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Chapter 1

Introduction

1.1 Magnetoencephalography and its application

In an active human brain, information is passed on from one neuron to an other by
small currents (see section 1.1.2). When a sufficient number of neurons is active syn-
chronically, the interaction of these neurons produces both a small electrical poten-
tial distribution on the skin and a small magnetic field outside the head. This small
magnetic field can be measured using the sensitive Magnetoencephalography (MEG)
technique, while the potential differences are measurable by Electroencephalography
(EEG). Whereas EEG was developed already in the 1920s, the first MEG was regis-
tered in 1972 [12]. Nowadays, MEG is used on a wider scale in clinical applications and
for research purposes.

One of the main applications of MEG is functional mapping. Different functional
areas in the brain, e.g. the auditory or visual area, can be depicted using MEG by pre-
senting a stimulus to the subject. For example, if one is interested in the visual area of
the brain, different pictures are presented to the patient in order to activate the visual
area of the brain and the MEG is measured meanwhile. From these measured MEG
signals one can determine where this active area of the brain is located. Varying this
method over different functionalities of the brain, one can map each functionality to a
location in the brain. The resulting map is interesting on itself in terms of functional
anatomy; yet, for brain tumour patients this map is of clinical importance. When the
location of a brain tumour coincides with the regular location of one of the functional-
ities, it is important to know which effect the tumour has on that functional area. The
tumour may have pushed the functional area away, or may have grown together with
the functional area. In the former case, the neurosurgeon can (hopefully) resect the
tumour, whereas in the latter case resection would yield functional deficits.

A second major, clinical, application of MEG is the investigation of epilepsy. Epilep-
sy patients are routinely treated with medical drugs. However, for some patients the
drugs do not suppress the epileptic seizures (attacks) sufficiently. For these drug re-
sistant epilepsy patients, neurosurgery can be an option to become seizure free. The
possibility of such a surgery depends on the location and extent of the epileptic brain
tissue. In case of focal epilepsy, the epileptic seizures consist of so-called epileptic spikes.
A focal epileptic spike is a short burst of activity at a localised place in the brain. The
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2 1.1 Magnetoencephalography and its application

MEG technique can be used to record many of these localised spikes and determine the
location of their underlying source. This information is important to the neurosurgeon
in order to decide which part of the brain should be resected in order to make the
patient seizure free.

The third utilisation of MEG is research on the MEG technique it self. Because MEG
is a rather young technique, both the apparatus and the signal processing methods
engaged are being improved gradually. These improvements include increasing the
number of MEG sensors, improving the accuracy of functional source localisation and
improving the noise attenuation.

1.1.1 Instrumentation

Neuromagnetic signals are very small compared to other magnetic fields surrounding
us. For example, the earth’s magnetic field is larger by a factor of 108 to 109. The
magnetic field measured by MEG typically ranges from 50 fT to 500 fT (1 fT equals
10−15 Tesla). These weak signals can be measured using the superconductive quantum
interference device, the SQUID. This sensitive detector of magnetic flux is the basis of
the MEG technique. MEG sensors are embedded in liquid helium at a temperature of
4 K to keep them superconductive. Furthermore, the MEG scanner (Figure 1.1(a)) is
positioned in a magnetically shielded room to keep external disturbances away. Sources
of significant external disturbance include moving vehicles, power line fields, monitors
and cell phone networks.

(a) MEG scanner (b) MEG helmet

Figure 1.1: The MEG scanner (a) and the MEG helmet of the whole head system (b).

Using a whole head system, the magnetic field is measured on several sensors cov-
ering the whole brain. These sensors are inside the MEG helmet, that is the lower
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part of the dewar, the white vessel, in Figure 1.1(a). A cross section of this helmet
is drawn in Figure 1.1(b). From this figure, one can see that MEG is a fully nonin-
vasive technique; the patient only has to put the head in the helmet. The patient is
not exposed to radioactive injections, strong magnetic fields or x-rays, as is the case
in Positron Emission Tomography (PET), Single-Photon Emission Computerised To-
mography (SPECT), Magnetic Resonance Imaging (MRI) and Computer Tomography
(CT).

1.1.2 Physiological background

Electrophysiological activity in the brain consists of information that is processed by
neurons (nerve cells) [4, 37, 60, 86]. Nerve cells pass on their messages through synapses
along their dendrites, see Figure 1.2 and 1.3. A synapse is a place where two neurons
touch each other and messages are passed on from the presynaptic cell to the postsy-
naptic cell. In the resting state, neurotransmitter is present in small vesicles in the
axon terminal of the presynaptic cell, see Figure 1.3. The outer shell of a cell is called
the cell membrane, and is surrounded by ions on both sides in different concentrations.
In Figure 1.3 one of the dendrites of the postsynaptic cell is drawn together with its
membrane, which is surrounded by ions, both inside and outside the membrane. These
ions cause a potential difference between the inner side (more negative) and the outer
side (more positive) of the dendrite, the so-called membrane potential. This is a bal-
ancing state between the inner and outer concentrations of the different ions (e.g. Na+

and K+). The membrane is selectively permeable to these ions, that is, ions can travel
through the membrane. Messages in the presynaptic cell travel by rapid action poten-
tials towards the axon terminal. An action potential is a fast moving disturbance of
the balance of the potential membrane. Upon arrival at the axon terminal, the signal
is conveyed through neurotransmitter into the synapse cleft. The molecules of this sub-
stance bind to receptor molecules at the outer side of the dendrite of the postsynaptic
cell (Figure 1.3). This, in turn, causes ion channels to open. The type of ion chan-
nel that is opened, depends on the neurotransmitter and the receptor. In the case of
opened Na+-ion channels, positively charged Na+-ions flow inwards, while in the case
of opened K+-ion channels, positively charged K+-ions flow outwards. This ion flow
disturbs the balance of the membrane potential at the place of the synapse: a post-
synaptic potential (PSP). The neighbouring ions in the dendrite of the postsynaptic
cell will react by a positive current away from the synapse in case of opened Na+-ion
channels or a positive current towards the synapse in case of opened K+-ion channels.
Thus, a current, or ion flow, starts travelling through the dendrite (that is, one of the
legs of the postsynaptic cell, see Figure 1.2). This current flow is called the primary
current. Because of the permeability of the membrane, in the case of Na+-ions, part
of these travelling positive ions will flow outwards somewhere along the dendrite, while
the others will flow until the end, the axon hillock (Figure 1.2). A PSP that causes a
positive current flow away from the synapse is called an Excitatory PSP (EPSP). In
the case of K+-ions, the current direction is opposite and positive ions in the dendrite
are pulled towards the synapse. Some of these ions will come from outside the dendrite
and will be pulled inwards while the others will come from inside. This kind of PSP
is called an Inhibitory PSP (IPSP). The PSP mechanism has two effects: firstly, the
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axon

dendrites

dendrites

axon from neighboring cell
synapse

cell body

axon hillock

Figure 1.2: Illustration of a nerve cell with a synapse along one of the dendrites. A
magnified view of the synapse is presented in Figure 1.3.

potential at the axon hillock is changed (increased in case of EPSP and decreased in
case of IPSP) and secondly, an extracellular return or secondary current is generated.
When the potential at the axon hillock has reached a certain threshold by many (mainly
EPSP) synapses as a result of the first effect, a new action potential is generated at
the axon hillock and the postsynaptic cell will pass on the message to other neurons.
The second effect is caused by those ions that flow through the membrane and cause an
extracellular current. The effects of this current can be measured at a certain distance.
EEG measures the potential fluctuations due to these return currents, whereas both
the primary and secondary currents contribute to the MEG signal. In Figure 1.4 the
primary and secondary currents are illustrated.

The primary and secondary currents due to one excited neuron are too small to
be measured by MEG/EEG. For a measurable signal typically thousands of parallel
arranged pyramidal cells are excited simultaneously, and the superposition of their
neural currents produces a measurable magnetic field and electrical potential outside
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Na+ Na+ Na+ Na+ Na+      K+ K+
Na+ Na+                        K+ K+ K+

presynaptic cell

postsynaptic cell

axon terminal

dendrite

ion channels

neurotransmittersynapse
cleft

ions surrounding 
cell membrane

cell membrane

Figure 1.3: Synapse

Figure 1.4: Illustration of the currents around an excited nerve cell. The thick arrow
pointing downwards in the middle indicates the primary current along the cell’s dendrite.
The thinner loops indicate the return currents through the volume conductor. This
source configuration is equal to the source configuration of a current dipole.

the head. The cortex, the grey matter at the outer side of the cerebrum (see Figure
1.5), contains many of these pyramidal cells that are arranged perpendicular to the
surface of the cortex. The white matter underneath the grey matter mainly consists
of long neuron fibers, the connecting ‘highways’ between different parts of the cortex.
The signals that are measured by the MEG/EEG techniques are essentially generated
in the grey matter, i.e. along the outer surface of the brain. The action potentials are
in general too small and unsynchronised to be caught by the MEG/EEG technique.

The inverse problem of MEG/EEG involves the determination of the underlying
sources of measured MEG/EEG signals. In order to determine the origin of the signals,
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Figure 1.5: Sagittal MRI image of the human brain. The area within the white line is
called the cerebrum. The difference between grey and white matter in the cerebrum is
clearly visible: the darker edges of the brain indicate grey matter, while the lighter inner
part is white matter.

models for electromagnetic brain sources are needed. The underlying electrophysiology
of neural brain activity, as presented above, is important to understand when designing
models for the sources of brain activity. Usually, these sources are modelled as point
sources, as an equivalent of thousands of nearby sources. The forward problem deals
with the computation of the magnetic field and the electric potential due to such a
point source, throughout and outside the head. In order to solve the inverse problem,
the source parameters are tuned such that the difference between the measured signals
and the predicted forward model becomes minimum in some optimal sense. The next
two sections deal with the forward problem and the inverse problem, respectively. An
overview of different aspects of these two topics can be found in [3].

1.2 Forward Problem

1.2.1 General formulation

The electric and magnetic fields of a bioelectric source in conducting tissue are computed
using the quasi-static approximation of the Maxwell’s equations [78, 92]. Denoting the
primary source current density by Jp, and assuming that the conductivity of the tissue
is σ and the magnetic susceptibility is µ0 throughout the tissue, these equations state

E = −∇V (1.1)

∇×B = µ0J (1.2)

∇ ·B = 0 (1.3)

J = Jp + σE (1.4)
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where E = E(r) ∈ R3 denotes the electric field at location r ∈ R3 in the conductor,
B(r) ∈ R3 the magnetic induction and V (r) ∈ R the electric potential. σE(r) ∈ R3

denotes the volume (secondary) current and J(r) ∈ R3 the total current density. The
magnetic field B(r) for any r now follows from the Biot-Savart law:

B(r) =
µ0

4π

∫
G

J(r′)× r− r′

‖r− r′‖3
dV (1.5)

where the integral is taken over the conductor G and ‖.‖ denotes Euclidean vector
length. Combining equations (1.1) and (1.4) the total current density J(r) in the
integrand of equation (1.5) can be written as

J(r) = Jp(r) + Js(r) = Jp(r)− σ∇V (r), (1.6)

where Js denotes the secondary current.
The head comprises different tissues, each having its own characteristic conductivity.

Assume that the conductivity in the volume conductor G is piecewise constant and
define N subvolumes Gn, n = 1, . . . , N , such that σ = σn within Gn. Furthermore, the
bounding surface of Gn is denoted by Sn. Using equation (1.6) and Stokes’ Theorem
with the boundary condition that no current flows inwards or outwards, the integral
expression in equation (1.5), becomes Geselowitz’ formula [30]:

B(r) = B0(r)− µ0

4π

N∑
n=1

(σ−
n − σ+

n )

∫
Sn

V (r′)n(r′)× r− r′

‖r− r′‖3
dS (1.7)

where

B0(r) =
µ0

4π

∫
G

Jp(r′)× r− r′

‖r− r′‖3
dV, (1.8)

σ−
n and σ+

n are the conductivities at the inner and outer sides of Sn and n(r) denotes the
outward normal. B0(r) is the magnetic field due to Jp in an unbounded homogeneous
space. In order to calculate the expression in equation (1.7), one needs know V (r) on
the surfaces Sn. By a similar calculation the electric potential V (r) can be expressed
by the following integral equation

σ−
n + σ+

n

2
V (r) = σNV0(r)− µ0

4π

N∑
n=1

(σ−
n − σ+

n )

∫
Sn

V (r′)n(r′) · r− r′

‖r− r′‖3
dS (1.9)

for r on one of the surfaces Sn and

V0(r) =
1

4πσN

∫
G

Jp(r′) · r− r′

‖r− r′‖3
dV. (1.10)

After solving this integral equation for V (r), the magnetic field can be calculated from
equation (1.7). However, solving equation (1.9) is complicated in general for two rea-
sons. First of all, for a general source configuration and an arbitrary head shape there
is no analytical solution to this equation. And secondly, the conductivities are poorly
known. The first problem is eliminated by assuming the head shape to be spherical and
the source to be a dipole source. This special case is addressed in the next section.
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In general, one uses the Boundary Element Method to solve equation (1.9) [17]. As
subvolumes Gn, three regions are usually distinguished in the head: the brain, the skull
and the scalp. The realistic shapes of the surfaces Sn are obtained using the anatomical
information from other data modalities as MRI and CT [36, 105]. This procedure is
rather time consuming compared to finding the best fitting spherical head model. The
conductivity values of the different layers are more complicated to estimate noninva-
sively. These values can be estimated either in vivo or in vitro. In vivo measurement
is measurement by leaving the tissue in its position in the living human body. In
vitro measurement is measurement by taking the tissue outside the living human body.
Whereas in vivo measurement is best in terms of keeping the experimental settings as
natural as possible, the in vitro measurement usually allows for a better measurement
setup. Different conductivity estimation techniques have been performed, and have,
unfortunately, resulted in greatly varying values, e.g. [32, 35, 80]. In this connection it
should be mentioned that the EEG forward problem is much more sensitive to errors
in estimated conductivity values and head shape than the MEG forward problem. An
illustration of this remark is found in the next section.

1.2.2 Spherical conductor and current dipole source

When the head shape is assumed to be spherical, the magnetic field B(r) outside the
head is independent of the conductivities [92]. For the radial component of B(r) this
can be seen easily from equation (1.7). The radial component is B(r) · er, where er is
the unit radial vector. Using equation (1.7) we find for r outside the head

B(r) · er = B0(r) · er − µ0

4π

N∑
n=1

(σ−
n −σ+

n )

∫
Sn

V (r′)[n(r′)× r− r′

‖r− r′‖3
] · erdS = B0(r) · er,

(1.11)
because n(r′) is aligned with r′ and er with r. Hence the triple product vanishes.
Because B0(r) is independent of the conductivities σn, the radial component of B(r) is
independent of the σn. For the remaining components of B(r) this also holds true [92].

When the source is assumed to be a current dipole point source [15], there exists
an analytical solution for B(r). Modelling the source of brain activity as a dipole
source is based on the idea that at a certain distance, an active patch of cortex can
be regarded as an active point source. In other words, the superposition of primary
currents of neighbouring pyramidal neurons can at sensor level be regarded as dipolar
activity. A dipolar point source is determined by a location r0 ∈ R3 and an orientation
(or moment) q ∈ R3. The electric potential and magnetic field of the dipole in a
homogeneous medium are

V0(r) =
1

4πσ
q · r− r0

‖r− r0‖3
(1.12)

B0(r) =
µ0

4π
q× r− r0

‖r− r0‖3
. (1.13)

Because the current J(r) is zero outside the conductor, B(r) is both divergence and curl
free there. Therefore, B(r) can be expressed as the gradient of a magnetic potential
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U(r):
B(r) = −µ0∇U(r). (1.14)

Using equations (1.11) and (1.13) this magnetic potential can be solved analytically,
yielding for B(r) outside the spherical conductor [92]

B(r) =
µ0

4πF 2
(F (q× r0)− (q× r0 · r)∇F ) (1.15)

with F only dependent on r and r0. This expression for B(r) does not depend on
the conductivities, and hence, by superposition, for a general source configuration B(r)
does not depend on the conductivities σn, as was shown in equation (1.11) for the radial
component only. Moreover, from equation (1.15), it follows that B(r) vanishes outside
the conductor if q and r0 are aligned. Consequently, B(r) is zero for radial sources
in a spherical conductor, i.e. the field of a radial dipole, or equivalently, the radial
component of any dipole, cannot by measured by MEG.

In sum, the magnetic field outside a spherical conductor does not depend on the
conductivities and a radial dipole source does not produce a magnetic field outside a
spherical conductor. These two findings are fundamental for MEG.

1.2.3 Variations over time

The forward field on each MEG/EEG sensor generated by a dipole at location r0 can
algebraically be expressed by a vector f ∈ RI×1. I denotes the number of MEG/EEG
sensors. Because the electrical potential, and therefore also the magnetic field, is linear
in q, the field on each MEG sensor is a linear combination of the field in each of the
three orthogonal directions of the moment vector. So is the electric potential on each
EEG sensor. For the ith MEG sensor this can be written as

fi = qxΦi,1 + qyΦi,2 + qzΦi,3 (1.16)

where Φ ∈ RI×3 is the unit dipole field matrix or, unit lead field matrix dependent of
r0. The forward model for all sensors can be combined in one matrix expression:

f = Φq. (1.17)

This is the forward model for one time instant.
When considering a time window, consisting of J time instants (samples), the for-

ward model becomes a matrix F ∈ RI×J . This spatiotemporal forward model [93]
depends on how the dipole parameters, i.e. location and moment, change over time.
Three possibilities can be distinguished: the location and orientation of a stationary di-
pole are fixed over time, though the amplitude can change; the orientation of a rotating
dipole changes over time, while its location is fixed; a moving dipole has both a varying
location and a varying orientation. The forward field of a stationary dipole is

F = ΦqS, (1.18)

with S ∈ R1×J the row vector containing the amplitude of the dipole at each time
instant. The forward field of a rotating dipole is

F = ΦS, (1.19)
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with S ∈ R3×J the matrix containing the amplitude in the three orthogonal directions
at all time instants. The forward field of a moving dipole cannot be parameterised
any further than in equation (1.17). In that case, the vector f changes from each time
instant to time instant.

In the case of p active dipoles, the forward field becomes the superposition of the
fields of each dipole separately. For stationary dipoles this is

F = ΦΩS, (1.20)

with Φ ∈ RI×3p, Ω ∈ R3p×p and S ∈ Rp×J . The matrix Φ now contains in each set of 3
columns the unit forward dipole field of one dipole. The matrix Ω is a block diagonal
matrix with p 3 × 1 blocks along its diagonal, each containing a normalised moment
vector q = (qx, qy, qz)

t:

Ω =



 q1
x

q1
y

q1
z

 0 · · ·

0

 q2
x

q2
y

q2
z

 0
...

... 0
. . . 0

· · · 0

 qpx
qpy
qpz




(1.21)

The matrix S contains the amplitudes of all p dipole sources. For multiple rotating
sources, the spatiotemporal model becomes

F = ΦS, (1.22)

with Φ ∈ RI×3p and S ∈ R3p×J . Φ is the same as in the case of multiple stationary
dipoles, while S now contains the amplitudes in all three orthogonal directions for all
the dipoles.

In the case of stationary dipoles, the expression preceding S, that is, ΦΩ in equation
(1.20) is called the dipole field matrix, or lead field matrix or forward field matrix and
is denoted by Ψ. In the literature, the unit lead matrix is often abbreviated as lead
field matrix, though in this thesis the terms are kept separately for stationary dipoles.
For rotating dipoles, the two terms, lead field and unit lead field matrix, automatically
indicate the same matrix, matrix Φ in equation (1.22). To keep the notation consistent,
the forward field matrix is in this thesis denoted by Ψ, also for rotating dipoles. The
forward field matrix Ψ is dependent on all source locations and orientations, i.e. on all
spatial parameters. The matrix S is called the source time function matrix, because the
amplitude row vectors can be regarded as discrete source time functions. In this way, all
temporal parameters are contained in S. In all, this yields the general spatiotemporal
forward model

F = ΨS. (1.23)
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1.3 Inverse Problem

The inverse problem deals with finding the dipole sources that have generated the mea-
sured EEG/MEG signals. When solving the inverse problem, the difference between the
predicted forward field based on source parameters and the measured field is minimised.
In general, there is no unique solution to this problem, due to possible magnetically
silent sources. As mentioned above, a radial source in a spherical conductor produces
no magnetic field outside the conductor. Moreover, because of the finite number of
MEG/EEG sensors, the number of sources that can be localised is limited. Hence, re-
stricting constraints are necessary to find a solution. A second problem with the inverse
problem lies in the fact that measured signals are always corrupted with noise. This
noise consists of both internal and external noise. The former indicates brain activity
that is not of particular interest in the experiment, the so-called background activity.
The latter denotes noise that is caused by external sources, e.g. moving vehicles, mov-
ing iron objects (buttons, buckles, necklaces etc.), as mentioned in section 1.1.1. The
magnetically shielded room (MSR) wards off most of the external noise; however, the
brain noise is not barred by the MSR. Therefore, one needs to separate two parts in the
measured signal: the signal of interest, and the remainder. The next section is about
the separation between signal and noise.

Two different ways of source localisation exist: dipole localisation and spatial scan-
ning. The former method fits a number of dipoles to the measured data, while the
latter technique scans the brain for activity, that is, computes the activity at all loca-
tions. Section 1.3.2 deals with dipole localisation and the spatial scanning technique is
presented in 1.3.3.

1.3.1 Signal Plus Noise model

To localise certain areas in the brain, the area of interest is usually activated by the
presentation of an external stimulus to the subject. This way, a brain response is
evoked in the area that is to be localised. Examples of this kind of experiments are
Visual Evoked Field (VEF), Auditory Evoked Field (AEF) and Somatosensory Evoked
Field (SEF) experiments. Each time the stimulus is presented, the brain responds to
the stimulus. An idealised example of such an evoked response is given in Figure 1.6.
In practise, however, the measured MEG signal consists of both the evoked response

Figure 1.6: An example of an evoked response by an external stimulus
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and additional noise. Therefore, the measured signal is blurred, as illustrated in Figure
1.7.

(a) (b)

(c) (d)

Figure 1.7: Different measurements of the evoked response and additional noise

The standard way of ‘cleaning’ the signal is to present the stimulus several times and
to average the measured signals following each stimulus presentation. The idea behind
this averaging is that the measured signals consist of a fixed evoked response which is
the same each time the stimulus is presented, and a varying noise part. Synonyms for
the noise part are remainder, residual and error. This is called the Signal Plus Noise
(SPN) model. The SPN model can be formulated as

rkij = rij + εkij (1.24)

where rkij is the measured signal on sensor i at time sample j in trial (stimulus presen-
tation) k, rij is the evoked response which is fixed over trials, and εkij is the varying
additional noise. The name residual is used somewhat ambiguously. When dealing with
the model, as in equation (1.24), the residual indicates the difference between measure-
ment and model, e.g. the noise. In the case of real data, the residual of a certain trial
k often indicates the difference between the measurement in trial k and the average
measurement. Throughout this thesis, residual will indicate the latter, i.e. the differ-
ence between measurement and average, whereas noise will be used for the difference
between measurement and model, i.e. the ε-component in equation (1.24). Regarding
the statistical properties of the noise and residuals, these are usually assumed to be the
same (see section 1.4.3).
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In the noise component, both the internal and external noise are assembled. The
internal noise mainly consists of ongoing background activity. Background activity is
activity of the brain that is not specifically related to a task, and also appears in the
resting state. When a subject is at rest, the brain produces at different parts of the
cortex spontaneous activity. The most prominent example of this background activity
is oscillations [13, 59] (see Figure 1.8). Depending on the aim of the MEG study,
these oscillations are or are not of interest. In studies on spontaneous brain activity,
it is exactly these oscillations that form the interesting brain signal, while in evoked
response experiments this kind of brain activity is considered as unwanted noise or even
as ‘error’.

Figure 1.8: An example of oscillating background activity in spontaneous activity with
varying amplitude over a time window of 5.89 seconds.

The averaging technique is rather standard in evoked field MEG data processing,
although the basic assumption is debatable. When neurons in the brain are excited by
an external stimulus they will fire, that is, generate action potentials. However, these
action potentials are only propagated when the potential at the axon hillock exceeds
a certain threshold, as was explained in Section 1.1.2. The precise reaction to the
external stimulus, therefore, depends on the situation at cell level at the moment of
stimulus presentation. This, on turn, is related to the ongoing background activity,
which constantly varies. Therefore, one may assume that the exact response, on cell
level, is different from trial to trial. However, on macroscopic level, like MEG and EEG,
these differences may not be visible and the SPN model may well explain the recorded
signals. In cognitive experiments, however, where a reaction is asked from the subject,
e.g. by pressing a button, the reaction time to the stimulus will depend on the level of
attention of the subject and will certainly vary to some extent over trials. One of the
goals of this thesis is to validate the SPN model in different ways for different kinds of
MEG data, see chapters 2, 3, and 4.

Within the SPN paradigm, the best estimator for the evoked response rij is the
average over trials of the measured signals rkij. The more stimuli presented to the
subject, the more responses that can be averaged and the more reliable the estimator
for the evoked response becomes. In Figure 1.9 this is illustrated; in Figure 1.9(a) the
average of the four measured signals of Figure 1.7 is plotted and Figure 1.9(b) shows
the average of 100 such signals. Clearly, by taking more measured signals into account
in the averaging, the signal becomes smoother and better approaches the true evoked
response. In practise, one usually averages between 100 and 600 measured responses to
a stimulus.
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(a) Average of 4 measurements (b) Average of 100 measurements

Figure 1.9: Averages of 4 (figure a) and 100 (figure b) measured signals as in Figure
1.7. The average in figure b is smoother than the average in figure a.

1.3.2 Dipole localisation

The measured signals of trial k of the SPN model in equation (1.24) are gathered in a
matrix Rk ∈ RI×J

(Rk)ij = rkij (1.25)

and likewise the noise of trial k in the matrix Ek ∈ RI×J

(Ek)ij = εkij. (1.26)

Then the model for dipole localisation is

Rk = ΨS + Ek. (1.27)

Now the forward field, ΨS, based on a certain number of dipole sources is fitted to the
average measured signal. The matrix containing the average signal is

R̄ :=
1

K

K∑
k=1

Rk. (1.28)

Fitting the model in equation (1.27) is performed by minimising the sum of the squared
differences between the forward field matrix and the averaged measured data matrix, R̄,
from equation (1.28). This is called the least squares (LS) paradigm. The cost function
for this minimisation is

min
ξ,η,S

‖R̄ −Ψ(ξ, η)S‖2
F . (1.29)

Here ξ is the vector containing all dipole location parameters and η the vector containing
all orientation parameters. The norm ‖.‖F is the Frobenius norm [31]. For any matrix
A ∈ Rn×m, A = (ai,j)i,j, this norm is defined as:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|ai,j|2. (1.30)
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Using the trace function [31] of square matrices B ∈ Rn×n, B = {bi,j},

tr(B) =
n∑
i=1

bi,i (1.31)

the squared Frobenius norm can be alternatively expressed as

‖A‖2
F = tr(AtA) = tr(AAt). (1.32)

The standard approach for finding the values for ξ, η and S that minimise the norm
in (1.29) is differentiation of the cost function. Then the first derivatives with respect
to each parameter are equated to zero and the remaining equations are solved for the
parameter. Differentiation with respect to matrices and vectors is explained in [63].
The matrix S, that consists of linear parameters only, is solved in the following way:

∂S‖R̄−Ψ(ξ, η)S‖2
F = ∂Str[(R̄−ΨS)(R̄t − StΨt)] = 2tr([− R̄tΨ+ StΨtΨ]dS). (1.33)

Equating this derivative to zero implies

−R̄tΨ+ StΨtΨ = 0 =⇒ Ŝ = (ΨtΨ)−1ΨtR̄. (1.34)

When this estimator for S is substituted in equation (1.29) we get the updated cost
function

min
ξ,η

‖R̄ −Ψ(ΨtΨ)−1ΨtR̄‖2
F = min

ξ,η
‖(II −Ψ(ΨtΨ)−1Ψt)R̄‖2

F = min
ξ,η

‖P⊥
Ψ R̄‖2

F . (1.35)

Here PΨ = Ψ(ΨtΨ)−1Ψt ∈ RI×I is the projection matrix onto the column space of Ψ and
P⊥

Ψ = II−PΨ ∈ RI×I is the projection onto the space orthogonal to the column space of
Ψ. The parameters in ξ and η are more complicated to solve because the resulting cost
function in (1.35) depends in a nonlinear way of these parameters. Therefore, equating
the derivative to zero yields equations that cannot be solved straightforwardly. The
common alternative way to find the optimal spatial parameters is a nonlinear search
algorithm preceded by a global search.

Using the dipole localisation method, one has to choose the number of dipole sources
that is to be fitted to the average data. A priori, this number is unknown and has to
be estimated from the data. Increasing this number will lower the cost function in
equation (1.35). However, increasing the number too far, results in estimated dipoles
that describe the noise in the data, rather than the evoked responses. Furthermore, the
inverse solution becomes unstable when too many sources are fitted. This shows that
estimation of the number of dipole sources is an essential part of the dipole localisation
problem. Because there is no standard way of determining this number, this is the main
weakness of the dipole localisation method. Different methods have been designed to
tackle this problem, e.g. [53, 67]. An other possibility lies in model selection procedures.
One can try different numbers of sources and choose the right forward model (i.e. the
right number of dipoles) by applying model selection procedures [110, 111].

Extensions of the point dipole source can be found in distributed (or extended)
sources, e.g. [50, 114]. Distributed sources can be 1D (line) shaped sources, 2D (surfaces)
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sources or 3D (volume) sources. Using a distributed model one can model a piece of
cortex more realistically. Another extension is using multi-pole sources in stead of
dipolar sources [45, 77].

Due to the nonlinear parameters, the dipole localisation method becomes cumber-
some when many dipoles have to be fitted. To circumvent the estimation of these
nonlinear parameters, alternative methods have been sought. The rather intuitive spa-
tial filtering methods, presented in the next section, scan the entire volume for activity,
accordingly avoiding the estimation of the nonlinear sources location parameters.

1.3.3 Spatial scanning

A different method to map the underlying sources of measured MEG/EEG signals is
found in the spatial scanning technique. Multiple Signal Classification (MUSIC) [74, 94]
and beamformer approaches like the Linearly Constrained Minimum Variance (LCMV)
method [90, 107] are the main scanning methods. The basic idea is to divide the brain
into many voxels and to scan the head voxel by voxel. For each voxel the source power
is computed based on the measured data. This procedure yields a 3D image of the
source power throughout the brain, which can for example be fused with MRI images.

In the MUSIC paradigm, the sources are found in two steps. First, the cost function
(1.35) is minimised with respect to the projection P⊥

Ψ and in the second step a scan over
source locations is performed to find the optimal source locations. In case of independent
dipole sources, this split-up approach is an approximation of the ML estimation method
presented in section 1.3.2. The optimal projection is found by using the Singular Value
Decomposition (SVD) of the average data matrix R̄. The SVD of an arbitrary matrix
A ∈ Rn×m is

A = U∆V t (1.36)

where U ∈ Rn×n is an orthogonal matrix, that is U tU = UU t = In, and V ∈ Rm×m is

also orthogonal. If n > m the matrix ∆ ∈ Rn×m is ∆ =

(
∆0

0

)
where ∆0 ∈ Rn×n is a

diagonal matrix and 0 is the null matrix of the appropriate dimension. In case n ≤ m,
the matrix ∆ =

(
∆0 0

)
, where ∆0 ∈ Rm×m is a diagonal matrix and 0 is the null

matrix of the appropriate dimension. The diagonal matrix ∆0 contains the singular
values of A. For the average data matrix this decomposition is

R̄ = U∆V t. (1.37)

In order to determine the number of sources, usually a scree plot of the singular values
in ∆ is made. This decreasing series of singular values theoretically shows a bend
after, say, p values. This number indicates the rank of the signal subspace, while
the remaining values correspond to the noise subspace. In case of independent single
sources, this rank p equals the number of dipoles. In case of sources with linearly
dependent amplitudes, this method does not yield the right number of dipoles in general.
After having determined the number of sources, p, the dimension of the forward field
matrix Ψ is set to I × p and the optimal projection P̂ of rank I − p that minimises
‖PR̄‖2

F is given by

P̂ =
(

Up+1 . . . UI

) (
Up+1 . . . UI

)t
(1.38)
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where Uq is the qth column of the matrix U . The value of the cost function then becomes

‖P̂ R̄‖2
F = tr[

(
Up+1 . . . UI

)t
U∆∆tU t

(
Up+1 . . . UI

)
] =

min(I,J)∑
s=p+1

σ2
s . (1.39)

The values σs are the singular values of R̄, i.e. ∆0 = diag(σ1, . . . , σmin(I,J)).
The second step in the MUSIC algorithm is to find the source (location and orienta-

tion) parameters ζ = (ζ1, . . . , ζp) ∈ R1×6p such that the space orthogonal to the column
space of the dipole field matrix Ψ(ζ) = (Ψ(ζ1), . . . ,Ψ(ζp)) = (Ψ1, . . . ,Ψp) ∈ RI×p is as

close as possible to P̂ . This minimisation can equivalently be expressed as

min
ζ

‖P̂Ψ(ζ)‖2
F = min

ζ
‖ ( P̂Ψ1 . . . P̂Ψp

) ‖2
F = min

ζ

p∑
n=1

‖P̂Ψ(ζn)‖2
F

=

p∑
n=1

min
ζn

‖P̂Ψ(ξn)‖2
F . (1.40)

In other words, the joint cost function for all p sources is the sum of the cost function
for each source separately. This minimisation is subject to the constraint that no two
sources ζp1 and ζp2 are equal to each other in order to assure a correct rank of the lead
field matrix Ψ(ζ) = (Ψ(ζ1), . . . ,Ψ(ζp)). Hence, the minimisation can equally well be
performed source after source. In order to avoid minima in the cost function that are
caused by small entries in the lead field matrices (i.e. sources with small gain) the cost
function is normalised:

Cost(ζ) =
‖P̂Ψ(ζ)‖2

F

‖Ψ(ζ)‖2
F

= ‖ ( Up+1 . . . Umin(I,J)

)
Ψ(ζ)‖2

F . (1.41)

For each location ξ in the brain, the optimal orientation η that minimises this cost
function is found by solving a generalised eigenvalue problem [74]. The optimal source
parameters are found by 3D scanning: for each location ξ in the brain the cost function
Cost(ζ) = Cost(ξ, η) is evaluated. The final step in the MUSIC algorithm is to invert
these cost values and select the p highest peaks in the 1

Cost(ζ)
-graph as sources, which

is equivalent to finding the p locations with smallest cost values. In practise, it ap-
pears that this intuitively created method, using the two-step approach, yields (under
some conditions) approximately the same solutions as the dipole localisation approach
presented in section 1.3.2.

In the LCMV beamformer method (or spatial filtering) the measured signal is filtered
for each possible source location such that only activity from that specific location
passes the filter. If we denote the unit dipole field matrix of a dipole at location ξ
by Φ(ξ) ∈ RI×3, as in equation (1.17), the optimal spatial filter for location ξ0 can be
expressed by a matrix W (ξ0) ∈ RI×3 such that

W (ξ0)
tΦ(ξ) =

{
I3 for ξ = ξ0

0 for ξ 
= ξ0
(1.42)

where In indicates the n-dimensional identity matrix. The meaning of equation (1.42)
is that the activity from location ξ0 passes the filter, while the activity of all other
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locations is barred. In the absence of noise, the output of the filter applied on the
forward field in equation (1.17) is

W (ξ0)
tf(ξ0) = W (ξ0)Φ(ξ0)q = q. (1.43)

The condition in equation (1.42) causes the norm of the filter W (ξ0) to become rather
big if Φ(ξ) and Φ(ξ0) are different though nearly linearly dependent. In such a case
Φ(ξ0) = Φ(ξ) + δ for some small δ and the condition becomes 1 = W (ξ0)Φ(ξ0) =
W (ξ0)Φ(ξ) + W (ξ0)δ = W (ξ0)δ. Because δ is small, W (ξ0) is forced to be large. A
large norm of W (ξ0), in turn, causes a large gain to noise and other sources at locations
different from ξ and ξ0. Denoting the measured signal at the I sensors by a vector
r ∈ RI×1 and the output of the filter by s ∈ R3×1 the filter output is

s = W (ξ0)
tr. (1.44)

In LCMV spatial filtering, the variance of s is minimised, which can mathematically be
expressed as

min
W (ξ0)

Cs = min
W (ξ0)

W (ξ0)
tCrW (ξ0) subject to W (ξ0)Φ(ξ0) = I3 (1.45)

where Ch denotes the covariance matrix of variable h. The optimal matrix W (ξ0) is
then given by [107]

Ŵ (ξ0)
t = [Φ(ξ0)

tC−1
r Φ(ξ0)]

−1Φ(ξ0)
tC−1

r . (1.46)

This filter is then computed and applied for all possible locations ξ0 in the brain from
which activity may be expected, yielding the estimated moment vector q0 for each
possible location ξ0. In that way, a map of the source power is obtained, from which
the peaks are detected as being the underlying sources.

In case of uncorrelated (white) noise (see next section) and uncorrelated sources
these spatial scanning methods perform acceptably. However, whereas dipole localisa-
tion is statistically well defined, the scanning methods lack a clear statistical foundation.
In particular, this applies for the estimation of the covariance matrix Cr in the LCMV
method. Furthermore, the variations over time and temporal correlations are not in-
corporated in the method. Instead, correlations over time are usually assumed to be
zero. In case of correlated sources, the performance of these methods degrades and the
computed source power map seriously differs from the true source configuration. This
problem becomes more severe when the sources are further apart [107].

The dipole localisation method allows for a transparent incorporation of both the
spatial and the temporal correlations. Furthermore, all parameters, both noise and
model parameters, can be estimated within one statistical paradigm, the maximum
likelihood paradigm (see section 1.4.3). Therefore, dipole source localisation based
upon the ML method is used in this thesis.

1.4 Correlations in the background activity

1.4.1 Correlation

Correlations between signals indicate dependencies. For example, if two signals are
positive correlated (that is, have a positive covariance) they will tend to show the same
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pattern. This means that if one is positive, the other is likely to be also positive. Signals
can also have a negative correlation, then they tend to show opposite sign. Correlations
are scaled between -1 and +1. Perfectly positive correlated signals have correlation 1
and are proportional to each other having the same sign. Perfectly negative correlated
signals have correlation -1, and are proportional to each other with opposite sign. A
zero correlation, indicates that both signals behave unconnectedly. The mathematical
formulas for the correlation and covariance of two stochasts X and Y are

Cov(X,Y ) = E[(X − EX)(Y − EY )] (1.47)

Cor(X,Y ) =
Cov(X,Y )√

E[(X − EX)2]E[(Y − EY )2]
(1.48)

where EZ denotes the expected value of stochast Z.
Background activity in MEG measurements is correlated both in space and over

time. In space, this means that nearby MEG sensors tend to measure the same brain
activity. The further the sensors are away from each other, the smaller their covariance
gets. This is because the nearer the channels the more likely they will measure the
same activity, while further apart from each other, they are likely to measure different,
local activity. The meaning of the correlations over time, i.e. the temporal correlations,
is that two measurements that are close in time, will tend to find the same value.
The farther the two measurements are lagged the smaller the connection between the
two measurements becomes. An important temporal feature in background activity is
oscillations. Alpha, beta and mu rhythms are examples of characteristic oscillations in

Figure 1.10: An oscillating signal. Time instants that are one period apart (arrow at
the left hand side) show the same signal and therefore have perfect correlation, while
instants that are half a period apart (arrow at right hand side) show opposite signs and
have a negative correlation.

spontaneous or resting state activity. The frequency of the alpha and mu rhythms is
8-13 Hz, while frequencies of beta waves range from 14 Hz to 60 Hz [86]. Oscillations
cause certain patterns in the temporal correlation. Namely, two time instants that
are one period apart, will show the same signal (see Figure 1.10) and therefore their
correlation will equal 1, while instants that are half a period apart will show opposite
signals and a correlation of -1. Increasing the time lag by a multiple of periods does
not alter the correlation in case of perfect oscillations. For nonoscillatory brain activity
the temporal covariance decreases with time lag between the two time instants and will
vanish for big time lags. The idea behind this assumption is that nonoscillatory brain
activity consists of transient bursts at different places in the cortex that are independent
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of each other. In Figure 1.11 the covariance shape as function of time lag is presented
for oscillatory (Figure 1.11(a)) and nonoscillatory signals (Figure 1.11(b)).

(a) Covariance as function of time lag of
purely oscillatory brain activity

(b) Covariance as function of time lag of
random nonoscillatory brain activity

Figure 1.11: Covariance shapes of different kinds of brain activity

1.4.2 Temporal nonstationarity

The temporal covariance of MEG signals is called nonstationary if it does not only
depend on relative time (time lag between the signals) but also on absolute time (time
instant). In fact, this defines weak stationarity, though because no other kind of tem-
poral stationarity is discussed in this thesis, this the word weak is omitted throughout
this thesis. For the special case of a zero time lag, i.e. the variance of the signal,

V ar(X) = E[(X − EX)2] (1.49)

nonstationarity means that the expected amplitude deviation from the average varies
with time. In other words, at certain instants there is more variation around the average
than at others. In Figure 1.12 an example of nonstationary signals is presented. The
signals in this example are sinusoids with varying amplitude. The variance is also
a sinusoid, though with the double frequency. This is a common phenomenon: the
variance of nonstationary oscillatory brain activity has the double frequency (Figure
1.12), whereas the covariance has the same frequency as the oscillatory signals (Figures
1.10 and 1.11(a)).

