
Change Management for Distributed Ontologies

Michel Klein

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15451096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIKS Dissertation Series No. 2004-11.

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Graduate School for Information and Knowledge Systems.

Promotiecommissie:
prof.dr. A.Th. Schreiber (promotor)
prof.dr. J. M. Akkermans (promotor)
prof.dr. D.A. Fensel (University of Innsbruck, Austria)
prof.dr. F. van Harmelen (Vrije Universiteit Amsterdam)
dr. Steffen Staab (University of Karlsruhe, Germany)
prof.dr. H. van Vliet (Vrije Universiteit Amsterdam)
prof.dr. B. J. Wielinga (Universiteit van Amsterdam)
prof.dr. R. J. Wieringa (Technische Universiteit Twente)

ISBN 90-9018400-7

Copyright c© 2004 by Michel Klein

VRIJE UNIVERSITEIT

Change Management
for Distributed Ontologies

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op dinsdag 14 september 2004 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Michel Christiaan Alexander Klein

geboren te Purmerend

promotoren: prof.dr. A.Th. Schreiber
prof.dr. J.M. Akkermans

Preface

A writer keeps surprising himself...
he doesn’t know what he is saying

until he sees it on the page.
— Thomas Williams

It is often said that the preface is the most read part of a thesis. If this is true, what is
the contribution of distributing a thesis to the progress of science? Why does NWO1 pay
for printing it?

Let us first try to answer the questionwhy the preface is thought to the most read
part of a thesis. A possible answer is that the preface is the only part of thesis that is
understandable for outsiders. If we assume that a preface normally doesn’t describe the
scientific contribution, this would be a bad sign for scientists about their ability to explain
their achievements.

However, I doubt whether this is the genuine reason. In this thesis, for example, the
summary (page 181) is probably easier to understand than the preface with its numerous
references to people that many the readers will not know. My hypothesis is that the
preface is among the most read parts of a thesis because it gives a glimpse of thereal
process behind the nicely shaped-up story in the book. It hints about the moments of
disappointment and desperateness, the time lost in mastering LaTeX, the writer-blocks,
the procrastinating, the “essential” philosophical discussions with colleagues, and the oh-
so-nice but not very relevant programming tasks. In the end, a preface shows that doing
research is not the well-structured process that it seems to be, but that it is as humble as
all other activities. It may very well be that this message is the essence of what scientists
have to say to the world...

Therefore, for the sake of science, continue reading the preface and don’t feel obliged
to read further.

The research described in this thesis has been performed within the KIRMIT project.
This thesis is probably not the outcome that the people who wrote the proposal for the
KIRMIT project had in mind. When the project started, we expected to work with two
PhD students on multimedia indexing and retrieval, but because of various reasons things
went different. I would like to thank Bob Wielinga, Bert Bredeweg and Hans Akkermans
for the freedom and the time they gave me to find my own way. Hans has been very

1The Dutch National Organization for Scientific Research.

inspiring during the whole process, with his clear ideas about research methodologies
and his talent to bring difficult issues back to their essence.

I’m very grateful to Guus Schreiber for his enormous help in the last year. He spend
a lot of time reading all my writings and helped me to transform my scattered work into
coherent thesis. His detailed comments and questions helped me to understand what I
tried to write down (seeing it on a page was not yet sufficient for me).

Dieter also had a big influence on my research process. I would like to thank him for
pushing me to the frontiers, pointing out fruitful research directions and for making many
things possible. For example, he arranged a stay at Stanford University for me. The three
months in the USA have been very enjoyable, both from a scientific as from a personal
perspective. I would like to thank Natasha Noy and Mark Musen for their willingness to
host me and the collaboration that we have.

Furthermore, I would like to acknowledge the collaboration with the OntoText com-
pany in Bulgaria. Especially I would like to thank Naso and Damyan for their contribu-
tions and the effort they put into our collaboration.

The interactions and discussions with colleagues have been most teachable, and this
is what colored the daily practice. I would like to thank Guido for the first years we spent
together in the office, when both of us had to find our way as a PhD student, and for the
talks later on when we were moved to different floors.

Of course, I have to mention Borys. I can hardly imagine a person that is more
different from me than he. Once, we were accused of fighting like a couple that is together
for too long. However, when looking back I have to conclude that sharing an office
with him has been very nice. He made me realize that the center of Europe is much
further to the east than what I was used to think. Besides all practical assistance that we
gave to each other, I enjoyed the numerous discussions about the meaning of science,
research and even the meaning of love and life. I think that we even agreed once on some
existential issue, but I can’t remember anymore which one it was.

Then, I would like to thank all other colleagues. The 12 o’clock lunch group that
in the end only consisted of Arno, Michel and Martijn, and the colleagues from the BI
and AI groups. I’m especially grateful to Borys, Jeen, Laura, Mark, Marta and Radu for
proofreading chapters of my thesis, and to Joost for his advices about cover.

Finally, I would like to thank Linda. Linda, your contribution is from a completely
different kind, but has been essential. I thank you for your love, support and patience.
Sharing my life with you is worth more than whatever I can imagine. And yes, you are
still 2750 copies ahead of me.

Michel Klein, Bussum, July 2004.

Contents

1 Introduction 1
1.1 Research Question .3
1.2 Approach . 3
1.3 Contributions and Outline . 4
1.4 Publications . 5

I Context and Requirements 7

2 Languages for the Semantic Web 9
2.1 Main Languages . 9

2.1.1 XML as a basis . 9
2.1.2 DTDs and XML Schemas .10
2.1.3 Resource Description Format11
2.1.4 Defining an RDF vocabulary: RDF Schema12
2.1.5 OIL . 13
2.1.6 DAML+OIL and OWL . 16
2.1.7 Summary .17

2.2 Representing Schema Languages in RDFS18
2.2.1 OIL as an extension of RDF Schema18
2.2.2 Compatibility with RDF Schema30
2.2.3 Summary .32

3 Ontology Change Management: Problems and Solutions 33
3.1 Ontology Mismatches .33

3.1.1 Language level mismatches34
3.1.2 Ontology level mismatches .35
3.1.3 Discussion .37

3.2 Comparison with Database Schema Versioning37
3.2.1 Database Schema Versioning38
3.2.2 Differences with Ontology Versioning39
3.2.3 Implications for Evolution and Versioning of Ontologies41

3.3 Study of Existing Ontology Management Strategies44

ii Contents

3.3.1 Research Design .44
3.3.2 PharmGKB . 45
3.3.3 EMTREE thesaurus .47
3.3.4 EON ontology . 48
3.3.5 Gene Ontology .50
3.3.6 Discussion .51

3.4 Ontology Evolution Tasks .52
3.5 Discussion .55

II Framework 57

4 Framework for Ontology Evolution 59
4.1 Vocabulary and Assumptions .59

4.1.1 Conceptualization vs. Specification vs. Representation59
4.1.2 Task Dependency .62
4.1.3 Different Change Representations63

4.2 Elements of the Framework .66
4.2.1 Meta Ontology of Change Operations66
4.2.2 Complex Change Operations67
4.2.3 Transformation Set .68
4.2.4 Template for Change Specification69

4.3 Creating Change Specifications .70
4.3.1 Finding Changes .71
4.3.2 Deriving New Information . 72

4.4 Summary .73

5 Ontology of Change Operations 75
5.1 Usage and requirements .75
5.2 OKBC Ontology Language .77

5.2.1 OKBC Knowledge Model . 78
5.2.2 Change operations for OKBC79

5.3 Web Ontology Language OWL .79
5.3.1 OWL meta model .81
5.3.2 OWL Change Operations .84

5.4 Complex Operations .86
5.4.1 Types of Complex Operations87
5.4.2 Hierarchical Ordering of Operations88

5.5 Ontology Change Language .89
5.5.1 Model of Ontology Change90
5.5.2 Syntax and Interpretation of Change Specification91

5.6 Discussion .93

Contents iii

6 Change Process 95
6.1 Change Process Model .96
6.2 Creating the Change Specification .98

6.2.1 Generating a Transformation Set98
6.2.2 Generating Two Versions .99
6.2.3 Generating Complex Changes99
6.2.4 Generating Evolution Relations103
6.2.5 Generating Conceptual Relations103

6.3 Retrieval and Interpretation of Data107
6.3.1 Compatibility of Changed Ontologies107
6.3.2 Determining Compatibility .109
6.3.3 Partly Translating Data .111

6.4 Ontology Synchronization .112
6.4.1 CONCORDIA Synchronization Approach112
6.4.2 Alignment with Change Framework113
6.4.3 Discussion .116

6.5 Determining the Integrity of Mappings117
6.5.1 Modular Ontologies .117
6.5.2 Verifying Integrity .120

6.6 Visualization .123
6.7 Discussion .124

III Applying the framework 125

7 Tool Support 127
7.1 Change detection in RDF-based ontologies127

7.1.1 Detecting changes .128
7.1.2 Rules for changes .130
7.1.3 Discussion .132

7.2 Change Operations in PROMPTdiff132
7.2.1 Basic Functionality .133
7.2.2 Place within Framework .135
7.2.3 Producing Transformations .135

7.3 Visualizing changes .138
7.3.1 Visual metaphors .138
7.3.2 Navigation among changes .141
7.3.3 Conclusions and Future Work141

8 Practical Studies 143
8.1 Specifying and Querying a Change Specification143

8.1.1 BioSAIL Ontology .144
8.1.2 Ontology Evolution .145
8.1.3 Creating the Change Specification147
8.1.4 Querying the Change Specification150

iv Contents

8.1.5 Summary .150
8.2 Determining Integrity of Ontology Mappings151

8.2.1 Ontology in Case Study .151
8.2.2 Definitions in the Local Ontology153
8.2.3 Finding and Characterizing Changes154
8.2.4 Discussion .156

8.3 User Study of Change Visualization157
8.3.1 Aims .157
8.3.2 Methods .157
8.3.3 Subjects .158
8.3.4 Results and Discussion .159

9 Conclusions 161
9.1 Key Points and Conclusions .161
9.2 Reviewing the Research Questions .164
9.3 Outlook .166

A Guideline for Interviews 169

B Ontology of Change Operations 173

C Change Specification for BioSAIL ontology 175
C.1 Change Specification between v2.1r3 and v2.1r4175
C.2 Querying Changes and Effects .179

C.2.1 Query .179
C.2.2 Result .179

Samenvatting 181

Bibliography 185

SIKS Dissertation Series 193

Chapter 1

Introduction

For the times they are a-changin’.
— Bob Dylan, 1963

That which has been is that which shall be;
and that which has been done is that which shall be done:

and there is no new thing under the sun.
— Ecclesiastes 1:9,± 300 B.C.

Change is a constant and important factor in human history. Many examples can be
given. Changes inspire people to think, write, talk, sing or act: Bob Dylan in 1963, Joop
den Uyl1 in 1973, George W. Bush in 2001, they all claimed that the world had changed.
The outline of the history is marked with the major changes. Changes are seen as the
milestones on the road of progress. The major political division in western countries is
still the one between those who want to preserve what they think is good, and those who
want to change to what they think is better. Scientists are hunting for insights that change
the view on the world.

This thesis is about change, although in a much more restricted domain. We con-
sider the change of artificial constructs, called ontologies, that are used by computers for
handling information.

In the computer science jargon, an ontology is a formal specification of a particular
view on the important concepts within a respective domain (Gruber, 1993). That is, it
gives a formal description of the “things that exist” in a particular subject area. Typically,
an ontology consists of a hierarchy of concepts with a specification of their characteristics
and relationships. The idea behind applying ontologies to information management is
that computers can exploit the knowledge that is contained in an ontology to handle
information in a way that is similar to what a human who shares the same world view
would do. In this sense, ontologies enable information sharing between humans and
computers.

This approach is getting more attention with the rise of the Semantic Web (Berners-
Lee et al., 2001). In this, up to now highly academic, extension of the World Wide Web,

1Dutch prime minister from 1973 till 1977

2 Introduction

computers use explicit descriptions of the meaning of data on web pages to handle it
in a more intelligent way. This in contrast with the current implementation of the Web,
where computers mainlytransportanddisplayweb pages. In the Semantic Web scenario,
the informationinside pages is accessed and used by computers. There are basically
two techniques that underly the Semantic Web. First, data on pages is structured and
represented in such a way that it can be accessed by computers at a fine-grained level.
Second, these pieces of data are related to concepts that are defined by ontologies. The
definitions in the ontologies give computers knowledge about how to use and combine
the information.

However, neither the data on the web, nor the ontologies themselves are permanent
and stable. Data on web pages can change because it encodes temporal facts, e.g. the
weather forecast or stock quotes, or for many other reasons. Ontologies can change
as well, for example because the view on the world changes (e.g. what are the major
political issues), or because the knowledge about certain topics improves (e.g. the effect
of a specific drug on a disease), or because the world itself changes (e.g. which countries
exist at the Balkan).

Ontology changes are important to consider because they have effect on the way data
should interpreted and handled. However,which effect changes have can not be deter-
mined by looking at the ontologies on their own. This also depends on the reasons behind
a change and the specific task for which an ontology is used. Moreover, when several
people make changes to ontologies, questions arise about identification of temporary
world views, versioning of the specifications of these views, and so on.

How to effectively use ontologies for computerized information management is still
an ongoing research issue (Stuckenschmidt, 2003). Applying this in a dynamic environ-
ment where ontologies change over time is even more a challenge. A better understand-
ing of the problem area and methods that take the problems sketched above into account
are needed.

There are other research areas that also consider change of information sources. Most
closely related is the area of evolving database schemata (Roddick, 1995; Roddick et al.,
2000), and especially evolving object oriented databases (Banerjee et al., 1987). Al-
though from the surface this area look very similar ontology change, the scale and extent
of the problems around ontology change justify a consideration on its own. We compare
database schema evolution with ontology evolution in Chapter 3 of this thesis.

A specific subfield of database evolution is version modelling (Katz, 1990; Klahold
et al., 1986). This field provides concepts for structuring databases that evolve over
time. General ideas from this area, like change propagation and modeling the derivation
relations, can be used for ontology change evolution as well and have found their way
into the framework described in Chapter 4.

Another area that addresses change of information sources is software engineering,
and especially software configuration management. This field studies the standards and
procedures for managing an evolving system product (Sommerville, 2001). This includes
issues such as multiple developers working on the same code at the same time, targeting
multiple platforms, supporting multiple versions, and controlling the status of code. In
principle, these issues are also relevant for collaborative ontology development; however
because we assume an uncontrolled evolution process, we do not discuss these topics

1.1. Research Question 3

in this thesis. Note that in the context of software engineering,change management
refers to the structured review process for proposed changes to software. In this thesis,
however, the term change management is used in a broader sense: it refers to the process
of performing the changes as well as to the process of coping with the consequences of
changes.

1.1 Research Question

The central research question in this thesis is the following:

“Which mechanisms and methods are required to cope with ontology change
in a dynamic and distributed setting, where ontologies are used as means to
improve computerized information exchange?”

This general question can be detailed into three smaller questions:

1. What are the specific characteristics of change management for distributed ontolo-
gies?

2. What is an adequate representation of changes between ontologies?

3. What methods and techniques can be developed to solve possible problems caused
by ontology change?

1.2 Approach

In this thesis, we try to achieve a better understanding of a complex problem. We de-
velop the understanding by analyzing the context of the problem and comparing it with
problems and solutions in related areas. Based on this, we introduce a framework that
relates important items in the problem area. Then the framework is used to explore a
number of techniques that could help solving some of the problem in certain situations.
The techniques follow from a theoretical analysis of the problem and its context.

The current status of the Semantic Web makes it very difficult to evaluate these tech-
niques in a realistic setting. Up to now, the Semantic Web is not much more than a vision.
Although a number of techniques are in place and some tools and applications have been
developed, the critical mass of structured data and related ontologies is still missing. A
thorough evaluation of the proposed framework and the proposed techniques is therefore
not possible.

To provide some evidence of the usability of the framework, we implement parts of it
in automated tools and we conduct a number of theoretical and practical studies. These
tools and studies do not aim at proving the framework as a whole, but show the technical
correctness and / or feasibility of the techniques that we propose.

We apply a number of different research methods in this thesis. For the comparison
with related areas, we perform a literature survey. An overview of current change man-
agement is based on five semi-structured interviews. We explore some of the developed

4 Introduction

techniques in the framework by prototyping computerized tools. The practical studies
consist of two case studies and a user study.

1.3 Contributions and Outline

The main contribution of this thesis is a better understanding of the problem of ontology
evolution. In developing this understanding and as elements of it, we make a number of
other contributions as well.

The first part of the thesis describes the context in which the research is conducted
and the requirements for an ontology change management solution.

In Chapter 2, we describe the major representation languages that are used on the
Semantic Web and we explain their distinguished role. In the last part of the chapter, we
present a general principle for expressing a knowledge representation language within
the Resource Description Framework (a general metadata representation mechanism de-
signed for the web). This principle has become the basis for the representation of newer
ontology languages for the Semantic Web as well.

