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Abstract 

The behavioral dynamics of a cognitive agent can be considered both from an external and an internal perspective. From the external 
perspective, behavior is described by specifying (temporal) correlations between input and output states of the agent. From the 
internal perspective the agent’s dynamics can be characterized by direct (causal) temporal relations between internal, mental states of 
the agent. The latter type of specifications can be represented in executable format, which allows performing simulations of the 
agent’s behavior under different (environmental) circumstances. For enabling simulations when only given an external behavioral 
specification, this has to be transformed first into executable format, and subsequently into a transition system description. An 
automated procedure for such a transformation is proposed in this paper. The application of the transformation procedure is 
demonstrated by two simulation examples addressing delayed response behavior and adaptive behavior. 
 

1. Introduction 
The behavior of a cognitive agent can be considered both from an external and an internal perspective. From the external 
perspective, behavior of the agent can be described by correlations of a certain complexity between its input and output states 
over time, expressed in some (temporal) language, without any reference to internal or mental states of the agent. Such 
descriptions can be successfully used for modeling relatively simple types of behavior (e.g., stimulus-response behavior 
(Hunter, 1912; Skinner, 1935)). For less simple types of behavior (e.g., adaptive behavior based on conditioning (Balkenius 
& Moren, 1999)) an external behavioral specification often consists of more complex temporal relations that can not be 
directly used for simulations. 

From the internal perspective the behavior of the agent can be characterized by a specification of more direct (causal) 
temporal relations between mental states of the agent, based on which an externally observable behavioral pattern is 
generated. Executability is an important advantage of such a specification over an external one. By means of executable 
specifications it is possible to perform automated simulations of different scenarios of the agent’s behavior. For enabling 
automated analysis of an external behavioral specification by simulation, it should be (automatically) translated into 
executable format. This is the main problem addressed in this paper. As a solution an automated procedure for transformation 
of the external behavioral specification first into a synthetic executable specification, and subsequently into a general state 
transition system format is proposed. The executable specification is based on direct executable temporal relations between 
certain (synthetic, postulated) states. These states correspond to sensory representation memory and preparation states of the 
agent. The justification of such a transformation is based on the theorem1 that an external behavioral specification entails a 
certain dynamic property if and only if the generated executable internal specification entails the same property.  

Using the generated transition system specification of an agent’s behavior, a developed simulation software tool generates a 
trace, representing changes of internal (mental) states of the agent over time according to a given scenario.  

In the next section the concepts for formal modeling of externally observable agent behavior and for specifying a generated 
executable internal specification are introduced. Next, the transformation procedure from an external into an executable 
internal specification and subsequently into a general description of a finite state transition system is described in detail. The 
explanation of the procedure is illustrated by a running example. After that the proposed approach is applied for generating a 
simulation trace for an example scenario of agent behavior. The paper ends with a discussion. 

                                                                 
1 For the philosophical embedding of the introduced procedure and the theoretical results (i.e., lemmas, propositions and the theorem) for 

this paper we refer to Appendixes A and B 
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2. Formal Modeling of Agent Behavior 
From an external perspective an agent can be seen as an autonomous entity that interacts with a dynamic environment via its 
input and output (interface) states. At its input the agent receives observations from the environment whereas at its output it 
generates actions that can change a state of the environment.  

2.1 States and Traces 
A state of the agent as used here can be considered as indication of which properties of the agent (e.g., observations and 
actions) are true (hold) at a certain point in time. Externally observable state properties of the agent are formalized using the 
interaction ontology InteractionOnt(A). In general, an ontology is defined as a specification (in order-sorted logic) of a 
vocabulary that comprises finite sets of sorts, constants within these sorts, and relations and functions over these sorts. 
Specifically, InteractionOnt can be seen as a union of input and output state ontologies of the agent (resp., InputOnt and 
OutputOnt) to define corresponding input and output agent state properties. The state properties are specified using n-ary 
predicates (with n≥0). For example, observed(a) means that an agent has an observation of state property a and 
performing_action(b) represents an action b performed by an agent in an environment. To describe dynamics an explicit 
reference is made to time: a trace or trajectory over an ontology Ont is a time-indexed sequence of states over Ont.  

2.2 Expressing Dynamic Properties 
To express properties of the internal and the external dynamics of the agent, dynamic properties can be formulated that relate 
properties of states at certain points in time. Consider a simple example of externally observable behavior of an agent:  

“At any point in time if agent A observes food present at position p, then there exists a later point in time, when agent A goes to p.” 

To express such dynamic properties, and other, more sophisticated ones, the temporal trace language TTL is used; cf. 
(Jonker & Treur & Wijngaards, 2003; Appendix B). TTL allows explicit references to time points and traces in dynamic 
properties expressions. Thus, the sorted predicate logic temporal trace language TTL is built on atoms referring to traces, time 
and state properties. For example, “ in the output state of agent A in trace γ ��� at time t property p holds”  is formalized by 
state(γ, t, output(A)) |= p. Here |= is a predicate symbol in the language, usually used in infix notation, which is comparable 
to the Holds-predicate in situation calculus (Reiter, 2001). Sometimes this relation will be used without the third argument: 
state(γ, t) |= p.  

Dynamic properties are expressed by temporal statements built using the usual logical connectives and quantification (for 
example, over traces, time and state properties). For example the following dynamic property is expressed: 

“in any trace γ, if at any point in time t1 agent A observes that it is dark in the room, then there exists a point in time t2 after t1 such that at t2 in the 
trace agent A switches on a lamp”. 

In formalized form: 

    ∀t1 [ state(γ, t1, input(A)) |= observed(dark_in_room) � 

∃t2 ≥ t1 state(γ, t2, output(A)) |= performing_action(switch_on_lamp) ] 

Notice that also within states statements about time can be made (e.g., in state properties representing memory). To relate 
time within a state property to time external to states a state atom present_time(t) is used. This predicate is assumed to have 
the properties of correctness and uniqueness (see Appendix B).  

Dynamic properties to model a behavioral specification are assumed to be specified as a logical implication from temporal 
input patterns described by a past statement and an interval statement to a temporal output pattern described by a future 
statement. For simplicity, the consequent part has a format that prevents non-determinism in behavior. 

2.3 Past, Interval and Future Statements 
a) A past statement for a trace γ and a time point t over state ontology Ont is a temporal statement ϕp(γ,t) in TTL, such that 
each time variable different from t is restricted to the time interval before t. In other words, for every time quantifier for a time 
variable s a restriction of the form s � t, or s < t is required within the statement.  

b) An interval statement for a trace γ and time points t1 and t2 over state ontology Ont is a temporal statement ϕ(γ, t1, t2) in 
TTL, such that each time variable different from t1 and t2 is restricted to the time interval after t1 and before t2. In other words, 
for every time quantifier for a time variable s a restriction of the form s � t1 or s > t1 and s � t2 , or s < t2 is required within 
the statement.  



c) A future statement for a trace γ and a time point t over state ontology Ont is a temporal statement ϕf(γ,t) in TTL, such that 
for every time quantifier for a time variable s, different from t a restriction of the form s � t, or s > t is required within the 
statement.  

2.4 Postulated Internal States and their Relations 
An executable specification of the dynamics of an agent, generated from an external behavioral specification consists of a set 
of dynamic properties in an executable temporal language, representing temporal relations between a number of postulated 
internal (or mental) states.  

Internal states of a component A are described using a postulated internal state ontology InternalOnt(A). In cognitive 
science it is often assumed that an agent maintains a memory in the form of some internal model of the history. As in most 
literature in the cognitive area we assume that internal states are formed on the basis of (input) observations (sensory 
representations). For this the predicate memory is used. Therefore, a state ontology InternalOnt should contain sorts and 
predicates for defining memories about input states. For example, memory(t, observed(a)) expresses that at time point t the 
agent has memory that it observed a state property a. Before performing an action it is postulated that an agent creates an 
internal preparation state (e.g., a preparation to perform an action). For example, preparation_for(b) represents a preparation 
of an agent to perform an action b. Both memory and preparation states belong to a type of states, which are much better 
understood and physically grounded in neurobiological research than intentional states such as beliefs, desires, and intentions. 
This motivates the choice that has been made with respect to an internal representation of externally observable behavior of 
an agent.  

Each dynamic property in the internal specification of an agent is specified in one of the executable forms, given in Table 1. 
 

Table 1: Executable format of dynamic properties. 
 

