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Abstract. An important issue in research on human-machine coopera-
tion concerns how tasks should be dynamically allocated within a human-
machine team in order to improve team performance. The ability to
support humans in task allocation decision making requires a thorough
understanding of its underlying cognitive processes, and that of relative
trust more specifically. This paper presents a computational agent-based
model of these cognitive processes and proposes an experiment design
that can be used to validate theoretical aspects of this model.

1 Introduction

The increasing intelligence of machines leads to a shift from HCI to human-
machine cooperation research [1]. Problems arise when small human-machine
teams try to cooperate on a cognitive level. A goal in human-machine coopera-
tion research is to solve these problems. Optimizing performance of the human-
machine team is not likely to be gained by improving human-alone or machine-
alone performances. It is important that cooperative tasks within the team, and
more specifically the dynamic allocation of tasks, are improved as well. This
requires an understanding of the cognitive processes underlying taskallocation
decisions. A useful cognitive theory of task allocation decision making should
represent those attributes and their relations that are considered in making deci-
sions on task allocation. A validated model can subsequently be used by decision
support systems to support 1) the acquisition of information concerning these
attributes, 2) the analysis and integration of this information, 3) the selection of
appropriate changes in task allocation, and 4) the execution of these actions [2].

Although there has recently been an increase in human factors research con-
cerning trust and automation reliance [3–8], few attempts have been undertaken
to formalize the cognitive processes underlying task allocation decisions [9, 10].
Therefore more research on its theoretical framework is needed. In the AI and
sociology community research on the formalization of trust and delegation deci-
sions is present, e.g. [11, 12], but not specifically with respect to dynamic decision
making in human-machine cooperation.
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The present research attempts to bridge this gap between human factors and
AI research by developing a computational model of task allocation decision mak-
ing that can be used in further understanding and supporting human-machine
cooperation. It is work in progress. First, the theoretical aspects of task alloca-
tion decision making are introduced. Second, a formal cognitive model is defined.
And third, based on this model, an experimental environment is described that
can be used to validate the theoretical aspects.

2 Cognitive theory

As in [11], in this paper the term trust is used to refer to a mental state, a
belief of a cognitive agent i about the achievement of a desired goal through
another agent j or through agent i itself. In trusting agent j, agent i has, to
some level, a positive expectation that agent j’s actions will achieve the goal
that agent i desires. Agent i’s expectation of j’s performance is calibrated by
direct experience with j’s performance. Trust is dynamic, but it does not simply
increase and decrease with positive and negative experiences. How trust changes
by successes and failures, for one, depends on how increases and decreases in
performance are interpreted and causally attributed [13, 4]. Trust is more than
other concepts subject to error. One type of error is that humans tend to over-
estimate their own performance. Humans, for instance overestimate the number
of tasks they can complete in a given period of time [14]. Another type of error
occurs when humans form expectations about the performance of automation.
It is found, for instance, that humans have a bias toward automation [15, 16].

There are also indirect sources of knowledge about performance. Reputation
and gossip, for instance, enable agents to develop trust without any direct expe-
rience. In the context of trust in automation, response times to warnings tend
to increase when false alarms occur. This effect was counteracted by gossip that
suggested that the rate of false alarms was lower than it actually was [17]. Trust
can also be based on analogical judgments, i.e. judgment about the trustworthi-
ness of a category rather than on the actual performance of one of it’s presumed
members. Although not always recognized by analytical approaches to trust, it
should be noted that humans are cognitive misers and try to save the effort that is
required in deliberation. In naturalistic setting it is observed that decision mak-
ers seldom engage in extensive information acquisition, conscious calculations
or in an exhaustive comparison of alternatives [18]. In these multi-tasking envi-
ronments automatic processes play a substantial role in attributional activities,
with many aspects of causal reasoning occurring outside conscious awareness. In
[19] for instance it is suggested that computer etiquette may have an important
influence on human-machine cooperation. Etiquette may influence trust because
category membership associated with adherence to a particular etiquette helps
people to infer how automation will perform.