As an example, consider one MEG sensor in an evoked response measurement (e.g.
SEF, VEF). The measured signals are denoted by rkj , for J time instants, j = 1, . . . , J ,
and K trials, k = 1, . . . , K. The temporal covariance matrix of these signals is a
J×J matrix with entries Cov(rj, rj′). Based on the measurements the usual, unbiased,
estimator for this matrix is the sample covariance matrix

Ĉov(rj, rj′) =
1

K − 1

K∑
k=1

(rkj − r̄j)(r
k
j′ − r̄j′), (1.50)

where r̄j denotes the average measured signal at time instant j. Following the SPN
model, the recorded signal is the sum of a fixed and a random part. The random
noise part consists of background activity and some external noise. When this noise
is indeed not influenced by the presented stimulus, the temporal covariance will be
stationary, i.e. the noise is not varying in average amplitude over time. In case the SPN
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a

b

Figure 1.12: An example of different signals (realisations) of a nonstationary process.
The variation of the signals in figure a around their average varies with time. At
instants where all signals cross zero there is no variation, while at others the variation
is maximum. In figure b the variance is plotted on the same time scale. The time
instants where all signals show the same value in figure a correspond to a zero variance
in figure b.

assumption (rkij = rij + εkij) is incorrect, the estimator in equation (1.50) can produce a
nonstationary structure. Two possibilities can be distinguished: the fixed signal part,
rkij, is not fixed though varies from trial to trial or the noise part, εkij, is influenced by
the presented stimulus. Examples of the former are amplitude and latency jitter in the
response. An example of the latter is phase locking.

(a) Example of three responses
with different amplitudes

(b) Residuals of the three exam-
ples in figure a

(c) Variance of the residuals in
figure b

Figure 1.13: An example of three responses with varying amplitude. The three responses
in figure a have different amplitudes, resulting in nonzero residuals in figure b. Figure
c shows the estimated temporal variance of these three signals. This variance shows a
similar shape as the response wave form, and is, therefore, not constant over time.

The two different types of response jitter are illustrated in Figures 1.13 and 1.14.
In these figures the variance caused by the response part of the signal is plotted. There
will be additional (stationary) variance due to the noise part. The second example
of invalidity of the SPN assumption is stimulus induced phase locking of oscillatory
background activity. This means that the phase of an ongoing wave in the background
activity is reset by the stimulus. This also generates a nonstationary temporal co-
variance. Furthermore, in this case the separation between noise and signal becomes
delicate. Namely, when the ongoing activity, normally belonging to the background
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(a) Example of three responses
with different latencies

(b) Residuals of the three exam-
ples in figure a

(c) Variance of the residuals in
figure b

Figure 1.14: An example of three responses with varying latency. The three responses
in figure a have different latencies, resulting in nonzero residuals in figure b, that have a
wider shape than the initial wave form. Figure c shows the estimated temporal variance
of these three signals. This variance shows a shape that is wider than the response wave
form.

noise, is phase reset, it will build up a nonzero average, and hence it will be regarded as
part of the average response when all signals are averaged. Moreover, after averaging
these oscillations will not show up in the residuals after stimulus presentation. Hence,
regarding the variance of the residuals, there will be a decrease in the variance after
stimulus presentation.

In all, the validity of the SPN is linked to the temporal stationarity of the background
noise. When the SPN assumption is correct, the temporal structure is stationary, while
incorrectness may yield temporally nonstationary estimates.

1.4.3 Correcting for spatiotemporal covariance in dipole
localisation

In the cost function of the dipole localisation method presented in equation (1.29) no
compensation is made for the spatiotemporal correlations, and therefore this method
is called the ordinary least squares (OLS) method. This method is rather intuitive;
however, it is not optimal. The OLS estimators for the parameters are inefficient.
An inefficient parameter is a parameter of which the standard deviation does not ap-
proach the Cramèr Rao lower bound when an infinite number of data is available [95].
Consequently, inefficient parameters have higher standard deviations than theoretically
necessary. In order to have efficient estimators, one needs to take into account the
spatiotemporal correlations. This is called the generalised least squares (GLS) method.

The spatiotemporal covariance of two measured MEG signals, rkij and rk
′

i′j′ , as in
equation (1.24) is given by

Cov(rkij, r
k′
i′j′) = E(rkij − R̄ij)(r

k′
i′j′ − r̄i′j′) = E(εkij · εk

′
i′j′) = Cov(εkij, ε

k′
i′j′), (1.51)

where we assumed that the average signal r̄ij is a good estimator for the expected value
of rkij and, hence, noise and residuals coincide. A priori, these correlations are unknown
and need to be estimated from the measured data. Theoretically, the dimension of
the spatiotemporal covariance matrix is IJK × IJK. However, in order to estimate
the matrix, multiple independent measurements are needed. It is common practise to
assume that the different trials, corresponding to index k, are independent. Hence, the
dimension of the matrix is reduced to IJ × IJ . This, in turn, is still huge: I may equal
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150 and J , say 300, which yields a 45000×45000 matrix to estimate. Using the trials as
independent measurements, one needs at least IJ trials in order to obtain a nonsingular
sample covariance matrix (see equation 1.50). Hence, this approach is not feasible in
practise. To reduce the dimensionality of the parameter space, the spatiotemporal
covariance matrix is parameterised: in [16, 20, 42] the Kronecker product (KP) model
of a temporal matrix T and a spatial matrix X is presented. The expression in equation
(1.51) is then parameterised as

Cov(εkij, ε
k′
i′j′) = δkk′Tjj′Xii′ , (1.52)

where δ denotes the Kronecker delta:

δkk′ :=

{
1 for k = k′

0 for k 
= k′.
(1.53)

The spatiotemporal index, that is, the index of the spatiotemporal covariance matrix,
is the index of vec(Ek) in equation (1.26). Denoting the spatiotemporal covariance
matrix of the MEG residuals by Σ ∈ RIJ×IJ , the KP model is expressed as

Σ = T ⊗X. (1.54)

The Kronecker product possesses elegant properties [31, 104], which are used in this
thesis. The most important formulas for the MEG/EEG inverse problem are

(T ⊗X)−1 = T−1 ⊗X−1 (1.55)

|T ⊗X| = |T |I |X|J , (1.56)

where |A| denotes the determinant of a matrix A.
The distribution of the MEG residuals in (1.27) is usually assumed to be Gaussian:

vec(Ek) ∼ N (0, T ⊗X), (1.57)

for all k. For one trial, the corresponding marginal probability density function (pdf)
becomes

fΨ,S,Σ(E
k) =

1

(2π)
IJ
2

1

|T | I
2 |X|J

2

exp

[
−1

2
[vec(Ek)]t(T−1 ⊗X−1)vec(Ek)

]
. (1.58)

Substituting Ek = Rk −ΨS, the pdf of the joint distribution of all trials becomes

fΨ,S,Σ(E
1, . . . , EK) =

1

(2π)
IJK

2

1

|T | IK
2 |X|JK

2

exp

[
−1

2

K∑
k=1

[vec(Rk −ΨS)]t(T−1 ⊗X−1)vec(Rk −ΨS)

]

=
1

(2π)
IJK

2

1

|T | IK
2 |X|JK

2

exp

[
−1

2

K∑
k=1

tr[(Rk −ΨS)tX−1(Rk −ΨS)T−1]

]
, (1.59)
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which is just the product of the K marginal pdfs. For the last equality in equation
(1.59) the following property was used [63]

tr(ABCD) = (vec(At))t(Dt ⊗B)vec(C) (1.60)

for any A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×q and D ∈ Rq×m.
In the GLS paradigm the sum in the exponent in (1.59) is minimised with respect

to all model parameters. In the maximum likelihood (ML) method the pdf is regarded
as a function of the model and covariance parameters, rather than a function of the
measured data. This function is called the likelihood function. Using the ML method,
the likelihood function is maximised with respect to all model and covariance parame-
ters. When the spatiotemporal covariance is known, that is X and T are known, these
two methods, ML and GLS, coincide and the cost function becomes:

min
ξ,η,S

K∑
k=1

tr[(Rk −Ψ(ξ, η)S)tX−1(Rk −Ψ(ξ, η)S)T−1

= min
ξ,η,S

tr[(R̄ −Ψ(ξ, η)S)tX−1(R̄ −Ψ(ξ, η)S)T−1 + γ (1.61)

where

γ =
K∑
k=1

tr[(Rk)tX−1RkT−1]− tr[R̄tX−1R̄T−1] (1.62)

does not depend on the parameters in ξ, η and S. Estimation of the parameters is
similar to the OLS estimation explained in section 1.3.2, that is, by differentiation of
the cost function.

When the covariance matrices X and T are unknown, which is generally the case,
these matrices can be estimated within the ML paradigm. In such a case, the likelihood
in (1.59) is maximised with respect to both the covariance and the model parameters,
i.e. with respect to X, T , ξ, η and S. Differentiating and successively equating to zero
for all these parameters, yields a complicated system, of which the estimators for all
parameters are expressed in terms of the other parameters. This system yields the
exact solution, though has to be solved iteratively, which requires much more time than
reasonable. Therefore, the ML estimation method is usually split into two parts: first,
the noise parameters are estimated and secondly, the model parameters are estimated
as in the GLS method. In the first step the likelihood function in equation (1.59) is
differentiated with respect to X and T . In this step, the parameters ξ, η and S are still
unknown, and the expression ΨS in the cost function needs to be replaced by a known
expression. For this substitution the ML estimator for the entire term (ΨS) is used:

Ψ̂SML =
1

K

K∑
k=1

Rk = R̄. (1.63)

This estimator can be derived by differentiation of the likelihood function in equation
(1.59) with respect to the entire term (ΨS). In other words, in the first step, the
noise is replaced by the residuals, assuming that the statistical properties of noise and
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residuals are comparable. After this substitution, the likelihood function is maximised
with respect to X and T , yielding the following system of estimators:

T̂ML =
1

IK

K∑
k=1

(Rk − R̄)tX−1
ML(R

k − R̄) (1.64)

X̂ML =
1

JK

K∑
k=1

(Rk − R̄)T−1
ML(R

k − R̄)t. (1.65)

This system has to be solved iteratively, starting with T = IJ for example. Then, in
the second step of the ML method, these estimated covariance matrices are used as the
true matrices in the GLS estimation of the model parameters with cost function (1.61).

Estimating and understanding these covariance matrices and more advanced models
for the spatiotemporal covariance is one of the main goals of this thesis. As stated
in section 1.4.2, nonstationarities in these covariance matrices are indicators for the
invalidity of the SPN model. This and related topics are discussed in detail in chapters
2, 3 and 4.

1.5 This thesis

1.5.1 Temporal nonstationarities

Incorrectly assuming the Signal Plus Noise model (1.24) leads to a nonstationary tem-
poral covariance structure (section 1.4.2 and [101]). To investigate the validity of the
SPN, trial-to-trial variations are investigated in Chapters 2, 3 and 4.

In Chapter 2 the fixed response model of the SPN model is extended to a response
model that allows varying amplitude over trials (as in Figure 1.13). This model is not
only applicable in evoked response experiments but also is very interesting in application
to epileptic spike data. It is shown that allowing the amplitude to vary removes the
temporal nonstationarities in the statistical structure of the residuals of the spike data.

In chapter 3 the ML-estimated temporal covariance matrix is parameterised by only
6 parameters in order to understand the temporal properties of the MEG residuals. In
the presented Poisson modulated alpha model, the background activity is assumed to
consist of frequency specific alpha activity and additional random noise. It appears
in that chapter that the ML-estimated temporal structure can be explained by an, in
principle, stationary model up to an error of less than 1 % relative matrix power.

Temporal nonstationarities are also addressed in the discussion in chapter 7. In this
final chapter some special phenomena that can cause artifactual temporal nonstation-
arities are examined.

1.5.2 Improvement of the spatiotemporal covariance model

The KP model for the spatiotemporal covariance is based on the assumption that time
and space are not correlated. In other words, the temporal covariance is fixed over MEG
sensors, while the spatial covariance is fixed in time. This, though, is a simplification of
the reality. For example, the alpha rhythm is not equally distributed over the sensors
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with respect to the other background activity, and, therefore, contradicts the KP as-
sumption. For this reason, an extension of the KP model is sought in chapter 4: a sum
of Kronecker products. This extension has the advantage that multiple spatiotemporal
patterns can be accounted for by different terms. Furthermore, higher order terms may
show nonstationarities that do not appear in the single KP model. Hence, the sum
of KP model contains valuable information about the statistical characteristics of the
background noise. Regarding the practical application in dipole localisation, this model
is hampered by computational considerations. A nonconventional amount of computer
power would be needed in order to use this model for dipole fitting. Nonetheless, it
appears from the analysis in chapter 4, that the improvement of the accuracy of the
source parameters is expected to be only marginal, compared to the use of the single KP.
Apparently, for dipole localisation one KP is adequate, while a sum of KP is interesting
for its physiological information. For further improvement of the source localisation
method, the emphasis should be on improving the forward model rather than on the
spatiotemporal covariance model.

1.5.3 Improving of the forward model

Following the suggestion of chapter 4, improvement of the forward modelling is explored
in chapters 5 and 6 by combining MEG data of multiple related experiments in a sin-
gle model. The Coupled Dipole Model and the Extended Coupled Dipole Model are
presented in these two chapters, which can be used to localise the sources in multiple
related MEG/EEG data sets simultaneously. This integrated method is applicable to
data sets in which the same sources are active or proportional source time functions
occur. This approach stabilises the solution to the inverse problem and relatively in-
creases the signal-to-noise ratio (SNR). Both models use a basic set of common sources
and a basic set of common source time functions (wave shapes). The set of common
sources contains all sources that are active in at least one of the data sets in the analy-
sis. The number of both the spatial and the temporal common components is chosen
by the user. The model for each data set under consideration is a linear combination of
these common components. In the Coupled Dipole Model the user is allowed to specify
in more detail this linear combination based upon prior information or assumptions,
whereas the Extended Coupled Dipole Model estimates more objectively this linear
combination. Furthermore, the statistical transparency of the Extended Coupled Di-
pole Model allows for the computation of the statistical significance of the estimated
source activity, which can be illustrated by the confidence regions around the estimated
source time functions.



Chapter 2

A maximum likelihood estimator for
trial-to-trial amplitude variations in
noisy MEG/EEG data sets

Adapted from: J.C. de Munck, F. Bijma, P. Gaura, C. Sieluzycki, M.I. Branco,
R.M. Heethaar: A maximum likelihood estimator for trial-to-trial variations in noisy
MEG/EEG data sets, IEEE Trans. Biom. Eng. 2004, 51(12): 2123-2128

2.1 Introduction

Spontaneous brain activity in MEG and EEG signals is caused by dendritic and return
currents of neurons receiving signals from connected neurons (see section 1.1.2). Part
of this activity, like the alpha and mu rhythms are enhanced in the absence of visual
and motor input, respectively. When a stimulus is presented to a subject several parts
of the brain that are involved in processing the stimulus will show increased neuronal
activity and will therefore act as the generators of the brain response, which can be
recorded by MEG or EEG. When the same stimulus is applied repeatedly, the brain
response is usually extracted from the recorded data by a simple averaging technique.
The question is how the averaged signal should be interpreted.

The (often implicit) assumption underlying response averaging is the Signal Plus
Noise model (section 1.3.1):

rkij = rij + εkij (2.1)

for k = 1, . . . , K. Here rkij is the recorded signal at channel i, time sample j and trial k.
rij is the spatiotemporal pattern of the brain response, which is assumed to be constant
over trials. And εkij is the background noise, which is assumed to have a Gaussian
distribution and which is in general correlated over sensors and time samples. It is
straightforward to show that the maximum likelihood (ML) estimator for the constant
brain response rij is the simple average over trials of the recorded data.

Nevertheless, it is known from experiments that the constant response assumption
is false in general. Examples of trial-to-trial variations in human EEG are habituation
effects [79, 113], P300 effects and event related synchronisation and de-synchronisation

27
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effects [51, 84]. However, because these effects are generally small, it is not straightfor-
ward to prove their presence in the data and to distinguish them from the background
noise. This problem becomes even more severe if one realises that the spatial and tem-
poral properties of the background noise are very similar to those of the brain response
under study, since the background noise mainly consists of spontaneous brain activity.

In a recent paper [101] is was demonstrated that neglecting trial-to-trial variations
results in an estimate of the background noise of which the variance is nonstationary
over the time interval of interest. However, that paper does not show how trial-to-
trial variations can be estimated from ‘first principles’. In [44] and [85] a ML model is
formulated yielding estimators of amplitude and latency jitters of single trials in a multi-
trial evoked potential experiment. A restriction of these papers is that they are based on
the assumption of uncorrelated background noise, whereas it is known that for instance
the alpha rhythm is both correlated in time and over sensors (e.g. [16, 42]). Furthermore,
when estimating the response, the trial-to-trial variations and the noise characteristics
one has to realise that these components are mutually dependent, because the measured
signal consists of their sum.

In this chapter, a model is presented to describe amplitude jitter in spatiotemporal
MEG (e.g. habituation effects) and ML estimators for all model parameters are de-
rived without the restricting assumption of uncorrelated background noise. This model
is applied to data of standard SEF experiments in which the subject is electrically
stimulated at the median nerve. Since the model is equally well applicable to the si-
multaneous analysis of epileptic spikes of varying polarity, an example of that kind of
data is discussed also.

2.2 Methods

2.2.1 Model

In the data model it is assumed that the recorded brain signal rkij consists of a constant
spatiotemporal pattern rij multiplied by a trial dependent amplitude factor αk, and a
Gaussian noise part εkij

rkij = αkrij + εkij (2.2)

for k = 1, . . . , K. The noise part εkij is assumed to be statistically independent from trial
to trial and its spatiotemporal covariance is modelled as a Kronecker product T ⊗ X
(e.g. [63]) of a spatial covariance matrix X and a temporal covariance matrix T . This
can be expressed as (see equation 1.52):

E [εkijεk
′

i′j′ ] = δk,k′Xii′Tjj′ . (2.3)

In this model, the unknown parameters are contained in αk, rij, X and T and need to
be estimated from the measured data rkij.

The underlying idea of the ML paradigm is to express the probability density func-
tion of the noise as a function of the a priori unknown parameters, as the likelihood
function, and to find the parameters for which this likelihood is maximum. Following
the definition in equation 1.25, the array containing the measured data in trial k is
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denoted by Rk, and the fixed responses rij are gathered in matrix R. With the above
assumptions the likelihood function is given by

fε(α,R,X, T ) =
exp

[−1
2

∑
k tr[(R

k − αkR)T−1(Rk − αkR)tX−1]
]

(2π)
IJK

2 |T | IK
2 |X|JK

2

(2.4)

Here I is the number of channels, J is the number of time samples and K is the number
of trials.

L R

Figure 2.1: A selection of maps corresponding to the markers set by a technician on
different spikes. The spatial patterns of these spikes are similar, though the polarity
changes from spike to spike.

The ML-estimators of α, R, X and T are derived by equating the corresponding
derivatives of equation (2.4) to zero and solving the estimators from the resulting equa-
tions. This method yields as ML estimator for R the weighted average of the single
trial data:

R =
1

K

∑
k

αkRk. (2.5)

From this estimator one can see that, in case it is assumed that no trial-to-trial variations
are present, i.e. that α = (1, . . . , 1)t, then this estimate of the brain response reduces
to the simple average over trials. The estimators for the weights αk appear to be the
elements of the eigenvector with the largest eigenvalue of the following system:∑

k2

tr[Rk1T−1(Rk2)tX−1]αk2 = λmaxα
k1 . (2.6)

For the spatial and temporal covariances a system of equations can be derived in which
T is expressed in terms of X and vice verse:

X =
1

J

( 1

K

∑
k

RkT−1(Rk)t −RT−1Rt
)

(2.7)
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T =
1

J

( 1

K

∑
k

(Rk)tX−1Rk −RtX−1R
)
. (2.8)

Note that in equations (2.5 - 2.8), the symbols α, R, X and T have been used to indicate
the estimators of the true values. Equations (2.5 - 2.8) have to be solved iteratively.
First, α = (1, . . . , 1)t and T = IJ are taken, and then equations (2.7 - 2.8) are solved
iteratively [20]. These first estimates of the covariances are substituted into (2.6) to
obtain an update of α, which is substituted back into (2.5), etc. In practise, it appears
that a few iterations between equations (2.5 - 2.6) and equations (2.7 - 2.8) are sufficient
to obtain a stable solution.

2.2.2 Data

Somatosensory Evoked Field (SEF) data were measured from nine healthy subjects by
applying an electrical median nerve stimulation to both the left and right wrist (N=8),
or only to the left wrist (N=1). The stimulus intensity was individually adjusted such
that a twitch of the thumb appeared. A regular inter-stimulus interval was used, which
was set at 1 s. MEG data were acquired on a whole head 151 channel system of CTF,
using a sample rate of 2083 Hz. Off-line, bad epochs and bad channels were marked
and removed from the data. The number of remaining good responses varied between
450 and 570. Data were offset corrected using a pre-stimulus interval of 100 ms, which
is optimal to reduce the nonstationary influence of the offset correction (see chapter 3).
No band pass filtering was applied. Two time intervals were selected to investigate trial-
to-trial variations. The early time window extended from 23 to 37 ms post-stimulus,
the late window from 30 to 120 ms post-stimulus. These windows were selected based
on the distribution of the averaged MEG data power as a function of time.

As stated above, another interesting application of the presented model is the si-
multaneous analysis of multiple epileptic spikes of varying polarity. For this kind of
data, averaging according to the SPN would cause the signal to vanish because of the
varying polarities of the spikes. For this study, MEG data of an epileptic patient were
collected during a period of one hour, and stored in six data files of 10 minutes each.
First, the data were motion-corrected [19] and spikes were marked at the maximum
signal amplitude by an experienced MEG technician. Then for each spike marker a
symmetric data window was cut, 110 ms left and 110 ms right of the marker. These
spikes were subjected to cluster analysis [106], after which 254 spikes remained having a
similar topography, but a varying amplitude and polarity. The field maps of a selection
of these spikes are presented in Figure 2.1. One observes that most graphs only show
one polarity, while the other one falls outside the MEG helmet. This is a common
picture for MEG spikes, in particular in case of temporal lobe epilepsy.

2.3 Results

2.3.1 SEF data

The algorithm presented in the previous section usually converged in 8 to 12 iterations.
The iteration stopped (converged) when the relative difference in matrix power between
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an estimate and the next estimate was below 10−10. For the late responses (187 samples)
this resulted in a computation time of about 2 h (Pentium IV, 1 GHz) or more. For the
early responses (29 samples) this time amounted typically 15 min. Figure 2.2 shows
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Figure 2.2: The estimated amplitudes for the late time window (30 - 120 ms post-
stimulus) of the SEF data sets for four subjects. The horizontal scale runs from 0 to
600 seconds (trials). The vertical scale is in arbitrary units, where a constant value
of 1 indicates the solution for the simple SPN model with no amplitude variations. In
all cases, there are relative fast variations from one trial to the next and also slower
variations on scales between 50 and 200 s. Furthermore, all these cases show a negative
trend indicating that the response gets weaker over time.

four typical examples of the estimated trial-to-trial amplitude variations in the (late)
SEF response. In this figure the estimated trial multiplication factor αk is plotted as
function of trial or equivalently, as function of stimulus time in seconds. In all cases,
there are relative fast variations from one trial to the next and also slower variations
on scales between 50 and 200 s. To extract systematic behaviour from all data sets, a
straight line was fitted to the estimated amplitudes, using the stimulus times of each
trial as x-coordinate and the estimated αk as y-coordinate. The quality of these line
fits, was in all cases comparable to the examples presented in figure 2.2. In all cases
presented in Figure 2.2, the slope of the fitted trend line was negative. The data of the
early components and the data of the other subjects were treated similarly, yielding an
estimated linear trend for all data sets. Figure 2.3 summaries all these estimated trends
for both the early and late responses for all subjects. From these graph it appears that
for the early responses the trend varies strongly over subjects, whereas for the late
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Figure 2.3: An overview of the trends in the SEF responses for different data sets. The
numbers on top indicate subject. For each subject (except subject 4) both left (L) and
right (R) SEF stimulation were performed. The black bars present the trends of the
early response windows (20-35 ms), and the grey bars the late responses (30-120 ms).
The arrows correspond to the cases shown in figure 2.2.

responses all trends are negative or slightly positive at most.

2.3.2 Spike data

Figure 2.4 shows the results of the amplitude analysis for the spike data. Since the spikes
do not regularly occur over time, the estimated weight factors αk are now plotted as
function of spike occurrence in stead of time. It appears that 60 of the 254 spikes have
a negative polarity with respect to the others. Furthermore, the ‘negative’ spikes seem
to have slightly smaller amplitude than the ‘positive’ ones.
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Figure 2.4: The amplitude factors as function of spike number for different epileptic
MEG spikes. It appears that 25 % of the spikes have a different polarity than the
remaining 75 %.

When the spikes are simply averaged, which is done in the first iteration of the
estimation of amplitude modulation factors, the temporal variance should change in
time with a pattern corresponding to the shape of the averaged event, as predicted in
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[101]. This effect is demonstrated in Figure 2.5. After 9 iterations, when the algorithm
converges, the variance in Figure 2.5(a) has decreased and becomes much more constant.
Figures 2.5(b) and 2.5(c) show that not only the variance, but the entire covariance
matrix T becomes much more stationary. The remaining nonstationarities may be
explained by a small misalignment in the spike markers, which introduce latency jitters.
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Figure 2.5: The estimated temporal variances (a) and covariance structures plotted
in grey scale (b, c) in the first and last iteration of the algorithm. In figure a, a
nonstationary structure is seen for the first iteration (black line), while the estimated
variance in the last iteration (grey line) is much more constant. These variances are
the diagonals of the temporal covariance matrices, that are plotted entirely in figures b
(first iteration) and c (last iteration). These figures show that the erroneous assumption
of no amplitude variation, i.e. the starting assumption in the first iteration, yields a
nonstationary structure in the entire covariance matrix that has disappeared in the last
iteration.

2.4 Discussion

This chapter presents an ML estimation model to extract trial-to-trial amplitude varia-
tions in brain response and to distinguish these variations from spatially and temporally
correlated background noise. The application of this model to 17 SEF data sets shows
that single trial SEF data show a systematic weakening of the SEF amplitudes. This
negative trend in the response can be explained as habituation or nerve fatigue effects.
Similar effects are also present during visual stimulation, both in EEG and NIRS (Near
Infra Red Spectroscopy) data, as presented in [79]. In that study, the responses were
averaged over 15 trials (of .33 s) and trends were computed over 12 of these subsequent
averages. In all subjects (N=12) negative trends were found in the component from 100
to 135 ms, whereas for the earlier component (from 75 to 110 ms) no systematic nega-
tive trend was found. This finding is similar to our results for the SEF data, although
the analysis methods are quite different. Strong habituation effects in group-averaged
auditory fMRI data have been reported in [83]. That study as well as other studies on
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habituation contain several implicit assumptions that are avoided with the ML method
presented here. The price to be paid is the relative long computation time.

The application of the model to spike data can be considered as a validation of
the method, because in these data the amplitude variations are so strong that they
are already visible in the raw data (Figure 2.1). However, the model presented in this
paper can be of practical use in the analysis of multi-spike data, when the number
of spikes is limited, when they have a low signal-to-noise ratio or when they appear
in different polarities. Such a change in polarity without a change of pattern could
indicate a small shift of the underlying current dipole from one gyrus to the next.
This is not an uncommon situation with MEG spikes, as was shown in a recent paper
[106]. In that paper different spike types were automatically grouped by computing
their mutual Euclidean signal distances and applying a clustering algorithm. When in
that algorithm in stead of Euclidean distances, a negative correlation measure would
be used, spikes with the same spatial pattern but different polarity would show up in
the same cluster, thereby increasing the number of events per cluster. Applying this
alternative distance measure, in combination with the current model, would increase
the signal-to-noise ratio, compared to the case of subgroup averaged spikes.

In [5] the same SEF data sets are used to study the stationarity of the background
noise (see chapter 3). It is concluded in that chapter that, when accounting for non-
stationarities caused by the baseline correction, the temporal covariance matrix of the
background noise can be explained for 99% or more by a stationary noise model. Never-
theless, the present study shows that there are weak trial-to-trial variations in the data
sets. It is apparently so that the amount of trial-to-trial variations should exceed a cer-
tain threshold in order to become visible in the temporal covariance of the background
noise, as is the case with the spike data set.

The central idea behind the presented method is to consider the determination
of brain responses as a parameter estimation problem, using a mathematical model to
describe single trial data. Therefore it is, at least in principle, straightforward to extend
our model to physiologically more advanced models, such as suggested in e.g. [65, 82].
However, one should also realise that including, for instance, simple latency jitters in
the model, would increase the number of nonlinear parameters by 300 to 1000 (one
for each trial), which is probable become problematic due to multiple local maxima in
the likelihood function. In the presented model, which is also a nonlinear model, the
nonlinear amplitude parameters can be solved simultaneously, by solving an eigenvalue
problem. Another aspect of more advanced models is that an increase of the number
of parameters is accompanied with, on the one hand, an improvement of the goodness
of fit, and on the other hand, a larger variance in the estimated parameters. It can be
argued that the ML framework is very well suited to address this dilemma objectively.
However, to perform these ideas in practise, a nonconventional amount of computer
power is required. For that purpose a network of parallel computers could be used.



Chapter 3

A mathematical approach to the
temporal stationarity of background
noise in MEG/EEG measurements

Adapted from: F. Bijma, J.C. de Munck, H.M. Huizenga, R.M. Heethaar: A Math-
ematical Approach to the Temporal Stationarity of Background Noise in MEG/EEG
measurements, NeuroImage 2003, 20(1): 233-243

3.1 Introduction

Background noise in MEG/EEG measurements is correlated both in space and in time.
When estimating dipole source parameters one has to take into account the covariance
of this noise. Moreover, the study of the background noise is also important for its
own sake regarding the ongoing debate about the meaning of averaged brain responses
in relation to the background noise [44, 65, 85, 89, 101]. When it is assumed that
the recorded signal is a simple superposition of the brain response and the background
noise, as in the Signal Plus Noise (SPN) model (see equation 1.24), the measured signal
rkij at channel i and time sample j in trial k is modelled as

rkij = rij + εkij, (3.1)

where rij is the brain response caused by the stimulus and εkij the measured noise. The
SPN model is based on the assumption that the brain response rij does not vary over
trials, whereas εkij does vary from trial to trial.

The spatial covariance of the background noise in equation (3.1) has already been
studied in detail [39, 61, 62, 96, 109]; it has been shown that, by taking into account
these spatial correlations, the accuracy of the estimated parameters in the source local-
isation is improved. Recently, in addition to the spatial covariance, also the temporal
correlations were incorporated in the source localisation. It was demonstrated in [20, 42]
that this addition generally improves the dipole estimation further. Both these studies
were based on the SPN model.

In [20] and [42] the spatiotemporal noise covariance matrix Σ is modelled as the
Kronecker product (KP) of a spatial covariance matrix X and a temporal covariance

35
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matrix T in order to reduce the dimensionality of the parameter space to a feasible size
(see [16] and equation (1.52)):

Σ = T ⊗X. (3.2)

Note that X and T are not unique due to a common factor; therefore, one is normalised.
Furthermore, different trials k and k′ are assumed to be uncorrelated. The basic idea
of the KP parametrisation is the assumption that the noise covariance between two
residuals at channels i and i′ at time samples j and j ′ respectively can be factored as
the product of a spatial term Xii′ and a temporal term Tjj′

E(εkij εk
′

i′j′) = Σij,i′j′ δk,k′ = Xii′Tjj′δk,k′ . (3.3)

Here δk,k′ denotes the Kronecker delta function, defined in (1.53).
In [42] a parametric model is used for both X and for T , where the matrix elements

are assumed to depend only on sensor distance and time difference, respectively. In
[20], maximum likelihood (ML) estimators are derived for R, X and T without further
assumptions. The resulting estimators are for the brain response

R̂ =
1

K

K∑
k=1

Rk, (3.4)

which is the usual averaged signal, and for the covariance matrices:

X̂ =
1

JK

[ K∑
k=1

RkT̂−1(Rk)t − R̂T̂−1R̂t
]

(3.5)

T̂ =
1

IK

[ K∑
k=1

(Rk)tX̂−1Rk − R̂tX̂−1R̂
]
. (3.6)

Equations (3.5 - 3.6) need to be solved iteratively, starting with T = IJ for example.
In the expressions for the estimators, I, J and K are the numbers of channels, time
samples and trials respectively and Rk is the (I × J) data matrix of the kth trial. At

denotes the transpose and A−1 the inverse of matrix A.
The statistics of εkij express properties of the ongoing background activity. If the

background noise is modelled as the electromagnetic field of randomly distributed sta-
tionary dipole sources, assuming these dipoles are statistically independent and their po-
sitions are independent of their amplitudes, then the spatiotemporal covariance presents
itself as a Kronecker product as in equation (3.2) [16].

Regarding the spatial part of the KP, different models have been investigated [16,
18, 42]. The model for the spatial covariance derived in [16] can be interpreted as a
function of sensor distance. A similar stationary model was presented [42]. Although
the KP structure was already suggested in [16], in that study the temporal structure
was explicitly left unspecified. Now the question arises whether the temporal covariance
has a stationarity property similar to that of the spatial covariance. Stationarity in the
temporal domain (see section 1.4.2) indexcovariance!temporal is the property that the
temporal covariance only depends on time difference and is independent of time, so that
T is constant along subdiagonals (i.e. Toeplitz), cf. [42].
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To investigate the possibility of a physiologically adequate parametric model for
T , equations ((3.4) - (3.6)) were applied to several data sets. Figure 3.1 presents an
example of T̂ . In Figure 3.1(a) the matrix is visualised by plotting the average along
subdiagonals as function of time difference. For the jth0 subdiagonal this average is

1

J − j0

J−j0−1∑
j=0

Tj,j+j0 . (3.7)

In Figure 3.1(a) this average covariance (black line) and its standard deviation (grey
band) are plotted as function of time lag together with the diagonal of T̂ , the variance,
(red line) as function of time. In Figure 3.1(b) the same matrix is plotted in colour.
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Figure 3.1: Two different visualisations of the same ML-estimated temporal covariance
matrix. (a): lower line: average temporal covariance as in formula (3.7) (± SD in
the grey band) as function of time difference (ms); upper line: temporal variance as
function of time (ms). The vertical scale in figure (a) is in arbitrary units because of
the common factor of X and T (3.2). The horizontal line denotes the time in ms. (b):
entire temporal covariance matrix (400 ms by 400 ms) plotted as bitmap. The colour
scale is as in Figure 3.2.

+1-1 0

Figure 3.2: The colour scale used in Figure 3.1(b). White indicates zero, purple is
positive, red is negative.

In order to plot the matrix, its entries are scaled such that the entry that is largest in
absolute value equals 1 or -1. The colour scale used for this kind of covariance plots is
presented in Figure 3.2. As with usual printing of matrices, all entries are arranged in a
square, and in stead of values, corresponding colours are plotted. Nonstationarities and
oscillations in the temporal domain can now easily be detected: a stationary temporal
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covariance matrix has a constant value (colour) along its (sub)diagonals and oscillations
in the covariance are reflected by a line pattern parallel to the diagonal.

The matrix in Figure 3.1 shows a nonstationary covariance structure. First of all,
the variance in Figure 3.1(a)(upper black line), i.e. the diagonal of the matrix, is not
constant over time but oscillates. The same holds true for the subdiagonals (Figure
3.1(b)). The average covariance in Figure 3.1(a) (lower black line) also oscillates, though
this does not indicate nonstationarity. The underlying reason is that the covariance is
a function of time lag, rather than a function of time. The oscillation visible in the
covariance indicates a 10 Hz oscillation in the background activity (see section 1.4.1).
In Figure 3.1(b) this oscillation is visible in the direction perpendicular to the diagonal.
However, the SD-band around this average covariance witnesses again nonstationarity
of εkij: the rather high and fluctuating SD shows that on some subdiagonals the variation
around the average covariance is higher than on others. In Figure 3.1(b) the oscillations
in both the diagonal and the anti-diagonal direction result in blue spots in the figure,
whereas in case of temporal stationarity one would expect a line pattern parallel to the
diagonal. In all, Figure 3.1 shows an example of a nonstationary temporal covariance
matrix.

The oscillations in Figure 3.1 suggest that the background noise is partly generated
by alpha activity. Therefore in the present chapter a parametrisation of T is pro-
posed that is based on a noise model consisting of two components: alpha activity and
additional random noise. The covariance of this additional noise is modelled as an ex-
ponentially decreasing function of time lag (i.e. as low frequency noise). The presented
ongoing alpha model is based on the assumption of ongoing alpha activity, i.e. one
everlasting alpha wave. The more advanced Poisson modulated alpha model assumes
that the alpha activity consists of separated waves which occur every now and then and
have finite duration. This assumption is more realistic because raw data clearly show
separated waves.

In the next section the OAM and the PoMAM are presented and preprocessing of
the data by an offset correction is considered in detail. Technical details of this section
are moved to the appendix, in order to keep the text compact. The results section
shows the application of the PoMAM to SEF data sets. And finally, the results are
discussed in the last section.

3.2 Methods

3.2.1 Ongoing alpha model

In the ongoing alpha model (OAM) the temporal component of the background noise
is modelled as the sum of an ongoing alpha wave and additional random noise. For
convenience the model uses continuous time, and is converted to discrete time in its ap-
plication to our experiment. The model for the noise in the kth trial, εk(t), is formulated
as

εk(t) = Ω sin (ωt+ τk) + ηk(t) (3.8)

where Ω is the amplitude, ω the frequency of the alpha activity and t indicates time
instant. Because of the random inter stimulus interval the phase of the wave, τk, is
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random for each trial, i.e. the stochast τk has the uniform distribution in [−π, π]. For
the additional noise, ηk(t), it is assumed that

E(ηk(t1)ηk(t2)) = σ2e−κ|t2−t1| (3.9)

where κ > 0 and σ2 is the variance. This means that the additional noise is temporally
stationary and its covariance decreases with time lag. Furthermore, the alpha wave is
assumed to be independent of the additional noise. This yields the temporal covariance
for an arbitrary trial k

Cov(t1, t2) = E(εk(t1) · εk(t2))
= E[(Ω sin (ωt1 + τk) + ηk(t1)) · (Ω sin (ωt2 + τk) + ηk(t2))]

=
Ω2

2π

∫ π

−π
sin (ωt1 + τk) · sin (ωt2 + τk)dτk + σ2e−κ|t2−t1|

=
Ω2

2
cos (ω(t2 − t1)) + σ2e−κ|t2−t1|. (3.10)

From (3.10) it is clear that the OAM is a stationary model: Cov(t1, t2) only depends
on time lag t2 − t1. In Figure 3.3 an example of the OAM covariance is presented. This
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Figure 3.3: The covariance in (fT)2 of the OAM as function of time lag (ms) for
ω = 20π rad s−1, Ω2 = 3 (fT)2, σ2 = 3.5 (fT)2 and κ = 10s−1.

figure shows that the OAM covariance does not vanish for large time difference as was
the case in the experimental data presented in Figure 3.1(a), though remains oscillatory.
For this reason the more realistic Poisson modulated alpha model is introduced.

3.2.2 Poisson modulated alpha model

In the Poisson modulated alpha model (PoMAM) the alpha activity is modulated by
an interrupted Poisson process. A Poisson process with intensity parameter λ is a
statistical process generating events at random with mean intermediate time 1

λ
[11, 99].

The time between two consecutive events has the Exponential(λ) probability density
function:

fλ(t) = λe−λt1[0,∞)(t) (3.11)

where 1[a,b](t) = 1 for t ∈ [a, b] and zero for t /∈ [a, b].
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Figure 3.4: Occurrence of alpha waves according to the PoMAM. Because of the random
inter stimulus interval trial onsets can occur in any phase of the wave. Tint denotes the
time between waves, Tα the duration of a wave. tonset indicates the onset of a wave in
trial k.

In the covariance model the events stand for the onsets of α-waves (Figure 3.4).
After each event the process is disrupted for the duration of the wave, which is fixed
to Tα for all wave, after which it resumes to generate the next event (onset). Different
waves are assumed to be uncorrelated.

In the PoMAM two stochastic processes are operating simultaneously, namely the
Poisson process (generating wave onsets) and the random phase process. These two
processes are assumed to be statistically independent.

Assuming the amplitude of a wave to be constant and equal to Ω, the amplitude
time function (envelope) of a wave which started at t = 0 is Ω 1[0,Tα](t). Let εαk (t) =
εk(t)−ηk(t) denote the alpha part of the noise. In Figure 3.4 the alpha activity at time
t in trial k due to the wave started at tonset is

εαk (t) = Ω1[0,Tα](t− tonset) sin (ω(t− tonset) + τk)

= Ω1[0,Tα](t− tonset) sin (ωt+ τ ′
k) (3.12)

where τ ′
k = −ωtonset + τk. τk′ has the same probability density function as τk, namely

the uniform distribution in [−π, π]. Therefore, in the sequel τ ′
k will be denoted as τk

again. From the model (3.12) it is clear that the Poisson process only comprises the
amplitudes of the waves, so that the expected value of the error is still zero because of
the random phase τk.