If a conjunction of state properties X holds in trace γ  at time point t, 
(Step Property) 

then  a(nother) conjunction of state properties Y will hold in trace  γ at time 
point t+c,  with c>0 an integer constant  

∀t state(γ, t) |= X �  state(γ, t+c) |= Y 

If a conjunction of state properties X and a condition property C 
hold in trace γ at time point t, 
(Conditional Persistency Property)  

then this conjunction of  state properties X will hold in trace γ at the next 
time point  

∀t state(γ �, t) |= X & C �  state(γ, t+1) |= X 

If a conjunction of state properties X holds in trace γ � at time point t, 
(State Relation Property) 

then  a(nother) conjunction of state properties Y will hold in trace γ at the 
same time point t 

∀t state(γ �, t) |= X �  state(γ, t) |= Y      

3. Transformation into an Executable Format  
The procedure described in this section achieves the transformation of an external behavioral specification for an agent into 
the executable format and subsequently into the representation of a finite state transition system. Although in this paper this 
transformation is used for enabling simulations of different scenarios of agent behavior, this procedure can be also applied for 
verification and validation of agent systems. An external behavioral specification of an agent is defined as follows. 

Definition (External behavioral specification) 

An external behavioral specification for an agent system consists of dynamic properties ϕ(γ, t) expressed in TTL of the form 
[ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) is a past statement over the interaction ontology and ϕf(γ, t) is a future statement. The 
future statement is represented in the form of a conditional action: ϕf(γ, t) ⇔ ∀t1 > t [ϕcond(γ, t, t1) � ϕact(γ, t1)], where 
ϕcond(γ, t, t1) is an interval statement over the interaction ontology, which describes a condition for some specified action(s) 
and ϕact(γ, t1) is a (conjunction of) future statement(s) for t1 over the output ontology of the form state(γ, t1+c) |= 
performing_action(a),  for some integer constant c and action a.  

When a past formula ϕp(γ, t) is true for γ at time t, a potential to perform one or more action(s) exists. This potential is 
realized at time t1 when the condition formula ϕcond(γ, t, t1) becomes true, which leads to the action(s) being performed at the 
time point(s) t1+c indicated in ϕact(γ, t1).  

Let ϕ(γ, t) be a non-executable dynamic property from an external behavioral specification for agent A, for which an 
executable representation should be found.  

 



The Transformation Procedure 

(1) Identify executable temporal properties, which describe transitions from interaction states to memory states.  
(2) Identify executable temporal properties, which describe transitions from memory states to preparation states for 

performing an action. 
(3) Specify executable properties, which describe the transition from preparation states to the corresponding action 

performance states. 
(4) From the executable properties, identified during the steps 1-3, construct a part of the specification π(γ, t), which 

describes the internal dynamics of agent A, corresponding to the property ϕ(γ, t).  
(5) Apply the steps 1-4 to all properties in the external behavioral specification of the agent A. In the end add to the 

executable specification the dynamic properties, which were initially specified in executable form using an ontology, 
different than InteractOnt(A). 

(6) Translate the identified during the steps 1-5 executable rules into the transition system representation. 
Let us explain the details of the described procedure by means of an example, in which a delayed-response behavior of a 

laboratory mouse is investigated.  
The initial situation for the conducted experiment is defined as follows: the mouse is placed in front of a transparent screen 

that separates it from a piece of food that is put behind the screen. The mouse is able to observe the position of food and of 
the screen. At some moment after food has been put, a cup is placed covering the food, which makes food invisible for the 
mouse. After some time the screen is raised and the animal is free to go to any position. If the mouse comes to the position, 
where the food is hidden, then it will be capable to lift up the cup and get the food. 

The behavioral specification for the conducted experiment consists of environmental properties and externally observable 
behavioral properties of the mouse. For the purposes of illustration of the proposed transformation procedure the dynamic 
property that describes the delayed-response behavior of the mouse has been chosen. Informally this property expresses that 
the mouse goes to the position with food if it observes that there is no screen and at some point in the past the mouse observed 
food and since then did not observe the absence of food. According to the definition of an external behavioral specification 
the considered property can be represented in the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, t) is a formula  

∃t2 [state(γ, t2, input(mouse)) |= observed(food) ∧  

            ∀t3, t ≥ t3 > t2 state(γ, t3, input(mouse))|= not(observed(not(food)))] 

and ϕf(γ, t) is a formula  

∀t4 > t [state(γ, t4, input(mouse)) |= observed(not(screen)) �  

             state(γ, t4+c, output(mouse)) |= performing_action(goto_food) ] 

with ϕcond(γ, t, t4) is  

state(γ, t4, input(mouse)) |= observed(not(screen)) 

and ϕact(γ, t4) is  

state(γ, t4+c, output(mouse)) |= performing_action(goto_food), 

where t is the present time point with respect to which the formulae are evaluated. 

Step 1. From interaction states to memory states 

The formula ϕmem(γ, t) obtained by replacing all occurrences in ϕp(γ, t) of subformulae of the form state(γ, t') |= p by 
state(γ, t) |= memory(t', p) is called the memory formula for ϕp(γ, t).  

Thus, a memory formula defines a sequence of past events (i.e., a history) (e.g., observations of an external world, actions) 
for the present time point t. The time interval for generation of an internal memory state of an agent from its observation is 
assumed to be incommensurably smaller than time intervals between external events (i.e., stimuli). Therefore, in the proposed 
model both an observation state and a corresponding memory state are created at the same time point. 

According to Lemma 1 (see Appendix B) ϕmem(γ, t) is equivalent to some formula δ*(γ, t) of the form state(γ, t) |= qmem(t), 
where qmem(t) is called the normalized memory state formula for ϕmem(γ, t), which uniquely describes the present state at the 
time point t by a certain history of events. Moreover, qmem is the state formula ∀t’ [present_time(t’) � qmem(t’)]. For the 
considered example qmem(t) for ϕmem(γ, t) is specified as: 

∃t2 [ memory(t2, observed(food)) ∧  
             ∀t3, t ≥ t3 > t2 memory(t3, not(observed(not(food))))] 

Additionally, memory state persistency properties are composed for all memory atoms. For example, for the atom 
memory(t2, observed(food)) the corresponding persistency property is defined as:  



    ∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(food))  �   
       state(γ, t"+1, internal(mouse))  |= memory(t', observed(food)) 

Rules that describe creation and persistence of memory atoms are given in the executable theory from observation states to 
memory states Tho→m. For the considered example: 

    ∀t'  state(γ, t', input(mouse)) |= observed(food)  �   

  state(γ, t', internal(mouse))  |= memory(t', observed(food)) 

    ∀t'  state(γ, t', input(mouse)) |= not(observed(not(food)))  �   
      state(γ, t', internal(mouse))  |= memory(t', not(observed(not(food)))) 

    ∀t'  state(γ, t', input(mouse)) |= observed(not(food))  �   
       state(γ, t', internal(mouse))  |= memory(t', observed(not(food))) 

    ∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(food)) �   
         state(γ, t"+1, internal(mouse))  |= memory(t', observed(food)) 

    ∀t''  state(γ, t'', internal(mouse)) |= memory(t', not(observed(not(food)))) �   

        state(γ, t"+1, internal(mouse)) |= memory(t', not(observed(not(food)))) 

    ∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(not(food))) �   

         state(γ, t"+1, internal(mouse)) |= memory(t', observed(not(food))) 

Step 2. From memory states to preparation states  

Obtain ϕcmem(γ, t, t1) by replacing all occurrences in ϕcond(γ, t, t1) of state(γ, t') |= p by state(γ, t1) |= memory(t', p). The 
condition memory formula ϕcmem(γ, t, t1) contains a history of events, between the time point t, when ϕp(γ, t) is true and the 
time point t1, when the formula ϕcond(γ, t, t1) becomes true. Again by Lemma 1 ϕcmem(γ, t, t1) is equivalent to the state 
formula state(γ, t1) |= qcond(t, t1), where qcond(t, t1) is called the normalized condition state formula for ϕcmem(γ, t, t1). 
Moreover, qcond(t) is the state formula ∀t’ [ present_time(t’) � qcond(t, t’) ].  

For the considered example qcond(t, t4) for ϕcmem(γ, t) is obtained as: memory(t4, observed(not(screen))) and qcond(t): 
∀t' [ present_time(t')  �  memory(t', observed(not(screen)))]. 