Many theories in the human factors literature about the cognitive processes
underlying task allocation decisions include a notion of relative trust, i.e. differ-
ences of trust in two agents. Empirical results from human factors experiments



show that as the trust in machine performance is significantly higher than trust
in own performance, humans intend to allocate tasks to the machine, and when
the reverse is true, humans prefer to allocate tasks to themselves [5, 20–22]. The-
ories on these results describe factors that affect trust in machine performance,
such as machine performance reliability and error costs. Factors that affect trust
in own performance are for instance task difficulty, skill, cognitive biases and the
effects of social and motivational processes [21].

Trust is distinguished from the decision to allocate a task to an agent or rely
on an agent. The term task allocation decision is used to refer to the decision
to rely on an agent’s goal-directed actions to achieve a desired goal. One might
argue that an agent is more likely to rely on another agent when its workload
is high compared to when it is moderate or low. In [7], however, it is pointed
out that the relation between workload and the reliance decision has not been
empirically validated and it is suggested that this relation is obscured by indi-
vidual differences. In [23] it is shown that humans do not simply allocate tasks
to automation so as to free up mental resources for concurrent tasks. It has been
hypothesized that reliance decisions are not only influenced by individual differ-
ences, such as skill on the task or costs of delaying concurrent tasks, but also by
the effort or time needed to engage automation. It is expected that the influence
of the effort or time for the actual allocation of tasks will be particularly evident
when the workload of the agent is already high.

The task allocation decision is also bounded by a certain inhibitory bound
or allocation preference threshold [20]. This threshold determines when relative
trust does not result in a preference difference high enough to rely on an agent.
Theory development on these factors is immature, but it is expected that the
height of the threshold will be influenced by the difference between the trust
uncertainty and the urgency and importance of the task allocation.

Finally, the task allocation decision is distinguished from the goal-directed
actions of allocating a task or actually relying on an agent. The term task al-
location is used to refer to the overt behaviors of agent i that are required to
actually rely on agent j. The decision to rely on agent j may not be sufficient to
reach the state in which the task is actually allocated to agent j. There may be
unanticipated obstacles interfacing i and j that hinder the actual allocation of a
task. This refers to the ability of the agent and opportunity in the environment.
Furthermore, there can also be an action to allocate a task to an agent without
a decision to allocate this task. This can be the case for instance when execution
errors are made.

3 Formal cognitive model

Suppose a decision maker is given a (meta) task τm for which it has to make
a best choice in allocating a certain (object) task τo to either a human agent
H or a machine agent M . The Decision Field Theory (DFT) is a mathematical
framework for describing the dynamics of such choices [24]. In this section a



formal model of task allocation decisions inspired on DFT is shown, which is
used in describing the dynamics of the proposed experiment in Section 4.

The following formal model is described by means of four definitions, that is,
of the task execution state, trust state, allocation preference state, and preferred
task execution state. These are called states because they are time-dependent.
The (preferred) task execution states are strings (sequences of characters). The
trust and allocation preference states are real values.

Definition 1 (task execution state). Let σi be a task execution state:

σi(j, τo, tn) = APPENDn
k=0si(j, τo, tk) (1)

where i, j ∈ Agents = {H,M, ∗}, τo ∈ Tasks and si is a recall function where
si : Agents×Tasks×Time → Actions, according to agent i. Agent ∗ represents
the infallible agent. The function σi thus returns a string of sequentially ordered
actions resulting from the execution of task τo by agent j according to agent i
until time point tn. Note that σi(∗, τo, t) indicates the task execution state of the
infallible agent according to agent i. The function APPEND appends an action
at the tail of a given string.

Example 1. An example of an task execution state σH(H, τo, t3) = ”α1α3α2α4”,
where α1, α3, α2, α4 ∈ Actions are executed actions at time points t0, t1, t2, and
t3, respectively, and H ∈ Agents.