The covariance in the PoMAM is

Cov(t1, t2) = E(εk(t1) · εk(t2)) = Covα(t1, t2) + Covη(t1, t2) (3.13)

because the alpha activity and the additional noise are assumed to be independent. In
this expression the second term is the same as in the OAM:

Covη(t1, t2) = σ2e−κ|t2−t1|. (3.14)

The computation of the alpha part of the covariance is complicated because there are
different possibilities for t1 and t2. First of all, if t1 and t2 are in the same wave, then
Covα(t1, t2) 
= 0 in general. Secondly, if one of the two instants, say t1, is in a wave,
and t2 is not in the same wave (not in any wave or perhaps in another wave) then
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Covα(t1, t2) = 0, because either εαk (t2) = 0 or t2 is in another wave, and different waves
are assumed to be independent. And finally, if both instants are not in any wave,
Covα(t1, t2) = 0 obviously. Therefore only the case of t1 and t2 being in the same wave
has to be considered.

In order to compute the covariance of the PoMAM the Total Probability Theorem
[11] applied to a function g(X) of a stochast X is used:

E(g(X)) = P (A)× E(g(X)|A) + P (Ac)× E(g(X)|Ac) (3.15)

where Ac stands for the complement of event A. Defining A to be the event ‘ t1 and t2
are in the same wave’ and g(X) to be εαk (t1)ε

α
k (t2), which is a function of both stochastic

processes, (3.15) yields

Covα(t1, t2) = E(εαk (t1) · εαk (t2)) = P (A)× E(εαk (t1)ε
α
k (t2)|A). (3.16)

In this formula the results from Appendix 3.5.1 (P (A)) and Appendix 3.5.2
(E(εαk (t1)ε

α
k (t2)|A)) are substituted ((3.31) and (3.34)):

Covα(t1, t2) =
Tα − |t2 − t1|

Tα + 1
λ

Ω2

2
cos (ω(t2 − t1))1[−Tα,Tα](t2 − t1). (3.17)

This can be written as

Covα(t1, t2) = γ(λ, Tα)
Ω2(Tα − |t2 − t1|)

Tα
1[−Tα,Tα](t2 − t1)

1

2
cos (ω(t2 − t1)), (3.18)

where

γ(λ, Tα) =
Tα

Tα + 1
λ

. (3.19)

One can regard (3.18) as the product of three factors: the relative amount of alpha
waves γ(λ, Tα), the convolution of the amplitudes and the covariance of the OAM with
unit amplitude.

In sum, the total PoMAM covariance is

Cov(t1, t2) = γ(λ, Tα)
Ω2(Tα − |t2 − t1|)

Tα
1[−Tα,Tα](t2 − t1)

1

2
cos (ω(t2 − t1)) + σ2e−κ|t2−t1|.

(3.20)
Note that this expression is entirely parametric. Furthermore, the covariance model in
equation (3.20) is stationary, i.e. only depends on lag t2 − t1.

For a more general envelope function of the waves Φ(t) the covariance can be cal-
culated in a similar way. The convolution of the amplitudes then becomes

1

Tα

∫ Tα

0

Φ(s)Φ(s+ |t2 − t1|)ds (3.21)

and the equivalent of (3.20) becomes

Cov(t1, t2) = γ(λ, Tα)
1

Tα

∫ Tα

0

Φ(s)Φ(s+ |t2 − t1|)ds1
2
cos (ω(t2 − t1)) + σ2e−κ|t2−t1|.

(3.22)
An example of the PoMAM with fixed amplitude, similar to the OAM example pre-
sented in Figure 3.3, is plotted in Figure 3.5. This figure shows that the PoMAM
covariance indeed vanishes for big time lags as is the case for the experimental data in
Figure 3.1(a).
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Figure 3.5: The covariance in (fT)2 of the PoMAM with fixed amplitude as function of
time lag (ms) for Tα = 600 ms, λ = 1

0.6
s−1, ω = 20π rad s−1, Ω2 = 3 (fT)2, σ2 = 3.5

(fT)2 and κ = 10 s−1.

3.2.3 Baseline Correction

Due to external influences in MEG/EEG measurements the baselines of the single
channel signals are usually shifted over an unknown offset which can be quite large. To
correct for these shifts one has to carry out an offset removal. One standard way of
performing this baseline correction (BC) is subtracting per channel the average over a
pre-stimulus interval. In this section the influence of this correction on the temporal
covariance matrix is studied.

Let [t0 − Tc, t0] be the interval over which the correction is calculated. Then the
formula for the corrected noise of the kth trial, εck(t), is

εck(t) = εk(t)− 1

Tc

∫ t0

t0−Tc

εk(t
′)dt′. (3.23)

To compute the (co)variance of the corrected signal, the corrected (co)variance, one has
to calculate

Covc(t1, t2) = E(εck(t1) · εck(t2))
= Cov(t1, t2)− 1

Tc

∫ t0

t0−Tc

[Cov(t1, t
′) + Cov(t2, t

′)]dt′

+
1

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

Cov(t′, t′′)dt′dt′′. (3.24)

The first term in (3.24) is the stationary uncorrected covariance and the last term is a
constant dependent on Tc and t0. The second term, though, is in general not stationary.

In Figure 3.6 the effect of the BC is illustrated. If a signal contains alpha activity
having nonzero average over the BC-window, a vertical shift is introduced by the cor-
rection. Moreover this introduced variance varies with time: the variation in signals is
periodically bigger or smaller. If the BC-window equals one alpha period, the average
alpha activity will be zero and this oscillating additional variance will not occur.
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Figure 3.6: The effect of the baseline correction on three signals (solid line: without
alpha activity in BC-window; dashed and dot-dashed lines: with alpha activity in BC-
window). When the average alpha activity during the BC-window is not zero the BC
introduces a vertical shift in the signal (dashed and dot-dashed lines).

For the OAM formula (3.24) can be computed (partly) analytically using (3.10) (see
Appendix 3.5.3):

Covc(t1, t2) =

Ω2
[ 1

ω2T 2
c

(1− cos(ωTc)) +
1

2
cos(ω(t2 − t1))

− 2

ωTc
sin

ωTc
2

cos(
ω(t2 − t1)

2
)cos(ω(

t1 + t2
2

− t0 +
Tc
2
))
]

+ σ2e−κ|t2−t1| − σ2

Tc

∫ t0

t0−Tc

(e−κ|t1−t
′| + e−κ|t2−t

′|)dt′ +
σ2

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

e−κ|t
′−t′′|dt′dt′′.

(3.25)
As an example the corrected variance (t1 = t2 = t) is plotted in Figure 3.7 for three
different values of Tc for both the OAM (Figure 3.7(a)) and for empirical data (Figure
3.7(b)). It is clear from these figures that the corrected temporal covariance structure
is not stationary and that this nonstationarity highly depends on the choice of baseline
correction. Although there are differences between the OAM figure and the empirical
figure the similarity in effect of baseline correction is striking.

There is an α-oscillation in the variance for Tc = 25 ms (dashed line) and Tc = 50
ms (dotted line), but this oscillation vanishes for Tc = 100 ms (solid line). This is
clarified by the term within square brackets of formula (3.25): the amplitude of this
sinusoid in t1+t2

2
contains the factor sin ωTc

2
, which is in the case of Figure 3.7(a) equal

to sin Tcπ
100

(taking time in ms) and is zero for Tc = 100 ms. Furthermore, the phase of
this oscillation is −t0 +

Tc

2
, so the phase shift between the dashed and the dotted lines

is 12.5 ms. The average variance is minimum for the solid line in this figure (Tc = 100
ms) since then 1

ω2T 2
c
(1− cos(ωTc)) =

1
4π2 (1− cos π100

50
) = 0, see (3.25).

In all cases, the variance is minimum at t = −Tc

2
, halfway the correction window.

This drop is caused by the second part of formula (3.25). Taking t1 = t2 = t, this
corrected variance due to η(t), consists of a constant, a nonstationary term and another
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Figure 3.7: Corrected OAM variance and corrected empirical variance for three different
values of Tc as function of time. The horizontal axis indicates time in ms. t0 = 0 ms.
(a): corrected OAM variance as function of t with ω = 20π rad s−1, Ω2 = 2 (fT)2,
σ2 = 3.5 (fT)2, κ = 10 s−1 for different values of Tc. (b): corrected empirical variances.
The dashed line corresponds to Tc = 25 ms, the dotted line to Tc = 50 ms and the solid
line to Tc = 100 ms in both figures.

constant. The integrand in the middle term is larger for t closer to the correction
window, because then |t − t′| is smaller. Therefore the closer t to this window, the
larger the integral. Together with the minus sign in front of the term, this causes the
drop. Moreover a decrease in Tc increases the magnitude of the drop (see Appendix
3.5.4).

To obtain stationarity one should choose Tc in such a way that the oscillation van-
ishes and the drop is minimum. This is achieved when ωTc = 2lπ, l ∈ N = {1, 2, 3, . . .}
i.e. when the correction interval is taken to be l α-periods with l ∈ N. The bigger l, the
smaller the magnitude of the drop, thus the more stationary the matrix. To keep the
preprocessing feasible taking one or two alpha periods as BC window is adequate.

The covariance of the corrected error εck(t) in the PoMAM is calculated using (3.20)
and (3.24). For the PoMAM with fixed amplitude formula (3.24) becomes a parametric
representation for the entries of the temporal covariance matrix T . The main differ-
ence between the simple OAM model and this parametric PoMAM is the decreasing
amplitude of the oscillations in the (co)variance. The effect of the baseline correction
on the stationarity is the same for both models. Therefore it is sufficient to examine
formula (3.25) for the simpler OAM in stead of the more complicated formula (3.24) to
investigate stationarity of the PoMAM.

3.3 Results

The PoMAM was fitted to ML-estimated temporal covariance matrices of five subjects
to see how well this parametric model describes the abstract and nonphysiological ML-
estimate. The ML-estimates were obtained from MEG data of Somatosensory Evoked
Field experiments, where the left median nerve was stimulated. Data were acquired
on a 151 channel CTF Omega system at a sample rate of 2083 Hz. The number of
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trials was approximately 500 for all subjects. No filtering was applied, expect for the
baseline correction. Subjects 2 and 3 were stimulated at a constant stimulus rate of 1
Hz, while the inter stimulus interval in subjects 1, 4 and 5 varied uniformly between
800 ms and 1200 ms. Regarding this difference, best fitting parameter values appeared
to reproduce very well within subjects between data sets with random and regular
stimulation. Therefore the comparison of parameter values for subjects 2 and 3 with
those for the other subjects is justified.

The parameters λ (the intensity of the Poisson process) and Ω (the amplitude of
the waves) were fitted simultaneously in Ω̃2 ≡ TαΩ

2(Tα + 1
λ
)−1 since they cannot be

distinguished in the covariance formula (3.18). Furthermore, an additional term σ2
hf was

added to the main diagonal and 1
2
σ2
hf to the first subdiagonal to model high frequency

noise due to the omitted filtering. The parameters to be fitted are ω (alpha frequency),
Tα (duration of α-wave), κ (covariance length of additional noise), σ2 (variance of
additional (low frequency) noise), σ2

hf (variance due to high frequency noise) and Ω̃2

(representing amplitude and intensity of alpha activity).
The cost function used is

C(ω, Tα, κ, Ω̃
2, σ2, σ2

hf ) =
‖T(ω,Tα,κ,Ω̃2,σ2,σ2

hf | t0,Tc)
− T̂‖2

F

‖T̂‖2
F

× 100% (3.26)

i.e. the relative squared Frobenius norm of the difference between the model matrix
T and the ML-estimated matrix T̂ . To minimise the cost function (3.26) the Simplex
method is used. Using this This iterative method was only used to estimate the three
nonlinear parameters (ω, Tα, κ), while the three linear parameters (Ω̃2, σ2, σ2

hf ) were
fitted in a least squares sense in each iteration. For each subject, the values for t0 and
Tc were taken equal to the corresponding values used in the ML-estimation of T . In
this study, the ML matrices were explicitly not taken as stationary as possible, though
instead, it was attempted to approximate the ML-estimated matrices as accurately as
possible, irrespective of the correction window used. Moreover, in this way, it can be
verified whether the effect of the baseline correction is taken into account correctly.

Table 3.1 presents the best fitting parameter values as well as the cost function
values for the five subjects. The nonlinear parameters Tα and κ appeared to be rather
insensitive in this study, while the parameter ω was most sensitive. The table shows
that the PoMAM describes the ML-estimated temporal covariance structure accurately:
the ML-estimates can be approximated up to an error of less than one percent in relative
squared Frobenius norm by the PoMAM.

3.4 Discussion

The temporal covariance of the background noise in MEG/EEG measurements can
be described accurately by the parametric Poisson modulated alpha model (PoMAM).
In the PoMAM the temporal noise is modelled in a physiological way as the sum of
randomly occurring alpha waves and additional noise. In principle, this model is station-
ary, though in practise the temporal stationarity is destroyed by the baseline correction,
which is apparent from Figure 3.6 and formulas (3.24) and (3.25). Taking the offset
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subject stim Tc
ω
2π

Tα
1
κ

Ω̃2 σ2 σ2
hf C

1 random 48 10.61 287 22.9 19980 13610 21099 0.4 %
2 regular 25 9.85 359 73.8 23527 15382 22952 0.5 %
3 regular 50 11.03 289 16.3 22651 12274 16804 0.7 %
4 random 50 8.85 536 14.7 8497 10402 11787 0.6 %
5 random 49 11.92 61 85.3 24746 11746 17293 0.4 %

average 10.45 306 42.6 19880 12683 17987 0.58 %
unit ms Hz ms ms (fT)2 (fT)2 (fT)2

Table 3.1: Best fitting values (between double bars) for the six parameters of the Poisson
modulated alpha model together with the residual error for five different subjects. The
number of time samples is 500. The values for t0 and Tc were taken equal to the
corresponding values in the ML-estimated matrices. Subjects 2 and 3 had eyes open,
while the others had eyes closed.

correction into account correctly, the ML-estimated temporal covariance matrix can be
described by the PoMAM up to an error of less than one percent (Table 3.1) using
only six parameters. It is, however, not straightforward how to estimate the PoMAM
parameters based on the raw data.

Some parameters (especially Tα and κ) appeared to be rather insensitive. This
redundancy suggests that a model with even less parameters is possible. Bearing this
insensitivity in mind, it may well be possible to compose a standard PoMAM matrix
T. Such a standard matrix can be based on standard values for Tα, κ, Ω̃, σ and σhf ,
while it should still depend on the sensitive parameter ω). It may be expected that this
matrix will perform considerably better in source localisation than the commonly used
T = σ2I does.

The temporal stationarity of the background noise highly depends on the window
used for the baseline correction (see equation (3.25)). Taking the length of this window
to be equal to a multiple of alpha periods one obtains the most stationary temporal
covariance. However, if one is interested in a particular sample after the stimulus (e.g.
the N20 response in a SEF experiment) advantage can be taken of the nonstationarity
due to the BC. In Figure 3.8 the empirical variances at t = 20 ms and t = 60 ms
after the stimulus in a SEF data set are plotted for several values of Tc. This figure
shows that for the N20 response the optimal BC-length is 100 ms, whereas for t = 60
ms a BC-window of 70 ms yields the minimum variance. This can be explained by
formula (3.25): if the time sample t and the PoMAM parameters are substituted then
this formula becomes a parametric expression in t0 and Tc, which can be minimised
with respect to Tc, taking t0 = 0.

In source localisation analyses where no temporal correlations are estimated or are
taken into account, in other words, where it is assumed that T = σ2I or equivalently,
that Cov(t1, t2) = σ2δ(t1−t2), the baseline correction also alters the temporal covariance
matrix. Due to the correction a positive constant is added to all entries in T (see (3.24)),
and, therefore, it is inconsistent to fix the baseline corrected temporal covariance matrix
to σ2I in such a case.
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Figure 3.8: The empirical variance in a SEF data set at t = 20 ms (dashed line) and
t = 60 ms (solid line) post-stimulus for different values of Tc (horizontal axis in ms),
the length of BC-window; t0 = 0.

In section 1.4.2, chapter 2 and [101], it was shown that trial-to-trial variations in
the response cause nonstationarities in the background noise when trials are averaged
according to the Signal Plus Noise model. In the current SEF experiment the assump-
tion of the SPN model leads to temporally stationary background noise; the observed
nonstationarity in the matrix is caused by the preprocessing and does not originate
from the data (cf. [65]). Therefore, taking into account that in this study, contrary to
others, both spatial and temporal correlations are incorporated, the present study not
disapprove the SPN model.

In the PoMAM the alpha activity is modelled as a random phase process with con-
stant amplitude. In case of phase locking of the alpha activity (see section 1.4.2), the
phase of α-waves would be modulated by the stimulus. In that case, a different prob-
ability density function for the phase τk is more likely, as well as a different amplitude
time function for the waves as in (3.22) (cf. [65]). Nonetheless, the small fit error of the
PoMAM shows that the current data can be well explained without the assumption of
such a stimulus modulated alpha model.

In sum, the Poisson modulated alpha model is a mathematical model, describing
the temporal noise covariance in a physiological and accurate way. For practical appli-
cation of this model further study of the parameter estimation and the effect on source
localisation is needed.

3.5 Appendix

3.5.1 Probability t1 and t2 in the same wave

In this appendix, the probability that the alpha process with stochastic intermediate
time intervals is such that t1 and t2 occur in one and the same alpha wave is computed.

For |t2 − t1| > Tα, this probability is obviously zero, since no wave can contain both
instants in that case. For |t2 − t1| < Tα this probability is derived below, assuming
0 < t1 < t2. For 0 < t2 < t1, the result is stated at the end of this appendix.
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Figure 3.9: Examples of the alpha process with fixed intermediate time (a) and varying
intermediate time (b).

Assume t1 and t2 are given, such that 0 < t1 < t2 and t2−t1 < Tα. If the intermediate
time between waves were fixed to Tint, the durations of the consecutive alpha waves and
their intermediate times would be fixed over time (see Figure 3.9(a)). In that case, the
probability that this disrupted alpha process is such that both instants t1 and t2 occur
in one wave would be equal to the ratio

Tα − (t2 − t1)

Tα + Tint
. (3.27)

One can regard (3.27) as the ratio between favourable phases of the process and all
possible phases.

Assuming the intermediate time intervals Tint have the Exponential(λ) distribution
in stead of being fixed, this probability changes. The probability that needs to be
calculated is now an integral over all possible values of Tint. Given Tint = ζ (and t1
and t2 are in the wave and intermediate time combination corresponding to ζ), the
probability that t1 and t2 both are in the wave, is

Tα − (t2 − t1)

Tα + ζ
. (3.28)

This probability needs to be integrated over all ζ, multiplied by the probability that
Tint = ζ. Moreover, the integrand needs to be weighted with the length Tα + ζ relative
to all possible lengths. This weighting is necessary because random selection of t1 and
t2 is less likely occur in a combination of Tα+100ms than Tα+1000ms, just because the
latter combination spans a longer time interval (see Figure 3.9(b)). Hence the integrand
becomes

Tα − (t2 − t1)

Tα + ζ
× pTint

(ζ)× Tα + ζ∫∞
0
(Tα + θ)λe−λθdθ

=
Tα − (t2 − t1)

Tα + 1
λ

× pTint
(ζ). (3.29)

Finally, the probability of ‘t1 and t2 occur in the same wave’ is

P =

∫ ∞

0

Tα − (t2 − t1)

Tα + 1
λ

× λeλζdζ =
Tα − (t2 − t1)

Tα + 1
λ

. (3.30)

For arbitrary values of t1 and t2 the probability is

P (t1 and t2 in same wave) =
Tα − |t2 − t1|

Tα + 1
λ

1[−Tα,Tα](t2 − t1). (3.31)
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3.5.2 Computation of equation (3.16)

In this appendix the last term of (3.16):

E(εαk (t1)ε
α
k (t2)|t1 and t2 in same wave)

is calculated. From (3.12) it is clear that the onset of the wave in which t1 and t2 occur
determines the amplitude of the activity at both instants. Therefore all possible onsets
have to be taken into account.

First assume t1 < t2. Given the event ‘ t1 and t2 are in the same wave’ the stochast
S = t1 − tonset has a uniform distribution in [0, Tα − (t2 − t1)]. Using the formula for
the expected value of a function g(S) of a stochast S with probability density function
fS(s) [11]

E(g(S)) =

∫
g(s)fS(s)ds (3.32)

with g(S) = εαk (t1)ε
α
k (t2) yields

E(εαk (t1)ε
α
k (t2)|t1 and t2 in same wave, t1 < t2)

=
1

2π

∫ π

−π

[ 1

Tα − (t2 − t1)∫ Tα−(t2−t1)

0

1[0,Tα](s)Ω sin (ωt1 + τk)1[0,Tα](s+ t2 − t1)Ω sin (ωt2 + τk)ds
]
dτk

=
Ω2

2
cos (ω(t2 − t1)). (3.33)

Taking t1 and t2 arbitrary in the same wave this remains

E(εαk (t1)ε
α
k (t2)|t1 and t2 in same wave ) =

Ω2

2
cos (ω(t2 − t1)). (3.34)

3.5.3 Corrected covariance for OAM

For the simple OAM the corrected covariance (3.24) is calculated using the covariance
for the uncorrected case (3.10):

Covc(t1, t2) =

= Cov(t1, t2)− 1

Tc

∫ t0

t0−Tc

[Cov(t1, t
′)+Cov(t2, t

′)]dt′+
1

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

Cov(t′, t′′)dt′dt′′

=
Ω2

2

[
cos (ω(t2 − t1))− 1

Tc

∫ t0

t0−Tc

[cos (ω(t1 − t′))+cos (ω(t2 − t′))]dt′

+
1

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

cos (ω(t′ − t′′))dt′dt′′
]

+σ2
[
e−κ|t2−t1| − 1

Tc

∫ t0

t0−Tc

e−κ|t1−t
′| + σ2e−κ|t2−t

′|dt′ +
1

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

e−κ|t
′−t′′|dt′dt′′

]
=

=
Ω2

2

[
cos (ω(t2 − t1))+

1

ωTc
( sin (ω(t1 − t0))− sin (ω(t1 − t0 + Tc)))
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+
1

ωTc
( sin (ω(t2 − t0))− sin (ω(t2 − t0 + Tc))) +

1

ω2T 2
c

(2− 2 cos (ωTc))
]

+σ2
[
e−κ|t2−t1| − 1

Tc

∫ t0

t0−Tc

e−κ|t1−t
′| + e−κ|t2−t

′|dt′ +
1

T 2
c

∫ t0

t0−Tc

∫ t0

t0−Tc

e−κ|t
′−t′′|dt′dt′′

]
.

(3.35)
Applying successively the rules

sinx− sin (x+ a) = −2 sin
a

2
cos (x+

a

2
) (3.36)

cos x+ cos (x+ a) = 2 cos
a

2
cos (x+

a

2
) (3.37)

to the first part of this formula yields (3.25).

3.5.4 Influence baseline correction on variance

The drop in the variance over the correction window (Figure 3.7(a)) is caused by the
next to last term in (3.25) (substituting t1 = t2 = t):

−2σ2

Tc

∫ t0

t0−Tc

e−κ|t−t
′|dt′. (3.38)

In this appendix it will be proved that a smaller value of Tc (i.e. a shorter correction
window) yields a deeper drop. Consider the magnitude of the drop, M , at the minimum
point (halfway the correction interval) as function of Tc by setting t = t0 − Tc

2
in (3.38):

M(Tc) =
2σ2

Tc

∫ t0

t0−Tc

e−κ|t0−
Tc
2
−t′|dt′. (3.39)

This function is positive and it has to be proven that it is decreasing in Tc (i.e. having
negative slope), which means that a shorter correction interval yields a deeper drop.
To prove M ′(Tc) < 0, first the integral in (3.39) is expressed as

M(Tc) =
4σ2

κTc
(1− e−κ

Tc
2 ) (3.40)

and then the derivative is taken with respect to Tc:

M ′(Tc) =
−4σ2

κT 2
c

+
4σ2

κT 2
c

e−κ
Tc
2 +

2σ2

Tc
e−κ

Tc
2 . (3.41)

To prove that the expression in (3.41) is negative it is multiplied by the positive factor
κT 2

c

4σ2 and s = κTc

2
is substituted

κT 2
c

4σ2
M ′(Tc) = −1 + (1 + s)e−s. (3.42)

Note that s only takes strictly positive values. Now the last expression in (3.42) is
always negative because

−1 + (1 + s)e−s < 0 ⇐⇒ 1 + s < es (3.43)

which is true for all s > 0. This completes the proof: a shorter correction interval (i.e.
a smaller value of Tc) yields a deeper drop in the variance. Therefore the larger the
baseline correction window the more stationary the covariance matrix.
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The spatiotemporal MEG
covariance matrix modelled as a
sum of Kronecker products

Adapted from: F. Bijma, J.C. de Munck, R.M. Heethaar: The spatiotemporal MEG
covariance matrix modelled as a sum of Kronecker products, NeuroImage 2005, in press

4.1 Introduction

In MEG measurements, background noise is correlated both in space and in time. Al-
though these correlations are unknown a priori, they are of interest for two reasons:
they contain physiological information and they can be used to improve source locali-
sation [16, 61, 96, 109]. These spatiotemporal correlations can be estimated from the
measured data. The general spatiotemporal covariance matrix, however, has a large
dimension, yielding two main problems, the first of which being its estimation and the
second its storage. Estimation would require an unrealistically high number of mea-
surements to achieve nonsingularity and storage would require far more memory than
commonly available.

A way of resolving these two problems has been found in the parametrisation of
the spatiotemporal covariance matrix through a Kronecker product (KP) [56, 104] of
a spatial and a temporal covariance matrix, reducing its dimensionality considerably
[16, 20, 42], see equation (1.54). The KP parametrisation assumes that an arbitrary
spatiotemporal correlation can be modelled as a product of a spatial and a temporal
factor. These two factors are independent of each other; hence, the spatial and temporal
correlations are separated from each other in the KP model. Physiologically, this model
can be interpreted by assuming background noise to be generated by randomly distrib-
uted dipolar sources having amplitude functions independent of the source locations
[16].

Applications of the KP model in source localisation methods have revealed that
the accuracy improves when the spatiotemporal correlations are taken into account in
stead of no or only spatial correlations [20, 42]. Nevertheless, there are two important
shortcomings of the KP model. The first deficiency is the rigidness of the KP: the
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shape of the temporal cross spectrum is forced to be fixed over all channels. This is
a simplification, as is illustrated by the alpha rhythm: the amount of alpha activity
relative to other spontaneous activity is not equally distributed over the head. The
second point of debate is trial-to-trial variations, which have been discussed in literature
[14, 26, 29, 44, 57, 66, 73, 85]. The Signal Plus Noise (SPN) model in evoked field
experiments assumes that no such variations occur in the data (section 1.3.1). This
model can be formulated as

ri,jk = ri,j + εi,jk , (4.1)

where rki,j is the measurement in trial k at the ith sensor and jth time instant, ri,j is
the trial independent response to the stimulus at the ith sensor and jth time instant
and εki,j is the residual (‘noise’). Hence, the SPN model assumes that all trial-to-trial
variations are accounted for by the εki,j. The response ri,j is estimated by the average
over trials of the measurements rki,j. When incorrectly assumed, i.e. when ri,j does
depend on k, the SPN model leads to nonstationarity in the temporal covariance [101]
(section 1.4.2). Nonetheless, it has been shown for Somatosensory Evoked Field data
sets that both the temporal (chapter 3) and the spatial covariance [16] estimated under
the SPN assumption can be explained by a stationary model. The reason may be that
the nonstationarities are suppressed by the rigidness of the KP model: if the majority
of the channels show temporally stationary signals, this stationarity will dominate the
temporal matrix. To overcome its shortcomings, an extension of the KP model is
investigated in this chapter: a sum of Kronecker products.

In the sum of KP model, each term presents a combination of a spatial and a tem-
poral pattern. Unlike the single KP model, the sum model allows for multiple temporal
structures with specific spatial patterns, and can, thus, account for temporal nonsta-
tionarities in separate terms. The interpretation of the sum of KP model is analogous
to that of the single KP model. Assuming that spontaneous background activity is the
composite of a number of independent ongoing processes, cf. [58], each of which can be
described by a random dipole model as explained above, the spatiotemporal covariance
matrix becomes a sum of KP.

Although extending the single KP model to a sum of KP may seem rather straight-
forward, in the practical application in dipole localisation it becomes quite delicate.
The main problem is the inversion of a sum of Kronecker products, which, contrary to
a single KP, cannot be performed by inversion of only the smaller dimensional matrices,
but requires inversion in the large spatiotemporal dimension. Therefore, the emphasis
in this study is primarily on estimating rather than applying the sum of KP. The aim is
twofold: firstly, the estimated sum of KP contains information about the validity of the
single KP model for dipole localisation; secondly, from the estimated sum physiological
information is assembled about the spatial and temporal features in the background ac-
tivity. Hence, the goal of this chapter is not to present an improved method for source
localisation; the accent is on investigating the spatiotemporal MEG residuals.

In the next section, first the findings and formulas of the single KP model are
summarised shortly and then the estimators for the sum of KP model are derived and
discussed. In the third section the sum model is estimated for data sets of three types
(VEF, SEF, AEF) and results are shown. In the final section the results are discussed
and conclusions are drawn. The technical details of the model are put together in the
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appendices in order to keep the text compact.

4.2 Model

4.2.1 Single KP model

In the single Kronecker product model, the covariance between two MEG residuals, ei,jk
and ei

′,j′
k′ , is modelled as the product of a temporal and a spatial term (equation 1.52):

E(εki,j, εk
′

i′,j′) = Xi,i′Tj,j′δk,k′ (4.2)

where εi,jk is the MEG residual measured at sensor i, time sample j in the kth trial and
δk,k′ denotes the Kronecker delta function (see definition 1.53). Thus, different trials
are assumed to be independent. The meaning of equation (4.2) is that the temporal
covariance matrix T is fixed in space and the spatial covariance matrix X does not vary
over time. In other words, space and time are not correlated.

The matrix formula for the Kronecker product model is

Σ = T ⊗X, (4.3)

where T ∈ RJ×J is the temporal, X ∈ RI×I the spatial covariance matrix and Σ ∈
RIJ×IJ is the spatiotemporal covariance matrix. I denotes the number of sensors and
J the number of time samples. The dimensions of these two covariance matrices are
much smaller than the dimension of Σ, and by the structure of the Kronecker product
the computations are much less demanding [63]:

Σ−1 = T−1 ⊗X−1 (4.4)

det(Σ) = det(T )I det(X)J . (4.5)

X and T can be estimated using either the maximum likelihood (ML) paradigm or
the least squares (LS) method. In the ML case, the MEG residuals are assumed to have
a Gaussian distribution with the KP as the covariance matrix. The likelihood function
is maximised with respect to the matrices X and T . In the LS case, the KP is fitted
to the spatiotemporal sample covariance matrix and the difference in Frobenius norm
is minimised with respect to X and T . The sample covariance matrix Σs ∈ RIJ×IJ is
defined as

Σs ≡ 1

K − 1

K∑
k=1

vec(Ek)[vec(Ek)]t (4.6)

where Ek ∈ RI×J is the matrix containing the residuals of trial k,

(Ek)i,j = eki,j, (4.7)

and K is the number of trials (repetitive measurements). In both the ML and the LS
case, the estimators for X and T are given by an iterative system. For the ML model
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this system is [20] (see section 1.4.3):

X̂ML =
1

JK

K∑
k=1

EkkT̂−1
ML(E

k)t (4.8)

T̂ML =
1

IK

K∑
k=1

(Ek)tX̂−1
MLE

k (4.9)

and for the LS paradigm, see appendix 4.5.1,

X̂LS =
1

K − 1

1

‖T̂LS‖2

K∑
k=1

EkT̂LS(E
k)t (4.10)

T̂LS =
1

K − 1

1

‖X̂LS‖2

K∑
k=1

(Ek)tX̂LSE
k. (4.11)

For the extension to the sum of KP model, the ML formulas become prohibitively
complicated because the sum does not maintain the elegant structure for the inverse
and the determinant as the single KP does (see equations (4.4) and (4.5)). For the LS
paradigm it appears that extension is possible.

4.2.2 Sum KP model

As stated in the introduction, extending the single KP to a sum of KP allows for a
more general spatiotemporal covariance structure. The sum model is expressed as

Σ =
N∑
n=1

Tn ⊗Xn (4.12)

and the corresponding LS cost function is

CLS = ‖Σs −
N∑
n=1

Tn ⊗Xn‖2 (4.13)

where ‖.‖2 denotes the Frobenius norm. In order to minimise the cost function, the
algorithm presented by Van Loan to find the best sum of KP approximation to a given
matrix is used [104]. The matrix elements in equations (4.12) and (4.13) are rearranged
according to Van Loan’s shuffle operator S : RIJ×IJ −→ RI2×J2

such that the model
equation (4.12) is transformed into

S(Σ) =
N∑
n=1

vec(Xn)vec(Tn)
t, (4.14)

and the cost function in equations (4.13) becomes

CLS = ‖S(Σs)−
N∑
n=1

vec(Xn)vec(Tn)
t‖2. (4.15)
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From appendix 4.5.2, containing more details about S, the formula for the shuffled
sample covariance matrix follows:

S(Σs) =
1

K − 1

K∑
k=1

Ek ⊗ Ek. (4.16)

Note that the dimension of this shuffled matrix is I2×J2, which is in general not square.
LS-estimators for Xn and Tn, n = 1, . . . , N , are obtained by minimising CLS in

equation (4.15). This minimisation is equivalent to finding the best rank N approxima-
tion of S(Σs), which can be obtained from the Singular Value Decomposition (SVD) of
S(Σs). Write the SVD of S(Σs) [31, 63]

S(Σs) = U∆V t, (4.17)

where U ∈ RI2×I2
and V ∈ RJ2×J2

are orthogonal matrices and ∆ = (∆0,0) ∈ RI2×J2

and ∆0 ∈ RI2×I2
is diagonal. Here it is assumed that I ≤ J . In case I > J the

expression for ∆ becomes

(
∆0

0

)
, with ∆0 ∈ RJ2×J2

. The best rank N approximation

of S(Σs), for N ≤ min(I2, J2), is now given by

N∑
n=1

UnσnV
t
n (4.18)

where Un (Vn) denotes the nth column of U (V ) and σn = ∆n,n, the (n, n)th entry of
∆0. Hence, the estimators for vec(Xn) and vec(Tn) are given by

vec(X̂n) = Un (4.19)

vec(T̂n) = σnVn (4.20)

for 1 ≤ n ≤ N . Note that these estimators are not unique: e.g. multiplying equation
(4.19) and dividing equation (4.20) by the same constant yields an equivalent solution.
Throughout this section, the normalisation as in equations (4.19) and (4.20) is used. It
follows from equation (4.18) that the entire sample covariance matrix can be described
by a sum of KP, when N is taken equal to min(I2, J2). Furthermore, from the σn the
distribution of explained matrix power over the KP terms is obtained:

rel pow nth term =
σ2
n

‖S(Σs)‖2
× 100% =

σ2
n

‖Σs‖2
× 100%. (4.21)

Despite the straightforward application of Van Loan’s method, the estimators in equa-
tions (4.19) and (4.20) are not convenient in practise, due to the dimensionality of the
desired SVD. Therefore, alternative estimators are deduced below.

The alternative way of estimating the terms (Tn, Xn) in the KP sum uses Lagrange
multipliers [68]. To find the best rank N approximation it suffices to first find the best
rank 1 approximation and successively find all the subsequent terms one after another.
The initial term, n = 1, corresponds to the best rank one approximation of the sample
covariance matrix and is estimated by the system of equations (4.10) and (4.11). As
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the higher order terms are estimated one by one, for any p satisfying 1 < p ≤ N , the
first p− 1 terms, (T̂n, X̂n) for n = 1, . . . , p− 1, will have been estimated at the instant
of estimation of the pth term. In other words, the best rank p − 1 approximation of
S(Σs) is known and the best rank p approximation has to be estimated. This step is
explained in appendix 4.5.3 from which expressions for X̂p and T̂p follow:

X̂p =
1

(K − 1)‖T̂p‖2

K∑
k=1

[
EkT̂p(E

k)t −
p−1∑
n=1

tr[X̂nE
kT̂p(E

k)t]X̂n

]
for 1 < p ≤ N (4.22)

T̂p =
1

K − 1

K∑
k=1

[
(Ek)tX̂pE

k −
p−1∑
n=1

1

‖T̂n‖2
F

tr[T̂n(E
k)tX̂pE

k]T̂n

]
for 1 < p ≤ N. (4.23)

The starting value for this iterative system and for the system in equations (4.10)
and (4.11) is to set Tp = IJ and start with updating Xp. The iteration stops when
the relative difference in matrix power between an estimate and the next estimate is

less than 10−12, i.e. when
‖As−As+1‖2

F

‖As‖2
F

< 10−12 for both A = Tp and A = Xp, where

As indicates the sth estimate in the iteration. To verify the iterative estimators in
equations (4.22) and (4.23), the SVD estimation method in equations (4.19) and (4.20)
was applied to small data sets (I = 30, J = 30). For this small data sets the first four
iteratively estimated KP terms were compared to the estimated terms from the SVD.
This comparison showed that both methods yielded identical matrices.

Note that, although the cost function CLS in equation (4.15) is expressed in terms
of the spatiotemporal sample covariance matrix Σs, the solution in the iterative system
of equations (4.22) and (4.23) does not require the storage of this huge matrix Σs in
memory. In order to find the solution, apart from the recorded data, one only needs to
store the terms (Xn, Tn) in memory, which is of order (I2 + J2).

4.2.3 Rewriting the sum of 2 Kronecker products

The terms in the sum of KP are estimated under the constraint of orthogonal ‘vecced’
matrices, see equations (4.54) and (4.55) of appendix 4.5.3. In order to interpret the
matrices (Xn, Tn) in each term as covariance matrices of the underlying physiological
processes, these matrices should be positive definite. However, the orthogonality con-
straint forces the higher order terms to be indefinite matrices. This can be explained
by the following reasoning. The first term consists of two positive definite matrices, T1

and X1, representing the best rank 1 approximation of S(Σs). Therefore, there exists
a nonsingular matrix W1 ∈ RJ×J such that T1 = W1W

t
1 > 0. To show that any higher

order temporal matrix Tn for n > 1 must be indefinite, it is demonstrated below that
the assumption of Tn being positive (or negative) definite leads to a contradiction. As-
suming Tn to be positive definite implies that there exists a matrix Wn ∈ RJ×J such
that Tn = WnW

t
n > 0. Substituting W1 and Wn, the orthogonality constraint can be

written as

0 = vec(T1)vec(Tn)
t = tr(T1Tn) =

tr(W1W
t
1WnW

t
n) = tr(W t

1WnW
t
nW1) = ‖W t

1Wn‖2 > 0 (4.24)
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which is a contradiction. For Tn negative definite, a similar contradiction can be derived.
Hence, Tn must be indefinite. The same holds true for all the higher order spatial
matrices Xn. The Kronecker product of two indefinite matrices, A and B, is again
indefinite, because the eigenvalues of A⊗B are given by λiµj, all possible combinations
of λi an eigenvalue of A and µj an eigenvalue of B [104]. Consequently, the higher
order terms in the sum, Tn ⊗ Xn for n > 1, are indefinite. In sum, this implies that
the higher order terms cannot be interpreted as physiologically meaningful covariance
matrices. Therefore, the estimated sum is converted to an interpretable sum of KP. For
this conversion, the freedom of a best rank N approximation is exploited.

In general, the freedom in the shuffled sum of N Kronecker products in equation
(4.14) can be exhibited by a nonsingular matrix H ∈ RN×N :

S(Σ) =
N∑
n=1

vec(Xn)vec(Tn)
t =

(
vec(X1) · · · vec(XN)

) vec(T1)
t

...
vec(TN)

t



=
[(

vec(X1) · · · vec(XN)
)
H
] H−1

 vec(T1)
t

...
vec(TN)

t




=
(

vec(X̃1) · · · vec(X̃N)
) vec(T̃1)

t

...

vec(T̃N)
t

 . (4.25)

In this rewritten expression, the X̃n (T̃n) matrices are linear combinations of the Xn

(Tn) matrices and are thus symmetric. Furthermore, note that this rewriting does not
damage the KP structure: Σs =

∑
n Tn ⊗Xn =

∑
n T̃n ⊗ X̃n. To convert the estimated

sum to an interpretable sum of KP, one should try to find a matrix H such that the
(T̃n, X̃n) are positive (semi-)definite for n = 1, . . . , N . The remainder of this section
concentrates on the special case N = 2.

For N = 2 the matrix H becomes a nonsingular (2× 2) matrix and can be written
as

H =

(
a b
c d

)
(4.26)

with ad − bc = 1 such that H−1 =

(
d −b
−c a

)
. In practise, it appears that the best

orthogonally estimated sum of two KP, T̂1 ⊗ X̂1 + T̂2 ⊗ X̂2, is not always positive def-
inite, but usually contains some small negative eigenvalues. Although these values are
very small, this indicates that the orthogonally estimated sum of two KP is indefinite.
Consequently, it is not possible to rewrite this sum of two KP as a sum of two posi-
tive definite KP, because a positive definite sum cannot equal an indefinite expression.
Therefore, we seek a matrix H that is optimal in a slightly different way. Given the
estimated sum, T̂1 ⊗ X̂1 + T̂2 ⊗ X̂2, the shuffled version of the rewritten sum in terms
of a, b, c and d is
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(
vec(X̂1) vec(X̂2)

)( a b
c d

)(
d −b
−c a

)(
vec(T̂1)

t

vec(T̂2)
t

)
=
(

a vec(X̂1) + c vec(X̂2) b vec(X̂1) + d vec(X̂2)
)( d vec(T̂1)

t − b vec(T̂2)
t

−c vec(T̂1)
t + a vec(T̂2)

t

)
.