In Chapter 3, we derive the requirements for ontology change management. We
do this by analyzing current change management practices for four large centralized on-
tologies. Also, we compare ontology change management with the database schema
versioning. The chapter results in a wish list for ontology change management.

The second part of the thesis describes the actual framework for ontology change
management that we propose.

Chapter 4 describes the assumptions, the vocabulary and the elements of the frame-
work. It also briefly sketches how the elements of the framework can interact to solve
particular problems. This chapter gives the general picture of the framework, whereas
different elements of it are detailed in the next two chapters.

The main contribution ofChapter 5 is a mechanism to represent changes between
ontologies. An central element in this representation is a taxonomy, i.e. an “ontology”,
of change operations that can be performed on an ontology. We produce this with help
of the meta model of an ontology language. To generalize from one specific ontology
language, we do this for two different ontology languages, namely OWL and OKBC. We
compare both meta models to assess the generality of a change language for OWL.

Chapter 6 shows how the framework can be used to solve different ontology evo-
lution problems. We present a method to use the framework for data interpretation via
different versions of ontologies. We also introduce a computational cheap approach for
maintaining the integrity of mappings between ontologies. In addition, we explain how
the framework can be applied for change visualization and for synchronization of differ-
ent ontology versions.

In the third part of the thesis, we apply the framework that we have developed.
Chapter 7 describes a three tools that implement some of the mechanisms. We dis-

cuss the OntoView system, which implements a comparison mechanism for ontologies,
and we describe an extension to the PROMPTdiff tool (Noy and Musen, 2002), which is
able export differences between ontologies in the change representation mechanisms that

1.4. Publications 5

we introduced in chapter 6. We also show a tool that uses the framework to improve the
visualization of ontology changes.

In Chapter 8 we perform two theoretical studies and one practical study to assess the
feasibility of the framework. In the first study, we use a large set of ontologies that are
evolved out of each other to show that the change representation mechanism is complete
enough to cover a realistic ontology evolution scenario. The second study is performed in
the context of the WonderWeb project2. We create mappings from an artificial ontology
to an external ontology based on a database. When this external ontology evolves because
of the application of a cleaning methodology, we use our framework to predict the effect
on the integrity of the mappings. This study illustrates how the mechanism described
in Chapter 6 can work in practice. Finally,Chapter 9 concludes the thesis and looks
forward.

1.4 Publications

“Zoals je ziet (...) sleurt de wetenschap
haar bescheiden dienaren niet naar

de beroerdste plekken op aarde.”
— De Procedure, Harry Mulisch.

Parts of this theses have been published before.

• Chapter 2 on ontology languages is based on two publications. The explanation
of the respective languages is published as “Klein, M. (2001b). XML, RDF, and
Relatives (short tutorial).IEEE Intelligent Systems, special issue on “Semantic
Web Technology”, 16(2):26–28”. The explanation of expressing other languages in
RDF is published as “Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harme-
len, F., and Horrocks, I. (2002b). Enabling knowledge representation on the Web
by extending RDF Schema.Computer Networks, 39(5):609–634”

• The first part of Chapter 3 is published as “Klein, M. (2001a). Combining and
relating ontologies: an analysis of problems and solutions. In Gomez-Perez, A.,
Gruninger, M., Stuckenschmidt, H., and Uschold, M., editors,Workshop on On-
tologies and Information Sharing, IJCAI’01, Seattle, USA”. The second section of
the chapter is based on “Noy, N. F. and Klein, M. (2004). Ontology evolution: Not
the same as schema evolution.Knowledge and Information Systems, 6(4):428–
440”.

• A preliminary description of the framework in chapter 4 is published as “Klein, M.
and Noy, N. F. (2003). A component-based framework for ontology evolution. In
Proceedings of the Workshop on Ontologies and Distributed Systemsm, IJCAI ’03,
Acapulco, Mexico. Also available as Technical Report IR-504, Vrije Universiteit
Amsterdam”.

• Parts of Chapter 6 are published as “Stuckenschmidt, H. and Klein, M. (2003).
Integrity and change in modular ontologies. InProceedingso of the 18th Interna-
tional Joint Conference on Artificial Intelligence, Acapulco, Mexico”.

2EU IST project, seehttp://wonderweb.semanticweb.org .

6 Introduction

• The tools that are presented in chapter 7 are also described in “Klein, M., Fensel,
D., Kiryakov, A., and Ognyanov, D. (2002a). Ontology versioning and change
detection on the web. In13th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW02), number 2473 in LNCS, page 197 ff,
Sigüenza, Spain”, “Klein, M., Kiryakov, A., Ognyanov, D., and Fensel, D. (2002b).
Finding and characterizing changes in ontologies. InProceedings of the 21st Inter-
national Conference on Conceptual Modeling (ER2002), number 2503 in LNCS,
pages 79–89, Tampere, Finland”, and “Noy, N. F. and Klein, M. (2003). Visualiz-
ing changes during ontology evolution. InCollected Posters ISWC 2003, Sanibal
Island, Florida, USA”.

• Finally, the case study from chapter 8 is published as “Klein, M. and Stucken-
schmidt, H. (2003). Evolution management for interconnected ontologies. In
Workshop on Semantic Integration at ISWC 2003, Sanibel Island, Florida”.

Part I

Context and Requirements

Chapter 2

Languages for the Semantic Web

Note: This chapter is based on two publications. The description of XML, RDF and
RDFS in Section 2.1 has been published as tutorial in IEEE Intelligent Systems(Klein,
2001b). The mechanism to represent an ontology language as extension of RDFS (Sec-
tion 2.2) is published in the journal of Computer Networks(Broekstra et al., 2002b),
and is co-authored by Jeen Broekstra, Stefan Decker, Dieter Fensel, Frank van Harme-
len and Ian Horrocks. The description of the OIL language (Section 2.1.5) is taken
from the same publication.

Languages for representing data and knowledge are an important element of the Se-
mantic Web. This chapter gives an introduction to the most important languages, namely
XML, RDF, RDF Schema and OIL and its successors DAML+OIL and OWL. In the
first part of the chapter, we describe the basic principles of the different formalisms and
explain their role. The second part of the chapter describes a general mechanism that
can be used to encode a more expressive knowledge representation scheme as extension
to RDF Schema. We demonstrate how we have done this for the OIL language, but the
mechanism can be used for other languages as well.

2.1 Main Languages

There many different computer languages that play a role in the Semantic Web. Most
languages are based on XML or use XML as syntax; some have connections to RDF or
RDF Schema. In this section, we will briefly introduce XML, XML Schema, RDF, RDF
Schema, and OIL.

2.1.1 XML as a basis

XML (eXtensible Markup Language) is a specification for computer-readable docu-
ments. Markup means that certain sequences of characters in the document contain
information indicating the role of the document’s content. The markup describes the

10 Languages for the Semantic Web

document’s data layout and logical structure and makes the information self-describing,
in a sense. It takes the form of words between angle brackets, called tags—for example,
<name> or <h1> . In this aspect, XML looks very much like the well-known language
HTML.

However,extensibleindicates an important difference and a main characteristic of
XML. XML is actually a metalanguage: a mechanism for representing other languages
in a standardized way. In other words, XML only provides a data format for structured
documents, without specifying an actual vocabulary. This makes XML universally appli-
cable: you can define customized markup languages for unlimited types of documents.
This has already occurred on a massive scale. Besides many proprietary languages—
ranging from electronic order forms to application file formats—a number of standard
languages are defined in XML (called XML applications). For example, XHTML is a
redefinition of HTML 4.0 in XML.

Let’s take a more detailed look at XML. The main markup entities in XML are
elements. They consist normally of an opening tag and a closing tag—for example,
<person> and </person> . Elements might contain other elements or text. If an ele-
ment has no content, it can be abbreviated as<person/> . Elements should be properly
nested: a child element’s opening and closing tags must be within its parent’s opening
and closing tags. Every XML document must have exactly one root element. Elements
can carry attributes with values, encoded as additional “word = value” pairs inside an
element tag—for example,<person name="John"> . Here is a piece of XML:

<?xml version ="1.0"?>
<employees > List of persons in company:

<person name ="John">
<phone >47782 </ phone >
On leave for 2003.

</ person >
</ employees >

XML does not imply a specific interpretation of the data. Of course, on account of
the tag’s names, the meaning of the previous piece of XML seems obvious to human
users, but it is not formally specified! The only legitimate interpretation is that XML
code contains named entities with sub-entities and values; that is, every XML document
forms an ordered, labeled tree. This generality is both XML’s strength and its weakness.
You can encode all kinds of data structures in an unambiguous syntax, but XML does not
specify the data’s use and semantics. The parties that use XML for their data exchange
must agree beforehand on the vocabulary, its use, and its meaning.

2.1.2 DTDs and XML Schemas

Such an agreement can be partly specified byDocument Type Definitionsand XML
Schemas. Although DTDs and XML Schemas do not specify the data’s meaning, they do
specify the names of elements and attributes (the vocabulary) and their use in documents.
Both are mechanisms with which you can specify the structure of XML documents. You
can then validate specific documents against the structure prescription specified by a
DTD or an XML Schema.

2.1. Main Languages 11

DTDs provide only a simple structure prescription: they specify the allowed nesting
of elements, the elements’ possible attributes, and the locations where normal text is
allowed. For example, a DTD might prescribe that every person element must have a
name attribute and may have a child element called phone whose content must be text.
A DTD’s syntax looks a bit awkward, but it is actually quite simple.

XML Schemas are a proposed successor to DTDs. The XML Schema definition is
still a candidate recommendation from the W3C (World Wide Web Consortium), which
means that, although it is considered stable, it might still undergo small revisions. XML
Schemas have several advantages over DTDs. First, the XML Schema mechanism pro-
vides a richer grammar for prescribing the structure of elements. For example, you can
specify the exact number of allowed occurrences of child elements, you can specify de-
fault values, and you can put elements in a choice group, which means that exactly one of
the elements in that group is allowed at a specific location. Second, it provides data typ-
ing. In the example in the previous paragraph, you could prescribe the phone element’s
content as five digits, possibly preceded by another five digits between brackets. A third
advantage is that the XML Schema definition provides inclusion and derivation mecha-
nisms. This lets you reuse common element definitions and adapt existing definitions to
new practices.

A final difference from DTDs is that XML Schema prescriptions use XML as their
encoding syntax. (XML is a metalanguage, remember?) This simplifies tool develop-
ment, because both the structure prescription and the prescribed documents use the same
syntax. The XML Schema specification’s developers exploited this feature by using an
XML Schema document to define the class of XML Schema documents. After all, be-
cause an XML Schema prescription is an XML application, it must obey rules for its
structure, which can be defined by another XML Schema prescription. However, this
recursive definition can be a bit confusing.

2.1.3 Resource Description Format

XML provides a syntax to encode data; the Resource Description Framework is a mech-
anism to tell something about data. As its name indicates, it is not a language but a model
for representing data about “things on the Web.” This type of data about data is called
metadata. The “things” are resources in RDF vocabulary.

RDF’s basic data model is simple: besides resources, it contains properties and state-
ments. A property is a specific aspect, characteristic, attribute, or relation that describes
a resource. A statement consists of a specific resource with a named property plus that
property’s value for that resource. This value can be another resource or a literal value:
free text, basically. Altogether, an RDF description is a list of triples: an object (a re-
source), an attribute (a property), and a value (a resource or free text). For example, to
state that a specific Web page was created by something with a name “John” and a phone
number “47782”, the following three triples are required.

subject predicate object

http://www.w3.org/ created by anon 1

anon 1 name “John”

anon 1 phone number “47782”

12 Languages for the Semantic Web

You can easily depict an RDF model as a directed labeled graph. To do this, you
draw an oval for every resource and an arrow for every property, and you represent literal
values as boxes with values. Figure 2.1 shows such a graph for the triples listed above.

John

name

47782

phone_number

http://www.w3.org/

created_by

Figure 2.1: Graph representation of triple set.

These example notations reveal that RDF is ignorant about syntax; it only provides a
model for representing metadata. The triple list is one possible representation, as is the
labeled graph, and other syntactic representations are possible. Of course, XML would
be an obvious candidate for an alternative representation. The specification of the data
model includes such an XML-based encoding for RDF. In this syntax, the triples above
could be expressed as follows, but other representations are possible as well.

<?xml version ="1.0"?>
<rdf:RDF >

<rdf:Description rdf:about ="http://www.w3.org/">
<created_by >

<rdf:Description >
<name>John </ name>
<phone_number >47782 </ phone_number >

</ rdf:Description >
</ created_by >

</ rdf:Description >
</ rdf:RDF >

As with XML, an RDF model does not define (a priori) the semantics of any applica-
tion domain or make assumptions about a particular application domain. It just provides
a domain-neutral mechanism to describe metadata. Defining domain-specific properties
and their semantics requires additional facilities.

2.1.4 Defining an RDF vocabulary: RDF Schema

Basically, RDF Schema is a simple type system for RDF. It provides a mechanism to
define domain-specific properties and classes of resources to which you can apply those
properties.

2.1. Main Languages 13

The basic modeling primitives in RDF Schema are class definitions and subclassof
statements (which together allow the definition of class hierarchies), property definitions
and subproperty-of statements (to build property hierarchies), domain and range state-
ments (to restrict the possible combinations of properties and classes), and type state-
ments (to declare a resource as an instance of a specific class). With these primitives you
can build a schema for a specific domain. In the example we’ve been using throughout
this tutorial, you could define a schema that declares two classes of resources, Person and
WebPage, and two properties, name and phone, both with the domain Person and range
Literal. You could use this schema to define the resourcehttp://www.w3.org/ as an
instance of WebPage and the anonymous resource as an instance of Person. Together,
this would give some interpretation and validation possibilities to the RDF data.

RDF Schema is quite simple compared to full-fledged knowledge representation lan-
guages. Also, it still does not provide exact semantics. However, this omission is partly
intentional; the W3C foresees and advocates further extensions to RDF Schema.

Because the RDF Schema specification is also a kind of metadata, you can use RDF
to encode it. This is exactly what occurs in the RDF Schema specification document.
Moreover, the specification provides an RDF Schema document that defines the proper-
ties and classes that the RDF Schema specification introduced. As with the XML Schema
specification, such a recursive definition of RDF Schema looks somewhat confusing.

2.1.5 OIL

This section offers a very brief description of the OIL language; more details can be found
in (Horrocks et al., 2000). OIL, which stands for Ontology Inference Layer, is a Web-
based representation and inference layer for ontologies. It unifies three important aspects
provided by different communities: formal semantics and efficient reasoning support as
provided by Description Logics, epistemologically rich modeling primitives as provided
by the Frame community, and a standard proposal for syntactical exchange notations as
provided by the Web community. A small example of an ontology in OIL is presented in
figure 2.2. The language has been designed such that:

1. it provides most of the modeling primitives commonly used in frame-based and
Description Logic (DL) oriented Ontologies;

2. it features simple, clean and well-defined first-order semantics;

3. automated reasoning support, (e.g., class consistency and subsumption checking)
can be provided. The FaCT system (Bechhofer et al., 1999), a DL reasoner de-
veloped at the University of Manchester, can be—and has been—used to this end
(Stuckenschmidt, 2000).

This core language is expected to be extended in the future with sets of additional prim-
itives. It should be noted however, that full reasoning support may not be available for
ontologies using such primitives.

14 Languages for the Semantic Web

ontology-container
title “African Animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology

describing African animals and plants”
description.release“2.0”
publisher “I. Horrocks”
type “ontology”
format “pdf”
identifier “http://.../oil-rdfs.pdf”
source“http://www.africa.com/”
language“en-uk”

ontology-definitions
slot-def eats

inverse is-eaten-by

slot-def has-part
inverse is-part-of
properties transitive

slot-def weight
range (min 0)
properties functional

slot-def color
range string
properties functional

class-defanimal

class-defplant

disjoint animal plant
class-deftree

subclass-ofplant

class-defbranch
slot-constraint is-part-of

has-valuetree

class-defleaf

slot-constraint is-part-of
has-valuebranch

class-defdefinedcarnivore
subclass-ofanimal
slot-constraint eats

value-typeanimal

class-defdefinedherbivore
subclass-ofanimal
slot-constraint eats

value-type(plant or
(slot-constraint is-part-of

has-valueplant))
disjoint carnivore herbivore
class-defmammal

subclass-ofanimal

class-defelephant
subclass-ofherbivore mammmal
slot-constraint eats

value-typeplant
slot-constraint color

has-filler “grey”

class-defdefinedafrican-elephant
subclass-ofelephant
slot-constraint comes-from

has-filler Africa

class-defdefinedindian-elephant
subclass-ofelephant
slot-constraint comes-from

has-filler India

disjoint-covered elephant by
african-elephant indian-elephant

——– instance information ——–

instance-ofAfrica continent
instance-ofAsia continent
related is-part-of India Asia

Figure 2.2: An example OIL ontology, modeling the animal kingdom

2.1. Main Languages 15

An ontology in OIL is represented via anontology containerand anontology def-
inition segment. For the container, we adopt the components defined by Dublin Core
Metadata Element Set, Version 1.11.