Obtain ϕprep(γ, t1) by replacing in ϕact(γ, t1) any occurrence of state(γ, t1+c) |= performing_action(a) by state(γ, t1) |= 
preparation_for(action(t1+c, a)), for some number c and action a. The preparation state is created at the same time point t1, 
when the condition for an action ϕcond(γ, t, t1) is true. By Lemma 1 ϕprep(γ, t1) is equivalent to the state formula state(γ, t1) |= 
qprep(t1), where qprep(t1) is called the normalized preparation state formula for ϕcond(γ, t1). Moreover, qprep is the state 
formula ∀t’ [present_time(t’)] � qprep(t’)]. For the considered example qprep(t4) is composed as 
preparation_for(action(t4+c, goto_food)). 

Rules, which describe generation and persistence of condition memory states, a transition from the condition to the 
preparation state, and the preparation state generation and persistence, are given in the executable theory from memory states 
to preparation states Thm→p. For the considered example: 

∀t'  state(γ, t', input(mouse)) |= observed(not(screen))  �   

 state(γ, t', internal(mouse))  |= [ memory(t', observed(not(screen))) ∧  

 stimulus_reaction(observed(not(screen))) ] 

∀t''  state(γ, t'', internal(mouse)) |= memory(t', observed(not(screen))) �   

 state(γ, t"+1, internal(mouse))  |= memory(t', observed(not(screen))) 

∀t'  state(γ, t') |= ∀t'' [present_time(t'') →  

 ∃t2 [ memory(t2, observed(food)) ∧  

 ∀t3, t'' ≥ t3 > t2 memory(t3, not(observed(not(food))))]] �   

  state(γ, t') |= ∀t''' [ present_time(t''') → [∀t4 > t''' [ memory(t4,   

  observed(not(screen))) → preparation_for(action(t4+c, goto_food))]]] 

∀t', t state(γ, t')  |= [∀t''' [ present_time(t''') → [∀t4 > t'''  

 [ memory(t4, observed(not(screen))) →  

 preparation_for(action(t4+c, goto_food)) ] ] ] ∧  

 ∀t'' [present_time(t'') → memory(t'', observed(not(screen)))] ∧  

 stimulus_reaction(observed(not(screen))) ] �  

  state(γ, t', internal(mouse))  |= ∀t4 [ present_time(t4) →  

  preparation_for(action(t4+c, goto_food)) ] 

∀t'  state(γ, t') |= [ stimulus_reaction(observed(not(screen))) ∧  



  not(preparation_for(action(t'+c, goto_food))) ] � 

  state(γ, t'+1) |= stimulus_reaction(observed(not(screen))) 

∀t' state(γ, t', internal(mouse)) |= [ preparation_for(action(t'+c, goto_food)) ∧  

 not(performing_action(goto_food)) ] �   

state(γ, t'+1, internal(mouse))  |= preparation_for(action(t'+c, goto_food)).  

The auxiliary atoms stimulus_reaction(a) are used for reactivation of agent preparation states for generating recurring actions. 

Step 3. From preparation states  to action states 

The preparation state preparation_for(action(t1+c, a)) is followed by the action state, created at the time point t1+c. Rules 
that describe a transition from preparation to action states are given in the executable theory from the preparation to the 
action state(s) Thp→a. For the considered example the following rule holds: 

∀t' state(γ, t', internal(mouse)) |= preparation_for(action(t'+c, goto_food))  �   
          state(γ, t'+c, output(mouse))  |= performing_action(goto_food). 

Step 4. Constructing an executable specification 

An executable specification π(γ, t) for agent A is defined by a union of the dynamic properties from the executable theories 
Tho→m, Thm→p and Thp→a, identified during the steps 1-3. For the purposes of simulations of agent behavior the non-
executable external behavioral specification is replaced by the executable behavioral specification. The justification of such 
substitution is based on the theorem in Appendix B. 

Step 5. Constructing an executable specification for the whole external behavioral specification of an agent 

Other non-executable dynamic properties from the agent behavioral specification are substituted by executable ones by 
applying the same sequence of steps 1-4. In the end the executable properties for generating observation states from the states 
of the external world are added: 

    ∀t'  state(γ, t', world) |= [ food ∧ not(cup) ] �  

  state(γ, t', input(mouse))  |= observed(food) 

    ∀t'  state(γ, t', world) |= [ not(food) ∧ not(cup) ] �  

  state(γ, t', input(mouse))  |= observed(not(food)) 

∀t'  state(γ, t', world) |= not(screen)  �   

  state(γ, t', input(mouse))  |= observed(not(screen)) 

∀t'  state(γ, t', world) |= screen  �   

  state(γ, t', input(mouse))  |= observed(screen) 

It is assumed that an observation state is generated at the same time point, when a corresponding state of the external world 
is active. 

Step 6. Translation of an executable specification into a description of a transition system  

For the purpose of practical simulation a behavioral specification based on executable temporal logical properties generated at 
Step 5 is translated into a finite state transition system description. A finite state transition system is described by a tuple �Q, 
Q0, Σ, →→�, where  Q is a finite set of states of an agent, Q0

 ⊆ Q  is a set of initial states, Σ is a set of labels or events, which 
trigger the transition and →→ ⊆ Q x Σ x Q is a set of transitions. From the description of agent behavior in the form of a 
transition system the same traces are generated as by executing the dynamic properties.  

For translating the executable specification of agent behavior into the transition system representation the introduced earlier 
predicate present_time(t) is used. This predicate is only true in a state for the current time point t. The executable properties 
from the executable specification, translated into the transition rules for the considered example are given below: 

food ∧ not(cup) →→ observed(food) 

not(food) ∧ not(cup) →→ observed(not(food)) 

screen →→ observed(screen) 

not(screen) →→ observed(not(screen)) 

present_time(t) ∧ observed(food)  →→  memory(t, observed(food)) 

present_time(t) ∧ not(observed(not(food)))  →→  memory(t, not(observed(not(food)))) 

present_time(t) ∧ observed(not(food))  →→  memory(t, observed(not(food))) 

present_time(t) ∧ observed(not(screen))  →→  memory(t, observed(not(screen))) ∧ stimulus_reaction(observed(not(screen))) 



memory(t, observed(food))  →→  memory(t, observed(food)) 

memory(t, not(observed(not(food))))  →→  memory(t, not(observed(not(food)))) 

memory(t, observed(not(food)))  →→  memory(t, observed(not(food))) 

memory(t, observed(not(screen)))  →→  memory(t, observed(not(screen))) 

present_time(t) ∧ ∃t2 [ memory(t2, observed(food)) ∧ ∀t3, t ≥ t3 > t2 memory(t3, not(observed(not(food))))] →→  conditional_preparation_for(action(goto_food)) 

present_time(t) ∧ conditional_preparation_for(action(goto_food)) ∧ memory(t, observed(not(screen))) ∧ stimulus_reaction(observed(not(screen)))  →→  

preparation_for(action(t+c, goto_food))  

present_time(t) ∧ stimulus_reaction(observed(not(screen))) ∧ not(preparation_for(action(t+c, goto_food))) →→ stimulus_reaction(observed(not(screen))) 

preparation_for(action(t+c, goto_food)) ∧ not(performing_action(goto_food)) →→ preparation_for(action(t+c, goto_food)) 

preparation_for(action(t+c, goto_food)) ∧ present_time(t+c-1) →→  performing_action(goto_food). 

For performing simulations a special software tool has been developed. Based on a specification of agent behavior in form 
of a transition system and using a sequence of external events (i.e., stimuli) as input, the program generates a trace (i.e., a 
sequence of agent states over time). The generated in such way traces can be used for analysis of external and internal 
dynamics of the agent in different experimental settings. Furthermore, a transition system representation can be used for 
construction of graphical models of agent dynamics. A graphical model for the considered example is shown in Figure 1. The 
state description literals with names started with a capital letter denote variables, which allow a concise representation of sets 
of states. 

 
Figure 1:  Graphical model, which describes delayed-response behavior of a mouse in executable form. 

 

The model in Figure 1 has been built manually. However, there exist tools, as one described in van Ham, van de Wetering, 
and van Wijk (2002), which allow for automatic visualization of finite state transition systems and can be used for graphical 
analysis of executable models. 

4. Simulation example 
In this Section the proposed transformation procedure is applied for simulating adaptive behavior of Aplysia Californica (a sea hare). In 
neurobiology Aplysia has been often used for investigating classical and operant conditioning (Carew & Walters & Kandel, 1981). 
Consider a slightly simplified classical conditioning experiment of the Aplysia’s defensive withdrawal reflex. Before a learning phase a 
strong noxious stimulus (an electric shock) on the Aplysia’s tail produces a defensive reflex (a contraction), while a light tactile stimulus on 
Aplysia’s siphon does not lead to contraction. 

