A(s) such that t1 4 r and t2 4 r is immediate by the
third and fourth clause of Definition 5.2.13. ut

As before, A(s) is not necessarily a tree. This follows directly by Proposition
5.2.14 and the counterexample from the previous section.

Continuing with the third step of the three-step pattern, we can define:

Definition 5.2.20. Let s ∈ Ter(Σ⊥, V ). The Böhm-like tree of s (based on ω),
denoted BLT(s), is defined as:

BLT(s) = ↓A(s) .

By Lemmas 5.2.15 and 5.2.16 and the preservation of root-stability under reduc-
tion, it follows that a Böhm-like tree can only represent root-stable subterms that
do not differ between different reductions. Moreover, maximal fair reductions are
considered by definition of the auxiliary sets.

As in the case of the previous section, we have that each Böhm-like tree based
on a particular direct approximant function associates a unique infinite term with
every term. Hence, BLT is a map from Ter(Σ⊥, V ) to Ter∞(Σ⊥, V ).
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As before, Böhm-like trees are preserved under rewriting:

Theorem 5.2.21. Let s, t ∈ Ter(Σ, V ). If s→∗ t, then BLT(s) = BLT(t).

Proof. Suppose s →∗ t. We prove BLT(s) 4 BLT(t) and BLT(t) 4 BLT(s). The
result is then immediate by the observation that the prefix order is actually subset
inclusion.

By the definition of Böhm-like trees there exists for every s′ ∈ BLT(s) a term
t′ such that s →∗ t′ and s′ 4 ω(t′). Moreover, by the fourth clause of Definition
5.2.13 there exists a term s′′ such that t →∗ s′′ and ω(t′) 4 ω(s′′). By t →∗ s′′

and the definition of auxiliary sets we have that ω(s′′) ∈ A(t) ⊆ BLT(t). Hence,
by ω(t′) 4 ω(s′′) and transitivity of the prefix order we have that s′ 4 ω(s′′) and
BLT(s) 4 BLT(t).

As every reduct of t is a reduct of s, we have A(t) ⊆ A(s). By definition of
downward closure ↓A(t) ⊆ ↓A(s). Thus, BLT(t) 4 BLT(s). ut

5.3 Monotonicity and Continuity

As mentioned in Section 4.3.2, monotonicity and continuity hold for the Böhm and
Lévy-Longo trees due to the fact the direct approximant functions of these trees
satisfy the additional property of being monotone. That is, the functions satisfy
that s 4 t implies ω(s) 4 ω(t). We next show that the same holds with respect to
Böhm-like trees for TRSs.

Assume that R = (Σ, V ) is a left-linear TRS and that ω is a direct approximant
function for R that is monotone. We can prove the following lemma and theorem:

Lemma 5.3.1. The Böhm-like tree based on ω is monotone. That is, for all s, t ∈
Ter(Σ⊥, V ), if s 4 t, then BLT(s) 4 BLT(t).

Proof. Let s, t ∈ Ter(Σ⊥, V ) such that s 4 t. Suppose s′′ ∈ BLT(s). By the def-
inition of BLT(s) there exist s′ such that s′′ 4 ω(s′) and s →∗ s′. Moreover, by
left-linearity of R there exist t′ such that t →∗ t′ and s′ 4 t′. Hence, since ω is
assumed to be monotone, we have ω(s′) 4 ω(t′). Thus, as ω(t′) ∈ BLT(t), we have
also s′′ ∈ BLT(t) and BLT(s) 4 BLT(t). ut

Theorem 5.3.2. The Böhm-like tree based on ω is continuous. That is, if s ∈
Ter(Σ⊥, V ), then BLT(s) =

⊔

{BLT(t) | t 4 s}.

Proof. Let s ∈ Ter(Σ⊥, V ). Because s 4 s, we have BLT(s) ∈ {BLT(t) | t 4 s}.
Hence, BLT(s) 4

⊔

{BLT(t) | t 4 s}. Moreover, by Lemma 5.3.1 we have for all
t 4 s that BLT(t) 4 BLT(s). Thus,

⊔

{BLT(t) | t 4 s} 4 BLT(s). Combining both
facts yields the desired result. ut

The following holds irrespective of any additional assumptions on ω:

Proposition 5.3.3. If a Böhm-like tree is continuous, then it is monotone.

Proof. Suppose s, t ∈ Ter(Σ⊥, V ) and s 4 t. Obviously, we have:

BLT(s) ∈ {BLT(t′) | t′ 4 t} .
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Hence, by continuity:

BLT(s) 4
⊔

{BLT(t′) | t′ 4 t} = BLT(t) ,

as required. ut

We next consider the monotonicity and continuity of the Böhm-like trees for
TRSs which has so far occurred in this chapter:

Example 5.3.4. With respect to the trivial direct approximant it holds for all s, t ∈
Ter(Σ⊥, V ) that ωT(s) = ωT(t) = ⊥. Hence, s 4 t implies ωT(s) = ωT(t) = ⊥,
which means that the trivial direct approximant is monotone and that the trivial
trees are monotone and continuous.

Example 5.3.5. Assuming R is confluent, it generally not the case that the normal
form trees from Example 5.2.10 are monotone and continuous. To see this, consider
the CL-terms ⊥I and II. The term ⊥I is a normal form, II → I, and ⊥I 4 II.
We have:

BLTNF(⊥I) = {⊥,⊥⊥,⊥I} 64 {⊥, I} = BLTNF(II)

and

BLTNF(II) = {⊥, I} 6= {⊥,⊥,⊥,⊥I, I} =
⋃

{BLTNF(s) | s 4 II} .

Hence, normal form trees are neither monotone nor continuous (remember that
the least upper bound of a set of infinite terms is their union). In fact, the set
⋃

{BLTNF(s) | s 4 II} is not even an infinite term.

Example 5.3.6. Assuming once again that R is confluent, it generally does not
hold either that the Berarducci-like trees from Example 5.2.11 are monotone and
continuous. The counterexample is identical to the counterexample provided above
in the case of normal form trees.

Although we proved above that:

BLT(s) =
⊔

{BLT(t) | t 4 s} , (5.1)

it is more common to prove for every context C[�] that:

BLT(C[s]) =
⊔

{BLT(C[t]) | t 4 s} . (5.2)

However, these two statements are equivalent:

Proposition 5.3.7. Equation (5.1) holds if and only if Equation (5.2) holds.

Proof. Equation (5.1) follows directly from Equation (5.2) by substitution of the
context � for C[�].

To show the reverse, consider the following instantiation of Equation (5.1):

BLT(C[s]) =
⊔

{BLT(t) | t 4 C[s]} .
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For every t in Equation (5.2) we have C[t] 4 C[s]. Hence,

⊔

{BLT(C[t]) | t 4 s} ⊆
⊔

{BLT(t) | s 4 C[s]}

Moreover, for every t 4 C[s], as occurring in the above instantiation of Equation
(5.1), there exist C[s′] 4 C[s] such that t 4 C[s′]. From this, and Proposition 5.3.3,
it follows that:

⊔

{BLT(C[t]) | t 4 s} ⊇
⊔

{BLT(t) | t 4 C[s]}

Hence,
⊔

{BLT(C[t]) | t 4 s} =
⊔

{BLT(t) | t 4 C[s]} ,

as required. ut

5.4 Direct Approximant TRSs

As observed in Section 4.2, it is possible to define terminating rewrite systems with
the property that each λ-term has a unique normal form which is either the Böhm
or Lévy-Longo direct approximant of the term, depending on the particular rewrite
system.

In this section we imitate the rewriting approach in the context of TRSs. To this
end, we define a class of terminating TRSs, the direct approximant TRSs (ωTRSs),
all whose members have the property that each term has a unique normal form.
We show that the map that assigns to each term its unique normal form is a direct
approximant function.

As an added bonus, we will obtain that each of the defined direct approximant
functions is monotone with respect to the prefix order. Hence, a Böhm-like tree is
monotone and continuous whenever it is based on a direct approximant function
definable by means of an ωTRS.

Remark that the Berarducci-like direct approximant cannot be defined by means
of a finite, terminating TRS with unique normal forms: Such a TRS implies that the
direct approximants are computable, while the Berarducci-like direct approximants
are incomputable by undecidability of root-stability.

Limiting ourselves to confluent, left-linear TRSs, as in the case of Section 5.2.1,
the class of TRSs is defined as follows:

Definition 5.4.1. Let R = (Σ, R) be a confluent, left-linear TRS. A direct ap-
proximant TRS (ωTRS) for R is a left-linear TRS D = (Σ⊥,D), whose rewrite
relation, denoted →ω, satisfies:

1. e = ⊥ for all d→ω e ∈ D,
2. ⊥ is a normal form with respect to →ω,
3. s→∗

ω ⊥ for all s 4 d with d→ω ⊥ ∈ D (see Fig. 5.2), and
4. l→∗

ω ⊥ for all l→ r ∈ R.
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The above definition almost copies verbatim the properties shared between the
rewrite systems of the Böhm and Lévy-Longo direct approximants. There are two
differences: In the third and fourth clause →∗

ω is employed instead of respectively
→=
ω and →ω. The reason for these differences is explained below.

s 4

∗

ω ⊥

d

ω

Figure 5.2. Definition 5.4.1.(3)

In the remainder of this section we assume that R = (Σ, R) is a confluent,
left-linear TRS. Moreover, we assume that D = (Σ⊥,D) is an ωTRS for R.

We proceed as follows: We first give an example of an ωTRS and we explain
the reason for the occurrence of →∗

ω in Definition 5.4.1. Thereafter, we prove that
ωTRSs are confluent and terminating, employing the first, second, and third clause
of Definition 5.4.1. Finally, employing the third and fourth clause of the defini-
tion, we show that the unique normal forms define a monotone direct approximant
function.

Example 5.4.2 (Huet-Lévy ωTRS). The Huet-Lévy ωTRS is defined as HL =
(Σ⊥,HL), where d→ω e ∈ HL if and only if e = ⊥ and d 4 l for some l→ r ∈ R.
That HL is an ωTRS, as its name suggests, follows readily from the definition.

The Huet-Lévy ωTRS occurs first in the work by Klop and Middeldorp [KM91].
The unique normal forms of the TRS define a map which was first formulated by
Huet and Lévy [HL91]. The definition of Klop and Middeldorp differs slightly from
ours, but equality of the transitive-reflexive closures follows easily with the help of
Lemma 5.1.2.

The Huet-Lévy ωTRS for CL has no less than 28 rewrite rules. However, em-
ploying the fact that →∗

ω occurs in the third and fourth clause of Definition 5.4.1,
we can define an ωTRS which the same transitive-reflexive closure as the Huet-Lévy
ωTRS, but which only has four rewrite rules:

Sxyz →ω ⊥ Kxy →ω ⊥

Ix→ω ⊥ ⊥x→ω ⊥

Hence, the formulation of the third and fourth clause of Definition 5.4.1 allow for
some economy of size in ωTRSs.

To prove confluence of the assumed ωTRS D, we first show that confluence
holds for ωTRSs that allow the third clause of Definition 5.4.1 to be strengthened
to:

s→=
ω ⊥ for all s 4 d with d→ω ⊥ ∈ D.

That is, s must rewrite to ⊥ in at most one step and not just in finitely many
steps. We call ωTRSs satisfying the strengthened third clause single-step ωTRSs.
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Proposition 5.4.3. If E = (Σ⊥, E) is a single-step ωTRS, then E is confluent.

Proof. Given a single-step ωTRS E = (Σ⊥, E), we prove that E is subcommutative.
Confluence is implied by subcommutativity, as remarked in Section 2.2.2.

Let s, t1, t2 ∈ Ter(Σ⊥, V ) and suppose t1 ω← s →ω t2. Assume the contracted
redexes occur respectively at the positions p1 and p2. Without loss of generality,
there are three cases to consider depending on the relative positions of p1 and p2:

The positions p1 and p2 are parallel. In this case, a redex occurs at position p1

in t2 and one also occurs at position p2 in t1. By the first clause of Definition 5.4.1
contracting both redexes results in the same term, which completes this case.

The positions p1 and p2 are equal. In this case, we are done immediately, again
by the first clause of Definition 5.4.1.

The position p1 is a prefix of p2. By the first clause of Definition 5.4.1 we have
t2|p1 4 s|p1 and t1|p1 = ⊥. Moreover, as s|p1 →ω t1|p1 = ⊥, we have by left-linearity
of E , Lemma 5.1.2, and the single-step assumption that t2|p1 →

=
ω ⊥ = t1|p1 . Hence,

t2 →
=
ω t1, which completes this last case. ut

Employing confluence of single-step ωTRSs we can prove confluence of D:

Lemma 5.4.4. The ωTRS D is confluent.

Proof. Define a TRS E = (Σ⊥, E) such that s →ω ⊥ ∈ E for all s ∈ Ter(Σ⊥, V )
with ⊥ 6= s 4 d and d →ω ⊥ ∈ D. By definition, the TRS E is a single-step
ωTRS whose transitive-reflexive closure is equal to that of D. Hence, confluence of
D follows by Proposition 5.4.3. ut

To prove termination of D we first prove the following with respect to the
rewrite relation of D:

Proposition 5.4.5. Let s, t ∈ Ter(Σ⊥, V ). If s→ω t, then s � t.

Proof. By the first clause of Definition 5.4.1 we have that s→ω t is a replacement
of a subterm s|p by ⊥. Since s|p � ⊥ by the second clause of Definition 5.4.1, it
follows that s = s[s|p]p � s[⊥]p = t, as required. ut

We can now prove termination:

Lemma 5.4.6. The ωTRS D is terminating.

Proof. Immediate by Propositions 5.4.5 and 3.2.5. ut

By Lemmas 5.4.4 and 5.4.6, we have that each term s ∈ Ter(Σ⊥, V ) has a
unique normal form with respect to D. We denote the unique normal form of a
term s by ω(s).

We next prove that ω defines a monotone direct approximant function. To
facilitate the proof, we first establish a number of facts relating ωTRSs with the
prefix order terms. This is the contents of the following three lemmas.

Lemma 5.4.7. Let s, t, t′ ∈ Ter(Σ⊥, V ). If s 4 t and t →∗
ω t′, then there exist

s′ ∈ Ter(Σ⊥, V ) such that s′ 4 t′ and s→∗
ω s

′ (see Figure 5.3).
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Proof. We give a proof for t →ω t′. The result then follows by induction on the
length of t→∗

ω t
′. Thus, suppose that s 4 t and that the redex contracted in t→ω t

′

occurs at position p. There are two cases to consider depending on the occurrence
of p in s:

The position p does not occur in s. By the definition of the prefix order there
exists a position q 6 p such that s|q = ⊥. Define s′ = s. As t →ω t

′ replaces the
subterm at position p by ⊥, we have by s|q = ⊥ and q 6 p that s 4 t′. Moreover,
it is immediate that s→∗

ω s = s′.
The position p occurs in s. In this case, s|p 4 t|p. As t|p is a redex, we have by

Lemma 5.1.2 and the third clause of Definition 5.4.1 that s|p →
∗
ω ⊥ = t′|p. Define

s′ = s[⊥]p. Since t′ = t[⊥]p, it follows that s′ 4 t′. Moreover, as s|p →
∗
ω ⊥, we have

s→∗
ω s

′. ut

s 4

∗

ω

t

∗

ω

s′ 4 t′

Figure 5.3. Lemma 5.4.7

s
∗

∗

ω

t

∗

ω

s′ 4 t′

Figure 5.4. Lemma 5.4.8

Lemma 5.4.8. Let s, t, t′ ∈ Ter(Σ⊥, V ). If s →∗ t and t →∗
ω t′, then there exist

s′ ∈ Ter(Σ⊥, V ) such that s→∗
ω s

′ and s′ 4 t′ (see Figure 5.4).

Proof. We give a proof for s→ t. The result then follows by induction on the length
of s→∗ t.

Suppose the redex contracted in s → t occurs at position p. As s[⊥]p 4 t,
there exists by Lemma 5.4.7 a term s′ such that s′ 4 t′ and s[⊥]p →

∗
ω s

′. Moreover,
s→∗

ω s
′, because, by the fourth clause of Definition 5.4.1, we have that s→∗

ω s[⊥]p.
ut

Lemma 5.4.9. Let s, t ∈ Ter(Σ⊥, V ). The following properties hold:

1. ω(s) 4 s,
2. ω(s) = ω(s[ω(s|p)]p) for all p ∈ Pos(s),
3. ω(ω(s)) = ω(s),
4. ω(s) 4 ω(t), if s 4 t, and
5. ω(s) 4 ω(t), if s→ t.

Proof. Recall that ω(s) is the unique normal form of s with respect to D. We prove
each of the five clauses in turn:

1. Since ω(s) is the unique normal form of s, we have s →∗
ω ω(s). The result

follows by repeated application of Proposition 5.4.5.
2. For every s|p →

∗
ω t we have s = s[s|p]p →

∗
ω s[t]p. Hence, as s|p →

∗
ω ω(s|p), the

result follows by confluence of ωTRSs.
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3. By the second clause of the current lemma, with p = ε.
4. As t →∗

ω ω(t), there exists by Lemma 5.4.7 an s′ such that s′ 4 ω(t). By
confluence of ωTRSs and the first clause of the current lemma we have ω(s) =
ω(s′) 4 s′. Hence, by transitivity of the prefix order ω(s) 4 ω(t).

5. Analogous to the previous clause of the current lemma employing Lemma 5.4.8
instead of Lemma 5.4.7. ut

We can now prove the main theorem of this section:

Theorem 5.4.10. The map ω : Ter(Σ⊥, V ) → Ter(Σ⊥, V ) which assigns to each
term its unique normal form with respect to D is a monotone direct approximant
function.

Proof. Since we assume R is confluent, we can show that ω is a direct approxi-
mant function by verifying the three clauses of Definition 5.2.1: The first clause is
immediate by Lemma 5.4.9.(1); the second clause follows by the fourth clause of
Definition 5.4.1 and Lemma 5.4.9.(2); the third clause follows by Lemma 5.4.9.(5).
That ω is monotone follows by Lemma 5.4.9.(4). ut

By the previous theorem, we have that each ωTRS defines a Böhm-like tree
that is monotone and continuous. In particular, we have:

Example 5.4.11 (Huet-Lévy Trees). The Huet-Lévy tree, denoted BLTHL is the tree
based on the Huet-Lévy ωTRS of Definition 5.4.2. The Huet-Lévy tree has previ-
ously been defined by Boudol [Bou85] and Ariola [Ari96].

It is readily proved for all s ∈ Ter(Σ⊥, V ) that BLTT(s) 4 BLTHL(s) and that
BLTHL(s) 4 BLTBeL(s). For example, in case of the CL-term s = K(SII(SII)I),
we have:

BLTT(s) = ↓{⊥}

BLTHL(s) = ↓{K⊥}

BLTBeL(s) = ↓{K(⊥I)}

In the case of normal form trees, we have neither BLTNF(s) 4 BLTHL(s) nor
BLTHL(s) 4 BLTNF(s), as is easily seen when considering the CL-terms s = ⊥I
and t = K(SII(SII)):

BLTNF(s) = ↓{⊥I} BLTNF(t) = ↓{⊥}

BLTHL(s) = ↓{⊥} BLTHL(t) = ↓{K⊥}

Discussion. Assume once more that R = (Σ,⊥) is a confluent, left-linear TRS
and that D = (Σ⊥,D) is an ωTRS for R. By the fourth clause of Definition 5.4.1
and Lemma 5.4.7, we have for every l → r ∈ R and s 4 l that s →∗

ω ⊥. Since
for every such s 6= ⊥ the Huet-Lévy ωTRS has a rule s →ω ⊥, it holds for each
s→∗

ω t with respect to the Huet-Lévy ωTRS that there exists a reduction s→∗
ω t

with respect to D. Hence, given any term s we have ω(s) 4 ωHL(s), where ω is the
direct approximant function based on D.
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The above observation raises a question of universality: Why do we consider
arbitrary ωTRSs and not just the Huet-Lévy ωTRS? The answer is motivated by
the direct approximants of the λβ-calculus: There exist two direct approximant
functions definable by means of the unique normal forms of a terminating rewrite
system, i.e., the Böhm and Lévy-Longo direct approximant functions.

The rewrite system that defines the Lévy-Longo direct approximant is in some
sense the Huet-Lévy direct approximant of the λβ-calculus: The transitive-reflexive
closure of the Lévy-Longo rewrite system is identical to the transitive-reflexive
closure of the rewrite system that has for each ⊥ 6= s′ 4 (λx.s)t a rule s′ →ω ⊥,
i.e., the rewrite system that consists of the following rewrite rules:

(λx.s)t→ω ⊥ (λx.⊥)t→ω ⊥

(λx.s)⊥ →ω ⊥ (λx.⊥)⊥ →ω ⊥

⊥t→ω ⊥ ⊥⊥ →ω ⊥

This raises a new question: Why consider the Böhm direct approximant function?
To answer this question, consider the left- and right-hand side of the rewrite

rule λx.⊥ →ω ⊥, which is particular for the Böhm direct approximant. Moreover,
consider an arbitrary context C[�]. The terms C[λx.⊥] and C[⊥] allow for exactly
the same β-reductions, with only one exception. If � occurs as �t, then (λx.⊥)t→β

⊥, while no β-redex occurs at the root of ⊥t. However, the Lévy-Longo direct
approximants of ⊥t and ⊥ are equal. Hence, in every context either the behaviour
of the terms is the same or they have the same Lévy-Longo direct approximant
after a single β-reduction. So, why not omit the single β-reduction? This is exactly
what is provided for by the rule λx.⊥ →ω ⊥.

Under the assumption of the Huet-Lévy ωTRS for CL, it is possible to observe
behaviour that similar to that of the λ-terms λx.⊥ and ⊥, e.g., in the case of the
CL-terms S⊥, K⊥, and ⊥. This justifies the addition of the following two rewrite
rules to the Huet-Lévy ωTRS:

S⊥ →ω ⊥

K⊥ →ω ⊥

It is readily shown that the addition of the above two rewrite rules yields an ωTRS
for CL which is sensible in view of the above discussion. For this reason, we consider
ωTRSs in the sense of Definition 5.4.1 and not just Huet-Lévy ωTRSs.

5.5 Related Work

Work related to that presented in the current chapter can be divided into three
categories: concrete Böhm-like trees for TRSs, more general definitions of Böhm-
like trees employing some notion of direct approximants, and infinitary rewriting.
The first two categories are discussed here. The last category is the subject of
Chapter 7.
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Concrete Trees. As mentioned in Example 5.4.11, Boudol [Bou85] and Ariola
[Ari96] already define the Huet-Lévy tree. In both cases, the definition proceeds
along the lines of the previous sections. The observation that Huet-Lévy trees are
monotone and continuous, which follows immediately by the remark just below
Theorem 5.4.10, already occurs in Ariola’s work [Ari96].

More General Definitions. Definitions of Böhm-like trees for TRSs that are
more general than the definition presented in the current chapter occur in the work
by Boudol [Bou85], Blom [Blo01], and Ariola and Blom [AB02]. In essence, all three
generalisations still follow the three-step pattern of the λβ-calculus, as discussed in
Section 4.2. However, in each case some of the restrictions of the three-step pattern
are relaxed. We discuss each of the generalisations in turn.

Boudol. In his work, Boudol [Bou85] generalises the definition presented in the
current chapter with respect to two points: the codomain of direct approximant
functions and the definition of auxiliary sets.

Boudol’s definition of a direct approximant function consists of the second and
third clause of Definition 5.2.13. The first and fourth clause of Definition 5.2.13 are
dropped. The codomain of a direct approximant function is no longer required to
be Ter∞(Σ⊥, V ). It may be any coalgebra over Σ⊥ which has an order defined over
it such that the interpretation of ⊥ is the least element and such that all function
symbols of Σ are interpreted as continuous functions.

Although Boudol’s definition of a direct approximant function is more general
with respect to the codomain, it is also less general in some sense: By the continuous
interpretation of the function symbols, direct approximant functions are always
monotone. Hence, Berarducci-like trees cannot be defined when adopting Boudol’s
approach.

To overcome the removal of the fourth clause of Definition 5.2.13 and the use
of non-confluent systems, Boudol employs a variant of the first approach discussed
in Section 5.2.2. He defines auxiliary sets as:

A(s) =
⋃

(si)i<n∈S
{ω(sk) | sk occurs in (si)i<n} ,

where S denotes the set of all reduction sequences over terms in Ter(Σ⊥, V ). Böhm-
like trees are then defined as usual:

BLT(s) = ↓A(s) .

Boudol’s definition of Böhm-like trees no longer yields infinite terms for two
reasons: The codomain of the direct approximant function does no longer need to
have a term structure and the definition of the auxiliary set allows the Böhm-like
tree to be something other than an ideal. Note, however, that some notion of root-
stability is still present, since the second clause of Definition 5.2.13 is maintained.

Blom. In his dissertation, Blom [Blo01] defines Böhm-like trees for arbitrary ARSs.
The differences between Blom’s work and the current chapter all relate to the
definition of the direct approximant function. Blom’s definitions of auxiliary sets
and Böhm-like trees are identical to those presented here.
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Given an ARS A = (A,→) and a CPO B = (B,v), Blom defines a direct
approximant function as a map ω : A→ B which satisfies two properties:

1. if a→ b, then ω(a) v ω(b), and
2. if b ∗← a→∗ b′, then there exist a′ ∈ A such that b′ →∗ a′ and ω(b) v ω(a′).

Thus, the first and the second clause of Definition 5.2.13 are dropped and the
third and fourth clause are generalised appropriately. Remark that, by omitting
the second clause, we no longer have that Böhm-like trees represent root-stable
parts.

Blom [Blo01, Theorem 6.2.7] shows that the second clause of his definition
cannot be omitted if each term is required to have a unique Böhm-like tree. As
Definition 5.2.13 is an instance of Blom’s definition, the same holds in our case.

The second clause of Blom’s direct approximant definition is actually an in-
stance of the following concept, as also defined by Blom [Blo01]:

Definition 5.5.1. Let A = (A,→α,→β) be an ARS. The relation →α is skew
confluent with respect to →β, if for all a →∗

α b and a →∗
α c with a, b, c ∈ A there

exist d ∈ A such that b→∗
α d and c→∗

β d (see Figure 5.5).

To see that the second clause is an instance, define a →α b as a → b and a →β b
as ω(a) v ω(b).

a
∗

α

∗

α

c

∗

β

b

∗

α d

Figure 5.5. Definition 5.5.1

Ariola and Blom. The relevant parts of the work of Ariola and Blom [AB02] are
essentially identical to those from Blom’s dissertation [Blo01]. For this reason, we
do not discuss the work of Ariola and Blom any further here.
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Congruence

Zaphod glared at him with resentment and loathing.
“What’s the difference?” he muttered.

“Nothing,” said Zarniwoop, “they are identical.”

— Douglas Adams

The Restaurant at the End of the Universe (1980)

Given a TRS R = (Σ, R) and some set D, we can define a denotational semantics
for R to be any map φ from Ter(Σ, V ) to D. However, as for example remarked
by Lévy [Lév78] and Welch [Wel75], not every map defines a ‘proper’ denotational
semantics. A proper denotational semantics requires φ to satisfy at least two prop-
erties:

1. if s→∗ t, then φ(s) = φ(t), and
2. if φ(s) = φ(t) and C[�] a context, then φ(C[s]) = φ(C[t]).

Hence, a proper denotational semantics is preserved under rewriting and it is a con-
gruence with respect to equality. In other words, a proper denotational semantics
is a model of the TRS (see, e.g., the book by Baader and Nipkow [BN98]).

Recall that Böhm-like trees for TRSs, as defined in the previous chapter, are
maps from Ter(Σ⊥, V ) to Ter∞(Σ⊥, V ). Hence, since the domain is Ter(Σ⊥, V ), we
can ask ourselves whether Böhm-like trees define a proper denotational semantics.
As such, we need to prove the two properties specified above. The first property
already occurs in Chapter 5 and is shown to hold for every Böhm-like tree in
Theorem 5.2.21. The second property is the subject of this chapter.