Hence,

X̃1 = a X̂1 + c X̂2 (4.27)

X̃2 = b X̂1 + d X̂2 (4.28)

T̃1 = d T̂1 − b T̂2 (4.29)

T̃2 = −c T̂1 + a T̂2. (4.30)

As noticed above, these matrices cannot be all four positive definite. These matrices
are uniquely decomposed into a symmetric positive part and a symmetric negative part,
the latter of which might be zero for some but not all of the four matrices. This can be
expressed as:

X̃1 = UX̃1
∆+

X̃1
U t
X̃1

− VX̃1
∆−

X̃1
V t
X̃1

(4.31)

X̃2 = UX̃2
∆+

X̃2
U t
X̃2

− VX̃2
∆−

X̃2
V t
X̃2

(4.32)

T̃1 = UT̃1
∆+

T̃1
U t
T̃1

− VT̃1
∆−

T̃1
V t
T̃1

(4.33)

T̃2 = UT̃2
∆+

T̃2
U t
T̃2

− VT̃2
∆−

T̃2
V t
T̃2

(4.34)

where all U# and V# are matrices with orthogonal columns, and the ∆+
# and ∆−

# are
positive diagonal matrices with descending entries along the diagonal. Now a, b, c and
d are estimated such that the matrix power corresponding to the negative eigenvalues of
the four matrices, i.e. the power of the ∆−

# matrices is minimum. Then the ∆−
# matrices

are set to zero, such that the final rewritten sum, denoted by T̆1 ⊗ X̆1 + T̆2 ⊗ X̆2, only
contains positive (semi-)definite matrices:

X̆1 = UX̃1
∆+

X̃1
U t
X̃1

(4.35)

X̆2 = UX̃2
∆+

X̃2
U t
X̃2

(4.36)

T̆1 = UT̃1
∆+

T̃1
U t
T̃1

(4.37)

T̆2 = UT̃2
∆+

T̃2
U t
T̃2
. (4.38)

Summarising, the cost function used to find a, b, c and d is

C(a, b, c, d) = ‖Σs − T̆1 ⊗ X̆1 − T̆2 ⊗ X̆2‖2

‖Σs‖2
(4.39)

and the relative matrix power of the sample covariance matrix explained by the rewrit-
ten sum, T̆1 ⊗ X̆1 + T̆2 ⊗ X̆2, is defined as

rel pow rewr sum := (1− ‖Σs − T̆1 ⊗ X̆1 − T̆2 ⊗ X̆2‖2

‖Σs‖2
)× 100%. (4.40)
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Figure 4.1: Illustration of the computation of the contribution of the rewritten terms.
Vector v1 (v2) presents the first (second) rewritten term and the vector v corresponds
to the rewritten sum. The contribution of v1 (v2) to the length of v is the length w1
(w2).

Compared to the contribution of the orthogonally estimated terms in equation (4.21),
the relative contribution of the two rewritten terms, T̆1 ⊗ X̆1 and T̆2 ⊗ X̆2, is less well-
defined because the terms are not orthogonal anymore. To compute the contribution of
the two terms, the vecced KP terms are considered as elements in RI2J2

. In Figure 4.1
this embedding is illustrated; the first term is represented by vector v1 and the second
by v2. The sum is drawn as vector v. The relative contribution of v1 (v2) to the length
of v is the length w1 (w2) divided by ‖v‖2:

w1

‖v‖2
=

v1 · v
‖v‖2

(4.41)

w2

‖v‖2
=

v2 · v
‖v‖2

(4.42)

Here the a·b denotes the inner product of vectors a and b. Note that the sum of the con-
tributions of the vectors equals the contribution of the sum of the vectors, that is 1. This
principle is applied to vn = vec(T̆n⊗X̆n), for n = 1, 2. It is important that the angle be-
tween v1 and v2 is at least 90

◦, because otherwise, v2 would point backwards. The angle
between the vectors v1 and v′2 in the graph can be computed from the inner product be-
tween vec(T1⊗X1) and vec(T2⊗X2). This inner product is (vec(T1⊗X1))

tvec(T1⊗X1) =
(vec(T1)

tvec(T2)(vec(X1))
tvec(X1) = tr(T1T2)tr(X1X2) ≥ 0. Therefore, the angle be-

tween v1 and v′2 is between 0◦ and 90◦. Hence, the angle between the v1 and v2 will be
at least 90◦. The relative explained power of the sum, equation (4.40), is split into two
parts, proportional to the relative contributions of the two terms, yielding

rel pow nth rewr term :=

‖T̆n‖2‖X̆n‖2 + tr(T̆1T̆2)tr(X̆1X̆2)

‖T̆1 ⊗ X̆1 + T̆2 ⊗ X̆2‖2

‖Σs‖2 − ‖Σs − T̆1 ⊗ X̆1 − T̆2 ⊗ X̆2‖2

‖Σs‖2
(4.43)
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for n = 1, 2. The computation of this power distribution requires the computation
of ‖Σs‖2. It appeared that, compared to the estimation of the orthogonal KP terms
in equations (4.22) and (4.23), the calculation of ‖Σs‖2 requires considerably more
computation time.

4.3 Results

The sum of KP model was applied to evoked response MEG data sets of three different
kinds: Somatosensory Evoked Field (SEF) (4 subjects), Visual Evoked Field (VEF) (3
subjects) and Auditory Evoked Field (AEF) data (3 subjects). First, for each data set
considered, the average signal over trials was subtracted to obtain the MEG residuals
and an offset correction over one alpha period was applied. The alpha period was
obtained from the frequency spectrum of the raw data. The offset correction over one
alpha period is optimal to reduce the introduction of nonstationarities in the temporal
covariance due to alpha background activity, as explained in chapter 3 (single KP
model) and appendix 4.5.4 (sum KP model). After the first KP was estimated using
equations (4.10) and (4.11), the second KP was found from the iterative system in
equations (4.22) and (4.23). Then the relative matrix power explained by the first two
orthogonally estimated KP terms was calculated according to equation (4.21). To find
the optimal values for a, b, c and d a global search was performed for a spatiotemporally
downsampled data set. This reduced data set was obtained by downsampling both in
space and in time to approximately 30 time samples and 30 sensors. The so obtained
optimal values for a, b, c and d were used to rewrite the original data set. Finally,
the relative matrix power explained by the rewritten terms was computed according to
equation (4.43).

Table 4.1 presents the resulting power distributions of both the orthogonally esti-
mated and the rewritten sum of two KP as well as the values for a, b, c and d for
all data sets in this study. This table shows that the first KP describes between 62%
and 91% power of the sample covariance matrix, and the second term between 1% and
12%. Rewriting the first two terms into two positive semi-definite terms only reduces
the total amount of explained matrix power by a negligible amount (less than 1.4%).
As can be seen from Table 4.1, the power distribution over the rewritten terms varies
over subjects and data types. These values are directly related to the varying values
for a, b, c and d. In the global search over a, b, c and d for the downsampled data sets,
it appeared that the cost function contains several local minima that are very close to
the global minimum in cost value. Apparently, rewriting the sum is not very sensitive
to (small) changes in a, b, c and d.

Table 4.2 contains the positivity percentages of the temporal and spatial matrices
for all data sets. By positivity percentages the relative matrix power explained by
the positive eigenvalues of matrix is meant. The first orthogonally estimated term is
always positive definite, and therefore the entries of the first two columns, XO1 and
TO1, all equal 100%. The third and fourth columns contain the positivity percentages
of the matrices in the second KP of the orthogonally estimated sum. Clearly, these
matrices are far from positive definite, and can be even mainly negative (e.g. subject
5VEF). After rewriting according to equations (4.31 - 4.34), all four matrices (XR1,
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Table 4.1: The power distribution in the orthogonally estimated sum and in the rewritten
sum of 2 KP for all data sets in the study. The first column (S) denotes the subject and
the kind of data (SEF/VEF/AEF), TW indicates the length of the time window analysed
in ms. Used band pass filtering is stated in the BPF column. O1 (O2) denotes the
relative matrix power of the sample covariance matrix in the first (second) orthogonally
estimated term, and O is the sum of O1 and O2. The columns ADD and AL denote the
relative matrix power explained by the rewritten terms, ADD indicates the widespread
background activity, and AL the alpha activity. RS is the sum of ADD and AL. DIF is
the difference between O and RS. The given values for a, b, c and d are the values used
for rewriting the sum.
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S XO1 TO1 XO2 TO2 XR1 TR1 XR2 TR2
1SEF 100.00 100.00 51.97 74.50 100.00 98.38 100.00 99.75
2SEF 100.00 100.00 52.31 71.40 99.77 99.07 100.00 100.00
3SEF 100.00 100.00 64.49 84.89 98.43 97.12 100.00 100.00
4SEF 100.00 100.00 39.91 66.61 100.00 100.00 97.70 99.77
5VEF 100.00 100.00 38.29 20.98 100.00 100.00 94.36 91.38
6VEF 100.00 100.00 67.93 87.02 100.00 100.00 99.68 99.80
7VEF 100.00 100.00 78.28 91.02 100.00 99.97 99.98 100.00
8AEF 100.00 100.00 54.61 63.48 100.00 99.82 99.99 99.99
9AEF 100.00 100.00 91.51 96.39 100.00 100.00 99.00 99.14
10AEF 100.00 100.00 70.68 86.82 100.00 100.00 99.67 99.85

Table 4.2: The positivity percentages of the matrices in both terms in the orthogonally
estimated sum and in the rewritten sum in equations (4.31 - 4.34). The positivity
percentage of a matrix equals the relative matrix power that is accounted for by the
positive eigenvalues of that matrix. The first column indicates the subject. Columns
XO1 (XO2) and TO1 (TO2) show the percentages of the spatial and temporal matrices
in the first (second) term of the orthogonally estimated sum of 2 KP. All entries in the
XO1 and TO1 column equal 100% because the first orthogonal term is positive definite.
The positivity percentages after rewriting are given in the columns XR1 (XR2) and TR1
(TR2) for the spatial and temporal matrices in both rewritten terms.

TR1, XR2 and TR2) are well-nigh or completely positive definite. Subject 5VEF is
the only case showing positivity percentages below 95%. This table reveals the effect
of rewriting in terms of interpretability: before rewriting, the second term does not
possess interpretability as a covariance matrix, while after rewriting both terms can be
interpreted as covariance matrices. Namely, the rewritten matrices are slightly singular
- their small negative parts were set to zero - and this singularity can be interpreted as
a light linear dependency amongst the signals.

For one data set of each kind (SEF, VEF, AEF), the results are illustrated here. In
Figures 4.2, 4.4 and 4.6 the temporal matrices of the three data sets are shown. The
visualisation of the temporal covariance matrices is through plotting the entries of the
matrix in colour. In order to plot a temporal covariance matrix, the entries are scaled
such that the entry that is largest in absolute value equals 1 or -1. The colour scale
used for these covariance plots is equal to the colour scale used in chapter 3 and is
presented in Figure 3.2. As with usual printing of matrices, all entries are arranged in a
square, and in stead of values, corresponding colours are plotted. Nonstationarities and
oscillations in the temporal domain can now easily be detected: a stationary temporal
covariance matrix has a constant value (colour) along its (sub)diagonals and oscillations
in the covariance are reflected by a line pattern parallel to the diagonal. Figures 4.2
and 4.6 show in subfigures (a) and (b) (the orthogonal terms) a clear oscillation in
the covariance. The frequency of this oscillation is approximately 10 Hz; hence this
oscillation shows the alpha activity in the background noise. As expected, these matrices
are not purely oscillatory, that is, more noise features are present besides alpha activity.
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In rewriting the terms, the different noise characteristics of the orthogonally estimated
terms are rearranged such that the cost function in equation (4.39) is minimum. It
appears that after rewriting, the alpha activity is contained mainly in the second term,
while the most of the remaining activity is gathered in the first rewritten term. Note
that the cost function in equation (4.39) is not frequency specific. For the VEF data
set, presented in Figure 4.4, alpha oscillations in the orthogonal terms are much smaller
and are mainly visible in the second term, subfigure (b). Nonetheless, after rewriting,
no alpha activity is visible in the first term, whereas the second term mainly consists
of alpha activity.

Regarding the nonstationarities, Figures 4.2, 4.4 and 4.6 show predominantly sta-
tionary temporal matrices. However, some nonstationary patterns can be detected;
that is, the colour along the (sub)diagonal varies somewhat. The main nonstationarity
that can be seen from the colour plots is the increase along the diagonal and the subdi-
agonals. This is the common consequence of the offset correction over the pre-stimulus
interval, which artificially pulls the (co)variance over that time window towards zero
(chapter 3). Further nonstationarities generally occur in the second orthogonal compo-
nent (subfigures (b)), and in one or both rewritten terms. These nonstationarities may
be caused by beta activity for which the offset correction window is not optimal. The
relative matrix power corresponding to these nonstationarities is very small in com-
parison to that of the alpha activity. Namely, this feature only occurs in the second
orthogonal term, and the power in this second orthogonal term is much smaller than
the power of the first. Moreover, the second orthogonal term is still mainly stationary.

The rewritten spatial variances of these three data sets are presented in Figures 4.3,
4.5 and 4.7. The spatial covariance matrices are visualised by projecting the variance
(the diagonal of the matrix) in colour scale (as defined in Figure 3.2) on the MEG
helmet. For all data sets the second term, corresponding to the alpha pattern in the
temporal matrix, shows a focal highlighted area in the parieto-occipital area. The
spatial distribution of the first term is more widespread, though tends to be more in
the temporal region.

In sum, minimising the cost function in equation (4.39) yields two rewritten KP
terms, each of which describes a distinct process in the background activity. The first
rewritten term describes a rather widespread, not frequency-specific process, while the
second term describes the focal alpha activity with its characteristic 10 Hz frequency.

4.4 Discussion

The sum of Kronecker products provides a general model for the spatiotemporal co-
variance matrix of MEG residuals. Different terms in the sum can describe different,
independent phenomena in the ongoing background activity, each of which has its own
temporal and spatial characteristics. These processes can be interpreted as generated
by randomly distributed dipoles with a certain spatial and temporal distribution. This
way, the sum model solves the rigidness drawback of the single KP model. Theoretically,
when enough terms are taken into account, the sum describes the sample covariance
matrix exactly.
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(a) First term in
orthogonal sum
(71.8%)

(b) Second term
in orthogonal sum
(12.0%)

(c) First term
in rewritten sum
(38.6%)

(d) Second term
in rewritten sum
(44.8%)

Figure 4.2: Estimated temporal matrices in the 2SEF data set. Frames a and b show the
first two temporal matrices of the orthogonally estimated terms, frames c and d show
the first two temporal matrices of the rewritten sum of two matrices. The time scale is
574 ms by 574 ms. The entries of the matrices are plotted in colour. The percentages
show the relative matrix power of the sample covariance matrix explained by the KP
term.

(a) First term in rewritten
sum

(b) Second term in rewrit-
ten sum

Figure 4.3: Rewritten spatial variances in the 2SEF data set. The diagonal entries of
the spatial covariance matrix, the variances, are plotted in colour on the MEG helmet.
Only the left side of the helmet is shown, the right side is similar.

(a) First term in
orthogonal sum
(90.7%)

(b) Second term
in orthogonal sum
(2.2%)

(c) First term
in rewritten sum
(81.9%)

(d) Second term
in rewritten sum
(11.0%)

Figure 4.4: Estimated temporal matrices in the 7VEF data set. The time scale is 478
ms by 478 ms. See description of Figure 4.2.
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(a) First term in rewritten
sum

(b) Second term in rewrit-
ten sum

Figure 4.5: Rewritten spatial variances in the 7VEF data set. The diagonal entries of
the spatial covariance matrix, the variances, are plotted in colour on the MEG helmet.
Only the left side of the helmet is shown, the right side is similar.

(a) First term in
orthogonal sum
(78.3%)

(b) Second term
in orthogonal sum
(7.0%)

(c) First term
in rewritten sum
(70.9%)

(d) Second term
in rewritten sum
(14.4%)

Figure 4.6: Estimated temporal matrices in the 10AEF data set. The time scale is 318
ms by 318 ms. See description of Figure 4.2.

(a) First term in rewritten
sum

(b) Second term in rewrit-
ten sum

Figure 4.7: Rewritten spatial variances in the 10AEF data set. The diagonal entries of
the spatial covariance matrix, the variances, are plotted in colour on the MEG helmet.
Only the right side of the helmet is shown, the left side is similar.
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The first aim of this study is the validation of the single KP model for dipole local-
isation in terms of accuracy. In practise, it occurred that the first KP term describes
roughly between 62% and 91% of the sample covariance matrix and the second between
1% and 12%, whereas the sum of 2 KP explains between 67% and 93%. The higher
the order of the term, the smaller the amount of explained power. Taking into account
more than 1 KP term in the localisation is not expected to yield a major improvement.
Namely, the common practise to neglect all the correlations, i.e. both in space and
in time, yields an acceptable accuracy at high signal-to-noise ratio. This accuracy is
enhanced by taking into account only the spatial correlations, and a further improve-
ment is achieved when the spatiotemporal covariance, the first KP term, is taken into
account [20]. Considering the matrix power explained already by the first KP term, the
second and higher order terms are not expected to enhance the localisation accuracy
considerably (see Table 4.1). To improve the source localisation further, the emphasis
should be on improving the source model, which is likely to be more beneficial. For this
reason,in the next two chapters a new forward model is presented and discussed which
can be used to analyse multiple related MEG data sets simultaneously. The study in
the present chapter indicates that the existing covariance model for source localisation,
the single KP, is adequate.

Nevertheless, the estimated sum of KP contains interesting physiological informa-
tion, which is the second goal of the present study. There are two aspects regarding this
aim: the separation between alpha activity and the remainder, and nonstationarities.
For all subjects, the two terms of the rewritten sum show one term corresponding to
alpha activity and the other to additional noise. It is emphasised that this separation
automatically comes forth by minimising the cost function in equation (4.39) and is not
caused by an a priori constraint. The alpha term is characterised by frequency specific
(10 Hz) temporal features and a focal parieto-occipital pattern in space. The addi-
tional term shows more widespread characteristics, both in space and in time: there
is no frequency specific character in time and the spatial distribution is widespread,
though seems to be enhanced in the temporal region. The power distribution over
the rewritten terms in Table 4.1 suggests that the VEF data sets contain less alpha
background activity than the SEF and AEF data. This can be interpreted in line with
the discussion in the literature about whether the visual stimulus resets the phase of
the spontaneous alpha rhythm, e.g. [9, 52, 54, 65]. If that applies, subtracting the
average includes subtracting a major amount of alpha activity and less alpha activity
will remain in the MEG residuals. Nevertheless, for all subjects, including the VEF
subjects, separation between the alpha activity and the additional activity is striking,
although the entireness of the separation varies slightly over subjects. This separation
can be interpreted in line with the Poisson modulated alpha model, which models the
background activity in the temporal domain as a sum of alpha activity and additional
random activity.

The second aspect of physiological information is about the temporal nonstation-
arities. As stated in the section 1.4.2, the temporal covariance matrices will contain
nonstationarities when the SPNmodel is assumed incorrectly. However, in the presented
results the temporal matrices are mainly stationary. The most apparent nonstationarity
is the increase along the (sub)diagonals, caused by the offset correction. Furthermore,
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along the diagonal one can see small oscillations, reflected in the coloured bands having
varying width. After rewriting the sum, these small oscillations are mainly visible in
the alpha term, Figures 4.2(d), 4.4(d) and 4.6(d). A possible explanation for these
oscillations again lies in the offset correction: for oscillatory background activity with
the beta frequency the offset correction window of one alpha period is not optimal and
will introduce a small oscillation along the diagonal and subdiagonals [5]. Further non-
stationarities that indicate real trial-to-trial variabilities are very limited in the colour
plots. Despite the minor role of these real nonstationarities in terms of matrix power,
this study does not disapprove their existence.

In sum, it appears from the distribution of explained matrix power that it is unlikely
that dipole localisation will improve considerably by adding more terms to the single
KP noise model. Secondly, rewriting the sum of two KP suggests that the noise consists
of a focal parieto-occipital alpha part and a more widespread noise part. And finally,
nonstationarities due to real trial-to-trial variations in this study appeared to be very
limited in terms of matrix power.

4.5 Appendix

4.5.1 Estimating a single Kronecker product

In this appendix expressions for the LS-estimators of X and T in the single KP model
are derived. The LS cost function can be written as:

‖Σs − T ⊗X‖2 = tr(ΣsΣ
t
s) + tr(T 2)tr(X2)− 2

1

K − 1

K∑
k=1

tr(EkTEt
kX). (4.44)

The optimal X and T are found by differentiating equation (4.44) and subsequently
equating the first derivative to zero. Differentiation with respect to matrices is per-
formed according to the rules derived in [63]. For X this yields

dX‖Σs − T ⊗X‖2 = 2tr(T 2)tr(XdX)− 2
1

K − 1

K∑
k=1

tr(EkTEt
kdX)

= 2tr([tr(T 2)X − 1

K − 1

K∑
k=1

EkTEt
k]dX) = 0

=⇒ tr(T 2)X − 1

K − 1

K∑
k=1

EkTEt
k = 0 (4.45)

Rewriting this equation yields equation (4.10) as LS-estimator for X and a similar
derivation yields equation (4.11) for T̂LS.

4.5.2 Van Loan’s shuffle operator

The shuffle operator S : RIJ×IJ −→ RI2×J2
is defined by

S = vec−1 ◦ (IJ ⊗KJ,I ⊗ II) ◦ vec, (4.46)



68 4.5 Appendix

where the composition operator ◦ is defined as (L1 ◦ L2)A = L1(L2(A)) and vec−1 :
RI2J2×1 −→ RI2×J2

is the inverse the usual vec operator vec : RI2×J2 −→ RI2J2×1.
Kp,q : R1×pq −→ R1×qp is the general commutation matrix [63]:

Kp,q(vec(A)) = vec(At) (4.47)

for any matrix A ∈ Rp×q. To see equation (4.46) the following equality from [63] is used

(In ⊗Km,q ⊗ Ip)vec(A⊗B) = vec(A)⊗ vec(B). (4.48)

for any A ∈ Rm×n and any B ∈ Rp×q. Applying this equality with A = T and B = X
and using

vec(vec(Xn)vec(Tn)
t) = vec(Tn)⊗ vec(Xn) (4.49)

one arrives at equation (4.46). Applying equation (4.46) to equation (4.6) and succes-
sively applying equations (4.49) and (4.48) yields the formula for the shuffled sample
covariance, S(Σs), in equation (4.16).

4.5.3 The LS estimators for the higher order terms in the
sum of KP

In this appendix the LS estimators for the higher order terms in the sum of KP model
are derived. The pth order term is estimated after the terms 1, . . . , p − 1 have been
estimated. Estimation of the pth term is by differentiation of the cost function in
equation (4.15) and applying Lagrange multiplication [68]. Abbreviate

xn = vec(Xn) (4.50)

tn = vec(Tn). (4.51)

Suppose the first p − 1 terms have been estimated, where the normalisation is chosen
such that ‖xn‖2 = 1 for n = 1, . . . , p− 1. The cost function for the pth term is then

‖[S(Σs)−
p−1∑
n=1

xnt
t
n]− xpt

t
p‖2 = ‖Sp−1 − xpt

t
p‖2

= tr(St
p−1Sp−1 − 2St

p−1xpt
t
p + tpx

t
pxpt

t
p), (4.52)

where

Sp−1 = S(Σs)−
p−1∑
n=1

xnt
t
n. (4.53)

In other words, the pth term is the best rank-one approximation to Sp−1. Considering
equations (4.19) and (4.20) this minimisation is subject to

xtnxp = 0 for 1 ≤ n ≤ p− 1 (4.54)

ttntp = 0 for 1 ≤ n ≤ p− 1. (4.55)

The derivative of equation (4.52) with respect to xp is given by

tr(− 2St
p−1dxpt

t
p + tpdx

t
pxpt

t
p + tpx

t
pdxpt

t
p) = 2tr((−ttpSt

p−1 + ttptpx
t
p)dxp) (4.56)
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and, similarly, with respect to tp

2tr((−xtpSp−1 + xtpxpt
t
p)dtp). (4.57)

The derivatives of the constraints in equations (4.54) and (4.55) are

xtndxp = 0 for 1 ≤ n ≤ p− 1 (4.58)

ttndtp = 0 for 1 ≤ n ≤ p− 1 (4.59)

The method of Lagrange multiplication now yields the following system of equations

xtnxp = 0 ∈ R for 1 ≤ n ≤ p− 1 (4.60)

ttntp = 0 ∈ R for 1 ≤ n ≤ p− 1 (4.61)

−Sp−1tp + ttptpxp +

p−1∑
n=1

λnxn = 0 ∈ RI2×1 (4.62)

−St
p−1xp + xtpxptp +

p−1∑
n=1

µntn = 0 ∈ RJ2×1 (4.63)

which has to be solved for xp, tp, λ1, . . . , λp−1 and µ1, . . . , µp−1. The solution for λm,
m = 1, . . . , p − 1, follows from the inner product of xm and the vectors in equation
(4.62):

−xtmSp−1tp + xtmt
t
ptpxp +

p−1∑
n=1

λnx
t
mxn = 0 =⇒ λm =

1

xtmxm
xtmSp−1tp = xtmSp−1tp.

(4.64)
Likewise, solving the inner product of tm and the vectors in equation (4.63) for µm

yields

µm =
ttmSt

p−1xp

ttmtm
. (4.65)

Substituting equation (4.64) into equation (4.62) and using equations (4.53) and (4.61)
yields

0 = −Sp−1tp + ttptpxp +

p−1∑
n=1

xtnSp−1tpxn = −Sp−1tp + ttptpxp + (

p−1∑
n=1

xnx
t
n)Sp−1tp

=⇒ x̂p =
1

t̂tpt̂p
[II2 −

p−1∑
n=1

xnx
t
n]Sp−1t̂p =

1

t̂tpt̂p
[II2 −

p−1∑
n=1

xnx
t
n]S(Σs)t̂p (4.66)

where the last simplification follows from the constraints in equation (4.55). Similarly,
equation (4.65) substituted into equation (4.63) together with equations (4.53), (4.60)
and (4.54) yield

0 = −St
p−1xp + xtpxptp +

p−1∑
n=1

ttnSt
p−1xp

ttntn
tn = −St

p−1xp + xtpxptp + (

p−1∑
n=1

tnt
t
n

ttntn
)St

p−1xp
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=⇒ t̂p =
1

x̂tpx̂p
[IJ2 −

p−1∑
n=1

tnt
t
n

ttntn
]St

p−1x̂p =
1

x̂tpx̂p
[IJ2 −

p−1∑
n=1

tnt
t
n

ttntn
](S(Σs))

tx̂p. (4.67)

Equations (4.66) and (4.67) are solved iteratively and the normalisation is chosen such
that ‖xp‖2 = 1.

Note that a closed form expression for the estimators can be obtained by substituting
equation (4.67) in equation (4.66):

x̂p =
1

t̂tpt̂p
[II2 −

p−1∑
n=1

xnx
t
n]S(Σs)[IJ2 −

p−1∑
n=1

tnt
t
n

ttntn
](S(Σs))

tx̂p, (4.68)

showing that xp is an eigenvector of the I2 × I2 matrix

[II2 −
p−1∑
n=1

xnx
t
n]S(Σs)[IJ2 −

p−1∑
n=1

tnt
t
n

ttntn
](S(Σs))

t. (4.69)

corresponding to the largest eigenvalue in order to minimise equation (4.52). Computing
eigenvalues and eigenvectors of this I2×I2 matrix is, like computing the SVD of S(Σs),
in practise not convenient.

Finally, expressions for the iterative estimators for the matrices Xp and Tp are
derived from equations (4.16), (4.66) and (4.67).

vec(X̂p) =
1

(K − 1)‖T̂p‖2
F

K∑
k=1

[II2 −
p−1∑
n=1

vec(Xn)(vec(Xn))
t](Ek ⊗ Ek)vec(T̂p)

=
1

(K − 1)‖T̂p‖2
F

K∑
k=1

[II2 −
p−1∑
n=1

vec(Xn)(vec(Xn))
t]vec[EkT̂pE

t
k]

=
1

(K − 1)‖T̂p‖2
F

K∑
k=1

[
vec[EkT̂pE

t
k]−

p−1∑
n=1

vec(Xn)(vec(Xn))
tvec[EkT̂pE

t
k]
]

=
1

(K − 1)‖T̂p‖2
F

K∑
k=1

[
vec[EkT̂pE

t
k]−

p−1∑
n=1

tr[XnEkT̂pE
t
k]vec(Xn)

]
. (4.70)

This yields equation (4.22) and a similar calculation yields equation (4.23).

4.5.4 Offset correction in case of multiple KP

The expression for the offset corrected residual in discrete time is (cf. equation 3.23)

ĕi,jk = ei,jk − 1

L

L∑
l=1

ei,jlk (4.71)

where (j1, . . . , jL) denotes the time window over which the correction is performed. In
chapter 3 an expression is derived for the temporal covariance matrix of the corrected
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residuals in equation (3.24), denoted here by T c, for the single KP model (Σ = T ⊗X)
in terms of the covariance matrix of the uncorrected residuals, T :

T c
j,j′ = Tj,j′ − 1

L

L∑
l=1

Tjl,j′ −
1

L

L∑
m=1

Tj,jm +
1

L2

L∑
l=1

L∑
m=1

Tjl,jm . (4.72)

For the sum of KP model, Σ =
∑

Tn ⊗ Xn, the covariance between two uncorrected

residuals, ei,jk and ei
′,j′
k′ , is

E(ei,jk , ei
′,j′
k′ ) = δk,k′

N∑
n=1

(Xn)i,i′(Tn)j,j′ . (4.73)

Applying the offset correction of equation (4.71) to the residuals in equation (4.73) one
can derive the covariance matrix of the corrected residuals in the case of the sum of
KP. Straightforward calculating shows that each temporal matrix in this sum is altered
according to equation (4.72).





Chapter 5

The coupled dipole model: an
integrated model for multiple
MEG/EEG data sets

Adapted from: F. Bijma, J.C. de Munck, K.B.E. Böcker, H.M. Huizenga, R.M. Heet-
haar: The coupled dipole model: an integrated model for multiple MEG/EEG data sets,
NeuroImage 2004, 23(3): 890-904

5.1 Introduction

To investigate the functionality of the human brain, MEG/EEG is often measured in
a few different but similar conditions. This way, the influence of a certain experimen-
tal parameter on the activity of the brain can be examined. For example, a com-
mon experimental paradigm for investigation of the visual cortex is the presentation of
checkerboard patterns in different visual fields using varying check sizes. In this kind of
experiments, the measured MEG/EEG data of the different conditions will be different,
though there are similarities too.

In the source localisation of these data, the Inverse Problem (IP) of MEG/EEG,
these similarities can be exploited. The IP is in general ill-posed; assumptions (e.g. head
model, source model, number of sources) are necessary to solve the problem. Moreover,
often extra constraints (e.g. mirror symmetry) are needed to stabilise the IP. Secondly,
a low signal-to-noise ratio (SNR) results in instable solutions to the IP. The SNR of
single trials in MEG/EEG measurements is usually too poor to allow source localisation
on single trial basis. Therefore, a first approach to take more data into account is to
average repeated measurements to increase the SNR (see section 1.3.1). Finally, a third
problem with solving the IP using the common equivalent current dipole source model,
is instability due to close sources: two closely localised dipole sources having nearly
opposite orientations and unrealistically high magnitudes.

In the case of similar conditions the IP can be stabilised using a component model. A
component model uses a set of basic spatial and temporal components and the data are
described as linear combinations of (some of) these basic components. The similarity

73



74 5.1 Introduction

between conditions is reflected in the usage of the same basic components in different
conditions.

Component models have been designed before. The Topographic Component Model
(TCM) [73] decomposes EEG data of multiple subjects into a sum of topographic
components, each component consisting of a scalp distribution and a (nonparametric)
time series. In [27] the TCM is applied to real data. Extensions of the TCM can be
found in [1, 102, 112].

In [102] the TCM is extended by using dipolar sources [93] as spatial components
and parametric, predefined time courses to describe data of different subjects. In [1]
the TCM is extended by allowing different durations and different latencies of the
temporal components for each condition. In [112] the spatial and temporal components
are decoupled and a trilinear model is introduced with so-called loading matrices. In
this trilinear model the number of spatial components can be different from the number
of temporal components and these loading matrices are placed in between the spatial
and the temporal matrices. The spatial components in [112] are again described by
scalp distributions in stead of the more elementary dipole sources. Although in some
of these studies the correlations of the background activity are mentioned [1, 102],
these correlations are neglected in the estimation of the components or the parameters.
Therefore these estimation methods seem somewhat ad hoc; a clearly defined statistical
framework is not given.

In this chapter a new component model is presented, the coupled dipole model
(CDM). The CDM resembles in a way the trilinear model in [112], though is still
fundamentally different. The main difference is in the basic idea of the model: the
CDM is a parameter estimation method based on the well-defined maximum likelihood
(ML) framework. This way, the correlations of the background activity are taken into
account in the source localisation, which has been shown to improve the accuracy of
source parameters compared to the ordinary least squares approach [20, 42].

The basic spatial components of the CDM are dipole sources, and the basic temporal
components are nonparametric time series. The data of each condition are modelled as
a linear combination of the basic components. This linear combination is specified by a
coupling matrix for each condition, comparable to loading matrices in [112]. However,
contrary to the model in that study, all parameters (spatial, temporal and coupling
parameters) are estimated simultaneously using the maximum likelihood paradigm, in
stead of successively using different Singular Value Decompositions of the rearranged
data.

The CDM is applicable when the different conditions contain common information:
either common sources or common source time series. In this integrated approach a
combination of more data and more constraints is used to solve and stabilise the IP:
sources and/or source time series are assumed to be fixed over (part of the) conditions.

In the next section the coupled dipole model is explained. The technical details of
the model are put in the appendix. Then the results of the application of the CDM in
two MEG simulation studies and in an experimental visual evoked response MEG-study
are shown. In the final section the results are discussed and conclusions are drawn.
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5.2 Methods

5.2.1 Model

In the coupled dipole model each data set is modelled as a linear combination of basic
sources (equivalent current dipoles) and basic source time functions (STF). This linear
combination is specified in the coupling matrix Cq for each data set q. The coupling
matrices contain the amplitudes of the components, which may vary over data sets.

Assuming that the number of sensors is I and time samples is J , the measured
signal of trial k in data set q is stored in the matrix Rk

q ∈ RI×J , for q = 1, . . . , Q,
k = 1, . . . , Kq. Furthermore, if the number of basic spatial components is P and the
number of basic temporal components is Z, the coupling matrices Cq ∈ RP×Z . The
basic field matrix A ∈ RI×P is the matrix containing the forward fields of the basic
dipole sources (DF) and the basic source time function matrix B ∈ RZ×J is the matrix
containing all basic STFs as rows. Using these matrices, the model for data set q is
formulated as

Rq = ACqB, (5.1)

where A = A(ξ, η) is dependent on the source locations ξ and the source orientations
η. The reader is referred to appendix 5.5.1 for a full list of dimensions and variables.
In Figure 5.1 the CDM formula (5.1) is illustrated.

(     )(              )(   )*  *  *  * 
*  *  *  *
*  *  *  * q

=
Figure 5.1: Illustration of the coupled dipole model for the qth data set. The first matrix
contains the forward fields of the basic sources (i.e. the contribution of the basic sources
to each of the sensors), the second matrix is the coupling matrix for the qth data set
and the last matrix is the basic time series matrix. The model for the qth data set,
that is, the product of these three matrices, is a linear combination of the depicted basic
components, as indicated in the lower picture.

The CDM provides a general framework that can describe different situations in a
flexible way by specifying which entries of Cq are zero and which entries have to be
estimated from the data. A simple illustration would consist of two data sets (Q = 2),
in which one source is active (P = 1). The source time function is different in both
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data sets (Z = 2). In this example A ∈ RI×1 and B ∈ R2×J . Moreover the coupling
matrices C1, C2 ∈ R1×2.

A =
(
DF1

)
, B =

(
STF1

STF2

)
, C1 =

(
α1 0

)
, C2 =

(
0 α2

)
(5.2)

The models for both data sets are

R1 = AC1B =
(
DF1

)× (
α1STF1

)
(5.3)

and
R2 = AC2B =

(
DF1

)× (
α2STF2

)
. (5.4)

In the CDM the basic source parameters, the amplitudes in the coupling matrices
and the nonparametric basic source time functions are estimated. For each data set, the
linear combination of basic components, characterised by the coupling matrix, has to be
specified by the user. Moreover the dimension of the coupling matrices (i.e. the number
of basic components) has to be set. In other words, the dimensions and the zero elements
of the coupling matrices are set by the user, while the nonzero elements (amplitude
parameters) are estimated from the data. Fewer (more) assumptions regarding the
similarity of the data sets are reflected by bigger (smaller) dimensions of the coupling
matrices and/or fewer (more) zeroes in the coupling matrices. In the extreme case of
no assumptions on common components, the dimension of the coupling matrices would
be maximum (for each data set separately, spatial and temporal components would
be estimated) and each coupling matrix would contain only a few, diagonal nonzero
entries, coupling the corresponding spatial and temporal components. In the example
(5.2) above, making no assumptions would lead to estimation of two sources (P = 2)
and two STFs (Z = 2) and using two (2× 2) coupling matrices:

A =
(
DF1 DF2

)
, B =

(
STF1

STF2

)
, C1 =

(
α1 0
0 0

)
, C2 =

(
0 0
0 α2

)
. (5.5)

The models for both data sets would then become

R1 = AC1B =
(
DF1

)× (
α1STF1

)
(5.6)

and
R2 = AC2B =

(
DF2

)× (
α2STF2

)
. (5.7)

The nonzero elements in the coupling matrices are the amplitudes, which are esti-
mated from the data. For all data sets q, the coupling matrix Cq = Cq(α) depends on
α ∈ RY×1, the vector containing all coupling parameters (amplitudes). These coupling
parameters determine the magnitude of the temporal components, while the basic STFs
in B are normalised, i.e. each row in B has norm 1.

5.2.2 Probability Density Function

When brain activity is evoked by a stimulus, measured data consist, according to the
Signal Plus Noise model, of a constant brain response and additional (internal and
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external) noise [70] (cf. chapters 2 and 3). If Rk
q denotes the measured data matrix in

trial k of data set q this can be formulated as

Rk
q = Rq + Ek

q (5.8)

where we write Rq for the constant response matrix in data set q and Ek
q for the mea-

sured noise matrix. Furthermore, vec(Ek
q ) is assumed to have a Gaussian distribution,

to be independent over trials k = 1, . . . , Kq and to have the Kronecker product of a
spatial covariance matrix X and a temporal covariance matrix T as spatiotemporal
covariance [16, 20, 42] where X and T are constant over k:

vec((Ek
q )

t) ∼ N (0, T ⊗X) for all k. (5.9)

In chapter 4 one of the conclusions was that this single Kronecker product model is
adequate for dipole localisation. This yields the likelihood function for data set q (see
[63] for handling formulas with Kronecker products):

Lq(X,T, ξ, η, α,B) =
exp

(
− 1

2
tr[

∑Kq

k=1(R
k
q − ACqB)tX−1(Rk

q − ACqB)T−1]
)

(2π)
IJKq

2 |X|JKq
2 |T | IKq

2

.

(5.10)
In practise, different data sets are measured in different trials, and therefore, the as-
sumption of independency over trials implies independency over data sets too. Further-
more, X and T are assumed to be fixed over data sets. This yields the joint likelihood
function for all data sets, L(X,T, ξ, η, α,B), which is the product over q of the likelihood
functions Lq in (5.10):

L(X,T, ξ, η, α,B) =

Q∏
q=1

Lq(X,T, ξ, η, α,B) =

exp
(
− 1

2
tr[

∑Q
q=1

∑Kq

k=1(R
k
q − ACqB)tX−1(Rk

q − ACqB)T−1]
)

(2π)
IJK

2 |X|JK
2 |T | IK

2

(5.11)

where K =
∑Q

q=1 Kq. By maximising (5.11) the maximum likelihood estimators for the
noise parameters, X and T , and the signal parameters ξ, η, α and B are derived.