During the learning phase a light tactile stimulus on the Aplysia’s siphon is repeatedly paired with an electric shock on its tail. After a 
few trials (for this example three temporal pairings are assumed) the animal reacts by contraction to the light tactile stimulus. The property 
that describes the learning process of the animal from the external perspective can be represented in the form [ϕp(γ, t) � ϕf(γ, t)], where ϕp(γ, 
t) is a formula: 

∃t2, t3, t4, t5, t6, t7 [ t2 < t3 ∧ t3 < t4 ∧ t4 < t5 ∧ t5 < t6 ∧ t6 < t7 ∧ t7 < t state(γ, t2, input(aplysia)) |= observed(touch_siphon) ∧ state(γ, t3, input(aplysia)) |= 
observed(tail_shock) ∧ state(γ, t4, input(aplysia)) |= observed(touch_siphon) ∧ state(γ, t5, input(aplysia)) |= observed(tail_shock) ∧ state(γ, t6, input(aplysia)) |= 
observed(touch_siphon) ∧ state(γ, t7, input(aplysia)) |= observed(tail_shock) ] 

and ϕf(γ, t) is a formula  

∀t8  ≥ t [ state(γ, t8, input(aplysia)) |= observed(touch_siphon) �  

state(γ, t8+c, output(aplysia)) |= performing_action(contraction) ] 



with ϕcond(γ, t, t8) is ∀t8  ≥ t state(γ, t8, input(aplysia)) |= observed(touch_siphon) 

and ϕact(γ, t8) is state(γ, t8+c, output(aplysia)) |= performing_action(contracts), 

For this experiment c is assumed to be equal to two time units in a relative time scale.  

Using the automated procedure, from the external behavioral specification of Aplysia a transition system is generated2. This 
transition system is used for simulating a scenario of animal’s behavior with the following stimuli: touch the siphon (time 
points 0, 5, 9 and 15) and shock on the tail (time points 1, 6 and 10). The results of the simulation in form of a partial trace are 
given in Table 2. 

 
Table 2: Partial simulation trace illustrating adaptive behavior of Aplysia Californica. 

 
0: present_time(0) 

    world(0,touch_siphon) 

11: not(preparation_for(action(3,  contracts))) 

1: not(world(0,touch_siphon)) 

    observed(0,touch_siphon) 

……… 

2: memory(observed(0,touch_siphon)) 

    not(observed(0,touch_siphon)) 

    stimulus_reaction(observed( touch_siphon)) 

39: present_time(15) 

       world(15,touch_siphon) 

3: present_time(1) 

    world(1,tail_shock) 

40: not(world(15,touch_siphon)) 

      observed(15,touch_siphon) 

4: not(world(1,tail_shock)) 

    observed(1,tail_shock) 

41: memory(observed(15,touch_siphon)) 

       not(observed(15,touch_siphon)) 

       stimulus_reaction(observed( touch_siphon)) 

5: memory(observed(1,tail_shock)) 

    not(observed(1,tail_shock)) 

    stimulus_reaction(observed( tail_shock)) 

42: preparation_for(action(17,contracts)) 

6: conditional_preparation_for(action( contracts)) 43: not(stimulus_reaction(observed( touch_siphon))) 

      not(stimulus_reaction(observed(tail_shock))) 

7: preparation_for(action(3,contracts)) 44: present_time(16) 

8: not(stimulus_reaction(observed( touch_siphon))) 

    not(stimulus_reaction(observed( tail_shock))) 

45: present_time(17) 

      performing_action(contracts) 

9: present_time(2) 46: not(preparation_for(action(17,contracts))) 

10: present_time(3) 

      performing_action(contracts) 

47: present_time(18) 

 
In the given trace the process of conditioning starts at the state 0 (time point 0) and finishes at the state 36 (time point 12). 

After that the animal reacts to a light tactile stimulus (state 39) by producing a defensive reflex (states 42-45).  

5. Discussion 
Behavior of organisms comes in a variety of forms and complexities. Simple forms of behavior such as stimulus-response 
patterns can be formalized in relatively simple terms, based on direct stimulus-action associations that can be considered as 
associations between an input state and a subsequent output state of the organism. A description of an organism’s behavior in 
terms of such stimulus-action associations can directly be used as a basis to model and simulate this behavior. For more 
complex behavior, however, the picture is not so simple. To describe behavior from the external perspective, in general, an 
input-output correlation (cf. Kim, 1996) has to be specified which indicates how a pattern of input states over time relates to a 
pattern of output states over time. With increasing complexity of the behavior considered, specification of such an input-
output correlation will become more complex, and not take the form of direct stimulus-action associations anymore. The 
question arises how such more complex descriptions of behavior can be expressed and handled, and, in particular, how such 
                                                                 
2 For the external, executable and transition system specifications, the complete trace and a graphical model for this example see 

Appendixes C, D 



behavior can be simulated and analyzed. The answer on this question developed in this paper is twofold. First, a formal 
language is put forward that allows specifying behavior from an external perspective in terms of dynamic properties involving 
input states and output states over time. Secondly, it is shown how external behavior specifications expressed in such a 
language can be automatically transformed into executable specifications that easily can be used to perform simulation and 
analysis. This transformation creates a specification based on postulated internal states (in particular memory states and 
preparation states), and their direct temporal relationships.  

Sometimes, when a structure of a neurological circuit of an organism is known, it is possible to relate postulated internal 
states to certain real neurological states of an organism. The neurological model of Aplysia Californica, suggested by Roberts 
and Glanzman (2003) allows finding some correspondences between the postulated internal states described in the example of 
this paper and the real physical states of the organism. The observation states from our model can be related to activation 
states of sensory neurons, whereas the memory states (to some extent) can be put into correspondence with an enhancement of 
the strength of the synaptic connection between the sensory and motor neurons and with an associative increase in the 
excitability of the siphon sensory neurons of Aplysia (as followed from a correspondence with professor Glanzman) 
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Appendix A: Philosophical embedding 
 
To consider the behavior of an actor (an agent) from an external or an internal perspective is also a theme within Philosophy of Mind: the 
distinction between behaviorist and functionalist perspectives; e.g., Kim (1996). From the external perspective, behavior of the agent can 
be described by correlations of a certain complexity between its input and output states over time expressed in some (temporal) language, 
without any reference to internal or mental properties of the agent; these are called input-output correlations by Kim (1996). Such view is 
considered within the philosophical perspective of behaviorism (Kim, 1996). The states of the agent are required to be publicly observable 
and the statements that describe these states should be intersubjectively verifiable (Heil, 2000). According to the apologists of behaviorism 
J. Watson (1913) and B. Skinner (1953), internal states of the agent (mental or inner states) are considered to be methodologically 
intractable and unnecessary, since they are based on a personal subjective experience and evaluations and can not be used for analysis and 
predictions of the agent behavior. However, for less simple types of behavior, a specification of externally observable behavior of the agent 
often consists of complex temporal relations that can not be directly automated and used for simulations.  
 
From the internal perspective the behavior of the agent can be characterized by a specification of more direct (causal) temporal relations 
between mental states of the agent, based on which an externally observable behavioral pattern is generated. Such perspective is taken 
within the philosophical perspective of functionalism (Kim, 1996). From this perspective mental states are described by their functional or 
causal roles. In contrast to behaviorism, a mental state is characterized by its direct temporal or causal relations with input, output and other 
mental states. Functionalism was originally formulated by Putnam in terms of a “Turing machine”  (Putman, 1975), an abstract machine to 
give a mathematically precise definition of an algorithm or an automatic procedure. However, in general other executable (temporal) 
languages can be applied to specify functional roles.  
 

Executability is an important advantage of functionalist specifications over behaviorist ones. By means of executable specifications it is 
possible to perform automated simulations of different scenarios and analysis of agent behavior. For enabling automated analysis of a 
behaviorist model, it should be (automatically) translated into executable format, i.e., into functionalist representation using certain 
(synthetic, hypothetical) internal mental states. So, the main problem addressed in this paper can be expressed as to transform behaviorist 
specifications into functionalist ones. Indeed a description of internal dynamics is provided that conforms to the postulates of functionalism 
and can be considered from the positions of this perspective. Thus, by means of the formalized and automated procedure proposed a 
relationship between the perspectives of behaviorism and functionalism is established. 
 