As we show in Section 6.1, Böhm-like trees based on direct approximant func-
tions and ωTRSs are generally not congruent with respect to Böhm-like tree equal-
ity. However, as we show in Section 6.2, there is an easy way to strengthen the
definition of direct approximant functions such that congruence is implied. Un-
fortunately, the strengthening is only deceptively easy: The proof obligations that
exist with respect to congruence are not simplified in any way.

We can simplify the proof obligations by assuming syntactic continuity, which
implies congruence, as we show in Section 6.3. Syntactic continuity is defined as
follows, where s is a term and C[�] a context:

BLT(C[s]) =
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

Of course, syntactic continuity does not hold either in the case of the Böhm-like
trees defined in Chapter 5, since congruence does not hold.

To overcome the above problem, we show in Section 6.4 how to strengthen the
definition of ωTRSs such that syntactic continuity is implied. We do not strengthen
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the definition of direct approximant functions: We still want to be able to define
Berarducci-like trees. These trees do not satisfy syntactic continuity, as we show in
Section 6.3.

Partially summarising the above, this chapter is arranged as follows: In Section
6.1, we explain why congruence does not hold for Böhm-like trees as defined in the
previous chapter. In Section 6.2, we strengthen the definition of direct approximant
functions such that congruence is implied. Thereafter, in Section 6.3, we show
that syntactic continuity implies congruence. In addition, we show that syntactic
continuity implies precongruence, a property slightly stronger than congruence.
Finally, in Section 6.4, the definition of ωTRSs is strengthened as to obtain syntactic
continuity.

As in Chapter 5, Combinatory Logic is employed in most examples presented
in this chapter. There are also some examples taken from the realm of functional
programming.

6.1 Congruence

Given a Böhm-like tree BLT for a left-linear TRS, congruence is defined as:

BLT(s) = BLT(t) implies BLT(C[s]) = BLT(C[t]) ,

where s and t are terms, where C[�] is a context. Above, BLT is substituted for
the arbitrary map φ as employed in the introduction.

To see that congruence does not necessarily hold, even in the case of Böhm-like
trees defined by means of an ωTRS, consider the following rewrite rules:

IsEmpty(nil)→ True

IsEmpty(x : xs)→ False

The rules are taken from functional programming and can be employed to deter-
mine whether a list is empty or not. With respect to the rewrite rules, we can define
the following ωTRS:

IsEmpty(xs)→ω ⊥

nil →ω ⊥

Although slightly absurd, since BLT(nil) = {⊥} and not {⊥,nil}, the rules actually
define an ωTRS, as is readily verified.

Now consider the terms ⊥ and nil . We obviously have:

BLT(⊥) = {⊥} = BLT(nil) .

However, if we consider the context IsEmpty(�), then we have:

BLT(IsEmpty(⊥)) = {⊥} 6= {⊥,True} = BLT(IsEmpty(nil)) .

Hence, we have defined a Böhm-like tree based on an ωTRS which does not satisfy
congruence of Böhm-like tree equality.
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Bibliographic Notes. As explained in Section 5.5, the Böhm-like trees defined by
Boudol [Bou85], Blom [Blo01], and Ariola and Blom [AB02] generalise the Böhm-
like trees defined in previous chapter. Hence, congruence does not hold for the trees
defined by Boudol, Blom, and Ariola and Blom.

The above is contrary to the Böhm-like trees based on infinitary rewriting, as
defined by Kennaway, Van Oostrom, and De Vries [KOV99]. These trees do satisfy
congruence, as an immediate consequence of the fact that confluence holds for the
rewrite systems employed to define the trees (see Chapter 7).

Remark that the above implies that not every Böhm-like tree defined along the
lines of Chapter 5 can be defined as a Böhm-like tree in the sense of Kennaway,
Van Oostrom, and De Vries. Their Böhm-like trees are always congruent, while this
does not necessarily hold for the ones defined in Chapter 5.

6.2 Direct Approximant Functions

To obtain Böhm-like trees which are congruent, we strengthen the definition of
direct approximant functions by adding the following to the definition, where s
and t are terms and where C[�] is a context:

If it holds that:

1. for all s→∗ s′ there are t′ with t→∗ t′ and ω(s′) 4 ω(t′), and
2. for all t→∗ t′ there are s′ with s→∗ s′ and ω(t′) 4 ω(s′),

then it also holds that:

1. for all C[s]→∗ s′ there are t′ with C[t]→∗ t′ and ω(s′) 4 ω(t′), and
2. for all C[t]→∗ t′ there are s′ with C[s]→∗ s′ and ω(t′) 4 ω(s′).

The above is simply the definition of congruence in disguised form: The definition
of Böhm-like trees is substituted for BLT and the contents Proposition 3.2.10 is
substituted for equality. Hence, congruence is immediately implied. As such, adding
the above to the definition of direct approximant functions is only deceptively
simple: The proof obligations stay the same.

Notwithstanding the deceptive simplicity, it is easy to show that the trivial
trees from Example 5.2.9 and the normal form trees from Example 5.2.10 satisfy
the above statement. Hence, both trees are congruent with respect to Böhm-like
tree equality. Berarducci-like trees also satisfy the statement, since they satisfy
congruence, as remarked in the previous section and as proved in Chapter 7.

Discussion. Obviously, a statement that allows for simpler proof obligations would
be welcome in the case of direct approximant functions. Unfortunately, it is unclear
to the author what such statements should look like.

To find statements that give to easier proof obligations, one might try to find
overlap criteria such as those formulated in Section 6.4 with respect to ωTRSs and
syntactic continuity. However, care must be taken in doing so. One might end up
with Böhm-like trees that satisfy syntactic continuity. This is undesirable, since
syntactic continuity is not satisfied by Berarducci-like trees, as we show in the next
section.
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6.3 Syntactic Continuity

To be able to ease the proof obligations regarding congruence, we next show that
syntactic continuity implies both congruence and precongruence. In addition, we
show that neither syntactic continuity nor precongruence necessarily holds for
the Böhm-like trees defined in Chapter 5. More in particular, we show this for
Berarducci-like trees.

The definition of precongruence is identical to the definition of congruence,
except that the prefix order on infinite terms is substituted for equality. As such, it
is easy to show that precongruence implies congruence. We discuss precongruence,
because in the case of the Böhm and Lévy-Longo trees of the λβ-calculus it is
often shown that syntactic continuity implies precongruence before it is shown
that congruence is implied by precongruence.

6.3.1 Congruence

As claimed above, congruence is implied by syntactic continuity. That is, given a
TRS R = (Σ, R) and a Böhm-like tree for R, congruence is implied whenever it is
assumed that:

BLT(C[s]) =
⊔

{BLT(C[t]) | t ∈ BLT(s)} ,

where s ∈ Ter(Σ⊥, V ) and where C[�] is a context. We prove the claim:

Lemma 6.3.1. Let R = (Σ, R) be a TRS and let BLT be a Böhm-like tree for
R. If the Böhm-like tree satisfies syntactic continuity, then Böhm-like tree equality
with respect to BLT is a congruence.

Proof. Assume syntactic continuity and let s1, s2 ∈ Ter(Σ⊥, V ), C[�] a context,
and BLT(s1) = BLT(s2). By syntactic continuity, the following hold:

BLT(C[s1]) =
⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)}

BLT(C[s2]) =
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)}

Moreover, by the assumption that BLT(s1) = BLT(s2), we have:

⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)} =
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)} .

Combining the two facts gives:

BLT(C[s1]) =
⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)}

=
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)}

= BLT(C[s2]) .

Hence, BLT(C[s1]) = BLT(C[s2]), as required. ut
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Obviously, since congruence generally does not hold (see Section 6.1), syntactic
continuity generally does not hold either. To see this directly, without employing
congruence, consider the Böhm-like tree we defined in Section 6.1. Given the term
nil and the context IsEmpty(�), we have:

BLT(IsEmpty(nil)) = {⊥,True}

and:
⊔

{BLT(IsEmpty [t]) | t ∈ BLT(nil)}

=
⊔

{BLT(IsEmpty(⊥))} = {⊥} .

Hence, since {⊥,True} 6= {⊥}, syntactic continuity does not hold.
Syntactic continuity does not necessarily hold for Berarducci-like trees either.

Given the CL-term S and the context �II(SII), we have:

BLT(SII(SII)) = {⊥} .

and:
⊔

{BLT(tII(SII)) | t ∈ BLT(S)}

=
⊔

{BLT(⊥II(SII)),BLT(SII(SII))}

= ↓{⊥II(SII)} .

Hence, since {⊥} 6= ↓{⊥II(SII)}, syntactic continuity does not hold for the
Berarducci-like trees of CL. Recall in this respect that congruence does hold for
Berarducci-like trees, as briefly mentioned in Section 6.1 (see also Chapter 7).

Bibliographic Notes. Since congruence does not hold for the Böhm-like trees
defined by Boudol [Bou85], Blom [Blo01], and Ariola and Blom [AB02], as explained
in Section 6.1, syntactic continuity holds neither. The same can be said about
the Böhm-like trees defined by Kennaway, Van Oostrom, and De Vries [KOV99]
by means of infinitary rewriting. In this case, syntactic continuity does not hold,
because Berarducci-like trees can be defined (see Chapter 7).

6.3.2 Precongruence

We now discuss precongruence for Böhm-like trees. Precongruence is defined as
follows, when s1 and s2 are terms and C[�] is a context:

BLT(s) 4 BLT(t) implies BLT(C[s]) 4 BLT(C[t]) .

Obviously, precongruence implies congruence by definition of equality and the prefix
order on infinite terms. Moreover, we can prove the following:

Proposition 6.3.2. Let R = (Σ, R) be a TRS and let BLT be a Böhm-like tree
for R. If the Böhm-like tree satisfies syntactic continuity, then it also satisfies
precongruence.
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Proof. The proof is similar to that of Lemma 6.3.1. Thus, let s1, s2 ∈ Ter(Σ⊥, V ),
C[�] a context, and BLT(s1) 4 BLT(s2). By syntactic continuity, we have:

BLT(C[s1]) =
⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)}

BLT(C[s2]) =
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)}

Moreover, by BLT(s1) 4 BLT(s2), it follows that:

{BLT(C[t1]) | t1 ∈ BLT(s1)} ⊆ {BLT(C[t2]) | t2 ∈ BLT(s2)} .

Hence, we have:
⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)} 4
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)} .

Combining the two facts gives:

BLT(C[s1]) =
⊔

{BLT(C[t1]) | t1 ∈ BLT(s1)}

4
⊔

{BLT(C[t2]) | t2 ∈ BLT(s2)}

= BLT(C[s2])

Hence, BLT(C[s1]) 4 BLT(C[s2]), as required. ut

Although, syntactic continuity implies precongruence, just as it implies congru-
ence, we do not want every Böhm-like tree, or even every denotational semantics,
to satisfy precongruence. This, for example, would no longer allow us to define
Berarducci-like trees. In other words, precongruence does not hold for Berarducci-
like trees.

To see that precongruence does not hold for Berarducci-like trees, consider the
CL-terms ⊥ and SII and the context �(SII). Obviously, we have:

BLTBeL(⊥) = ↓{⊥} 4 ↓{SII} = BLTBeL(SII) .

However, we also have:

BLTBeL(⊥(SII)) = ↓{⊥(SII)} 64 ↓{⊥} = BLTBeL(SII(SII)) .

Remark that this also implies that precongruence does not follow from congruence.

Remark 6.3.3. A counterexample similar to the one given above exists in case of
the Berarducci trees of the λβ-calculus†. In that case, the terms ⊥ and λx.xx and
the context �(λx.xx) suffice, since we have:

BLTBe(⊥) = ↓{⊥} 4 ↓{λx.xx} = BLTBe(λx.xx) ,

but also:

BLTBe(⊥(λx.xx)) = ↓{⊥(λx.xx)} 64 ↓{⊥} = BLTBe((λx.xx)(λx.xx)) .

†Previously, the author [Ket04, Section 8] was under the impression that precongruence
does hold for Berarducci trees. The falsehood of this statement was pointed out to the
author by De Vries [Vri04].
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6.4 Direct Approximant TRSs

As explained in the previous section, syntactic continuity generally does not hold
for Böhm-like trees defined by either a direct approximant function or an ωTRS.
However, it could be argued that the presented counterexample involving an ωTRS
is quite unreasonable: The Böhm-like tree of nil should not be {⊥}. Instead, it
should be {⊥,nil}, as nil is a normal form and a nullary function symbol. In
addition, the counterexample is also unreasonable since congruence is not satisfied.

The counterexample regarding Berarducci-like trees is more reasonable, since
the Berarducci-like tree of any normal form n is ↓{n}. Moreover, Berarducci-like
trees do satisfy congruence, as briefly mentioned in the previous section.

In the current section, we strengthen the definition of ωTRSs such that syntactic
continuity of Böhm-like trees is implied. Remark that this does not affect the ability
to define Berarducci-like trees: These trees can only de defined by means of a direct
approximant function and not by means of an ωTRS.

The strengthened definition of ωTRSs and the intuition behind the strength-
ening occur in Section 6.4.1. In Section 6.4.2, we prove that the definition actually
implies syntactic continuity. Finally, in Section 6.4.3, an open problem related to
strengthening of the definition of ωTRSs is discussed.

Before we continue, remark that the counterexample for ωTRSs, as it occurs in
the previous section, is in fact only a counterexample to:

BLT(C[s]) 4
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

The reverse:
BLT(C[s]) <

⊔

{BLT(C[t]) | s ∈ BLT(s)}

always holds given a Böhm-like tree based on an ωTRS. This is the contents of the
following proposition:

Proposition 6.4.1. Let R = (Σ, R) be a confluent, left-linear TRS and let D =
(Σ⊥,D) be an ωTRS for R. If s ∈ Ter(Σ⊥, V ) and C[�] a context, then the Böhm-
like tree of C[s] satisfies:

BLT(C[s]) <
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

Proof. Let s ∈ Ter(Σ⊥, V ) and C[�] a context. If t ∈ BLT(s), then by the definition
of Böhm-like trees there exists a term s′ such that s→∗ s′ and t 4 ω(s′). Thus, as
ω(s′) 4 s′, we have t 4 s′ and C[t] 4 C[s′].

By monotonicity of Böhm-like trees based on ωTRSs (see Lemma 5.3.1 and The-
orem 5.4.10), we have BLT(C[t]) 4 BLT(C[s′]). Hence, by preservation of Böhm-
like trees under rewriting, BLT(C[t]) 4 BLT(C[s′]) = BLT(C[s]) and BLT(C[s]) is
an upper bound of the set:

{BLT(C[t]) | t ∈ BLT(s)} .

By the above facts and the fact that BLT(s) is directed, it follows that the
above set is directed. Hence, the set also has a least upper bound. The least upper
bound must be smaller than or equal to BLT(C[s]), which is an upper bound, as
we just established. ut
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Bibliographic Notes. The strengthening of the definition of ωTRSs and the proof
of syntactic continuity given below are based on Ariola’s proof [Ari96] for Huet-
Lévy trees. In turn, Ariola’s proof is based on Lévy’s proof [Lév75] for Lévy-Longo
trees. Note that Barendregt’s proof [Bar84] for Böhm trees is also based on Lévy’s
proof.

6.4.1 Strengthening

Syntactic continuity fails for the counterexample in Section 6.3 for one very partic-
ular reason: Both the considered terms have ⊥ as their direct approximant, while
placing the terms in a context yields a reduction to a term whose direct approx-
imant is not ⊥ in only one case. Avoiding this discrepancy allows us to prove
syntactic continuity, as we explain below.

Given that we want to define an ωTRS for some TRS R, there are at least two
ways to avoid the above discrepancy:

– Modify R such that placing any two terms with ⊥ as their direct approximant
in a context yields either a redex in both cases or no redex at all.

– Make certain that the direct approximant of any reduct capable of causing the
discrepancy is ⊥, i.e., strengthen the definition of ωTRSs.

Modifying R is inappropriate: It makes it very difficult to the compare the different
Böhm-like trees forR, as modification may change, e.g., the set of root-stable terms.
Hence, we opt for the second approach.

Observe that creating a redex by placing a term in a context while its direct
approximant is equal to ⊥ implies that there is non-root overlap between a rule of
R and a rule of the ωTRS. For this reason, we strengthen the definition of ωTRSs
by restricting overlap.

It is not necessary to rule out every form of non-root overlap. If the reduct
of a term placed in a context C[�], that is responsible for overlap, already has
⊥ as direct approximant, then no restriction is necessary, because ⊥ is also the
direct approximant of C[⊥] by the third and fourth clause of Definition 5.2.1. This
form of overlap occurs not only in pathological examples: In the λβ-calculus, such
overlap can be observed in case of the β-rule and λx.⊥ →ω ⊥, i.e., one of the
rules of the rewrite system that defines the Böhm direct approximant. We have
ωBT((λx.⊥)s) = ωBT(⊥s) = ⊥.

Remark 6.4.2. Besides the overlap described above, which is of the form l[d]p for
some rule l→ r from R and some rule d→ω e from the ωTRS, the definition given
below also restricts overlap of the form d[l]p. This second restriction is heavily
employed in the proof of Lemma 6.4.14. However, unlike in the case of overlap of
the form l[d]p, the author did not succeed in constructing a counterexample that
shows that overlap of the form d[l]p can yield a Böhm-like tree that is neither
congruent nor syntactic continuous. Hence, the following conjecture:

Conjecture 6.4.3. Syntactic continuity, which holds for ωTRSs that satisfy Defi-
nitions 6.4.4 and 6.4.5, as shown in Theorem 6.4.18, also holds when the fourth
clause of Definition 6.4.5 is omitted.
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With respect to the strengthened definition of ωTRSs, as given below, we as-
sume that R = (Σ, R) is an orthogonal TRS. This is contrary to the assumptions
made in previous chapter, where we only required R to be a confluent, left-linear
TRS. The change to orthogonal systems is further discussed in Section 6.4.3.

We strengthen the definition of ωTRSs by means of two TRSs. The first TRS,
called the redex removal TRS, is used to replace the redexes of R by ⊥. The second
TRS, called the melting TRS, is essentially an ωTRS adapted in two ways: First,
the clause that requires for each l→ r ∈ R that l reduces to ⊥ is removed, as it is
dealt with by the redex removal TRS. Second, two clauses are added with respect
to overlap between the rules of R and those of the ωTRS.

We start with the definition of the redex removal TRS:

Definition 6.4.4. The redex removal TRS (ωrTRS) for R is the TRS L = (Σ⊥, L)
with:

L = {l→r ⊥ | l→ r ∈ R} ,

and whose rewrite relation is denoted →r.

By orthogonality of R, it follows immediately that L is orthogonal and, hence,
confluent. Moreover, by the fact that each rewrite rule is of the form l →ω ⊥, we
have that L is terminating. Whence, each term has a unique normal form with
respect to the ωrTRS.

The above definition defines a unique ωrTRS for each orthogonal TRS R. The
freedom needed to define multiple Böhm-like trees is provided by the definition of
melting TRSs:

Definition 6.4.5. A melting TRS (ωmTRS) for R is a left-linear TRS M =
(Σ⊥,M), whose rewrite relation, denoted →m, satisfies the following conditions
for all d→m e ∈M and l→ r ∈ R:

1. e = ⊥,
2. ⊥ is a normal from with respect to →m,
3. s→∗

m ⊥ for all s such that
– s 4 d, or
– s 4 l with s not an l→ r-redex,

4. σ(d[r]p)→
∗
m ⊥, if l overlaps d at p ∈ Pos(d) with σ as mgu (see Figure 6.1),

5. σ(r)→∗
m ⊥, if d overlaps l at p ∈ Pos(l) with σ as mgu (see Figure 6.2).

We call the TRSs defined above melting TRSs, as their transitive-reflexive closures
contain what are sometimes called the melting rules: all the rules of the form s→ ⊥
where s 4 l with l→ r ∈ R and s not an l→ r-redex. The presence of the melting
rules is immediate by the third clause of the definition.

Remark 6.4.6. The requirement s 4 l with s not an l→ r-redex in the third clause
of Definition 6.4.5 ensures that s is not a substitution instance of l. We do not
require substitution instances to be included in ωmTRSs, as these are dealt with
by ωrTRSs. Of course, the definition does not forbid the inclusion substitution
instances. However, inclusion creates obligations with respect to the fifth clause of
the definition.
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σ(d[l]p)

m
⊥

σ(d[r]p)

∗

m

Figure 6.1. Definition 6.4.5.(4)

σ(l[d]p)

m

σ(r)

∗

m
σ(l[⊥])

(3)

∗

m⊥

Figure 6.2. Definition 6.4.5.(5)

The requirement also implies that s does not overlap with any rewrite rule of
R. If overlap occurs with the left-hand side l′ of a rule of R, then there is also
overlap between l and l′ by the fact that s 4 l. This is impossible by orthogonality
of R.

The following holds with respect to ωrTRSs and ωmTRSs:

Proposition 6.4.7. Let L = (Σ⊥, L) be the ωrTRS for R. If M = (Σ⊥,M) is an
ωmTRS for R, then LM = (Σ⊥, L ∪M) is an ωTRS for R.

Proof. This is immediate by the definition of ωrTRSs and the first three clauses of
Definition 6.4.5. ut

Hence, the combination of ωrTRSs and ωmTRSs strengthens the definition of
ωTRSs.

Example 6.4.8 (Huet-Lévy ωmTRS). For an orthogonal TRSR = (Σ, R), the Huet-
Lévy ωTRS can be redefined as a combination of an ωrTRS and an ωmTRS. The
rewrite rules of the ωmTRS are the rules s →m ⊥ such that s 4 l with l → r ∈ R
and s not an l → r-redex. The rules are readily shown to satisfy all clauses of
Definition 6.4.5, due to the lack of overlap with R. That the transitive-reflexive
of the union of the ωrTRS and the ωmTRS is identical to the transitive-reflexive
closure of the Huet-Lévy ωTRS follows easily.

It must be remarked that the Huet-Lévy ωTRS defined by Ariola [Ari96] actu-
ally consists of an ωrTRS and an ωmTRS and not only of an ωTRS as suggested
in the previous chapter.

Example 6.4.9. The ωTRS for CL, as presented in the discussion at the end of
Section 5.4 can also be redefined as a combination of an ωrTRS and an ωmTRS.
The ωrTRS consists of the following rewrite rules:

Sxyz →r ⊥

Kxy →r ⊥

Ix→r ⊥

and the ωmTRS has the rules:

⊥x→m ⊥

S⊥ →m ⊥

K⊥ →m ⊥
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The first three clauses of Definition 6.4.5 are easily verified for the above ωmTRS.
The same holds for the fourth clause, as no overlap of its kind occurs. That the
fifth clause also holds follows from the reductions depicted in Figure 6.3.

S⊥yz

m

⊥z(yz)

∗

m
⊥yz

∗

m⊥

K⊥y

m

⊥

‖

⊥y
m⊥

Figure 6.3. Example 6.4.9

Remark 6.4.10. Although the λβ-calculus is not a TRS, we can also redefine the
direct approximant rewrite systems of the Böhm and Lévy-Longo trees as combi-
nations of a redex removal rewrite system and a melting rewrite system. In both
cases, the redex removal rewrite system consists of the rule:

(λx.s)t→r ⊥ ,

and the melting rewrite system contains the rule:

⊥t→m ⊥ .

In case of Böhm trees, the melting rewrite system also contains the rule:

λx.⊥ →m ⊥ .

That each of the melting rewrite systems satisfies all clauses of Definition 6.4.5 is
easily verified.

By virtue of the first three clauses of Definition 6.4.5, we have that most proper-
ties of ωTRSs carry over to ωmTRSs. The exceptions are Lemmas 5.4.8 and 5.4.9.(5)
and Theorem 5.4.10. They do not carry over, as they depend on the fourth clause
of Definition 5.4.1, which does not occur in Definition 6.4.5.

Assuming that M = (Σ⊥,M) is an arbitrary ωmTRS, we next summarise the
properties from Section 5.4 that carry over to ωmTRSs.

Lemma 6.4.11. The ωmTRS M is confluent and normalising.

Proof. Identical to the proofs of Lemmas 5.4.4 and 5.4.6. ut

By the previous lemma, we have that each term s has a unique normal form
with respect to the ωmTRS M. We denote the unique normal form by ωm(s). By
the fact that the lemma does not depend on the fourth and fifth clause of Definition
6.4.5, it is decidable whether the fourth and fifth clause are satisfied. Hence, it is
also decidable whether a TRS is an ωmTRS.

Continuing with the properties from Section 5.4, we have:

Lemma 6.4.12. Let s, t, t′ ∈ Ter(Σ⊥, V ). If s 4 t and t →∗
m t′, then there exist

s′ ∈ Ter(Σ⊥, V ) such that s′ 4 t′ and s→∗
m s′.
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Proof. Identical to the proof of Lemma 5.4.7. ut

Finally, we have:

Lemma 6.4.13. Let s, t ∈ Ter(Σ⊥, V ). The following properties hold:

1. ωm(s) 4 s,
2. ωm(s) = ωm(s[ωm(s|p)]p) for all p ∈ Pos(s),
3. ωm(ω(s)) = ωm(s), and
4. ωm(s) 4 ωm(t), if s 4 t.

Proof. Identical to the proofs of the first four clauses of Lemma 5.4.9, where the
appropriate analogues of the employed lemmas are substituted. ut

Discussion. Separating ωTRSs in ωrTRSs and ωmTRSs emphasizes the fact that
not all terms that have ⊥ as their direct approximant can be further reduced. This
is the case when the rules of the ωrTRS do not apply. The separation also facilitates
the proof of syntactic continuity. In particular, it is employed in the proof of Lemma
6.4.17.

Separation in ωrTRSs and ωmTRSs also has a disadvantage: ωrTRSs are only
confluent because we assume that R is orthogonal. Confluence does not hold for
ωrTRSs of arbitrary (confluent) left-linear TRSs, as explained in Section 6.4.3.

6.4.2 Syntactic Continuity

In this section, we prove that ωTRSs defined by means of ωrTRSs and ωmTRSs
yield Böhm-like trees that satisfy syntactic continuity. Essentially, we show that
s →∗

m t implies BLT(s) = BLT(t), from which syntactic continuity follows with
relative ease.

As in the previous section, we assume that R = (Σ,⊥) is an orthogonal TRS. In
addition, we assume that L = (Σ⊥, L) is the ωrTRS for R and that M = (Σ⊥,M)
is an ωmTRS for R. Recall that the union LM = (Σ⊥, L ∪M) of L and M is an
ωTRS. As usual, we denote the unique normal form of a term s with respect to the
ωTRS by ω(s).

To show that s →∗
m t implies BLT(s) = BLT(t), we first prove two lemmas

relating the rewrite steps of R and the ωmTRS.

Lemma 6.4.14. Let s, s′, t ∈ Ter(Σ⊥, V ). If s′ ← s→∗
m t, then there exist t′1, t

′
2 ∈

Ter(Σ⊥, V ) such that s′ →∗
m t′2

=← t′1
∗
m← t (see Figure 6.4).

s
∗

mt
∗

mt′1

=

s′
∗

mt′2

Figure 6.4. Lemma 6.4.14



6.4 Direct Approximant TRSs 113

Proof. Suppose s′ ← s→∗
m t such that p is the position of the redex contracted in

s→ s′ and such that l → r ∈ R is the employed rewrite rule. There are two cases
to consider depending on the occurrence of a redex at position p in t.

A redex occurs at position p in t. By left-linearity of R and the first clause of
Definition 6.4.5, we have t|p = σ(l) for some substitution σ. Define t′1 = t and
t′2 = t[σ(r)]p. As t|p = σ(l) → σ(r), we have t′1 → t′2. Moreover, by the fact that
a redex occurs at position p in t, we have for each redex contracted in s →∗

m t,
where q is the position of the redex, that q does not occur in the redex pattern
of the redex at position p. That is, either p ‖ q or q > p · p′ with p′ ∈ Pos(l) and
l|p′ ∈ Var(l). Hence, s′ →∗

m t′2.