5.2.3 ML-Estimation procedure

The ML-estimators X̂, T̂ , ξ̂, η̂, α̂ and B̂ are derived from (5.11) by setting the corre-
sponding derivative equal to zero and solving for the estimated parameters. Differenti-
ation of (5.11) is performed using the rules derived in [63]. This yields a complicated
system of equations for the estimators: all estimators are expressed in terms of each
other, and have to be solved iteratively. The estimator for ξ is even more complex
because ξ is a nonlinear parameter. To simplify this estimation procedure, the iterative
system is split into two parts as explained in section 1.4.3. In the first, preparative,
step the noise parameters are estimated and in the second the model parameters. In
the case of known X and T (e.g. based on previous data sets) the first step is left out.
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In the first step the expression ACqB has to be replaced because the model para-
meters are not yet determined in that step. The substituting term is the ML-estimator
for ACqB as a whole:

̂(ACqB)ML =
1

Kq

∑
Rk
q =: R̄q. (5.12)

Substituting (5.12) in (5.11) and taking the derivative with respect to the noise para-
meters, X and T , yields (see appendix 5.5.2):

X̂ML =
1

JK

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)T̂

−1
ML(R

k
q − R̄q)

t (5.13)

T̂ML =
1

IK

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)

tX̂−1
ML(R

k
q − R̄q) (5.14)

This system (5.13) and (5.14) is solved iteratively, starting with T = IJ in (5.13) until
convergence of X and T . IJ denotes the identity matrix of dimension J . In the second
step of the parameter estimation either the true X and T or the estimators X̂ML and
T̂ML, that are assumed to be the true covariances, are substituted in the likelihood
function (5.11). For notational simplicity, the subscript ML will be omitted in the
sequel. The likelihood has to be maximised with respect to ξ, η, B and α, which is
equivalent to the minimisation of the (GLS) cost function H(ξ, η, B, α):

H(ξ, η, B, α) = tr[

Q∑
q=1

Kq∑
k=1

(Rk
q − ACqB)tX̂−1(Rk

q − ACqB)T̂−1]

= tr[

Q∑
q=1

Kq(R̄q − ACqB)tX̂−1(R̄q − ACqB)T̂−1] + γ, (5.15)

where

γ =

Q∑
q=1

(

Kq∑
k=1

tr[(Rk
q )

tX̂−1Rk
q T̂

−1]−Kqtr[R̄
t
qX̂

−1R̄qT̂
−1]). (5.16)

Clearly, γ does not depend on the model parameters, and the cost function H(ξ, η, B, α)
may equally well be replaced by H̃(ξ, η, B, α):

H̃(ξ, η, B, α) = tr[

Q∑
q=1

Kq(R̄q − ACqB)tX̂−1(R̄q − ACqB)T̂−1]. (5.17)

Setting the derivatives of H̃ with respect to η, B and α to zero, yields the following
ML-estimators (the reader is referred to appendices (5.5.3 - 5.5.5) for the mathematical
derivations):

B̂ML = (

Q∑
q=1

KqC
t
qA

tX̂−1ACq)
−1

Q∑
q=1

Kq∑
k=1

Ct
qA

tX̂−1(Rk
q )

t (5.18)

Φ η̂ML = φ (5.19)

Ψ α̂ML = ψ (5.20)
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where

Φp1,p2 = tr[

Q∑
q=1

KqCqBT̂−1BtCt
q

∂At

∂ηp2

X̂−1 ∂A

∂ηp1

] (5.21)

φp = tr[

Q∑
q=1

Kq∑
k=1

CqBT̂−1(Rk
q )

tX̂−1 ∂A

∂ηp
] (5.22)

Ψy1,y2 = tr[

Q∑
q=1

KqBT̂−1Bt
∂Ct

q

∂αy2

AtX̂−1A
∂Cq

∂αy1

] (5.23)

ψy = tr[

Q∑
q=1

Kq∑
k=1

BT̂−1(Rk
q )

tX̂−1A
∂Cq

∂αy

]. (5.24)

The source positions ξ are determined in a nonlinear search algorithm.
The dimensionality of the problem can be reduced by using the Singular Value

Decomposition (SVD) of the data (cf. [20]). In order to take advantage of the vanishing,
small eigenvalues of the data, the data are rearranged. For that purpose the following
decompositions of the covariance matrices are used

X̂−1 = WXW t
X , T̂−1 = WTW

t
T . (5.25)

Furthermore, we define

R :=



√
K1W

t
XR1WT
...√

KqW
t
XRqWT
...√

KQW
t
XRQWT

 , C :=



√
K1C1
...√

KqCq
...√

KQCQ

 , A := W t
XA , B := BWT . (5.26)

Then (5.17) can be rewritten as

H̃(ξ, η, B, α) = tr[(R− (IQ ⊗A)CB)t(R− (IQ ⊗A)CB)]. (5.27)

Now the SVD of R, containing the stacked prewhitened data of all data sets, is calcu-
lated

R = U∆V t with


U ∈ RIQ×J U tU = IJ
V ∈ RJ×J V V t = V tV = IJ
∆ ∈ RJ×J ∆ = diag(λ1, λ2, . . . , λJ)

(5.28)

and (5.27) is rewritten

H̃(ξ, η, B, α) = tr[(U∆− (IQ ⊗A)CBV )t(U∆− (IQ ⊗A)CBV )]. (5.29)

The trace in (5.29) is split into terms corresponding to the first J0 largest eigenvalues
of R and the remaining J − J0 terms:

H̃(ξ, η, B, α) =

IQ∑
l=1

J0∑
j=1

(U∆− (IQ ⊗A)CBV )2l,j +

IQ∑
l=1

J∑
j=J0+1

(U∆− (IQ ⊗A)CBV )2l,j.

(5.30)
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The dimensionality of the estimation problem is reduced by setting the J − J0 small
eigenvalues of R to zero and choosing B such that [(IQ⊗A)CBV ]l,j = 0 for j > J0 for
all l. Then the second term in (5.30) will vanish and the remaining cost function is

H̃(ξ, η, B, α) =

IQ∑
l=1

J0∑
j=1

(U∆− (IQ ⊗A)CBV )2l,j. (5.31)

If the J × J truncated diagonal matrix is denoted by

∆0 = diag(λ1, λ2, . . . , λJ0 , 0, . . . , 0) (5.32)

the estimators in (5.18) and (5.21) to (5.24) change accordingly into

B̂ML = (Ct(IQ ⊗AtA)C)−1Ct(IQ ⊗At)U∆0V
t (5.33)

Φp1,p2 = tr[BtCt(IQ ⊗ ∂At

∂ηp2

)(IQ ⊗ ∂A

∂ηp1

)CB] (5.34)

φp = tr[V tBtCt(IQ ⊗ ∂At

∂ηp
)U∆0] (5.35)

Ψy1,y2 = tr[Bt ∂C
t

∂αy2

(IQ ⊗At)(IQ ⊗A)
∂C

∂αy1

B] (5.36)

ψy = tr[V tBt∂C
t

∂αy

(IQ ⊗At)U∆0]. (5.37)

Summarising, the estimation procedure looks like:

1. Compute R̄q for all q and X̂ and T̂ using (5.13) and (5.14)

2. Perform a global search over source locations to obtain a starting point for the
nonlinear (Marquardt) algorithm

3. Iterate until convergence of the cost function H̃(ξ, η, B, α):

a) Obtain an update for the positions in ξ in the Marquardt algorithm (the first
time, the starting point from the global search is taken)

b) Iterate until convergence of H̃(ξ, η, B, α) for fixed ξ:

i. Update B using (5.33)

ii. Iterate until convergence of H̃(ξ, η, B, α) for fixed ξ and B:

A. Update α using (5.20), (5.36) and (5.37)

B. Update η using (5.19), (5.34) and (5.35).

In the global search in step (2) a regular grid with locations is computed. For each
location, step (3b) is executed and the converging value of the cost function H̃ for that
location is computed. The location with the minimum value of the cost function is
taken as starting point in step (3). In step (2), alternative initialisation procedures can
be used, as outlined in [103].
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position source left (cm) orientation source left

somatosensory
visual
auditive

x y z
1.63 3.80 3.18
-6.37 1.80 -2.82
0.63 4.30 -0.82

x y z
-0.83 0.47 -0.29
-0.44 0.22 0.87
0.00 0.00 1.00

Table 5.1: Locations of simulated sources in simulation 1. The positions of the sources
are relative to the centre of the spherical volume conductor. Positions and orienta-
tions of the sources were taken symmetric in this simulation study, i.e. with opposite
y-coordinates. The direction of the x-axis is forward, the y-axis is to the left and the
z-axis points upwards.

5.3 Results

The coupled dipole model was applied in two simulation studies and to one experi-
mental data set. In the first simulation study a symmetric dipole pair was simulated
representing three different functional areas: the somatosensory cortex, the auditory
cortex and the visual cortex. In the second simulation study data from two dipoles
in the visual cortex in one hemisphere were generated in different ratios of activity.
The experimental data consisted of Visual Evoked Field (VEF) MEG data. The visual
stimulus in this experiment consisted of a checkerboard pattern, presented either in one
hemi-field or full field to the subject.

5.3.1 Simulation Study 1

In the first simulation study activity from two single dipole sources was generated.
Three surrogate data sets were produced: in the first data set the left source was
simulated, in the second the right source and the third data set contained simulated
data from both sources. The locations of the sources were taken symmetric and varied
over the visual, auditory and somatosensory cortices. True locations of these cortices
were based on experimentally located positions, see Table 5.1. Two basic source time
functions were used to generate the data, see (5.40) and (5.41). For each location 100
sweeps were generated. The sample rate used was 625 Hz, and a time window of 32 ms
was analysed. All data sets consisted of simulated dipole activity and additional white
noise with varying signal-to-noise ratio, SNR equal to 1

3
, 1, 3 and 9. The SNR is defined

as the ratio between the matrix powers of the surrogate signal and the surrogate white
noise:

SNR =
tr(Rt

surRsur)

tr(Et
surEsur)

. (5.38)

The first data set contained activity from the left source with STF1, the second activity
from the right source with STF1, and the third data set contained activity from both
sources, both having STF2.

The matrix A(ξ, η) contained the forward fields of both dipoles, and B contained
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the two normalised basic STFs. The coupling matrices for the three data sets were

C1 =

(
α1 0
0 0

)
, C2 =

(
0 0
α2 0

)
, C3 =

(
0 α3

0 α4

)
(5.39)

Both input STFs were 10 Hz sinusoids:

STF1(t) =
1

n1

sin(20πt) (5.40)

STF2(t) =
1

n2

(sin(20πt− π

4
) + 0.35) (5.41)

where n1 and n2 are the normalisation constants, n1 =
√
11.5003 and n2 =

√
10.1852.

The following coupling parameter values were used

α1 = 1000n1 (5.42)

α2 = 1000n1 (5.43)

α3 = 1000n2 (5.44)

α4 = 1000n2 (5.45)

The absolute values of the magnitudes do not influence the performance of the different
localisation methods. Only the relative amount of noise, indicated by the SNR, counts.
Therefore, the α-values were chosen such that the absolute magnitudes were comfortable
in the analysis. In Figure 5.2 the input STFs are plotted as function of time.

0 5 10 15 20 25 30
-250
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1000

1250

Figure 5.2: The two basic input STFs for simulation 1 multiplied by 1000, which is the
amplitude in all data sets. The solid line indicates STF1, and the dashed line STF2.

Four different source localisation analyses were performed: the three data sets in
three separate analyses as presented in [20] and all data sets simultaneously in the
CDM. In the separate analyses the estimation of the source parameters was performed
based on the simulated number of sources: one source was localised in data sets 1
and 2, and two sources were estimated in data set 3. The grid for the global search
consisted of 100 locations, resulting in 100 possible starting points for data sets 1 and
2 and 100*99/2 = 4950 possible starting combinations for data set 3. In the CDM
analysis, two sources, two STFs and the nonzero elements of the coupling matrices in
(5.39) were estimated. The same grid was used for the global search, yielding 100*99 =
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9900 possible starting combinations of the two sources, because the order of the sources
is important in the CDM. Average errors in position and orientation of the estimated
dipoles as well as in magnitude of the estimated source time functions were computed
for all four analyses. The averages were taken over the sweeps and over both sources
(position and orientation) or both STFs (magnitude).

For all three cortex locations the errors show a similar pattern: the integrated
analysis yields a lower error than the separate analyses. Depending on the distance
between the sources, this difference in performance varies. The errors in position,
orientation and magnitude show a similar pattern, therefore only the position error is
shown in Figure 5.3. In Figure 5.3(a) the average position error for the simulated dipoles
in the somatosensory cortex is shown, in Figure 5.3(b) for the auditory cortex and in
Figure 5.3(c) for the visual cortex. Clearly, the difference in performance between the
separate approach and the CDM is largest for two active dipoles in the visual cortex
(Figure 5.3(c)). The reason for this, is that the (lateral) distance between the simulated
visual dipoles is smallest. Therefore, localising the two sources in the classical way will
be hampered by the reasons mentioned in the introduction. For all analyses Figure 5.3
shows an improvement (slightly) in position error for the integrated model, indicating
that adding more data into the parameter estimation is advantageous.

5.3.2 Simulation Study 2

In the second simulation study two sources in the visual cortex, one in the striate
and one in the extrastriate cortex, were simulated in five different ratios of activity.
Positions and orientations were taken from experimentally located sources, resulting
in the sources being 3 cm apart from each other (Table 5.2). As in simulation 1 data
consisted of simulated dipole activity and white noise with varying SNR, SNR = 1

3
,

1, 3 and 9. Each data set contained 100 sweeps, the sample frequency was 625 Hz
and a time window of 32 ms was analysed. The input source time functions were two
sinusoids, 15 Hz for the striate source and 20 Hz for the extrastriate source

STF1(t) =
1

n3

sin(30πt) (5.46)

STF2(t) =
1

n4

sin(40πt). (5.47)

where n3 =
√
10.4013 and n4 =

√
8.49828 are the normalisation constants. Figure 5.4

shows the two input STFs. The five data sets were generated using the coupling
matrices

C1 =

(
1000n3 0

0 0

)
, C2 =

(
750n3 0
0 250n4

)
, C3 =

(
500n3 0
0 500n4

)
,

C4 =

(
250n3 0

0 750n4

)
, C5 =

(
0 0
0 1000n4

)
. (5.48)

Six source localisation analyses were performed: the five data sets separately and all
five data sets in the integrated model. Moreover, in the CDM analysis, diagonal coupling
matrices with two unknowns were used for all data sets. In other words, in the CDM
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Figure 5.3: Average position errors of the localised sources in the different cortices in
simulation 1 as function on SNR (horizontal axis). The errors are given in cm on a
logarithmic scale. The solid line represents the errors of the CDM results. The other
lines correspond to the three separate analyses: both sources (dashed line), left source
(dotted line), right source (dot-dashed line). The latter two lines approximately coincide
in all figures.
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Figure 5.4: The two basic input STFs for simulation 2 multiplied by 1000, the maximum
amplitude (data sets 1 and 5). The solid line indicates STF1 and the dashed line STF2.

analysis no advantage was taken of the knowledge that data sets 1 and 5 contain activity
of only one dipole, while this information was exploited in the separate analyses. For
the global search the same grid as in the first simulation study was used. This resulted
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position (cm) orientation

striate
extrastriate

x y z
-6.37 1.30 -1.82
-5.37 3.30 -3.82

x y z
-0.15 0.59 0.79
0.70 0.60 -0.40

Table 5.2: Locations of simulated sources in simulation 2. The positions of the sources
are relative to the centre of the spherical volume conductor. The direction of the x-axis
is forward, the y-axis is to the left and the z-axis points upwards.

SNR 1
3

1 3 9

data set 1 0 0 0 0
data set 2 6 1 1 1
data set 3 0 2 1 4
data set 4 16 16 19 18
data set 5 0 0 0 0
CDM 0 0 0 0

Table 5.3: The number of outliers (sweeps that fulfill one of the conditions (5.49 - 5.51))
in the six source localisations in simulation study 2.

in 100 possible starting locations for the separate analyses of data sets 1 and 5, 4950
possible combinations for data sets 2, 3 and 4 and 9900 possible combinations for the
CDM (as the order of the sources is of importance in the simultaneous model).

Outliers in the estimated sources were discarded. The outlier criteria used are

position error > 7 cm (5.49)

distance between sources < 0.5 cm (5.50)

magnitude error (relative power) > 10 (5.51)

The first criterium designates localised sources in implausible positions, which would
be discarded in experimental analysis. The latter two criteria often concur and indicate
two coinciding sources, usually having opposite orientations and unreasonably high
magnitudes, as discussed in the introduction. In Table 5.3 the numbers of outliers
in the different localisations are given: only the three data sets containing two active
sources yielded outliers in the separate analyses. The simultaneous CDM did not yield
any outliers.

Average position errors, orientation errors and magnitude errors were computed for
all six analyses. The averages were taken over the 100 sweeps (minus the outlying
sweeps) and over both sources and both STFs.

As in the first simulation, the graphs of the three types of error resemble each other.
Figure 5.5 demonstrates the position errors for all analyses. The errors in the separate
analyses can be divided into two groups; data set 1 and 5, which contain only one active
source, show a lower error than the remaining three data sets. This reflects the common
feature that one source is easier localised than two sources are. Nevertheless, the CDM
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Figure 5.5: The average position error of the localised sources in simulation 2 as function
of SNR. The dashed line corresponds to data set 1, the dot-dashed line to data set 2,
the dot-dot-dashed line to data set 3, the thin solid line to data set 4 and the dotted line
to data set 5. The thick solid line represents the CDM errors. The errors are given in
cm on a logarithmic scale.

yields the lowest position error. Compared to the separate analyses, using the CDM
the position error drops approximately by a factor of 10 for data sets 2, 3 and 4. For
data sets 1 and 5 there is still an improvement of roughly a factor of 1.5 in the position
error.

5.3.3 Experimental data

The CDM was applied to experimental MEG-data of a Visual Evoked Field experi-
ment. The visual stimuli consisted of checkerboard pattern onsets, presented either in
the left or the right hemi-field or full field, thus yielding three data sets per subject.
The separate analyses of this kind of conditions show nearby localised sources with sim-
ilar orientations for the different conditions, indicating that the assumption of common
sources is plausible. Moreover, the estimated orientations are opposite [22, 48]; there-
fore, the solutions to the separate IPs are susceptible for the cancelling dipole problem.
For this reason, the behaviour of the separate analyses and the CDM is compared using
these visual data.

Data of 5 subjects were considered in this study. The time window of analysis was
set to 80-112 ms post-stimulus. The sample rate was 625 Hz, the number of trials
was 400 in each data set. Similar to simulation 1, the three data sets were analysed
separately, yielding three sets of estimated parameters, and the CDM was applied to
all three data sets simultaneously, yielding one solution with estimated common spatial
and common temporal parameters.

The check size was 6’. Checks of this size mainly activate the striate cortex in the
chosen time interval [22, 81]. As expected, hemi-field stimuli first activate the contralat-
eral hemisphere, yielding a peak at around 90-95 ms. However, between 10-15 ms [91]
or 20 ms later [98] the ipsilateral hemi-sphere is activated as well by interhemispheric
transfer. Hence, to describe the hemi-field data two sources are needed, having in the
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CDM two different STFs: a contralateral STF and an ipsilateral STF. The contralateral
STF was also used to describe the time courses of both sources in the bilateral data
set, because these stimuli will activate both hemispheres directly [48], although maybe
even faster [98]. This yielded the following basic and coupling matrices:

A =
(
DFleft DFright

)
, B =

(
STFcontra

STFipsi

)
(5.52)

Clh =

(
0 α2

α1 0

)
, Crh =

(
α3 0
0 α4

)
, Cff =

(
α5 0
α6 0

)
, (5.53)

where ‘lh’ corresponds to the left hemi-field stimulation, ‘rh’ to the right hemi-field
stimulation, and ‘ff’ to the full field stimulation.

In all the analyses, a semi-symmetric source pair was fitted. Semi-symmetric sources
have symmetric locations (as in [48] and [22]), but their orientations are free. Never-
theless, the estimated orientations are nearly symmetric (Table 5.4).

The number of locations in the regular grid for the global search for the starting
location of the semi-symmetric dipole source was varied over 23, 102 and 466 points
in one hemisphere, corresponding to mesh sizes of 4.2 cm, 2.6 cm, 1.5 cm respectively.
The solutions to the separate IPs changed when this number is increased from 23 to
102 grid points, but remained the same for the increase from 102 to 466 points. The
simultaneous model, though, yielded the same solutions for all three grids. This shows
that the CDM is less sensitive to local minima in the cost function.

The results of the separate analyses varied considerably over subjects. For subjects
1 and 2 the separate analyses yielded plausible solutions for all three conditions for both
23 and 102 grid points. For subject 3 all three separate solutions to the IP consisted of
a pair of cancelling, coinciding sources (intermediate distance < 0.01 cm). Even using
a global search with 466 grid points yielded these implausible solutions for all three
separate models. Subject 4 yielded for the right hemi-field data set a physiologically
plausible solution for all grids. For the coarse grid, the sources in the full field data
set were localised in the cerebellum. For 102 grid points this problem was resolved and
the solutions were localised in the visual cortex. The locations of the sources in the
left hemi-field data set showed a plausible location, though the ipsi-lateral orientation
differs from the usual lateral direction for all grids. The corresponding amplitude is
very small; therefore, the total influence of this orientation on the cost function is very
small. Subject 5 (see Table 5.4) yielded a solution consisting of a cancelling dipole pair
for the full field data set when the coarse grid was used. For the denser grids, this data
set yielded an interpretable solution. The right hemi-field data set yielded a location
in the visual cortex for 23 grid points, though the ipsilateral orientation was unusual.
For 102 and 466 grid points these sources were localised nearer to the midsagittal plane
(1.2 cm in between). For all grids left hemi-field data set yielded plausible solutions.
The CDM analysis yielded for all five subjects plausible solutions for all conditions for
all grids. Summarising, for the coarse grid, 5 of the 15 separate analyses resulted in an
implausible solution and for the denser grids, 3 of the 15 conditions did not yield an
interpretable solution, whereas the simultaneous model only yielded plausible solutions.

The results of subject 5 are representative for the type of errors that can occur in
the separate solutions, therefore the analyses of this subject for the coarse (23 points)
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position left (cm) orientation left orientation right

LH 23
RH 23
FF 23
LH 102
RH 102
FF 102
CDM

x y z
-5.21 1.29 0.94
-6.14 1.21 0.17
-4.42 0.00 -1.15
-5.21 1.29 0.94
-5.72 0.32 0.11
-5.14 1.43 0.89
-5.25 1.44 0.85

x y z
0.26 0.96 0.11
0.17 0.76 0.62
0.25 -0.05 -0.97
0.26 0.96 0.11
0.06 0.88 0.47
0.31 0.77 0.56
0.30 0.72 0.62

x y z
0.26 -0.96 0.11
0.00 0.12 0.99
-0.25 0.05 0.97
0.26 -0.96 0.11
0.05 -0.96 -0.27
0.28 -0.96 0.08
0.28 -0.95 0.12

Table 5.4: Estimated sources for subject 5 in the experimental study. The positions of
the sources are relative to the centre of the spherical volume conductor. The direction
of the x-axis is forward, the y-axis is to the left and the z-axis points upwards. The
positions of the two sources have opposite y-coordinates. LH (RH, FF) indicates the
left hemi- (right hemi-, full) field stimulation data set.

and the dense (102 points) grid and the CDM solution are presented. The estimated
locations and orientations of the sources for the seven different localisations are reported
in Table 5.4. The estimated STFs are shown in Figures 5.6, 5.7 and 5.8. Figure 5.6
shows the STFs estimated in the separate analyses using the coarse grid, Figure 5.7 the
estimated STFs for the dense grid and Figure 5.8 displays the estimated STFs for the
simultaneous model, that did not change with the number of grid points.

In Figure 5.6(c) an example of the cancelling dipole problem is shown: the mag-
nitudes are unrealistically high, the corresponding locations in Table 5.4 coincide and
the estimated orientations are opposite. For the coarse grid the RH data set does not
yield the usual lateral orientation for the ipsilateral source. This orientation does not
have a substantial influence on the cost function, because the corresponding amplitude
(Figure 5.6(b)) is rather small. The amplitudes in the different analyses for the RH data
set vary. In Figure 5.7(b) (dense grid) the estimated amplitudes are larger than the
amplitudes shown in Figure 5.6(b) (coarse grid) and 5.8(b) (CDM). The corresponding
distance to the midsagittal plane for the dense grid (0.32 cm) is smaller than for the
coarse grid and the CDM (1.21 cm and 1.44 cm respectively). This may indicate a slight
cancellation of dipole activity: the sources are closer and the amplitudes are higher for
the dense grid.

5.4 Discussion

The coupled dipole model provides a method to solve the Inverse Problem by analysing
multiple MEG data sets simultaneously when these data sets contain common sources
or common source time functions. This way, more data are used and more constraints
(assumptions) are applied in order to solve and stabilise the IP.

The results of the first simulation show that the position error decreases when the
integrated model is used in stead of the separate models. The gain in accuracy depends
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Figure 5.6: Estimated STFs of the semi-symmetric sources resulting from the separate
analyses using a global search with 23 grid points in the experimental study (subject 5).
The vertical axis represents amplitude in nAcm. The horizontal axis denotes time in
ms after stimulus. The solid (dashed) lines represents the amplitude of the left (right)
source. Note the difference in scaling, in particular in figure c.

on the locations (intermediate distance) of the sources to be localised and was largest
for the simulated sources in the visual cortex.

Simulation 2 displays a considerable improvement in source localisation for the
CDM, studying two active dipoles in the visual cortex in five different ratios of ac-
tivity. For one of the five data sets considered, a quarter striate and three quarters
extrastriate activity, the position error drops by a factor of 10 when the CDM is used
in stead of a single model. Moreover, outliers only occurred in the separate analyses
of data sets 2, 3 and 4, while the CDM did not yield any outliers (see Table 5.3). In
Figure 5.5 it can be seen that the position error of data set 4 is higher for SNR=3
than it is for SNR=1. A similar feature was found in the orientation and magnitude
error. This is contradicting the fact that for higher SNR the error should decrease. The
reason for this slight increase in error lies in the outlier problem. For all SNR values in
data set 4, some sweeps were marked as outlier (defined by criteria (5.49 - 5.51)) and
discarded. However, some other sweeps, not indicated as outlier, also showed a rather
large position error (> 2 cm), but within the outlier criterium of 7 cm. For SNR=1 the
number of these semi-outlying sweeps was lower than for SNR=1/3 and SNR=3. Be-
cause these sweeps raise the average error considerably, this difference between SNR=1
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Figure 5.7: Estimated STFs of the semi-symmetric sources resulting from the separate
analyses using a global search with 102 or 466 grid points in the experimental study
(subject 5). The vertical axis represents amplitude in nAcm. The horizontal axis denotes
time in ms after stimulus. The solid (dashed) lines represents the amplitude of the left
(right) source.

and the other SNR-values explains the error shape in Figure 5.5. Increasing the number
of sweeps substantially or redefining the outlier criteria should eliminate this problem.
This shows that the choice of outlier criteria is delicate. Nonetheless, this outlier prob-
lem is not present in the CDM (Table 5.3), which is an important advantage of the
integrated approach regarding the stability of the solution.

The application of the CDM to experimental VEF data showed that in 5 (coarse
grid) or 3 (dense grid) of the 15 conditions considered, no interpretable solution was
obtained without using the CDM . The classic (separate) analysis of all but one of
these conditions yielded a cancelling dipole source pair and one condition yielded a
localised visual source pair in the cerebellum (coarse grid). The CDM yielded in all
cases plausible solutions. This demonstrates that the CDM is not sensitive for minima in
the cost function that correspond to a cancelling dipole pair. The underlying reason may
be that this kind of minima of the separate cost functions occur at different locations
for different conditions and will therefore not produce a minimum in the joint cost
function.

Another advantage of the simultaneous model is the direct comparability of the
estimated magnitudes. Because all parameters are estimated in one analysis, the mag-
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Figure 5.8: Estimated STFs of the semi-symmetric sources resulting from the CDM
analysis in the experimental study (subject 5). The vertical axis represents amplitude
in nAcm. The horizontal axis denotes time in ms after stimulus. The solid (dashed)
lines represents the amplitude of the left (right) source.

nitudes between conditions can directly be compared (Figure 5.8) while for the separate
analyses (Figures 5.6 and 5.7) the different conditions use a different scaling and it is
difficult to compare the absolute magnitudes between conditions. This difference in
scaling is caused by the depth bias (the mutual dependence of depth and amplitude)
and possible slight cancellation of the sources (cf. RH for the coarse grid) and the
differences in STF shapes between conditions.

Summarising, the experimental application showed that simultaneously estimating
the amplitudes and locations in the three data sets yields more stable and compara-
ble estimated parameters, while separate models are more vulnerable for implausible
minima and yield in general estimated magnitudes and positions which vary over data
sets.

The estimation procedure for the signal parameters presented in this paper is compu-
tationally intensive, due to the nested iterations in the estimation procedure. Modifying
the setup of the coupling matrices may lead to a less intensive estimation procedure.
In the next chapter an extension of this model is presented, in which the user does not
select the zero and nonzero entries of the coupling matrix.

Designing the coupling matrices is subject to the choice (or a priori knowledge) of
the user. Different users may want to design the coupling matrices in a different way.
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This is both a flexibility property of the model and a subjectivity of the CDM. The user
can make more or less assumptions by adapting the dimension of the coupling matrices,
as was shown in the example in equations (5.2) and (5.5). Such assumptions, in fact,
are also made when similar data sets are analysed using separate analyses: results are
compared afterwards and conclusions are drawn about the similarity of sources and
source time functions in the different data sets. The CDM now provides a way to put
this knowledge a priori in the source localisation method, which relatively increases the
SNR. If the user is not sure about certain similarities, the coupling matrices should
be extended to less assumptions. In the second simulation study the robustness of the
CDM was tested by applying less assumptions than possible (fitting two sources when
only one was active in data set 1 and 5), and it was shown that the CDM still estimates
the sources and STFs accurately.

A possible extension of the CDM would be the simultaneous analysis of data sets
of different subjects and/or different conditions. If it is assumed that the spatial and
temporal covariances differ only slightly over subjects and conditions (cf. chapter 3), and
can therefore be fixated, this extension is rather straightforward. This kind of extension
will be helpful if one is interested in grand averages of e.g. amplitude functions or source
positions as in cognitive neuroscience [22, 48].

In sum, the CDM combines multiple data sets and extra constraints into one simul-
taneous analysis. This integrated approach is powerful in order to solve and stabilise
the ill-posed Inverse Problem in MEG/EEG, yielding interpretable solutions in cases
where separate models not always yield plausible solutions.

5.5 Appendix

5.5.1 Dimensions and variables

The dimensions are defined as

• I - # sensors

• J - # time samples

• Kq - # trials in data set q

• K - # trials in all data sets

• P - # basic sources

• Q - # data sets

• Y - # amplitude parameters

• Z - # basic STFs

and the variables as

• α - (Y × 1) vector containing amplitude parameters
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• η - (3P × 1) vector containing source orientations

• ξ - (3P × 1) vector containing source locations

• A(ξ, η) - (I × P ) forward field matrix of basic dipoles

• A - (I × P ) prewhitened forward field matrix

• B - (Z × J) basic STF matrix, with basic STFs as rows

• B - (Z × J) prewhitened STF matrix

• Cq - (P × Z) coupling matrix for data set q

• C - (PQ× Z) stacked coupling matrices

• Ek
q - (I × J) noise matrix of trial k in data set q

• In - (n× n) identity matrix

• Rk
q - (I × J) data matrix of trial k in data set q

• Rq - (I × J) model matrix for data set q

• R̄q - (I × J) average data matrix for data set q

• R - (IQ× J) stacked average prewhitened data matrices

5.5.2 ML-estimators for X and T

This derivation uses the following two matrix derivatives ([63], Chapter 9)

dX(|X|) = |X|tr(X−1dX)

and

dX(X
−1) = −X−1dXX−1.

The derivative of L(X,T, ξ, η, α,B) in (5.11) with respect to X is

dXL = L×
[−JK

2
d|X|

|X| + dX(− 1

2
tr[

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)

tX−1(Rk
q − R̄q)T

−1])
]

=
1

2
L×

[−JK|X|tr(X−1dX)

|X| + tr[

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)

tX−1dXX−1(Rk
q − R̄q)T

−1]
]

=
1

2
L×

[
tr([− JK +

Q∑
q=1

Kq∑
k=1

X−1(Rk
q − R̄q)T

−1(Rk
q − R̄q)

t]X−1dX)
]
. (5.54)
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The optimal spatial covariance matrix, X̂ML, is obtained when dXL = 0, i.e. when

[− JK +

Q∑
q=1

Kq∑
k=1

X̂−1
ML(R

k
q − R̄q)T

−1(Rk
q − R̄q)

t]X̂−1
ML = 0

⇐⇒ X̂ML =
1

JK

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)T

−1(Rk
q − R̄q)

t, (5.55)

provided that X̂ML is nonsingular. Similarly for T the estimator becomes

T̂ML =
1

IK

Q∑
q=1

Kq∑
k=1

(Rk
q − R̄q)

tX−1(Rk
q − R̄q). (5.56)

5.5.3 ML-estimator for B

Although the rows in B are normalised, the ML-estimator for B is derived as if B were
unconstrained. The rows are normalised afterwards.

dBL =

=
1

2
L× tr[

Q∑
q=1

Kq∑
k=1

(ACqdB)tX−1(Rk
q − ACqB)T−1 + (Rk

q − ACqB)tX−1ACqdBT−1]

= L× tr[

Q∑
q=1

Kq∑
k=1

T−1(Rk
q − ACqB)tX−1ACqdB]. (5.57)

Setting this derivative to zero yields the estimator for B:

Q∑
q=1

Kq∑
k=1

T−1(Rk
q − ACqB̂ML)

tX−1ACq = 0

⇐⇒
Q∑
q=1

Kq∑
k=1

(Rk
q )

tX−1ACq =

Q∑
q=1

Kq∑
k=1

(ACqB̂ML)
tX−1ACq

⇐⇒ B̂ML = (

Q∑
q=1

KqC
t
qA

tX−1ACq)
−1

Q∑
q=1

Kq∑
k=1

Ct
qA

tX−1(Rk
q )

t, (5.58)

provided that
∑Q

q=1 KqC
t
qA

tX−1ACq is invertible. After this estimator has been calcu-
lated, the STFs in B are normalised.
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5.5.4 ML-estimator for orientation parameters η in A

The source parameters in A can be split into the linear orientation parameters, η, and
the nonlinear position parameters, ξ. If all P sources are modelled as single dipoles or
symmetric source pairs, η and ξ will both be 3P×1 vectors. If P semi-symmetric source
pairs (symmetric location, free orientation) are used, η will be 6P × 1 and ξ will be
3P × 1. For notational clarity η and ξ will both be assumed to be 3P × 1. For the case
of semi-symmetric sources, the dimensions have to be adjusted correspondingly. The
linear parameters η are estimated in the usual ML sense; that is, equating the derivative
of L equal to zero. The nonlinear parameters ξ are determined using the Marquardt
algorithm. The derivative of L with respect to η is calculated by first computing dAL
and subsequently applying the chain rule.

dAL =

=
1

2
L× tr[

Q∑
q=1

Kq∑
k=1

(dACqB)tX−1(Rk
q − ACqB)T−1 + (Rk

q − ACqB)tX−1dACqBT−1]

= L× tr[

Q∑
q=1

Kq∑
k=1

CqBT−1(Rk
q − ACqB)tX−1dA]. (5.59)

Writing η = (η1, . . . , η3P ) and applying the chain rule for the source parameter ηp yields:

dηpL = L× tr[

Q∑
q=1

Kq∑
k=1

CqBT−1(Rk
q − ACqB)tX−1 ∂A

∂ηp
]dηp (5.60)

To obtain the ML-estimate for ηp this derivative is set to zero.

dηpL = 0

⇐⇒ tr[

Q∑
q=1

Kq∑
k=1

CqBT−1(Rk
q − ACqB)tX−1 ∂A

∂ηp
] = 0

⇐⇒ tr[

Q∑
q=1

Kq∑
k=1

CqB
−1(Rk

q )
tX−1 ∂A

∂ηp
] = tr[

Q∑
q=1

Kq∑
k=1

CqBT−1BtCt
qA

tX−1 ∂A

∂ηp
] (5.61)

Because the basic field matrix A is linear in η it can be written as

A =
3P∑
p=1

∂A

∂ηp
ηp. (5.62)

where ∂A
∂ηp

is independent of η. Equation (5.61) holds for p = 1, . . . , 3P and substituting

(5.62) into (5.61) yields

tr[

Q∑
q=1

Kq∑
k=1

CqBT−1(Rk
q )

tX−1 ∂A

∂ηp
] = tr[

Q∑
q=1

3P∑
p′=1

KqCqBT−1BtCt
q

∂At

∂ηp′
X−1 ∂A

∂ηp
]ηp′ ∀ p

⇐⇒ Φ η = φ (5.63)
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where

Φp1,p2 = tr[

Q∑
q=1

KqCqBT−1BtCt
q

∂At

∂ηp2

X−1 ∂A

∂ηp1

] (5.64)

and

φp = tr[

Q∑
q=1

Kq∑
k=1

CqBT−1(Rk
q )

tX−1 ∂A

∂ηp
]. (5.65)

The linear parameters ηp are solved from the linear system in (5.63).

5.5.5 ML-estimator for amplitude parameters in C

Analogous to the moment parameters, the amplitude parameters α in the coupling
matrices Cq are estimated using the chain rule. Writing α = (α1, . . . , αY ) the derivative
with respect to αy is

dαyL =

=
1

2
L× tr[

Q∑
q=1

Kq∑
k=1

(AdαyCqB)tX−1(Rk
q −ACqB)T−1 + (Rk

q −ACqB)tX−1AdαyCqBT−1]

= L× tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q − ACqB)tX−1AdαyCq]

= L× tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q − ACqB)tX−1A

∂Cq

∂αy

]dαy. (5.66)

The ML-estimators for αy satisfy
dαyL = 0

⇐⇒ tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q − ACqB)tX−1A

∂Cq

∂αy

] = 0

⇐⇒ tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q )

tX−1A
∂Cq

∂αy

] = tr[

Q∑
q=1

Kq∑
k=1

BT−1BtCt
qA

tX−1A
∂Cq

∂αy

]. (5.67)

Similar to the decomposition of A in (5.62), we can decompose Cq linearly in α:

Cq =
Y∑
y=1

∂Cq

∂αy

αy (5.68)

for q = 1, . . . , Q, with ∂Cq

∂αy
independent of α. Equation (5.67) holds for y = 1, . . . , Y .

Formula (5.68) is substituted in (5.67) and we obtain

tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q )

tX−1A
∂Cq

∂αy

] = tr[

Q∑
q=1

Y∑
y′=1

KqBT−1Bt
∂Ct

q

∂αy′
AtX−1A

∂Cq

∂αy

]αy′ ∀ y

⇐⇒ Ψ α = ψ (5.69)
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where

Ψy1,y2 = tr[

Q∑
q=1

KqBT−1Bt
∂Ct

q

∂αy2

AtX−1A
∂Cq

∂αy1

] (5.70)

and

ψy = tr[

Q∑
q=1

Kq∑
k=1

BT−1(Rk
q )

tX−1A
∂Cq

∂αy

]. (5.71)

This linear system solves the amplitude parameters α in Cq.





Chapter 6

Simultaneous estimation and
testing of sources in multiple MEG
data sets

Adapted from: F. Bijma, J.C. de Munck, H.M. Huizenga, R.M. Heethaar, A. Nehorai:
Simultaneous estimation and testing of sources in multiple MEG data sets, IEEE Trans.
Signal Proc. Spec. Issue Brain Imam. 2005, in press

6.1 Introduction

The idea of describing measured MEG/EEG data as a linear combination of common
(basic) components has been elaborated in many ways. Main examples are the Principal
Component Analysis [64], Parallel Factor Analysis (PARAFAC) [71] a special case of
which being the Topographic Component Model (TCM) [1, 73, 102] and other trilinear
models as in [6, 24, 112]. These models make use of common spatial and temporal
components, which all have a certain level of generality (parametrisation). In the TCM
each data set is modelled as a weighted sum of parametric spatiotemporal components
of which the weights depend on subject and condition. The other models cited decouple
the spatial and temporal components by placing a coupling (loading) matrix between
the common spatial and common temporal component matrices, specifying for each
data set the linear combination of common components.

In the previous chapter the coupled dipole model (CDM) [6] was presented. The
CDM is a trilinear model in which multiple, related, MEG data sets (e.g. different
conditions) are analysed simultaneously. It is assumed that certain sources and source
time functions are equal or proportional across data sets, which relatively increases
the signal-to-noise ratio (SNR). For each data set the coupling matrix specifies the
combination of common sources and common source time functions that models the
data in that particular data set. Thus, this matrix couples the common spatial to
the common temporal components; hence, the name ‘coupling matrix’. This matrix is
designed by the user: the entries corresponding to the chosen combination are estimated
from the data, while the remaining entries are set to zero. Although the CDM was
shown to improve the stability of the Inverse Problem (IP) of MEG, this matrix design
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is subject to the a priori information or assumptions of the user, because fewer or more
assumptions about the similarity of the data sets are reflected in different coupling
matrices. On the one hand, it is this exploitation of prior knowledge that is the most
important asset of the CDM , although, on the other hand, this also causes subjectivity
(see section 5.4).

In order to resolve this subjectivity, the current chapter presents the extended cou-
pled dipole model (ECDM), that estimates the coupling matrices entirely. At the same
time, the exploitation of prior information changes: only the dimension of the coupling
matrix is chosen, while all entries are estimated from the data. An important advantage
of the (E)CDM over most of the other component models cited is the statistical clarity
within the maximum likelihood (ML) paradigm (cf. [24]). Moreover, whereas the iden-
tifiability constraints on the CDM parameters depend on the precise design of the cou-
pling matrices, the identifiability of the ECDM parameters is guaranteed by constraints
that only depend on the number of common components. In addition, this enables com-
puting error bounds of estimated source parameters (cf. [24, 28, 41, 75, 76, 109]) by
means of the Cramèr Rao bound for constrained parameters [100].