As in the literature on logical behaviorism (Priest, 1991) it is claimed that any meaningful psychological statement can be transformed into 
a behaviorist style of statement (e.g., Kim, 1996), a converse translation can also be considered. This will be done in future work, as an 
extension of the work presented in this paper. The combination of both translations can be considered as well, thus obtaining a form of 
normalization of a functionalist-style specification, or the same for a behaviorist-style specification. 



Appendix B: Theoretical results 
 

TTL Syntax and Semantics 
The language TTL, short for Temporal Trace Language, is a variant of order-sorted predicate logic. Whereas standard multi-sorted 
predicate logic is a language to reason about static properties only, TTL is an extension of such languages with facilities for reasoning 
about the dynamic properties of arbitrary systems expressed by static languages. 

Language of TTL 

The language of TTL is defined as follows.  

An alphabet for TTL consists of a signature and standard logical connectives.  

A signature consists of the symbols of the following classes: 

(1) several standard sorts, among which TIME (a set of all time points), STATE (a set of all state names), TRACE (a set of all trace 
names; a trace can be considered as a timeline), STATPROP (a set of all state property expressions), TRUTH_VALUE (a set with two 
elements: false and true) and STATOM (STATOM is a subsort of STATPROP). All other sorts, which depend on an application 
domain, represent subsorts of the general sort OBJECT. Sorts STATE_INSTANCE and STATE_VARIABLE are subsorts of the sort 
OBJECT. 

(2) countably infinite number of individual variables of each sort. We shall use t with subscripts and superscripts for variables of the sort 
TIME; γ with subscripts and superscripts for variables of the sort TRACE; s with subscripts and superscripts for variables of the sort 
STATE.  

(3) a number of constants for sorts TIME, STATE, TRACE, STATPROP, TRUTH_VALUE, OBJECT and STATOM, among which ⊗ of 
the sort STATE, and true and false of the sort TRUTH_VALUE. The constant ⊗ designates an undefined state in the trace for a 
certain time value. 

(4) function symbols, among which: 
a) for each n ≥ 1, a finite or countably infinite number of function symbols of type (OBJECT)n → STATOM. 
b) a binary function symbol state of type TRACE x TIME →  STATE 
c) a binary function symbol truth_value of type STATE x STATOM →  TRUTH_VALUE 
d) a binary function symbol and of type STATPROP x STATPROP → STATPROP 
 - the same for or, implication and equivalence function symbols 
e) a unary function symbol not of type STATPROP → STATPROP 
f) a binary function symbol forall of type STATE_VARIABLE x STATPROP → STATPROP 
 - the same for the exists function symbol 

(5) predicate symbols 
a) a predicate symbol holds of type STATE x STATPROP. 
b) =: TRACE x TRACE 
c) =: STATE x STATE 
d) =: TIME x TIME 
e) <: TIME x TIME 
f)  ⊆: TRACE x TRACE 

 

Standard logical connectives 

(1)  standard connectives: ∨, ∧, ⇔, �, ¬ 

(2)  standard quantifiers: ∀, ∃ 

(3)  standard punctuation symbols: ), (, ‘ ,’  

 

A sorted term is defined as usually in sorted predicate logic. 

TTL- formulae are defined inductively as follows: 

A.  The set of atomic TTL-formulae is defined as: 

(1) If v1 is a variable of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, u1) is an atomic TTL formula. 
(2) if t1, t2 are terms of sort TIME, then = (t1, t2) is an atomic TTL formula. (further we shall use this predicate in form t1 = t2) 
(3) if t1, t2 are terms of sort TIME, then < (t1, t2) is an atomic TTL formula. (further we shall use this predicate in form t1 < t2, 
furthermore we shall use t1 ≤ t2 for t1<t2 ∧ t1=t2) 
(4) if γ1, γ2 are terms of sort TRACE, then = (γ1, γ2) is an atomic TTL formula. (further we shall use this predicate in form γ1= γ2) 



(5)  if s1, s2 are terms of sort STATE, then = (s1, s2) is an atomic TTL formula. (further we shall use this predicate in form s1 = s2) 
 

B.  The set of well-formed TTL-formulae is defined as 

(1) Any atomic TTL-formula is a well-formed TTL-formula 
If F and G are well-formed TTL-formulae, then so are ~F, (F∨G), (F∧G), (F�G) and (F⇔G). 
(2) If F is a well-formed TTL-formula containing x as a free variable, where x is a variable of any sort, then (∀x F) and (∃x F) are 
well-formed TTL-formulae. 

 

The Semantics of TTL 

An interpretation of a TTL formula is defined by the standard interpretation of order sorted predicate logic formulae. That is, the 
interpretation associates each sort symbol to a certain subdomain, such that a subdomain is included in another one, if the sort symbol 
designating the included subdomain is a subsort of the sort symbol designating the first one. Furthermore, an interpretation associates each 
function symbol with a mapping and each predicate symbol with a relation defined on the subdomains given by the interpretation for the 
respective sort name symbols and obtaining an element of the subdomain associated with the range sort name in the case of a functional 
symbol. Each variable assignment assigns a variable of a certain sort to an element of the subdomain associated with that sort. The 
semantics of connectives and quantifiers is defined in the standard way. 

 

Subdomain of TRUTH_VALUE: true, false 

Subdomain of TIME: N (the set of natural numbers, or the set of real numbers) 

Subdomain of STATE: ⊗, state1, …, staten (the set of state names) 

Subdomain of TRACE: trace1, …, tracen (the set of trace names) 

Subdomain of STATOM: the set of state atom expressions 

Subdomain of STATPROP: the set of state property expressions 

Subdomain of STATE_INSTANCE: the set of state instances terms 

Subdomain of STATE_VARIABLE: the set of state variables names 

 

TTL Axioms 

(1) Congruence of traces:  
      ∀γ1, γ2 [∀t [state(γ1, t) = state(γ2, t) ] � γ1 = γ2] 

(2) Order relation between traces:  
      ∀γ1, γ2 [∀t [state(γ1, t) = state(γ2, t) ∨ state(γ1, t) = ⊗ ] � γ1 ⊆ γ2] 

(3) Equality of states:  
       ∀s1, s2 [∀a:STATOMS [truth_value(s1, a) = truth_value(s2, a)] � s1=s2] 

(4) State property semantics 
a. holds(s, and(p1, p2)) ⇔ holds(s, p1) ∧ holds(s, p2) 
b. holds(s, or(p1, p2)) ⇔ holds(s, p1) ∨ holds(s, p2) 
c. holds(s, not(p1)) ⇔ ¬holds(s, p1) 
d. holds(s, exists(p1, F)) ⇔ ∃p1 holds(s, F) 
e. forall(s, forall(p1, F)) ⇔ ∀p1 holds(s, F) 

(5) Partial order axioms for the time sort: 
a. ∀t t≤ t 
b. ∀t1,t2 [ t1 ≤ t2 ∧ t2 ≤ t1 ] � t1=t2 
c. ∀t1, t2, t3 [ t1 ≤ t2 ∧ t2 ≤ t3 ] � t1 ≤ t3  

 

Properties of time 
Uniqueness of time 

This expresses that present_time(t) is true for at most one time point t: 

∀t, t'' state(γ, t) |= present_time(t'') � ∀t', t'≠t'' ¬ state(γ, t) |= present_time(t') 

Correctness of time 

This expresses that present_time(t) is true for the current time point t: 

∀t state(γ, t) |= present_time(t) 



 

Executable theories 
For a given ϕ(γ, t) the executable theory from observation states to memory states Tho→m consists of the formulae: 

For any state atom p occurring in ϕp(γ, t), expressed in the InteractionOnt(A) for agent A: 

∀t' state(γ, t') |= p  �  state(γ, t')  |= memory(t', p), 

∀t'' state(γ, t'') |= memory(t', p) �  state(γ, t"+1)  |= memory(t', p), 

state(γ, 0) |= present_time(0), 

∀t state(γ, t) |= present_time(t) � state(γ, t+1) |= present_time(t+1), 

The last two rules are assumed to be included into the other theories Thm→p and Thp→a as well. 