No redex occurs at position p in t. Considering s→∗
m t from left to right, there

is either no step whose redex pattern overlaps with the redex pattern of the redex
contracted in s→ s′ or there is a first step.

If there is no step, then there is obviously a position q 6 p such that t|q = ⊥.
Define t′1 = t′2 = t. By non-overlap and left-linearity of ωmTRSs we have s′ →∗

m t′2.
Moreover, t′1 →

= t′2 is immediate by t′1 = t′2.

If there is a step with overlap, then there are again two possibilities. Assuming
that d →m e ∈ M is the rewrite rule employed in the step, either l overlaps d or
d overlaps l. In the first case, the result follows by defining t′1 = t and t′2 = t and
by employing the third and fourth clause of Definition 6.4.5 in the construction of
s′ →∗

m t′2.

In the second case, note that other redexes may be contracted that overlap
with the prefix of redex pattern of l as it exists after the step contracting the first
overlapping redex. This does not pose a problem by the third clause of Definition
6.4.5. If p ∈ Pos(t) the result follows by defining t′1 = t[⊥]p and t′2 = t[⊥]p and by
employing the third clause of Definition 6.4.5 in the construction of t →∗

m t′1 and
the fifth clause in the construction of s′ →∗

m t′2. Otherwise, if p 6∈ Pos(t) the result
follows by defining t′1 = t′2 = t and by employing third and fifth clause of Definition
6.4.5 in the construction of s′ →∗

m t′2. ut

Lemma 6.4.15. Let s, s′, t ∈ Ter(Σ⊥, V ). If s′ ∗← s →∗
m t, then there exist t′ ∈

Ter(Σ⊥, V ) such that t→∗ t′ and ω(s′) = ω(t′) (see Figure 6.5).

s

∗

∗

mt

∗

s′

ω

t′

ω

ω(s′) = ω(t′)

Figure 6.5. Lemma 6.4.15
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Proof. Suppose s′ ∗← s→∗
m t. By Lemma 6.4.14 we can erect Figure 6.6. Moreover,

by left-linearity of R and the definition of ωmTRSs there exists a term t′′2 such that
t→= t′′2 , contracting a redex which has the redex contracted in t′1 →

= t′2 as residual.
In case t′1 →

= t′2 is empty we have t′1 = t′2 and we can define t′′2 = t from which we
obtain t′′2 →

∗
m t′2. In case t′1 →

= t′2 is not empty, we also have that t′′2 →
∗
m t′2, by

definition of ωmTRSs and the fact that all reductions in t→∗
m t′2 occur at positions

outside the redex pattern of the redex contracted in t→= t′′2 .
We can repeat the above construction of t′′2 for the terms t′′2 , t′3, and t′4, and so

on downwards up to t′n. This yields a term t′ = t′′n such that t →∗ t′, as required.
Moreover, as t′ →∗

m t′n and s′ →∗
m t′n, it follows by definition of ωTRSs that

ω(s′) = ω(t′n) = ω(t′), as also required. ut

s
∗

mt
∗

mt′1

=

s1
∗

mt′2
∗

mt′3

=

s2
∗

mt′4

s(n−1)/2
∗

m
t′n−2

∗

m
t′n−1

=

s′
∗

mt′n

Figure 6.6. Proof of Lemma 6.4.15

We can now establish the desired relation between the ωmTRS M and the
Böhm-like tree BLT based on the ωmTRS:

Lemma 6.4.16. Let s, t ∈ Ter(Σ⊥, V ). If s→∗
m t, then BLT(s) = BLT(t).

Proof. Suppose s→∗
m t. By Lemma 6.4.15 we have for all s→∗ s′ that there exist

t′ such that t→∗ t′ and ω(s′) = ω(t′). Hence, A(s) ⊆ A(t) and BLT(s) 4 BLT(t).
Moreover, as s < t, we have by monotonicity of Böhm-like trees based on ωTRSs
that BLT(s) < BLT(t) and we can conclude that BLT(s) = BLT(t). ut

We next prove that syntactic continuity holds for Böhm-like trees based on
ωrTRSs and ωmTRSs. Of course, Proposition 6.4.1 already establishes half of the
proof, which leaves the other half:

Lemma 6.4.17. Let s ∈ Ter(Σ⊥, V ) and let C[�] be a context. The Böhm-like tree
of C[s] based on LM satisfies:
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BLT(C[s]) 4
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

Proof. That the least upper bound of {BLT(C[t]) | t ∈ BLT(s)} exists is already
shown in Proposition 6.4.1. Consequently, we only need to prove that there exists
for every C[s] →∗ s′ a term t ∈ BLT(s) such that ω(s′) ∈ BLT(C[t]). Thus, let
C[s]→∗ s′. We erect Figure 6.7.

Square (1) exists by Lemma 2.2.9. From the lemma it follows immediately that
there are terms t′ and t′′ such that C[s] →∗

io C[t′] →∗
io t

′′ and s′ →∗ t′′ and such
that no redex contracted in C[t′]→∗ t′′ occurs at a position which is a descendant
of a position p > q with q the position of the hole in C[�].

In Square (2), the term t′⊥ denotes the normal form of t′ with respect to the
ωrTRS L. By orthogonality of R and the fact that no redex contracted in C[t′]→∗

t′′ occurs at a position p > q with q the position of the hole in C[�], it follows that
C[t′⊥]→∗ t′′⊥

∗
r← t′′. Hence, Square (2) exists.

Square (3) exist by the fact that the ωTRS LM defines a direct approximant
function. Finally, Square (4) exist by the fact that t′′ →∗

r t
′′
⊥ implies t′′ →∗

ω t
′′
⊥ and

the fact that ωTRSs are confluent.
Since ω(s′) 4 ω(t′′⊥) and C[t′⊥]→∗ t′′⊥, it follows that ω(s′) ∈ BLT(C[t′⊥]). More-

over, as there are by definition no redexes of R in t′⊥, we have t′⊥ →
∗
m ω(t′⊥) and,

by Lemma 6.4.16, BLT(C[t′⊥]) = BLT(C[ω(t′⊥)]). Hence, ω(s′) ∈ BLT(C[ω(t′⊥)]) =
BLT(C[ω(t′)]). As s→∗ t′, we have ω(t′) ∈ BLT(s) and the result follows by choos-
ing t = ω(t′). ut

C[s]

∗

∗

io

(1)

C[t′]

∗

io

∗

r

(2)

C[t′⊥]

∗

s′

ω

∗

(3)

t′′

ω

∗

r

(4)

t′′⊥

ω

ω(s′) 4 ω(t′′) = ω(t′′⊥)

Figure 6.7. Proof of Lemma 6.4.17

The main theorem of this chapter is now immediate:

Theorem 6.4.18. Let s ∈ Ter(Σ⊥, V ) and let C[�] be a context. The Böhm-like
tree of C[s] based on LM satisfies:

BLT(C[s]) =
⊔

{BLT(C[t]) | t ∈ BLT(s)} .

Proof. By Proposition 6.4.1 and Lemma 6.4.17. ut

By the previous theorem and the redefinition of the Huet-Lévy ωTRS in Ex-
ample 6.4.8, it follows that syntactic continuity is satisfied by Huet-Lévy trees. By
Example 6.4.9, the same holds for the Böhm-like tree for CL as presented in the
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discussion at the end of Section 5.4. In addition, it follows by Lemma 6.3.1 that
both Huet-Lévy trees and the Böhm-like tree for CL are congruent with respect to
Böhm-like tree equality.

6.4.3 Open Problem

With respect to congruence and ωTRSs, at least one question remains: Can we
extend the strengthening of ωTRSs, as presented above, to arbitrary confluent,
left-linear TRSs? We discuss this question.

At least three problems arise when extending the strengthening to arbitrary
confluent, left-linear TRSs. The problems are related, respectively, to ωrTRSs,
inside-out reductions, and ωmTRSs. We discuss each of the problems in turn.

Redex Removal TRSs. Given an arbitrary confluent, left-linear TRS, it does
not always hold that its ωrTRS is confluent. To see this, consider the left-linear
TRS with the following two reduction rules:

f(g(x))→ f(x)

g(h(x))→ h(x)

The TRS is confluent, as it is weakly orthogonal: 〈f(h(x)), f(h(x))〉 is the only
critical pair and this pair is trivial. The ωrTRS for the TRS has the following rules:

f(g(x))→r ⊥

g(h(x))→r ⊥

The rules form non-confluent TRS, as is witnessed by the term f(g(h(x))): The
reducts of the term are f(⊥) and ⊥, which are normal forms.

There is a very easy solution to overcome the non-confluence of ωrTRSs: Intro-
duce a redex removal function. Inspired by the second clause of the definition of
direct approximant functions, we could define the redex removal function for each
term s ∈ Ter(Σ⊥, V ) as the largest term t with respect to the prefix order such
that t 4 s[⊥]p for all p ∈ Pos(s) with p the position of a redex in s.

In case of an orthogonal TRS, the value assigned to a term by a redex removal
function is obviously identical to the unique normal form with respect to the ωrTRS.
In case of an arbitrary confluent, left-linear TRS, the value corresponds to the
replacement of all outermost redexes by ⊥.

Inside-Out Reductions. A second problem with extending the strengthening of
ωTRSs to arbitrary confluent, left-linear TRSs is related to inside-out reductions,
as employed in the proof of Lemma 6.4.17. In general, inside-out reductions do
not exist in the case of arbitrary confluent, left-linear TRSs, as pointed out to the
author by Van Oostrom [Oos04]. To see this, consider the left-linear TRS with the
following rewrite rules:
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a→ b

b→ a

f(x)→ g(x, x)

g(a, x)→ h(x, x)

h(b, x)→ c

Moreover, consider the following reduction:

f(a)→ g(a, a)→ h(a, a)→ h(b, a)→ c ,

where each underlining denotes a residual of the redex a that occurs in f(a). In the
first two steps of the reduction, residuals of the redex a occur inside the contracted
redexes. Hence, as a residual of the redex a is eventually contracted, the reduction
is not inside-out.

In the vein of Lemma 2.2.9, we would now like to obtain an inside-out reduction
from f(a) to some term s such that c →∗ s. In fact, since c is a normal form of
the considered TRS, we would actually like to obtain an inside-out reduction from
f(a) to c. We next try to construct such an inside-out reduction.

By definition of the considered TRS, and especially the rewrite rule h(b, x)→ c,
the inside-out reduction must be of the form:

f(a)→∗ h(b, s)→ c ,

for some term s. The subterm b of h(b, s) must have been created in the reduction
f(a) →∗ h(b, s). By inspection of the TRS, we can see that the creating b is only
possible by contraction of some residual of the redex a in f(a). Hence, as we are
trying to construct an inside-out reduction, the first step should be f(a)→ f(b).

Having reduced f(a) to f(b) there are next two possibilities: Either reduce f(b)
to f(a) or reduce it to g(b, b). As the first possibility brings us back our original
term, the only real possibility is to reduce f(b) to g(b, b). Next, g(b, b) must either
be reduced to g(a, b) or to g(b, a). Choosing g(b, a) only allows for a reduction
back to g(b, b) or contraction of the redex b, which is a residual of one of redexes in
g(b, b). Hence, again there is only one real possibility: Contract the leftmost b redex
in g(b, b). Doing so we obtain the term g(a, b), which has an inside-out reduction
to c:

g(a, b)→ h(b, b)→ c .

Summarising the above, we obtain the following reduction:

f(a)→ f(b)→ g(b, b)→ g(a, b)→ h(b, b)→ c .

The last two steps of the reduction are inside-out, while first three seem to be
the only steps possible, given that we want to construct an inside-out reduction.
Unfortunately, the reduction is not an inside-out reduction. The redex b contracted
in the third step is a residual of the redex b in f(b) and, relative to the redex
contracted in the third step, we have that b is inside. Hence, the third step should
be f(b)→ f(a), which can only be followed by f(a)→ f(b), etc. Of course, we now
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have a cyclic reduction which never reaches the term c. Hence, we can conclude
that no inside-out reduction exists in this case.

Remark that we have not yet shown that the above TRS is confluent. However,
this follows easily from the correspondence with the following orthogonal TRS,
which combines the nullary function symbols a and b into a nullary function symbol
ab and which removes the first two rewrite rules:

f(x)→ g(x, x)

g(ab, x)→ h(x, x)

h(ab, x)→ c

Hence, we can conclude that left-linearity and confluence are not sufficient to guar-
antee the existence of inside-out reductions in the vein of Lemma 2.2.9. Of course,
it may be possible to prove syntactic continuity without employing inside-out re-
ductions.

Melting TRSs. A third problem that arises when trying to extend the strength-
ening of ωTRSs to arbitrary confluent, left-linear TRSs has to do with the definition
of ωmTRSs. Copying the definition verbatim does not guarantee congruence, even
if we have a redex removal function, as proposed above, and even if we could cir-
cumvent the problems with inside-out reductions. To see this, consider again the
confluent, left-linear TRS we employed to explain the non-existence of inside-out
reductions. The following two rewrite rules form an ωmTRS for the TRS, which is
easily verified, as the last two clauses of Definition 6.4.5 do not apply.

g(⊥, x)→m ⊥

h(⊥, x)→m ⊥

Consider the nullary function symbols ⊥ and a and the context f(�). Obviously,
we have:

BLT(⊥) = {⊥}

BLT(a) = {⊥}

Hence, BLT(⊥) = BLT(a). However, by the reductions employed in the discussion
of inside-out reductions, we have:

BLT(f(a)) = {⊥, c}

and, by the reduction f(⊥) → g(⊥,⊥), where the second term is a normal form,
we have:

BLT(f(⊥)) = {⊥} .

Thus, BLT(f(a)) 6= BLT(f(⊥)) and we conclude for arbitrary confluent, left-linear
TRSs that congruence does not hold for Böhm-like trees whose direct approximant
function is based on a redex removal function and an ωmTRS.
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Infinitary Rewriting

Infinity itself looks flat and uninteresting. Looking up
into the night sky is looking into infinity – distance

is incomprehensible and therefore meaningless.

— Douglas Adams

The Hitchhiker’s Guide to the Galaxy (1979)

In this chapter, we compare the Böhm-like trees for TRSs, as defined in the previous
two chapters, to the Böhm-like trees defined by Kennaway, Van Oostrom, and De
Vries [KOV99] via infinitary rewriting.

We show that each Böhm-like tree defined by means of infinitary rewriting can
also be defined by means of a direct approximant function. We also show that the
reverse does not hold in general, but that a number of specific Böhm-like trees
defined by means of a direct approximant function can be defined by means of
infinitary rewriting.

By the above results, it follows that Böhm-like trees based on direct approxi-
mant functions are more general than those defined by means of infinitary rewriting.
Moreover, the results regarding the specific Böhm-like trees provide us with an el-
egant way of establishing congruence of Böhm-like tree equality, since Böhm-like
trees defined by means of infinitary rewriting are always congruent.

This chapter is organised as follows: In Sections 7.1 and 7.2, we introduce,
respectively, infinitary term rewriting and Böhm-like trees based infinitary term
rewriting. Thereafter, in Section 7.3 we prove that each Böhm-like tree based on
infinitary rewriting can also be defined by means of a direct approximant func-
tion. In Section 7.4, we show that the reverse of the statement proven in Section
7.3 does not hold. However, we do show that Böhm-like trees based on infinitary
rewriting can be given in at least three particular instances. Finally, in Section
7.5, we summarise the results presented in this chapter together with some of the
results presented in the previous two chapters.

Throughout this chapter we assume that TRSs are orthogonal, not just confluent
and left-linear. The reason is twofold: First, Kennaway, Van Oostrom, and De Vries
[KOV99, Section 7] assume orthogonality to obtain their desired confluence results.
Second, orthogonality is also assumed in Chapter 6.

7.1 Infinitary Term Rewriting

We give a short overview of the notions and notation from infinitary term rewriting
as required in this chapter. For more complete overviews the book by Terese [Ter03]
and the paper by Kennaway, Klop, Sleep, and De Vries [KKSV95] may be consulted.
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Before we can define infinitary term rewriting, it is first necessary to define
infinite terms. Given a signature Σ and a countably infinite set of variables V ,
it usual practise in infinitary term rewriting to define the set of infinite terms as
Ter∞m (Σ, V ). That is, as the metric completion of the set Ter(Σ, V ), where the
employed metric is the term metric (see Section 3.4).

Given a fresh nullary function symbol ⊥, it follows by the theory developed
in Chapter 3 that Ter∞m (Σ⊥, V ) is isomorphic to Ter∞i (Σ⊥, V ), the set of infinite
terms defined by means of ideal completion (see Section 3.2). Therefore, we permit
ourselves in the remainder of this chapter to confuse the sets Ter∞m (Σ⊥, V ) and
Ter∞i (Σ⊥, V ) and to denote them both by Ter∞(Σ⊥, V ). In addition, we also permit
ourselves to confuse the set Ter(Σ⊥, V ) and the set:

{ι(s) | s ∈ Ter(Σ⊥, V )} ⊆ Ter∞(Σ⊥, V ) , (7.1)

with ι the embedding of the terms into the infinite terms (see Section 3.2).
Substitutions for infinite terms are easily defined by coalgebraically extending

the definition of substitutions for finite terms (see Chapter 2). Moreover, (infinite)
contexts are easily defined by adding a fresh nullary function symbol � to the
signature.

We can now define infinitary rewrite rules and infinitary TRSs:

Definition 7.1.1. An infinitary rewrite rule is a pair (l, r) with l ∈ Ter(Σ, V ) and
r ∈ Ter∞(Σ, V ), denoted l→ r, such that Var(l) ⊇ Var(r) and l not a variable.

An infinitary TRS (iTRS) over a signature Σ is a pair R = (Σ, R) with R a set
of infinitary rewrite rules.

Remark that the left-hand side of an infinitary rewrite rule is a (finite) term. For this
reason, the definitions of left-linearity and orthogonality carry over directly from
TRSs. Moreover, note that each TRS is also an iTRS by the fact that Ter(Σ, V )
is isomorphic to the subset of Ter∞(Σ, V ) depicted in (7.1).

We can now define what it means for an infinite term S to be rewritten to an
infinite term T :

Definition 7.1.2. Let l→ r be an infinitary rewrite rule. Given a substitution σ,
the term σ(l) is called an l → r-redex. If S = C[σ(l)] for some l → r-redex and
context C[�] with C[�]|p = �, then an l → r-redex, or simply a redex, occurs at
position p and depth |p| in S. Moreover, if q ∈ Pos(S) then q is said to occur in
the redex pattern of the l → r redex at position p in S, whenever q > p and not
q > p · p′ with p′ ∈ Pos(l) such that l|p′ ∈ Var(l).

A pair (S, T ) ∈ Ter∞(Σ, V ) × Ter∞(Σ, V ), denoted S → T , defines a rewrite
step, if S = C[σ(l)], T = C[σ(r)], and if l → r is an infinitary rewrite rule. An
l→ r-redex is contracted in such a step.

We next define transfinite reductions:

Definition 7.1.3. A transfinite reduction of ordinal length α is a sequence of in-
finite terms (Sκ)κ<α+1 such that Sκ → Sκ+1 for all κ < α. For each rewrite step
Sκ → Sκ+1, let dκ denote the depth of the contracted redex. The reduction is called
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weakly convergent or Cauchy convergent if it is continuous in the sense of Defini-
tion 2.1.2. Furthermore, it is called strongly convergent if it is weakly convergent
and if dκ tends to infinity as κ approaches γ from below.

Note that every weakly convergent reduction is strongly convergent. Moreover,
note that all finite reductions, as defined in Chapter 2, are weakly convergent; the
same cannot be said of all infinite reductions, as not every infinite reduction needs
to have a limit, which is required here.

By S �α T , respectively S �6α T , we denote a strongly convergent transfinite
reduction of ordinal length α, respectively of ordinal length less than or equal to
α. By S � T we denote a strongly convergent transfinite reduction of arbitrary
ordinal length.

An iTRS is infinitary normalising, if for each infinite term there exists a strongly
convergent reduction sequence to a normal form, i.e., an infinite term in which no
redex occurs. Moreover, an iTRS is confluent whenever T � S � T ′ implies
T � S′ � T ′ for some infinite term S′.

The following lemma and theorem are well-known:

Lemma 7.1.4 (Strip Lemma). Let R = (Σ, R) be an orthogonal iTRS and let
S, T1, T2 ∈ Ter

∞(Σ, V ). If T1 → S � T2, then there exist S′ ∈ Ter∞(Σ, V ) such
that T1 � S′ � T2 (see Figure 7.1).

S

T2T1

S′

Figure 7.1. The Strip Lemma

Proof. This is Lemma 4.8 of [KKSV95] and Theorem 12.6.3 of [Ter03]. ut

Theorem 7.1.5 (Compression). Let R = (Σ, R) be a left-linear iTRS and let
S, T ∈ Ter∞(Σ, V ). If S �α T , then S �6ω T .

Proof. This is Lemma 5.1 of [KKSV95] and Theorem 12.7.1 of [Ter03]. ut

Define an infinite term S to be root-stable whenever there does not exist a
strongly convergent reduction from S to an infinite term with a redex at the root.
We have the following:

Corollary 7.1.6. Let R = (Σ, R) be a left-linear iTRS and let S ∈ Ter∞(Σ, V ).
If S is not root-stable, then it is reduces to a redex in a finite number of steps.
Moreover, if R is orthogonal and S reduces to a root-stable term, then it does so
in a finite number of steps.

Proof. Immediate by compression and strong convergence. ut
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7.2 Böhm-Like Trees and Infinitary Rewriting

Defining Böhm-like trees for TRSs by means of infinitary rewriting is done in four
steps. The steps are similar to the steps employed to define the Böhm-like trees of
the λβ-calculus by means of infinitary rewriting (see Section 4.4.2). They are as
follows:

1. Define a set U ⊆ Ter∞(Σ⊥, V ).
2. Introduce B = {S →⊥ ⊥ | S ∈ U and S 6= ⊥} and B = (Σ⊥, R ∪B).
3. Show that B is confluent and normalising.
4. Define Böhm-like trees as the unique normal forms with respect to B.

We briefly discuss each of the above steps. A more elaborate discussion can be
found in the paper by Kennaway, Van Oostrom, and De Vries [KOV99].

First Step. In this step, a set U of infinite terms is defined. Intuitively, we want
each term in U to have the infinite term ⊥ as its Böhm-like tree.

Not every set of infinite terms will do as the set U , since confluence and normal-
isation are to be proved in the third step. To achieve confluence and normalisation,
Kennaway, Van Oostrom, and De Vries require U to satisfy the following properties,
given that ⊥ is a fresh nullary function symbol that occurs neither in Σ nor in V :

Definition 7.2.1. A set U ⊆ Ter∞(Σ⊥, V ) is called a set of meaningless terms,
whenever the following holds for all S, T ∈ Ter∞(Σ⊥, V ):

1. ⊥ ∈ U ,
2. U is closed under strongly convergent reductions,
3. if S ∈ U overlaps the left-hand side l of a rewrite rule in R at a position

p ∈ Pos(l) with σ as mgu, then σ(l) = σ(l[S]p) ∈ U ,
4. all root-active terms occur in U , and
5. if S ↔U T , then S ∈ U if and only if T ∈ U .

Above, S ↔U T denotes that T can be obtained from S by replacing a number
of disjoint subterms in S that are in U by other terms from U . Remark that U
can contain both finite and non-finite terms, because U is defined in the context of
infinitary rewriting.

Sets of meaningless terms are not necessarily closed under expansion. This be-
comes problematic in the comparison with the direct approximant approach, since
the direct approximant approach requires ω(s) 4 ω(t) whenever s→ t.

To see that closure under expansion is not necessarily satisfied, consider the
orthogonal iTRS which consist solely of the following rewrite rule:

a→ b .

With respect to the iTRS, it is readily proved that U = {⊥, b} is a set of meaningless
terms. However, the set is not closed under expansion, since a 6∈ U .

To overcome the problem with expansion, we also consider the following set:

Definition 7.2.2. The set U ⊆ Ter∞(Σ⊥, V ) is the closure of U under (transfi-
nite) expansion. That is, U is defined as:

U = {S | S � T with T ∈ U} .
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Remark that U ⊆ U . The sets may be equal, as U may already be closed under
expansion. The set U does not occur in the work of Kennaway, Van Oostrom, and
De Vries [KOV99].

Second Step. Assuming from here onwards that U is a set of meaningless terms,
the current step defines the following iTRS for R and U :

Definition 7.2.3. The Böhm-like iTRS for R and U is defined as the iTRS B =
(Σ⊥, R ∪B), where:

B = {S →⊥ ⊥ | S ∈ U and S 6= ⊥} .

With respect to the rewrite rules of B, we have the following compression prop-
erty, where �⊥ denotes that all employed rewrite rules are from B:

Lemma 7.2.4. Let B = (Σ⊥, R∪B) be a Böhm-like iTRS and S, T ∈ Ter∞(Σ⊥, V ).

If S �⊥ T , then S �
6ω
⊥ T .

Proof. Suppose S �⊥ T . By the first and fifth clause of Definition 7.2.1 and the
definition of Böhm-like iTRSs, we can assume that all reductions in S �⊥ T occur
at parallel positions. Hence, all contracted redexes occur in S. Since there are only
finitely many positions at each depth, we obtain a strongly convergent reduction
sequence by contracting the redexes in S that need to be contracted in a depth-
wise fashion starting at the least depth. By definition, the constructed reduction
has length at most ω. That the constructed reduction ends in T follows by definition
of Böhm-like iTRSs, in particular by the fact that all right-hand sides of rewrite
rules in B are equal to ⊥. ut

Besides the above compression property, we also have the following, where �R

denotes that all employed rewrite rules are from R:

Lemma 7.2.5. Let B = (Σ⊥, R∪B) be a Böhm-like iTRS and S, T ∈ Ter∞(Σ⊥, V ).

If S � T , then S �
6ω
R S′ �

6ω
⊥ T for some S′ ∈ Ter∞(Σ⊥, V ).

Proof. This is Lemma 27 of [KOV99] combined with Theorem 7.1.5 and Lemma
7.2.4. ut

The above definition of a Böhm-like iTRS is based on U and not U . However,
we can also define:

Definition 7.2.6. The expanded Böhm-like iTRS for R and U is defined as the
iTRS E = (Σ⊥, R ∪ E), where:

E = {S →⊥ ⊥ | S ∈ U and S 6= ⊥} .

We have the following correspondence between strongly convergent reductions
of Böhm-like iTRSs and expanded Böhm-like iTRSs:

Proposition 7.2.7. Let B = (Σ⊥, R ∪B) and E = (Σ⊥, R ∪B) be respectively the
Böhm-like iTRS and the expanded Böhm-like iTRS for R and U . Moreover, let
S, T ∈ Ter∞(Σ⊥, V ). There exists a reduction S � T with respect to B if and only
if there exists a reduction S � T with respect to E.
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Proof. Let S � T with respect to B. That there exists a reduction S � T with
respect to E is immediate by R ∪B ⊆ R ∪ E, which follows by U ⊆ U .

Let S � T with respect to E . Remark that the rewrite rules that are in R ∪E
but not in R ∪ B are of the form S →⊥ ⊥ with S ∈ U − U . Moreover, if S →⊥ ⊥
is such a rule, then there exists by definition of U and Theorem 7.1.5 a reduction
S �

6ω
R T →⊥ ⊥ for some T ∈ U with respect to B. Hence, we can replace each

of the reduction steps C[S] →⊥ C[⊥] in S � T employing one of the ‘offending’

reduction rules by C[S] �
6ω
R C[T ] →⊥ C[⊥]. The newly created reduction is

strongly convergent, as the substituted reductions have at most length ω + 1 and
as all reduction steps in C[S] �

6ω
R C[T ]→⊥ C[⊥] occur at depths greater than or

equal to the depth of the hole in the context. ut

We now also have the following:

Lemma 7.2.8. Let E = (Σ⊥, R∪E) be an expanded Böhm-like iTRS and let S, T ∈
Ter∞(Σ⊥, V ). If S � T , then S �6ω T .