The recall function si might result in actions falsely identified by agent i as
executed on a certain time point by a certain agent. Such errors can be modeled
by means of decays, e.g. by using a time-dependent randomization function. This
means that σi(j, τ, tn) is not necessarily the first part of σi(j, τ, tm) for tn ≤ tm
and arbitrary j (including j = ∗) and τ . In contrast, for i = ∗ the latter is not
the case, which in other words means that the infallible agent has no regrets.

Similar to [25], trust is considered a mental agent concept that depends on
the past experiences that coincide on discrete time points with events that affect
the agent’s trust state. In this paper experiences are given by evaluating task
execution states of an agent by means of comparison with those of the supposed
infallible agent. This idea of the infallible agent and the comparison may be
different for each agent.

Definition 2 (trust state). Let Ti be a trust state:

Ti(j, τo, t) = 1− Di(σi(j, τo, t), σi(∗, τo, t))
| σi(∗, τo, t) |

(2)

where Di is a function calculating the distance between two strings according to
agent i. Trust states based on trust states with length 0, i.e. when | σi(∗, τo, t) |
= 0, have initial values. Furthermore, Di(σi(j, τo, t), σi(∗, τo, t)) is also written
as the error rate ei(j, τo, t).

The distance function Di can be a form of the Hamming Distance (HD), i.e. for
trust calculation based on real performance history by means of 1-to-1 distance,



or for instance the Levenstein Distance (LD), i.e. for determining model validity
by means of the calculation of basic edit distance. The remaining of Di is deter-
mined by agent i’s interpretation and causal attribution resulting in inflation of
penalties on errors due to for instance the workload and resource boundedness
of agent j, complexity of τo, and memory decay, at time points tk ≤ t, or even
tk > t when future events are anticipated in these terms. Three cases of mem-
ory decay are for instance modeled in [25]. Initial values of trust states, when
| σi(∗, τo, t) | = 0, are determined by only such indirect indicators. Furthermore,
all agents but ∗ can make errors or are biased in distance calculation, as in
mistaken memory recalls and prejudices, respectively.

Example 2. Please recall Example 1 of agent H. Let σH(∗, τo, t3) = ”α1α2α3α4”.
Let’s assume that exactly DH,1 = HD is used. This means that trust state
TH(H, τo, t3) = 1 − 2

4 = 1
2 . But if we assume that exactly DH,2 = LD is used,

then the trust state TH(H, τo, t3) = 1 − 1
4 = 3

4 . In this case always holds that
DH,2 ≤ DH,1.

Task allocation decisions are based on allocation preferences. As is proposed
in [8, 22] the following model assumes that preferences are determined by trust
in the self, trust in the other, and a certain corresponding inhibitory bound or
allocation preference threshold.

Definition 3 (allocation preference state). Let Pi be an allocation prefer-
ence state:

Pi(τo, t) = Ti(j, τo, t)− Ti(i, τo, t) (3)

where the trust state Ti(j, τo, t) means that agent i trusts agent j with respect to
its performance in executing task τo at time point t. Agent i prefers allocation of
τo to j iff 1 ≥ Pi(τo, t) > θi(τo, t) and to i iff −1 ≤ Pi(τo, t) < −θi(τo, t) at time
point t. The function θi represents the inhibitory bound of agent i. In other words,
positive values for Pi indicate the tendency to allocate to the other and negative
values to itself, if it exceeds a certain threshold (−)θi. The real interval [−θi, θi]
indicates indifference of the agent i with respect to its allocation preference. The
value of θi(τo, t) depends on the characteristics of its parameters, such as decay
due to costs of waiting [26].

Example 3. Please recall Example 2 of agent H. Suppose that DH = HD, that
σH(M, τo, t3) = ”α2α2α3α4”, and thus TH(M, τo, t3) = 3

4 , for another agent M ∈
Agents. This means that the allocation preference state PH(τo, t3) = 3

4 −
1
2 = 1

4 .
Hence, if θH(τo, t3) < 1

4 , then at time point t3 agent H prefers the allocation of
task τo to agent M .