 

For a given ϕ(γ, t) the executable theory from memory states to preparation states Thm→p consists of the formulae: 

For any state atom p occurring in ϕcond(γ, t, t1), expressed in the InteractionOnt(A) for agent A3:: 

∀t' state(γ, t') |= p  �  state(γ, t')  |= [ memory(t', p) ∧ stimulus_reaction(p) ] 

∀t'', t’ state(γ, t'')  |= memory(t', p) �  state(γ, t''+1)  |= memory(t', p) 

∀t' state(γ, t')  |= qmem �  state(γ, t')  |= qcprep, 

∀t', t state(γ, t')  |= [qcprep ∧ qcond(t) ∧ ∩  stimulus_reaction(p) ] �  state(γ, t')  |= qprep, 
   p 

∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ ¬ preparation_for(action(t'+c, a)) ] �  state(γ, t'+1)  |= stimulus_reaction(p), 

∀t' state(γ, t') |= [ preparation_for(action(t'+c, a)) ∧ ¬performing_action(a) ] �  state(γ, t’+c)  |= preparation_for(action(t'+c, a)), 

where a an action for which state(γ, t’+c)  |= performing_action(a) occurs in ϕf(γ, t). 

 

For a given ϕf(γ, t) the executable theory from the preparation to the action state(s) Thp→a consists of the formula 

∀t' state(γ, t') |= preparation_for(action(t'+c, a))  �  state(γ, t’+c)  |= performing_action(a), 

where c is a number and a an action for which state(γ, t’+c)  |= performing_action(a) occurs in ϕf(γ, t). 

 

The transition rules obtained from the executable theories Tho→→→→m, Thm→→→→p , and Thp→→→→a: 

Time increment rules: 

present_time(0) ∧ ¬p →  present_time(1) 

present_time(t) ∧ ¬qmem ∧ ¬p →  present_time(t+1) 

present_time(t) ∧ qcprep ∧ ¬qcond(t) ∧ ¬p →  present_time(t+1) 

present_time(t) ∧ qprep →  present_time(t+1) 

Memory state creation rule: 

For any state atom p occurring in ϕcond(γ, t, t1), expressed in the InteractionOnt(A) for agent A: 

present_time(t) ∧ p → [ memory(t, p) ∧ stimulus_reaction(p) ] 

For all other state atoms p 

present_time(t) ∧ p →  memory(t, p) 

Memory persistence rule:  

memory(t, p) →  memory(t, p) 

Conditional preparation generation rule: 

qmem → conditional_preparation_for(action(a)), 

where a an action for which state(γ, t’+c)  |= performing_action(a) occurs in ϕf(γ, t). 

 

 
                                                                 
3 If a future formula does not contain a condition, then stimulus_reaction atoms are generated from a corresponding past formula 



Preparation state creation rule:  

present_time(t’) ∧ conditional_preparation_for(action(a)) ∧ qcond(t) ∧ ∩  stimulus_reaction(p) →  preparation_for(action(t’+c, a)) 
   p 

for every subformula of the form 

present_time(t’) → preparation_for(action(t’+c, a)) 

that occurs in qcprep. 

Preparation state persistence rule:  

preparation_for(action(t+c, a)) ∧ ¬performing_action(a) →  preparation_for(action(t+c, a)) 

Stimulus reaction state persistence rule:  

present_time(t’) ∧ stimulus_reaction(p) ∧ ¬ preparation_for(action(t'+c, a))  →  stimulus_reaction(p) 

Action state creation rule:  

preparation_for(action(t+c, a)) ∧ present_time(t+c-1) →  performing_action(a), where a is an action. 

 

 

Lemmas, Propositions and Theorem 
Lemma 1 (Normalisation lemma) 

Let t be a given time point. If a formula δ(γ, t) only contains temporal relations such as t' < t" and t' ≤ t", and atoms of the form state(γ, t)  |=  
p for some state formula p, then some state formula q(t) can be constructed such that δ(γ, t) is equivalent to the formula δ*(γ, t) of the form 
state(γ, t) |= q(t). 

Proof sketch for Lemma 1. 

First in the formula δ(γ, t) replace all temporal relations such as t' < t" and t' ≤ t" by state(γ, t) |= t' < t" and state(γ, t) |= t' ≤ t" respectively. 
Then proceed by induction on the composition of the formula δ(γ, t). Treat the logical connectives AND, OR, NOT, �, ∀s, ∃s. 

1) conjunction: δ(γ, t)  is  δ1(γ, t) AND  δ2(γ, t)   

By induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)  ) 

δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)  ) 

Then 

δ(γ, t)  ⇔  state(γ, t) |= p1  AND  state(γ, t) |= p2  ⇔  state(γ, t) |= p1 ∧ p2   (which becomes δ*(γ, t)) 

2) disjunction: δ(γ, t)  is  δ1(γ, t)  OR  δ2(γ, t) 

Again by induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)) 

δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)) 

Then 

δ(γ, t)  ⇔  state(γ, t) |= p1  OR  state(γ, t) |= p2  ⇔  state(γ, t) |= p1 | p2   (which becomes δ*(γ, t)) 

3) negation: δ(γ, t)  is  ¬δ1(γ, t) 

δ1(γ, t)  ⇔  state(γ, t) |= p1 

δ(γ, t)  ⇔  ¬state(γ, t) |= p1 

δ(γ, t)  ⇔  state(γ, t) |= ¬p1   (which is δ*(γ, t)) 

4) implication: δ(γ, t)  is  δ1(γ, t)  �  δ2(γ, t) 

Again by induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1   (which is δ1*(γ, t)) 

δ2(γ, t)  ⇔  state(γ, t) |= p2   (which is δ2*(γ, t)) 

Then 

δ(γ, t)  ⇔  [state(γ, t) |= p1  � state(γ, t) |= p2]  ⇔  state(γ, t) |= [p1 � p2]   (which becomes δ*(γ, t)) 

5) universal quantifier:  



δ(γ, t)  ⇔ ∀t' state(γ, t) |= p1(t') 

δ(γ, t)  ⇔ state(γ, t) |= ∀t' p1(t') (which is δ*(γ, t)) 

6) existential quantifier: 

δ(γ, t)  ⇔ ∃t' state(γ, t) |= p1(t') 

δ(γ, t)  ⇔ state(γ, t) |= ∃t' p1(t')    (which becomes δ*(γ, t)) 

 

Lemma 2 

If time has properties of correctness and uniqueness, then 

ϕmem(γ, t) ⇔ state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem (4) 

Proof. 

The proof for Lemma 2 follows directly from the Lemma 1, definitions of correctness and uniqueness of time and the definition of the 
formula qmem. Lemmas 3, 4 and 5 can be proven in the same manner. 

 

Proposition 1 

Let ϕp(γ, t) be a past statement for a given t, ϕmem(γ, t) the memory formula for ϕp(γ, t), qmem(t) the normalized memory state formula for 
ϕmem(γ, t), and Tho→m the executable theory from the interaction states for ϕp(γ, t) to the memory states. Then,  

Tho→m  |=  [ϕp(γ, t)  ⇔  ϕmem(γ, t)] 

and  

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem]. 

Proof. 

From the definitions of qmem(t) and of Tho→m follows 

Tho→m  |=  [ ϕp(γ, t)  ⇔  ϕmem(γ, t)  ] 

Further by Lemma 2 

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t)  ] �  
 

Lemma 3 

If time has properties of correctness and uniqueness, then 

ϕcmem(γ, t, t1) ⇔ state(γ, t1) |= qcond(t, t1) ⇔ state(γ, t1) |= qcond(t)  (5) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 

 

Lemma 4 

If time has properties of correctness and uniqueness, then 

ϕprep(γ, t1)  ⇔  state(γ, t1) |= qprep(t1)  ⇔  state(γ, t1) |= qprep        (6) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 

 

Lemma 5 

If time has properties of correctness and uniqueness, then 

ϕcprep(γ, t) ⇔ state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep (7) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 

 

Proposition 2 



Let ϕf(γ, t) be a future statement for t of the form ∀t1>t [ϕcond(γ, t, t1) � ϕact(γ, t1)], where ϕcond(γ, t, t1) is an interval statement, which 
describes a condition for one or more actions and ϕact(γ, t1) is a (conjunction of) future statement(s) for t1, which describes action(s) that are 
to be performed; let ϕcprep(γ, t) be the conditional preparation formula for ϕf(γ, t), qcprep(t) be the normalized conditional preparation state 
formula for ϕcprep(γ, t), and Thm→p the executable theory for ϕ(γ, t) from memory states to preparation states. Then,  

Thm→p  |=  [ϕf(γ, t)  ⇔ ϕcprep(γ, t)] 

and  

Thm→p  |=  [ ϕf(γ, t)  ⇔  state(γ, t) |= qcprep(t) ⇔  state(γ, t) |= qcprep]. 

Proof. 