The ontology-definition segment consists of an optional import statement, an optional
rule base and class, slot and axiom definitions.

A class definition (class-def) associates a class name with a class description. This
class description, in turn, consists of a subclass-of statement and zero or more slot con-
straints, as well as the type of the definition. (If that definition is primitive, the stated
conditions for class membership are necessary, but not sufficient. If it is defined, these
conditions are both necessary and sufficient).

The value of asubclass-ofstatement is a (list of) class-expression(s). This can be
either a class name, a slot constraint, or a boolean combination of class expressions using
the operatorsand, or andnot with the standard DL semantics.

In some situations it is possible to use aconcrete-type-expressioninstead of a class
expression. A concrete-type-expression defines a range over some data type. Two data
types that are currently supported in OIL areinteger andstring. Ranges can be defined
using the expressions (min X), (max X), (greater-than X), (less-thanX), (equal X) and
(range X Y). For example, (min 21) defines the data type consisting of all the integers
greater than or equal to 21. Another example is (equal“xyz”), which defines the data-type
consisting of the string “xyz”.

A slot constraint (slot-constraint) is a list of one or more constraints (restrictions)
applied to a slot (property). Typical constraints are:

• has-value (class-expr)Every instance of the class defined by the slot constraint
must be related, via the slot relation, to an instance of each class expression in the
list.

• value-type (class-expr)If an instance of the class defined by the slot constraint
is related via the slot relation to some individual x,thenx must be an instance of
each class expression in the list.

• max-cardinality n (class-expr)An instance of the class defined by the slot con-
straint can - at the most - be related ton distinct instances of the class expression
via the slot relation (also min-cardinality and, as a shortcut for both min and max,
cardinality).

A slot definition (slot-def) associates a slot name with a slot definition. A slot defini-
tion specifies global constraints that apply to the slot relation. A slot-def can consist of a
subslot-ofstatement,domain andrange restrictions, and additional qualities of the slot,
such asinverseslot, transitive, and symmetric.

An axiomasserts some additional facts about the classes in the ontology, for example
that the classescarnivore andherbivore are disjoint (that is, have no instances in com-
mon). Valid axioms are:

• disjoint (class-expr)+All of the class expressions in the list are pairwise disjoint.

1Seehttp://purl.org/DC/

16 Languages for the Semantic Web

• covered (class-expr) by (class-expr)+Every instance of the first class expression
is also an instance of at least one of the class expressions in the list.

• disjoint-covered (class-expr) by (class-expr)+Every instance of the first class
expression is also an instance of exactly one of the class expressions in the list.

• equivalent (class-expr)+All of the class expressions in the list are equivalent (i.e.
they have the same instances).

The syntax of OIL is geared towards XML and RDF. Horrocks et al. (2000) defines
a DTD and a XML schema definition for OIL. In the following section (2.2), we will
derive the RDFS syntax for OIL.

2.1.6 DAML+OIL and OWL

The OIL language has been succeeded by new ontology languages, namely DAML+OIL
(Connolly et al., 2001) and OWL (McGuinness and van Harmelen, 2004). DAML+OIL
is the outcome of a joint initiative of the DAML program2 and the OIL language group.
The resulting language inherits the formal semantics (based on a description logic) from
OIL and the RDF based syntax from both. The first version of the DAML+OIL language
has been published in December 2000, a second version in March 2001.

There are a few differences between OIL and DAML+OIL, which are described at
the DAML+OIL. website3. We cite the most notable differences below.

• The RDF syntax is different. This includes simple name changes, e.g.,oil:Not

has becomedaml:complementOf , but also more excessive encoding differences,
like the replacement ofoil:hasPropertyRestriction by daml:subClassOf . As a
consequence, the RDF encoding of DAML+OIL has lost some features of the OIL
RDF encoding. The original OIL language allowed for the explicit construction
of “frame-like” expressions, i.e. things with a number of superclasses and slot
restrictions, as well as the ability to add axioms. In DAML+OIL, a lot of definitions
are “collapsed” into axioms. This gives DAML+OIL a much more “logic” flavor
instead of the a “frame” flavor of OIL (Bechhofer et al., 2001). Most notable
syntax difference is the use of lists in DAML+OIL, which required an extension to
standard RDF.

• OIL has better “backwards compatibility” with RDFS. In case of defined (non-
primitive) concepts, half of the two way implication is still accessible to RDFS
agents, because of the use ofrdfs:subClassOf .

• DAML+OIL has an explicitsamePropertyAs property. In OIL this should be ex-
pressed using mutualrdfs:subPropertyOf statements.

• DAML+OIL has two mechanisms to state disjointness. DAML+OIL provides both
adisjointWith property that can be used to assert that two classes are disjoint and
a “Disjoint” class that can be used to assert pairwise disjointness amongst all the
classes in a list. OIL simply usesdisjoint to assert disjointness amongst two or
more classes.

2Seehttp://www.daml.org/ .
3http://www.daml.org/2000/12/differences-oil.html

2.1. Main Languages 17

• Different property characteristics are supported: DAML+OIL does not support
SymmetricProperty , whereas OIL does not supportUnambiguousProperty . How-
ever, logically both notions can be expressed via the combination of other charac-
teristics.

OWL is the result of a standardization process of the DAML+OIL language by the
W3C, the World Wide Web Consortium.4 OWL has become a W3C Recommendation
(i.e. a standard) in February 2004. The language is very similar to DAML+OIL. The
RDF syntax for OWL has only minor changes from DAML+OIL. The specification doc-
uments (see McGuinness and van Harmelen, 2004) mentions the following differences
between DAML+OIL and OWL:

• qualified number restrictions are not present anymore in OWL;

• the ability to directly state that properties can be symmetric is added to OWL, and

• there are a number of changes to the names of the various constructs.

Another new feature of OWL is that it has been divided in three increasingly-expressive
sublanguages, OWL Lite, OWL DL, and OWL Full, targeted at different groups of users.
OWL Lite provides the constructs for users that primarily need a classification hierarchy
and simple constraints. OWL DL supports those users who want the maximum expres-
siveness while retaining computational completeness (all conclusions are guaranteed to
be computable) and decidability (all computations will finish in finite time). OWL Full
is meant for users who want maximum expressiveness and the syntactic freedom of RDF
with no computational guarantees. A detailed overview of the OWL Full knowledge
model and the differences between the sublanguages is given in Section 5.3.

2.1.7 Summary

XML and RDF are different formalisms with their own purposes, and their roles in the
realization of the Semantic Web vision will be different. XML aims to provide an easy-
to-use syntax for Web data. With it, you can encode all kinds of data that is exchanged
between computers, using XML Schemas to prescribe the data structure. This makes
XML a fundamental language for the Semantic Web, in the sense that many techniques
will probably use XML as their underlying syntax.

XML does not provide any interpretation of the data beforehand, so it does not con-
tribute much to the “semantic” aspect of the Semantic Web. RDF provides a standard
model to describe facts about Web resources, which gives some interpretation to the
data. RDF Schema extends those interpretation possibilities somewhat more. However,
to realize the Semantic Web vision, it will be necessary to express even more semantics
of data. For this, languages such as OIL, DAML+OIL and OWL can be used, which add
new modeling primitives and formal semantics to RDF Schema.

4http://www.w3c.org

18 Languages for the Semantic Web

2.2 Representing Schema Languages in RDFS

In this section, we will show how RDFS can be extended to contain a more expressive
knowledge representation language, which would enrich it with the required additional
expressivity and the semantics of that language. We will do this by describing the ontol-
ogy language OIL as an extension of RDFS. The described mechanism also is the basis
of the RDF representations of DAML+OIL and OWL.

2.2.1 OIL as an extension of RDF Schema

RDF provides basic modeling primitives: ordered triples of objects and links. RDFS
enriches this basic model by providing a vocabulary for RDF, which is assumed to have
a certain semantics. This section presents a careful analysis of the relation between
RDFS and OIL by defining OIL in RDFS, using existing vocabulary wherever possible.
The reason for this is twofold. First, by re-using RDFS primitives we are effectively
imposing formal semantics on them, specifically the formal semantics of OIL. Secondly,
because we only extend RDFS with new primitives where necessary, RDFS becomes a
full sub-language of OIL, thus providing backward compatibility from OIL to RDFS.

The complete schema can also be found athttp://www.ontoknowledge.org/

oil/rdf-schema/ . The RDFS serialization of the example from the previous section
is available athttp://www.ontoknowledge.org/oil/a-animals.rdfs .

The ontology container and import mechanism

The outer box of the OIL specification in RDFS is defined by the XML prologue and
the namespace definitions “xmlns:rdf” and “xmlns:rdfs”, which refer to RDF and RDFS,
respectively. Namespace definitions make externally defined RDF constructs available
for local use. Thus, the OIL specification uses RDF and RDFS, and an actual ontology in
OIL has namespace definitions which make both the RDF and RDFS definitions as well
as the OIL specification itself available.

<?xml version ="1.0"?>
<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs ="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oil ="http://www.ontoknowledge.org/oil/rdf-schema/2000/11

/10-oil-standard"
xmlns:dc ="http://purl.org/dc/elements/1.1/"
xmlns:dcq ="http://purl.org/dc/qualifiers/1.1/"}
<! -- The ontology defined in OIL with RDFS syntax-- >

</ rdf:RDF >

It is important to note that namespace definitions are not import statements and are,
therefore, not transitive. An actual ontology also has to define the namespaces for RDF
and RDFS via “xmlns:rdf” and “xmlns:rdfs”, otherwise, all elements of OIL that directly
correspond to RDF and RDFS elements would be unavailable.

OIL’s ontology-containerprovides metadata describing an OIL ontology. Because
the structure and RDF format of the Dublin Core element set is used, it is sufficient to

2.2. Representing Schema Languages in RDFS 19

import the namespace of the Dublin Core element set. It is important to note that an
OIL ontology’s provision of a container definition is aninformal guideline in its RDFS
syntax, because it is impossible to enforce this in the schema definition.

Aside from the container, an OIL ontology consists of a set of definitions. Theim-
port definition is a simple list of references to other OIL modules to be included in the
ontology. We make use of the XML namespace mechanism to incorporate this mech-
anism in our RDFS specification. Again, in contrast to the import statement in OIL,
“inclusion” via the namespace definition is not transitive.

Class and attribute definitions

In OIL, a class definition links a class with a name, documentation, a type, its super-
classes, and the attributes defined for it. In RDFS, classes are simply declared by assign-
ing them a name (with the ID attribute). We will demonstrate how to write OIL class
definitions in RDF, making maximum use of existing RDFS constructs, but extending
RDFS with additional constructs where necessary (see table 2.1 and figure 2.3). We have
followed the informal RDF guideline of starting property names with a lower-case letter,
and class names with a capital.

oil:ClassExpression

oil:And oil:Or oil:Not

oil:PropertyRestriction

oil:CardinalityRestriction

oil:DefinedClassoil:PrimitiveClass

oil:HasValueoil:ValueType

oil:MinCardinality oil:MaxCardinalityoil:Cardinality

oil:TransitiveProperty

oil:SymmetricProperty

oil:FunctionalProperty

oil:Expression

oil:Axiom

oil:ConcreteTypeExpression

oil:Covering

oil:Cover oil:DisjointCover

oil:Equivalentoil:Disjoint

oil:BooleanExpression

oil:HasFiller
oil:Min

oil:Max oil:Range

oil:LessThan oil:GreaterThan

oil:Equal

oil:OneOf

rdfs:Resource

rdfs:ConstraintResource rdf:Property

rdfs:Class

Figure 2.3: The OIL extensions to RDFS in the subsumption hierarchy.

To illustrate the use of these extensions, we will examine them systematically with
various example OIL class definitions that need to be represented in RDFS syntax:

class-defdefinedherbivore
subclass-ofanimal

slot-constraint eats
value-type(plant or
(slot-constraint is-part-of has-valueplant))

class-defelephant
subclass-ofherbivore mammal

20 Languages for the Semantic Web

slot-constraint eats
value-typeplant

slot-constraint color
has-filler “grey”

The first defines a class ”herbivore”, a subclass of animal, whose instances eat plants
or parts of plants. The second defines a class ”elephant”, which is a subclass of both
herbivore and mammal.

Defined classes and Primitive classesWe start by translating the first class definition.
The header can be done in a straightforward manner, using the rdfs:Class construct and
the rdf:ID property to assign a name:

<rdfs:Class rdf:ID ="herbivore"> </ rdfs:Class >

This definition does not yet clearly identify this class as a defined class. We chose to
introduce two extra classes in the OIL namespace: PrimitiveClass and DefinedClass. In
a particular class definition, we can use one of these two options to identify a class as a
defined class:

<rdfs:Class rdf:ID ="herbivore">
<rdf:type rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
</ rdfs:Class >

or:

<oil:DefinedClass rdf:ID ="herbivore"> </ oil:DefinedClass >

We will use the first method of serialization throughout this chapter, but it is important
to note that both models are exactly the same.

This method of making an actual class an instance of either DefinedClass or Primi-
tiveClass introduces a nice object-meta distinction between the OIL RDFS schema and
the actual ontology: using rdf:type, we can consider the class “herbivore” to be anin-
stanceof DefinedClass. Generally speaking, if a class in OIL is not explicitly identified
as a defined class, it is assumed to be primitive.

Class Subsumption Next, we need to translate the subclass-of statement to RDFS.
This also can be done in a straightforward manner, simply by re-using existing RDFS
expressiveness:

<rdfs:Class rdf:ID ="herbivore">
<rdf:type rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource ="#animal"/>

</ rdfs:Class >

However, in order to define a class as a subclass of a classexpression, we would need to
use the oil:subClassOf property.

2.2. Representing Schema Languages in RDFS 21

Slot Constraints We still need to serialize the slot constraint on the class “herbivore”.
RDFS provides no mechanism for restricting the attributes of a class on a local level.
This is due to the property-centric nature of the RDF data model: properties are defined
globally, with their domain description coupling them to the relevant classes.

To overcome this problem, we will introduce the oil:hasPropertyRestriction property,
which is an rdf:type of rdfs:ConstraintProperty (analogous to rdfs:domain and rdfs:range).
In doing so, we will be using RDFS’s full potential capacity for extensibility. We will
also introduce oil:PropertyRestriction as a placeholder class5 for specific classes of slot
constraints, such as has-value, value-type, cardinality, etc. These are all modeled in the
OIL namespace as subclasses of oil:PropertyRestriction:

<rdfs:Class rdf:ID ="ValueType">
<rdfs:subClassOf rdf:resource ="#PropertyRestriction"/>

</ rdfs:Class >

They are also similar for the other slot constraints. For the three cardinality constraints,
an extra property “number” will be introduced, which will serve to assign a concrete
value to the cardinality constraints.

To connect a ValueType slot constraint with its actual values, such as the property to
which it refers and the class to which it restricts that property, we will introduce a pair
of helper properties. These helper properties have no direct counterpart in terms of OIL
primitives, but do serve to connect two classes. We will define a property oil:onProperty
to connect a property restriction with the subject property, and a property oil:toClass to
connect the property restriction to its class restriction.

In our example ontology, we would serialize the first part of the slot constraint using
the primitives introduced above. This would proceed as follows:

<rdfs:Class rdf:ID ="herbivore">
<rdf:type rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource ="#animal"/>
<oil:hasPropertyRestriction >

<oil:ValueType >
<oil:onProperty rdf:resource ="#eats"/>
<oil:toClass > </ oil:toClass >

</ oil:ValueType >
</ oil:hasPropertyRestriction >

</ rdfs:Class >

To restrict the value type of a property to a string or an integer, we could use the
toConcreteType property:

...
<oil:ValueType >

<oil:onProperty rdf:resource ="#age"/>
<oil:toConcreteType rdf:resource ="http://www.ontoknowledge.org/

oil/rdf-schema/2000/11/10-oil-standard#Integer"/>
</ oil:ValueType >

...

5A placeholder class in the OIL RDFS specification is only used to apply domain- and range restrictions to
a group of classes, and will not be used in the actual OIL ontology.

22 Languages for the Semantic Web

Boolean Expressions The slot constraint has not been completely translated yet: the
toClass element is not yet filled. Here we come across a feature of OIL that is not avail-
able in RDFS: theboolean expression. A boolean expression in OIL is an expression that
evaluates to either a class definition or a concrete type. In the case of a class definition,
such an expression is a boolean combination of classes and/or slot constraints. In the
case of a concrete type definition, the expression can be a simple string or integer value,
or a more complex expression (see Section 8). In the example, we have a boolean ‘or’
expression that evaluates to the class of all things that are plants or parts of plant.