The above does not yet take into account that task allocation decisions also
concern the effort or time needed for engaging (re)allocation and all other con-
sequences afterwards, such as task switching costs relating other tasks and addi-
tional overhead (like in [1]). In fact, this may result in the opposite of what one
might expect from mere difference in trust states. This thus suggests a different
view of relative trust, namely trust relating the differences in desirability of the



resulting outcome of commencing the allocation of a certain task to a certain
agent, with respect to the overall system performance. In the context of the
experiment proposed in the next section initially the first definition is chosen.

The allocation task τm itself can result in a task execution state σi(j, τm, t),
trust state Ti(j, τm, t), and allocation preference state Pi(τm, t) with its in-
hibitory bound θi(τm, t) for i, j ∈ Agents by means of Equations 1, 2, and
3, respectively. In other words, this enables a decision maker to make preferred
decisions on the allocation of the allocation task.

Definition 4 (preferred task execution state). Let πi be a preferred task
execution state:

πi(τo, tn) = APPENDn
k=0si(j, τo, tk) (4)

where each agent j ∈ Agents \ {∗} is preferred at time point tk by the preferred
allocator determined by π(τm, tn) according to agent i ∈ Agents.

Example 4. Please recall Example 3 of agent H. Suppose that task τm is allo-
cated to agent H. In this case the preferred task execution state πH(τo, t3) =
”α1α3α3α4”, because of allocation preference states indicating the preferred al-
location of task τo to agent H,H, M , and M , at time points t0, t1, t2, and t3,
respectively. This might be different if task τm is allocated to agent M at a cer-
tain time point, possibly due to differences in states, inhibitory bounds, recall,
and distance functions.

Finally, true states are subscripted with a ∗, i.e. states according to the infal-
lible agent; e.g., π∗(τo, t) denotes the actual preferred task execution state. Per-
formance of a cooperative MAS is therefore calculated by means of HD(π∗(τo, t),
σ∗(∗, τo, t)).

4 Experiment design

In order to validate implications of the theory introduced in Section 2 a simple
experimental task is developed. The goal of this experimental task is to predict,
as a human-machine team, the location of a disturbance. In every trial the dis-
turbance can occur at one of three locations. Also each trial consists of three
phases: a prediction phase, a selection phase, and an update phase. The human
and the machine are both required to execute three tasks (τo,m,u), one for each
of these phases. The first task is to decide on the location of the next disturbance
based on an internal prediction model. This decision is retrieved by letting both
indicate a specific button. Given both predictions, the next task is to let them
decide on which advise to trust the most based on their internal selection model.3

This is again retrieved by letting both indicate a specific button, either following
the prediction of itself, the other, both, or nobody. In the last phase the location
3 This task is actually not a task allocation decision task in the precise sense of the

definition given in Section 2. It is meant to catch an important prerequisite for the
allocation decision, namely reasoning with allocation preference states.



of the disturbance is revealed according to a predetermined string σ∗(∗, τo, t),
which both agents are required to process by means of updating their internal
models for task τo and τm. In Figure 1 the interface of a first implementation of
the experimental environment is shown.

Fig. 1. The interface of a first implementation of the experimental environment String-
Task. A selection phase is shown, where the human predicted location 1 and the ma-
chine location 2. The allocator should indicate which button to select, based on both
predictions and its internal selection model. After this the update phase indicates its
soundness, which is used for updating the internal models.

The independent variables are the error rates of the machine for each task,
and the difficulty of the string. The error rate of the machine e∗(M, τ, t) is
manipulated by having it choose e∗(M, τ, t)· | σ∗(M, τ, t) | times a random action
in stead of the action sM (M, τ, t), for each task τ and time point t. The difficulty
of the string is manipulated by changing its length and generation rules, which
has been subject in the study of human sequential processing some decades ago
(e.g., [27]).