Proof. Let S � T . By Proposition 7.2.7 and Lemma 7.2.5 there exists with respect
to E a reduction S �

6ω
R S′ �

6ω
⊥ T with S′ ∈ Ter∞(Σ⊥, V ). By closure of U

under expansion and definition of E there exists an interleaving of the steps from
S �

6ω
R S′ and those from S′ �

6ω
⊥ T where the steps occur in a depth-wise fashion

starting at the least depth. This implies S �6ω T , as required. ut

Third Step. This step consists of proving the following theorem:

Theorem 7.2.9. Each Böhm-like iTRS is confluent and normalising.

Proof. This is Section 7 of [KOV99]. ut

Obviously, by the above theorem, each term has a unique normal form with respect
to a Böhm-like iTRS.

We have an identical theorem for expanded Böhm-like iTRSs:

Theorem 7.2.10. Each expanded Böhm-like iTRS is confluent and normalising.

Proof. Immediate by Theorem 7.2.9 and Proposition 7.2.7. ut

Hence, each term also has a unique normal form with respect to an expanded
Böhm-like iTRS. By Proposition 7.2.7, the unique normal form must be identical
to one with respect to the Böhm-like iTRS.

We also have the following:

Lemma 7.2.11. The set U is closed under strongly convergent reductions.

Proof. Suppose S ∈ U and S � T such that T 6∈ U . By definition of U there exist
S′ ∈ U such that S � S′. We also have that there exist T ′ ∈ U such that T � T ′.
If not, then we have found a counterexample to confluence of Böhm-like iTRSs, as
S � S′ � ⊥ and S � T 6� ⊥. Hence, as T ′ ∈ U , we have by closure of U under
expansion that T ∈ U . ut

Fourth Step. The Böhm-like tree of a term S ∈ Ter∞(Σ⊥, V ) with respect to U ,
denoted either BLT∞

U (S) or BLT∞(S), is defined as the unique normal form of S
with respect to the Böhm-like iTRS for U and the assumed iTRS.



7.3 From Infinitary Rewriting to Direct Approximants 125

Alternatively, the Böhm-like tree of a term can be defined as the unique normal
form with respect to the expanded Böhm-like iTRS. This makes no difference,
because the unique normal forms with respect to both iTRSs are identical, as we
saw above. Given this fact, we assume in the remainder of this chapter that Böhm-
like trees are defined by means of expanded Böhm-like iTRSs.

We have the following for the Böhm-like trees we just defined:

Theorem 7.2.12. Let S, T ∈ Ter∞(Σ, V ) and let C[�] be a context. If it holds
that BLT∞(S) = BLT∞(T ), then BLT∞(C[S]) = BLT∞(C[T ]).

Proof. Immediate by confluence of (expanded) Böhm-like iTRSs. ut

7.3 From Infinitary Rewriting to Direct Approximants

In this section, we show that each Böhm-like tree defined by means of infinitary
rewriting can also be defined by means of a direct approximant function. In other
words, we show for each set of meaningless terms that there exists a direct approx-
imant function such that the Böhm-like trees defined by both are identical.

We do not define an ωTRS for each set of meaningless terms. In fact, this
is impossible, because Berarducci-like trees can be defined by means of a set of
meaningless terms, as we show in Section 7.4.2, while they cannot be defined by
means of an ωTRS (see Chapter 5).

Assuming that R = (Σ, R) is an orthogonal TRS and that U is a set of mean-
ingless terms, we define the following direct approximant function for U :

Definition 7.3.1. The map ωU : Ter(Σ⊥, V ) → Ter(Σ⊥, V ) is defined for each
s ∈ Ter(Σ⊥, V ) as the largest term t ∈ Ter(Σ⊥, V ) with respect to the prefix order
such that t 4 s[⊥]p for all p ∈ Pos(s) with either s|p ∈ U or s|p reducible to a redex
of R.

By Corollary 7.1.6, only finite reductions need to be considered to determine
whether a subterm reduces to a redex in R. Of course, this does not make the
requirement decidable in any way.

Remark 7.3.2. It is possible to give an alternative definition for ωU , which employs
the expanded Böhm-like iTRS E for U and the prefix order on positions instead of
the set U , the TRS R, and the prefix order on terms.

Suppose s ∈ Ter(Σ⊥, V ) and define:

Ps = {p | p ∈ Pos(s) and s|p reducible to a redex of E}

Po
s = {p | p ∈ Ps and no q < p in Ps}

where Po
s consists of the outermost positions of Ps. The value assigned to ωU (s)

can now be defined as:

ωU (s) = s[⊥]p1 [⊥]p2 . . . [⊥]pn
,

where #Po
s = n and where p1, . . . , pn are the different (parallel) positions that

occur in Po
s .
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By definition of E and closure of U under expansion, it follows that reducibility
to a redex of E corresponds to either reducibility to a redex of R or equality to
a term in U . Hence, as the term t from Definition 7.3.1 is the largest term with
respect to the prefix order and as Po

s consists of the outermost positions from Ps,
we have that s[⊥]p1 [⊥]p2 . . . [⊥]pn

is identical to t.

Of course, we still have to show the following:

Lemma 7.3.3. The map ωU is a direct approximant function.

Proof. As R is assumed to be orthogonal, it is sufficient by Proposition 5.2.14 to
verify the first three clauses of the definition of a direct approximant function.
Assuming s, t ∈ Ter(Σ⊥, V ), we verify each of the three clauses in turn:

1. That ωU (s) 4 s, is immediate by the alternative definition of ωU from Remark
7.3.2.

2. That ωU (s) 4 s[⊥]p for all p ∈ Pos(s) such that s|p = σ(l) for some l → r ∈
R and substitution σ, is immediate by the requirement that ωU (s) 4 s[⊥]q
whenever s|q is reducible to a redex of R.

3. That s→ t implies ωU (s) 4 ωU (t), is immediate whenever there exists for each
p ∈ Po

t a position p′ 6 p such that ωU (s) 4 s[⊥]p′ . To show this, suppose that
q is the position of the redex contracted in s→ t. There are three possibilities
depending of the relative positions of p and q.
If p ‖ q, then p ∈ Pos(s) and either s|p ∈ U or s|p reduces to a redex of R.
Hence, ωU (s) 4 s[⊥]p. If q 6 p, then, since a redex occurs at position q in s,
we have ωU (s) 4 s[⊥]q. Finally, if p < q, then there are two possibilities: either
t|p reduces to a redex of R or t|p ∈ U . If t|p reduces to a redex, then s|p also
reduces to a redex, since s reduces to t. If t|p ∈ U , then s|p ∈ U , because U is
closed under expansion. Thus, in both cases ωU (s) 4 s[⊥]p.
Hence, for each p ∈ Po

t there exists a position p′ 6 p such that ωU (s) 4 s[⊥]p′ ,
as required for the third clause. ut

Assume that the Böhm-like trees based on the expanded Böhm-like iTRS E
of U and those based on ωU are denoted respectively BLT∞

U and BLTU , we next
show that BLT∞

U and BLTU are identical. The proof essentially consists of the
construction of a bisimulation:

Theorem 7.3.4. For all s ∈ Ter(Σ⊥, V ) it holds that BLTU (s) = BLT∞
U (s).

Proof. Let s ∈ Ter(Σ⊥, V ). We prove by induction on the structure of positions
p ∈ N

∗ that p ∈ Pos(BLTU (s)) if and only if p ∈ Pos(BLT∞
U (s)) and that

root(BLTU (s)|p) = root(BLT∞
U (s)|p).

Obviously, if p = ε, then p is in the set of positions of both Böhm-like trees.
Otherwise, if p = q · i for some i ∈ N, then p is in the set of positions of both Böhm-
like trees whenever q is in the set of positions and whenever root(BLTU (s)|q) =
root(BLT∞

U (s)|q) ∈ Σn with 0 6 i 6 n. Hence, we only need to prove for each
position p in both Böhm-like trees that root(BLTU (s)|p) = root(BLT∞

U (s)|p).
Suppose root(BLTU (s)|p) = f . There are two possibilities: Either f = ⊥ or f 6=

⊥. In case f = ⊥, we have, by definition of ωU for all s→∗ t with p ∈ Pos(ωU (t)),
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that either t|p ∈ U or that t|p reduces to a redex of R, which, by Corollary 7.1.6
and the fourth clause of Definition 7.2.1, also implies that t|p ∈ U . Hence, in any
case t|p ∈ U and we obtain root(BLT∞

U (s)|p) = ⊥.
In case f 6= ⊥, there exists by definition of ωU a term t such that s →∗ t, p ∈

Pos(ωU (t)), and root(ωU (t)|p) = f . Hence, by definition of ωU , we have neither that
t|p ∈ U nor that t|p reduces to a redex of R, which implies root(BLT∞

U (s)|p) = f .
Now suppose root(BLT∞

U (s)|p) = f . There are again two possibilities: Either
f = ⊥ or f 6= ⊥. In case f = ⊥, we have, by Lemma 7.2.8 and the definition of
Böhm-like trees based on infinitary rewriting, that there exist s →∗ t such that
p ∈ Pos(t), all t|q with q < p root-stable with respect to E , and t|p ∈ U . Hence,
by definition of ωU and Lemma 7.2.11, we have p ∈ Pos(ωU (t)) and ωU (t)|p = ⊥,
which implies root(BLTU (s)|p) = ⊥.

In case f 6= ⊥, there exists, by definition of Böhm-like trees based on infinitary
rewriting and Corollary 7.1.6, a term t such that t|q with q < p root-stable with
respect to E . Hence, root(ωU (t)) = f , which implies root(BLTU (s)|p) = f .

Concluding, we have root(BLTU (s)|p) = f if and only if root(BLT∞
U (s)|p) = f ,

as required. ut

Discussion. Given the direct approximant function ωU based on the set U of
meaningless terms, we can ask ourselves whether we can ‘recover’ the set U . In this
respect, we have the following:

Lemma 7.3.5. Define the set U ′ ⊆ Ter(Σ⊥, V ) as:

U ′ = {s | ∀s→∗ t : ωU (t) = ⊥} .

The set U ′ consists of all finite terms from U .

Proof. Denote by U f the subset of U that consists of all finite terms. We prove
U f ⊆ U ′ and U ′ ⊆ U f , by which the result is immediate.

To prove U f ⊆ U ′, suppose s ∈ U f . As U f ⊆ U and as U is closed under
reduction, we have for all s→∗ t that t ∈ U . Hence, s ∈ U ′. As s was arbitrary, we
can conclude that U f ⊆ U ′.

To prove U ′ ⊆ U f , suppose s ∈ U ′. By definition of ωU there are two possibilities:
Either there exist s→∗ t such that t ∈ U or for all s→∗ t we have that t is reducible
to a redex of R. In the first case, by closure of U under expansion, we have that
s ∈ U f . In the second case, s is root-active, which, by Corollary 7.1.6, also implies
s ∈ U f . As s was arbitrary, we can conclude that U ′ ⊆ U f . ut

Although we just recovered the finite terms of U , we cannot recover U com-
pletely. To see this, consider a TRS without any rewrite rules whose signature
consists of the unary function symbols f and g. We can define the following infinite
term:

S = f(g(f(g2(f(g3(f(. . .))))))) .

That is, each subterm of S with f as root symbol is of the form:

f(gn(f(gn+1(. . .)))) .
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Since there are no reduction rules, both U = {⊥} and V = {⊥, S} are sets of
meaningless terms. Moreover, U = U and V = V. Since S is an infinite term, both
ωU and ωV can only be the identity function. Hence, it is impossible to recover
either U or V.

Even though the above shows that we cannot recover all infinite terms from
U , we might be able to recover some of the non-finite terms. A possible way of
doing this is suggested by the paper of Kennaway, Van Oostrom, and De Vries
[KOV99] (see also the next section). In the paper, some sets of meaningless terms
are defined in two steps. In the first step, a direct approximant function ω is defined
together with a set collecting the terms all whose reducts have ⊥ as their direct
approximant:

U f = {s | ∀s→∗ t : ω(t) = ⊥} .

Remark that the set is identical to the one defined in Lemma 7.3.5 but with ωU

replaced by ω. In the second step, the following set is defined:

U = {S | ∀S � T : ∀t ∈ Ter(Σ⊥, V ) : t 4 T =⇒ t ∈ U f} .

Hence, a term S is meaningless if and only if the all the finite prefixes of all reducts
of S are in U f .

It might be suspected that the two-step construction could be used to recover
a subset of the non-finite terms from U . However, this is not the case. Consider,
e.g., the TRS which only has the following rewrite rule:

a→ a ,

In addition, assume that the TRS has a unary function symbol f . In this case, the
set:

U = {fn(a), fn(⊥) | n ∈ N} ,

with f0(s) = s and fn+1(s) = f(fn(s)), is easily shown to be a set of meaningless
terms with the property that U f = U = U . Unfortunately, besides U being a subset
of the following set:

{S | ∀S � T : ∀s ∈ Ter(Σ⊥, V ) : s 4 T =⇒ s ∈ U} ,

fω is also in the set, since fn(⊥) ∈ U for all n ∈ N. Thus, we not only recover all
non-finite terms from U , but we also ‘recover’ terms that were not in U . Hence, it
is probable that all we can hope for is Lemma 7.3.5.

7.4 From Direct Approximants to Infinitary Rewriting

Without posing any restrictions on Böhm-like trees based on direct approximant
functions, we cannot prove the reverse of the theorem established in the previous
section. That is, we cannot prove for every Böhm-like tree based on a direct ap-
proximant function that there exists an identical Böhm-like tree defined by means
of infinitary rewriting. It is impossible to give a proof, since Böhm-like trees based
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on infinitary rewriting satisfy congruence (see Theorem 7.2.12), while congruence is
not necessarily satisfied by Böhm-like trees based on direct approximant functions
(see Chapter 6).

Remark that it is irrelevant whether the direct approximant function is based
on an ωTRS. Congruence is not necessarily satisfied by Böhm-like trees based on
ωTRSs either (see also Chapter 6).

As it turns out, it is not sufficient to just assume congruence for Böhm-like trees
based on direct approximant functions, as we show in Section 7.4.1. However, as
shown in Sections 7.4.2, 7.4.3, and 7.4.4, we can prove that there exist Böhm-like
trees based on infinitary rewriting in case of Berarducci-like trees, Huet-Lévy trees,
and the trees based on ωmTRSs.

7.4.1 Congruence

In this section, we define a Böhm-like tree based on a direct approximant function
which satisfies congruence, but for which no identical Böhm-like tree based on
infinitary rewriting exists.

Consider the orthogonal TRS which only has the following rewrite rule:

f(g(x))→ f(x) .

Define the following map:

Definition 7.4.1. The map ωc : Ter(Σ⊥, V ) → Ter(Σ⊥, V ) is defined for each
s ∈ Ter(Σ⊥, V ) as the largest term t ∈ Ter(Σ⊥, V ) with respect to the prefix order
such that t 4 s[⊥]p if either s|p is a redex or s|p = gn(⊥) for some n ∈ N.

As we show below, the above map defines a direct approximant function whose
Böhm-like tree satisfies congruence. However, we first show that no Böhm-like tree
based on infinitary rewriting can be defined.

Denote by BLT the Böhm-tree based on ωc and consider the term g(⊥). Obvi-
ously, we have BLT(g(⊥)) = ⊥. Since we want to define a set of meaningless terms
whose Böhm-like iTRS yields a Böhm-like tree identical to the one based on ωc,
it must hold that g(⊥) is in the set of meaningless terms. Alternatively, g(⊥) has
to reduce to a term in the set, but this is impossible, since g(⊥) is a normal form
with respect to the assumed TRS.

Since g(⊥) overlaps f(g(x)), we have by the second clause of Definition 7.2.1
that f(g(⊥)) must also be in the set of meaningless terms. This implies, by def-
inition of Böhm-like iTRSs, that f(g(⊥)) →⊥ ⊥ and that BLT∞(f(g(⊥))) = ⊥.
However, BLT(f(g(⊥))) = BLT(f(⊥)) = f(⊥). Hence, even requiring congruence
to hold for Böhm-like trees based on direct approximant functions is insufficient to
be able to define an identical Böhm-like tree based on infinitary rewriting.

Of course, we still have to show that ωc defines a direct approximant function
that yields a Böhm-like tree which satisfies congruence. We start by proving that
ωc is a direct approximant function:
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Lemma 7.4.2. The map ωc is a direct approximant function.

Proof. Since the considered TRS is orthogonal, it suffices by Proposition 5.2.14
to verify the first three clauses of the definition of a direct approximant function.
Assuming s, t ∈ Ter(Σ⊥, V ), we verify each of the three clauses in turn:

1. That ωc(s) 4 s, is immediate by the definition of ωc.
2. That ωc(s) 4 s[⊥]p whenever p ∈ Pos(s) and s|p = σ(f(g(x))) with σ is a

substitution, is also immediate by the definition of ωc.
3. That s → t implies ωc(s) 4 ωc(t), follows immediately when we realise that

each subterm of the form f(g(s′)) reduces to f(s′) and that any redex that is
created at the same position as f(g(s′)). ut

Remark 7.4.3. The replacement of subterms of the form gn(⊥) by ωc has a similar
justification as the rule λx.⊥ →ω ⊥, which occurs in the rewrite system that defines
the Böhm direct approximant of the λβ-calculus (see Section 5.4). Placing gn(⊥)
in a context either leaves gn(⊥) untouched or it creates the redex f(gn(⊥)). In
the last case we have f(gn(⊥)) →∗ f(⊥) = ωc(f(ωc(g

n(⊥)))), which is similar to
(λx.⊥)s→β ⊥ = ωB(ωB(λx.⊥)s), as satisfied by the Böhm direct approximant.

Finally, we prove congruence:

Lemma 7.4.4. The Böhm-like tree based on ωc satisfies congruence.

Proof. To prove that the Böhm-like tree based on ωc is congruent, remark that
each term has a normal form, as contracting a redex reduces the number of function
symbols g in a term. Moreover, remark that the assumed TRS is confluent, since
it is orthogonal.

By confluence, we may rewrite a term C[s] to normal form by first rewriting s
and C[�] to normal form and by only contracting thereafter the redexes that occur
on the ‘boundary’ between s and C[�]. Hence, we only need to verify congruence
with respect to the possible normal forms of s and C[�].

Each term s reduces to one of four normal forms, with m ∈ N and n > 1
arbitrary:

gm(fn(x)) gm(fn(⊥))
gm(x) gm(⊥)

The normal forms correspond to the following Böhm-like trees:

BLT(gm(fn(x))) = ↓{gm(fn(x))} BLT(gm(fn(⊥))) = ↓{gm(fn(⊥))}

BLT(gm(x)) = ↓{gm(x)} BLT(gm(⊥)) = {⊥}

Hence, any two terms have the same Böhm-like trees if they have the same normal
form unequal to gm(⊥) or if the terms both have a normal form gm(⊥) for possibly
different values of m.

Each context C[�] reduces to one of the following normal forms, with m′ ∈ N

and n′ > 1 arbitrary:

gm
′

(fn
′

(�)) gm
′

(�)
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There are eight possible combinations of the normal forms of s and the normal
forms of C[�]. In case s 6= gm(⊥), the Böhm-like trees are as follows:

BLT(gm
′

(fn
′

(gm(fn(x))))) = ↓{gm
′

(fn
′+n(x))}

BLT(gm
′

(fn
′

(gm(fn(⊥))))) = ↓{gm
′

(fn
′+n(⊥))}

BLT(gm
′

(fn
′

(gm(x)))) = ↓{gm
′

(fn
′

(x))}

BLT(gm
′

(gm(fn(x)))) = ↓{gm
′+m(fn(x))}

BLT(gm
′

(gm(fn(⊥)))) = ↓{gm
′+m(fn(⊥))}

BLT(gm
′

(gm(x))) = ↓{gm
′+m(x)}

Obviously, given two terms with the same normal form unequal to gm(⊥), we obtain
identical Böhm-like trees when we place the terms in a context.

In case s = gm(⊥), the Böhm-like trees are:

BLT(gm
′

(fn
′

(gm(⊥)))) = ↓{gm
′

(fn
′

(⊥))}

BLT(gm
′

(gm(⊥))) = ↓{⊥}

Hence, the value of m is irrelevant and given any two terms whose normal form is
gm(⊥), for possibly different values of m, we have that their Böhm-like trees are
also identical when placed in a context.

Summarising, we have that congruence holds for the Böhm-like tree based on
the direct approximant function ωc. ut

7.4.2 Berarducci-Like Trees

In this section, we show for every orthogonal TRS R = (Σ, R) and its Berarducci-
like tree that there exists a set UBeL of meaningless terms such that the Böhm-like
tree based on UBeL is identical to the Berarducci-like tree.

The set of meaningless terms we are looking for has actually already been
defined by Kennaway, Van Oostrom, and De Vries [KOV99]. In Section 8.1.5 of
their paper, they define:

U ′ = {S | S ∈ Ter∞(Σ, V ) root-active} .

Subsequently, they define UBeL ⊆ Ter
∞(Σ⊥, V ) as the closure of U ′

⊥ = U ′ ∪ {⊥}
under ↔U ′

⊥
and they show that UBeL is a set of meaningless terms.

Denoting the Böhm-like tree based on UBeL by BLT∞
BeL and the Berarducci-like

tree by BLTBeL, we next show that BLT∞
BeL and BLTBeL are identical. We start

with a lemma:

Lemma 7.4.5. Let U ⊆ Ter∞(Σ⊥, V ) be defined as:

U = {S | S either root-active or S →∗ ⊥} .

It holds that U = UBeL.
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Proof. We prove UBeL ⊆ U and U ⊆ UBeL. Thus, suppose S ∈ UBeL. By definition
of UBeL, we have that S is created out of a term T ∈ U ′ by replacing a number of
root-active subterms by ⊥. The subterms replaced by ⊥ may or may not contribute
to the root-activeness of T . In case they contribute, we have by orthogonality of R
that S →∗ ⊥. In case they do not contribute, we have by orthogonality that S is
root-active. Hence, S ∈ U .

That U ⊆ UBeL follows by replacing each ⊥ in every term of U by a root-active
term and by orthogonality of R. If no root-active term exists, then U 6= {⊥} and
we are done immediately. ut

By the previous lemma and compression, we have that UBeL is closed under
expansion. That is, we have:

UBeL = UBeL .

We can now prove:

Theorem 7.4.6. If s ∈ Ter(Σ⊥, V ), then BLT∞
BeL(s) = BLTBeL(s).

Proof. Suppose ωUBeL
is defined according to Definition 7.3.1, where U is instan-

tiated by UBeL. By Lemma 7.4.5, the fact that UBeL is closed under expansion,
and Definition 7.3.1, we have that ωUBeL

replaces precisely every non-root-stable
subterm of a term by ⊥. Hence, ωUBeL

= ωBeL, with ωBeL the Berarducci-like di-
rect approximant defined in Chapter 5. By Theorem 7.3.4, we now have for all
s ∈ Ter(Σ⊥, V ) that BLT∞

BeL(s) = BLTBeL(s). ut

We also have the following:

Theorem 7.4.7. Congruence holds for Berarducci-like trees.

Proof. Immediate by the Theorems 7.4.6 and 7.2.12. ut

7.4.3 Huet-Lévy Trees

In this section, we show for each orthogonal TRS R = (Σ, R) and its Huet-Lévy
tree that there exists a set UHL of meaningless terms such that the Böhm-like trees
based on UHL is identical to the Huet-Lévy tree.

As in the case of Berarducci-like trees, we have that the set of meaningless terms
has already been defined by Kennaway, Van Oostrom, and De Vries [KOV99]. The
definition in Section 8.1.4 of their paper follows the approach in the discussion at
the end of Section 7.3. As such, Kennaway, Van Oostrom, and De Vries first define:

U f
HL = {s | ∀s→∗ t : ωHL(t) = ⊥} ,

where ωHL is the Huet-Lévy direct approximant function. Thereafter, they define:

UHL = {S | ∀S � T : ∀t ∈ Ter(Σ⊥, V ) : t 4 T =⇒ t ∈ U f
HL} .

Finally, they show that UHL is a set of meaningless terms.
Denoting by BLT∞

HL the Böhm-like tree based on UHL and by BLTHL the Huet-
Lévy tree, we next show that BLT∞

HL and BLTHL are identical. To facilitate the
proof, we first show that UHL is closed under expansion, which requires:
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Lemma 7.4.8. Let s ∈ Ter(Σ⊥, V ) and S, T ∈ Ter∞(Σ⊥, V ). If s 4 S, S →∗ T ,
and T ∈ UHL, then s ∈ U f

HL.

Proof. Suppose s 4 S, S →∗ T , and T ∈ UHL. By definition of U f
HL we need to

show for each s→∗ s′ that ωHL(s′) = ⊥. Thus, suppose s→∗ s′. By orthogonality
of R, there exists an infinite term S′ such that s′ 4 S′ and S →∗ S′. Moreover,
by the Strip Lemma and compression, there exists an infinite term T ′ such that
S′ �6ω T ′ � T . Here, T ′ ∈ UHL, since UHL is closed under strongly convergent
reductions, as it is a set of meaningless terms.

Since s′ 4 S′ and S′ � T ′, there exist a largest term t′ 4 s′ such that no redex
contracted in S′ � T ′ occurs at a position p ∈ Pos(t′) with t′|p 6= ⊥. Obviously,
t′ 4 T ′. Hence, as T ′ ∈ UHL, we have ωHL(t′) = ⊥.

By definition of t′ it now follows for each s′|p 6= ⊥ with t′|p = ⊥ that a redex
is contracted in S′ �6ω T ′ at position p after a finite number of steps. Since the
number of steps is finite and since R is orthogonal, there exist s′|p 4 s′p 4 S′|p
such that s′p reduces to a redex. Hence, by the second and third clause of the
definition of direct approximant functions we have ωHL(s′p) = ⊥ and, as ωHL can
be defined by means of an ωTRS, we have by Lemma 5.4.9.(4) that ωHL(s′|p) = ⊥.
As such, t′ can be obtained from s′ by replacing each subterm s′|p 6= ⊥ by t′|p = ⊥
if ωHL(s′|p) = ⊥. It is now immediate by Lemma 5.4.9.(2) and ωHL(t′) = ⊥ that
ωHL(s′) = ⊥, as required. ut

We can now prove that UHL is closed under expansion:

Lemma 7.4.9. It holds that UHL = UHL.

Proof. Let S � T such that T ∈ UHL. To prove S ∈ UHL, we need to show by
definition of UHL that for each S � T ′ and t′ 4 T ′ it holds that t′ ∈ U f

HL. Thus,
suppose S � T ′ and t′ 4 T ′. By compression and strong convergence, there exists
an infinite term T ′′ such that S →∗ T ′′ and t′ 4 T ′′. Moreover, by the Strip Lemma
we have that there exists an infinite term S′ such that T ′′ � S′ � T . Obviously,
as UHL is closed under strongly convergent reductions, we have S′ ∈ UHL. Hence,
the result is now immediate by Lemma 7.4.8. ut

We next show that all finite terms that occur in UHL already occur in U f
HL. This

fact is employed in the proof showing that BLT∞
HL and BLTHL are identical.

Lemma 7.4.10. Let U ⊆ Ter(Σ⊥, V ) be defined as:

U = {s | s ∈ Ter(Σ⊥, V ) and s ∈ UHL} .

It holds that U = U f
HL.

Proof. We show U ⊆ U f
HL and U f

HL ⊆ U , from which the result follows. Starting
with U ⊆ U f

HL, suppose s ∈ U . Since s →∗ s, we have by definition of U and UHL

that s′ ∈ U f
HL for all s′ 4 s. In particular, s ∈ U f

HL, because s 4 s.
To show U f

HL ⊆ U , suppose s ∈ U f
HL and s � T . By compression and strong

convergence there exists for every t′ 4 T a term s′ < t′ such that s→∗ s′. Moreover,
by orthogonality of R, there exists for every t′ →∗ t′′ a term s′′ < t′′ such that
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s′ →∗ s′′. Since s ∈ U f
HL, we have ωHL(s′′) = ⊥. Hence, by Lemma 5.4.9.(4), we

also have ωHL(t′′) = ⊥, which implies t′ ∈ U f
HL, as t′ →∗ t′′ was arbitrary. Since t′

was also arbitrary, we obtain s ∈ UHL and, by definition of U , we obtain s ∈ U , as
required. ut

Finally, we have:

Theorem 7.4.11. If s ∈ Ter(Σ⊥, V ), then BLT∞
HL(s) = BLTHL(s).