In the next section the model is explained and the maximum likelihood estimators
for the ECDM parameters are presented. Furthermore, identifiability constraints for
the parameters are given and the Constrained Cramèr Rao bound is computed for
all parameters. Finally, an expression for the confidence region around the estimated
source time functions is given. Computational details of this section are moved to the
appendices. In the section on the results, two experimental applications of the ECDM
are considered. In the first the CDM and the ECDM are compared and in the second
the usefulness of the confidence regions is investigated. In the last section the results
are discussed, and conclusions are drawn.

6.2 Methods

6.2.1 Model

In the ECDM multiple MEG data sets are modelled in one simultaneous analysis using
a set of common stationary dipole sources and a set of common source time functions
(STFs). This integrated model is, like the coupled dipole model, applicable when
MEG data are measured in different though partly similar experimental conditions,
such that in the various data sets (conditions) the same sources are activated and/or
proportional STFs occur. An example would consist of different data sets in which
the somatosensory cortex is activated using electric pulses on the median nerve in a
stimulation frequency that varies across data sets. The so obtained MEG data sets will
show certain similarities, though will be different.

In this chapter, the following notational convention is used: matrices are denoted
by capital letters, either Greek or Latin (e.g. Ω, A, I); vectors are written either in bold
face Latin or in lower case Greek letters (e.g. a, ξ); scalars are in general denoted by
lower case Latin letters; however, for indices the lower and upper cases of one letter
are used, e.g. p = 1, . . . , P ; and finally, the (n,m)th entry of a matrix A is written as
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An,m. For a full overview of all symbols used globally in this chapter paper, the reader
is referred to the first appendix.

Suppose there are Q data sets, q = 1, . . . , Q, each of which contains Kq trials.
Following the Signal Plus Noise model for evoked response data, the measured response
Rk
q in trial k of data set q is assumed to consist of two components: a fixed response

Rq (that is, fixed within data set q) and additional noise Ek
q [70] (see section 1.3.1):

Rk
q = Rq + Ek

q . (6.1)

The ECDM models the fixed responses, Rq, as linear combinations of the common
spatial and temporal components, which are specified by coupling matrices. In the
model equation for the fixed response, this is expressed as (see equation 5.1):

Rq = ACqB. (6.2)

Here A ∈ RI×P is the common dipole field matrix, Cq ∈ RP×Z is the coupling matrix
for data set q and B ∈ RZ×J the common source time function matrix. I denotes the
number of sensors, J the number of time samples, P the number of source time functions
belonging to the common sources and Z the number of common source time functions.
The orientations of the common sources in A and the common times series in B are
normalised, while the magnitudes of activation are estimated in the coupling matrices
Cq. Note that it may be assumed that B has full row rank and, in particular, that
Z ≤ J . To see this, assume rank(B) = r and r ≤ J, r ≤ Z. Then there exists a Z × r
matrix C0, and a r×J matrix B0, such that B = C0B0, and rank(C0) = rank(B0) = r.
The model can then be written as ACqB = ACq(C0B0) = A(CqC0)B0, where CqC0 is
now a P × r matrix, functioning as coupling matrix and B0 is the new common STF
matrix with full row rank. The matrix A in (6.2) is parameterised by the nonlinear
source location parameters, ξ, and by the linear source orientation parameters, η:

A = A(ξ, η). (6.3)

If all common sources are single dipoles with fixed orientations, then P equals the
number of common sources. The reason for this is that the forward field of a single
dipole source is represented by one column in A and is parameterised by one location
and one orientation. In case of symmetric sources, that is, sources consisting of two
dipoles having symmetric locations and orientations with respect to the midsagittal
plan, P equals twice the number of common sources. The forward field of a symmetric
source is a set of two columns in A, one for the left and one for the right dipole because
each dipole has its own amplitude function, and is parameterised by one location (the
other is the mirrored location) and one orientation.

In the CDM the coupling matrices are designed by the user: the user specifies the
dimension of the coupling matrices (i.e. the number of common components) and selects
the zero entries. In the ECDM, the subjectivity of this zero selection is circumvented
by estimating the entire coupling matrices, while the dimension is still set by the user.
The first, immediate, consequence is the nonuniqueness of the solution to the model in
equation (6.2):

Rq = ACqB = A(CqG
−1)(GB) (6.4)
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for any nonsingular matrix G. Therefore constraints on the parameters will be neces-
sary to obtain a unique solution. Moreover, whereas in the CDM the common temporal
components bear a physiological meaning (e.g. contralateral STF), in the ECDM the
direct physiological meaning of the matrices Cq and B has been changed into a more
abstract one, depending on the choice of G, although the product CqB is still physiolog-
ically meaningful. This illustrates the trade-off between objectivity and interpretability
in the ECDM and the CDM. And finally, the ECDM is more general than the CDM,
because the ECDM solutions include all CDM solutions, though the converse is not
true.

6.2.2 ML-estimators for the parameters

The model parameters to be estimated are

• the location parameters of the common sources, contained in the vector ξ

• the orientation parameters of the common sources, contained in the vector η

• the entire coupling matrices Cq, for q = 1, . . . , Q

• the common STF matrix B.

In order to apply the maximum likelihood method to estimate these parameters, the
likelihood of the data has to be derived. The noise is assumed to have a Gaussian
distribution with a known spatiotemporal covariance following the single Kronecker
product model [16]. This is expressed as (see section 1.4.3)

vec(Ek
q ) ∼ N (0, T ⊗X) (6.5)

where T and X are the temporal and spatial covariance matrices respectively, which
are assumed to be known or estimated as described in the chapter 5. Furthermore,
different trials are assumed to be independent, and different data sets even so (which
are anyhow contained in different trials in practise). By these assumptions, X and T
are independent of k and q. These matrices are decomposed as:

T−1 = WTW
t
T (6.6)

X−1 = WXW t
X . (6.7)

The following definitions are convenient:

R̃k
q := W t

XRk
qWT (6.8)

R̃q :=
1

Kq

Kq∑
k=1

R̃k
q (6.9)

Ẽk
q := W t

XEk
qWT (6.10)

Ẽq :=
1

Kq

Kq∑
k=1

Ẽk
q . (6.11)
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Using these prewhitened matrices we define the arrays

R =


√

K1R̃1
...√

KQR̃Q

 , A = (IQ ⊗W t
XA) , C =


√

K1C1
...√

KQCQ

 , B = BWT

and E =


√

K1Ẽ1
...√

KQẼQ

 (6.12)

so that the joint model of (6.1) for all q becomes

R = ACB+ E. (6.13)

Note that the definition ofA differs slightly from the one in the previous chapter. Matrix
A is still parameterised by (ξ, η). Furthermore, since WX and WT are nonsingular
matrices, an equivalent set of model parameters is given by (ξ, η,C,B). From (6.5) the
distribution of

√
Kqvec(R̃q) is derived:√

Kqvec(R̃q) ∼ N (vec(W t
XA

√
KqCqBWT ), IIJ) (6.14)

yielding the marginal likelihood for R

L(ξ, η,C,B) =
1

(2π)
IJQ

2

e−
1
2
tr((R−ACB)(R−ACB)t) (6.15)

and the log likelihood

l(ξ, η,C,B) = −IJQ

2
log (2π)− 1

2
tr((R−ACB)(R−ACB)t). (6.16)

The ML-estimators for (ξ, η,C,B) are defined as

(ξ̂, η̂, Ĉ, B̂) = argmax l(ξ, η,C,B). (6.17)

The estimators are found be equating the corresponding first order derivatives of (6.16)
to zero and solve for the parameters. Owing to the prewhitening, this is equivalent to
the ordinary least squares method, discussed in section 1.3.2.

The expressions for the estimators are derived in three steps. In the first step, ξ, η
and B are assumed to be known and C is estimated

Ĉ = (AtA)−1AtRBt(BBt)−1. (6.18)

(AtA)−1 = IQ ⊗ (AtX−1A)−1 requires the inverse of a P × P matrix and (BBt)−1 =
(BT−1Bt)−1 requires a Z × Z inverse. Substituting (6.18) into (6.16) yields the con-
centrated log likelihood function l(ξ, η,B)

l(ξ, η,B) = −IJQ

2
log 2π − 1

2
tr(RtR) +

1

2
tr(RtA(AtA)−1AtRBt(BBt)−1B). (6.19)
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In the next step B is estimated, under the assumption that (ξ, η) is known. First
write

RtA(AtA)−1AtR = U∆U t (6.20)

with UU t = U tU = IJ , and ∆ = diag(µ1, µ2, . . . , µJ), with µ1 ≥ µ2 ≥ . . . ≥ µJ ≥ 0.
Because U is orthogonal, there exists a (Z × J)-matrix B0 = BU such that

B = B0U
t. (6.21)

Now maximising the concentrated log likelihood in (6.19) is equivalent to

max
B0

tr(∆Bt
0(B0B

t
0)

−1B0). (6.22)

In appendix 6.5.2 the optimal B0 is determined:

B̂0 = G
(
IZ 0

)
, (6.23)

with G any nonsingular (Z × Z)-matrix. For B this implies

B̂ = GU t
Z (6.24)

where UZ denotes the matrix containing only the first Z columns of the matrix U
defined in (6.20). The matrix G exhibits the nonuniqueness of the model, as noticed in
equation (6.4). The imposed constraint is

G = IZ which is equivalent to BUZ = IZ . (6.25)

Note that the rows in B̂, the prewhitened STFs, are normalised by this constraint.
Having estimated B, the log likelihood function can again be concentrated, yielding
l(ξ, η):

l(ξ, η) =
1

2

Z∑
j=1

λj(R
tA(AtA)−1AtR) (6.26)

where λj(A) denotes the jth biggest eigenvalue of matrix A.
In the third and last step, the source parameters (ξ, η) are estimated. In order to

find these parameters, the expression in (6.26) has to be maximised using a nonlinear
iterative algorithm (e.g. Marquardt).

Finally, the procedure of estimating ξ, η, C and B is run in reverse order:

1. Estimate the location and orientation parameters, ξ̂ and η̂, in a nonlinear iterative
method maximising (6.26)

2. Derive B̂ from (6.24)

3. Calculate Ĉ from (6.18)

As a remark, the reader is referred to an alternative to the first step which was
presented in [23]. In that study the linear dependency of A on the orientation parame-
ters η is exploited and only the locations in ξ are estimated in the (time consuming)
nonlinear search. In this faster approach, the first step is replaced by the following
scheme which is iterated until convergence of the cost function:
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1. Obtain a starting value or update value for ξ using the nonlinear algorithm

2. Set the orientations in η to default values, e.g. (1, 0, 0)

3. Iterate until convergence of the maximisation of (6.26):

a) Estimate the optimal matrix B and C using (6.24) and (6.18)

b) Estimate the optimal orientations by

η̂ = (
J∑

j=1

(A(j))tA(j))−1
J∑

j=1

(A(j))trj (6.27)

(see appendix 6.5.3 for the meaning of A(j) and rj)

Using this alternative approach, the second and third step of the initial procedure
have become superfluous. For this fast approach the starting values for the location
parameters are obtained by a global search.

6.2.3 Parameter testing

Due to noise in the data arrayR all estimated entries of Ĉ in (6.18) will be nonzero with
probability 1. Consequently, all common sources will have nonzero estimated activity
in all data sets. To test the significance of the estimated activity of a certain source
p, in a certain data set q, its estimated amplitude over time is tested against the null
hypothesis of being zero. This amplitude is the vector-matrix product of the pth row
in Cq and the matrix B, H0 : ((ĈB̂)p+(q−1)P ;1, . . . , (ĈB̂)p+(q−1)P ;J) = (0, . . . , 0) ∈ R1×J .
Because the common moments and common STFs are normalised, the amplitude of the
source activity over the entire time window is assessed by considering the (p+(q−1)P )th

row in Ĉ. In other words, the null hypothesis can be written as a test on a subset of
the ECDM parameters, H0 : (Ĉp+(q−1)P ;1, . . . , Ĉp+(q−1)P ;Z) = (0, . . . , 0) ∈ R1×Z . In the
sequel, the statistical distribution of these amplitudes and the other model parameters
is derived first, and then the tests on the null hypotheses are described.

Using the ML paradigm, the estimators are asymptotically efficient [63, 95], i.e.
the covariance of the estimated parameters approaches the Cramèr Rao lower bound
(CRB) for infinitely many trials (observations). The calculation of this bound utilises
the Fisher information matrix [46]:

I(θ) = E
[(

∂l(θ)

∂θ

)t
∂l(θ)

∂θ

]
= −E

[
∂2l(θ)

∂θt∂θ

]
, (6.28)

where θ is the vector containing all model parameters and l(θ) is the log likelihood
function. The Cramèr Rao inequality for the covariance of the estimated parameters θ̂
is given by [88]:

Cov(θ̂) ≥ (I(θ∗))−1, (6.29)
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where A ≥ B means that A−B is positive semi-definite and θ∗ denotes the true value
of the parameter vector. Furthermore, the covariance matrix of an ML-estimated θ̂ML,
based on finitely many observations, is estimated by [63]:

Ĉov(θ̂ML) = (I(θ̂ML))
−1. (6.30)

For the ECDM the parameter vector θ is defined as

θ = (vec(C), ζ, vec(B)) (6.31)

with ζ = (ξ, η). The symmetric information matrix can then be partitioned as

I(θ) =
 ICC ICζ ICB

IζC Iζζ IζB
IBC IBζ IBB

 . (6.32)

From (6.16) and (6.28) an arbitrary entry of I(θ) is given by

I(θ)l,l′ = tr(
∂(ACB)t

∂θl

∂(ACB)

∂θl′
) =

∂(vec(ACB))t

∂θl

∂vec(ACB)

∂θl′
. (6.33)

Therefore, the following derivatives are sufficient to compute all the submatrices in
(6.32) (see [63] for differentiation with respect to matrices and vectors):

∂vec(ACB)

∂vec(C)
= Bt ⊗A (6.34)

∂vec(ACB)

∂ζ
= (BtCt ⊗ IIQ)

∂vec(A)

∂ζ
(6.35)

∂vec(ACB)

∂vec(B)
= IJ ⊗AC (6.36)

Using these derivatives, the information submatrices become

ICC = BBt ⊗AtA

ICζ = (BBtCt ⊗At)
∂vec(A)

∂ζ

ICB = B⊗AtAC

Iζζ = (
∂vec(A)

∂ζ
)t(CBBtCt ⊗ IIQ)

∂vec(A)

∂ζ

IζB = (
∂vec(A)

∂ζ
)t(CB⊗AC)

IBB = IJ ⊗CtAtAC (6.37)

To compute the estimated covariance matrix (6.30) the inverse of the information matrix
is required. However, the information matrix given by the submatrices in (6.37) is
singular, which can be easily seen using the determinant formula for the partitioned



Chapter 6 107

matrix [108]: for a nonsingular symmetric matrix M ∈ Rm×m, a symmetric matrix
N ∈ Rn×n and any matrix K ∈ Rm×n we have∣∣∣∣ M K

Kt N

∣∣∣∣ = |M||N−KtM−1K|. (6.38)

Setting M = ICC and matrices K and N correspondingly, the term N − KtM−1K
becomes a block diagonal matrix having the following two matrices as blocks on the
diagonal:

(
∂vec(A)

∂ζ
)t(CBBtCt ⊗ (IPQ −A(AtA)−1At))

∂vec(A)

∂ζ

and
(IJ −Bt(BBt)−1B)⊗CtAtAC

of which the second is singular, because IJ −Bt(BBt)−1B is a projection.
This singularity implies that the CRB cannot be calculated straightforwardly, which,

indeed, characterises the overparametrisation (6.4). Sufficient identifiability constraints
on the parameters for MEG data are [39, 40]:

1. normalised source orientations (P constraints)

2. tangential source orientations (P constraints)

3. BUZ = IZ , see (6.25) (Z2 constraints)

The reader is referred to appendix 6.5.4 for the explicit formulas. In [100] the CRB
under parametric constraints is derived. All constraints are written in one vector c(θ) =
0 ∈ R(2P+Z2)×1 of which the derivative is defined as

D(θ) =
∂c(θ)

∂θ
. (6.39)

The matrix D(θ) ∈ R(2P+Z2)×(PQZ+M+ZJ) is discussed in appendix 6.5.4. Here M is
the length of the source parameter vector ζ, i.e. M = 3N + 3P (see appendix 6.5.4).
D(θ) is assumed to be of full row rank. In other words, the linear approximations of
the constraints are assumed to be linearly independent. Then there exists a matrix
V ∈ R(PQZ+M+ZJ)×(PQZ+M+ZJ−2P−Z2), having orthogonal columns, so that DV = 0,
i.e. the columns of V span the null-space of D. The constrained Cramèr Rao bound
(CCRB) is now given by [100]

Σθ = V (V tI(θ)V )−1V t. (6.40)

This bound is based on the nonsingularity of V tI(θ)V ; the columns in V span the same
space as the column (or row) space of I(θ). In other words, the linear approximations
to the constraints (the columns in D(θ)) span the space perpendicular to the row space
of the information matrix.

The first PQZ columns in D(θ), the derivative of c(θ) with respect to vec(C), are
zero because there are no constraints on C. Therefore we can choose V to be

V =

(
IPQZ 0
0 V0

)
, (6.41)
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where V0 ∈ R(M+ZJ)×(M+ZJ−2P−Z2) and the 0’s present null matrices of appropriate
dimensions. Furthermore, V0 has orthogonal columns such that

D

(
0
V0

)
= 0. (6.42)

Σθ in (6.40) then becomes

Σθ =

(
IPQZ 0
0 V0

) ICC
( ICζ ICB

)
V0

V t
0

( IζC
IBC

)
V t

0

( Iζζ IζB
IBζ IBB

)
V0

−1 (
IPQZ 0
0 V t

0

)
.

(6.43)
The derived CCRB is now used to test the significance of the estimated activity,

as discussed above. For a certain source p in a particular data set q the null hypoth-
esis is H0 : (Ĉp+(q−1)P ;1, . . . , Ĉp+(q−1)P ;Z) = (0, . . . , 0) ∈ R1×Z . To test such a subset
of the estimated parameters, a Fisher F-test is performed [95], which is based on a
linear approximation of the nonlinear model (appendix 6.5.5). Taking into account the
constraints on the ECDM parameters, the F -statistic in (6.85) is used to calculate the
significance of the activity of the pth source in the qth data set over the entire time
window, indicated by a p-value.

Although the activity of a certain source may be significant over the entire time
window in a certain data set, its activity needs not be significant at each time sample.
Hence, another interesting statistical feature is the confidence interval around the esti-
mated amplitude for each source in each data set at all time instants. These STFs are
contained in the matrix product CB, which is a nonlinear function of the ECDM para-
meters. In [95], testing a nonlinear null hypothesis, H0 : ((ĈB̂)p+(q−1)P ;j = 0 ∈ R1×1, is
performed through linear approximation. This same strategy is applied in the present
study to compute the confidence regions around the STFs (appendix 6.5.6). The re-
sulting F -statistic in (6.89) determines the confidence region, (6.95).

6.3 Results

The ECDM was applied in two different experimental MEG designs, in order to exam-
ine its performance. In the first application, MEG data obtained in a Visual Evoked
Field (VEF) experiment were studied. The same VEF data have been analysed also
by the CDM in the previous chapter. This study allows for a comparison between
the performances of the CDM and the ECDM. Secondly, the ECDM was applied to
Somatosensory Evoked Field (SEF) data, which enabled investigation of the accuracy
and importance of the significance tests and confidence regions.

6.3.1 VEF data

VEF data were obtained in three different experimental conditions; a 6’ checkerboard
pattern was shown to the subject in either the left or the right visual hemi-field, or full
field. Using a 151 channel CTF Omega system, data of five subjects were acquired at
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a sample rate of 625 Hz. Each data set contained 400 trials and the time window of
analysis was set to 80-112 ms post-stimulus.

As outlined in chapter 5, describing the activity evoked by this check size in this
time window requires two common sources and two common STFs. Although in the
CDM the two STFs are given physiological meanings, contra- and ipsilateral STF, in the
ECDM the common STFs are orthogonal and, therefore, lack such a direct physiological
meaning. As model for the two sources a semi-symmetric dipole pair was employed,
that is, two dipole sources having symmetric locations, though arbitrary orientations.
This generated 3 (2×2) coupling matrices for each subject. In the CDM both hemi-field
data sets were modelled by an ipsi- and contralateral source (with ipsi- and contralateral
STFs respectively) and the full field data set was modelled by both sources having
the contralateral STF. In the ECDM activity of both sources is estimated as a linear
combination of the two orthogonal basic STFs.

In general, the estimated ECDM parameters are very close to the estimated CDM
parameters. Over the five subjects, the average distance between the ECDM and the
CDM estimated locations is 0.11 cm (± 0.09 cm) and the average rotation between
estimated left orientations equals 1.6◦ (± 1.9◦) and right 1.3◦ (± 1.5◦). Like the CDM
solutions, the ECDM solutions, show nearly symmetric orientations. A slight differ-
ence was found in the shapes of the estimated STFs, i.e. the rows of CB; however, the
magnitudes are comparable for subjects 1, 2, 4 and 5. For subject 3, the magnitude
in the ECDM solution is approximately 1.9 times the magnitude in the CDM solution,
while the shapes are similar. The explanation for this distinction lies in the difference
between the estimated sources: the ECDM sources are located closer to the midsagittal
plane than the CDM sources (ECDM: 0.4 cm; CDM: 0.8 cm), and the orientations
(both ECDM and CDM) are mainly lateral (angle between orientation and pure lat-
eral direction is 17◦ (left) and 9◦ (right) for the ECDM). In other words, the ECDM,
which is less restrictive than the CDM, yields slightly cancelling sources, as was dis-
cussed in 5.1; two sources, close together, having opposite orientations are vulnerable
for counterbalancing each other. The data of this subject were in any case the most
troublesome of all, because separate analyses of all three data sets could not yield an
interpretable solution (see section 5.3). Nevertheless, in general the ECDM and CDM
solutions resemble each other reasonably for the uncomplicated data sets.

The results of subject 5 are representative for the type of shape (all subjects) and
magnitude (subject 1,2,4,5) dissimilarities between the ECDM and the CDM. The re-
sults of the same subject were presented in chapter 5. In Table 6.1 the estimated source
parameters are presented, and Figure 6.1 shows the estimated STFs together with the
95% confidence intervals. From this figure and table it is seen that the ECDM magni-
tude is slightly bigger than the CDM magnitude at most instants, and correspondingly,
the CDM sources are slightly more superficial than the ECDM sources, although not
significantly so.

6.3.2 SEF data

In circumstances where a certain source is not expected to be active in one (or some)
of the data sets, the estimated coupling parameters in the ECDM will, nonetheless, be
nonzero with probability 1. This is the case, for example, when the number of common
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position left (cm) orientation left orientation right

ECDM
CDM

x y z
-5.26 1.37 0.84
-5.25 1.44 0.85

x y z
0.29 0.76 0.58
0.30 0.72 0.62

x y z
0.26 -0.96 0.10
0.28 -0.95 0.12

Table 6.1: Estimated source parameters of the semi-symmetric sources for subject 5.
The positions of the sources are relative to the centre of the spherical volume conductor.
The direction of the x-axis is forward, the y-axis is to the left and the z-axis points
upwards.
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(a) Left hemi-field stimulation
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Figure 6.1: Estimated STFs of the semi-symmetric sources resulting from both the
ECDM and the CDM analyses of subject 5. The horizontal axis represents the time
after stimulus in ms and the vertical axis shows the amplitude in nAcm. The solid
(dashed) line presents the ECDM estimated STF of the right (left) source and the dot-
dashed (dotted) line presents the CDM estimated STF of the right (left) source. The
vertical error bars indicate a 95% confidence region around the ECDM amplitudes.

sources is too large for one of the data sets; the entire coupling matrix is estimated,
producing nonzero estimated activity for all common sources. To investigate the perfor-
mance of the ECDM in cases of these expectedly silent sources, the model was applied
to the N20 response in SEF data of the left and right median nerve. Typically, one
would analyse these two data sets separately, using single source models. However, it
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is a plausible assumption that the somatosensory cortices left and right have symmet-
ric locations. Therefore, the ECDM can be applied assuming semi-symmetric sources.
Nonetheless, the author wants to stress that the purpose of this SEF study is not to
find the optimal SEF source localisation method, though rather to test the robustness
and correctness of the proposed model.

The design of the ECDM for the two SEF data sets, SEFL and SEFR, used a semi-
symmetric source pair. The two sources permit both contra- and ipsilateral activity.
The number of STFs was varied from 1 to 4; one STF forces the ipsi- and contralateral
amplitudes to be proportional, two STFs allow for different wave shapes. By extend-
ing the number of STFs even further to at most 4 (then C is square), the difference
between the ECDM design and the separate analyses is reduced to only the assump-
tion of symmetric source locations. The dimensions of the coupling matrices varied
correspondingly from 2× 1 to 2× 4 for each data set.

Using a 151-channel CTF Omega system, data of five subjects were collected at a
sample rate of 2083 Hz. For each subject, the frequency of the median nerve stimulation
was set to 2 Hz for both data sets, each of which contained at least 500 trials. For each
subject a narrow interval of 2 ms around the N20 peak was selected as time window of
analysis, functioning both for the SEFL and the SEFR data set.

For all subjects the estimated contralateral activity clearly dominates the ipsilateral
activity. Figures 6.2 and 6.3 show the estimated STFs together with the corresponding
confidence intervals for subjects 3 and 5 for Z = 2. The p-values for both data sets,
computed according to the above outlined tests, are reported in Table 6.2. As can be
seen from the table, the p-values generally increase with Z, while the estimated source
parameters (not shown) hardly change with Z. Moreover, not all p-values exceed the
common 5% limit; in other words, some ipsilateral activity is estimated as significant.
Examples of this significant activity are shown in Figures 6.3(a) and 6.3(b) (Z = 2).
From these figures the importance of the confidence regions becomes clear: for all
samples the activity balances on the verge of significance, yielding apparently a p-value
just below 5 %. Finally, the p-values of the contralateral activity were calculated,
yielding values ranging from 10−234 to 10−59.

Z=1 Z=2 Z=3 Z=4 Z=1 Z=2 Z=3 Z=4
subject SEFL SEFL SEFL SEFL SEFR SEFR SEFR SEFR

1 10.97% 24.23% 38.60% 53.59% 0.00% 0.00% 0.00% 0.02%
2 1.14% 0.82% 1.67% 3.52% 6.46% 17.97% 31.55% 45.79%
3 33.73% 42.36% 62.51% 67.85% 3.98% 8.13% 15.90% 27.99%
4 30.13% 55.34% 55.26% 71.71% 4.78% 16.96% 26.26% 36.42%
5 2.36% 2.25% 5.50% 9.66% 0.34% 1.42% 3.32% 3.88%

Table 6.2: P-values of the estimated ipsilateral activity in both the SEF data sets of the
five subjects for the different values of Z.
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Figure 6.2: ECDM estimated STFs of the semi-symmetric sources in the SEF data sets
of subject 3. The horizontal axis represents the time after stimulus in ms and the vertical
axis shows the amplitude in nAcm. The solid (dashed) line indicates the estimated
amplitude of the left (right) source. The vertical error bars indicate a 95% confidence
region around the amplitudes. The horizontal axis represents the post-stimulus time in
ms and the vertical axis shows the amplitude in nAcm.
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Figure 6.3: ECDM estimated STFs of the semi-symmetric sources in the SEF data sets
of subject 5. The horizontal axis represents the time after stimulus in ms and the vertical
axis shows the amplitude in nAcm. The solid (dashed) line indicates the estimated
amplitude of the left (right) source. The vertical error bars estimated amplitude of
right (left) source. The vertical error bars indicate a 95% confidence region around the
amplitudes. The horizontal axis represents the post-stimulus time in ms and the vertical
axis shows the amplitude in nAcm.

6.4 Discussion

The ECDM is an extension of the CDM, analysing multiple MEG data sets simultane-
ously, in which the subjectivity of the coupling design has been erased. The ECDM can
be regarded as an extension of the CDM in the temporal domain: the wave shapes in
CB, i.e. the estimated source time functions for the sources in all data sets, are more
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general in the ECDM. Spatially, there is no noteworthy difference between the models.
The crucial enhancement by this temporal extension is the statistical transparency:

identifiability constraints are independent of the user’s design and the covariance of
the parameters is accessible by using the Constrained Cramèr Rao bound. Another
advantage of the ECDM over the CDM is the ease of design: only the dimension of
the coupling matrices is chosen by the user. The price to be paid for this benefit is
the loss of direct physiological interpretation of C and B; however, the product CB
remains meaningful. Furthermore, the prior information cannot be exploited, which
can be either a favour or a drawback, depending on the user’s desire.

An alternative estimation method for the ECDM is the Generalised Multivariate
Analysis Of Variance (GMANOVA) model [25, 49, 97, 108]. The GMANOVA (or
growth curve) model, which is the trilinear extension (Y = AXB) of the common
MANOVA model (Y = AX), was used to describe a single MEG/EEG data set in
[24]. In that study, the spatial noise covariance was estimated simultaneously with the
model parameters, having the advantage that the spatial covariance can capture mod-
elling errors. In the more complicated ECDM, this benefit can not be achieved for the
general spatiotemporal noise covariance, because the GMANOVA model admits this
favour only for either the spatial or the temporal noise covariance. Hence, capturing
modelling errors in the ECDM should be performed by iterative estimation of the noise
covariance and the model parameters.

By applying the ECDM to the same VEF data as the CDM had been applied to, a
direct comparison between estimated parameters was made. Spatially, no noteworthy
differences were found. Regarding the temporal parameters, the extra freedom of the
ECDM was manifested by more general wave shapes. For one of the five subjects some-
what different results were reported: the semi-symmetric sources were closer together
in the ECDM and the magnitudes were higher. This directs to the phenomenon of can-
celling sources as discussed in section 5.1. Apparently, the somewhat problematic data
of subject 3 need a very strict model enabling a plausible solution: the separate analy-
ses of the three data sets yield unlikely solutions; the ECDM yields a better parameter
estimate which is still a little doubtful; and the CDM generates the most plausible solu-
tion, that is comparable with solutions of other subjects. In this kind of circumstances,
model selection procedures [110] are helpful to decide on the correct model.

The estimated activity of supposedly silent sources was investigated in the SEF
data analysis. The N20 response to a SEF stimulus has been reported arising from
the contralateral SI area only [43, 69]. Activity of both contra- and ipsilateral sources
was estimated by fitting a semi-symmetric source model to SEF data of left and right
median nerve stimulation of five subjects. Computed p-values of estimated ipsilateral
activity (Table 6.2) were generally high, although some of the values turned out to be
significant. A closer look at the confidence interval for each time sample revealed that
this significance can change from sample to sample. A few remarks can be made here.
In general, the ordinary least squares method underestimates the standard errors of
the model parameters, while the generalised least squares method, which is performed
through prewhitening in the ECDM, yields a correct estimate of the standard error
(and thus of the confidence intervals) (e.g. [42]). Nevertheless, it seems tenable from
Figure 6.3 that the ECDM confidence intervals are still slightly underestimated. This
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can be interpreted in line with a feature reported in [20] where it was shown that the
source localisation suffers from comparable frequencies in source time functions and
the temporal covariance. In such a case, not solely noise but also signal is removed by
prewhitening. In a simulation study, not reported here, this phenomenon was studied
and confirmed: the ratio between estimated standard errors and sample variances of
the estimated amplitudes equalled approximately 0.70 for frequencies below 15 Hz and
0.92 for frequencies above 20 Hz. As a final remark, the liberal way of testing may
have produced too optimistic confidence intervals; a correction for multiple tests (e.g.
Bonferroni) might indicate no significance. Bearing these remarks in mind, existence
of ipsilateral activity is neither approved nor disapproved by this ECDM study.

Summarising, the ECDM is an alternative to the CDM which is statistically more
convenient, but does not allow for exploitation of prior information. It is the user’s
careful consideration whether to use the CDM or the ECDM.

6.5 Appendix

6.5.1 Dimensions and variables

The dimensions are defined as

• I - # sensors

• J - # time samples

• Kq - # trials data set q

• K - # trials all data sets

• M - # source parameters

• N - # common sources

• P - # source time functions of common sources

• Q - # data sets

• Z - # common STFs

and the variables as

• ζ - (M × 1) vector with all source parameters

• η - (3P × 1) vector with source orientation parameters

• ξ - ((M − 3P )× 1) vector with source location parameters

• θ - ((PQZ +M + ZJ)× 1) vector with all parameters

• A(ξ, η) - (I × P ) dipole field matrix of common sources

• A - (IQ× PQ) matrix IQ ⊗ A
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• B - (Z × J) common STF matrix, (STFs as rows)

• B - (Z × J) prewhitened STF matrix

• c(θ) - ((2P + Z2)× 1) constraint vector

• Cq - (P × Z) coupling matrix data set q

• C - (QP × Z) stacked coupling matrices

• D(θ) - ((2P + Z2)× (PQZ +M + ZJ)) derivative matrix of c(θ)

• Ek
q - (I × J) noise matrix trial k data set q

• In - (n× n) identity matrix

• Rk
q - (I × J) data matrix trial k data set q

• Rq - (I × J) model matrix data set q

• R̄q - (I × J) average data matrix data set q

• R - (IQ× J) stacked average prewhitened data matrices

• T - (J × J) temporal covariance matrix

• U - (J × J) orthogonal matrix with singular vectors of RtA(AtA)−1AtR

• UZ - (J × Z) first Z columns of U

• X - (I × I) spatial covariance matrix

• Σθ - ((PQZ +M + ZJ)× (PQZ +M + ZJ)) constrained CRB matrix

6.5.2 Estimator for B0

In this appendix the ML-estimator for B0 is derived from equation (6.22). Define the
matrix P := Bt

0(B0B
t
0)

−1B0 ∈ RJ×J , which is a projection with rank(P ) = rank(B0) =
rank(B)= Z. Therefore, P can be decomposed as P = HH t, with H ∈ RJ×Z having Z
orthogonal columns. If the jth row vector of H is written as hj

t ∈ R1×Z , the trace in
(6.22) becomes

tr(∆P ) = tr(∆HH t) = tr


 µ1h1

t

...
µJhJ

t

(
h1 · · · hJ

) =
J∑

j=1

µjhj
thj (6.44)

with µ1 ≥ µ2 ≥ . . . ≥ µJ ≥ 0. Now the trace of a projection matrix equals its rank,
therefore

tr(P ) = tr(HH t) =
J∑

j=1

hj
thj = Z. (6.45)
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Defining the vectors a = (a1, . . . , aJ) with aj = hj
thj, and µ = (µ1, . . . , µJ), the max-

imisation problem in (6.22) is reduced to

max
a

atµ subject to


0 ≤ aj ≤ 1∑

j aj = Z

µj ≥ µj+1 for j = 1, . . . , J − 1
µj ≥ 0 ∀j

(6.46)

Obviously the optimal vector is given by â = (1, . . . , 1, 0, . . . , 0), of which only the
first Z elements equal 1. In case of less than Z nonzero µj this optimal solution for
a is not unique. Yet, Z exceeding the number of nonzero µj, in (6.20), indicates
overparametrisation; hence, it may be assumed that â is unique. This implies for H

hjhj
t =

{
1 for 1 ≤ j ≤ Z
0 for Z + 1 ≤ j ≤ J

(6.47)

Writing

H =

(
H1

H2

)
(6.48)

with H1 ∈ RZ×Z and H2 ∈ R(J−Z)×Z , equation (6.47) implies that H1 is orthogonal and
H2 equals the null matrix. The projection P then becomes

P = HH t =

(
IZ 0
0 0

)
. (6.49)

Recalling P = Bt
0(B0B

t
0)

−1B0, the estimator for B0 is

B̂0 = G
(
IZ 0

)
, (6.50)

0 ∈ RZ×(J−Z) being the null matrix and G ∈ RZ×Z any nonsingular matrix.

6.5.3 Linear estimator for the source orientations

In this appendix an estimator is derived for the source orientations, which exploits the
linear dependency of the model on the orientations. First, A is decomposed using the
linear dependency in η: W t

XA(ξ, η) = Φ(ξ)Ω(η), where Φ(ξ) is the (I×3P ) prewhitened
unit dipole field matrix in the three Euclidean moment directions, and Ω(η) is the
(3P × P ) block diagonal matrix containing P (3× 1) moment blocks on the diagonal.
Next, this decomposition is substituted in (6.15), which then is maximised with respect
to η, or equivalently

min
η

tr((R− (IQ ⊗ ΦΩ)CB)(R− (IQ ⊗ ΦΩ)CB)t) (6.51)

for known ξ, B and C. This quadratic function of η is minimum when the derivatives
with respect to all the orientation parameters ηm, m = 1, . . . , 3P , are zero, i.e.

tr(((IQ ⊗ Φ
∂Ω

∂ηm
)CB)t(R− (IQ ⊗ ΦΩ)CB)) =
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J∑
j=1

((IQ ⊗ Φ
∂Ω

∂ηm
)Cbj)

t(rj − (IQ ⊗ ΦΩ)Cbj) = 0 (6.52)

for all m, where rj and bj denote the jth column in R and B respectively. Defining

Am(j) = (IQ ⊗ Φ
∂Ω

∂ηm
)Cbj for m = 1, . . . , 3P (6.53)

A(j) =
(

A1(j) A2(j) · · · A3P (j)
)

(6.54)

and noting that Ω =
∑3P

m=1
∂Ω
∂ηm

ηm, equation (6.52) can be rewritten as

J∑
j=1

(Am(j))
trj =

3P∑
m′=1

J∑
j=1

(Am(j))
tAm′(j)ηm′ (6.55)

for all m. Finally, stacking the scalar equation (6.55) for all m as entries in one column,
the following equation is obtained:

J∑
j=1

(A(j))trj =
J∑

j=1

(A(j))tA(j)η (6.56)

and the estimator in (6.27), which requires a 3P × 3P inverse, follows. An alternative
expression for the linear system in (6.56) can be found in equation 5.19 and related
equations.

6.5.4 Derivative matrix of the constraints

In this appendix, the derivative of the constraint vector c(θ) with respect to all para-
meters is computed. Define the number of common sources to be N . Then the number
of source location parameters is 3N and that of source orientations is 3P , together
yielding M = 3N + 3P . The constraints are

η2
3p−2 + η2

3p−1 + η2
3p = 1 for p = 1, . . . , P (normality constraint)

ξ3n−2η3p−2 + ξ3n−1η3p−1 + ξ3nη3p = 0 for p = 1, . . . , P (tangentiality constraint)

(BU)z1,z2 = δz1,z2 for z1, z2 = 1, . . . , Z

where n in the tangentiality constraints is chosen such that the pth STF corresponds
to the nth source. Furthermore, δi,j denotes the Kronecker delta function (see equation
(1.53)). The dimension of D(θ) in (6.39) is (2P + Z2) × (PQZ + M + ZJ). The first
2P rows of D(θ) are straightforward. For the last Z2 rows we have:

∂(BU)z1,z2
∂Bz,j

= δz,z1Uj,z2 (6.57)

∂(BU)z1,z2
∂ζm

= Bt
z1

∂Uz2

∂ζm
(6.58)

where Uz2 and Bz1 denote the zth2 and zth1 column of U and B, respectively. The last
fraction in 6.58 is the derivative of an eigenvector of RtA(AtA)−1AtR with respect
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to one of the parameters by which this matrix is parameterised. In [63] differentiation
of eigenvectors with respect to the matrix is explained. The derivative with respect to
matrix X of eigenvector u0 of matrix X corresponding to eigenvalue λ0 of matrix X is
calculated by

du = (λ0I−X)+(dX)u0. (6.59)

Here (..)+ stands for the Moore-Penrose inverse. Substituting X = RtA(AtA)−1AtR
which is a function of ζm, u0 = Uz2 with corresponding eigenvalue λz2 and applying
(6.59) and the chain rule to (6.58) yields

∂Uz2

∂ζm
= (λz2IJ −RtA(AtA)−1AtR)+

∂(RtA(AtA)−1AtR)

∂ζm
Uz2 . (6.60)

Employing the product rule, dX(X
−1) = −X−1dXX−1 and (6.60), the matrix D(θ) can

be calculated.