The measured dependent variables are human-machine system performance
and the error rates of the human for each task. These are simply calculated by
means of the HDs of the preferred task execution state π(τ, t) and task execution
state σ∗(H, τ, t), respectively, with the infallible task execution state σ∗(∗, τ, t),
for each task τ and time point t.

In the following experiment the effort and time to engage (re)allocation is
kept the same for both human and machine. In order to ascertain that the
experimental task can be reliably used to validate implications of the theory two
straightforward hypotheses should hold:
– At each moment the participant prefers allocation of a task to the machine

instead of to himself (or herself) when his trust in his own performance is
expected to be significantly lower compared to his trust in the performance
of the machine.



– At each moment the participant prefers allocation of a task to himself in-
stead of to the machine when his trust in the performance of the machine is
expected to be significantly lower compared to his trust in his own perfor-
mance.

To validate the first hypothesis, the trust state TH(H, τo, t) is experimentally
manipulated by varying the error rate eH(H, τo, t). This is done by decreasing
the complexity of the string. If error rate e∗(M, τo, t) remains low enough, this
ought to result in an allocation of the task τo to agent M by agent H, due
to 1 ≥ PH(τo, t) > θH(τo, t). In this experiment the task can be executed in
three levels of difficulty. The level of difficulty is manipulated by increasing the
memory-load of the internal prediction model that the agent H needs to use
for executing task τo. It is known that human working memory has a limited
capacity and that performance errors will result when more capacity is demanded
by the task than can be supplied by the human. The memory-load of the internal
models is manipulated by increasing the difficulty of the string.

Validation of the second hypothesis is symmetric. Trust in machine perfor-
mance is manipulated by varying machine reliability. In this experiment agent
M will perform the task at a reliability of 100, 70 and 50% independently of
the difficulty of the task for agent H. In prior research it is often found that
reliability lower than 70% will result in disuse of automation [20]. The above
manipulations result in a 3 (difficulty) × 3 (reliability) experiment design as
shown in Figure 2.

SD × MR SD1 SD2 SD3

100% MR −θH ≤ PH ≤ θH 1 ≥ PH > θH 1 ≥ PH > θH

70% MR −1 ≤ PH < −θH −θH ≤ PH ≤ θH 1 ≥ PH > θH

50% MR −1 ≤ PH < −θH −1 ≤ PH < −θH −θH ≤ PH ≤ θH

Fig. 2. The proposed 3 (string difficulty) × 3 (machine reliability) experiment design
with the expected properties of corresponding allocation preference state PH .

It is expected that higher θH values will result in higher error rates e∗(H, τm, t)
in the selection task due to unwanted indifference. Undoubtedly decision support
is needed when in this diagonal region. How to support this and other results of
this experiment will be subject of further experimental research.

5 Discussion

In this paper a computational model of trust based task allocation decision mak-
ing and an experiment design used for theory validation are proposed. Though
task allocation decision support by means of cognitive modeling of trust is clearly
relevant, it is a field in AI that is quite new.

The present research is work in progress. After being confident on the replica-
bility of previously found experimental findings in various domains in literature



[5, 20–22] by means of validating the two above mentioned hypotheses, the ex-
perimental environment will be used for further research, such as on indirect ac-
quisition of knowledge (e.g., reputation, gossip), analogical judgments, allocation
engagement costs (e.g., waiting, cooperation, and overhead costs), allocation im-
plementation errors, level of autonomy, the allocation decision inhibitory bound,
quantity and seriality of tasks, and time pressure. Extensions of (agent-based)
cognitive models of trust and invocation concepts for machine monitoring of the
allocation task (adaptive systems) are subject of investigation in the near fu-
ture. Future research on cognitive modeling of trust aims at support in the four
stages of information processing deliberation [2]: the acquisition of information
relevant for trust, its integration to trust concepts, task allocation decision mak-
ing based on trust concepts, and the implementation of the allocation decision.
Moreover, future research focusses on investigating the degree to which new or
extended cognitive theories, based on formal modeling and controlled laboratory
experiments, are translatable to more complex real world situations.
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