Proof. Suppose ωUHL
is defined according to Definition 7.3.1, where U⊥ is in-

stantiated by UHL. Moreover, suppose s ∈ Ter(Σ⊥, V ). As ωUHL
is defined by

means of ωHL, there exist s →∗ t such that ωUHL
(s) 4 ωHL(t). We next show

ωHL(s) 4 ωUHL
(s).

By definition of ωUHL
, we have that the subterms of s that are either in UHL

or that are reducible to a redex of R are replaced by ⊥. Hence, by Lemma 7.4.10
and the definition of direct approximants, it follows that all replaced subterms of s
have ⊥ as their Huet-Lévy direct approximant. By Lemma 5.4.9.(2) it now follows
that ωHL(s) 4 ωUHL

(s).
By the above facts relating ωHL and ωUHL

, we have that BLTUHL
(s) = BLTHL(s).

Hence, by Theorem 7.3.4, which we may apply by virtue of Lemma 7.4.9, we also
have BLT∞

HL(s) = BLTHL(s). ut

The above theorem yields an alternative proof showing that Huet-Lévy trees
are congruent: Simply employ the theorem in conjunction with Theorem 7.2.12.

Discussion. The above definition of the set UHL actually differs slightly from the
one given by Kennaway, Van Oostrom, and De Vries [KOV99]. Their definition
requires one additional step and also an additional nullary function symbol f,
where it is assumed that ωHL is a map on Ter(Σf, V ) where f takes on the rôle of
⊥. The following sets are defined:

V f
HL = {s | ∀s→∗ t : ωHL(t) = f}

VHL = {S | ∀S � T : ∀t ∈ Ter(Σ⊥, V ) : t 4 T =⇒ t ∈ V f
HL}

That is, the same sets as were defined at the beginning of this section, but with ⊥
replaced by f. Next, U ′

HL is defined as the closure of V⊥ = VHL ∪ {⊥} under ↔V⊥
.

The set U ′
HL is shown to be a set of meaningless terms and it is employed to define

Böhm-like trees.
Obviously, our definition of UHL omits from the definition of U ′

HL the function
symbol f and the step involving closure. Of course, we should ask ourselves if
this is allowed. That is, two questions need to be answered: Is UHL really a set of
meaningless terms and are the Böhm-like trees defined by UHL and U ′

HL identical?
The first question is implicitly answered by Kennaway, Van Oostrom, and De

Vries. They show that VHL satisfies the last four clauses of Definition 7.2.1. Hence,
UHL also satisfies the last four clauses. That the first clause is satisfied too, is
immediate by the fact that ⊥ ∈ U f

HL and Lemma 7.4.10.
That the defined Böhm-like trees are identical follows by the fact that the

rewrite rule f →⊥ ⊥ occurs in the Böhm-like iTRS based on U ′
HL and by the
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fact that UHL and U ′
HL are identical whenever ⊥ and f are identified, which is

immediate by the construction of U ′
HL from VHL and the fact that U ′

HL is a set of
meaningless terms.

7.4.4 Melting TRSs

In this section, we assume that we have at our disposal an orthogonal TRS R =
(Σ, R) and an ωmTRSM = (Σ⊥,M) for R such that the rules ofM and R do not
overlap. Moreover, we assume that L = (Σ⊥, L) is the ωrTRS for R and that ωM

denotes the direct approximant function based on the ωTRS LM = (Σ⊥, L ∪M).
Given the above assumptions, we show that it is possible to define forM a set

UM of meaningless terms such that the Böhm-like trees based on M and UM are
identical. To this end, we first define:

U f
M = {s | ∀s→∗ t : ωM(t) = ⊥}

UM = {S | ∀S � T : ∀t ∈ Ter(Σ⊥, V ) : t 4 T ⇒ t ∈ U f
M}

We have the following:

Lemma 7.4.12. The set UM is a set of meaningless terms.

Proof. The only non-trivial clauses are the third and fifth clause. The third clause
follows by the non-overlap betweenM and R. The fifth clause follows by a similar
argument as the one given in Section 8.1.4 of [KOV99] for UHL. ut

Denoting the Böhm-like tree based on UM by BLT∞
M and the Böhm-like tree

based on M by BLTM, we can now prove:

Theorem 7.4.13. If s ∈ Ter(Σ⊥, V ), then BLT∞
M (s) = BLTM(s).

Proof. The proof from the previous section showing that BLT∞
HL and BLTHL are

identical and the lemmas employed therein only use the fact that ωHL can be
defined by means of an ωTRS. Hence, as ωM is also defined by means of an ωTRS,
we have that the proof from the previous section carries over immediately. ut

Open Problem. Given the assumptions at the beginning of the current section,
one question remains: Is it really required to assume there is no overlap between
M and R? To show that it is not required, it has to be proved that Lemma 7.4.12
holds under assumption of overlap. The problematic part herein is showing that the
third clause of Definition 7.2.1 is satisfied, since overlap is involved in the clause.

7.5 Summary

The table depicted below summarises the relation between Böhm-like trees respec-
tively defined by sets of meaningless terms (denoted by U), direct approximant
functions (denoted by ω), ωTRSs, and ωmTRSs.
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The first entry of each row defines which Böhm-like tree we start out with.
The other entries of each row specify whether an identical Böhm-like tree can be
defined of the type that heads the particular column in which the entry occurs.
Here, a checkmark (X) indicates that an identical tree always exists and a dash (-)
indicates that this may not be the case, while a question mark (?) indicates that
it is unknown. The numbers correspond to those below the table.

To

From U ω ωTRS ωmTRS

U X(1) X(2) – (3) – (3)
ω – (4) X(1) – (5) – (5)

ωTRS – (4) X(6) X(1) – (7)
ωmTRS ? (8) X(9) X(9) X(1)

1. This holds trivially, since it concerns the same definition twice.
2. This holds by Theorem 7.3.4.
3. This does not hold, as Berarducci-like trees can be defined by a set of mean-

ingless terms but not by ωTRSs and ωmTRSs (see Chapters 5 and 6).
4. This does not hold, as Böhm-like trees based on direct approximant functions

and ωTRSs are not necessarily congruent (see Chapter 6), while congruence
always holds for Böhm-like trees based on sets of meaningless terms by Theorem
7.2.12.

5. This does not hold, as Berarducci-like trees can be defined by means of direct
approximant functions but not by means of ωTRSs or ωmTRSs (see Chapters
5 and 6).

6. This holds by Theorem 5.4.10.
7. This does not hold, as Böhm-like trees based on ωTRSs are not necessarily

congruent, while congruence always holds for Böhm-like trees based on ωmTRSs
(see Chapter 6).

8. This holds by Theorem 7.4.13 in case there is no overlap between R and the
ωmTRS. Otherwise, it is an open problem.

9. This holds by Proposition 6.4.7 and Theorem 5.4.10.

Hence, most flexibility is provided by direct approximant functions. While the
other three approaches, i.e., sets of meaningless terms, ωTRSs, ωmTRSs, have their
limitations.
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Sequentiality

“It’s Trillian!” shouted Arthur. “Or is it. . . er. . .
God, I can’t stand all this parallel universe stuff.”

— Douglas Adams

Mostly Harmless (1992)

In this chapter, we employ the Böhm-like trees developed in Chapters 5 and 6 to
show that certain sequential orthogonal constructor TRSs are indeed sequential.
Although proving such a statement seems trivial, it is not: There are two kinds of
sequentiality in play here.

Parallelism. To understand the two kinds of sequentiality, it is probably easiest
to first consider the different ways in which the word parallel is utilised throughout
computer science. Essentially, there are two such ways:

1. parallel is short for parallel execution, and
2. parallel is synonymous to concurrent.

We discuss each of the above two utilisations in turn.
To be able to execute in parallel some parts of a program signifies that the parts

may be executed at the same time either on different processors or on different
computers. Prerequisite for parallel execution is the requirement that the parts do
not need each other’s outputs. If one particular part does need the output of some
other part, then the particular part has to wait until the output is available. This
implies that the parts can only be executed in succession and not at the same time.

Both TRSs and the λβ-calculus allow for parallel execution in the form of paral-
lel reduction: Subterms that occur at parallel positions may be reduced (executed)
at the same time. The reduction of a subterm only depends on the structure of that
subterm and not on what occurs at either prefix positions or parallel positions.

To be able to write a program that is concurrent signifies that it is possible to
write code that calls multiple functions in such a way that the code can produce
output if it obtains the output of a subset of the functions and if there is no function
whose output is always required.

The prime example of a concurrent program is the parallel-or. Employing a
functional programming style, the parallel-or is defined as follows:

ParallelOr(True, x)→ True

ParallelOr(x,True)→ True

ParallelOr(False,False)→ False

Since argument evaluation in functional languages essentially consists of function
calls, ParallelOr is truly a concurrent program: If one of the arguments evaluates
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to True, then evaluating the other argument is unnecessary. That is, there exists a
subset of functions and there is no function whose output is always required.

Constructs that facilitate concurrency occur in many different guises in pro-
gramming languages. This varies from add-on libraries, like threading and message
passing libraries, to specialised language constructs, like the in, read, and out con-
structs of Linda, a programming language developed by Carriero, Gelernter, and
co-workers [ACG86]. The constructs are used in Linda to address TupleSpaces:
in adds a tuple to a tuple space, read reads a tuple, and out reads and removes
a tuple. Concurrency is achieved by injecting the results of the called functions
into a tuple space and letting the caller remove tuples based on a selection of the
components of the tuples, which may be equal for a number of the called functions.

It is important to note that parallel execution and concurrency are independent
concepts: Parallel execution may be possible while concurrency is not, and vice
versa. Of course, parallel execution and concurrency often occur together.

An example of a system in which parallel execution is possible, but in which
concurrency is not, is the λβ-calculus: Parallel execution is possible in the form of
parallel reductions. Concurrency is not possible as witnessed by the sequentiality
property mentioned in Chapter 4 (see also below).

A system in which concurrency is possible, but in which parallel execution is not,
is any run-of-the-mill (single-core) single processor computer running an operating
system like Linux or Windows: Concurrency is possible by virtue of preemptive
multitasking (essentially interleaving). Parallel execution is not possible, as there
is only one (single-core) processor (see Tanenbaum [Tan01]).

Sequentiality. Given the two utilisations of the word parallel, it is now easy to
explain the two kinds of sequentiality: The two kinds are just the negations of
the two utilisations of the word parallel, i.e., not executed in parallel and not
concurrent. Not being concurrent means there is a fixed function that always has
to produce output.

Not executing in parallel and still obtaining the same output as in a parallel
execution is always possible: Simply execute those parts that need to be executed in
parallel in an interleaved fashion. Of course, interleaved execution (and also parallel
execution) may be quite wasteful, as part of what is executed may not contribute
to the output. Research has been done on sequential executions where only those
parts are executed that are really needed to obtain output (see below). As might
be expected, the existence of such a strategy for a specific program is undecidable
in general.

Implementing a concurrent program in a programming language that does not
allow for concurrency requires a serious effort from the programmer: It is impossible
to choose a subset of required functions in advance, since it is in general undecid-
able which functions actually produce output. Hence, the programmer needs to
implement some interleaving scheme that alternates between the executions of the
different functions. Such an alternation scheme generally requires some form of
continuations (see, e.g., the book by De Bakker and De Vink [BV96]).

Term Rewriting. To define both kinds of sequentiality in the context of term
rewriting, it is first necessary to define what ‘to produce output’ means. In the
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literature, two definitions are common: To produce output either means to reach
a normal form or it means to reach a root-stable term, which is also called a head
normal form in the current context.

Taking the stance that to produce output means to reach a head normal form,
and supposing orthogonal TRSs, we next describe informally both types of sequen-
tiality in the context of rewriting. A completely analogous description can be given
in case the stance is taken that to produce output means to reach a normal form.

Not reducing (executing) in parallel obviously means that only one redex is
contracted at a time. Finding a head normal form, if one exists, by contracting
only one redex at a time is always possible: outermost fair reductions are head
normalising. Since sequential reductions essentially interleave parallel reductions,
one might suspect there exists a parallel analogue to the theorem regarding out-
ermost fair reductions. This is actually the case: parallel outermost reductions are
also head normalising.

To understand non-concurrency in the context of rewriting, suppose we have
at our disposal a non-root-stable term s of the form f(s1, . . . , sn) and a number of
rewrite rules whose left-hand sides have the form f(t1, . . . , tn) for different ti. Given
that the reduction of the arguments of f in s is the term rewriting equivalent of a
number of function calls, non-concurrency implies that there are fixed arguments
si of s that must be reduced to head normal form before a redex is created at the
root. Concurrency implies that there are no fixed arguments si.

Even in case of orthogonality there does not need to be a fixed argument. This
is exemplified by Gustave’s function, as first defined by Berry [Ber76]:

f(a, b, x)→ c

f(x, a, b)→ c

f(b, x, a)→ c

Gustave’s function is orthogonal due to the different ways in which the nullary
function symbols a and b occur as arguments of f . Moreover, there is no fixed
argument that always needs to be evaluated due to the variable x which occurs at
three different argument positions in the three rewrite rules.

Below, we employ Böhm-like trees to formally define non-concurrency. Böhm-
like trees provide a suitable formalism by the fact that they, just like concurrency
and non-concurrency, involve the concept of root-stability. For this reason, we call
sequentiality in the sense of non-concurrency Böhm-like tree sequentiality.

Defining non-concurrency by means of Böhm-like trees presupposes that the
employed Böhm-like trees actually represent a ‘sufficient’ part of the produced out-
put. Trivial trees, e.g., will not do. As shown in Section 8.3, these trees always
satisfy non-concurrency, independent of any actual concurrency present in the as-
sumed TRS. Whence, trivial trees can, e.g., be used to show that the parallel-or is
non-concurrent, which is obviously an invalid statement.

Needed Redexes. Although the above describes both non-parallel reductions and
non-concurrency in the context of term rewriting, it does not describe sequential
reductions (executions) that only reduce those parts needed to obtain output. De-
scribing such reductions is facilitated by the concept of a (head) needed redex. That



140 8 Sequentiality

is, a redex a residual of which is contracted in any reduction to (head) normal
form. Here, either a normal form or a head normal form is employed depending on
the definition of producing output. Obviously, since it is in general undecidable if
a term is reducible to some other term, neededness is undecidable too.

Given the concept of a needed redex, sequential reductions that only reduce
those parts needed to obtain output can now be defined as non-parallel reductions
contracting only needed redexes. Since neededness is undecidable, it is also unde-
cidable if non-parallel reductions exist that only reduce needed redexes. However,
it is possible to define certain classes of TRSs for which neededness, and, hence, the
existence of non-parallel reductions contracting only needed redexes, is decidable.
An overview of the most well-known classes is given by Durand and Middeldorp
[DM97].

One of the classes of TRSs for which neededness is decidable was first defined
by Huet and Lévy [HL91]: the class of strongly sequential orthogonal TRSs. Most
confusingly, the class is defined by means of concepts that derive from the defini-
tion of non-concurrency. However, this also leads to the hypothesis that strongly
sequential orthogonal TRSs are non-concurrent and this is what we actually prove
in this chapter in the case of strongly sequential orthogonal constructor TRSs.

Remark 8.0.1. Numerous publications concerning rewriting, like those by Berry
[Ber78a, Ber78b] and by Huet and Lévy [HL91], confuse sequentiality in the sense
of non-concurrency with sequential reductions in which only needed redexes are
contracted. The confusion comes about by the supposition that sequentiality in the
sense of non-concurrency is required to obtain sequential reductions in which only
needed redexes are contracted. However, as examples by Durand and Middeldorp
[DM97, Lemma 31] show, the supposition is incorrect.

Overview. The remainder of this chapter is structured as follows: In Section 8.1,
we define both Böhm-like tree sequentiality (non-concurrency) and strong sequen-
tiality. Thereafter, in Section 8.2, Böhm-like tree sequentiality is shown to hold
for strongly sequential orthogonal constructor TRSs under assumption of a Böhm-
like tree of which it is reasonable to say that it represents a ‘sufficient’ part of
the produced output. In Section 8.3, Böhm-like tree sequentiality is shown for two
Böhm-like trees of which it cannot be reasonably said that they represent a ‘suf-
ficient’ part of the produced output. In Section 8.4 some open problems regarding
sequentiality are presented. Finally, in Section 8.5, it is shown that stability al-
ways holds under assumption of Böhm-like tree sequentiality. Hence, stability is a
slightly weaker property than sequentiality.

8.1 Definitions

We define Böhm-like tree sequentiality (non-concurrency) and strong sequentiality.
Böhm-like tree sequentiality is defined in Section 8.1.1. Strong sequentiality is de-
fined in Section 8.1.2 together the concept of normal form sequentiality. In Section
8.1.3, a comparison is made between Böhm-like tree sequentiality and normal form
sequentiality.
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8.1.1 Böhm-Like Tree Sequentiality

Assuming that R = (Σ, R) is a left-linear TRS and that BLT is a monotone Böhm-
like tree for R, we define Böhm-like tree sequentiality:

Definition 8.1.1. The TRS R is Böhm-like tree sequential with respect to BLT, if
for every s ∈ Ter(Σ⊥, V ) and every p ∈ Pos(BLT(s)) with BLT(s)|p = {⊥} exactly
one of the following holds:

1. for all t ∈ Ter(Σ⊥, V ), if t < s, then BLT(t)|p = {⊥}, or
2. there exist q ∈ Pos(s) with s|q = ⊥ such that for all t ∈ Ter(Σ⊥, V ), if t < s

and BLT(t)|p 6= {⊥}, then t|q 6= ⊥.

Remark that we can assume that p ∈ Pos(BLT(t)), since BLT is assumed to be
monotone. By monotonicity, s 4 t implies BLT(s) 4 BLT(t), from which it follows
immediately that Pos(BLT(s)) ⊆ Pos(BLT(t)) and p ∈ Pos(BLT(t)).

As explained in the introduction of this chapter, the Böhm-like trees in the above
definition serve the purpose of representing the produced output, where the pro-
duced output is defined by root-stability. The actual encoding of non-concurrency
is captured by the second clause of the definition: Employing ⊥ as a placeholder for
the arguments, the second clause points out the arguments, the positions q, that
always need to be evaluated to produce output. The first clause is there to deal
with the situation in which a subterm never becomes root-stable.

Contrary to what is sometimes thought, syntactic continuity of Böhm-like trees
(see Chapter 6) is not a prerequisite for Böhm-like tree sequentiality. To see this,
consider the TRS presented in Section 6.1:

IsEmpty(nil)→ True

IsEmpty(x : xs)→ False

As explained in Section 6.1, the following rules define an ωTRS:

IsEmpty(xs)→ω ⊥

nil →ω ⊥

As also explained, the ωTRS does not define a Böhm-like tree that satisfies syntactic
continuity. However, the tree does satisfy Böhm-like tree sequentiality, by the simple
fact that IsEmpty has only one argument and the fact that Böhm-like trees defined
by ωTRSs are always monotone.

Bibliographic Notes. The definition of Böhm-like tree sequentiality finds its
origins in the work on concrete domains by Kahn and Plotkin [KP93]. The first
formulation in the context of Böhm-like trees is by Berry [Ber78a], who proves that
the λβ-calculus is Böhm-like tree sequential under assumption of Böhm trees. More
precisely, Berry proves a slightly stronger property: There is a unique position q
in the second clause of Definition 8.1.1 in his case (see Section 4.3.2). Kahn and
Plotkin do not require uniqueness in the second clause.

More details regarding Böhm-like tree sequentiality can be found in Ong’s hand-
book chapter [Ong95]. As no other forms of sequentiality occur in his chapter, Ong
calls Böhm-like tree sequentiality simply sequentiality.
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8.1.2 Strong Sequentiality

We next define strong sequentiality and recall some properties related to strong
sequentiality. To be able to define strong sequentiality, we first define sequential
predicates and normal form sequentiality. Both definitions assume that R = (Σ, R)
is a confluent, left-linear TRS.

Sequential predicates require us to define sequentiality indices:

Definition 8.1.2. Let s ∈ Ter(Σ⊥, V ) and s|p = ⊥ for some p ∈ Pos(s). If P is a
monotone predicate on Ter(Σ⊥, V ), then the position p is a sequentiality index of
s when for all t < s with P (t) = T it holds that t|p 6= ⊥.

Above, we call a predicate monotone if it is monotone as a map from PO =
(Ter(Σ⊥, V ),4) to T T = ({T,F},v), where F v T and T 6v F. Moreover, given a
monotone predicate P and a term s ∈ Ter(Σ⊥, V ) such that P (s) = F, we denote
by IP (s) the set of all sequentiality indexes of s.

Now that we know what a sequentiality index is, we can define:

Definition 8.1.3. Let P be a monotone predicate on Ter(Σ⊥, V ) and let s ∈
Ter(Σ⊥, V ). The predicate P is sequential in s if P (s) = F and if the existence
of a term t < s with P (t) = T implies IP (s) 6= ∅.

With respect to R, we can define the following predicate on partial terms:

NF(s) =

{

T if s has a normal form in Ter(Σ, V )

F if s does not have a normal form in Ter(Σ, V )

Observe that Ter(Σ, V ) is employed in the above definition and not Ter(Σ⊥, V ).
We have by left-linearity of R that s 4 t implies NF(s) v NF(t), i.e., NF is a
monotone predicate.

Given the predicate NF, we can define:

Definition 8.1.4. The TRS R is normal form sequential if and only if NF is a
sequential predicate in every element of Ter(Σ⊥, V ).

An example of an orthogonal TRS which is not normal form sequential is Gus-
tave’s function from the introduction. To see that the function is not normal form
sequential, consider the term f(⊥,⊥,⊥), which does not have a normal form in
Ter(Σ, V ). Obviously, we have that f(a, b,⊥), f(⊥, a, b), and f(b,⊥, a) all have a
normal form in Ter(Σ, V ) and that all have f(⊥,⊥,⊥) as prefix. However, since
there is no argument unequal to ⊥ that is shared between the terms f(a, b,⊥),
f(⊥, a, b), and f(b,⊥, a), Gustave’s function is not normal form sequential.

We have the following lemma:

Lemma 8.1.5. If R is orthogonal, then it is normal form sequential if and only if
NF is a sequential predicate in every normal form of Ter(Σ⊥, V ).

Proof. This is Lemma 4.6 of [HL91]. ut

Given the definition of normal form sequentiality, we are now almost in a po-
sition to define strong sequentiality. The only missing piece of the puzzle is an
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approximation of the TRS R. The approximation, denoted R? = (Σ, R?), has the
following set of rewrite rules:

R? = {l→ ρ(l) | l→ r ∈ R} ,

where ρ is any map from Ter(Σ⊥, V ) to V that satisfies ρ(l) 6∈ Var(l). Since the
left-hand sides of R? are precisely the left-hand sides of R, it is immediate that
NFR = NFR?

. That →∗
R ⊆ →

∗
R?

is immediate by →R ⊆ →R?
, which follows by

the fact that ρ satisfies ρ(l) 6∈ Var(l), implying that any term and, hence, also the
right-hand side of any rewrite rule of R may be substituted for ρ(l).

Example 8.1.6. Supposing that R is actually Combinatory Logic, we have that R?

consists of the following three rewrite rules:

Sxyz → v

Kxy → v

Ix→ v

where v is a variable different from x, y, and z.

Remark that any term s has a normal form with respect to R?: Rewriting any
redex in s to a fresh variable, which is possible by definition of R?, reduces the
number of functions symbols in s. Hence, as the number of functions symbols in s
is finite, eventually a normal form is reached.

Given R?, we can now define:

Definition 8.1.7. Let R be orthogonal. The TRS R is strongly sequential if and
only if R? is normal form sequential in every normal form of Ter(Σ⊥, V ).

As shown by Huet and Lévy [HL91, Section 4.2], any strongly sequential system
is also normal form sequential. For ample motivation of the definition of strong
sequentiality and examples of strongly sequential systems, the reader is referred to
the papers by Huet and Lévy [HL91] and by Klop and Middeldorp [KM91].

Given a term s, we denote by I(s) the set INF(s), where NF is interpreted with
respect to R?. We next recall a number of properties of I(s) that are known from
the literature.

The following two propositions hold:

Proposition 8.1.8. Let R be orthogonal and let s, t ∈ Ter(Σ⊥, V ). If s 4 t, p ∈
I(s), and q 6 p, then p ∈ I(t[⊥]p) and q ∈ I(s[⊥]q).

Proof. This is Proposition 4.1 of [KM91]. ut

Proposition 8.1.9. Let R = (Σ, R) be orthogonal and let s 4 l for some l → r ∈
R. If s|p = ⊥ and l|p ∈ V for some p ∈ Pos(s), then p 6∈ I(s).

Proof. Suppose s|p = ⊥ and l|p ∈ V for some p ∈ Pos(s). Define t = s u l.
By definition of t, we have t|p = ⊥ and t = σ(l) for some substitution σ. As
t = σ(l)→ x for some x ∈ V , we have NF(t) = T with respect to R?. Hence, as we
also have s 4 t and t|p = ⊥, it holds that p 6∈ I(s). ut
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In case R is an orthogonal constructor TRS, we have:

Proposition 8.1.10. Let R be an orthogonal constructor TRS. The TRS R is
strongly sequential if and only if for all s 4 l with l → r ∈ R and s not an
l→ r-redex it holds that I(s) 6= ∅.

Proof. This is Corollary 7.7 of [KM91]. ut

Thus, for orthogonal constructor TRSs we have that they are sequential if and only
if we have I(s) 6= ∅ for every term s which is a prefix of a left-hand side of a rewrite
rule, but which is not a substitution instance of the rewrite rule. Remark that for
each such s there is at least one p ∈ Pos(s) such that s|p = ⊥.

Bibliographic Notes. Both the concepts of normal form sequentiality and strong
sequentiality originate in the work of Huet and Lévy [HL91]. In their work, normal
form sequentiality is simply called sequentiality.

Like Böhm-like tree sequentiality, both normal form sequentiality and strong
sequentiality derive from sequentiality as first defined by Kahn and Plotkin [KP93].
This is easily seen when realising that Böhm-like tree sequentiality is actually an
instance of sequentiality as presented in Definition 8.1.3. In the case of Böhm-like
tree sequentiality, the value of P (s) is defined as BLT(s)|p = ⊥.

Other important references on normal form sequentiality and strong sequential-
ity are the papers by Klop and Middeldorp [KM91] and by Comon [Com00].

8.1.3 Comparison

Since normal forms are special instances of head normal forms (normal forms are
root-stable), it might be thought that each left-linear TRS that is Böhm-like tree
sequential is also normal form sequential. It turns out that this is actually the case
given one side-condition, as we show next.

Assuming that R is a confluent, left-linear TRS which is Böhm-like tree sequen-
tial with respect to some monotone Böhm-like tree BLT, we have the following:

Proposition 8.1.11. If for each normal form n ∈ Ter(Σ, V ) ⊆ Ter(Σ⊥, V ) it
holds that BLT(n) = ↓{n}, then R is normal form sequential.

Proof. Suppose for every normal form n ∈ Ter(Σ, V ) that BLT(n) = ↓{n}. Let
s ∈ Ter(Σ⊥, V ) such that NF(s) = F. Remark that finiteness of BLT(s) implies
there exists a position p ∈ Pos(BLT(s)) such that BLT(s)|p = {⊥}. Otherwise,
BLT(s) = ↓{n} for some normal form n ∈ Ter(Σ, V ), which implies NF(s) = T.

If there exist t < s such that NF(t) = T, then, by definition of NF, there exists a
normal form n ∈ Ter(Σ, V ) such that t→∗ n and BLT(t) = ↓{n}. By monotonicity
of BLT this implies that BLT(s) is finite. Hence, there exist p ∈ Pos(BLT(s)) such
that BLT(s)|p = {⊥} and BLT(t)|p 6= {⊥}.