We will introduce oil:Expression as a common placeholder, along with oil:Con-
creteTypeExpression and oil:ClassExpression as specialization placeholders. However,
oil:BooleanExpression will be introduced as a sibling of these two, since we want to
be able to construct boolean expressions with either kind of expression. The specific
boolean operators, ‘and’, ‘or’ and ‘not’, are introduced as subclasses. We should also
note that since a single class is essentially a simple kind of class expression, rdfs:Class
itself should be a subclass of oil:ClassExpression (see figure 2.3).

The ‘and’, ‘or’ and ‘not’ operators are connected to operands using the oil:hasOperand
property. Again, this property has no direct equivalent in OIL primitive terms. Rather,
it serves as a helper in connecting two class expressions, as the only way to relate two
classes in the RDF data model is by means of a Property.

In our example, we need to serialize a boolean ‘or’. The RDF Schema definition of
the operator reads as follows:

<rdfs:Class rdf:ID ="Or">
<rdfs:subClassOf rdf:resource ="#BooleanExpression"/>

</ rdfs:Class >

The helper property is defined as follows:

<rdf:Property rdf:ID ="hasOperand">
<rdfs:domain rdf:resource ="#BooleanExpression"/>
<rdfs:range rdf:resource ="#ClassExpression"/>

</ rdf:Property >

The fact that hasOperand is only to be used on boolean class expressions is expressed
using the rdfs:domain construction. This type of modeling stems directly from the RDF
property-centric approach.
Now, we apply what we defined above to the example:

<rdfs:Class rdf:ID ="herbivore">
<rdf:type rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#DefinedClass"/>
<rdfs:subClassOf rdf:resource ="#animal"/>
<oil:hasPropertyRestriction >

<oil:ValueType >
<oil:onProperty rdf:resource ="#eats"/>
<oil:toClass >

<oil:Or >
<oil:hasOperand rdf:resource ="#plant"/>
<oil:hasOperand >

<HasValue >
<oil:onProperty rdf:resource ="#is-part-of"/>
<oil:toClass rdf:resource ="#plant"/>

2.2. Representing Schema Languages in RDFS 23

</ HasValue >
</ oil:hasOperand >

</ oil:Or >
</ oil:toClass >

</ oil:ValueType >
</ oil:hasPropertyRestriction >

</ rdfs:Class >

Observe that the HasValue property restriction is not related to the class by a hasProp-
ertyRestriction property, but by a hasOperand property. This stems from the fact that the
property restriction plays the role of a boolean operand here.

Lists of statements Now, we will illustrate some more features by translating the sec-
ond class definition, “elephant”. The first bit is trivial:

<rdfs:Class rdf:ID ="elephant"> </ rdfs:Class >

Next, we need to translate the OIL subsumption statement to RDFS. This statement
contains a list of superclasses. In the RDFS syntax, we will model these as seperate
subClassOf statements:

<rdfs:Class rdf:ID ="elephant">
<rdfs:subClassOf rdf:resource ="#mammal"/>
<rdfs:subClassOf rdf:resource ="#herbivore"/>

</ rdfs:Class >

Next, we have two slot constraints. The first of these is a value-type restriction, and
is serialized in the same manner demonstrated in the “herbivore” example:

<rdfs:Class rdf:ID ="elephant">
<rdfs:subClassOf rdf:resource ="#mammal"/>
<rdfs:subClassOf rdf:resource ="#herbivore"/>
<oil:hasPropertyRestriction >

<oil:ValueType >
<oil:onProperty rdf:resource ="#eats"/>
<oil:toClass rdf:resource ="#plant"/>

</ oil:ValueType >
</ oil:hasPropertyRestriction >

</ rdfs:Class >

Slot constraints to concrete types The second slot constraint is a restriction to a par-
ticular concrete type. In OIL, a shortcut syntax for such restrictions has been introduced
in the form of a “has-filler” primitive. We will serialize this as we did with the other slot
constraints: we will introduce a class oil:HasFiller and helper properties, oil:stringFiller
and oil:integerFiller, to connect to the value:

<oil:HasFiller >
<oil:onProperty rdf:resource ="#color"/>
<oil:stringFiller >grey </ oil:stringFiller >

</ oil:HasFiller >

Unfortunately, there is no direct way in RDFS to constrain the value of a property to
a particular datatype. Therefore, the range value of oil:stringFiller can not be constrained

24 Languages for the Semantic Web

to contain only strings. We will create two subclasses of rdfs:Literal, named oil:String
and oil:Integer only for the sake of clarity.

<rdfs:Class rdf:ID ="String">
<rdfs:comment >
The subset of Literals that are strings.
</ rdfs:comment >
<rdfs:subClassOf rdf:resource ="http://www.w3.org/2000/01/

rdf-schema#Literal"/>
</ rdfs:Class >

The range of the filler properties can now be set to the appropriate class, although it
is still possible to use any type of Literal. The semantics of rdfs:Literal are only that any-
thing of this type is atomic, i.e. it will not be processed further by an RDF processor. The
fact that in this case it should be a string value can only be made an informal guideline.

<rdf:Property ID ="stringFiller">
<rdfs:domain rdf:resource ="#HasFiller"/>
<rdfs:range rdf:resource ="#String"/>

</ rdf:Property >

Using all this, we get the following complete translation of the class “elephant”:

<rdfs:Class rdf:ID ="elephant">
<rdfs:subClassOf rdf:resource ="#mammal"/>
<rdfs:subClassOf rdf:resource ="#herbivore"/>
<oil:hasPropertyRestriction >

<oil:ValueType >
<oil:onProperty rdf:resource ="#eats"/>
<oil:toClass rdf:resource ="#plant"/>

</ oil:ValueType >
<oil:HasFiller >

<oil:onProperty rdf:resource ="#color"/>
<oil:stringFiller >grey </ oil:stringFiller >

</ oil:HasFiller >
</ oil:hasPropertyRestriction >

</ rdfs:Class >

Note that more than one property restriction is allowed within the hasPropertyRe-
striction element.

Conclusion The serialization we propose gives us enough expressiveness to translate
any possible OIL class definition to an RDF syntax. Use of RDF(S) specific constructs is
maximized without sacrificing clarity of the specification. This is to enable RDF agents
that are not OIL-aware to understand as much of the specification as possible, while
retaining the option of translating back to OIL unambiguously. In the next section, we
will examine how to serialize global slot definitions.

Slot definitions

Both OIL and RDFS allow slots as first-class citizens of an ontology. Therefore, slot def-
initions in OIL map nicely onto property definitions in RDFS. In addition, the “subslot-
of”, “domain”, and “range” properties have almost direct equivalents in RDFS. Table 2.2
presents an overview of the OIL constructs and the corresponding RDFS constructs.

2.2. Representing Schema Languages in RDFS 25

OIL primitive RDFS syntax type

class-def rdfs:Class class
subclass-of rdfs:subClassOf property
class-expression oil:ClassExpression class

(placeholder only)
and oil:And class

(subclass of BooleanExpression)
or oil:Or class

(subclass of BooleanExpression)
not oil:Not class

(subclass of BooleanExpression)
slot-constraint oil:PropertyRestriction class

(placeholder only)
oil:hasPropertyRestriction property
(rdf:type of rdfs:ConstraintProperty)
oil:CardinalityRestriction class
(placeholder only)
(subclass of oil:PropertyRestriction)

has-value oil:HasValue class
(subclass of oil:PropertyRestriction)

has-filler oil:HasFiller class
(subclass of oil:PropertyRestriction)

value-type oil:ValueType class
(subclass of oil:PropertyRestriction)

max-cardinality oil:MaxCardinality class
(subclass of oil:CardinalityRestriction)

min-cardinality oil:MinCardinality class
(subclass of oil:CardinalityRestriction)

cardinality oil:Cardinality class
(subclass of oil:CardinalityRestriction)

Table 2.1: Class-definitions in OIL and the corresponding RDF(S) constructs

There are a few subtle differences between domain and range restrictions in OIL and
their equivalents in RDFS. OIL allows multiple domain and range restrictions on a single
slot. The interpretation of such a set of restrictions is theintersectionof the classes in the
individual statements (conjunctive semantics). In RDFS, multiple domain statements are
allowed, but their interpretation is theunionof the classes in the statements (disjunctive
semantics). This limits the reasoning capabilities of RDFS drastically6.

Despite these semantics for domain, a Property can have at most one range restriction
in RDFS. However, the current consensus within the RDF community is that the seman-
tics of domain and range should change in the next release of RDFS. We anticipate such
a change, and will interpret both multiple domain and multiple range restrictions with
conjunctive semantics.

Another difference with RDFS is that OIL not only allows classes as range and do-
main of properties, but also classexpressions, and – in the case of range – concrete-type

6For example, it is never possible to derive class membership from a domain statement when union seman-
tics are used.

26 Languages for the Semantic Web

expressions. It is not possible to reuse rdfs:range and rdfs:domain for these sophisti-
cated expressions, because of the conjunctive semantics of multiple range statements:
we cannot extend the range of rdfs:range or rdfs:domain, we can only restrict it. In our
RDFS serialization of OIL, we will, therefore, introduce two new ConstraintProperties
oil:domain and oil:range. They have the same domain as their RDFS equivalent (i.e.,
rdf:Property), but have a broader range. For domain, class expressions are valid fillers;
for range, both class expressions and concrete type expressions may be used:

<rdfs:ConstraintProperty rdf:ID ="domain">
<rdfs:domain rdf:resource ="http://www.w3.org/1999/02/

22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource ="#ClassExpression"/>

</ rdfs:ConstraintProperty >

<rdfs:ConstraintProperty rdf:ID ="range">
<rdfs:domain rdf:resource ="http://www.w3.org/1999/02/

22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource ="#Expression"/>

</ rdfs:ConstraintProperty >

When translating a slot definition, rdfs:domain and rdfs:range should be used for
simple (one class) domain and range restrictions. For example:

slot-def gnaws
subslot-ofeats
domain Rodent

will be translated into:

<rdf:Property rdf:ID ="gnaws">
<rdfs:subPropertyOf rdf:resource ="#eats"/>
<rdfs:domain rdf:resource ="#Rodent"/>

</ rdf:Property >

For more complicated statements, the oil:range or oil:domain properties should be used:

slot-def age
domain (elephant or lion)
range (range 0 70)

is in the RDFS representation:

<rdf:Property rdf:ID ="age">
<oil:domain >

<oil:Or >
<oil:hasOperand rdf:resource ="#elephant"/>
<oil:hasOperand rdf:resource ="#lion"/>

</ oil:Or >
</ oil:domain >
<oil:range >

<oil:Range >
<oil:integerValue >0</ oil:integerValue >
<oil:integerValue >70</ oil:integerValue >

</ oil:Range >
</ oil:range >

</ rdf:Property >

2.2. Representing Schema Languages in RDFS 27

To specify that the range of a property is string or integer, we will use our definitions
of oil:String and oil:Integer as subclasses of rdfs:Literal. For example, in stating that the
range of age is integer, we could say:

<rdf:Property ID ="age">
<rdfs:range rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#Integer">
</ rdf:Property >

However, global slot-definitions in OIL allow specification of more aspects of a slot
than do property definitions in RDFS. Aside from the domain and range restrictions, OIL
slots can also have an “inverse” attribute and qualities like “transitive” and “symmetric”.

In light of this, we will add a property “inverseRelationOf” with “rdf:Property” as
the domain and range. We also add the classes “TransitiveProperty”, “FunctionalProp-
erty” and “SymmetricProperty” to reflect the different qualities of a slot. In the RDFS
serialization of OIL, the rdf:type property can be used to add a quality to a property. For
example, the OIL definition of:

slot-def has-part
inverse is-part-of
properties transitive

reads as follows in RDFS:

<rdf:Property rdf:ID ="has-part">
<rdf:type rdf:resource ="http://www.ontoknowledge.org/oil/

rdf-schema/2000/11/10-oil-standard#TransitiveProperty"/>
<oil:inverseRelationOf rdf:resource ="#is-part-of"/>

</ rdf:Property >

In the abbreviated syntax, it reads:

<oil:TransitiveProperty rdf:ID ="has-part">
<oil:inverseRelationOf rdf:resource ="#is-part-of"/>

</ oil:TransitiveProperty >

This method of translating the qualities of properties features the same nice object-
meta distinction (between the OIL language and the actual ontology) as the translation
of the “type” of a class (see section 2.2.1). In an actual ontology, the property “has-part”
can be considered as aninstanceof a TransitiveProperty. A property can be made an
instance of more than one class, and thus assigned multiple qualities. Note that this way
of representing qualities of properties in RDFS follows the proposed general approach of
modeling axioms in RDFS, presented in (Staab et al., 2000). This approach makes the
same distinction between language-level constructs and schema-level constructs.

One alternative way of serializing the attributes of properties would be to define the
qualities “transitive” and “symmetric” as subproperties of rdf:Property. Properties in the
actual ontology (e.g. “has-part”) would, in turn, be defined as subProperties of these
qualities (e.g. transitiveProperty). However, this would mix-up the use of properties at
the OIL specification level as well as at the actual ontology level.

A third approach would be to model the qualities again as subproperties of rdf:Property,
but to define properties in the actual ontology as instances (rdf:type) of such qualities.

28 Languages for the Semantic Web

This approach preserves the object-meta level distinction. However, we dislike the use of
rdfs:subPropertyOf at the meta level, because then rdfs:subPropertyOf has two meanings,
at the meta level and at the object level.

In our opinion, the first solution is preferable, because of the clean distinction it
makes between the meta and object level.

OIL primitive RDFS syntax type

slot-def rdf:Property class
subslot-of rdfs:subPropertyOf property
domain rdfs:domain property

oil:domain property
range rdfs:range property

oil:range property
inverse oil:inverseRelationOf property
transitive oil:TransitiveProperty class
functional oil:FunctionalProperty class
symmetric oil:SymmetricProperty class

Table 2.2: Slot-definitions in OIL and the corresponding RDF(S) constructs.

Axioms

Axioms in OIL are factual statements about the classes in the ontology. They correspond
to n-ary relations between class expressions, wheren is 2 or greater.

RDF features only binary relations (properties). Therefore, we cannot simply map
OIL axioms to RDF properties. Instead, we chose to model axioms as classes, with helper
properties connecting them to the class expressions involved in the relation. Since axioms
can be considered objects, this is a very natural approach towards modeling them in RDF
(see also (Staab and Mädche, 2000; Staab et al., 2000)). Note also that binary relations
(properties) are modeled as objects in RDFS as well (i.e., any property is an instance of
the class rdf:Property). We simply introduce a new primitivealongsiderdf:Property for
relations with higher arity (see figure 2.3).

We introduce a placeholder class oil:Axiom, and model specific types of axioms as
subclasses:

<rdfs:Class ID ="Disjoint">
<rdfs:subClassOf rdf:resource ="#Axiom"/>

</ rdfs:Class >

We do the same for Equivalent.
We also introduce a property to connect the axiom object with the class expressions

it relates to each other: oil:hasObject is a property connecting an axiom with an object
class expression. We will illustrate this below by serializing the axiom that herbivores,
omnivores and carnivores are (pairwise) disjoint:

<oil:Disjoint >
<oil:hasObject rdf:resource ="#herbivore"/>

2.2. Representing Schema Languages in RDFS 29

<oil:hasObject rdf:resource ="#carnivore"/>
<oil:hasObject rdf:resource ="#omnivore"/>

</ oil:Disjoint >

Since in a disjointness axiom (or an equivalence axiom) the relation between class
expressions is bidirectional, we can connect all class expressions to the axiom object
using the same type of property.

However, in a covering axiom (such as cover or disjoint-cover), the relation between
class expressions is not bidirectional: one class expression may serve as the covering,
while several others function as part of that covering.

For modeling covering axioms, we will introduce a separate placeholder class, oil:Covering,
which is a subclass of oil:Axiom. The specific types of coverings available are modeled
as subclasses of oil:Covering again:

<rdfs:Class ID ="Cover">
<rdfs:subClassOf rdf:resource ="#Covering"/>

</ rdfs:Class >

<rdfs:Class ID ="DisjointCover">
<rdfs:subClassOf rdf:resource ="#Covering"/>

</ rdfs:Class >

We will also introduce two additional properties: oil:hasSubject, to connect a cov-
ering axiom with its subject, and oil:isCoveredBy (a subproperty of oil:hasObject) to
connect a covering axiom with the classes that cover the subject.

We will illustrate this below by serializing the axiom that the class animal is covered
by carnivore, herbivore, omnivore, and mammal (i.e. every instance of animal is also an
instance of at least one of the other classes).