From definition of Thm→p , Lemmas 3 and 4 follows that  

Thm→p  |=  [ ϕcond(γ, t, t1)  ⇔  qcond(t, t1) ]  (8) 

and  

Thm→p  |=  [ ϕact(γ, t1)  ⇔  qprep(γ, t1)] (9) 

From (8), (9), definitions of the conditional preparation formula and the normalized conditional preparation state formulae, and the 
conditions of the proposition it follows 

Thm→p  |= [ ϕf(γ, t) ⇔ ∀t1 >t [qcond(t, t1) � qprep(γ, t1)] ⇔ ∀t1>t ϕcprep(γ, t, t1) ⇔ ϕcprep(γ, t) ] 
And from Lemma 5 follows 

Thm→p  |=  [ ϕf(γ, t)  ⇔  ∀t1>t  state(γ, t) |= qcprep(t, t1) ⇔ state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep ] �  
 

Proposition 3 

Let ϕp(γ, t) be a past statement for t and ϕf(γ, t) be a future statement for t. Let ϕmem(γ, t) be the memory formula for ϕp(γ, t) and ϕcprep(γ, t) the 
conditional preparation formula for ϕf(γ, t). Then 

[ϕp(γ, t) � ϕf(γ, t)]  ⇔ [ϕmem(γ, t) � ϕcprep(γ, t)] 

Proof. 

From the Proposition 1 and the Proposition 2 follows 

ϕp(γ, t)  ⇔  ϕmem(γ, t) and ϕf(γ, t)  ⇔ ∀t1>t ϕcprep(γ, t, t1) 

Then,  

[ϕp(γ, t) � ϕf(γ, t)] ⇔ [ϕmem(γ, t) � ∀t1>t ϕcprep(γ, t, t1)] 

So it has been proven that [ϕp(γ, t) � ϕf(γ, t)] ⇔ [ϕmem(γ, t) � ϕcprep(γ, t)] �  

 

Two traces γ1, γ2 coincide on ontology Ont (denoted by coincide_on(γ1, γ2, Ont)) iff 

∀t ∀a∈At(Ont)     state(γ1, t) |= a  ⇔  state(γ2, t) |= a 

Let ϕ(γ, t) be an externally observable dynamic property for agent A. An executable specification π(γ, t) for A refines ϕ(γ, t) iff 

(1) ∀γ, t  π(γ, t)  �  ϕ(γ, t) 

(2) ∀γ1, t [ ϕ(γ1, t)  �  [ ∃γ2  coincide_on(γ1, γ2, InteractionOnt(A)) ∧ π(γ2, t) ] ] 

 

Lemma 6 

Let ϕ(γ, t) be a dynamic property expressed using the state ontology Ont. Then the following holds: 

(1) coincide_on(γ1, γ2, Ont)  ∧ coincide_on(γ2, γ3, Ont)  � coincide_on(γ1, γ3, Ont)   

(2) coincide_on(γ1, γ2, Ont)  �  [  ϕ(γ1, t)  ⇔ ϕ(γ2, t)  ]. 

 

Proof sketch. 

The transitivity property (1) follows directly from the definition of coinciding traces for coincide_on(γ1, γ2, Ont)  and coincide_on(γ2, γ3, 
Ont): 

∀a∈At(Ont)   ∀t'   [state(γ1, t') |= a  ⇔  state(γ3, t') |= a  ] � coincide_on(γ1, γ3, Ont) 

From 

∀ γ1, γ2  [ coincide_on(γ1, γ2, Ont)  �  ∀t' [ϕp(γ1, t') ⇔ ϕp(γ2, t')  AND ϕf(γ1, t') ⇔ ϕf(γ2, t') ]] 



follows that  ϕ(γ1, t)  ⇔ ϕ(γ2, t). 

Note that for any past interaction statement ϕp(γ, t) and future interaction statement ϕf(γ, t) the following holds: 

∀ γ1, γ2  [ coincide_on(γ1, γ2, InteractionOnt) �  [ϕp(γ1, t) ⇔ ϕp(γ2, t) ∧ ϕf(γ1, t) ⇔ ϕf(γ2, t) ]] 

 

Theorem 

If the executable specification πA(γ, t) refines the external behavioral specification ϕA(γ, t) of agent A, and ψ(γ, t) is a dynamic interaction 
property of agent A in its environment, expressed using the interaction ontology InteractionOnt(A), then 

[∀γ  [ π A(γ, t)   �  ψ(γ, t) ]  ]  ⇔    [∀γ  [ ϕ A(γ, t)   �  ψ(γ, t) ]  ] 

Proof sketch for Theorem. 

⇐  is direct:  

from  πi(γ, t) �  ϕi(γ, t)  and   ∧ϕi(γ, t)  �  ψ(γ, t)  it follows  ∧πi(γ, t)  �  ψ(γ, t). 

�  runs as follows:  

Suppose ϕi(γ, t) holds for all i, then since π1(γ) refines ϕ1(γ, t), then according to the definition of refinement of an externally observable 
property exists such a γ1 that π1(γ1) and coincide_on(γ, γ1, InteractionOnt (A)).  

Due to Lemma 6, this γ1 still satisfies all ϕi(γ1, t) (i.e., ϕi(γ1, t) holds for all i). 

Proceed with γ1 to obtain a γ2 and further for all i to reach a trace γn, for which   

πi(γn)  holds for all i,  

and  

coincide_on(γ, γn, InteractionOnt(A)), 

and 

ϕi(γn) holds for all i. 

 

From   

 ∀γ ∀i [πi (γ)  �  ϕi (γ)], 

and 

 ∀γ   [ ∧πi(γ)  �  ψ(γ, t)  ] 

it follows that ∀γ  ∧ϕi(γ)  �  ψ(γ). 

So it has been proven that  ∀γ  ∧ϕi(γ)  �  ψ(γ) . �  



Appendix C: External, executable internal and transition system specifications for the example of 
classical conditioning for Aplysia Californica’s defensive withdrawal reflex 

External specification 

Dynamic Property 1: ∃t2, t3, t4, t5, t6, t7 [ t2 < t3 ∧ t3 < t4 ∧ t4 < t5 ∧ t5 < t6 ∧ t6 < t7 ∧ t7 < t ∧ state(γ� , t2, input(aplysia)) |=  

observed(touch_siphon) ∧ state(γ, t3, input(aplysia)) |= observed(tail_shock) ∧ state(γ, t4, input(aplysia)) |= observed(touch_siphon) ∧  

state(γ, t5, input(aplysia)) |= observed(tail_shock) ∧ state(γ, t6, input(aplysia)) |= observed(touch_siphon) ∧ state(γ, t7, input(aplysia)) |=  

observed(tail_shock) ] � 

[ ∀t8  ≥ t  ∧ state(γ, t8, input(aplysia)) |= observed(touch_siphon) � state(γ, t8+c, output(aplysia)) |= performing_action(contraction) ] 

Dynamic Property 2: ∀t9 ≤ t state(γ, t9, input(aplysia)) |= observed(tail_shock)  �  state(γ, t9+c, output(aplysia))  |=  

performing_action(contraction)  

 

Executable specification 
∀t' state(γ, t', input(aplysia)) |= observed(touch_siphon)  �  state(γ, t', internal(aplysia))  |= [ memory(t', observed(touch_siphon)) ∧  

stimulus_reaction(observed(touch_siphon)) ] 

∀t' state(γ, t', input(aplysia)) |= observed(tail_shock)  �  state(γ, t', internal(aplysia))  |= [ memory(t', observed(tail_shock)) ∧  

stimulus_reaction(observed(tail_shock)) ] 

∀t'' state(γ, t'', internal(aplysia)) |= memory(t', observed(touch_siphon)) �  

state(γ, t"+1, internal(aplysia))  |= memory(t', observed(touch_siphon)) 

∀t'' state(γ, t'', internal(aplysia)) |= memory(t', observed(tail_shock)) �  state(γ, t"+1, internal(aplysia))  |= memory(t', observed(tail_shock)) 

∀t'  state(γ, t') |= ∀t'' [present_time(t'') →  

 [ ∃t2, t3, t4, t5, t6, t7 [ t2 < t3 ∧ t3 < t4 ∧ t4 < t5 ∧ t5 < t6 ∧ t6 < t7 ∧ t7 < t'' ∧ memory(t2, observed(touch_siphon)) ∧ memory(t3,  

 observed(tail_shock)) ∧ memory(t4, observed(touch_siphon)) ∧ memory(t5, observed(tail_shock)) ∧ memory(t6,  

 observed(touch_siphon)) ∧ memory(t7, observed(tail_shock))]] �   

 state(γ, t') |= ∀t''' [ present_time(t''') → [∀t8 > t''' [ memory(t8, observed(touch_siphon)) → preparation_for(action(t8+c, contracts))]]] 