Since the above holds for all t < s with NF(t) = T, where the positions p ∈
Pos(BLT(s)) are obviously the same, there exists by Böhm-like tree sequentiality
a position q ∈ Pos(s) such that s|q = ⊥ and t|q 6= ⊥. Hence, we have q ∈ INF(s),
as required for R to be normal form sequential. ut
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To see that the condition regarding normal forms cannot be omitted from the
above proposition, even in case R is orthogonal, consider again Gustave’s function
from the introduction of this chapter and define the following map from partial
terms to partial terms:

ω(s) =

{

s s normal form and s ∈ Ter({a, b, f}, V )

⊥ otherwise

The map ω is a monotone direct approximant function, as is readily shown. Hence, ω
defines a monotone and continuous Böhm-like tree, which we denote BLT. However,
BLT(c) = {⊥}, which violates the side condition of the lemma.

The Böhm-like tree also ensures that R is Böhm-like tree sequential. This is
easy to show except for f(⊥,⊥,⊥) occurs. In the case of f(⊥,⊥,⊥), a redex can
be created by replacing two of the arguments of f by a and b respectively. How-
ever, there is no argument that always needs to be replaced to create a redex.
Despite this, Böhm-like tree sequentiality holds, since each possible redex that can
be created reduces the term to c which yields ω(f(⊥,⊥,⊥)) = ω(c) = ⊥.

Remark that Gustave’s function is not normal form sequential. Hence, in case
there is a normal form n ∈ Ter(Σ, V ) for which we do not have BLT(n) = ↓{n}, we
can have Böhm-like tree sequentiality while we do not have normal form sequen-
tiality. Of course, since BLT(c) 6= ↓{c}, it is reasonable to argue that the part of
the output represented by BLT is not sufficient.

8.2 Sequentiality

In this section, we show that Böhm-like tree sequentiality holds for strongly se-
quential orthogonal constructor TRSs under assumption of a Böhm-like tree of
which it is reasonable to say that it represents a ‘sufficient’ part of the produced
output. The Böhm-like tree is defined in Section 8.2.1. Thereafter, in Section 8.2.2,
a structure is defined that facilitates the proof of Böhm-like tree sequentiality. In
Section 8.2.3, the actual proof of Böhm-like tree sequentiality occurs.

8.2.1 Böhm-Like Tree

We next define the Böhm-like tree that we employ to prove that strongly sequential
orthogonal constructor TRSs are Böhm-like tree sequential.

As explained in the introduction of this chapter, we require a Böhm-like tree
that represents a ‘sufficient’ part of the produced output. Ideally, the sufficient
part includes all the produced output, i.e., everything that becomes root-stable
in maximal fair reductions. Defining sufficient in this way limits the choice of the
Böhm-like tree to the Berarducci-like tree. Unfortunately, the Berarducci-like tree
is not monotone (see Chapter 5). Hence, as monotonicity is a prerequisite for Böhm-
like tree sequentiality, the Berarducci-like tree cannot be employed.

By the above, we can only include produced output as long as monotonicity
is preserved. Hence, given a term s, we could define sufficient as everything that
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becomes root-stable in the maximal fair reductions of all t < s. However, since
we are considering constructor TRSs and since it may be argued that only the
constructors of such TRSs count as output, it seems more reasonable to only require
that the constructors that do not occur in subterms with a defined symbol at the
root are included in the definition of sufficient; all else included can be seen as
added bonus.

Summarising the above, we require the Böhm-like tree we employ below to
satisfy the following two requirements: First, it must be monotone. Second, for
each term s, if a constructor occurs at position p in s, then the constructor must
also occur at position p in the Böhm-like tree of s as long as no defined symbols
occur at prefix positions of p in s. Remark that each such constructor is root-stable,
because each rewrite rule has a defined symbol at its root.

We have already encountered a Böhm-like tree that satisfies the above two
requirements: the Huet-Lévy tree. As explained in Chapter 5, the tree is monotone.
Moreover, the tree satisfies the second requirement, as the left-hand side of each
rewrite rule of the Huet-Lévy ωTRS will have a defined symbol at the root in case
a constructor TRS is assumed.

Unfortunately, we cannot prove Böhm-like tree sequentiality for strongly se-
quential orthogonal constructor TRSs under the assumption of Huet-Lévy trees.
To see that such a proof is impossible, consider the orthogonal constructor TRS
which consists only of the following rewrite rule:

f(c, c)→ c .

To show that the TRS satisfies strong sequentiality Proposition 8.1.10 requires us
to prove that I(s) is non-empty in case s is equal to either f(⊥,⊥), f(⊥, c), f(c,⊥),
or ⊥. This is immediate, since no variables occur in f(c, c).

The rewrite rules of the Huet-Lévy ωTRS are as follows:

f(c, c)→ω ⊥ f(c,⊥)→ω ⊥

f(⊥, c)→ω ⊥ f(⊥,⊥)→ω ⊥

Hence, we have for s = f(⊥,⊥) that BLTHL(s) = {⊥} and BLTHL(s)|ε = {⊥}.
Considering the terms f(⊥, x) < s and f(x,⊥) < s, we obtain:

BLTHL(f(⊥, x)) = ↓{f(⊥, x)} 6= {⊥}

BLTHL(f(x,⊥)) = ↓{f(x,⊥)} 6= {⊥}

Hence, the first clause of Definition 8.1.1 is not satisfied. The second clause of
Definition 8.1.1 is not satisfied either, since we have:

f(⊥, x)|1 = ⊥ 6= x = f(x,⊥)|1

f(⊥, x)|2 = x 6= ⊥ = f(x,⊥)|2

Hence, the assumed strongly sequential orthogonal construct TRS is not Böhm-like
tree sequential with respect to the Huet-Lévy tree.
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Böhm-like tree sequentiality does not hold in the above example by the presence
of the rule f(⊥,⊥) →ω ⊥ in the Huet-Lévy ωTRS. The rule applies to the term
f(⊥,⊥), but not to the terms f(x,⊥) and f(⊥, x). To overcome this problem, we
could replace the rule f(⊥,⊥)→ω ⊥ by the following two rewrite rules:

f(⊥, x)→ω ⊥

f(x,⊥)→ω ⊥

The above two rewrite rules together with the three rewrite rules of the Huet-Lévy
ωTRS that were not replaced, are readily shown to define an ωTRS.

Denoting the Böhm-like tree based on the ωTRS by BLT, we obtain:

BLT(f(⊥,⊥)) = BLT(f(⊥, x)) = BLT(f(x,⊥)) = {⊥} .

Hence, Böhm-like tree sequentiality is satisfied by the terms considered above. In
addition, the Böhm-like tree still satisfies the proposed definition of a sufficient part
of the produced output, as all rewrite rules of the ωTRS have a defined symbol at
the root.

Employing the above scheme of replacing a left-hand side in which ⊥ occurs
multiple times by a number of left-hand sides in which each ⊥, except for one, is
replaced by a unique fresh variable, we define a new ωTRS. As we will see, the
ωTRS satisfies the proposed definition of a sufficient part of the produced output.
Moreover, as we show in Section 8.2.3, the Böhm-like tree based on the ωTRS allows
us to prove that strongly sequential orthogonal constructor TRSs are Böhm-like
tree sequential.

In the definition given below, we do not introduce all possible left-hand sides,
given the above replacement scheme. The introduction of a certain left-hand side
depends on the sequentiality indices of the left-hand side in which ⊥ occurs multiple
times. Assuming in the remainder of this section that R = (Σ, R) is a strongly
sequential orthogonal constructor TRS, we define the new ωTRS by means of an
ωmTRS (see Chapter 6):

Definition 8.2.1. The ωmTRS M is defined as M = (Σ⊥,M), where:

M = {s→m ⊥ | s ∈ patternR} ,

with patternR as defined in Figure 8.1.

In Figure 8.1, D denotes the set of defined symbols and υ(s) denotes the term s
with each ⊥ replaced by a unique fresh variable. Moreover, pattern∗R facilitates
the introduction of left-hand sides for all prefixes of left-hand sides of R, as far as
these can be deemed ‘relevant’ with respect to the sequentiality indices of smaller
prefixes.

The definition of the set pattern′R(s), as it occurs in the Figure 8.1, is loosely
based on the nodes function as defined by Hanus, Lucas, and Middeldorp [HLM98].
The nodes function assigns a definitional tree to a strongly sequential orthogonal
constructor TRS.

By the first clause of pattern′R(s) and the fact I(s) is non-empty by Proposition
8.1.10, it is immediate that each term in patternR is a prefix of a rewrite rule in
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patternR =
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′
R(f(⊥, . . . ,⊥))

pattern
′
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R(t)

∅ otherwise

pattern
∗
R(s) = {s[f(⊥, . . .⊥)]p 4 l | p ∈ I(s) and l → r ∈ R}

Figure 8.1. The set patternR

R with each ⊥, except for one, replaced by a unique fresh variable. By the same
facts, and the fact that I(s) is always finite, it also holds that patternR is finite in
case R has a finite number of rewrite rules.

The following holds forM:

Proposition 8.2.2. The TRS M is a constructor TRS whose set of defined sym-
bols is a subset of the set of defined symbols of R.

Proof. Each term in patternR is derived from a prefix of a rewrite rule in R, which
cannot be equal to ⊥, by replacing each ⊥, except for one, by a fresh variable.
Hence, we have for each term in patternR that each symbol at the root is a defined
symbol of R and that each symbol which does not occur at the root is either a
constructor of R, a variable, or ⊥. Hence, the result is immediate by definition of
M and its dependence on patternR. ut

By the above, we have that the root symbol of the left-hand side of each rewrite
rule inM is a defined symbol of R. Hence, the Böhm-like tree based onM satisfies
the definition of a sufficient part of the produced output, as redexes ofM occur in
prefixes consisting solely of constructor symbols.

Example 8.2.3. Assume for the moment that R consists of the following two rules:

f(g(a1), b1, x)→ c1

f(g(a2), x, b2)→ c2

Obviously, R is an orthogonal constructor TRS. That R is also strongly sequen-
tial is readily proved with the help of Proposition 8.1.10. The following sets of
sequentiality indices are relevant for patternR:

I(f(⊥,⊥,⊥)) = {1} I(f(g(a1),⊥,⊥)) = {2}

I(f(g(⊥),⊥,⊥)) = {11} I(f(g(a2),⊥,⊥)) = {3}

The rewrite rules ofM are now as follows:

f(⊥, x, y)→ω ⊥ f(g(a1),⊥, y)→ω ⊥

f(g(⊥), x, y)→ω ⊥ f(g(a2), x,⊥)→ω ⊥

As can be seen in the above example, there are prefixes of left-hand sides of the
rules of R for which there are no rules in M. This, e.g., holds for f(⊥, b1,⊥) 4

f(g(a1), b1, x) and f(⊥,⊥, b2) 4 f(g(a2), x, b2). Omitting the rules derived from
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these prefixes possibly gives rise to a Böhm-like tree which is larger with respect
to the prefix order. Hence, omission is favourable with respect to representing a
sufficient part of the produced output.

Of course, we still need to prove thatM is an ωmTRS. To facilitate the proof,
we first prove three lemmas. The first concerns the overlap of R andM. The other
two relate sequentiality indices with the definition of patternR.

Lemma 8.2.4. The rules of R and M do not overlap.

Proof. By Proposition 8.2.2, overlap can only occur at the root. Thus, suppose
the left-hand sides of l → r ∈ R and d → e ∈ M can be unified. By definition
of pattern′R, we have that d = υ(s)[⊥]p for some s ∈ Ter(Σ⊥, V ) and p ∈ I(s).
Moreover, by definition of pattern′R and Proposition 8.1.9, we have for all d|q ∈ V
that s|q = ⊥. Hence, σ(l) = σ(d) < s and σ(l)|p = ⊥. As ⊥ cannot occur in l, there
exists a position p′ 6 p such that l|p′ ∈ V . But then, by Proposition 8.1.9, we have
p 6∈ I(s), a contradiction. Hence, the rules of R and M do not overlap. ut

Lemma 8.2.5. Let s, t ∈ Ter(Σ⊥, V ). If I(s) 6= ∅ and s 4 t, then precisely one of
the following holds:

– there exist p ∈ I(s) and substitutions σ such that t = σ(υ(s)[⊥]p), or
– s[root(t|p)(⊥, . . . ,⊥)]p 4 t for all p ∈ I(s).

Proof. Suppose I(s) 6= ∅ and s 4 t. By definition of s and t there are two possibil-
ities: Either there exist p ∈ I(s) such that t|p = ⊥, or not.

In the first case, it follows immediately that there exists for each p ∈ I(s)
with t|p = ⊥ a substitution σ such that t = σ(υ(s)[⊥]p). In the second case, it is
immediate for all p ∈ I(s) that s[root(t|p)(⊥, . . . ,⊥)]p 4 t. ut

Lemma 8.2.6. Let s, t ∈ Ter(Σ⊥, V ) such that I(s) 6= ∅, Var(s) = ∅, and s ≺ t.
There exist p ∈ I(s) with root(t|p) 6∈ V , if it is assumed that:

– t 4 d for some d ∈ patternR, or
– t 4 l for some l→ r and t not an l→ r-redex.

Proof. There are two cases to consider: Either there exist p ∈ I(s) such that t|p = ⊥
or it holds for all p ∈ I(s) that t|p 6= ⊥. In the first case, the result is immediate.
In the second case, suppose for all p ∈ I(s) that root(t|p) ∈ V .

If t 4 d, then, by definition of patternR and Proposition 8.1.9, there exist
s′ ∈ Ter(Σ⊥, V ), with Var(s′) = ∅, and q ∈ I(s′) such that d = υ(s′)[⊥]q. Moreover,
since s ≺ t and since no variables occur in s, we have s ≺ s′. Hence, as p ∈ I(s)
implies root(t|p) ∈ V and as Var(s′) = ∅, it holds for all p ∈ I(s) that s′|p = ⊥.
By Proposition 8.1.8, I(s) ⊆ I(s′). Moreover, I(s) ⊇ I(s′). If not, then there exist
t′ 4 s 4 s′ and p′ ∈ I(t′) such that t′|p′ = s|p′ = ⊥ and p′ 6∈ I(s), by definition of
patternR. However, this is impossible by Proposition 8.1.8. Hence, I(s) = I(s′).
But then, as p ∈ I(s) implies root(t|p) ∈ V , we have q 6∈ I(s′), contradiction.

If we have t 4 l with t not an l → r-redex, under the above assumption, then
it holds for all p ∈ I(s) that l|p ∈ V and it is immediate by Proposition 8.1.9
that I(s) is empty, again contraction. Hence, there must exist p ∈ I(s) such that
root(t|p) 6∈ V , as required. ut
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We are now in a position to prove the following:

Lemma 8.2.7. The TRS M is an ωmTRS (see Definition 6.4.5).

Proof. That M is left-linear is immediate by Proposition 8.1.9 and the definition
of υ. We prove in turn each of the five clauses that need to be satisfied by ωmTRSs:
Thus, suppose d→m e ∈M and l→ r ∈ R.

1. By definition ofM, it is immediate that e is equal to ⊥.
2. For each term in patternR we have d = f(s1, . . . , sn), with f some defined

symbol of R. As ⊥ is not a defined symbol of R, it does not occur as a right-
hand side of a rewrite rule inM. Hence, ⊥ is a normal form ofM.

3. Suppose s 4 d or s 4 l with s not an l→ r-redex. In case s = ⊥, it is immediate
that s→=

m ⊥. Thus, suppose s 6= ⊥. We prove s→m ⊥.
Obviously, s 6= ⊥ implies s = f(s1, . . . , sn). Define t = f(⊥, . . . ,⊥). By defi-
nition of s and t, it follows from Proposition 8.1.10 that I(t) 6= ∅. Hence, as
t 4 s, there are two possibilities by Lemma 8.2.5: Either there exist p ∈ I(t)
and σ such that s = σ(υ(t)[⊥]p), or t[root(s|p)(⊥, . . . ,⊥)]p 4 s for all p ∈ I(t).
In the first case, it is immediate by definition of M that s →ω ⊥. In the
second case, define t′ = t[root(s|p)(⊥, . . . ,⊥)]p for some p ∈ I(t) such that
root(s|p) 6∈ V , which exists by Lemma 8.2.6. By definition of s and t′, it follows
from Proposition 8.1.10 that I(t′) 6= ∅. Hence, we are back in the above case
distinction, which is repeated with larger and larger prefixes of s. As s is finite,
eventually only the first case of the case distinction applies and we are done.

4. This is a direct consequence of Lemma 8.2.4.
5. This also is a direct consequence of Lemma 8.2.4. ut

Assuming the ωrTRS for R is denoted by L = (Σ⊥, L), we prove the main
theorem of this section:

Theorem 8.2.8. The TRS defined as LM = (Σ⊥, L ∪M) is an ωTRS for R.

Proof. Immediate by Lemma 8.2.7 and Proposition 6.4.7 ut

Hence, M defines a Böhm-like tree for R.

Remark 8.2.9. It is possible to replace the definition of pattern′R(s) (see Figure
8.1), by the one in Figure 8.2. In the alternative definition, a subset of I(s) is
employed instead of I(s) itself. By inspection of the proof of Lemma 8.2.7, with
I(s) appropriately replaced by I, it immediately follows thatM is an ωmTRS even
in case the alternative definition of pattern′R is employed.

Different choices for the set I obviously result in different Böhm-like trees. To
avoid such choices we employ I(s) instead of subsets of I(s).

8.2.2 Tower of Patterns

Assuming that R = (Σ, R) is a strongly sequential orthogonal constructor TRS,
that L = (Σ⊥, L) is the ωrTRS for R, and thatM = (Σ⊥,M) is the ωmTRS defined
in the previous section, we next define towers of patterns. We employ these towers
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Figure 8.2. Alternative definition of pattern′
R

in the next section to prove that strongly sequential orthogonal constructor TRSs
are Böhm-like tree sequential.

Given a term s with s →∗
ω ⊥, a tower of patterns for s represents a reduction

from s to ⊥ with respect to LM = (Σ⊥, L ∪ M). The represented reduction is
minimal in the sense that removing any of the reduction steps no longer yields a
reduction from s to ⊥, even if substitutions are adapted appropriately.

Towers of patterns are defined as follows:

Definition 8.2.10. Let s ∈ Ter(Σ⊥, V ) such that s reduces to ⊥ with respect to
the ωTRS LM (see Theorem 8.2.8) and let LHS = {d | d →ω e ∈ L ∪M}. A
tower of patterns for s is a non-empty set:

{(pi, di) | 1 6 i 6 n} ⊆ Pos(s)× LHS ,

such that for all 1 < i 6 n:

– di ∈ patternR,
– pi−1 = pi · qi with di|qi

= ⊥, and
– (s[⊥]pi−1

)|pi = σi(di) with σi a substitution,

and such that pn = ε and s|p1 = σ(d1) with σ a substitution.
A tower of patterns is said to start in R if d1 = l with l → r ∈ R (or,

equivalently, l→r ⊥ ∈ L). Moreover, arbitrary towers are denoted by T and T ′.

Remark that di ∈ patternR for all 1 < i 6 n and not for all 1 6 i 6 n. Hence,
each di with 1 < i 6 n is the left-hand side of a rule inM, while d1 may either be
a left-hand side of a rule in L or a rule in M, which implies that the notion of a
tower of patterns starting in R is non-void.

Example 8.2.11. Suppose that R is the strongly sequential orthogonal constructor
TRS which only consist of the following rewrite rule:

f(c, c)→ c .

The ωmTRS for R defined according to Definition 8.2.1 has the following rewrite
rules:

f(x,⊥)→m ⊥ f(c,⊥)→m ⊥

f(⊥, x)→m ⊥ f(⊥, c)→m ⊥

With respect to the above rewrite rules, a number of reductions are possible starting
from the term f(f(c,⊥), f(⊥, c)). These reductions are depicted in Figure 8.3,
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where the label of each edge denotes the position of the redex contracted in the
corresponding reduction step.

f(f(c,⊥), f(⊥, c))

ω

1

ω

2

f(⊥, f(⊥, c))
ω

2

ω

ε

f(⊥,⊥)

ω

ε

ω

ε

f(f(⊥, c),⊥))
ω

1

ω

ε

⊥

Figure 8.3. Possible reductions of f(f(c,⊥), f(⊥, c))

Given the definition of minimality at the beginning of this section, the following
are the minimal reductions from Figure 8.3 ending in ⊥:

f(f(c,⊥), f(⊥, c))→ω f(⊥, f(⊥, c))→ω ⊥

f(f(c,⊥), f(⊥, c))→ω f(f(⊥, c),⊥)→ω ⊥

These two reductions give rise to the following four towers of patterns:

{(1, f(x,⊥)), (ε, f(⊥, x))} {(1, f(c,⊥)), (ε, f(⊥, x))}

{(2, f(⊥, x)), (ε, f(x,⊥))} {(2, f(⊥, c)), (ε, f(x,⊥))}

Hence, each term can have several towers of patterns and minimal reductions ending
in ⊥.

Remark that each term can have both minimal and non-minimal reductions
ending in ⊥. In the case of the reductions depicted in Figure 8.3, any reduction
that does not proceed along a dotted edge is minimal, while any reduction that
does proceed along a dotted edge is non-minimal.

With respect to towers of patterns, we obviously have:

Lemma 8.2.12. Let s ∈ Ter(Σ⊥, V ). The term s reduces to ⊥ with respect to LM
if and only if there exists a tower of patterns for s.

Proof. This follows easily by definition of a tower of patterns and the observation
that there occurs precisely one ⊥ in each term of patternR. ut

The following formalises the intuition behind towers of patterns, where minimal
is defined as above:

Proposition 8.2.13. Let s ∈ Ter(Σ⊥, V ) such that s reduces to ⊥ with respect
to LM. If {(pi, di) | 1 6 i 6 n} is a tower of patterns for s, then there exists a
non-empty minimal reduction:

s = s1 →ω,p1,d1 s2 →ω,p2,d2 · · · →ω,pn−1,dn−1
sn →ω,pn,dn

⊥ ,

where pi denotes the position of the contracted redex and where di denotes the
left-hand side of the employed rewrite rule.
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Proof. Given that there occurs precisely one ⊥ in each term of patternR, it follows
immediately by the definition a tower of patterns that a non-empty reduction exists.
That the reduction is minimal follows by the requirement that pi−1 = pi · qi with
di|qi

= ⊥ for all 1 < i 6 n and the fact that the right-hand side of each rewrite
rule in LM is equal to ⊥. ut

With respect to towers of patterns starting in R, we also have:

Lemma 8.2.14. Let s, t ∈ Ter(Σ⊥, V ) with s 4 t. If T is a tower of patterns for
s starting in R, then T is a tower of patterns for t starting in R.

Proof. Suppose that s has a tower of patterns T starting in R. Consider the re-
duction from Proposition 8.2.13. Since T is a tower of patterns starting in R we
have by the definition of patternR that each ⊥ that occurs in a redex patterns of
a contracted redex is created in the reduction. Hence, by left-linearity of LM, the
following reduction exists:

t = t1 →ω,p1,d1 t2 →ω,p2,d2 · · · →ω,pn−1,dn−1
tn →ω,pn,dn

⊥ ,

which implies that T is a tower of patterns for t. ut

Discussion. Towers of patterns merge the notions of a decomposition and a tower
of preredexes as defined by Klop and Middeldorp [KM91, Definition 5.6 and 5.24].
We briefly explain both notions and their connection with towers of patterns. We
do not employ the two notions anywhere else in chapter.

In the following we assume that R = (Σ, R) is an orthogonal TRS and that
HL = (Σ⊥,HL) is the Huet-Lévy ωTRS for R. We define decompositions and
towers of preredexes:

Definition 8.2.15. Let

s1 →ω,p1 s2 →ω,p2 · · · →ω,pn−1
sn →ω,pn

⊥

be a non-empty reduction, where pi denotes the position of the contracted redex for
all 1 6 i 6 n. The set:

{(pi, si|pi
) | 1 6 i 6 n}

is called a decomposition of s1.

Remark that by the definition of ωTRSs, we have in the previous definition that
pi 6= pj for all 1 6 i, j 6 n with i 6= j.

Definition 8.2.16. Let s ∈ Ter(Σ⊥, V ), such that ω(s) = ⊥, and let D be a
decomposition of s. A non-empty subset D′ of D is called a tower of preredexes
when for all (p1, t1), (p2, t2) ∈ D

′, such that p1 6= p2 it holds that:

– either p1 < p2 or p2 < p1, and
– (q, t) ∈ D′, if (q, t) ∈ D and p1 < q < p2.

Changing the definition of the employed pairs slightly, it is readily shown that a
tower of patterns merges the definitions a decomposition and a tower of preredexes.
Of course, towers of patterns are defined with respect to LM, while decompositions
and towers of preredexes are defined with respect to the Huet-Lévy ωTRSs for R.
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Assuming that LM is employed in the above definitions instead of the Huet-
Lévy ωTRS, it is immediate by Proposition 8.2.12 that each tower of preredexes
is also a decomposition. The same does not hold in case the Huet-Lévy ωTRS is
employed. To see this, consider the strongly sequential orthogonal constructor TRS
which only has the following rewrite rule:

f(c, c)→ c

Moreover, consider the following reduction with respect to the Huet-Lévy ωTRS:

f(f(c, c), f(c, c))→ω,1 f(⊥, f(c, c))→ω,2 f(⊥,⊥)→ω,ε ⊥ ,

The decomposition of this reduction is:

{(1, f(c, c)), (2, f(c, c)), (ε, f(⊥,⊥))} .

Hence, the towers of preredexes are:

{(1, f(c, c))}

{(2, f(c, c))}

{(ε, f(⊥,⊥))}

{(1, f(c, c)), (ε, f(⊥,⊥))}

{(2, f(c, c)), (ε, f(⊥,⊥))}

Obviously, none of these towers of preredexes corresponds to a reduction from
f(f(c, c), f(c, c)) to ⊥. Hence, none of them defines a decomposition.

8.2.3 Sequentiality

Assuming that R is a strongly sequential orthogonal constructor TRS and thatM
and LM are, respectively, the ωmTRS and the ωTRS defined in Section 8.2.1, we
next show that the Böhm-like tree defined by LM is Böhm-like tree sequential for
R.

In this section, we denote by ω the direct approximant function based on LM.
Moreover, given a term s we denote by T (s) the set containing all towers of patterns
for s.

To prove Böhm-like tree sequentiality, we need to consider subterms under
reduction. With respect to the subterms we essentially prove that the preservation
of towers of patterns starting inR (see Definition 8.2.10) gives rise to the first clause
of the definition of Böhm-like tree sequentiality, while the lack of such towers gives
rise to the second clause. To facilitate the proof, we show how towers of patterns
are preserved under different circumstances.

The next two lemmas concern towers of patterns starting in R:

Lemma 8.2.17. Let s, t ∈ Ter(Σ⊥, V ) such that s →m t, contracting a redex a
position p, and such that s|p 4 σ(l) and s|p not an l→ r-redex for some l→ r ∈ R
and substitution σ. If for each s′ ∈ Ter(Σ⊥, V ) with s →∗ s′ there exists a tower
of patterns for s′ starting in R, then for each t′ ∈ Ter(Σ⊥, V ) with t →∗ t′ there
exists a tower of patterns for t′ starting in R.
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Proof. Suppose for each s→∗ s′ that there exists a tower of patterns for s′ starting
in R. Moreover, assume t→∗ t′. By definition of ωmTRSs, we have t = s[⊥]p 4 s.
Hence, by left-linearity of R there exists a term s′ such that s →∗ s′ and t′ 4 s′.
We prove by contradiction that there is a tower of patterns for t′ starting in R.