<oil:Cover >
<oil:hasSubject rdf:resource ="#animal"/>
<oil:isCoveredBy rdf:resource ="#carnivore"/>
<oil:isCoveredBy rdf:resource ="#herbivore"/>
<oil:isCoveredBy rdf:resource ="#omnivore"/>
<oil:isCoveredBy rdf:resource ="#mammal"/>

</ oil:Cover >

Restrictions to valid expressions

In the previous sections, we demonstrated how the knowledge representation constructs
in OIL can be defined as an extension to RDF Schema. With these constructs, every OIL
ontology can be fully expressed in an RDF Schema representation. However, it was not
possible to define the extension in such a way that all schemas that follow it are also valid
OIL ontologies. In other words, there are some restrictions to valid ontologies that are
not expressible in the RDF Schema extension.7

First, there is a problem with data types. It cannot be enforced that instances of
oil:String are really strings or that instances of oil:Integer are really integers. Conse-
quently, it is syntactically possible to state:

7By “valid” we mean: not allowed by the BNF grammar of OIL. From the logical point of view, there is
nothing wrong with a statement such as (dog and (min 0)); it just happens to be equivalent to the empty class.

30 Languages for the Semantic Web

<rdf:Property rdf:ID ="weight">
<rdf:range >

<oil:Min >
<oil:integerValue >nonsense </ oil:integerValue >

</ oil:Min >
</ rdf:range >

</ rdf:Property >

This is due to the fact that the RDF Schema specification has (intentionally) not specified
any primitive data types. According to the specification, the work on data typing in XML
itself should be the foundation for such a capability.

Second, the RDF Schema specification of OIL does not prevent the intertwining of
boolean expressions of classes with boolean expressions of concrete data types. Although
a statement like (dog and (min 0)) is not allowed in OIL, it is syntactically possible to
state:

<oil:And >
<oil:hasOperand rdf:resource ="#Dog">
<oil:hasOperand >

<oil:Min >
<oil:integerValue >0</ oil:integerValue >

</ oil:Min >
</ oil:hasOperand >

</ oil:And >

To prevent this kind of mixing, we could have introduced separate boolean operators for
class expressions and concrete type expressions. In our opinion, however, this would
have made the schema too convoluted.

Finally, another kind of problem is that the schema cannot prevent the unnecessary
use of the OIL variants of standard RDF Schema constructs, such as oil:subClassOf,
oil:range and oil:domain. Although this unnecessary use does not affect the semantics of
the ontology, it limits the compatibility of ontologies with plain RDF Schema.

2.2.2 Compatibility with RDF Schema

In this section, we will discuss the extent of the compatibility that we have achieved
between the semantic extension (OIL), and the underlying language (RDF Schema).

We can distinguish three levels in all ontology languages. The first of these is the
ontology language itself, such as OIL. This is the language in which to state class-
definitions, subclass-relations, attribute-definitions etc. The second level consists of the
ontological classes (e.g. “giraffe” or “herbivore”), their subclass relations, and their prop-
erties (e.g. “eats”). Naturally, these are expressed in the language of the first level. The
third level contains the instances of the ontology, such as individual giraffes or lions that
belong to classes defined at the second level.

A look at the existing W3C RDF/RDF Schema recommendation would reveal the
following about these levels:

1. The ontology language is, of course, RDF Schema;

2. Specific classes, their properties and relations are, therefore, written in RDF Schema,
e.g.:

2.2. Representing Schema Languages in RDFS 31

<rdfs:Class rdf:ID ="herbivore">
<rdfs:subClassOf rdf:resource ="#animal">

</ rdfs:Class > <rdf:Property rdf:ID ="eats"/>

3. Instances are written in RDF (note:not RDF Schema), e.g.:

<rdf:Description about ="http://www.cs.vu.nl/˜frankh">
<rdf:type rdf:resource ="#herbivore"/>

</ rdf:Description >

If we were to examine a semantic extension of RDF Schema such as OIL, we would
find the following:

1. The ontology language is OIL, but it is important to realize that OIL includes RDF
Schema as a sublanguage.

2. As a result, class expressions written in OIL are actually also legal RDF Schema.
For example, besides being a meaningful OIL definition, the class definition of
“herbivore” in item 2 above is also a legal example of an RDF Schema definition.
Of course, since OIL is anextensionof RDF Schema, not all parts of an OIL
definition aremeaningfulRDF Schema. This is illustrated below.

<rdfs:Class rdf:ID ="herbivore">
<rdfs:subClassOf rdf:resource ="#animal"/>
<oil:hasPropertyRestriction >

<oil:ValueType >
<oil:onProperty rdf:resource ="#eats"/>
<oil:toClass >

<oil:Or >
<oil:hasOperand rdf:resource ="#plant"/>
<oil:hasOperand >

<oil:HasValue >
<oil:onProperty

rdf:resource ="#is-part-of"/>
<oil:toClass rdf:resource ="#plant"/>

</ oil:HasValue >
</ oil:hasOperand >

</ oil:Or >
</ oil:toClass >

</ oil:ValueType >
</ oil:hasPropertyRestriction >

</ rdfs:Class >

Note that the semantics of the hasPropertyRestriction statement would be impossi-
ble for an RDF Schema processor to interpret. The entire state is legal RDF syntax,
so it can be parsed, but the intended semantics of the property restriction itself can
only be understood by an OIL-aware application. Notice that the first subClassOf
statement is still fully interpretable even by an OIL-unaware RDF Schema proces-
sor.

3. OIL instances are written as RDF! This is an important consequence of the fact
that the second level is organized as an extension of RDF Schema.

32 Languages for the Semantic Web

The above shows that we have now achieved two important compatibility results:
first, OIL is backwardly compatiblewith RDF Schema, i.e. every RDF Schema speci-
fication is also a valid OIL ontology declaration. Secondly, we have achievedpartial
forward compatibility. This means that even if an ontology is written in the richer mod-
eling language (OIL), a processor for the simpler ontology language (RDF Schema) can
still:

a) fully interpret all the instance information of the ontology, and

b) partially interpret the class-structure of the ontology. This can be achieved by sim-
ply ignoring any statement not from the rdf or rdfs namespaces. (In our example,
these came from the oil namespace). In the above definition of “herbivore”, for
instance, an RDF Schema processor would interpret the statement simply as as-
serting that herbivores are a subclass of animals, and that they have some other
property that it cannot interpret. This is a correct, albeit partial, interpretation of
the definition.

Such partial interpretability of semantically rich meta-data by semantically poor pro-
cessing agents is a crucial step towards sharing meta-data on the Semantic Web. We
cannot realistically hope that all of the Semantic Web will be built on a single stan-
dard for semantically rich meta-data. The above shows that multiple semantic modeling
languages do not have to lead to meta-data that are completely impossible for others to
interpret. Instead, simpler processors can still pick up as much of the meta-data from rich
processors as they can “understand”. They can safely ignore the rest in the knowledge
that their partial interpretation is still correct with respect to the original intention of the
meta-data.

2.2.3 Summary

In this section, we have shown that RDFS is only a small step towards the expressiveness
required for the Semantic Web. We then illustrated how RDFS can still be used to repre-
sent more expressive languages, by extending it with additional modeling primitives as
defined by a more formal knowledge representation scheme, such as OIL.

An important advantage to our approach is that it maximizes the compatibility with
RDFS. Not only is every RDF Schema document a valid OIL ontology declaration, every
OIL ontology can also be partially interpreted by a semantically poorer processing agent.
Needless to say, this partial interpretation is incomplete. All the same, it is correct under
the intended semantics of the ontology. We firmly believe that our extension method is
generally applicable across knowledge representation formalisms.

Chapter 3

Ontology Change Management:
Problems and Solutions

Note: Large parts of this chapter are based on earlier publications. Section 3.1 is
published in the proceedings of the IJCAI workshop on Ontologies (Klein, 2001a).
Section 3.2 is accepted for publication as part of an article in KAIS (Noy and Klein,
2004).

In the motivating use case that we described in Chapter 1, the “Semantic Web”, on-
tologies are used to describe the meaning of data. In the previous chapter, we discussed
the languages that are used to express both ontologies and data on the web.

In this chapter, we study the problem of ontology change. We do this in two ways.
First, we look at the problem of ontology diversity: in Section 3.1, we describe in what
aspects two ontologies can be different. Then, we look at existing strategies to handle
changes in schema-like structures. In Section 3.2, we look at database schema version-
ing. We discuss the main issues and compare the field with ontology versioning. In
Section 3.3, we describe a study of current change management strategies for large on-
tologies. Based on this, we list a number of ontology evolution tasks in the last section
of the chapter.

3.1 Ontology Mismatches

Several problems arise when one tries to use independently developed ontologies to-
gether, or when existing ontologies are adapted for new purposes. Based on a literature
study, we distinguish several types of mismatches that can occur between different on-
tologies.

Mismatches between ontologies are the key type of problems that hinder the com-
bined use of independently developed ontologies. We will now explorehowontologies
may differ. In the literature, there are a lot of possible mismatches mentioned, which are

34 Ontology Change Management: Problems and Solutions

not always easy comparable. To make them more comparable, we classify the different
types of mismatches and relate them to each other.

As a first step, we will distinguish between two levels at which mismatches may ap-
pear. The first level is thelanguageor meta-model level. This is the level of the language
primitives that are used to specify an ontology. Mismatches at this level are mismatches
between themechanismto define classes, relations and so on. The second level is the
ontology or model level, at which the actual ontology of a domain lives. A mismatch
at this level is a difference in the way the domain is modeled. The distinction between
these two levels of differences is made very often. Kitakami et al. (1996) and Visser
et al. (1997) call these kinds of differences respectivelynon-semanticandsemanticdif-
ferences. Others make this distinction implicitly, by only concentrating on one of the
two levels. For example, Wiederhold (1994) analyses domain differences (i.e., ontology
level), while Grosso et al. (1998) and Bowers and Delcambre (2000) look at language
level differences. In the following, we will avoid the use of the words “semantic differ-
ences” for ontology level differences, because we reserve those words for a more specific
type of difference (which will be described below).

Below, we will give an overview and characterization of different types of mis-
matches that can appear at each of those two levels.

3.1.1 Language level mismatches

Mismatches at the language level occur when ontologies written in different ontology
languages are combined. Chalupsky (2000) defines mismatches insyntaxandexpressiv-
ity. In total, we distinguish four types of mismatches that can occur, although they often
coincide.

• Syntax Different ontology languages typically use different syntaxes. For ex-
ample, to define a class in RDF Schema (Brickley and Guha, 2000), one uses
<rdfs:Class rdf:ID="CLASSNAME"/> . In LOOM, the expression(defconcept

CLASSNAME)is used to define a class. This difference is probably the simplest kind
of mismatch. However, this mismatch often doesn’t come alone, but is coupled
with other differences at the language level. A typical example of a “syntax only”
mismatch is an ontology language that has several syntactical representations. In
this simple case, a rewrite mechanism is sufficient to repair these problems.

• Logical representationA slightly more complicated mismatche at this level is the
difference in representation of logical notions. For example, in some languages
it is possible to state explicitly that two classes are disjoint (e.g.,disjoint A

B), whereas in other languages it is necessary to use negation in subclass state-
ments (e.g.,A subclass-of (NOT B), B subclass-of (NOT A)) to express the
same notion. The point here is not whether something can be expressed—the state-
ments are logically equivalent—but which language constructs should be used to
express a given notion. This mismatch is not about the representation ofcon-
cepts, but about the representation oflogical notions. This type of mismatch is
still relatively easily solvable, e.g. by giving translation rules from one logical
representation to another.

3.1. Ontology Mismatches 35

• Semantics of primitivesA more subtle possible difference at the metamodel level
is the semantics of language constructs. Despite the fact that sometimes the same
name is used for a language construct in two languages, the semantics may differ;
e.g., there are several interpretations ofA equalTo B .
Note that even when two ontologies seem to use the same syntax, the semantics
can differ. For example, the OIL RDF Schema syntax (Broekstra et al., 2001)
interprets multiple<rdfs:domain> statements as the intersection of the arguments,
whereas a previous version of RDF Schema itself used union semantics.

• Language expressivityA final type of mismatch at the metamodel level is a dif-
ference in expressivity between two languages. This difference implies that some
languages are able to express things that are not expressible in other languages.
For example, some languages have constructs to express negation, others have not.
Other typical differences in expressivity are the support of lists, sets, default val-
ues, etc.
This type of mismatch has probably the largest impact. The “fundamental differ-
ences” between knowledge models that are described by Grosso et al. (1998) are
close to our interpretation.

Our list of differences at the language level can be seen as more or less compatible
with the broad term “language heterogeneity” of Visser et al. (1997).

3.1.2 Ontology level mismatches

Mismatches at the ontology—or model—level happen when two or more ontologies that
describe (partly) overlapping domains are combined. These mismatches may occur when
the ontologies are written in the same language, as well as when they use different lan-
guages. Based on the literature and on our own observations, we can distinguish several
types of mismatches at the model level.

Visser et al. (1997) make a useful distinction between mismatches in theconceptu-
alizationandexplicationof ontologies. A conceptualization mismatch is a difference in
the way a domain is interpreted (conceptualized), which results in different ontological
concepts or different relations between those concepts. An explication mismatch, on the
other hand, is a difference in the way the conceptualization isspecified. This can man-
ifest itself in mismatches in definitions, mismatches in terms and combinations of both.
Visser et al. list all the combinations. Four of these combinations are related to homonym
terms and synonym terms.

Wiederhold (1994) also mentions problems with synonym terms (callednaming dif-
ferences) and homonym terms (subjective meaning). Besides that, he describes possible
differences in thescope of concepts, which is an example of a conceptual mismatch.
Finally, he mentionsvalue encodingdifferences, for example, differences in the unit of
measurement.

Chalupsky (2000) lists four types of mismatches in ontologies. One of these, namely
the inference system biasis in our opinion not a real mismatch. A inference system
bias means that a different modeling style is chosen because of a specific reasoning task.
This probably results in mismatches, but is not a mismatch in itself. The other three

36 Ontology Change Management: Problems and Solutions

mismatches,modeling conventions, coverage and granularityandparadigmscan be cat-
egorized as instances of the two main mismatch types of Visser et al.. We will describe
these mismatches below.

We now relate the different types of mismatches that are distinguished by the authors
cited above. The first two mismatches at the model level that we distinguish are instances
of the conceptualization mismatchesof Visser et al.. These are semantic differences,
i.e., not only the specification, but also the conceptualization of the domain (see the
definition of Gruber, 1993) is different in the ontologies that are involved. The detection
and reconciliation of conceptualization differences usually requires the knowledge of a
domain expert.

• Concept scopeTwo classes seem to represent the same concept, but do not have
exactly the same instances, although these intersect. The standard example is the
class “employee”: several administrations use slightly different concepts of em-
ployee, as mentioned by Wiederhold (1994). Visser et al. (1997) call this aclass
mismatchand specifies it further into specific types.

• Model coverageThis is a mismatch in the things that are contained in the ontology.
There are three dimensions for model coverage. A first dimension is theextent
of the model, i.e. the things at the periphery of the domain that are included or
not included. A second dimension is thegranularity of the model, i.e. the level
of detail in which a domain is described. Finally, there is theperspectiveof the
ontology which determines what aspects of a domain are described (Borst, 1997).
Models can be different in each of these dimensions. For example, an ontology
about public transport might or might not include taxis (difference in extent), might
distinguish many different types of trains or not (difference in granularity), and
could describe technical aspects or functional aspects (difference in perspective).

The other ontology-level mismatches can be categorized asexplication mismatches,
in the terminology of Visser et al.. The first two of these result from explicit choices of
the modeler about thestyle of modeling:

• Paradigm Different paradigms can be used to represent concepts such as time,
action, plans, causality, propositional attitudes, etc. For example, one model might
use temporal representations based on interval logic while another might use a
point-based representation (Chalupsky, 2000). The use of a different “top-level”
ontology is also an example of this kind of mismatch.

• Concept descriptionThese types of differences are calledmodeling conventions
by Chalupsky (2000). Several choices can be made for the modeling of concepts
in the ontology. For example, a distinctions between two classes can be modeled
using a qualifying attribute or by introducing a separate class. These choices are
sometimes influenced by the intended inference system. Another choice in concept
descriptions is the way in which the is-a hierarchy is build: distinctions between
features can be specified higher or lower in the hierarchy. For example, consider
the place where the distinction between scientific and non-scientific publications
is made: a dissertation can be modeled asdissertation < book < scientific

3.2. Comparison with Database Schema Versioning 37

publication < publication , or asdissertation < scientific book < book

< publication , or even as subclass of bothbook andscientific publication .

Further, the next two types of differences can be classified asterminological mismatches.

• Synonym termsConcepts can be represented by different names. A trivial ex-
ample is the use of the term “car” in one ontology and the term “automobile” in
another ontology. This type of problem is calledterm mismatch (T or TD)by
Visser et al. (1997). A special case of this problem is the situation in which the
natural language that is used to describe the ontologies differ.
Problems caused by synonyms or different languages are typically approached
with thesaurus-based solutions. Usually these problems coincide with semantic
problems and require a lot of human effort. Especially, one must be careful not to
overlook a concept scope difference (see above).