∀t' state(γ, t')  |= [∀t''' [ present_time(t''') → [∀t8 > t''' [ memory(t8, observed(touch_siphon)) →  

 preparation_for(action(t8+c, contracts)) ] ] ] ∧ 

 ∀t'' [present_time(t'') → memory(t'', observed(touch_siphon))] ∧ stimulus_reaction(observed(touch_siphon)) ] �  

 state(γ, t', internal(aplysia))  |= ∀t8 [ present_time(t8) →  

 preparation_for(action(t8+c, contracts)) ] 

∀t'  state(γ, t') |= [  stimulus_reaction(observed(touch_siphon)) ∧ not(preparation_for(action(t'+c, contracts))) ] � 

  state(γ, t'+1) |=  stimulus_reaction(observed(touch_siphon)) 

∀t'  state(γ, t') |= [  stimulus_reaction(observed(tail_shock)) ∧ not(preparation_for(action(t'+c, contracts))) ] � 

  state(γ, t'+1) |=  stimulus_reaction(observed(tail_shock)) 

∀t' state(γ, t', internal(aplysia)) |= preparation_for(action(t'+c, contracts))  �   

 state(γ, t'+c, output(aplysia))  |= performing_action(contracts) 

∀t' state(γ, t', internal(aplysia)) |= [ preparation_for(action(t'+c, contracts)) ∧ not(performing_action(contracts)) ] �   

 state(γ, t'+1, internal(aplysia))  |= preparation_for(action(t'+c, contracts)) 

∀t' state(γ, t') |= [ [ ∀t'' [ present_time(t'') → ∀t9 ≤ t'' memory(t9, observed(tail_shock)) ] ∧ stimulus_reaction(observed(tail_shock)) ] �   

 state(γ, t', internal(aplysia)) |= preparation_for(action(t9+c, contracts)) ] 

∀t' state(γ, t', world) |= touch_siphon  �  state(γ, t', input(aplysia))  |= observed(touch_siphon) 

∀t' state(γ, t', world) |= tail_shock  �  state(γ, t', input(aplysia))  |= observed(tail_shock) 

 

 



Transition system 

touch_siphon  →→ observed(touch_siphon) 

tail_shock  →→ observed(tail_shock) 

present_time(t) ∧ observed(touch_siphon)  →→ [ memory(t, observed(touch_siphon)) ∧ stimulus_reaction(observed(touch_siphon))] 

present_time(t) ∧ observed(tail_shock)  →→  [ memory(t, observed(tail_shock)) ∧ stimulus_reaction(observed(tail_shock))] 

memory(t, observed(touch_siphon)  →→  memory(t, observed(touch_siphon)) 

memory(t, observed(tail_shock)  →→  memory(t, observed(tail_shock)) 

present_time(t) ∧ ∃t2, t3, t4, t5, t6, t7 [ t2 < t3 ∧ t3 < t4 ∧ t4 < t5 ∧ t5 < t6 ∧ t6 < t7 ∧ t7 < t ∧ memory(t2, observed(touch_siphon)) ∧ 
memory(t3, observed(tail_shock)) ∧ memory(t4, observed(touch_siphon)) ∧ memory(t5, observed(tail_shock)) ∧ memory(t6, 
observed(touch_siphon)) ∧ memory(t7, observed(tail_shock))] →→ conditional_preparation_for(action(contracts)) 

present_time(t) ∧ ∀t9 ≤ t ∧ memory(t9, observed(tail_shock)) →→ conditional_preparation_for(action(contracts)) 

present_time(t) ∧ conditional_preparation_for(action(contracts)) ∧ memory(t8, observed(touch_siphon)) ∧  

stimulus_reaction(observed(touch_siphon)) →→ preparation_for(action(t+c, contracts))  

present_time(t) ∧ conditional_preparation_for(action(contracts)) ∧ stimulus_reaction(observed(tail_shock)) →→  

preparation_for(action(t+c, contracts))  

present_time(t) ∧ stimulus_reaction(observed(touch_siphon)) ∧ not(preparation_for(action(t+c, contracts))) →→ 

stimulus_reaction(observed(touch_siphon)) 

present_time(t) ∧ stimulus_reaction(observed(tail_shock)) ∧ not(preparation_for(action(t+c, contracts))) →→ 

stimulus_reaction(observed(tail_shock)) 

preparation_for(action(t+c, contracts)) ∧ not(performing_action(contracts)) →→ preparation_for(action(t+c, contracts)). 

preparation_for(action(t+c, contracts)) ∧ present_time(t+c-1) →→ performing_action(contracts). 

 



Appendix D: Complete simulation trace and a graphical model for the example of classical 
conditioning for Aplysia Californica’s defensive withdrawal reflex 

Complete simulation trace for the scenario, considered in the paper 

0: present_time(0) 

    world(0,touch_siphon) 

24: not(preparation_for(action(8, contracts))) 

1: not(world(0,touch_siphon)) 

    observed(0,touch_siphon) 

25: present_time(9) 

      world(9,touch_siphon) 

2: memory(observed(0,touch_siphon)) 

    not(observed(0,touch_siphon)) 

    stimulus_reaction(observed(touch_siphon)) 

26: not(world(9,touch_siphon)) 

      observed(9,touch_siphon) 

3: present_time(1) 

    world(1,tail_shock) 

27: memory(observed(9,touch_siphon)) 

      not(observed(9,touch_siphon)) 

      stimulus_reaction(observed(touch_siphon)) 

4: not(world(1,tail_shock)) 

    observed(1,tail_shock) 

28: present_time(10) 

      world(10,tail_shock) 

5: memory(observed(1,tail_shock)) 

    not(observed(1,tail_shock)) 

    stimulus_reaction(observed(tail_shock)) 

29: not(world(10,tail_shock)) 

      observed(10,tail_shock) 

6: conditional_preparation_for(action(contracts)) 30: memory(observed(10,tail_shock)) 

       not(observed(10,tail_shock)) 

      stimulus_reaction(observed(tail_shock)) 

7: preparation_for(action(3,contracts)) 31: conditional_preparation_for(action(contracts)) 

8: not(stimulus_reaction(observed(touch_siphon))) 

    not(stimulus_reaction(observed(tail_shock))) 

32: preparation_for(action(12,contracts)) 

9: present_time(2) 33: not(stimulus_reaction(observed(touch_siphon))) 

      not(stimulus_reaction(observed(tail_shock))) 

10: present_time(3) 

      performing_action(contracts) 

34: present_time(11) 

11: not(preparation_for(action(3, contracts))) 35: present_time(12) 

      performing_action(contracts) 

12: present_time(4) 36: not(preparation_for(action(12,contracts))) 

13: present_time(5) 

       world(5,touch_siphon) 

37: present_time(13) 

14: not(world(5,touch_siphon)) 

      observed(5,touch_siphon) 

38: present_time(14) 

15: memory(observed(5,touch_siphon)) 

      not(observed(5,touch_siphon)) 

      stimulus_reaction(observed(touch_siphon)) 

39: present_time(15) 

       world(15,touch_siphon) 

16: present_time(6) 

       world(6,tail_shock) 

40: not(world(15,touch_siphon)) 

      observed(15,touch_siphon) 

17: not(world(6,tail_shock)) 41: memory(observed(15,touch_siphon)) 



      observed(6,tail_shock)        not(observed(15,touch_siphon)) 

       stimulus_reaction(observed(touch_siphon)) 

18: memory(observed(6,tail_shock)) 

      not(observed(6,tail_shock)) 

      stimulus_reaction(observed(tail_shock)) 

42: preparation_for(action(17,contracts)) 

19: conditional_preparation_for(action(contracts)) 43: not(stimulus_reaction(observed(touch_siphon))) 

      not(stimulus_reaction(observed(tail_shock))) 

20: preparation_for(action(8,contracts)) 44: present_time(16) 

21: not(stimulus_reaction(observed(touch_siphon))) 

      not(stimulus_reaction(observed(tail_shock))) 

45: present_time(17) 

      performing_action(contracts) 

22: present_time(7) 46: not(preparation_for(action(17,contracts))) 

23: present_time(8) 

      performing_action(contracts) 

47: present_time(18) 

 

Graphical model 
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