6.5.5 F-test on estimated coupling parameters

The F-test on the estimated parameters is derived in this appendix, following the deriva-
tion in [95]. First, the test is designed for unconstrained parameters and after that,
the case of constrained parameters is described. The following vectors in RIJQ×1 are
defined

r = vec(R) (6.61)

f(θ) = vec(ACB) (6.62)

ε = r− f(θ∗). (6.63)

The model vector f(θ) is expanded in a Taylor series around θ = θ∗, the true value of
parameter θ

f(θ) ≈ f(θ∗) + F (θ)(θ − θ∗) (6.64)

where

F (θ) =
∂f(θ)

∂θ
(θ∗) ∈ RIJQ×nθ . (6.65)

nθ is an abbreviation for the length of θ. For notational convenience the dependency of
F on θ will be omitted in the sequel. Maximising the log likelihood function in (6.16)
is equivalent to

min
θ

‖r− f(θ)‖2 ≈ min
θ

‖r− f(θ∗)− F (θ − θ∗)‖2 = min
θ

‖ε− F (θ − θ∗)‖2. (6.66)

The optimal value for θ is given by

θ̂ − θ∗ = (F tF )−1F tε. (6.67)

From (6.64) and (6.67) the following approximation can be made

f(θ̂)− f(θ∗) ≈ F (θ̂ − θ∗) = F (F tF )−1F tε (6.68)

r− f(θ̂) ≈ r− f(θ∗)− F (θ̂ − θ∗) = ε− F (F tF )−1F tε. (6.69)
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Defining the projection
PF = F (F tF )−1F t, (6.70)

this yields

‖f(θ̂)− f(θ∗)‖2 ≈ εtPF ε ∼ χ2
nθ

(6.71)

‖r− f(θ̂)‖2 ≈ εt(I − PF )ε ∼ χ2
IJQ−nθ

(6.72)

where χ2
l denotes the Chi-squared distribution with l degrees of freedom. Clearly (I −

PF )ε and PF ε are independent, which leads to the following F -statistic

Ftest =

εtPF ε
nθ

εt(I−PF )ε
IJQ−nθ

=
‖f(θ̂)− f(θ∗)‖2

‖r− f(θ̂)‖2

IJQ− nθ

nθ

≈ (θ̂ − θ∗)tF tF (θ̂ − θ∗)

‖r− f(θ̂)‖2

IJQ− nθ

nθ

∼ Fnθ, IJQ−nθ
(6.73)

The above test statistic is for the entire parameter vector θ̂. The estimated covariance
matrix of θ̂ is (F (θ̂)tF (θ̂))−1, which is well-defined for unconstrained parameters. To
test a subset of the estimated parameters, write

θ =

(
θ1

θ2

)
(6.74)

F =
(

F1 F2

)
(6.75)

and assume that the parameters in θ2 have to be tested. Using the partitioning of F ,
PF1 and PF2 are defined similar to the projection in (6.70). This yields for the projector
in the denominator of the test statistic

I − PF = I − PF1 − (I − PF1)F2[F
t
2(I − PF1)F2]

−1F t
2(I − PF1). (6.76)

In the numerator of the test statistic, θ̂ − θ∗ has to be replaced by θ̂2 − θ∗2 and the
inverse of the estimated covariance matrix for θ2 has to be substituted for F tF . This
covariance matrix is given by the corresponding submatrix of (F tF )−1:

ĈOV (θ2) =
(
0 I

)( F t
1F1 F t

1F2

F t
2F1 F t

2F2

)−1 (
0
I

)
= (F t

2(I − PF1)F2)
−1. (6.77)

The numerator of the test statistic then becomes

(θ̂2 − θ∗2)
tF t

2(I − PF1)F2(θ̂2 − θ∗2). (6.78)

This expression can be written again as εtPε for a certain projection P , when the same
partitioning is applied to (6.67):(

θ̂1 − θ∗1
θ̂2 − θ∗2

)
=

(
F t

1F1 F t
1F2

F t
2F1 F t

2F2

)−1 (
F t

1

F t
2

)
ε (6.79)

and the corresponding part for θ̂2 − θ∗2 is selected:

θ̂2 − θ∗2 = (F t
2(I − PF1)F2)

−1F t
2(I − PF1)ε (6.80)
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Substituting equation (6.80) in equation (6.78), the latter becomes of the form εtPε for
P = (I − PF1)F2(F

t
2(I − PF1)F2)

−1F t
2(I − PF1) Now the projection in (6.76) and the

projection (I − PF1)F2(F
t
2(I − PF1)F2)

−1F t
2(I − PF1) are orthogonal. In all, this yields

the test statistic for the subset of nθ2 parameters in θ2

Fsubtest =

εt(I−PF1
)F2(F t

2(I−PF1
)F2)−1F t

2(I−PF1
)ε

nθ2

εt(I−PF )ε
IJQ−nθ

=
(θ̂2 − θ∗2)

tF t
2(I − PF1)F2(θ̂2 − θ∗2)

‖r− f(θ̂)‖2

IJQ− nθ

nθ2

∼ Fnθ2
, IJQ−nθ

. (6.81)

In case of constrained parameters the matrix I = F (θ)tF (θ), is singular, whereas
the matrix V tIV is nonsingular, see (6.40). This can be interpreted as a parameter
transformation (reduction):

β = V tθ, (6.82)

since then I(β) = F (β)tF (β) = V tI(θ)V . β is an unconstrained parameter of length
PQZ +M + ZJ − 2P − Z2. Therefore, the above derived tests, (6.73) and (6.81), can
be applied to β and subsets of β. The analogous expression for (6.73) in terms of β is

(β̂ − β∗)tV tI(θ)V (β̂ − β∗)

‖r− f(β̂)‖2

IJQ− nβ

nβ

=
(θ̂ − θ∗)tV (V tI(θ)V )V t(θ̂ − θ∗)

‖r− f(θ̂)‖2

IJQ− nβ

nβ

∼ Fnβ , IJQ−nβ
(6.83)

Hence, the difference made by the constraints is the substitution of a pseudo-inverse of
Σθ for (F tF )−1 and the adaption of the number of degrees of freedom. Similarly, for a
subset of parameters, β2, the test statistic becomes

(β̂2 − β∗
2)

t([(V tI(θ)V )−1]β2
)−1(β̂2 − β∗

2)

‖r− f(β̂)‖2

IJQ− nβ

nβ2

. (6.84)

where [..]β2
indicates the submatrix corresponding to the subset of parameters in β2.

Now the coupling parameters are left unchanged by the parameter transformation
(6.82), see (6.41), hence we can take θ2 = β2 containing only coupling parameters,
and the resulting test statistic is

Fcoupling =
(θ̂2 − θ∗2)

t([Σθ]θ2)
−1(θ̂2 − θ∗2)

‖r− f(θ̂)‖2

IJQ− nβ

nθ2

∼ Fnθ2
, IJQ−nβ

(6.85)

with nβ = PQZ + M + ZJ − 2P − Z2. To test the significance of a certain source in
data set q, θ2 should contain all coupling parameters in the corresponding row of Cq.
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6.5.6 Confidence regions around estimated STFs

In this appendix the confidence region around the estimated STFs for each source in
each data set is computed. The same notation is used as in appendix 6.5.5. In [95]
testing the l-dimensional nonlinear hypothesis h(θ) = h∗ is outlined using a linear
approximation. Define

H(θ) =
∂h(θ)

∂θ
∈ Rl×(PQZ+M+ZJ) (6.86)

the derivative matrix of the hypothesis vector. Then approximately

h(θ)− h(θ∗) ≈ H(θ)(θ − θ∗). (6.87)

For notational simplicity the dependence of H on θ is dropped in the sequel. The l× l
covariance matrix of h(θ)− h(θ∗) is then approximated by

Ĉov(h(θ)− h(θ∗)) ≈ HĈov(θ − θ∗)H t = HΣθH
t. (6.88)

In all this yields the following test statistic

Fhyptest =

(h(θ̂)− h(θ∗))t(H Σθ̂ H t)−1(h(θ̂)− h(θ∗))

‖r− f(θ̂)‖2

IJQ− (PQZ +M + ZJ − 2P − Z2)

l

∼ Fl, IJQ−(PQZ+M+ZJ−2P−Z2) (6.89)

The estimated pth STF at a certain time sample j in a certain data set q is a hypothesis
vector hp,q,j ∈ R1×1. The derivative matrix H ∈ R1×(PQZ+M+ZJ) vector. Furthermore,
hp,q,j is the product of pth row in the qth coupling matrix and the jth column of the
basic STF matrix. Hence, for given q, p and j

hq,p,j(θ) = (CqB)p,j = (CqBW−1
T )p,j (6.90)

∂hq,p,j(θ)

∂(Cq)p,z
= (BW−1

T )z,j (6.91)

∂hq,p,j(θ)

∂Bz,j′
= (Cq)p,z(W

−1
T )j′,j (6.92)

(6.93)

with z = 1, . . . , Z and j ′ = 1, . . . , J . Using these derivatives the vector H(θ) is de-
termined. To compute the (1-α) confidence region for a certain hq,p,j(θ) the threshold
value Fthres is defined as

Fthres = Fα
1, IJQ−(PQZ+M+ZJ−2P−Z2) (6.94)

and the confidence region is then given byh
∣∣∣ |hq,p,j(θ̂)− h| ≤

√
Fthres‖r− f(θ̂)‖2(H Σθ̂ H t)

IJQ− (PQZ +M + ZJ − 2P − Z2)

 . (6.95)





Chapter 7

Summary, discussion and
conclusions

In this thesis, two main questions are addressed. The first is about the separation of
the signal and noise components in measured MEG (and EEG) data and is discussed
in chapters 2, 3 and 4. In the next two sections, 7.1 and 7.2, the findings of these three
chapters are summarised, discussed and conclusions are drawn. The second major topic
of this thesis is about combining multiple related data sets into one single model in order
to improve the solution to the inverse problem. Chapters 5 and 6 present the coupled
dipole model and its extension which allow for a simultaneous analysis of different data
sets. A summary of these two chapters is presented in section 7.3 and the results are
discussed in section 7.4.

7.1 Summary chapters 2, 3 and 4

The standard approach to average recorded MEG signals time-locked to the stimulus
(section 1.3.1) in order to find the evoked response is invalid when this response varies
from trial to trial. In chapter 2 a model that accounts for amplitude variation of the
brain response is presented and maximum likelihood (ML) estimators for both the
noise and the signal parameters are derived. In this model, the spatial and temporal
correlations of the background noise are taken into account. The model is expressed by
(see equation (2.2))

rkij = αkrij + εkij, (7.1)

where rij is the normalised brain response and αk denotes the trial dependent amplitude.
The ML estimator for the αk, k = 1, . . . , K is found by solving by an eigenvalue problem.

This model was applied to two different kinds of experimental data. Firstly, SEF
data of 9 healthy subjects were subjected to this model. From all but one subjects two
data sets, one recorded during stimulation of the left median nerve and one for the right
median nerve, were analysed. It appeared that the late component of the response to
the SEF stimulus, ranging from 30 to 120 ms post-stimulus, showed a negative trend in
15 of the 17 data sets, and a slightly positive trend in the remaining 2 data sets. This
indicates that the response weakens over trials, possibly indicating a habituation effect.

123
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For the early component, ranging from 20 to 35 ms post-stimulus, no such systematic
effect was found.

Secondly, this model was applied to MEG data containing epileptic spikes. The
different polarities and magnitudes of the spikes occurring in data of an epilepsy patient
can be regarded as varying amplitudes. Data epochs around the marked spikes were
cut and used as trials. Regarding the spatiotemporal covariance of the residuals, this
application shows that temporal nonstationarities diminish when the amplitude jitter
is taken into account, whereas a clear peak in the variance is seen when this is omitted.
This finding is in line with Figure 1.13 in the introduction, where the effect of amplitude
variation was investigated.

The question whether similar temporal nonstationarities are present in the residuals
of evoked field MEG data is addressed in chapter 3. Considering the trial-to-trial
variation found in the SEF data of chapter 2, one would expect to find a nonstationary
temporal pattern in the temporal covariance of such data. In order to study this effect
and, moreover, to better understand the abstract, ML estimated matrix (see equation
(1.64)), the temporal covariance of MEG residuals is parameterised in chapter 3.

For the spatial covariance, models have been derived already which can physiolog-
ically be interpreted by assuming background activity to be generated by randomly
distributed dipolar sources having amplitude functions independent of the source loca-
tions [16]. This spatial covariance appears to be a function of sensor distance. In order
to investigate whether the temporal covariance has a similar property, the ML estimated
temporal covariance matrices of SEF data sets of several subjects are considered.

It appears that alpha activity plays an important role in the temporal covariance, as
expected based on section 1.4.1 and Figure 1.11(a). Therefore, the background activity
is modelled as the sum of an alpha component and an additional noise component.
The simple ongoing alpha model assumes that the alpha component is one everlasting
alpha wave, whereas the more advanced Poisson modulated alpha model (PoMAM)
assumes that the alpha activity consists of separate waves. These waves all have one
fixed duration, although the intermediate time is generated by a Poisson(λ) process.
Furthermore, the trial onsets are assumed to be random. The model equation of the
PoMAM is

εk(t) = Ω1[0,Tα](t− tonset) sin (ωt+ τ ′
k) + ηk(t) (7.2)

where Ω is the amplitude of the waves, Tα the duration, ω the frequency, tonset the onset
time of the wave and τk the random phase in each trial. The covariance of the alpha
part of the PoMAM is a function of Ω, Tα, ω and λ. The covariance of the additional
noise part is assumed to be exponentially decreasing with time lag, described by the
parameters σ2 (variance) and κ (covariance length).

In principle, the PoMAM is temporally stationary, though in practise this stationar-
ity is disturbed by the baseline correction (BC). The BC is necessary in order to remove
unwanted baseline shifts caused by external noise. The stationarity of the alpha part
of the temporal covariance highly depends on the chosen length of the correction win-
dow. Taking one or a multiple of alpha periods as window turns out yielding the most
stationary covariance structure after correction.

The PoMAM was fitted to ML estimated temporal covariance matrices of SEF data
sets of 5 healthy subjects. The PoMAM matrices were calculated based on exactly
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the same BC as taken in the ML estimation. These BC windows were not optimally
chosen, thus allowing for a comparison of the predicted nonstationarities and the real
nonstationarities in the ML estimated matrices. It turns out that, taking this BC into
account correctly, the ML estimated matrices can be approximated up to an error of
less than 1% in relative matrix power by the PoMAM.

This small error suggests that the temporal covariance is very stationary, indicating
in turn, that no considerable trial-to-trial variations occur. However, it may be that the
structure of the covariance model, the Kronecker product is too simple and forces the
pattern to be stationary. Therefore, an extension of this model is examined in chapter
4, which may reveal nonstationarities.

The single Kronecker product (KP) model of equation (1.54) is extended to a sum
of KP in chapter 4:

Σ =
N∑
n=1

Tn ⊗Xn. (7.3)

Contrary to the single KP, this extension allows for describing multiple, independent
phenomena in the ongoing background activity. Whereas the single KP model can be
interpreted by assuming that background activity is generated by randomly distrib-
uted dipoles with certain spatial and temporal characteristics, the sum model can be
interpreted physiologically by assuming a composite of such processes.

The terms in the sum are estimated through minimisation of the squared differences
between the spatiotemporal sample covariance matrix and the model. Optimally, these
terms should be estimated within the ML paradigm, though in practise that becomes
rather intricate. Theoretically, by rearranging the elements of the covariance matrices,
the LS estimators are found from an SVD of the rearranged sample covariance matrix.
The best rank N approximation of this rearranged sample covariance matrix defines
the estimators for vec(Tn) and vec(Xn). Taking enough terms in the sum into account,
i.e. taking N large enough, the spatiotemporal sample covariance matrix is described
exactly by the sum model. In practise though, the computation of this SVD is not
feasible, due to the large dimension of the matrices. Therefore, an iterative system of
estimators is derived to find Tn and Xn.

The terms in the estimated sum of KP can be rewritten, while the KP structure
is left intact. In fact, this rewriting exploits the freedom in the representation of a
best rank N approximation. Not all terms in the initially estimated sum of KP are
interpretable as covariance matrices, due to their orthogonality. The rewriting can be
used to transform the initially estimated sum into a sum of physiologically interpretable
terms. In order to interpret a matrix as a covariance matrix, it should be positive (semi-
)definite. Therefore, the cost function of this rewriting minimises the negative parts of
the matrices in all KP terms in the sum.

The sum of KP model was applied to different kinds of data (SEF, VEF and AEF) for
multiple subjects. It appears that the first KP roughly describes between 62% and 91%
of the sample covariance matrix in terms of matrix power and the second between 1%
and 12%. The sum of 2 KP explains between 67% and 93%. The higher the order of the
term, the smaller the amount of explained power. Regarding this power distribution,
taking into account more than 1 KP term in dipole localisation is not expected to
yield a significant improvement. Considering the improvement already made by one
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KP compared to no or only spatial correlations [20], a major further enhancement
of the parameter accuracy is not expected for the second and higher order terms in
the sum of KP. Moreover, in practise the incorporation of multiple terms requires an
nonconventional amount of computer power.

For all data sets studied in chapter 4, the rewritten sum of 2 KP reveals two physio-
logical processes in the background activity: focal alpha activity and a more widespread
not frequency specific process. This separation is in line with the parametrisation of
the noise in the temporal domain by the PoMAM in chapter 3, be it that the PoMAM
does not distinguish different spatial patterns for the two components. The entireness
of the separation varies somewhat over subjects, though is clearly visible in all data
sets. This separation is not caused by a priori constraints of the rewriting, though
results from minimising the cost function. The explanation for this identifiable sepa-
ration may be that, amongst all background processes, the alpha process is the most
prominent. Determining two independent processes in that case, could separate this
eminent process from the other processes, which are combined in one large remainder
process. To study this explanation, data with no background alpha activity or data
with another dominant (pathological) background process should be studied.

7.2 Discussion on spatiotemporal covariance

The central question in the first part of this thesis is: what happens to the ongoing brain
activity when a stimulus is presented to the subject? The SPN model of equation (1.24)
gives a simple answer to this question: the stimulus evokes a fixed response additional
to the ongoing background activity. However, as discussed in the introduction and
shown in chapter 2 this answer is debatable. The response is likely to vary from trial to
trial to some extent, especially when the response is assumed to be built by modulated
background activity [65]. In chapters 3 and 4 the computed temporal covariances
based on the SPN assumption are very stationary. Nevertheless, these results do not
rule out possible response variations in the data for two reasons. Firstly, the trial-
to-trial variations in the response may be very small and, therefore, be dominated by
stationary processes in the covariance matrices in matrix power. Secondly, even though
the estimated (sum of) KP may not contain nonstationarities, the part of the sample
covariance matrix that is not accounted for by the KP model, i.e. the difference between
the model and the sample covariance matrix, can contain nonstationarities. The latter
can be investigated by fitting a Toeplitz matrix to the difference between the KP model
and the sample covariance matrix in the spatiotemporal dimension. Thus, the simple
SPN model needs to be advanced.

In fact, chapters 2, 3 and 4 all present an elaborated version of the simple SPN
model. Whereas the SPN model simply states

rkij = rij + εkij, (7.4)

the models presented in those chapters either parameterise the response model rij or
describe εkij and its statistical properties in further detail. Combining all the presented
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approaches, one arrives at the generic model:

rkij = rij(k) +
N∑
n=1

Pn∑
p=1

Ψ(ζk,n)ipS
k,n
pj + ηkij. (7.5)

In this universal model, the response rij(k) depends on trial k, thus accounting for

response variation and ηkij is random white noise. The term
∑N

n=1

∑Pn

p=1 Ψ(ζk,n)ipS
k,n
pj

presents the background activity that is generated by N random dipole processes (chap-
ters 3 and 4) [33]. Each of these processes consists of Pn randomly distributed dipoles
with source parameters ζk,n = (ζk,n1 , . . . , ζk,nPn

). The corresponding source time function

of each dipole p, Sk,n
pj , is assumed to be independent of the location and orientation

in ζk,np , and of the source time functions at other locations p′. This assumption leads
to a Kronecker product structure in the spatiotemporal covariance of the nth process,
Tn ⊗Xn, as shown in [16]. The composite of N such independent processes then has a
sum of N Kronecker products as covariance structure (chapter 4), because the sum of in-
dependent Gaussian variables again has the normal distribution. Each of these processes
presents an ongoing process in the brain, for example alpha activity, pathological theta
activity or beta waves. The entire noise component

∑N
n=1

∑Pn

p=1 Ψ(ζk,n)ipS
k,n
pj may be

interpreted as the so-called resting state network [34, 87]. Clearly, trial-to-trial varia-
tions are now accounted for by both the response component and the noise component.
In matrix notation this generic model becomes

Rk = R(k) +
N∑
n=1

Ψ(ζk,n)Sk,n + Ek. (7.6)

The likelihood function of this general model is

f(R(k), Tn, Xn) =

exp
[
−1

2

∑K
k=1(vec(R

k −R(k)))t(
∑N

n=1 Tn ⊗Xn)
−1vec(Rk −R(k))

]
(2π)IJK/2|∑N

n=1 Tn ⊗Xn|K/2
. (7.7)

Regarding the response model R(k), different levels of parametrisation of trial-to-
trial variations are possible. The least parametrisation is by keeping R(k) = R fixed
over trials. A first extension is by allowing amplitude jitter or habituation effects as
presented in chapter 2, rkij = αkrkij. Also latency jitter can be taken into account
by adding nonlinear parameters, rki,j = αkrki,(j−lk), with lk the latency shift in trial
k. Finally, when the responses differ in ‘speed’, i.e. when some are stretched in time
compared to others, which can be called frequency jitter, the model can be further
adapted to rki,j = αkrki,(akj−lk) where ak is the nonlinear parameter denoting the relative

rapidity of the response in the kth trial. An example of this frequency jitter could
be epileptic spikes that vary in sharpness, i.e. time scale. For all the different levels of
parametrisation of trial-to-trial variation, the normalised (unit) response rij is modelled
as activity of a combination of dipolar, multi-polar and distributed sources. To obtain
more insight in how to model the amplitude, latency and frequency jitter in the response
model, one can cluster single trial responses. In this additional method of examining
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responses of the brain to external stimuli, single trial responses are clustered like the
epileptic spikes in chapter 2 [57, 106]. The different clusters will contain different
categories of occurring responses in the data set, possibly yielding information about
the relation between the ongoing pre-stimulus activity and the following response. This
approach, though, is more likely to be successful when the signal-to-noise ratio in single
trials is higher.

Considering the noise parameters, the general model allows for a further parametri-
sation of the spatiotemporal covariance matrix. Combining the findings of chapters 3
and 4 suggests a combination of the Poisson modulated alpha model and the sum of
KP model. The two noise components in the PoMAM can be regarded as two inde-
pendent background processes, thus leading to a model with N = 2. One can extend
this idea by modelling the additional noise component as different processes, that is,
by increasing N further. The temporal matrix associated with the alpha activity can
be parameterised as in the PoMAM. When the distribution of the source parameters
ζk,n of each process is known, also the spatial covariance matrices can be parameterised
using the forward fields in Ψ(ζk,n). If, for example, the alpha activity is assumed to be
generated by an occipital symmetric dipole pair with source parameters ζα (see Figures
4.3(b), 4.5(b) and 4.7(b)) with forward field Ψ, the corresponding spatial covariance
matrix is parameterised by Ψ(ζα)Ψ(ζα)

t.
Now estimating all the parameters in the ML sense has become rather complicated

by the complex parametrisation. For example, the inverse and determinant of a sum
of Kronecker products cannot be computed on smaller dimensions, as was the case
for a single KP (see equation (1.55)). Hence, differentiation of the likelihood function
with respect to the covariance matrices and equating the obtained derivatives to zero
yield equations that are difficult to solve. This is the reason why in chapter 4 the LS
paradigm is used in stead of the ML paradigm. Furthermore, the number of nonlinear
parameters in both the model and noise components troubles the estimation method.
Considering the required two step approach in the estimation of the parameters in the
‘simple’ SPN model presented in chapter 1, which was based on the averaged measured
signal as response model with N = 1, the addition of all the (nonlinear) parameters
in the generic model certainly requires multiple steps in the parameter estimation. A
complicated system of alternating least squares at different levels in the estimation
method will hopefully allow for the estimation of the generic model parameters to some
degree, though the full parametrisation as described above will remain very difficult to
estimate in practise, let alone optimal ML estimation of all parameters.

7.2.1 Stationarity of the residuals in two utmost cases

Regarding the mentioned theoretical concerns, a more practical approach is by studying
the response and noise component in two ‘extreme’ situations. The first kind of data is,
so-called, spontaneous data, recorded in absence of external stimuli. In that situation,
the ongoing background, or spontaneous, activity is not influenced by any stimulus.
These data allow for an investigation of only the noise components in model equation
(7.6). The second utmost is data recorded during a selective attention task experiment.
In such an experiment, the processing of external stimuli is modulated by requiring
a certain response from the subject (e.g. pressing a button) for one target stimulus,
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while the other stimuli do not require any reaction. Such a task, requiring some kind of
reaction from the subject, usually leads to a variety in reaction times. Hence, data of a
selective attention task are expected to generate a nonstationary temporal covariance
under the simple SPN assumption, as discussed in section 1.4.2. Results of a preliminary
investigation of these two kinds of data are discussed in this section. These two studies
are helpful to give a scientific answer to the question what influence an external stimulus
has on the ongoing background activity. Apart from the scientific answer, there are
practical issues that need to be taken into account because, like the baseline correction,
they can induce artificial, misleading temporal nonstationarities. Examples of these
practical complications are considered in the next section, 7.2.2.

Spontaneous data

Spontaneous data should be the ultimate example of data that is temporally stationary
on small time scale (less than 1 second) because of the absence of stimuli that disturb
the ongoing background activity. No trial-to-trial variations are expected in such data,
because there are no external stimuli that can cause time-locked reorganisation of the
background activity. It is important to randomise the (artificially created) trial onsets,
in order to avoid a locking between ongoing oscillations and trial onsets (e.g. exact 10
Hz oscillations in 1000 ms trials).

Spontaneous data of two subjects were recorded continuously in epochs of 10 seconds
during 5 minutes at a sample rate of 312 Hz at 151 MEG sensors. Off-line the data
were low-pass filtered at 50 Hz in order to remove high frequency noise. New data
sets were created by selecting from each original epoch 9 new baseline corrected trials
(epochs) with randomised onsets, each of which contained 1 second of data. As window
for the baseline correction one alpha period was taken, corresponding to the alpha peak
in the power spectrum. In all, this yielded new data sets consisting of 270 trials. These
data sets were subjected to the sum of KP model presented in chapter 4. The resulting
temporal matrices for subject SPON1 are plotted in Figure 7.1. The results of subject
SPON2 are discussed in section 7.2.2.

The temporal structure of the spontaneous data of subject SPON1 is very stationary,
as can be seen from Figure 7.1. In fact, to quantify the level of stationarity, one should fit
a Toeplitz matrix to the estimated temporal covariance matrices. However, in general,
large nonstationarities are clearly visible from colour plots. The data presented in
Figure 7.1 do not show big colour fluctuations along the subdiagonals apart from the
gradual increase due to the BC (see chapter 3). Hence, this example of spontaneous
data confirms the expectation of having a stationary temporal covariance.

Selective attention VEF data

In this section a tentative investigation of the temporal nonstationarities in a selective
attention experiment is presented. The stimuli in this experiment consisted of different
visual patterns. After presentation of the target stimulus, the subject was asked to
press a button, while the nontarget stimuli did not require a reaction from the subject.
Line patterns with two different orientations (horizontal and vertical) and two different
spatial frequencies (low and high) were presented full-field to the subject. In Figure 7.2
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(a) First term in
orthogonal sum
(51.4%)

(b) Second term
in orthogonal sum
(29.6%)

Figure 7.1: Estimated temporal matrices in the spontaneous data of subject SPON1.
Frames a and b show the first two orthogonally estimated temporal matrices. The time
scale is 995 ms by 995 ms. The entries of the matrices are plotted in colour. The
percentages show the relative matrix power of the sample covariance matrix explained
by the two KP terms.

similar stimuli are drawn. The MEG session consisted of four different experiments,

(a) (b) (c) (d)

Figure 7.2: Line patterns similar to the visual stimuli used in the selective attention
experiment. Figure a shows the horizontal pattern with low spatial frequency, figure
b the vertical low spatial frequency, figure c the horizontal high spatial frequency and
figure d the vertical high spatial frequency pattern.

in each of which a different pattern functioned as the target stimulus. This stimulus
is called the (+,+) stimulus, while the other stimuli are called (-,-), (+,-) and (-,+).
The order of the signs is (orientation, frequency). For example, if Figure 7.2(a) were
the target (+,+) stimulus, Figures 7.2(b), 7.2(c) and 7.2(d) would be the (-,+), (+,-)
and (-,-) stimuli, respectively. In each experiment the four stimuli were presented in
random order with an inter stimulus interval uniformly between 1900 and 2300 ms. The
number of trials in each experiment was around 250 trials, yielding approximately 62
trials per stimulus. MEG data were recorded at a sample rate of 625 Hz at 151 MEG
sensors for two subjects, ATT1 and ATT2.

By the low number of trials for each stimulus in each experiment (approx. 62) the
analysis of the corresponding MEG residuals is hampered. This is one of the practical
issues discussed in section 7.2.2. Therefore, the MEG residuals of the (+,+) conditions
in all four experiments were taken together in one (+,+) residual data set. To create this
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larger residual data set, the average of the (+,+)-trials was subtracted using the optimal
BC window in each of the four experiments separately, and the resulting residuals were
combined in the joint (+,+) residual data set consisting of approximately 250 trials.
This number of trials should be enough to investigate nonstationarities in the residuals.
Similarly, (+,-), (-,+) and (-,-) residual data sets were created.

The response to the stimuli in this experiment consists of two kinds of components,
exogenous and endogenous. The former is the obligatory response from the (visual)
cortex to the stimulus, while the latter is the response to the meaning of the stimulus,
i.e. whether to attend to the stimulus and to press the button. By creating the big
residual data sets, trial-to-trial variations of the exogenous components are mixed for
the four line patterns. When, for example, the visual response to the thick horizontal
line pattern in Figure 7.2(a) varies differently from trial to trial than the response to the
thin horizontal line pattern in Figure 7.2(c), the big residual data sets contain a mixture
of different nonstationary patterns stemming from the different stimuli. Nevertheless,
if so, this mixture is present in all four joint residual data sets, and differences in
stationarity between these joint residual data sets cannot be explained by this mixture.
A true reason for differences in stationarity in the four residual data sets lies in different
trial-to-trial variations of the endogenous components, which are not mixed by the
creation of the joint residual data sets.

The data of subject ATT1 are discussed in section 7.2.2. The data of the second
subject, ATT2, show interesting differences between for the (-,-) and (+,+) conditions.
For both conditions, the first two orthogonally estimated KP terms were computed
according to the method presented in chapter 4. In Figure 7.3 the so obtained temporal

(a) First orthogonal
term (87.5%) in (-,-)
condition

(b) Second orthogo-
nal term (1.39%) in (-
,-) condition

(c) First orthogonal
term (88.7%) in
(+,+) condition

(d) Second orthogo-
nal term (1.5%) in
(+,+) condition

Figure 7.3: Estimated temporal matrices in the (-,-) and (+,+) residual data set of
subject ATT2. Frames a and b show the first two orthogonally estimated temporal
matrices in the (-,-) condition and frames c and d show the first two orthogonally
estimated temporal matrices in the (+,+) condition. The time scale is 562 ms by 562
ms post-stimulus. The entries of the matrices are plotted in colour. The percentages
show the relative matrix power of the sample covariance matrix explained by the KP
terms.

covariance matrices for both conditions are presented. The first matrix in the (-,-)
condition in Figure 7.3(a) shows a very stationary pattern, apart from the gradual
increase along the diagonal and subdiagonals caused by the BC. The first matrix of
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the (+,+) condition in Figure 7.3(c) differs somewhat from that matrix, in having a
clear nonstationary ‘dot’ between the time instants 125 ms and 250 ms post-stimulus.
The latency of 125 ms roughly coincides with the onset of the first reported attention
related component in this kind of data [2, 47]. The difference between the two conditions
becomes bigger in the matrices of the second KP in Figures 7.3(b) and 7.3(d). Whereas
in the (-,-) condition the temporal structure is rather stationary outside the interval
(200, 400) ms post-stimulus, the (+,+) condition shows a dotted pattern in the interval
(0, 400) ms post-stimulus, resembling the structure of the matrix in Figure 3.1(b), be
it to a lesser degree. This difference in stationarity cannot be caused by a suboptimal
BC, because the BC window was taken equal for both conditions. Hence, this figure
suggests the presence of trial-to-trial variations in the (+,+) condition that are not
present in the (-,-) condition. However, the (200, 400) ms interval post-stimulus in the
(-,-) condition shows increased variance too, indicating that also in that condition the
residuals are not purely stationary. In sum, both conditions seem to contain trial-to-
trial variations. Examining the amplitude of the single trial signals and that of the
averaged signal, one can conclude that the averaged response is in amplitude by far
dominated by activity that does not build an average. This finding suggests, that the
residuals contain important information about possible modulation of ongoing processes
by the stimulus, and, therefore, that by simple averaging an important part of the data
is discarded. To investigate this kind of data further, artificial nonstationarities caused
by the creation of the big residual data sets need to be ruled out. This can be realised
by recording more data in one experiment.

In conclusion, this small analysis of data of a selective attention experiment hints
towards real response jitter, that may vary from condition to condition. However, the
present study is far too small to infer conclusions about these nonstationarities in the
residuals and more research is necessary to characterise this response variety.

7.2.2 Practical considerations regarding nonstationarities

When examining temporal nonstationarities to judge the presence of trial-to-trial varia-
tions in the response component, one needs to take into account some practical concerns.
In this section, the number of trials and the shape of the frequency spectrum, which
both can cause artifactual nonstationarities in the residuals, are discussed.

Number of trials

When only a small number of trials is available for estimating the spatiotemporal covari-
ance (e.g. the sum of 2 KP), this may influence the stationarity features. For example,
taking only 60 trials into account in stead of the 487 trials available of the 2SEF data
set presented in chapter 4 yields a temporal pattern that is very different from the one
presented in chapter 4, see Figures 7.5(a) and 7.5(b) versus Figures 7.5(c) and 7.5(d).
The 60 trials yield a less stationary pattern than the 487 trials do.

Apparently, the sample of 60 trials is not big enough to describe the complete variety
amongst the residuals. The complexity of the temporal properties of the residuals
requires more trials in order to account for all possible variations in the background
activity. Therefore, the temporal structure based on the 60 trials is biased, whereas the
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487 trials contain enough variety to describe the possible phases and variations in the
background oscillations.

This phenomenon has to be taken into account carefully when analysing small data
sets. While a number of 60 trials may suffice considering the signal-to-noise ratio (e.g.
experiments with high amplitude responses) to apply source localisation, this amount
of data does not provide us with a complete overview of the properties of the residuals.

9.5 10 10.5 11 11.5

(a) subject SPON1

10 10.5 11 11.5 12

(b) subject SPON2

Figure 7.4: The power spectra of the spontaneous data of subjects SPON1 and SPON2
around the alpha frequency (horizontal axis). In both figures a selection of channels
is plotted that show the highest power in these frequencies. Figure a shows a peak for
all channels at one and the same frequency, while figure b shows peaks at different
frequencies for different channels.

Frequency spectrum

Another practical issue that has influence on the temporal stationarity is the shape of
the alpha peak in the frequency spectrum. Depending on the subject and the experi-
mental circumstances, this peak is sharper or broader. This has a direct consequence
on the optimal baseline correction (see section 3.2.3). In Figure 7.4 the power spectra
of the two spontaneous data sets from section 7.2.1 are plotted.

There is a clear difference between the two spectra: in the data of subject SPON1
there is one sharp peak at 10.3 Hz, whereas a peak in the spectrum for subject SPON2 is
not clear-cut. This implies for the second subject, that the BC window can not be chosen
without having artificial nonstationarities introduced. To study the spatiotemporal
covariance of spontaneous data, single epochs have to be created in the continuously
measured signals. Cutting the data in 150 regular epochs of 2 seconds, the first two
orthogonal KP were estimated for these spontaneous data sets of the two subjects. The
resulting temporal matrices for the first 995 ms of each epoch are presented in Figure
7.6.

Clearly, the sharp alpha peak in the spectrum of subject SPON1 leads to a very
stationary structure (as discussed in section 7.2.1), whereas the absence of a sharp peak
for subject SPON2 leads to a less stationary structure. Randomising the trial onsets
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(a) First orthogonal
term for 487 trials

(b) Second orthogo-
nal term for 487 tri-
als

(c) First orthogonal
term for 60 trials

(d) Second orthogo-
nal term for 60 trials

Figure 7.5: Temporal covariance matrices of the 2SEF data set presented in chapter 4
for different numbers of trials. The time scale is 574 ms by 574 ms post-stimulus.

(a) First orthogonal
term for subject
SPON1 (64.0 %)

(b) Second orthogo-
nal term for subject
SPON1 (18.7 %)

(c) First orthogonal
term for subject
SPON2 (81.6 %)

(d) Second orthogo-
nal term for subject
SPON2 (3.4 %)

(e) First orthogonal
term for subject
SPON2 (82.2%)

(f) Second orthogo-
nal term for subject
SPON2 (4.8%)

Figure 7.6: In figures a, b, c and d the first two orthogonally estimated temporal
matrices for the spontaneous data sets based on 150 regular epochs of the two subjects
of figure 7.4. For subject SPON2, the two matrices based on 270 epochs with randomised
onsets are plotted in figures e and f. The length of the time window is 995 ms.

(a) First orthogonal
term (82.7%)

(b) Second orthogo-
nal term (1.2%)

(c) First rewritten
term (57.4%)

(d) Second rewrit-
ten term (26.5%)

Figure 7.7: Estimated temporal matrices in the (-,+) residual data set of subject ATT1.
Frames a and b show the first two temporal matrices of the orthogonally estimated terms
and frames c and d show the first two temporal matrices of the rewritten sum of two
matrices. The time scale is 562 ms by 562 ms post-stimulus.
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and cutting more (smaller) epochs improves the stationarity of the two matrices in
Figures 7.6(c) and 7.6(d), but the resulting temporal structure is still not as stationary
as the structure for subject SPON1, see Figures 7.6(e) and 7.6(f).

Another property of the alpha peak is its height. For the data presented in chapter
4 it appeared that the rewritten sum of 2 KP consists of one term corresponding to
alpha activity and one to other background activity. If there is (nearly) no alpha
activity in the residuals present, due to suppression by a visual stimulus for example,
this separation cannot occur due to the absence of alpha activity.

An example of this absent alpha activity is found in the (-,+) residual data set of
subject ATT1 of the selective attention experiment, discussed in section 7.2.1. The
temporal matrices of the sum of 2 KP and the rewritten sum for this data set are
shown in Figure 7.7. In Figure 7.7(a) the first orthogonally estimated KP is shown.
Apart from the BC effect, this matrix is very stationary and does not show alpha
oscillations in the covariance. The second orthogonal term (Figure 7.7(b)) is very
irregular and does not seem to posses a physiological meaning. This abstract pattern is
likely to be caused by the orthogonality constraint, presented in chapter 4. Considering
the amount of explained matrix power in the two terms, the second does not yield a
major contribution. The rewritten terms (Figures 7.7(c) and 7.7(d)), although positive
semi-definite, are both ‘spoiled’ by the irregular pattern. In all, this residual data
set illustrates a possible negative effect of the artificial orthogonality constraint in the
estimation of the sum of KP model as presented in chapter 4.

7.2.3 Conclusions about the validity of the Signal Plus Noise
model

In the case of ‘simple’ MEG data, the Signal Plus Noise model seems to work ade-
quately, even though external stimuli do influence the ongoing processes (e.g. closing
eyes enhances alpha activity). Though in the case of more sophisticated experiments,
like the presented selective attention task, the SPN seems not to separate adequately
the recorded signals into a part influenced by the stimulus (the ‘signal’) and a part
that is left unchanged by the external stimulus (the ‘noise’). This suggests that real
trial-to-trial variations on small time scale (less than 500 ms post-stimulus) are present
in these data. This requires an adaptation of the SPN model in which response varia-
tion is modelled, thus accounting for modulation of ongoing processes by the stimulus
[65, 89]. To better study this, more trials need to be recorded, in order to rule out the
possibility of artifactual nonstationarities caused by too few trials.

7.3 Summary chapters 5 and 6

The presented coupled dipole model (CDM) and extended coupled dipole model (ECDM)
are two models that can be used for the simultaneous analysis of related MEG/EEG
data sets. By related data sets, data sets are meant that contain activity of the same
sources or contain proportional source time functions. Both models are component
models, that is, models that make use of a set of basic spatial components and a set of
basic temporal components. The model for each data set under consideration is a linear
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combination of these spatial and temporal components. The basic spatial components
are given by a set of common dipole sources with normalised orientations, represented
by a matrix A that contains the forward fields of these sources. The basic temporal
components are unparameterised, normalised wave shapes that are gathered as rows in
a basic matrix B. The SPN model for trial k in the qth data set is

Rk
q = ACqB + Ek

q , (7.8)

where Cq is the coupling matrix, that defines the linear combination of the basic com-
ponents for the qth data set. Because A and B are normalised, the entries in Cq define
the amplitude of the model. Furthermore, the spatiotemporal correlations are taken
into account through prewhitening of the measured data arrays Rk

q by the matrices WX

and WT . The joint, prewhitened SPN model for all averaged data sets is then given by

R = ACB+ E (7.9)

where

R =


√

K1R̃1
...√

KQR̃Q

 , A = (IQ ⊗W t
XA) , C =


√

K1C1
...√

KQCQ

 , B = BWT

and E =


√

K1Ẽ1
...√

KQẼQ

 . (7.10)

The numbers Kq indicate the number of trials in data set q for q = 1, . . . , Q.
In the CDM the user defines for each data set which entries of the coupling matrix

are nonzero and have to be estimated from the data. This selection allows the exploita-
tion of prior knowledge or assumptions about the similarity of the different data sets,
though it is suboptimal in terms of objectivity. Therefore, in the ECDM the coupling
matrices are estimated entirely. The ECDM can be regarded as an extension of the
CDM in the temporal domain: the wave shapes in CB, i.e. the estimated source time
functions for the sources in all data sets, are more general in the ECDM. Spatially,
there is no noteworthy difference between the models, although the spatial parameters
are influenced by the adaptation of the temporal parameters.