• Homonym terms The meaning of a term is different in another context. For ex-
ample, the term “conductor” has a different meaning in a music domain than in
an electric engineering domain. Visser et al. (1997) calls this aconcept mismatch
(C or CD). This inconsistency is much harder to handle; (human) knowledge is
required to solve this ambiguity.

Finally, there is a one trivial type of difference left.

• Encoding Values in the ontologies may be encoded in different formats. For ex-
ample, a date may be represented as “dd/mm/yyyy” or as “mm-dd-yy”, distance
may be described in miles or kilometers, etc. There are many mismatches of this
type, but these are all very easy to solve. In most cases, a transformation step or
wrapper is sufficient to eliminate all those differences.

3.1.3 Discussion

The overview above illustrates that there are many aspects in which ontologies can differ.
In principle, all these difference can occur between different ontology versions, although
some mismatches are more likely to happen than others. For example, evolving on-
tologies are usually expressed in one language, so that language-level mismatches will
probably occur less frequently than ontology level mismatches. Similarly, we can expect
that changes in the concept scope happen more often than paradigm changes, as the latter
usually involves a complete re-engineering of the ontology.

We used a number of the categories above for our analysis of current change man-
agement strategies (Section 3.3), where we asked for the reasons for changes. In the
next chapter, where we describe a framework for coping with ontology change, we will
explain how different types of mismatches have different consequences on the interpre-
tation of change.

3.2 Comparison with Database Schema Versioning

Change management is a well known topic from research on database systems. Roddick
(1995) gives an overview of the issues that are involved when multiple, heterogeneous

38 Ontology Change Management: Problems and Solutions

schemas are used for various database related tasks. Some of these issues are also rele-
vant for ontology change management. In this section, we first describe the main issues
in database schema versioning. Then, we compare ontology versioning with database
schema versioning and explain what the main differences are. Based on this comparison,
we list a number of implications for the design of a change management methodology
for ontologies.

3.2.1 Database Schema Versioning

In database literature, it is common to distinguish between two variants of schema change,
viz. schema evolution and schema versioning. The first is the ability to change a database
schema without losing data. The second is a stronger variant: it allows the access of the
data in the database through different versions of the schema. Some people from the
area of object oriented databases have problems with the use of the term “versioning”
for schema changes, as they preserve this term for different instances of an class, and
they prefer the term schema evolution. Nevertheless, we will use the terms as explained
above.

There are quite a number ofarchitectural issues in this schema evolution area, e.g.
about the strategy for schema conversion (should the physical schema change) and data
conversion (when should the data be converted: just in time or in advance) and about
access rights. This type of problems does not seem very relevant for ontology versioning.

Data model issues are more relevant for in our context. Ventrone and Heiler (1991)
discuss the effects of changes in the real world on data models. They list a number
of examples of domain evolution, ranging from time and unit differences to evolution
caused by a “lazy” database administrator that reused a database column for a different
purpose. Most solutions that are suggested to cope with this semantic heterogeneity have
to do with explicit meta-data with rich semantics. The description of the meaning of the
data can then be used to detect and express differences, and to determine the effects of
the differences. It can also help to perform translations and conversions. An important
observation is that ontologies provide this semantic informationby themselves.

Another important aspect of database schema versioning is the effect of schema
changes on existing data. This is sometimes called “change propagation”, and is ex-
plored in (Banerjee et al., 1987). This paper describes rules and semantics for schema
evolution in object-oriented systems. It does this by specifying a number of invariants,
which should hold for every schema. It then specifies rules for handling changes that
maintain the invariants. The rules specify whether changes are allowed and whether in-
stance data should be converted. However, this approach is not very well applicable to
evolution of ontologies on the Semantic Web, as there is no possibility to reject changes
or to force conversions.

The research area of federated databases also shares some issues with ontology ver-
sioning on the web. They also discuss development tasks like schema translation and
schema integration.

3.2. Comparison with Database Schema Versioning 39

3.2.2 Differences with Ontology Versioning

In this section, we will list the most prominent differences between database schemas and
ontologies in general. We then discuss different usage paradigms for database schemas
and ontologies. The last group of differences addresses knowledge-representation issues.
We only discuss the differences that have direct implications for developing a framework
for ontology evolution and versioning.

Ontologies are also used as data

The main goal for schema-evolution support in databases is to preserve the integrity of
thedata itself: how does the new schema affect the view of the old data? Will queries
based on the old schema work with the new data? Can old data be viewed using the new
schema? The same issues are certainly valid for instance data in ontologies. We can view
ontologies as “schemas for knowledge bases.” Having defined classes and slots in the on-
tology, we populate the knowledge base with instance data. However, there is a major
second thrust in ontology evolution: ontologies themselves are data to an extent to which
database schemas have never been. Ontologies (and not the instance data) are used as
controlled vocabularies, to drive search, to provide navigation through large collections
of documents, to provide organization and configuration structure of Web sites. And in
many cases, an ontology will not have any instance data at all. A result of a database
query is usually a collection of instance data or references to text documents, whereas a
result of an ontology query can include elements of the ontology itself (e.g., all subclasses
of a particular class). Therefore, when considering ontology evolution, we must consider
not only the effect of ontology changes on the way applications access instance data, but
also the effect of these changes on queries for the ontology contents itself. There is an
extra layer of abstraction where database schemas themselves do act as data—metadata
repositories (Marco, 2000). Metadata repositories provide the information about various
databases and applications in an organization. Ontologies are different from metadata
repositories: metadata repositories are designed to store schema and application data,
whereas ontologies describe a domain of discourse for any domain. Concepts and rela-
tions in an ontology usually have formally-defined semantics that machines can interpret.
In addition, metadata repositories are different from schemas themselves, providing an
extra layer of description, whereas with ontologies no such extra layer exists. There-
fore, while we can learn from the research in the schema-evolution issues for metadata
repositories, they will not be directly applicable to ontology evolution.

Ontology data models are often richer

The number of representation primitives in many ontologies is much larger than in a
typical database schema. For example, many ontology languages and systems allow the
specification of cardinality constraints, inverse properties, transitive properties, disjoint
classes, and so on. Some languages (e.g., DAML+OIL) add primitives to define new
classes as unions or intersections of other classes, as an enumeration of its members, as
a set of objects satisfying a particular restriction. Therefore, any detailed treatment of
ontology changes must include a much more extensive set of possible operations.

40 Ontology Change Management: Problems and Solutions

Ontologies themselves incorporate semantics

Partly because of their richer data model, ontologies usually incorporate more seman-
tics than database schemas. In contrast, database schemas and catalogs often provide
very little explicit semantics for their data. Either the detailed semantics has never been
specified, or the semantics were specified explicitly at database-design time in the con-
ceptual schema, but this specification was lost in the translation to a physical database
schema and is not available anymore. Therefore, with databases, we need specific pro-
tocols for resolving conflicting restrictions when the schema changes. These protocols
are usually part of a schema-evolution framework (Banerjee et al., 1987). Ontologies,
however, are logical systems that themselves incorporate semantics. Formal semantics
of knowledge-representation systems allow us to interpret ontology definitions as a set
of logical axioms. We can often leave it to the ontology itself to resolve inconsistencies
and do not need to do anything about them in the evolution framework. For example,
if a change in an ontology results in incompatible restrictions on a slot, it simply means
that we have a class that will not have any instances (is “unsatisfiable”). If an ontol-
ogy language based on Description Logics (DL) is used to represent the ontology (e.g.,
OIL (Fensel et al., 2000) and DAML+OIL (Hendler and McGuinness, 2000)), then we
can use description-logics reasoners to re-classify changed concepts based on their new
definitions.

Ontologies are intended for reuse

A database schema defines the structure of a specific database; other databases and
schemas do not usually directly reuse or extend existing schemas. The schema is part
of an integrated system and is rarely used apart from it. There are exceptions to this
rule, which include schemas that support packaged commercial products for applications
such as accounting and personnel records. The situation with ontologies is exactly the
opposite: ontologies are often intended for reuse and they are not bound to a specific
system. Therefore, a change in one ontology affects all the other ontologies that reuse
it, and, consequently, the data and applications that are based on these ontologies. Even
seemingly monotonic changes, such as additions of new concepts to an ontology, can
have adverse effects on the other ontologies that reuse it. If we add a concept that already
exists in the reusing ontology, no logical conflicts arise, but the reusing ontology con-
tains two representations of the same concept. We will need to specify an equivalence
statement to reflect this fact.

Ontologies are collaboratively developed

Traditionally, database schema development and update is a centralized process: de-
velopers of the original schema (or employees of the same organization) usually make
the changes and maintain the schema. The development and maintenance of integrated
databases (Batini et al., 1986) and federated database systems (Sheth and Larson, 1990)
is already much more de-centralized, but at the very least, database-schema developers
usually know which databases use their schema. By nature, ontology development (and,

3.2. Comparison with Database Schema Versioning 41

therefore, evolution) is an even more de-centralized and collaborative process. As a re-
sult, there is no centralized control over who uses a particular ontology. It is much more
difficult (if not impossible) to enforce or synchronize updates: if we do not know who
the users of our ontology are, we cannot inform them about the updates and cannot as-
sume that they will find out themselves. Lack of centralized and synchronized control
also makes it difficult (and often impossible) to trace the sequence of operations that
transformed one version of an ontology into another. Recently, ontologies have become
a cornerstone of the Semantic Web (Berners-Lee et al., 2001), which has the model of
distributed, reusable, and extendable ontologies at its core. The envisioned huge scale of
the Semantic Web and even more de-centralization in ontology development and mainte-
nance greatly exacerbate the problem: in today’s Web, we can neither know who uses an
ontology that we maintain or how many users there are, nor prevent or require others to
use a particular ontology. It is interesting to note that in recent years, the database field
is moving in the direction of de-centralization as well: there are standard XML schemas
that are reused through different applications, particularly in e-commerce.

Classes can be used as instances

Databases make a clear distinction between the schema and the instance data. In many
rich knowledge-representation systems it is hard to distinguish where an ontology ends
and instances begin. The use of metaclasses—classes which have other classes as their
instances (Chaudhri et al., 1998a)—in many systems (e.g., Protéǵe (Fergerson et al.,
2000), Ontolingua, RDFS (Brickley et al., 1999)) blurs or erases completely the distinc-
tion between classes and instances. In set-theoretic terms, metaclasses are sets whose
elements are themselves sets. This means that “being an instance” and “being a class” is
actually just arole for a concept. For example, the “Lonely Planet for Amsterdam” is a
specific instance of the class “Travel guides” in a bookstore; at the same time, however, it
is a class of which the individual copies of the book are instances. Therefore, analysis of
schema-change operations, which considers only effects on instance data, is not directly
applicable to ontologies.

3.2.3 Implications for Evolution and Versioning of Ontologies

The differences between ontologies and database schemas that we have outlined above,
have direct practical implications for any methodology for ontology evolution and ver-
sioning. We discuss the following implications in the rest of this section:

1. The traditional distinction between versioning and evolution is not applicable to
ontologies.

2. Definingwhatconstitutes compatibility between different versions becomes a more
salient issue since there are several dimensions to compatibility (e.g., preservation
of instance data, consequence preservation, etc.).

3. The set of change operations that we must consider in classifying effects of on-
tology changes is much wider. In addition, we must consider the effects of these
operations along different dimensions of compatibility

42 Ontology Change Management: Problems and Solutions

4. We need techniques for determining compatibility between different versions even
if we do not have a trace of the changes that led from one version to another.

1 Ontology versioning and evolution is change management

Database researchers distinguish betweenschema evolutionandschema versioning(Rod-
dick, 1995). Schema evolution is the ability to change a schema of a populated database
without loss of data (i.e., providing access to both old and new data through the new
schema). Schema versioning is the ability to access all the data (both old and new)
through different version interfaces. For ontologies, however, we cannot distinguish be-
tween evolution, which allows access to all data only through the newest schema, and
versioning, which allows access to data through different versions of the schema. Multi-
ple versions of the same ontology are bound to exist and must be supported. Not knowing
how an ontology is being reused means not being able to “force” the reusing ontologies
and applications to switch to a new version. Ideally, developers should maintain not
only the different versions of an ontology, but also some information on how the ver-
sions differ and whether or not they are compatible with one another. For example,
the ontology-versioning mechanism in SHOE (Heflin and Hendler, 2000) enables de-
velopers to declare whether or not the new version is backward-compatible with an old
version (that is, applications and agents can use the new ontology in place of the old
one). However, some applications may continue to use the old versions and upgrade at
their own pace (or not at all). The management of changes is therefore the key issue
in the support for evolving ontologies. Hence, we will combine ontology evolution and
versioning into a single concept defined asthe ability to manage ontology changes and
their effects by creating and maintaining different variants of the ontology. This ability
consists of methods to distinguish and recognize versions, specifications of relationships
between versions, update and change procedures for ontologies, and access mechanisms
that combine different versions of an ontology and the corresponding data.

2 Compatibility of ontologies has several dimensions

In order to determine which changes to an ontology are backward-compatible, we need
to determine what compatibility means. In databases, backwards-compatibility usually
means the ability to access all of the old data through the new schema. In other words, no
instance data is lost as a result of the change. For ontologies, query results can include not
only instance data but also elements of the ontology itself. Therefore, we cannot express
compatibility only in terms of preservation of instance data. Consider a situation in which
a new class is added to an ontology as a subclass of an existing class. This change has no
effect on instance data and will not change or invalidate answers to existing queries that
return only instance data. However, if queries are about theontology itself(e.g., a list of
subclasses of a specific class), the answers to existing queries change. This issue becomes
even more complicated with ontology languages that support automatic classification
(e.g., DAML+OIL): when a class is added to an ontology, a reasoner can re-classify
existing concepts and instances, possibly invalidating existing data or applications. When
we characterize the effects of change operations we need to take these dimensions into

3.2. Comparison with Database Schema Versioning 43

account.

3 Ontology-change operations and effects

The set of possible change operations for ontologies is larger than the traditional sets
of database schema-change operations (Banerjee et al., 1987). There are two causes of
the differences between these two sets. The first cause is the richer knowledge model
for ontologies: we must add operations that deal with changes in slot restrictions, with
slot attachment, and so on. The second cause is the use ofcomposite operationswhich
few researchers in the schema-evolution community have addressed (with the notable
exception of Lerner (2000)). Consider for example a change in the domain of a slot
from a class to its superclass. A model of traffic connections in Amsterdam may have
a slot speed-limit only for roads. To change the domain of thespeed-limit slot to
include thoroughfares (both roads and canals), we need to “move” the slot up the class
hierarchy (imposing a speed limit for boats as well). If we treat this operation as a se-
quence of two operations, removing the slot from theRoad class and then adding it to
theThoroughfares class, we would have to delete all the values of thespeed-limit slot
for all instances ofRoad after the first operation. However, after the second operation,
all instances of Road can have thespeed-limit slot again. The composite effect of the
two operations does not violate the integrity of the instance data, whereas one of the op-
erations does. Therefore, the algebra of ontology-change operations must include these
composite operations since their compound effect on schema evolution (1) is predictable
and (2) can belong to a completely different class of operations than each of the simple
operations that constitute it.

4 There are two modes of evolution

Characterizing effects of specific changes on compatibility between versions of an on-
tology is important. However, because of the extremely distributed nature of ontologies,
we must also account for the fact that we will not always have the trace of changes that
led from one version to another. Therefore, we distinguish two modes of ontology evolu-
tion: tracedanduntracedevolution. Traced evolution largely parallels schema-evolution
where we treat the evolution as a series of changes in the ontology. After each operation
that changes the ontology (e.g., add or delete a class, attach a slot to a class, change
restrictions on slots, etc.), we consider the effects on the instance data and related on-
tologies, depending on the dimension of compatibility we use. The resulting effect is
determined by the combination of change operations.

With untraced evolution, all we have are two versions of an ontology and no knowl-
edge of the steps that led from one version to another. We will need to find the differences
between the two versions in an automated or semi-automated way. Rahm and Bern-
stein (2001) survey the approaches that use linguistic techniques to look for synonyms,
machine-learning techniques to propose matches based on instance data, information-
retrieval techniques to compare information about attributes, and so on. In the database-
schema research, Bernstein et al. (2000) also argue that we can view tasks such as schema
mapping and untraced evolution in a similar way. They suggest a formal model for ex-

44 Ontology Change Management: Problems and Solutions

pressing correspondences between any database schemas, XML DTDs, UML models,
and so on. Then any of the tasks for managing correspondences between different sources
becomes the task of instantiating such a model.