Suppose there is a tower of patterns T for s′ starting in R which is not a
tower of patterns for t′ and assume (p′, l′) ∈ T , p′ ∈ Pos(s), and l′ → r′ ∈ R. By
Lemma 8.2.14 and as t = s[⊥]p, we have that p′ occurs at a position which has as
prefix position a descendant q′ of p. Since the rules of R do not overlap and since
s|p 4 σ(l) and s|p not an l → r-redex, we have that s′|q′ 4 σ(l) and that there
exists a position q ∈ Pos(l) such that l|q ∈ V and q′ < q′ · q 6 p′. But then, by
Proposition 8.1.9 and the definition of patternR, it cannot hold that T is tower of
patterns for s′, contradiction. Hence, each tower of patterns for s′ starting in R is
a tower of patterns for t′. ut

Lemma 8.2.18. Let s, t, t′ ∈ Ter(Σ⊥, V ) such that s 6= ⊥, s 4 t, and t →∗ t′. If
for each s′ ∈ Ter(Σ⊥, V ) with s→∗ s′ there exists a tower of patterns for s′ starting
in R, then there exists a tower of patterns for t′ starting in R.

Proof. Suppose for each s →∗ s′ there exists a tower of patterns for s′ starting in
R. We prove the result for t → t′. The complete result then follows by induction
on the number of steps in t→∗ t′.

Assuming that the redex contracted in t→ t′ occurs at position p, it follows by
left-linearity of R that there are three cases to consider:

– a redex occurs at position p in s,
– the position p does not occur in s, and
– a prefix of a redex occurs at position p in s.

We deal with each of the three cases in turn:
A redex occurs at position p in s. If we contract the redex at position p, then

we obtain a term s′ 4 t′. It follows by Lemma 8.2.14 that each tower of patterns
for s′ starting in R is also a tower of patterns for t′ starting in R, as required.

The position p does not occur in s. Since s 4 t′, the result follows once more
by Lemma 8.2.14.

A prefix of a redex occurs at position p in s. As a prefix of the redex occurs at
position p in s, we have s→m s[⊥]p and, obviously, s[⊥]p 4 t. The result follows by
Lemmas 8.2.17 and 8.2.14. The induction is also furnished by Lemma 8.2.17. ut

Supplementing the above two lemmas, the next three concern the preservation
of towers of patterns not starting in R:

Lemma 8.2.19. Let s, t ∈ Ter(Σ⊥, V ) such that s 6= ⊥, ω(s) = ⊥, and s→∗ t. If
there exist T ∈ T (s) not starting in R, then T ∈ T (t) and ω(t) = ⊥.

Proof. Suppose there exist T ∈ T (s) not starting in R. We prove the result for
s → t. The complete result then follows by induction on the number of steps in
s→∗ t.

Suppose the redex contracted in s → t occurs at position p. Since T does not
start in R, it follows by Proposition 8.2.2 and Lemma 8.2.4 that p cannot be equal
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to any q · q′ with (q, d) ∈ T , q′ in the redex pattern of d. Hence, by left-linearity of
LM, we have T ∈ T (t). Thus, ω(t) = ⊥. ut

Lemma 8.2.20. Let s, t ∈ Ter(Σ⊥, V ) such that s 6= ⊥, ω(s) = ⊥, and s→∗ t. If
for all T ∈ T (s) it holds that T does not start in R, then T (s) = T (t).

Proof. Suppose for all T ∈ T (s) that T does not start in R and assume that the
redex contracted in s→ t occurs at position p and employs the rule l→ r ∈ R. We
prove the result for s → t. The complete result then follows by induction on the
number of steps in s→∗ t.

By Lemma 8.2.19, it follows that T (s) ⊆ T (t). Hence, suppose that there exist
T ∈ T (t) such that T 6∈ T (s). That is, a tower of patterns is created in the reduction
from s to t. As T does not occur in s, there exist q ·q′ = p with (q, d) ∈ T . Moreover,
as towers of patterns are finite sets, there exists a position q which is largest with
respect to the prefix order on positions such that q · q′ = p. With respect to the
largest q, we have that q′ ∈ Pos(d), q′ 6= ε, d|q′ 6= ⊥, and d|q′ 6∈ V . Otherwise,
either T or a tower of patterns which includes (p, l) occurs in T (s), which are both
impossible by assumption.

Assume that q is the largest position such that q · q′ = p and (q, d) ∈ T . Since
d ∈ patternR, there exists a term s′ such that d = υ(s′)[⊥]p′ with p′ ∈ I(s′).
By definition of patternR and as d|q′ 6= ⊥ and d|q′ 6∈ V , there exists a term
t′ 4 s′[⊥]q′ 4 d[⊥]q′ such that q′ ∈ I(t′) and υ(t′)[⊥]q′ ∈ patternR. Define d′ =
υ(t′)[⊥]q′ . Moreover, define the following set:

T ′ = {(p′, d) ∈ T | p′ < q} ∪ {(q, d′), (p, l)} .

Obviously, we have for some substitutions σ and τ that:

s = s[σ(l)]p →ω s[⊥]p = s[τ(d′)]q →m s[⊥]q .

As (q, d) ∈ T and as all elements of T that are at prefix positions of q are included
in T ′, we have by left-linearity of LM that T ′ ∈ T (s). Hence, contradiction, as we
assumed that (p, l) cannot occur in any tower of patterns for s. Thus, T (s) = T (t).

ut

Lemma 8.2.21. Let s, t ∈ Ter(Σ⊥, V ) such that s 6= ⊥, ω(s) = ⊥, and such that
for all T ∈ T (s) it holds that T does not start in R. If s 4 t such that for all
p ∈ Pos(s) with s|p = ⊥ it holds that p ∈ Pos(t), t|p ∈ V ∪ {⊥}, and (q, d) ∈ T
with T ∈ T (s), p = q · q′, and d|q′ = ⊥ implies t|p ∈ V , then ω(t) 6= ⊥.

Proof. Suppose s 4 t such that it satisfies the requirements of the lemma. As is
easy to see, t is identical to s with ⊥ replaced by a variable in a number of cases.
By the assumption on t and the fact that T does not start in R for all T ∈ T (s),
it follows that none of the towers of patterns of s exists in t.

If ω(t) = ⊥, then there exists a tower of patterns T for t by Lemma 8.2.12.
However, by the assumptions on t and left-linearity of LM, this implies that T is
a tower of pattern for s, contradiction. Hence, ω(t) 6= ⊥. ut
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Denoting by BLT the Böhm-like tree of R based on M, we next prove the
central theorem of this chapter:

Theorem 8.2.22. The TRS R is Böhm-like tree sequential with respect to the
Böhm-like tree based on M.

Proof. Let s ∈ Ter(Σ⊥, V ) and p ∈ Pos(BLT(s)) such that BLT(s)|p = {⊥}. We
prove that exactly one of the following two clauses holds, as required by Definition
8.1.1:

1. for all t ∈ Ter(Σ⊥, V ), if t < s, then BLT(t)|p = {⊥}, or
2. there exist q ∈ Pos(s) with s|q = ⊥ such that for all terms t, if t < s and

BLT(t)|p 6= {⊥}, then t|q 6= ⊥.

To see that exactly one of the two clauses holds, remark that there exists a term
s′ such that s →∗ s′, p ∈ Pos(s′), and all subterms at strict prefix positions of p
root-stable. Hence, by preservation of Böhm-like trees under rewriting, it is enough
to consider the reducts of s′|p. With respect to these reducts, which all have ⊥ as
their direct approximant, there are three cases to consider:

1. for each reduct there exists a tower of patterns starting in R,
2. there exists a reduct without any tower of patterns starting in R, and
3. the subterm s′|p is equal to ⊥.

We deal with each of the three cases in turn:
Case (1). In this case, we prove that the first clause of the definition of Böhm-

like tree sequentiality holds. Thus, suppose t is a term such that t < s.
By left-linearity of R there exists a term t→∗ t′ such that t′ < s′. Now consider

the subterms s′|p and t′|p. As there exists for each reduct of s′|p a tower of patterns
starting in R, it follows by Lemma 8.2.18 that there exists for each reduct of t′|p a
tower of patterns starting in R. Hence, each reduct of t′|p has ⊥ as its direct ap-
proximant. Since we have by monotonicity that p ∈ Pos(BLT(t)) = Pos(BLT(t′)),
it follows that BLT(t)|p = BLT(t′)|p = {⊥}, as required by the first clause of the
definition of Böhm-like tree sequentiality.

Case (2). In this case, we prove that the second clause of the definition of
Böhm-like tree sequentiality holds. Given that ω(s′|p) = ⊥ and that there exists
a reduct of s′|p without a tower of patterns starting in R, we can assume without
loss of generality that for all T ∈ T (s′|p) it holds that T does not start in R.

Suppose s′ →∗ s′′ and define the following set:

P = {p · q · q′ | ∃T ∈ T (s′′|p) : (q, d) ∈ T, d|q′ = ⊥, and s′′|p·q·q′ = ⊥}

By Lemma 8.2.20, we have that P is equal for all reducts of s′. Moreover, as ⊥
does not occur in the rewrite rules of R, there exists a set P ′ ⊆ Pos(s) such that
P ′/(s→∗ s′′) = P for all s′ →∗ s′′.

Define the term t < s such that for all p ∈ Pos(s):

root(t|p) =

{

x ∈ V if p ∈ P ′

root(s|p) otherwise
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Obviously, by left-linearity of R there exists a term t →∗ t′ such that t′ < s′. By
Lemma 8.2.21, it now follows that no reduct of t′|p has ⊥ as its direct approximant.
Hence, as we have by monotonicity that p ∈ Pos(BLT(t)) = Pos(BLT(t′)), it follows
that BLT(t)|p = BLT(t′)|p 6= {⊥} and only the second clause of the definition of
Böhm-like tree sequentiality can apply, given that one of the clauses applies at all.
That the second clause actually holds follows immediately by the fact that P is
equal for all s′ →∗ s′′ and Lemma 8.2.19.

Case (3). Identical to the second case, but with P = {p}, Lemmas 8.2.19 and
8.2.20 replaced by the assumption that s′|p = ⊥ and Lemma 8.2.21 replaced by the
fact that ω(x) = x for all x ∈ V . ut

Remark 8.2.23. With respect to the proofs presented in this section and the pre-
vious section, it is irrelevant whether either the definition of patternR from Figure
8.1 or the one from Figure 8.2 is employed. The properties of patternR required in
the proofs are satisfied by both in both instances.

8.3 Sequentiality of Other Böhm-Like Trees

In this section, we describe two Böhm-like trees which are Böhm-like tree sequential,
but which do not represent a sufficient part of the produced output. Throughout
this section we assume that R = (Σ, R) is a left-linear TRS.

Trivial Trees. With respect to the trivial trees (see Chapter 5), we have the
following:

Theorem 8.3.1. The TRS R is Böhm-like tree sequential with respect to trivial
trees.

Proof. Since we have for all s ∈ Ter(Σ⊥, V ) that BLTT(s) = {⊥}, the first clause
of the definition of Böhm-like tree sequentiality always applies. ut

Obviously, as each trivial tree is equal to {⊥}, trivial trees do not represent as
sufficient part of the produced output.

Trivial ωTRSs. Suppose D = (Σ⊥,D), with D defined as:

D = {f(x1, . . . , xn)→ω ⊥ | f(x1, . . . xn) linear, f ∈ Σn, xi ∈ V for 1 6 i 6 n} .

It is easy to show that D is an ωTRS. We call D the trivial ωTRS.
Given the trivial ωTRS, the Böhm-like tree of a term s is as follows:

BLT(s) =

{

{⊥, x} if s→∗ x with x ∈ V

{⊥} otherwise

Obviously, these trees do not represent a sufficient part of the produced output.
Even though this is the case, Böhm-like trees based on the trivial ωTRS do not
always gives rise to Böhm-like tree sequentiality, even if R is an orthogonal con-
structor TRS. To see this, consider a Gustave-like orthogonal constructor TRS
which has the following three rewrite rules:
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f(a, b, x, y)→ y

f(x, a, b, y)→ y

f(b, x, a, y)→ y

The term f(⊥,⊥,⊥, y) is a normal form with respect to the Gustave-like TRS
which is not a variable. Hence, we have:

BLT(f(⊥,⊥,⊥, y)) = {⊥} .

Consider the terms f(a, b,⊥, y), f(⊥, a, b, y), and f(b,⊥, a, y). We have:

f(a, b,⊥, y)→ y

f(⊥, a, b, y)→ y

f(b,⊥, a, y)→ y

Moreover, we have the following Böhm-like trees:

BLT(f(a, b,⊥, y)) = {⊥, y}

BLT(f(⊥, a, b, y)) = {⊥, y}

BLT(f(b,⊥, a, y)) = {⊥, y}

Since all three terms have f(⊥,⊥,⊥, y) as prefix and since all three have a Böhm-
like tree greater than {⊥} with respect to the prefix order, the second clause of
the definition of Böhm-like tree sequentiality must apply. However, this is not the
case, as the TRS is Gustave-like. Hence, Böhm-like tree sequentiality for R does
not hold with respect to Böhm-like trees based on trivial ωTRSs.

Requiring that R is confluent and normal form sequential changes the above
situation:

Theorem 8.3.2. If R is confluent and normal form sequential, then R is Böhm-
like tree sequential with respect to Böhm-like trees based on the trivial ωTRS.

Proof. Suppose s ∈ Ter(Σ⊥, V ) such that BLT(s) = {⊥}. There are two possibili-
ties depending on Böhm-like trees of the terms t < s:

For all terms t < s it holds that BLT(t) = {⊥}. In this case it is obvious the
first clause of the definition of Böhm-like tree sequentiality applies.

There exist t < s such that BLT(t) = {⊥, x}. In this case, s does not reduce
to a normal form in Ter(Σ, V ). Otherwise, BLT(s) = {⊥, x}, by confluence and
left-linearity of R and since the normal form of t is x. Hence, NF(s) = F.

By the existence of t at least one ⊥ occurs in s. Hence, as NF(t) = T, we have
by normal form sequentiality of R and NF(s) = F that INF(s) 6= ∅. But then, it
follows for all t < s, that BLT(t) = {⊥, x} implies t|p 6= ⊥ for all p ∈ INF(s). Hence,
the second clause of the definition of Böhm-like tree sequentiality holds. ut

8.4 Open Problems

With respect to the material presented in the previous sections, a number of inter-
esting open problems exist:
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– Is it possible to define a ‘sufficient’ part of the produced output in a more formal
way?

– Besides the Böhm-like tree presented in Section 8.2, can any other Böhm-like tree
be defined that is Böhm-like tree sequential for strongly sequential orthogonal
constructor TRSs and of which it can be said that sufficient part of the produced
output is represented?

– Can the definition of the Böhm-like tree presented in Section 8.2 be extended to
all orthogonal (constructor) TRSs in such a way that only the strongly sequential
TRSs are Böhm-like tree sequential and such that it can still be said that the
Böhm-like trees represent a sufficient part of the produced output?

– Can strong sequentiality, as employed throughout this chapter, be replaced with
other forms of sequentiality that give rise to classes of TRSs for which neededness
is decidable? In particular, can this be done in the case of shallow sequentiality, as
defined by Comon [Com00], and growing sequentiality, as defined by Jacquemard
[Jac96].

8.5 Stability

Although Böhm-like tree sequentiality suffices in the first-order case as a definition
of non-concurrency, this no longer holds in the higher-order case (see the references
in handbook chapter by Ong [Ong95] for relevant literature). In the quest to find a
definition of non-concurrency that also suffices in the higher-order case, a number of
alternative, but weaker, properties have been formulated. Among these properties
is stability, as defined by Berry [Ber76].

Given that R = (Σ, R) is a left-linear TRS and that BLT is a monotone Böhm-
like tree for R, stability is defined as follows:

Definition 8.5.1. The TRS R is stable with respect to BLT, if for every s ∈
Ter(Σ⊥, V ) and S ∈ Ter∞(Σ⊥, V ) with S 4 BLT(s) it holds that there exists a
unique t ∈ Ter(Σ⊥, V ) which is smallest with respect to the prefix order and which
satisfies t 4 s and S 4 BLT(t).

The following theorem relates Böhm-like tree sequentiality and stability, assum-
ing that R = (Σ, R) is a left-linear TRS and that BLT is a monotone Böhm-like
tree for R:

Theorem 8.5.2. If R is Böhm-like tree sequential with respect to BLT, then R is
stable.

Proof. Suppose s ∈ Ter(Σ⊥, V ) and S ∈ Ter∞(Σ⊥, V ). That there exist t 4 s such
that S 4 BLT(t) is obvious; simply define t = s.

Assume there are terms t1 4 s and t2 4 s with t1 6= t2 such that S 4 BLT(t1)
and S 4 BLT(t2) and such that both are smallest with respect to the prefix order.
Since both are smallest, we have for t1u t2 that S 64 BLT(t1u t2). By monotonicity,
BLT(t1 u t2) 4 BLT(t1) and BLT(t1 u t2) 4 BLT(t2). As S 64 BLT(t1 u t2), there
exist p ∈ Pos(BLT(t1 u t2)) such that BLT(t1u t2)|p = {⊥} and S|p 6= {⊥}. Hence,
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BLT(t1)|p 6= ⊥ and BLT(t2)|p 6= ⊥. But then, by Böhm-like tree sequentiality, there
exist q ∈ Pos(t1 u t2) such that t1|q 6= ⊥, t2|q 6= ⊥, and (t1u t2)|q = ⊥. However, as
t1 4 s and t2 4 s, this implies t1|q = t2|q 6= (t1 u t2)|q, contradicting the fact that
t1 u t2 is the greatest lower bound. Hence, there exists a unique t ∈ Ter(Σ⊥, V )
which is smallest with respect to the prefix order and which satisfies t 4 s and
S 4 BLT(t). ut

Obviously, the above proof does not depend on the particular definition of the
Böhm-like tree for R. It is sufficient for the Böhm-like tree to be monotone.
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9

Higher-Order Rewriting

Curiously enough, the more the obsession with the game grows
in the higher dimensions, the less it is actually played, . . .

— Douglas Adams

Life, the Universe and Everything (1982)

Böhm-like trees for TRSs, as dealt with in the previous chapters, can be seen as
generalisation of the Böhm-like trees of the λβ-calculus. However, to actually call
them a generalisation is misleading: The λβ-calculus is a higher-order system, while
TRSs are first-order.

To alleviate the above problem, Böhm-like trees for Higher-Order Rewrite Sys-
tems (HRSs) are introduced in this chapter. The trees generalise both the Böhm-like
trees defined for TRSs and those of λβ-calculus. Besides Böhm-like trees for HRSs,
a higher-order analogue of ωTRSs is provided. However, no attempt is made to
extend the theory developed in Chapters 6 and 8. This is left as future research.

Most of the theory developed in this chapter straightforwardly extends what
was presented in Chapter 5. The extension is straightforward by virtue of the
idea underlying direct approximants: the replacement of subterms by some nullary
function symbol. We can apply this idea as long as the concept of a subterm exists.
Hence, the idea is independent of the considered system being either first-order or
higher-order. Of course, the idea does depend of the concept of a term, which is
the reason for considering HRSs and not ARSs.

To be able to develop a theory for HRSs which is the analogue of the theory in
Chapter 5, we first need to define infinite higher-order terms. Unfortunately, this
cannot be done by simply instantiating the approach from Chapter 3: Higher-order
terms are typed, while types are completely absent from earlier chapters. For this
reason, we only define infinite higher-order terms by means of ideal completion.
Ideal completion is a sensible choice, since infinite terms defined in this way are
also employed in Chapter 5.

Ideal completion requires the definition of partial higher-order terms and a
prefix order on these terms. Defining partial higher-order terms is the only part of
the theory developed in this chapter which is not completely straightforward. The
most obvious definitions of such terms are problematic with respect to the prefix
order: Either no order exists or the order relates terms that should not be related.

Given that the developed theory is the analogue of the theory presented in
Chapter 5 and that partial and infinite higher-order terms need to be defined, the
current chapter is organised as follows: In Section 9.1, HRSs are introduced. There-
after, in Sections 9.2 and 9.3, partial higher-order terms and infinite higher-order
terms are defined respectively. Sections 9.4, 9.5, and 9.6 follow the organisation
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of Chapter 5: In Section 9.4, direct approximant functions and Böhm-like trees
are defined. Thereafter, in Section 9.5, monotonicity and continuity are discussed.
Finally, in Section 9.6, higher-order ωTRSs are defined.

9.1 Preliminaries

We briefly introduce Higher-Order Rewrite Systems (HRSs). A more complete ac-
count of the introduced concepts can be found in Nipkow’s paper [Nip91], in the
book by Terese [Ter03], and also in the dissertations of Van Oostrom [Oos94] and
Van Raamsdonk [Raa96].

To start, assume we have a non-empty set of base types. Given these base types,
the (simple) types are inductively defined as follows:

1. each base type is a (simple) type, and
2. if A and B are (simple) types, then (A→ B) is a (simple) type.

The type constructor, denoted→, is assumed to be right associative. In accordance,
we leave out parentheses whenever this increases readability. Thus, we write, e.g.,
A→ B → C instead of (A→ (B → C)).

Given a type A, the arity of A, denoted ar(A), is inductively defined as:

1. if A is a base type, then ar(A) = 0,
2. if A = B → C, then ar(A) = ar(C) + 1.

We assume for each type A that we have a countably infinite set of variables V A

of that type. We write V for
⋃

{V A | A is a type} and xA, yA, zA, . . . for variables
of type A. If the type of a variable is clear from the context, or irrelevant, x, y, z,
. . . are also used.

A signature is a set of function symbols, denoted Σ, such that each function
symbol has a unique type. We write fA, gA, hA, . . . , aA, bA, cA, . . . for function sym-
bols of type A. We also write f, g, h, . . . , a, b, c, . . . in case the types of the function
symbols are clear from the context or irrelevant. The arity of a function symbol
fA, denoted ar(fA), is defined as ar(A). A function symbol of arity 0 is called a
nullary function symbol.

Given a signature Σ and types A and B, preterms are inductively defined as:

1. xA is a preterm, if xA ∈ V A,
2. fA is a preterm, if fA ∈ Σ,
3. (λx.s)A→B is a preterm, if xA ∈ V A and sB a preterm, and
4. (st)A is a preterm, if sB→A and tB are preterms.

We write s for a preterm sA whenever the type of s is clear from the context, or
irrelevant. In addition, if f ∈ Σ and x ∈ V have arity n, then we sometimes write
f(s1, . . . , sn) and x(s1, . . . sn) instead of fs1 . . . sn and xs1 . . . sn respectively. Fi-
nally, we sometimes use the capitals F,G,H . . . ,X, Y, Z, . . . to denote free variables,
where a variable x is free if it does not occur in a subterm of the form λx.s.
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Remark that preterms are simply typed λ-terms that are defined under the
assumption of an additional set of symbols Σ. Following this observation, substitu-
tions, denoted s[x := t], are defined accordingly (see Chapter 4). The notions root
symbols, positions, subterms at positions, replacements at positions, and contexts
are also defined and denoted accordingly (see Chapters 2 and 3). Of course, types
must be taken into account in all definitions.

With respect to preterms, β-reduction and restricted η-expansion are defined
as follows:

(λx.s)t→β s[x := t]

C[s]→η̄ C[λx.sx]

where C[s] must satisfy:

1. sA→B for some types A and B,

2. x is a fresh variable of type A, i.e., it does not occur in C[s],

3. s is not of the form λy.t, and

4. � does not occur as (�t) in C[�].

Two observations are important with respect to the above two rules: First, all
preterms have a normal form with respect to the rewrite systems consisting of
either one or both the above rewrite rules. Second, the set of normal forms with
respect to restricted η-expansion is closed under β-reduction. For proofs of both
observations see, e.g., the book by Terese [Ter03].

The set of (higher-order) terms over the signature Σ, denoted Ter(Σ, V ), is
defined as the set of all preterms in βη̄-normal form. Of course, α-conversion must
be taken into account here (see Chapter 3 and Barendregt’s book [Bar84]).

Besides the notion of a substitution mentioned above, there is another notion
of a substitution which we employ in the definition of HRSs. In this case, a substi-
tution, denoted σ, τ , . . . , is defined as a map from variables to terms such that the
domain is finite and such that the type of each variable and the term assigned to
it correspond. If σ = {x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn}, then the application of σ to
a term s is defined as the βη̄-normal form of

(λxn. . . . λx2.λx1.s)tn . . . t2t1 .

Observe that a substitution whose domain is a singleton set behaves as expected.
That is, it behaves the same as the substitution we defined earlier.

We are now almost in a position to define HRSs, two more concepts are needed.
These are as follows:

Definition 9.1.1. A pattern is a term of base type such that each free variable x
occurs in a subterm of the form x(s1, . . . , sn) which is of base type and in which
each s1, . . . , sn is a βη̄-normal form of a different bound variable. A pattern is
called a rule pattern if it is of form f(s1, . . . , sn) with f ∈ Σ.
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We can now define:

Definition 9.1.2. A (higher-order) rewrite rule is a pair of terms (l, r) of the
same base type, denoted l → r, such that l is a rule pattern and such that all free
variables that occur in r also occur free in l.

A higher-order rewrite system (HRS) is a pair H = (Σ,H), with Σ a signature
and H a set of higher-order rewrite rules.

We also define:

Definition 9.1.3. Let l → r be a higher-order rewrite rule. Given a substitution
σ, the βη̄-normal form of σ(l) is called an l → r-redex. If s is the βη̄-normal
form of C[σ(l)] for some l → r-redex and context C[�] with C[�]|p = �, then an
l→ r-redex, or simply a redex, occurs at position p and depth |p| in s. Moreover, if
q ∈ Pos(s) then q is said to occur in the redex pattern of the l→ r redex at position
p in s, if q > p and not q > p · p′ with p′ ∈ Pos(l) such that l|p′ = x(s1, . . . , sn)
with x a free variable.

A pair of terms (s, t), denoted s→ t, defines a rewrite step, if s and t are the
βη̄-normal forms of respectively C[σ(l)] and C[σ(r)], and if l→ r is a higher-order
rewrite rule. An l→ r-redex is contracted in such a step.

Root-stable subterms are now defined in the obvious way (see Chapter 2).
Finally, the following definition and example employed later on:

Definition 9.1.4. A pattern is linear if each free variable occurs at most once. A
pattern is fully-extended if each free variable x occurs in a subterm of base type
which is of the form x(s1, . . . , sn) with s1, . . . , sn the βη̄-normal forms of all the
bound variables.

An HRS is left-linear, respectively fully-extended, if the left-hand sides of all
its rewrite rules are linear, respectively fully-extended.

Example 9.1.5. Assuming there exists a base type T , it is well-known, see, e.g., the
book by Terese [Ter03], that the signature of the λ-calculus can be encoded as the
following (higher-order) signature:

{abs(T→T )→T , appT→T→T } .

Moreover, the β-rule can be encoded as the following (higher-order) rewrite rule:

app(abs(λx.F (x)), Y )→ F (Y ) .

9.2 Partial Terms

In this section, we define partial higher-order terms in conjunction with a prefix
order on these terms. The definition requires the introduction of a fresh function
symbol ⊥. Since all function symbols in a higher-order signature need to be typed,
⊥ needs to be typed too.

Although it is very easy to come up with several different typings of ⊥, typing it
in such a way that a prefix order can be defined which satisfies a number of desired
properties turns out to be not completely straightforward. Taking into account
the definition of the prefix order on partial first-order and partial λ-terms (see
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Chapter 3) and also the fact that higher-order terms are typed, there are at least
four desired properties:

1. Given that ⊥ has type A, the partial order must homomorphically extend the
requirement that ⊥ is least among all terms of type A.

2. Terms in which ⊥ does not occur must be incomparable.
3. Terms of different types must be incomparable.
4. For each type there must be a term that is least among all terms of the type.

The properties help to ensure that the prefix order is a CUSL with respect to each
type, which enables us to define for each type a set of infinite terms by means of
ideal completion.

To gain more insight in the reason why it is difficult to type ⊥, we discuss two
insufficient typings in Section 9.2.1. The actual typing and prefix order that we
employ in the remainder of this chapter are given in Section 9.2.2.