In chapter 5 the CDM is shown to improve the solution to the MEG inverse prob-
lem in two ways. Firstly, the simultaneous analysis appears to be less vulnerable to
(local) minima in the separate cost functions that correspond to implausible solutions,
because these minima occur at different solutions and, hence, do not produce a mini-
mum in the joint cost function. Therefore, the CDM stabilises the solution to the IP
in cases that the analyses of the different data sets separately do not (all) yield physi-
ologically interpretable solutions. Secondly, by the incorporation of multiple data sets
into the analysis, the SNR is relatively increased and the errors in the estimated model
parameters in A, B and C drop. In a simulation study in chapter 5 using two dipoles
in the visual cortex, the position error of the estimated sources is shown to drop by a
factor up to 10 when 5 data sets are analysed simultaneously in stead of separately.
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The difference made by the extension in the ECDM, is the removal of the subjectivity
of the zero selection in the coupling matrices. In case the user is not certain about the
similarity in the different data sets, the ECDM is more convenient. Only the dimension
of the entirely estimated coupling matrices still needs to be chosen. The solution to
the ECDM is not unique, because C and B are both unconstrained. Consequently,
because CB = CG−1GB for any nonsingular matrix G, CG−1 and GB constitute an
equivalent solution. This nonuniqueness is solved by identifiability constraints on the
matrix B. Unfortunately, these constraints cause the direct physiological interpretation
of C and B to disappear and be replaced by a more abstract one. This is the price
to be paid for the increased objectivity of the extended model. Furthermore, due to
noise in the measured signals, all entries of the coupling matrices will be estimated
as nonzero; hence, estimated activity needs to be tested for statistical significance.
Because of the statistical directness of the ECDM, this testing can be performed rather
straightforwardly. On the contrary, testing the CDM parameters is more tedious and
depends on the precise design of the coupling matrices.

In chapter 6 a comparison between the two models is made by applying both the
CDM and the ECDM to the same VEF data. It appears that the estimated spatial
parameters and the estimated product CB do not differ significantly between the two
models for these data. Furthermore, the behaviour of the ECDM is tested in the
case of overparametrisation by too many sources. Because of the entirely estimated
coupling matrices, all sources will be estimated as active, though some of them will
not be significantly active. It turns out that the activity of these supposedly silent
sources is correctly detected as not significant in most cases. However, in some cases
the straightforward test yields p-values slightly above the significance threshold. This
may indicate the need for more conservative testing.

7.4 Discussion (extended) coupled dipole model

In the coupled dipole model more or fewer assumptions about the similarity of the data
sets are reflected by selecting fewer or more zeroes, respectively, in the coupling matrices.
Considering the extreme possibility of selecting no zeroes, the CDM has become equal
to the ECDM. However, in that case, identifiability constraints are necessary, as shown
in chapter 6. Apparently, the CDM is also subject to identifiability constraints in some
situations. The higher the number of coupling parameters (i.e. the fewer zeroes in
the coupling matrices), the more constraints necessary to obtain convergence of the
CDM estimation algorithm. The examples studied in chapter 5 employed a number of
coupling parameters that appeared to be small enough to let the estimation algorithm
converge. In general, it is rather complicated to derive identifiability constraints for
the CDM, due to the way of parametrisation. This consideration suggests that the
ECDM can be regarded as a special case of the CDM, although the converse can also
be defended because all CDM solutions are included in the ECDM solutions; hence, the
name extended coupled dipole model.
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7.4.1 MUSIC

The MUSIC algorithm [74] presented in section 1.3.3 can be applied to the simultaneous
analysis of multiple data sets. The idea behind MUSIC is first to find an optimal
projection matrix that minimises the cost function and then to scan the brain in order
to find the optimal source locations. The first step only depends on the number of
sources that is chosen to be fitted, while the second step is a 3D search requiring the
solution to a generalised eigenvalue problem at each location.

In case of the ECDM an approach similar to the method described in section 1.3.3
is possible. The cost function for the ECDM, R = ACB+ E, is

min
ξ,η,C,B

‖R−ACB‖2
F (7.11)

with R ∈ RIQ×J , A = IQ⊗Ψ ∈ RIQ×PQ, C ∈ RPQ×Z and B ∈ RZ×J . Here, the matrix
Ψ contains the prewhitened forward fields. For the first MUSIC step the trilinear
model needs to be regrouped in two factors for estimating the projection matrix. This
rewriting can be performed in two ways, I and II:

I : R = (AC)B+E (7.12)

II : R = A(CB) + E. (7.13)

For the first possibility the dimension of the two regrouped terms are IQ×Z and Z×J
and for the second possibility IQ×PQ and PQ× J . It may be assumed that PQ ≥ Z
without loss of generality, for a similar reasoning as J ≥ Z (see section 6.2.1). The
estimators for the right hand term in the regrouped model in cases I and II are

I : B̂ = [(AC)tAC]−1(AC)tR (7.14)

II : ĈB = (AtA)−1AtR (7.15)

and substituting these estimators yields the rewritten cost function

I : min
ξ,η,C

‖(IIQ −AC[(AC)tAC]−1(AC)t)R‖2
F = min

ξ,η,C
‖P⊥

ACR‖2
F (7.16)

II : min
ξ,η

‖(IIQ −A(AtA)−1At)R‖2
F = min

ξ,η
‖P⊥

AR‖2
F . (7.17)

The ranks of the two possible projection matrices are

I : rank(P⊥
AC) = IQ− Z (7.18)

II : rank(P⊥
A ) = IQ− PQ. (7.19)

Regarding these two ranks, the first will be the highest because PQ ≥ Z. Hence,
finishing the first MUSIC step by finding the optimal projection P that minimises the
cost function,

I : P̂I = argmin ‖P⊥
ACR‖2

F (7.20)

II : P̂II = argmin ‖P⊥
AR‖2

F , (7.21)
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yields two possible lower bounds for the cost function of which the first will be the
highest, i.e. the sharpest. Therefore, one could use this first MUSIC step to determine
the number Z: by calculating this lower bound for different values of Z one can choose
a value such that the lower bound is acceptably small.

Now the second step of the original MUSIC algorithm is to find the source para-
meters by spatial scanning. Scanning is possible because the joint cost function of all
sources can be split into cost functions of each source separately, see equation (1.40).
Such a splitting is also possible here, when rewriting II is chosen.

For rewriting II, the projection P̂II is calculated in the first MUSIC step. In the
second step, source parameters ζ = (ζ1, . . . , ζP ) are found by minimising ‖P̂IIA‖2

F .
Splitting P̂II into Q blocks of I columns

P̂II =
(

P 1 · · · PQ
)

(7.22)

and writing the forward field matrix Ψ as

Ψ =
(
Ψ(ζ1) · · · Ψ(ζP )

)
=
(
Ψ1 · · · ΨP

)
(7.23)

where Ψp is the forward field matrix of the pth source, the cost function can be written
as

min
ζ1,...,ζP

‖P̂IIA‖2
F = min

ζ1,...,ζP

‖P̂II(IQ ⊗Ψ)‖2
F = min

ζ1,...,ζP

∥∥∥∥∥∥∥
(

P 1 · · · PQ
) Ψ 0

0
. . . 0
0 Ψ


∥∥∥∥∥∥∥

2

F

= min
ζ1,...,ζP

∥∥( P 1Ψ · · · PQΨ
)∥∥2

F
= min

ζ1,...,ζP

Q∑
q=1

‖P qΨ‖2
F = min

ζ1,...,ζP

Q∑
q=1

P∑
p=1

‖P qΨp‖2
F

= min
ζ1,...,ζP

P∑
p=1

(
Q∑
q=1

‖P qΨ(ζp)‖2
F

)
. (7.24)

This last expression resembles the original cost function in equation (1.40), though
contains a summation over q in the cost function for each source. Hence, scanning can
be performed similar to the original MUSIC scanning by computing the normalised cost
function for each source ζ

Cost(ζ) =

∑Q
q=1 ‖P qΨ(ζ)‖2

F

‖Ψ(ζ)‖2
F

(7.25)

and selecting the P local minima. The similarity between this cost function and the
original MUSIC cost function allows for the same approach for finding the orientation
at each location, namely by solving a generalised eigenvalue problem. Hence, a 3D
scanning over all locations suffices. After the source parameters have been estimated
by this scanning, the matrix A can be computed, and the estimator for CB is given by
ĈB in equation (7.15). Finally, the estimators Ĉ and B̂ separately are obtained from

the best rank-Z approximation of ĈB.
In conclusion, the application of MUSIC for rewriting I allows for an objective de-

termination of the number Z, while rewriting II enables the useful scanning method,
circumventing the intensive nonlinear search procedure of the source location parame-
ters described on page 104.
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7.4.2 PARAFAC

An even higher lower bound for the cost function than by MUSIC can be obtained in a
special case. When considering the CDM, rather than the ECDM, with purely diagonal
coupling matrices, this model can be interpreted as a case of Parallel Factor Analysis
(PARAFAC) or Canonical Decomposition (CANDECOMP) [10, 38]. The PARAFAC
model equation for three-way arrays (e.g. space-time-condition) is

Ri,j,q =
P∑
p=1

ai,pbj,pcq,p. (7.26)

Relating this model to the CDM, the summation over p corresponds to the sources,
ai,p is the unparameterised forward field on sensor i of source p, bj,p is the (normalised)
source time function of source p at time sample j and cq,p is the amplitude (or coupling
parameter) of source p in condition q. These factors are arranged in three, so-called,
loading matrices, A ∈ RI×P , B ∈ RJ×P and C ∈ RQ×P . The PARAFAC model is not
restricted to three-way arrays but can also handle more general multi-way data arrays.
The nice feature of PARAFAC is that the decomposition into the components is unique,
when equation holds and the matrices A, B and C fulfill a certain rank constraint
[10, 55]. However, when fitting this model to experimental data, equation will rarely
hold without letting P increase beyond feasible limits. Nevertheless, for given CDM
settings with diagonal coupling matrices, (e.g. simulation study 2 in chapter 5) fitting
the PARAFAC model will yield the unparameterised forward fields in A, the coupling
parameters in C and the unparameterised source time functions in B. This PARAFAC
solution, then, yields a lower bound of the cost function in equation (7.11) which, in
theory, is higher than the bounds given by the MUSIC projections in equations (7.20)
and (7.21). The underlying reason is that the PARAFAC parametrisation is stricter
than the MUSIC model, because in the MUSIC approaches I and II described above
the coupling matrices in C are not parameterised as diagonal matrices.

The PARAFAC model has been applied to space-time-frequency arrays of MEG
data in [71], yielding a description of frequency specific behaviour over time and sen-
sors. Another application of this model lies in the space-time-trial domain to investi-
gate amplitude variations as in chapter 2. When it is assumed that all sources show
the same source time function from trial to trial, though with varying amplitude, the
PARAFAC decomposition can give an estimate of the amplitude variation over trials,
as an alternative to the method presented in chapter 2. In that chapter, the normalised
spatiotemporal pattern R was not parameterised any further, while the PARAFAC
model approximates this matrix by a rank P matrix. In terms of source localisation,
the PARAFAC model needs to be complemented by a nonlinear algorithm to find the
source parameters that best fit the estimated unparameterised forward fields in the
loading matrix A.

7.4.3 Conclusions about the (extended) coupled dipole model

The coupled dipole model is a flexible framework that can be transformed to different
levels of parametrisation by changing the design of the coupling matrices. This way, it
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is applicable to many different situations. The extended coupled dipole model allows for
less prior assumptions, though is easier to estimate because of its statistical simplicity.
The combination of the ECDM and the MUSIC approach is promising and needs to be
examined in further detail. Different applications of the (E)CDM lie in analysing space-
time-condition data arrays or space-time-subject arrays. The latter can be helpful to
compute grand averages. Finally, by clustering epileptic spikes as in chapter 2, another
application lies in analysing space-time-cluster data arrays, thus contributing to one of
the major clinical application areas of Magnetoencephalography.
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[32] S.I. Gonçalves, J.C. de Munck, J.P.A. Verbunt, F. Bijma, R.M. Heethaar, F.H.
Lopes da Silva: In vivo measurement of the brain and skull resistivities using an
EIT-based method and realistic models for the head, IEEE Trans. Biomed. Eng. 2003,
50(6): 754-766

[33] R.P.P.P. Grasman: Sensor array signal processing and the neuro-electromagnetic
inverse problem in functional connectivity analysis of the brain Ph.D. thesis, Univer-
sity of Amsterdam, 2004

[34] M.D. Greicius, B. Krasnow, A.L. Reiss, V. Menon: Functional connectivity in the
resting brain: A network analysis of the default mode hypothesis, Proc. Nat. Acad.
Sc. 2003, 100(1): 253-258

[35] D. Gutiérrez, A. Nehoari, C.H. Muravchik: Estimating brain conductivities and
dipole source signals with EEG arrays, IEEE Trans. Biomed. Eng. 2004, 51(12):
2113-2122
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Samenvatting

Dit hoofdstuk bevat een gepopulariseerde samenvatting van dit proefschrift, getiteld Ma-
thematische modellering van magneto-encefalografische data. Een wetenschappelijke
samenvatting is te vinden in de paragrafen 7.1 en 7.3.

Magneto-encefalografie (MEG) is een techniek waarmee zeer zwakke magnetische velden
worden gemeten aan de buitenkant van het hoofd. Deze magnetische velden wor-
den veroorzaakt door neurale activiteit in het menselijk brein. De MEG-techniek is
nauw verwant aan elektro-encefalografie (EEG) waarmee de electrische potentiaal op
de hoofdhuid wordt gemeten. Beide technieken zijn heel gevoelig, dat wil zeggen, dat
de gevolgen van kleine (neurale) stroompjes in de hersenen te volgen zijn.

Het doel van een MEG-meting is om te bepalen wat zich binnen in het hoofd afspeelt.
In veel gevallen gaat het hierbij om het zogenaamde lokaliseren van de bronnen die
ten grondslag liggen aan de gemeten hersenactiviteit. Voorbeelden zijn experimenten
waarin functionele hersengebieden worden gelokaliseerd, zoals het visuele en het audi-
tieve gebied. Deze functionele gebieden worden in dit soort experimenten geactiveerd
door middel van een stimulus, zoals een plaatje of een pieptoontje. Een ander voor-
beeld van bronlokalisatie is het bepalen van de lokatie van epileptogeen hersenweefsel.
In dat geval worden MEG-data van een epilepsiepatiënt gemeten zonder een stimulus
te presenteren. Focale epilepsie uit zich in kleine piekjes in de gemeten signalen. Door
de onderliggende bron van deze gemeten piekjes te lokaliseren kan de plaats van het
zieke, epileptogene hersenweefsel worden bepaald.

MEG-data worden gemeten in ruimte en in tijd. In ruimte worden MEG-signalen
gemeten op 151 sensoren die zich bevinden in een helm, die over het hoofd geplaatst
wordt (zie figuur 1.1 op pagina 2). In tijd worden deze signalen gemeten op achtereen-
volgende tijdstippen, bijvoorbeeld duizend keer per seconde. In een meting waarin
een functioneel gebied gelokaliseerd moet worden, wordt bovendien de stimulus her-
haaldelijk gepresenteerd, bijvoorbeeld driehonderd keer. De reactie van de hersenen op
de stimulus wordt dan driehonderd keer gemeten in ruimte en tijd. In geval van epilep-
sie wordt het MEG gemeten over een tijdsperiode van bijvoorbeeld een uur, waarin dan
meerdere pieken optreden.

Om vervolgens op basis van de gemeten signalen de lokatie van de onderliggende
bronnen te bepalen, wordt een aantal aannames gedaan. Zo wordt er een bronmodel
en een hoofdmodel aangenomen. Het meest gebruikelijke bronmodel is de zogenaamde
dipoolbron. Een dipoolbron is een bron in een punt met een bepaalde richting. Als hoofd-
model wordt gemakshalve voor MEG vaak een bolvorm aangenomen. Als alternatief
kan men ook een meer realistisch model gebruiken, wat gebaseerd is op MRI beelden
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van de hersenen (bijvoorbeeld figuur 1.5 op pagina 6). Deze verbetering in hoofdmodel
is vooral voor EEG belangrijk; MEG is minder gevoelig voor (beperkte) onjuistheden in
het hoofdmodel. Naast deze twee modellen, moet ook het aantal bronnen worden vast-
gesteld of aangenomen. Hoe meer bronnen, des te geavanceerder het model en des te
beter het model de gemeten MEG-data kan beschrijven. De beperking hierbij is echter
dat de lokalisatie moeilijker wordt naarmate er meer bronnen gelokaliseerd moeten wor-
den. Veel bronnen maken de lokalisatiemethode instabiel en onbetrouwbaar. Daarom
moet men altijd de balans zoeken tussen enerzijds genoeg bronnen om de gemeten sig-
nalen goed te kunnen verklaren en anderzijds niet te veel bronnen om de stabiliteit en
oplosbaarheid te behouden.

De hersenen zijn voortdurend actief met het besturen van allerlei processen in het
lichaam, ook wanneer een persoon (lichamelijk) in rust is. Deze activiteit kan worden
beschouwd als achtergrondactiviteit. Wanneer een stimulus wordt gepresenteerd zullen
de hersenen een reactie vertonen, de respons. Echter, naast deze opgewekte respons is er
ook de genoemde achtergrondactiviteit. In experimenten waarin gebruik gemaakt wordt
van een stimulus om een bepaald hersengebied te activeren, worden normaal gesproken
de herhaalde metingen gemiddeld. Dat wil zeggen, van de driehonderd metingen wordt
het gemiddelde berekend en dat gemiddelde wordt beschouwd als de respons van de
hersenen op de stimulus. Het idee achter deze middeling is dat de respons van de
hersenen op de stimulus elke keer hetzelfde is, terwijl de achtergrondactiviteit steeds
wisselt. De achtergrondactiviteit is dan weer positief en dan weer negatief en verdwijnt
zodoende wanneer het gemiddelde genomen wordt. Het gemiddelde signaal is dan de
‘schone’ opgewekte respons. Deze gedachtengang wordt het Signaal Plus Ruis-model
genoemd: iedere meting is de som van een vast deel, het signaal ofwel de opgewekte
respons, en een wisselend deel, de ruis ofwel de achtergrondactiviteit.

In hoofdstukken 2, 3 en 4 wordt de geldigheid van het Signaal Plus Ruis-model
onderzocht. Het model is onjuist als zou blijken dat de achtergrondactiviteit verandert
in reactie op de presentatie van de stimulus. Om dit te onderzoeken worden de zoge-
naamde residuen onderzocht. Het residu van elk van de driehonderd metingen is het
verschil tussen het gemeten signaal en het gemiddelde signaal. Volgens het Signaal Plus
Ruis-model is het residu bij benadering gelijk aan de achtergrondactiviteit en verandert
niet wezenlijk van karakter in de tijd. Wanneer er sprake is van werkelijke invloed van
de stimulus op de achtergrondruis, is dit zichtbaar in de residuen. Bijvoorbeeld wanneer
de achtergrondactiviteit zich door de stimulus aanpast en steeds een specifiek patroon
vertoont direct nadat de stimulus is gepresenteerd, dan zal dit specifieke patroon in het
gemiddelde signaal zichtbaar worden. Dit patroon is dan niet aanwezig in de residuen
omdat het in het gemiddelde zit. Wanneer men in dit geval het verloop van de residuen
in de tijd bekijkt, is te zien dat voorafgaand aan de stimulus er activiteit te zien is die
op het moment dat de stimulus wordt gepresenteerd opeens verdwijnt omdat de achter-
grondactiviteit vanaf dat moment in het gemiddelde zit. Dit voorbeeld geeft aan dat
de residuen informatie bevatten over de geldigheid van het Signaal Plus Ruis-model.
Daarom worden deze residuen onderzocht in de genoemde hoofdstukken.

De verandering in tijd van de residuen wordt onderzocht door middel van de tijd-
covariantie. Aan de tijd-covariantie is af te lezen of de residuen wezenlijk veranderen in
tijd. Indien dit het geval is, is de basisgedachte van het Signaal Plus Ruis-model onjuist.
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Uit het onderzoek in de hoofdstukken 2, 3 en 4 blijkt dat in geval van ‘simpele’ stimuli
zoals een motorische prikkel of een pieptoontje, er geen aanleiding lijkt te zijn om het
Signaal Plus Ruis-model niet te gebruiken. Wanneer men een meer complexe stimulus
gebruikt, bijvoorbeeld meerdere stimuli waar verschillende aandacht aan besteed moet
worden, lijkt het beter om het Signaal Plus Ruis-model uit te breiden tot een model dat
de individuele responsies op de stimulus nader beschrijft. Mogelijke uitbreidingen van
het vaste responsmodel zijn modellen waarbij iedere respons op de stimulus een andere
amplitude (grootte) of latentie (reactietijd) vertoont. Amplitudevariatie is relatief een-
voudig te bepalen in de analyse van de gemeten signalen, terwijl variatie in reactietijd
veel lastiger te bepalen is.

Naast het valideren van het Signaal Plus Ruis-model bevat de tijd-covariantie ook
belangrijke informatie die gebruikt kan worden in de bronlokalisatie. De tijd-covariantie
is in feite een groot getallenblok, een matrix genaamd, die van ieder tweetal tijdstippen
A en B aangeeft hoe de gemeten signalen op die tijdstippen met elkaar samenhangen.
Zo zullen de metingen op twee tijdstippen vlak na elkaar (bijvoorbeeld slechts vijf
millisecondes na elkaar) min of meer hetzelfde signaal bevatten, terwijl de metingen op
twee tijdstippen die verder van elkaar verwijderd zijn minder op elkaar zullen lijken. Het
analogon in de ruimte is gegeven door de ruimte-covariantie. In de ruimte-matrix staat
informatie over hoeveel de gemeten signalen op ieder tweetal sensoren in de MEG-
helm op elkaar lijken. Net als in de tijd geldt ook hier: hoe dichter de sensoren bij
elkaar liggen, hoe meer de gemeten signalen op elkaar lijken. Dit komt omdat sensoren
die dicht bij elkaar zitten vooral activiteit van hetzelfde hersengedeelte zullen meten,
terwijl sensoren die op heel verschillende plekken zitten meer activiteit van verschillende
gedeeltes van de hersenen meten.

In feite hebben we te maken met een ruimte-tijd-matrix. Echter dat getallenblok
is te groot om mee te rekenen. Daarom wordt deze matrix opgesplitst in een ruimte-
matrix en een tijd-matrix. Deze splitsing is gebaseerd op de vereenvoudigende aanname
dat de ruimtelijke verhoudingen niet veranderen in de tijd en dat de tijdsverhoudingen
gelijk zijn voor alle sensoren in de MEG-helm. Hoewel de werkelijkheid complexer
is, maakt deze aanname het rekenwerk een stuk gemakkelijker. In hoofdstuk 4 wordt
nagegaan hoe goed deze vereenvoudigende splitsing de werkelijkheid beschrijft. Het
blijkt dat voor bronlokalisatie deze splitsing goed genoeg werkt. Indien men echter
gëınteresseerd is in de fysiologische eigenschappen van de achtergrondactiviteit is de
hoeveelheid informatie in de aparte ruimte- en tijd-matrices slechts beperkt.

In de hoofdstukken 5 en 6 wordt onderzocht of het mogelijk is de bronnen in meerdere
gemeten MEG-datasets tegelijk te lokaliseren. Deze simultane aanpak is met name
interessant wanneer in verschillende datasets dezelfde bronnen geactiveerd zijn. Een
voorbeeld is een tweetal experimenten waarin het visuele hersengebied op verschil-
lende manieren wordt geactiveerd. Het lokaliseren van het visuele gebied wordt dan
nauwkeuriger wanneer men beide datasets tegelijk analyseert, in plaats van een voor
een. De achterliggende reden is dat meer gegevens (meer data) voor het vinden van een
en dezelfde bron altijd een gunstig effect heeft op de nauwkeurigheid van de te bepalen
positie.

Uit de studies in de genoemde hoofdstukken blijkt dat de onnauwkeurigheid in de
geschatte positie in bepaalde gevallen wel met een factor 10 kan worden verkleind wan-
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neer men vijf datasets aan een simultane analyse onderwerpt in plaats van vijf losse
analyses. De gepresenteerde simultane analysemethode is heel flexibel, zodat de ge-
bruiker gemakkelijk meer of minder aannames kan maken omtrent de gelijkheid van de
bronnen in de verschillende datasets. Omdat deze aannames afhankelijk zijn van de
informatie en keuzes van de gebruiker, maakt deze flexibiliteit het model tegelijkertijd
subjectief. In hoofdstuk 6 wordt de simultane lokalisatiemethode daarom aangepast,
zodat het niet mogelijk is heel specifieke (subjectieve) informatie in het model te stop-
pen. De gebruiker kan vervolgens kiezen of hij het meer objectieve model dan wel het
model dat meer informatie toelaat, kiest.

Andere interessante toepassingen van deze simultane analysemethode zijn datasets
van gelijke experimenten bij verschillende proefpersonen en datasets van epilepsiepa-
tiënten. De toepassing op data van verschillende proefpersonen is interessant om meer
algemeen het karakter en de lokatie van functionele hersengebieden te bepalen. De si-
multane analysemethode verbetert de nauwkeurigheid van de lokatie van epileptogeen
hersenweefsel wanneer verschillende soorten epileptische pieken uit hetzelfde hersenge-
bied aan deze nieuwe methode worden onderworpen.



Gearfetting

Yn dit haadstik wurdt dit proefskrift, mei de titel Matematyske modellearring fan mag-
neto-ensefalografyske data, gearfette op in wize dy’t foar de bûtensteander begryplik is.
In wittenskiplike gearfetting is te finen yn de paragrafen 7.1 en 7.3.

Mei de magneto-ensefalografy (MEG) technyk kinne tige lytse magnetyske fjilden om ’e
holle metten wurde. Dy magnetyske fjilden binne it gefolch fan neurale aktiviteit yn de
minsklike harsens. MEG is nau besibbe mei elektro-ensefalografy, dêr’t de elektryske
potinsjaal op ’e hollehûd mei metten wurdt. Beide techniken binne wakker gefoelich,
sadat tige lytse wearden en ferskillen waarnommen wurde kinne.

It doel fan in MEG-mjitting is fêst te stellen wat der yn ’e holle bart. Faak
betsjut dat dat men de saneamde boarnen dy’t de grûn foarmje foar de metten sin-
jalen, lokalisearje wol, bygelyks yn eksperiminten dêr’t in funksjoneel harsensgebied
yn lokalisearre wurdt. Yn dat soarte fan eksperiminten wurdt in gebied yn ’e harsens
oantrune troch in oantruner fan bûtenôf, bygelyks in printsje foar it fisuéle gebied of in
lûdsje foar it auditive gebied. Dizze oantruner soarget derfoar dat it gebied dêr’t it om
giet, aktyf wurdt. In oar foarbyld fan saneamde boarnelokalisaasje is it fêststellen fan
de lokaasje fan in epileptogeen harsengebied. In dat twadde gefal wurdt it MEG metten
fan in epilepsypasjint sûnder in oantruner te brûken. Fokale epilepsy is te werkennen
oan lytse pykjes yn de MEG-sinjalen. Troch de boarne fan dizze pykjes te finen, kin de
lokaasje fan it sike, epileptogene gebied fêststeld wurde.

MEG-sinjalen wurde metten yn tiid en romte. Yn romte betsjut dat dat de sin-
jalen op 151 sensoaren metten wurde, dy’t harren plak ha yn de MEG-helm dy’t om de
holle komt by in MEG-mjitting (figuer 1.1 op side 2). Yn tiid wurdt it MEG metten
op ferskillende tiidstippen fuort efterinoar, bygelyks tûzen kear yn ’e sekonde. Yn in
mjitting dêr’t in funksjoneel harsengebied mei lokalisearre wurde moat, wurdt fierder
de oantruner ek nochris werhelle, bygelyks trijehûndert kear. De reaksje fan de harsens
op de oantruner wurdt dan trijehûndert kear metten yn tiid en romte. By in epilep-
symjitting wurdt net in oantruner fan bûtenôf brûkt, mar wurdt it MEG bygelyks ien
oere lang metten. Yn sa’n oere ferskynt dan út en troch in pykje.

Foar it finen fan de lokaasjes fan de ûnderlizzende boarnen fan de metten sinjalen
moat in tal fan oannames dien wurde. Sa moatte in model foar de boarne en in model
foar de foarm fan de holle oannommen wurde. In gongber model foar de boarne is
de saneamde dipoalboarne. In dipoalboarne is in boarne yn ien punt mei in beskate
rjochting. As model foar de foarm fan ’e holle wurdt meastentiids in bolfoarm brûkt.
Men kin as alternatyf ek in mear realistysk model brûke, dat makke wurde kin mei MR-
bylden fan ’e harsens (figuer 1.5 op side 6). Sa’n krekter model is foar EEG wichtiger
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as foar MEG; MEG is net tige gefoelich foar flaters yn it hollemodel. Njonken dizze
twa modellen moat ek it tal fan boarnen fêststeld of oannommen wurde. Hoe mear
boarnen, hoe moaier it model en hoe better it model de metten sinjalen beskriuwt. De
begrinzing hjirby is lykwols dat de lokalisaasje fan de boarnen dreger wurdt al nei’t
der mear boarnen yn it model sitte. In soad boarnen soargje foar in ûnbetroubere en
ynstabile lokalisaasjemetoade. Dêrom moat men altyd it lykwicht sykje tusken oan ’e
iene kant genôch boarnen om de metten sinjalen goed ferklearje te kinnen, en oan ’e
oare kant net te folle boarnen, sadat it stabyl en oplosber bliuwt.

De minsklike harsens binne oanientriedwei troch yn aksje. Se binne dwaande mei
it oanstjoeren fan allegear prosessen yn it lichem, ek as de persoan fierder neat docht.
Wannear’t de oantruner oanbean wurdt, jouwe de harsens dêr in reaksje op, de saneamde
respûns. Njonken dizze oanfitere respûns is der lykwols ek dy eftergrûnaktiviteit dy’t
oanientriedwei trochgiet. Yn eksperiminten dêr’t in oantruner fan bûtenôf brûkt wurdt
om in beskaat harsengebied oan te fiterjen, wurde de werhelle mjittings meastentiids
middele. Dat betsjut dat fan de trijehûndert mjittings it gemiddelde nommen wurdt
en dat gemiddelde wurdt dan besjoen as de respûns op de oantruner. De gedachte efter
dizze middeling is dat de reaksje fan de harsens op de oantruner hieltyd itselde is, wylst
de eftergrûnaktiviteit hieltyd oars is. De eftergrûnaktiviteit is wikseljend posityf en
negatyf en sadwaande is it gemiddelde dêrfan sawat nul. Dêrom sit yn it gemiddelde
fan de trijehûndert mjittings allinnich noch de ‘skjinne’ oanfitere respûns fan ’e harsens.
Dizze tinkwize wurdt ek wol it Sinjaal Plus Rûs-model neamd: eltse mjitting bestiet
út in fêst part, it ‘sinjaal’ of de oanfitere respûns, en in wikseljend part, de ‘rûs’ of de
eftergrûnaktiviteit.

Yn ’e haadstikken 2, 3 en 4 wurdt neigien oft it Sinjaal Plus Rûs-model jildich is. It
model is ferkeard as bliken docht dat de eftergrûnaktiviteit feroaret nei de presintaasje
fan ’e oantruner. Om dat út te finen wurde de saneamde residuën besjoen. It residu
fan eltse mjitting fan ’e trijehûndert mjittings is it ferskil tusken dy mjitting en it
gemiddelde sinjaal. Neffens it Sinjaal Plus Rûs-model is dat residu sawat gelyk oan
’e eftergrûnaktiviteit en feroaret it net wêzentlik yn ’e tiid. As de oantruner wier fan
ynfloed is op de eftergrûnaktiviteit, dan is dat te sjen oan de residuën. As bygelyks troch
de oantruner de eftergrûnaktiviteit him oanpast en nei de presintaasje fan ’e oantruner
hieltyd in spesifyk patroan sjen lit, dan is krekt dat patroan te sjen yn it gemiddelde.
Tagelyk is dat patroan dan net mear te finen yn de residuën, om’t it yn it ôflutsen
gemiddelde sit. As men yn sa’n gefal it ferrin fan ’e residuën besjocht, dan falt op
dat der foardat de oantruner presintearre waard, aktiviteit wie, dy’t nei de presintaasje
ferdwûn is om’t it fanôf dat stuit yn it gemiddelde bedarre is. Ut dit foarbyld docht
wol bliken dat de residuën ynformaasje befetsje oer de jildichheid fan it Sinjaal Plus
Rûs-model. Dêrom wurde yn de hjirboppe neamde haadstikken de residuën ûndersocht.

De feroaring fan ’e residuën yn ’e tiid wurdt besjoen oan ’e hân fan de tiid-kovariânsje.
Oan de tiid-kovariânsje kin men sjen oft de residuën werklik yn ’e tiid feroarje. As dat
wier sa is, is de oanname fan it Sinjaal Plus Rûs-model ûnterjochte. It docht bliken
yn ’e haadstikken 2, 3 en 4 dat yn it gefal fan ‘ienfâldige’ oantruners sa as in moto-
ryske prikkel of in lûdsje, der gjin oanlieding is om it Sinjaal Plus Rûs-model ôf te
wizen. As der wat fernimstiger oantruners brûkt wurde, liket it better om it Sinjaal
Plus Rûs-model út te wreidzjen sadat it model de yndividuéle reaksjes fan ’e harsens op
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’e oantruner krekter beskriuwt. Mooglike útwreidings fan it fêste respûnsmodel binne
modellen dêr’t de reaksjes fan ’e harsens ferskillende amplitudes (gruttes) of ferskillende
latinsjes (reaksjetiden) yn hawwe. Fariaasje yn amplitude kin frij maklik fêststeld wurde
út de metten sinjalen, wylst fariaasje yn reaksjetiid tige lestich ynskat wurde kin.

Njonken it neigean oft it Sinjaal Plus Rûs-model goed is, befettet de tiid-kovariânsje
ek belangrike ynformaasje foar it boarnelokalisearjen. De tiid-kovariânsje is yn wêzen
in grut blok mei sifers, in saneamde matriks, dy’t fan elts twatal tiidstippen oanjout
hokfoar ferhâlding de mjittings op dy beide tiidstippen ha. Dizze sifers jouwe oan oft
de mjittings op inoar likenje of net. Op twa tiidstippen flak efter inoar, bygelyks mei fiif
millisekondes dertusken, sille de mjittings bot op inoar likenje, wylst mjittings fierder
útinoar yn it algemien mear ferskillende aktiviteit sjen litte sille. Yn romte treffe wy it
allyksa oan: de romte-kovariânsje. Yn de romte-matriks steane sifers dy’t oanjouwe op
hokfoar wize de mjittings op twa sensoaren yn de MEG-helm harren ferhâlde. Krekt as
yn de tiid jildt hjir ek: hoe tichter de sensoaren byinoar sitte, hoe mear’t de mjittings op
inoar likenje. Dat komt om’t sensoaren dy’t ticht byinoar lizze aktiviteit út likernôch
itselde harsengebied mjitte, wylst sensoaren fierder útinoar aktiviteit út ferskillende
parten fan ’e harsens mjitte.

Ut soarte ha wy te krijen mei in romte-tiid-matriks. Dat grutte siferblok is lykwols te
grut om mei te rekkenjen. Dêrom wurdt dat blok opdield yn in romte- en in tiid-matriks.
Dizze opdieling is basearre op de ferienfâldigjende oanname dat de romtlike ferhâldingen
net feroarje yn ’e tiid en dat de ferhâldingen yn tiid gelyk binne op alle sensoaren yn ’e
MEG-helm. Hoewol’t it lân der yn werklikheid wat komplekser hinne leit, makket dizze
tinkwize it rekkenwurk in stik ienfâldiger. Yn haadstik 4 wurdt neigien foar hokfoar
part dizze ferienfâldigjende opdieling de werklikheid feitlik beskriuwt. It docht bliken
dat dizze opdieling presys genôch is, as boarnelokalisaasje it doel is. As men fan doel
is om de aard fan ’e eftergrûnaktiviteit te ûndersykjen, is de ynformaasje yn dizze
opdieling lykwols oan ’e krappe kant.

Haadstikken 5 en 6 befetsje in petear oer de mooglikheden fan it tagelyk lokalisearjen
fan de boarnen yn in tal fan ferskillende MEG-mjittings. Dizze gelyktidige oanpak is
benammen nijsgjirrich wannear’t yn guon mjittings deselde boarnen aktyf binne. In
foarbyld is in twatal eksperiminten dêr’t it fisuéle harsengebied yn oanwakkere wurdt;
yn it iene eksperimint wurdt it sa slim net oantrune as yn it oare eksperimint. Men kin
dat gebied dan krekter lokalisearje as men beide mjittings tagelyk ûndersiket yn stee
fan elts apart. De tinkwize dy’t hjir efter sit is dat mear ynformaasje (mear mjittings)
altyd in geunstich effekt hat op de krektens dêr’t de posysje fan de boarne mei ynskat
wurde kin.

Ut ’e stúdzjes yn dizze twa haadstikken docht bliken dat de flater yn de ynskatte
posysje yn guon sitewaasjes wol tsien kear sa lyts wurde kin as men fiif mjittings tagelyk
besjocht yn stee fan alle fiif apart. De gelyktidige metoade dy’t yn dizze haadstikken
presintearre wurdt is tige fleksibel, sa’t de brûker maklik mear of minder oannames
meitsje kin oangeande de gelikens fan de boarnen yn de ferskillende mjittings. Om’t
dizze oannames ôfhingje fan de ynformaasje en de kar fan ’e brûker, soarget dizze
fleksibiliteit tagelyk foar subjektiviteit. Dêrom wurdt yn haadstik 6 de gelyktidige
metoade sa oanpast dat de brûker net mear tige spesifike oannames of ynformaasje yn
it model dwaan kin. Dêrmei wurdt it model dan objektiver. By eintsjebeslút moat de
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brûker sels kieze oft er it mear objektive model brûke wol of dochs kieze wol foar it
model dêr’t mear ynformaasje yn kin.

Oare sitewaasjes dêr’t it gelyktidige model yn brûkt wurde kin, binne gelikense
eksperiminten by ferskillende persoanen en MEG-mjittings fan epilepsypasjinten. De
earste tapassing is nijsgjirrich om yn mear algemiene sin de lokaasje en it karakter
fan guon funksjonele harsengebieden te ûndersykjen. De nije, gelyktidige oanpak by
epilepsypasjinten kin wichtich wêze om ferskillende soarten fan epileptyske pykjes út
ien en itselde harsengebied krekter te lokalisearjen.
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Index

action potential, 3
AEF data, 60
alpha activity, 38, 63
amplitude variation, see amplitude jitter
auditory evoked field data, see AEF data

baseline correction, see BC
BC, 42
beamforming, 16

cancelling sources, 73
CDM, 74

estimators, 78
model, 75

clustering, 30, 127
conductivity, 8
confidence interval, 108, 121
correlation, see covariance
coupled dipole model, see CDM
coupling matrix, 75, 101
covariance, 18

colour scale, 37
spatiotemporal, 22

Cramèr Rao bound, 105
constrained, 107

dendrite, 3
dipole field matrix, see lead field matrix
dipole localisation, 14

ECDM
estimators, 104
model, 101

electroencephalography, 1
epilepsy, 1
epileptic spike data, 30, 141
evoked response, 11
extended coupled dipole model, see ECDM

Fisher information matrix, 105
forward model, see forward problem
forward problem, 6
frequency spectrum, 133
Frobenius norm, 14
functional mapping, 1

generalised least squares, see GLS
GLS, 22

habituation, 33, 127
head model, 8

inverse problem, 11

jitter
amplitude, 21, 127
frequency, 127
latency, 21, 127

Kronecker product
single, 23, 35, 53, 77, 102
sum of, 54

LCMV, 18
lead field matrix, 10
least squares, see LS
likelihood function, 24
LS, 14, 54

magnetoencephalography, 1
maximum likelihood, see ML
Maxwell’s equations, 6
ML, 24, 36, 54, 128
moving dipole, 9
MUSIC, 16, 138

neuron, 3
noise, 12
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OAM, 38
offset correction, see BC
OLS, 22
ongoing alpha model, see OAM
ordinary least squares, see OLS
orthogonal matrix, 16
oscillatory activity, 19

PARAFAC, 99, 140
pdf, 23
phase locking, 21
Poisson modulated alpha model, see Po-

MAM
PoMAM, 66, 128

model, 39
postsynaptic cell, 3
presynaptic cell, 3
primary current, 3
probability density function, see pdf

random dipole process, 51, 127
residual, 12
return current, 4
rotating dipole, 9

sample covariance matrix, 53
secondary current, see return current
SEF data, 30, 44, 60, 109
selective attention data, 129
shuffle operator, 54, 67
signal plus noise model, see SPN
signal-to-noise ratio, see SNR
singular value decomposition, see SVD
SNR, 81, 128
somatosensory evoked field data, see SEF

data
source localisation, see dipole localisation
source time function matrix, 10, 75
spatial filtering, see beamformer technique
spatial parameters, 10
spatial scanning, 16
SPN, 11, 12, 27, 35, 52, 126
spontaneous data, 129
squid, 2
stationary dipole, 9
stimulus, 11
SVD, 16, 55, 79

synapse, 3

temporal
parameters, 10
stationarity, 20, 33, 36, 37, 46, 63, 129,

132
weak stationarity, 20

Toeplitz matrix, 36
total probability theorem, 41
trial-to-trial variations, 27, 126
trials

number of, 132

VEF data, 60, 81, 108
visual evoked field data, see VEF data