3.3 Study of Existing Ontology Management Strategies

In this section, we describe how change is managed in existing projects in which large
ontologies are maintained. Our research aim is to investigate change management for dis-
tributed ontologies (see Chapter 1), however, the projects described in this section involve
centrally maintained ontologies. With the analysis of change management strategies for
centralized ontologies, we achieve two goals. First, it provides us with an overview of
current techniques, which might be also applicable for distributed change management—
possibly in an adapted form. Second, if compared to the goals of ontology change man-
agement, we get an understanding of possible shortcomings of the current strategies.

We start with a description of the design of the study in the next section. The subse-
quent sections consists of reports of the interviews held. The results of the interviews are
represented via narrative description of the issues that were discussed. In Section 3.3.6,
we summarize our observations and look forward to the requirements for distributed on-
tology versioning.

3.3.1 Research Design

As research method, we used the “semi-structured interview” (Robson, 2001). Before
we started the research, we have created a guideline for the interviews. In this guideline,
we go through all aspects that are mentioned in the section about the aims above. During
the interviews, we started from the questions in the guideline, but we did not stick to it
exactly. If necessary, we asked additional questions when seemingly interesting issues
popped up that were not covered in the interview, we sometimes changed the order of
the questions when the course of the conversation asked for it, and occasionally we left
out questions that were clearly not relevant. The guideline as we used it is printed as
Appendix A. The questions in the interview are based on our experience with change
management and on an examination of several versions of some of the selected projects
beforehand.

Aims

The overall goal of the interviews is to understand how and why changes in ontologies
occur and what processes exist to manage the changes. In the interviews with the main-
tainers of the ontologies, we are looking for facts, behavior and beliefs. Examples of the
facts we are looking for are: what is the ontology about, how is it structured and devel-
oped, how is it used, what kind of changes occur, do these changes hamper the usage of
the ontology, and—if yes—in what sense? Examples of behavioral aspects that we want
to discover are: how are changes handled, what is the decision process with respect to the
changes? The major beliefs that we wanted to reveal are about the main problems caused

3.3. Study of Existing Ontology Management Strategies 45

by ontology change and about the kind of support from a versioning methodology that
would be most useful.

Selection of Projects

We have selected projects in which relatively large ontologies are maintained, that have
multiple users and that already have some history. A secondary criterium was the acces-
sibility of the persons that maintained the ontologies, as we preferred to have face-to-face
interviews with the maintainers. All together, we have talked with the maintainers of four
different ontology projects, two in Stanford CA, USA, one in Berkeley CA, USA, and
one in Amsterdam, the Netherlands.

3.3.2 PharmGKB

The PharmGKB ontology1 is part of the PharmGKB project (Klein et al., 2001b), a
knowledge base for pharmacogenetics and pharmacogenomics. The knowledge base is a
central repository for genetic and clinical information about people who have participated
in research studies at various medical centers in a collaborative research consortium. In
addition, genomic data, molecular and cellular phenotype data, and clinical phenotype
data are registered from the scientific community at large. Its aim is to aid researchers
in understanding how genetic variation among individuals contributes to differences in
reactions to drugs.

At the time of the interview2, the number of users is estimated at 100. Because there
are no registered users, the estimation is based on the log of the web server. There is a lot
of instance data in the knowledge base, however, technically speaking the instance data is
not connected to the ontology anymore. For performance and reliability reasons the data
is stored in a database. The schema for this database is not derived from the ontology;
instead, it is based on an analysis of the instance data that had to be stored. In the future,
the ontology might be used again for inference tasks, for example, data validation, finding
erroneous data and inferring new drug–gene relations. This will possibly be implemented
via a “database to knowledge base push”.

The ontology consists of different parts. The first part is taken from MeSH3, a second
part is the drug ontology from Apelon4, the third segment is the PharmGKB specific part.
The first two components are imported, the third is created in an iterative process with
domain experts. The different parts are virtually integrated, i.e. in the user interface they
seems to be seamlessly integrated, but in the database, the parts are stored in separate
tables. All data resides in the database and the maintainers are not aware of any other
usage of a (part of) the ontology. They do not expect that reuse is easy, as ontologies are
often very closely matched to the purpose of a specific project, and the granularity might

1Seehttp://www.pharmgkb.org/
2The interview was held in November 2002. In the meanwhile, the project has evolved further. The de-

scription in this section is not an adequate representation of the current situation (especially the statistics are
outdated), but it can still serve as a source for change management techniques.

3Medical Subject Headings, a hierarchical vocabulary thesaurus, seehttp://www.nlm.nih.gov/mesh/ .
4http://www.apelon.com/

46 Ontology Change Management: Problems and Solutions

not be correct. For example, the Apelon ontology goes down to doses of drugs, whereas
the PharmGKB just needs the drugs. For vocabularies, such as in GO and MeSH, reuse
might be easier.

The development of the ontology started three years before the interview and has
been a four-person enterprise. For additional domain knowledge, 3 to 5 domain experts
from the medical centers were consulted during the development phase. This phase lasted
about six months. In this phase changes to the ontology occurred every month or every
other month. There were incremental changes to the data model and refinements. After
this phase, the model settled down and since it has been translated into a database, it
has been more or less stable. Occasional changes are first performed in a beta database
and later on rolled over to the production database. Data is continuously added to the
database. There is no formal validation process for data additions, but people who submit
data can go to the web site to see whether their data are correctly stored. There are several
verification methods performed when data is added to the system. For example, the data
has to be correct XML, there are Schematron rules5 that enforce the structure, and the
database does some verification. Higher-level algorithms to validate the data are being
developed. The way the ontology was divided into different parts has never changed.

Different releases of the ontology are identified by version numbers, which are just
incremental numbers. This was the case for releases of the knowledge base and is now the
case for database releases. There is a release about every 6 or 8 months. The releases are
more or less dictated by feature requests and additional functionality needs. There is no
roll-back facility (i.e. a mechanism to roll-back the whole database to a previous version),
but there is a mechanism for rolling over new changes from the beta database to the
production database. This procedure works as follows: the changes to the ontology (and
database schema) in the beta database are restricted to changes that are “non-destructive
for data”; at the same time, the production database is actively used; because all changes
to the production database are additions of instance data, a roll-over can be performed
by combining the schema from the beta database with the instance data of the production
database.

There are three types of releases. The first type are releases caused by changes in
the database, as described above. Then there are releases caused by changes in the web
functionality, for example, in the format of the XML files. There is a formal process
for such changes, with a one month comment period etc. Third, there are also display
changes, which requires that other things are adapted as well, for example the queries to
get the information that will be displayed. The last two types of releases often coincide,
but not always.

Specific motives for changes in the ontology were data model changes, new kinds
of data, granularity changes, and changes in display requirements, i.e. changes in the
functionality of the graphical user interface for uploading and querying data. In the early
phase of the project most changes were restructurings of the domain. After that there
was a phase in with many extensions to the domain. In the latest phase, there are mainly
corrections. Another type of change that is important in this project are changes with
respect to instance data, both modifications of instance data and additions of instances.

5http://www.ascc.net/xml/schematron/

3.3. Study of Existing Ontology Management Strategies 47

The study centers not only submit new data, but they also want to update it or retract it.
The change management strategy has been developed during the evolvement of the

project. The most specific problem that the evolution caused was that the referential
integrity was broken by the deletion of instances. The project recently changed to a
process in which nothing is deleted anymore, but only “retired”. When the strategy and
the software was in place, no problems were encountered anymore.

With respect to the support that is required from versioning systems, the maintainers
make a distinction between the development phase and the production phase. During the
development phase, things like consistent reasoning, synchronization, data translation,
propagation support are important. During production, it is important to have referential
integrity and to know the effect on future functionality. For example, is it still possible to
ask a specific query or display specific information.

3.3.3 EMTREE thesaurus

EMTREE6 is a thesaurus of medical terms and drugs developed and maintained by El-
sevier (Elsevier/Embase, 2003). Its goal is to relate information to index terms in a con-
sistent way, for example to index abstracts of articles. It is used for subject indexing in
EMBASE, a database with over 9 million citations of literature on human medicine and
related disciplines. Besides that, it is used by other vendors to index articles; some are
behind with updating and thus use an older version of EMTREE, others have included
additional information.

EMTREE is a “‘poly-hierarchically” structured, which means that there are multiple
orthogonal hierarchies that classify the terms. Each term contains a list of synonyms and
a number that is based on its place in the hierarchy. It incorporates MeSH terms used
by the National Library of Medicine, as well as almost 20,000 CAS registry numbers
assigned by the Chemical Abstracts Service. EMTREE includes more than 45,000 drug
and medical terms, 10,000 numeric codes and over 190,000 synonyms. The thesaurus is
split into 15 parts, called facets. This partition is mirrored from MeSH. The development
of the ontology started in 1987, before that it was flat list of synonyms. There are three
people working on the ontology, plus occasionally a few others. These three people do
the modeling and provide the content knowledge. These developers usually work on
different facets of the ontology.

There is a production version and a development version of EMTREE. Usually at the
beginning of a year, the development version becomes the new production version. There
is no versioning procedure in the sense that multiple versions are maintained in parallel,
only the latest version is used as active version. The partitioning of EMTREE has never
changed. The hierarchy does not change very often, most changes are additions of new
terms. The indexers, i.e., the people that use the thesaurus to index articles, suggest
these changes via paper forms during the year. If accepted, the changes are performed
in the development version and will appear in the next production version. Because of
the yearly release schedule, it takes between 3 and 15 months before a suggestion for
change is incorporated in the production version. To allow indexers to use the terms

6Seehttp://www.elsevier.nl/homepage/sah/spd/site/ .

48 Ontology Change Management: Problems and Solutions

earlier, a suggested new term is directly added to theproductionversion as acandidate
term. These terms can be used by the indexers, but there is no guarantee that they will
appear in the next production version.

There are in total four different states for terms. Besidescandidate, terms can be
preferred, synonymor de-active. Preferred terms are used to index the articles and ab-
stracts. Synonym terms are synonyms of preferred terms and are only used to interpret
queries, not to index articles. De-active terms are deprecated terms that are not used any-
more. All de-active terms stem from before 1987, when the thesaurus was still a flat list;
all terms that had a frequency of less than 60 were flagged as “de-active”. Sometimes
synonyms become preferred term and vice-versa. Consequently, some articles may be
indexed with terms that are not preferred anymore. Also, some articles are indexed with
candidate terms that never made it to the thesaurus, and a small amount of older articles
are indexed with de-active terms. In 1998, the complete MBASE article database was
updated by replacing all synonyms that were used as index terms by their preferred term.

Change suggestions are judged by a special department. The two main reasons for not
including new terms are that the terms are not correct, or that they occur too infrequently.
Synonyms of existing terms are often accepted, e.g. spelling variants or new names. The
main reasons for changes in the terms are the introduction of new names for existing
chemicals, the invention of new chemicals, and the correction of errors. Occasionally the
hierarchy is restructured because of new insights in the field. Another class of changes is
introduced by changes in MeSH, because of the mapping that exists between MeSH and
EMTREE. Occasionally terms are deleted from the index, if they are absolutely incorrect.
More often, such terms become synonyms of other terms.

Besides the concepts mentioned above, each term in the EMTREE thesaurus also
contains a type attribute and an extensive history of changes, in the form of former rela-
tions and time-stamps of additions.

3.3.4 EON ontology

The EON project7 seeks to create an architecture that developers can use to build robust
decision-support systems that reason about guideline-directed care. Within this project,
an ontology of the guideline domain is being developed (Tu and Musen, 1999). The
goal of this ontology is to come up with a structure in which guideline knowledge can
be encoded. This knowledge is used for different tasks: to interpret patient data in the
concepts of the guideline, to encode decisions, i.e. to prescribe the different steps that
have to be taken, and to specify how tasks can be refined.

There are two physicians in a hospital who use the ontology to encode medical knowl-
edge. They are creating a knowledge base about hypertension as instance data of the
ontology. The created knowledge base is part of a clinical decision-support system that
was installed at 8 geographical locations and used by about 100 physicians (Goldstein
et al., 2004).

The development version of the ontology is split up into several modules, but in
the production version everything is aggregated into one large project. The partitioning

7http://smi-web.stanford.edu/projects/eon/

3.3. Study of Existing Ontology Management Strategies 49

in different modules is partly based on domain aspects and partly on implementation
issues. For example, one module is called “BaseQueryKB”, others are “medical domain”,
“time”, “guideline” and “EPR” (a simple ontology of an electronic patient record). The
development of the ontology started around six years ago. There is one person who does
the modeling of structural concepts in the ontology, but sometimes new ideas come in
via collaboration with other people. The part of the ontology about the medical domain
is developed by the two physicians.

The project has been in development phase for a long time, in which there were
major changes. Since it went into production phase, there have only been incremental
changes. There has been a very long test period, about 1 year, and the developers were
quite confident about the ontology. The structural part of the ontology did not change
much in the last half year before the interview. The two physicians ask the developer
of the structural part to do specific changes if necessary. The changes in the structural
parts are indirectly validated because the knowledge base is extensively tested. Changes
are made in a non-production version first, and later on rolled over to the production
version. Version management is done at file level, by checking in the changed projects
into SourceSafe,8 a file versioning system. Each change is checked in into SourceSafe
and is given a label, usually the date. There is no pre-defined release schedule. According
to the developer, change management was a huge problem. Because the two physicians
did not have access to the SourceSafe database, files had to be exchanged back and forth,
with explicit understanding of who was making changes at each moment in time.

The developer of the EON ontology distinguishes several reasons for changes. One of
these is the addition of medical knowledge, e.g. a specific laboratory result. Also, some-
times abstractions area created, e.g. instead of the general term “drugs” a specific set of
drugs. Sometimes the change is caused by the introduction of a new type of knowledge.
An example is the categorization of drug doses into ”low,” ”medium,” and ”high” doses.
New structures had to be built for this type of categorization. This happened at several
occasions. A completely different reason for changes is the introduction of additional
functionality / modeling capabilities of the tool, i.e. the possibility to specify constraints.
This resulted in several additions to the ontology. Yet another reason for change is ex-
tending thecompetencyof a ontology, i.e. the extent of the task for which an ontology
is used. For example, the concept of “user” was introduced to assign tasks to different
classes of people. Therefore, the organizational aspect had to be modeled. Finally, an-
other cause of changes in EON was the introduction of new inference mechanisms, for
example the ability to reason with constraints. This required things to be modeled in a
different way.

The major problem that the developers encountered during the development of the
ontology was finding the right balance between making the ontology suitable for a spe-
cific task, and keeping it generally applicable. Each change request had to be judged
on these aspects. Keeping the knowledge base consistent with the ontology during the
evolution was another problem. With respect to desired support for versioning tasks, the
developer mentions several things. One thing is help in finding out which subsequent
changes are necessary in both instance data and in other projects, as result of a change,

8Seehttp://msdn.microsoft.com/ssafe/

50 Ontology Change Management: Problems and Solutions

i.e. the repercussion of changes. Also, the developers say that a high level log of changes
would be helpful for the purpose of understanding changes. Other issues are: being able
to work with multiple users on one ontology, and having technical support for working
with ontology modules, e.g. moving concepts between modules.

3.3.5 Gene Ontology

The goal of the Gene Ontology (Ashburner et al., 2000) is to provide a controlled vo-
cabulary that can be applied to all organisms, even as knowledge of gene and protein
roles in cells is accumulating and changing.9 The initial goal in 1998 was to allow
researchers to query related databases and get related proteins and gene products. At
that time the project was a collaboration between three model organism databases: Fly-
Base (Drosophila), the Saccharomyces Genome Database (SGD) and the Mouse Genome
Database (MGD). Since then, many other databases have been included in the project.
The ontology consists of three structured, controlled vocabularies that describe gene
products in terms of their associatedbiological processes, cellular componentsandmolec-
ular functionsin a species-independent manner. The data in the different collaborating
databases can be seen as instance data of the ontology. Besides developing the ontol-
ogy, the Gene Ontology (GO) consortium also makes cross-links between the ontologies
and the genes and gene products in the collaborating databases, and develops tools that
facilitate the creation, maintenance and use of ontologies.

There is one central place were the ontology resides, but the control is distributed.
There are a few full time “curators” that work on the vocabulary and the relations. GO
users can make suggestions for additional terms or for other improvements via change
requests. This is implemented in a system that allows the submitter to track the status of
their suggestion, both online and by email, and allows other users to see what changes
are currently under consideration. Eventually, the curators perform the changes. Changes
occur on a daily basis. Over time, GO has grown larger, has become more complex, and
has grown in breadth. A record is kept of every change, and there are procedures that
check for local conflicts in the ontology. Initially, the changes were managed via CVS,
later on a database was used. The database allows full roll-backs of changes. Every
month a new version of GO is published. This release is a snapshot of the current status
of the database.