9.2.1 Two Insufficient Typings

We next discuss two typings of ⊥ that each yield a prefix order which does not
satisfy all desired properties mentioned above. As such, the typings can be called
insufficient.

First Typing. Possibly the most obvious thing to do, is to assign some arbitrary
type to ⊥. To see that this do not suffice with respect to properties desired of the
prefix order, suppose there exist a base type A and two nullary function symbols
aA1 and aA2 . By the second desirable property, the function symbols must be incom-
parable. By the fourth property there must exist some term that is a prefix of both
function symbols. Since a1 and a2 have arity zero, it follows by the first property
that only ⊥ suffices. Hence, by the third property ⊥ must have type A, not just
some arbitrary type.

Suppose there also exist a base type B and two nullary function symbols bB1
and bB2 . By repeating the above reasoning, it follows that ⊥ must have type B.
Hence, we can conclude that a single function symbol ⊥ does not suffice; a number
of differently typed functions symbols ⊥ are needed.

Second Typing. Given the way in which the previous typing fails, we could in-
troduce a function symbol ⊥ for each type. This has at least four disadvantages,
the fourth of which has to do with the prefix order. First, since there are infinitely
many types, an infinite number of function symbols will be added to the signature
even if the assumed signature is finite. This is not very elegant.

Second, ⊥ will not only occur as a nullary function symbol, but also as function
symbols of arity greater than zero. Assuming we have at our disposal a base type A,
we can now specify terms like ⊥(x), where ⊥ is of type A→ A and where x ∈ V A.
Such terms cannot be defined in the first-order case. Hence, to some extent the
current typing is incompatible with the first-order approach.

Third, by the assumption that there exists a function symbol ⊥ for each type
we can replace each subterm of a term by ⊥. However, doing so not always re-
sults in a preterm which is also term. That is, the obtained preterm does not
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need to be in βη̄-normal form. To see that this is possible, consider the signature
{cA, f (A→A)→A, gA→A} and the term s = f(λx.g(g(c))). Replacing the subterm
λx.g(g(c)) in s by ⊥A→A yields the preterm f(⊥). This preterm is not in βη̄-
normal form. The following reduction is possible due to the fact that ⊥ has type
A→ A:

f(⊥)→η̄ f(λx.⊥(x)) .

Fourth, given the above signature and terms, it seems obvious that f(⊥) should
be a prefix of s = f(λx.g(g(c))), since f(⊥) is obtained by replacing a subterm of s
by ⊥. Whence, as f(λx.⊥(x)) is the βη̄-normal form of f(⊥), it also seems obvious
that f(λx.⊥(x)) should be a prefix of s. However, by the first desirable property
for the prefix order, this requires x to be a prefix of either g(c) or c, which violates
the second desirable property.

9.2.2 Definition

The problems regarding the typing of ⊥, as discussed in the previous section, can
be avoided by only introducing a function symbol ⊥ for each base type. Assuming
that Σ is an arbitrary signature and that V is a set of variables, we define:

Definition 9.2.1. The signature Σ⊥ is defined as Σ ∪ {⊥A | A a base type}. The
set of partial (higher-order) terms is defined as the set of higher-order terms over
the signature Σ⊥, i.e., Ter(Σ⊥, V ).

Given some term in Ter(Σ⊥, V ), we always have that some other term in Ter(Σ⊥, V )
is obtained whenever some subterm is replaced by ⊥. The reason is two-fold: First,
replacing a subterm by ⊥ does not introduce a β-redex, since λ-abstractions are
not of base type. Second, no η̄-redex is introduced either, because the η̄-rule does
not apply to terms of base type, like ⊥.

Given an HRS H = (Σ,H), we can define the HRS K = (Σ⊥,H). The definition
of K is sound with respect to the rewrite rules of H, as Σ ⊆ Σ⊥. Moreover, K has
the same termination and confluence properties as H, which follows immediately
when we consider each ⊥A to be an appropriately typed variable that is singled
out.

Remark 9.2.2. The first two disadvantages of the second typing from Section 9.2.1
do not apply to the above typing: With respect to the first disadvantage, we now
have that Σ⊥ is infinite only if either Σ or the number of base types is infinite. In
any other case Σ⊥ is finite.

The second disadvantage does not apply, since each introduced function symbol
has arity 0. This implies that ⊥ cannot occur in a subterm of the form ⊥(x).

That the third disadvantage does not apply, is explained below Definition 9.2.1.
Moreover, that the problems with respect to the prefix order are also solved, is
immediate by Definition 9.2.3 and Lemma 9.2.5 as given below.

Combining the definition of the prefix order on partial first-order and partial
λ-terms and taking into account the types, we define the prefix order on partial
higher-order preterms as follows:
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Definition 9.2.3. Let Σ be a signature and V a set of variables.

1. The prefix order on the preterms over Σ⊥, denoted 4, is the smallest binary
relation, modulo α-equivalence, such that:
(a) xA 4 xA, if x ∈ V A,
(b) fA 4 fA, if fA ∈ Σ,
(c) ⊥A 4 sA, if A is a base type and sA a preterm,
(d) λx.s 4 λx.t, if x ∈ V and s 4 t, and
(e) s1s2 4 t1t2, if s1 4 t1 and s2 4 t2.

2. The strict prefix order on the preterms over Σ⊥, denoted ≺, is the smallest
binary relation such that for all preterms s and t:

s ≺ t⇐⇒ (s 4 t and t 64 s) .

If we have s 4 t, respectively s ≺ t, then we call s a prefix of t, respectively a strict
prefix of t. Moreover, by < and � we denote respectively the converse of the prefix
order and the strict prefix order.

By the explanation just below Definition 9.2.1, it follows immediately that the
above definition carries over from preterms to terms without taking into account
either β-reduction or restricted η-expansion.

Example 9.2.4. Given the λβ-encoding from Example 9.1.5, we have the following,
where s, t1, and t2 are arbitrary partial terms:

⊥ 4 abs(λx.s) app(⊥, t2) 4 app(t1, t2)

abs(λx.⊥) 4 abs(λx.s) app(t1,⊥) 4 app(t1, t2)

⊥ 4 app(t1, t2) app(⊥,⊥) 4 app(t1, t2)

Denoting by Ter(Σ⊥, V )A all terms of type A in Ter(Σ⊥, V ), we have the fol-
lowing lemma with respect to the prefix order and the strict prefix order:

Lemma 9.2.5. Let A be a type. It holds that the pairs POA = (Ter(Σ⊥, V )A,4)
and SPOA = (Ter(Σ⊥, V )A,≺) are respectively a CUSL and a strict partial order.

Proof. By induction on the structure of preterms, simultaneous for all types, where
the least element of type A is:

1. ⊥A, if A is a base type, and
2. λx.l with l the least element of type C and x ∈ V B , if A = B → C.

The proof is completely analogous to the proof of Lemma 3.2.3. ut

Like in the first-order case, we have:

Proposition 9.2.6. Let s, t ∈ Ter(Σ⊥, V ).

1. For all s 4 t it holds that:
– Pos(s) ⊆ Pos(t), and
– root(s|p) = root(t|p), if p ∈ Pos(s) and s|p 6= ⊥.

2. For all s ≺ t there exist p ∈ Pos(s) such that s|p = ⊥ and t|p 6= ⊥.

Proof. By induction on the structure of preterms. ut
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By the above proposition, we also have the following, where the proof is identical
to the proof of Proposition 3.2.5:

Proposition 9.2.7. The strict prefix order on Ter(Σ⊥, V ) is well-founded.

As in the case of partial first-order terms, we can extend the definition of the
(strict) prefix order to substitutions by means of a pointwise definition:

Definition 9.2.8. Let σ and τ be substitutions. Define

σ 4 τ ⇐⇒ (σ(x) 4 τ(x) for all x ∈ V )

and
σ ≺ τ ⇐⇒ (σ 4 τ and σ(x) ≺ τ(x) for some x ∈ V ) .

The prefix order and the strict prefix order on substitutions are respectively a par-
tial order and a strict partial order. This follows immediately by the definitions and
the fact that the prefix order and the strict prefix order on terms are respectively
a partial order and a strict partial order.

We next define root-stable prefixes:

Definition 9.2.9. Let H = (Σ,H) be an HRS and s, t ∈ Ter(Σ⊥, V ). The term
t is a root-stable prefix of s, given that t 4 s and such that for all t|p 6= ⊥ with
p ∈ Pos(t) it holds that s|p is a root-stable subterm of s.

We can also have the higher-order analogue of Lemma 5.1.2, which we require
in Section 9.6:

Lemma 9.2.10. Let s, t ∈ Ter(Σ⊥, V ) with t a linear (rule) pattern. If s 4 τ(t)
for some substitution τ , then there exist s′ ∈ Ter(Σ⊥, V ) and substitutions σ′ such
that s = σ′(s′), s′ 4 t, σ′ 4 τ , and s′ a linear (rule) pattern.

Proof. By induction on the number of positions p ∈ Pos(s) such that s|p = ⊥
and τ(t)|p 6= ⊥. Since t is a pattern, this is completely analogous to the proof in
first-order case. ut

Remark 9.2.11. The previous lemma does not hold in case linear patterns are
replaced by linear terms. To understand this, suppose s = f(g(⊥), g(a)) and
t = F (G) and also suppose τ(F ) = λx.f(x, x) and τ(G) = g(a). Obviously,
τ(t) = f(g(a), g(a)) and s 4 τ(t). However, to satisfy the requirements of the
lemma, the only choice for s′ is F (G). But then, σ′(G) must both be equal to g(⊥)
and g(a).

9.3 Infinite Terms

For each type, we define the set of infinite terms by means of ideal completion,
where we assume Σ to be a signature and V a set of variables:

Definition 9.3.1. Let A be a type. The set of infinite (higher-order) terms of type
A, denoted Ter∞(Σ⊥, V )A, is defined as:

Ter∞(Σ⊥, V )A = {I ⊆ Ter(Σ⊥, V )A | I is an ideal of POA}
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The set of infinite (higher-order) terms, denoted Ter∞(Σ⊥, V ), is defined as:

Ter∞(Σ⊥, V ) =
⋃

{Ter∞(Σ⊥, V )A | A a type} .

Since each POA is a CUSL, we have that T = (Ter∞(Σ⊥, V )A,⊆) is a CPO for
each type A, with the least upper bound of a directed set D ⊆ Ter∞(Σ⊥, V )A equal
to

⋃

D (see Chapter 2). To achieve notational consistency with (finite) higher-order
terms, we write S 4 T instead of S ⊆ T and

⊔

D instead of
⋃

D.

Example 9.3.2. Assuming the encoding of the λβ-calculus from Example 9.1.5, the
following are the infinite λ-terms depicted in Figure 3.4 in Section 3.5.1:

↓{abs(λx.abs(λy.abs(λz.⊥))), . . .}

↓{app(abs(λx.y), app(abs(λx.y), abs(λx.⊥)))}

9.4 Böhm-Like Trees

Having introduced infinite higher-order terms, we next define Böhm-like trees for
HRSs. We start with the definition of a direct approximant function, which copies
Definition 5.2.13 verbatim:

Definition 9.4.1. Let H = (Σ,H) be a left-linear HRS. A (higher-order) direct
approximant function for H is a map ω : Ter(Σ⊥, V )→ Ter(Σ⊥, V ), such that for
all s, t, t′ ∈ Ter(Σ⊥, V ) and substitutions σ it holds that:

1. ω(s) 4 s,
2. if a redex occurs a position p in s, then ω(s) 4 s[⊥]p,
3. if s→ t, then ω(s) 4 ω(t), and
4. if t ∗← s→∗ t, then there exist s′ such that t′ →∗ s′ and ω(t) 4 ω(s′).

Note that s[⊥]p is a well-defined partial term, because each redex and each ⊥ is of
base type.

In the remainder of this section, we assume that H = (Σ,H) is left-linear HRS
and that ω is a direct approximant function for H. As in the first-order case, we
have the following two lemmas:

Lemma 9.4.2. If s ∈ Ter(Σ⊥, V ), then ω(s) is a root-stable prefix of s.

Proof. Identical to the proof of Lemma 5.2.2. The proof only depends on the defi-
nition of a direct approximant function, which has not been changed. ut

Lemma 9.4.3. Let s, t, t′ ∈ Ter(Σ⊥, V ) and p ∈ Pos(t) ∩ Pos(t′). If t ∗← s→∗ t′

with t|p and t′|p root-stable and root(t|p) 6= root(t′|p), then there exist q ∈ Pos(ω(t))
and q′ ∈ Pos(ω(t′)) such that q, q′ 6 p and ω(t)|q = ω(t′)|q′ = ⊥.

Proof. Identical to the proof of Lemma 5.2.16. Again, the proof only depends on
the definition of a direct approximant function. ut
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In case H is confluent, we have that the fourth clause of Definition 9.4.1 follows
from the third clause together with confluence:

Proposition 9.4.4. Let H be a confluent, left-linear HRS and s, t, t′ ∈ Ter(Σ⊥, V ).
If t ∗← s →∗ t′, then there exist s′ ∈ Ter(Σ⊥, V ) such that t′ →∗ s′ and ω(t) 4

ω(s′).

Proof. Identical to the second part of the proof of Proposition 5.2.14. The proof
only depends on confluence and the definition of a direct approximant function,
which has not been changed. ut

We next define auxiliary sets, by copying Definition 5.2.18:

Definition 9.4.5. Let s ∈ Ter(Σ⊥, V ). The auxiliary set of s (based on ω), denoted
A(s), is defined as:

A(s) = {ω(t) | s→∗ t} .

As in the first-order case and the case of the λβ-calculus, auxiliary sets do
not necessarily define infinite terms. The counterexample from the λβ-calculus
from Section 4.2 carries over immediately when we employ the encoding of the
λβ-calculus from Example 9.1.5. Of course, we do have the following property:

Lemma 9.4.6. Let s ∈ Ter(Σ⊥, V ). The set A(s) is directed.

Proof. Identical to the proof in Lemma 5.2.19. Again, the proof only depends on
the definition of a direct approximant function. ut

We next define Böhm-like trees for HRSs:

Definition 9.4.7. Let s ∈ Ter(Σ⊥, V ). The Böhm-like tree of s (based on ω),
denoted BLT(s), is defined as:

BLT(s) = ↓A(s) .

Analogous to the first-order case, it follows by Lemmas 9.4.2 and 9.4.3 and preser-
vation of root-stability under reduction that a Böhm-like tree only represent root-
stable subterms that are shared between different reductions. Moreover, maximal
fair reductions are considered by the definition of auxiliary sets.

Again analogous to the first-order case, we have that a Böhm-like tree asso-
ciates a unique infinite term with a higher-order term. Hence, BLT is a map from
Ter(Σ⊥, V ) to Ter∞(Σ⊥, V ).

Böhm-like trees are preserved under rewriting:

Theorem 9.4.8. Let s, t ∈ Ter(Σ⊥, V ). If s→∗ t, then BLT(s) = BLT(t).

Proof. Identical to the proof Theorem 5.2.21. As before, the proof only depends on
the definition of a direct approximant function. ut

Except for the proofs of Lemmas 9.4.2 and 9.4.3, the proofs given above do not
depend on the first and second clause of Definition 9.4.1. They only depend on the
other two clauses. Since the other two clauses are independent of any term structure
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being present, all proofs except those of Lemmas 9.4.2 and 9.4.3 are easily dealt
with in the context of ARSs. This is what is done by Blom [Blo01] and Ariola and
Blom [AB02]. Of course, since no terms exist in the context of ARSs, we cannot
prove any properties related to root-stability in that context. For this reason, we
consider HRSs and not ARSs.

Example 9.4.9. The definitions of trivial trees (Example 5.2.9), normal form trees
(Example 5.2.10) and Berarducci-Like trees (Example 5.2.11) carry over immedi-
ately to the higher-order setting.

With respect to the λβ-calculus encoding from Example 9.1.5, it is easily verified
that the Berarducci-like tree is in fact the Berarducci tree. We have:

BLTBeL(∆) = ↓{∆}

BLTBeL(Ω) = ↓{⊥}

BLTBeL(app(Ω,Ω)) = ↓{app(⊥,⊥)}

where ∆ = abs(λx.app(x, x)) and Ω = app(∆,∆).

9.5 Monotonicity and Continuity

Given a fully-extended, left-linear HRS H = (Σ,H) and a direct approximant func-
tion ω for H that is monotone, we next show that the Böhm-like tree based on
ω is monotone and continuous. Fully-extendedness of H is required in the proof
of Lemma 9.5.1. A counterexample in the case fully-extendedness does not hold
is provided below. Remember that ω is monotone whenever we have that s 4 t
implies ω(s) 4 ω(t).

Lemma 9.5.1. The Böhm-like tree based on ω is monotone. That is, for all s, t ∈
Ter(Σ⊥, V ), if s 4 t, then BLT(s) 4 BLT(t).

Proof. Analogous to the proof of Lemma 5.3.1. In this case, the term t′ exists by
left-linearity and fully-extendedness. ut

Theorem 9.5.2. The Böhm-like tree based on ω is continuous. That is, if s ∈
Ter(Σ⊥, V ), then BLT(s) =

⊔

{BLT(t) | t 4 s}.

Proof. Analogous to the proof of Theorem 5.3.2, employing Lemma 9.5.1 instead
of Lemma 5.3.1. ut

To understand why fully-extendedness is required in the proof of Lemma 9.5.1,
consider the HRS which has the following rewrite rule:

f(λx.Y )→ c .

For each term s, define ω′(s) to be the map that replaces all redexes and all subterms
of the form f(λx.⊥) in s by ⊥. Next, define ω(s) as the largest prefix of s such that
ω(s) = ω′(ω(s)). The map ω exists by definition of ω′ and Proposition 9.2.7. That
ω is monotone follows from the theory developed in the next section.
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Consider the terms f(λx.⊥) and f(λx.x). Obviously, f(λx.⊥) 4 f(λx.x). How-
ever, we also have:

BLT(f(λx.⊥)) = ↓{c}

BLT(f(λx.x)) = ↓{f(λx.x)}

Whence, we have neither BLT(f(λx.⊥)) 4 BLT(f(λx.x)) nor BLT(f(λx.x)) 4

BLT(f(λx.⊥)), which implies that the Böhm-like tree based on ω is not monotone
despite the direct approximant function being monotone.

9.6 Direct Approximant HRSs

We next define a higher-order variant of ωTRSs. Basically copying Definition 5.4.1,
the variant is defined as follows:

Definition 9.6.1. Let H = (Σ,H) be a confluent, left-linear HRS. A direct ap-
proximant HRS (ωHRS) for H is a left-linear HRS D = (Σ⊥,D), whose rewrite
relation, denoted →ω, satisfies:

1. d is a rule pattern and e = ⊥ for all d→ω e ∈ D,
2. each ⊥ is a normal form with respect to →ω,
3. s→∗

ω ⊥ for all s 4 d with d→ω ⊥ ∈ D, and
4. l→∗

ω ⊥ for all l→ r ∈ R.

For each term s in the third clause of the above definition, we have by Lemma 9.2.10
that there must exist a rule pattern t and a substitution τ such that s = τ(t) and
t 4 d. Hence, it is possible to define for each s 4 d a rewrite rule such that s→=

ω ⊥.

Example 9.6.2 (Huet-Lévy ωHRS). The Huet-Lévy ωHRS is defined as HL =
(Σ⊥,HL), where d →ω e ∈ HL if and only if d is a rule pattern, e = ⊥, and
d 4 l for some l→ r ∈ R. That the Huet-Lévy ωHRS is actually an ωHRS follows
readily from the definition.

With respect to the HRS encoding of the λβ-calculus (see Example 9.1.5), we
have that the Huet-Lévy ωHRS consists of the following rewrite rules:

app(abs(λx.F (x)), Y )→ω ⊥ app(abs(λx.⊥),⊥)→ω ⊥

app(abs(λx.F (x)),⊥)→ω ⊥ app(⊥, Y )→ω ⊥

app(abs(λx.⊥), Y )→ω ⊥ app(⊥,⊥)→ω ⊥

Employing the transitivity in the third clause of Definition 9.6.1 allows for a slightly
more ‘economic’ ωHRS with the same unique normal forms:

app(abs(λx.F (x)), Y )→ω ⊥

app(⊥, Y )→ω ⊥

Remark that the above two rules form exactly the HRS encoding of the two rules
that can be employed to define the Lévy-Longo direct approximant of the λβ-
calculus.
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Example 9.6.3. Encoding as higher-order rules the rewrite rules that can be em-
ployed to define the Böhm direct approximant for the λβ-calculus, we obtain:

app(abs(λx.F (x)), Y )→ω ⊥

abs(λx.⊥)→ω ⊥

app(⊥, Y )→ω ⊥

As is easily checked, the rewrite rules form an ωHRS.

In the remainder of this section, we assume that H = (Σ,H) is a confluent,
left-linear HRS and that D = (Σ⊥,D) is an ωHRS for H. Proceeding along the
lines of Chapter 5, we next show that each term has a unique normal form with
respect to D and that the map which assigns to each term its unique normal form
is a monotone direct approximant function.

To show that each term has a unique normal form, we prove confluence and
termination for ωHRSs. To prove confluence, we first consider the case in which
the third clause of Definition 9.6.1 can be strengthened to:

s→=
ω ⊥ for all s 4 d with d→ω ⊥ ∈ D.

We call an ωHRS which satisfies the strengthened third clause a single-step ωHRS.

Proposition 9.6.4. If E = (Σ⊥, E) is a single-step ωHRS, then E is confluent.

Proof. Analogous to the proof Proposition 5.4.3. ut

Employing single-step ωHRSs, we can now prove:

Lemma 9.6.5. The ωHRS D is confluent.

Proof. Analogous to the proof of Lemma 5.4.4, employing Proposition 9.6.4 instead
of Proposition 5.4.3. ut

To prove termination, we need the following:

Proposition 9.6.6. Let s, t ∈ Ter(Σ⊥, V ). If s→ω t, then s � t.

Proof. Identical to the proof of Proposition 5.4.5. ut

We can now prove termination:

Lemma 9.6.7. The ωHRS D is terminating.

Proof. Immediate by Propositions 9.6.6 and 9.2.7. ut

By Lemmas 9.6.5 and 9.6.7, we have that each term s ∈ Ter(Σ⊥, V ) has a
unique normal form with respect to D. We denote the unique normal form of s by
ω(s).

We next prove that ω defines a monotone direct approximant function. To
facilitate the proof, we first prove three lemmas:

Lemma 9.6.8. Let s, t, t′ ∈ Ter(Σ⊥, V ). If s 4 t and t→∗
ω t

′, then there exists an
s′ ∈ Ter(Σ⊥, V ) such that s′ 4 t′ and s→∗

ω s
′.
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Proof. Analogous to the proof of Lemma 5.4.7, employing Lemma 9.2.10 instead
of Lemma 5.1.2. ut

Lemma 9.6.9. Let s, t, t′ ∈ Ter(Σ⊥, V ). If s →∗ t and t →∗
ω t

′, then there exists
an s′ ∈ Ter(Σ⊥, V ) such that s→∗

ω s
′ and s′ 4 t′.

Proof. Analogous to the proof of Lemma 5.4.8, employing Lemma 9.6.8 instead of
Lemma 5.4.7. ut

Lemma 9.6.10. Let s, t ∈ Ter(Σ⊥, V ). The following properties hold:

1. ω(s) 4 s,
2. ω(s) = ω(s[ω(s|p)]p) for all p ∈ Pos(s),
3. ω(ω(s)) = ω(s),
4. ω(s) 4 ω(t), if s 4 t, and
5. ω(s) 4 ω(t), if s→ t.

Proof. Analogous to the proof of Lemma 5.4.9, employing Proposition 9.6.6 instead
of Proposition 5.4.5 and Lemmas 9.6.8 and 9.6.9 instead of Lemmas 5.4.7 and 5.4.8.

ut

We can now prove the main theorem of this section:

Theorem 9.6.11. The map ω : Ter(Σ⊥, V ) → Ter(Σ⊥, V ) which assigns to each
term its unique normal form with respect to D is a monotone direct approximant
function.

Proof. Analogous to the proof of Theorem 5.4.10 employing Lemma 9.6.10 instead
of Lemma 5.4.9. ut

By the previous theorem, it follows that each ωHRS defines a Böhm-like tree.
The tree is monotone and continuous in case the assumed HRS is fully-extended.
We have:

Example 9.6.12 (Huet-Lévy Trees). The Huet-Lévy ωHRS of Definition 9.6.2 de-
fines the Huet-Lévy tree, denoted BLTHL.

Huet-Lévy trees are also defined by Blom in his dissertation [Blo01]. However,
Blom defines them for Combinatory Reduction Systems instead of HRSs.

The map ω, as defined at the end of the previous section, is easily seen to be
definable by the Huet-Lévy ωHRS that consists of the following two rewrite rules:

f(λx.Y )→ω ⊥

f(λx.⊥)→ω ⊥

Hence, the claim that ω defines a monotone direct approximant function is imme-
diate by Theorem 9.6.11.

In case of the λβ-calculus, recall that the Huet-Lévy ωHRS is actually the
rewrite system that defines the Lévy-Longo direct approximant. Hence, in the case
of the λβ-calculus, Huet-Lévy trees are actually Lévy-Longo trees.
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Samenvatting

Je gaat het pas zien als je het doorhebt.

— Johan Cruijff

Böhmbomen voor herschrijfsystemen

In dit proefschrift bestuderen wij denotationele semantiek van termherschrijfsyste-
men. De specifieke semantiek die wij bestuderen is gebaseerd op de syntax van de
herschrijfsystemen en is als zodanig afgeleid van de Böhmboomsemantiek van de
λ-calculus. Grofweg betekent dit, dat de denotatie van een term de limiet is van
alle termen die voorkomen in alle reducties die beginnen in de term.

Vanuit de literatuur zijn twee methoden bekend om Böhmbomen te construe-
ren: Ten eerste kunnen de bomen geconstrueerd worden door uit iedere term een
benadering van zijn Böhmboom te extraheren en door vervolgens de benaderingen
van alle reducten van een term te verzamelen. Ten tweede is het mogelijk term-
herschrijfsystemen uit te breiden met oneindige termen en oneindige reducties en
Böhmbomen te definiëren als oneindige normaalvormen.

Het zwaartepunt van dit proefschrift ligt bij de eerste van de twee bovenge-
noemde methoden. Wij definiëren een aantal beperkingen op de benaderingen die
wij toestaan, zodat de Böhmbomen die op de benaderingen gebaseerd zijn een
aantal specifieke eigenschappen hebben. De eigenschappen zijn als volgt:

– Modeleigenschap: Deze eigenschap houdt ten eerste in dat de Böhmboom van een
term identiek is aan de Böhmboom van ieder reduct van deze term. Ten tweede
houdt deze eigenschap in, dat als de Böhmbomen van twee termen identiek zijn,
deze identiek blijven als de termen ieder in dezelfde context geplaatst worden.

– Continüıteitseigenschappen: Deze eigenschappen houden in dat het nemen van
een Böhmboom van een term en het plaatsen van een Böhmboom in een context
continue operaties zijn in ordetheoretische zin, gegeven een geschikte ordening
op termen en Böhmbomen.

– Sequentialiteitseigenschap: Deze eigenschap geeft informatie over de sequentiali-
teit van het beschouwde termherschrijfsysteem.

Behalve het formuleren van een aantal beperkingen zodat aan bovenstaande ei-
genschappen wordt voldaan, vergelijken wij de benaderingsmethode ook met de
methode die Böhmbomen definieert op basis van oneindige termen en oneindige
reducties. Hiernaast snijden wij nog een drietal kleinere onderwerpen aan:

– Wij vergelijken drie bekende manieren om oneindige termen te definiëren met
behulp van coalgebräısche technieken.
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– Wij geven een overzicht van de vanuit de literatuur bekende Böhmbomen die
gedefinieerd zijn voor de λ-calculus en wij catalogiseren enige eigenschappen van
deze bomen.

– Wij breiden de basisdefinities van de benaderingsmethode voor Böhmbomen uit
naar hogere-orde herschrijfsystemen.
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