The coordinator of the project mentions several reasons for changes. One reason
is the strive for completeness: incomplete parts of the ontology have to be completed.
Also, errors have to be repaired. A special reason is the splitting of compound terms.
This normally involves creating a term, obsoleting the old term, and creating equivalence
relations. However, most of the changes are additions. There were two major problems
caused by the evolution of the ontology. The first problem is that it was not possible to
track a term when it disappeared from the ontology. This is now solved by obsoleting
terms instead of deleting them. A second problem is mis-annotation. It happens that
people have labeled data with a wrong assumption, probably because of an ambiguous
definition. When the definition of the term is clarified there is no mechanism that triggers

9http://www.geneontology.org/

3.3. Study of Existing Ontology Management Strategies 51

people to verify the way in which they used the term. This problem is solved by a policy
that prescribed that definitions may not be changed; if there is a different meaning, a new
term has to be introduced with a different ID.

3.3.6 Discussion

When we look at the ontologies and the change management strategies that are described
in the previous sections, we can make a number of observations.

First, we see that none of the described projects have a real distributed development
model. To control the changes, the projects either have a central authority that makes
decisions about the changes, or they have divided the ontology in different parts and dis-
tributed the control accordingly. This works when the different developers work closely
together, or when the parts are only weakly connected.

Many projects try to minimize the number of changes that have to be made. In order
to achieve this, most projects started with a long development phase. During this phase it
was less problematic to make changes, either because there was not much instance data,
or the development was very centralized. In the production phase, some projects even
restricted the possible types of changes.

One of the projects, i.e. the EMTREE thesaurus, had a change management proce-
dure that deliberately sacrificed a bit of the completeness in favor of usability, with the
inclusion of candidate terms that may disappear later on. The completeness and correct-
ness of the procedures seemed to be a basic requirement in the other projects.

For storing and retrieving the different versions, it turns out that there is nothing
specific used for ontologies, but that all projects fall back to well known techniques.
Most of the described projects used a database, one used a file based system.

The reasons for change that are mentioned most often, are extensions of the coverage
of an ontology, and changes in the way a domain is interpreted (conceptualization). These
two reasons are mentioned in three of the four projects. Corrections of errors and changes
in use of the ontology were also mentioned more than once. Surprisingly, “changes in
the domain” was only mentioned once. A possible explanation for this is that two of the
four projects are in a relative early state, in which more attention is paid to the growth of
the ontology than to the validation of the ontology.

In most of the interviews, people seemed to find it difficult to talk about the kind
of change support that they would like to have. It attracts attention that the people that
represented the “more developed” projects, i.e. EMTREE and GO, were not able to men-
tion any desired support at all. A hypothesis for this is that these projects already have
developed working strategies for the problems that they encountered.

Table 3.1 gives an overview of the main issues in the interviews and whether or not
they were mentioned for a specific project. If the table contains an empty cell, it does not
necessarily mean that the specific issue is not the case for the project, but just that it was
not mentioned during the interview.

Concluding, we can say that there are several techniques and strategies that can be ap-
plied to prevent that the evolution of ontologies will cause problems. However, many of
these techniques are easier to apply in a (relative) centralized setting, than in a distributed
setting. For example, restricting the possible changes, and partitioning the development

52 Ontology Change Management: Problems and Solutions

PharmGKB EON EMTREE GO

Change management strategies
development / production phase x x x
restricting changes x x
working on different parts x x
central authority that validates x x
provisional changes x

Means for version management
file-based version management x
database version management x x x

Reasons for changes
change in conceptualization x x x
world / domain changes x
correction of errors x x
extension of the domain x x x
granularity changes x x
change in usage x x

Desired change management support
referential integrity x
prediction of effect on tasks x
propagation of changes x
multi-user editing capabilities x
high-level change representation x

Table 3.1: Overview of the main issues in interviews.

in different parts is difficult to achieve when there is no control of the development. The
study did not give a clear answer to the question what a change management method for
ontologies should achieve. In the next section, we will list a number of goals that people
might want to achieve with respect to evolving ontologies.

3.4 Ontology Evolution Tasks

In this section, we describe a number of different tasks for which users that work with
evolving ontologies might need help. This can be seen as a list of aims for a version-
ing methodology for ontologies. This list is partly based on the study described in the
previous chapter, and partly on our general experience with the use and development of
ontologies.

The general aim of ontology evolution methodology would be to achieve interoper-
ability between versions. In this case, interoperability can be defined as the ability to
use different versions of ontologies and possible data sets together in a meaningful way.
Meaningful means that the way in which ontologies or data are used is not conflicting
with the intended meaning of the ontology.

However, this general goal can be achieved in several ways and has several specific
interpretations, which may differ for the different tasks for which ontologies are used.
The list is not meant as a definition of components of a versioning support system, but
it sketches the wide area of tasks where some support for change management might be

3.4. Ontology Evolution Tasks 53

useful.

Data accessibility

The most often mentioned objective of versioning is the ability to access instance data
via a different version of the ontology than the one that was used to describe it. In this
case the interpretation of interoperability is data accessibility. Data accessibility can be
achieved in two ways:

1. Restricting the modification to changes that do not affect the interpretation of the
data, i.e.backward compatiblechanges. In this case the change in the ontology
does not change the perspective on the data (Heflin and Hendler, 2000).

2. Translating data structures from one to another version. For example, if two classes
are merged into one, this usually has as a result that instances of the original classes
cannot be accessed anymore. However, if the querying agent knows about the
merge, it can translate the instances of the original classes to the new class.

Full data accessibility is not always achievable, of course. Some changes might make a
part of the data inaccessible, for example, a deletion of a class.

Data translation

A related goal is the translation of data sources that conform to one version of an ontol-
ogy in such a way that they conform to another version. This requires that consecutive
changes between the two versions of the ontology are executed in the data sets. This is
useful in situations where there is control over the data sources and it is important to keep
data sets up to date with the ontology, e.g. in a company where the information on the
intra-net has to be annotated with a specific ontology.

Consistent reasoning

Another interpretation of interoperability is that the reasoning over the ontology is not
affected. This forms a second objective of versioning. In general, this would mean that
answers to logical queries are not changed by modifications in the ontology. Of course,
this is almost never true in the general case: only non-logical changes will have this
effect. For each logical change a query can be invented that will have a different answer.

However, it might be very useful to know that a change in an ontology does not affect
the answers to aspecific setof queries. In many cases, applications will not ask arbitrary
queries to an ontology, but only a number of predefined ones. For example, an application
might be interested in the instances of a class, or in the properties that can be applied to
a class.

If it can be predicted whether or not the answers to such a set of queries will change,
it is possible to decide if the versions of ontologies can be exchanged for a specific task.

A set of queries which should give an consistent answer can be defined explicitly, by
listing those queries, or implicitly, by specifying the type of reasoning that is assumed.

54 Ontology Change Management: Problems and Solutions

For example, for ontologies that have an underlying description logic, consistent reason-
ing means that the derived subsumption hierarchy is not affected by the changes in the
ontology.

Synchronization

Something else that is often considered to be part of versioning support is the ability to
make copied (and possibly changed) versions of ontologies up to date with a remotely
changed ontology. This might be desirable when an ontology is copied and the original
is consecutively changed but it is still necessary to work with the original one, too. This
requires that all consecutive changes in the original ontology are carried out in the local
copy. This process is calledsynchronizationin (Oliver, 2000). The term used in software
development ispatching.

This goal is often part of another objective: collaborative development of ontologies.
Besides synchronization, collaborative working requires mechanisms for access control
(e.g. locking) and conflict resolution.

Management of development

Something else that a versioning framework could support is a step by step verification
and authorization of changes to an ontology. This task is also useful in collaborative
working scenario. It is related tosynchronization, but there are some differences. First, it
allows a step-by-step acceptation or rejection of the changes, so the user can control the
process. A practical difference is that the changes are often performed to the unchanged
ontology, instead of to a locally changed ontology. As a consequence, less conflicts will
occur in this scenario.

This task requires that the changes in an ontology are presented to the user in a such
way that he or she can understand what the change is. This means that it is often not
enough to show a list of additions and deletions of terms, but as “aggregations” of a num-
ber of atomic changes that are performed for the same reason. For example, a change that
occurs quite often is the introduction of an additional distinction: a class gets two new
subclasses and its former subclasses become subclasses of the new ones. It makes much
more sense if this is presented to the user as one operation instead of 5 or more atomic
addition and move operations. This part of the task was mentioned in the interviews as
“high-level visualization”.

Editing support

Another type of change management support is support during the editing of changes in
ontologies. One aspect is the propagation of changes, i.e. the consequences of effects
of changes in other parts of the ontology. This can be as simple as highlighting the
consequences, or as advanced as automatically performing necessary additional changes.
For example, concepts and properties could be updated or deleted automatically if they
refer to other deleted concepts. An implementation of this type of support is described
in (Stojanovic et al., 2002). They use different “strategies” that describe the what actions

3.5. Discussion 55

should be performed if concepts are deleted. Such kind of strategies could also be applied
to preserve particular properties of model, for example its logical consistency, or—in case
of OWL—the specific sub-language it uses. In the RDF storage and querying engine
Sesame (Broekstra et al., 2002a) a similar system is implemented to keep the deductive
closure of the RDF Schema model consistent when statements are deleted (Broekstra and
Kampman, 2003a).

3.5 Discussion

In this chapter, we have seen that changes in ontologies can make two versions differ-
ent in various aspects. We then discussed what makes ontology change management
different from database schema versioning. It turned out that because of the inherently
distributed nature of ontologies and the higher expressivity, other means are necessary.
From the study of current ontology development projects, a similar picture arose: the
strategies used work best in relatively centralized environments. In the next chapter, we
will sketch a framework of ontology change that combines different methods and tech-
niques, considering the additional requirements that a distributed setting brings with it.
The framework aims to provide elements that take the sketched ontology evolution tasks
into account.

Part II

Framework

Chapter 4

Framework for Ontology
Evolution

Note: An earlier version of the framework described in this chapter is published
in the proceedings of the IJCAI 2003 workshop on Ontologies and Distributed Sys-
tems (Klein and Noy, 2003).

The description of the idea and mechanics of the Semantic Web (Chapter 2) and the
analysis of current practices in change management for semantic models (Chapter 3) lead
to a number of general guidelines for the design of an architecture that copes with the
evolution of ontologies in a distributed setting. In this chapter we outline a framework
for ontology evolution. We first introduce our vocabulary and describe a number of basic
assumptions behind our approach (Section 4.1), then we explain the basic elements of
the framework and the relations between them (Section 4.2), and finally we sketch how
these elements can be operationalized. In the next two chapters we discuss the elements
in detail.

4.1 Vocabulary and Assumptions

In our framework we assume that there are online, distributed ontologies without a central
authority that publishes or authorizes ontology versions. Everybody can publish, reuse,
extend ontologies and relate to other ontologies on the Web. The ontologies consist of
definitions of classes and relations between them. We do not assume that a specific
ontology language is used.

4.1.1 Conceptualization vs. Specification vs. Representation

An assumption behind our ontology evolution framework is the fact that an ontology is
not just a digital specification of definitions, but a representation of ahumanconstruct.

60 Framework for Ontology Evolution

This assumption has an important consequence for the interpretation of the meaning of
changes. To make this clear we look at different levels at which an ontology can be
interpreted.

Levels of Interpretation of an Ontology

According to the often mentioned definition of Gruber (1993), an ontology is aspecifi-
cationof aconceptualization. This specification is usuallyrepresentedin some ontology
language. Therefore, an electronic file containing an ontology, or even a piece of paper
with an ontology, can be interpreted at different levels. Figure 4.1 shows a distinction
between different levels of interpretation of an ontology as an UML class diagram.

Specification
(concept definitions and relations)

*

*

*

1

Conceptualization
(human construct)

Representation
(concept definitions in a language)

Figure 4.1: Three interpretation levels of an ontology.

At the conceptualization level is the actual interpretation of a specific domain by
a (number of) human(s)1, which basically is an opinion about the important concepts
and their relations. For example, a conceptualization about vehicles could contain the
different types of vehicles and their characteristics.2

The specification level contains precise definitions of the concepts and the relations
between them. In the aforementioned example, the specification could distinguish be-
tween “cars”, “motorbikes” and “bikes”, and describe them by their properties, for ex-
ample the way they are driven (by engine or human power), the number of wheels, the
things they can transport etc. There is often more than one way to specify a conceptu-
alization. Therefore, the actual specification of concepts and properties is only one of a
number of possible specifications. For example, a “motorbike” could be defined as spe-
cific type of motor-vehicle, or as a bike with a motor. Both specifications could refer to

1Many people consider it as essential that an ontology is asharedview on the world (Borst, 1997), although
a more pragmatic opinion, in which an ontology is just a personal view on concepts and their relations, also
exists (Yan et al., 2003).

2As a conceptualization is just a “interpretation”, we cannot give a more concrete example without also
providing its specification.

4.1. Vocabulary and Assumptions 61

the same concept. Also, a not very detailed specification could possibly refer to different
conceptualizations.

The representation level is the actual formalism in which the specification is ex-
pressed. Simply said, different representations coincide with different ontology lan-
guages. As each specification can be expressed in different languages, there are mul-
tiple representations for each specification. However, a specific representation refers to
only one specification, because we assume that the ontology languages are capable of
providing an unambiguous and complete representation of the concepts and relations in
the specification.3 The textual description of a “motorbike” in the previous paragraph
is a example of a representation; another example is the following description in RDF
Schema.

<rdf:Class rdf:ID ="Motorbike">
<rdf:subClassOf rdf:resource ="#Motor-vehicle">

</ rdf:Class >

Types of Changes

We define anontology changeas an action on an ontology that results in an ontology
that is different from the original version. However, based on our distinction between
different interpretation levels of an ontology, it is useful to distinguish between different
types of ontology changes. We will use these terms in the remainder of this book.

• conceptual change: a change in the conceptualization;

• specification change: a change in the specification of a conceptualization;

• representation change: a change in the representation of a specification of a con-
ceptualization.

Because there are no one-to-one relations between the conceptualization, the specifi-
cation, and the representation of an ontology, changes in one interpretation level are not
always changes in the other interpretation level.

A change in the specification does not necessarily coincide with a change in the
conceptualization, and changes in the specification of an ontology are not per definition
ontological changes. For example, there are changes in the specification of a concept
which are not meant to change the concept itself; think of attaching a property “fuel-
type” to a class “Car”. Both class-definitions still refer to the same ontological concept,
but in the second version it is described more extensively. Theoretically, the other way
around is also possible: a concept could change without a change in its specification.
However, this usually means that the concept is modeled in a very superficial way.

To distinguish between changes in ontologies that affect the conceptualization and
changes that do not affect it, Visser et al. (1997) uses the following terms:

3Note that, in practice, a specification can not exist without a specific representation. Therefore, the speci-
fication is bound by the expressivity of the language, which makes our assumption about the completeness and
unambiguity of the languages realistic. Still, it is possible to have multiple representations of a specification.
In that case, the specification is bound by the overlap of the expressivity of the languages involved.

62 Framework for Ontology Evolution

• conceptual change: a change in the way a domain is interpreted (conceptualized),
which results in different ontological concepts or different relations between these
concepts;

• explication change: a change in the way the conceptualization is defined, without
changing the conceptualization itself.

It is not possible to determine automatically whether a change in the specification is
a conceptual change or an explication change. This requires insight in the conceptualiza-
tion, and is basically a decision made by the ontology engineer. However, heuristics can
be applied to suggest the effects of changes on the conceptual relations in the ontology.
This mechanism will be worked out in Chapter 6.

Second, a change in the representation is not always a change in the specification. If
an ontology is translated into a different language with an equivalent or larger expressiv-
ity, the specification doesn’t change. If the expressivity of the target language is more
restricted, then the change in the representation implies a change in the specifications.
Because of the cardinality of 1 of the relation between the representation and the speci-
fication in Figure 4.1, a change in the specification is assumed to imply a change in the
representation as well.

A representational change is typically a change at the syntactic level. For example,
in RDFS there are two ways to define classes: via an explicitrdf:type statement, or via
the shorthand notation<rdf:Class ...> . Changing from one to the other definition is a
representation change.

Note the difference between Visser et al.’sexplication changeand ourspecification
change. Our definitions simply refer to changes in one of the interpretation levels, while
the explication changesays something about the effect of a change in one level on the
other level. In our terms, Visser et al.’sexplication changewould be defined as a “speci-
fication change without a conceptual change”.

4.1.2 Task Dependency

The task dependency of the effects of change is yet another assumption. It is not possible
to describe the effects of change operations on the compatibility of two ontologies in
general terms (e.g., “compatible” or “not-compatible”), but only by referring to a specific
use case of the ontology.

This is notably different from databases, where “backward compatible” usually means
that one can access old data correctly via the new version of the schema. This is also the
perspective that is described in (Heflin and Hendler, 2000), and is an important perspec-
tive in the context of the Semantic Web. However, for ontologies there are also other
perspectives, resulting from the different tasks for which ontologies are used.

For example, suppose we have a small ontology with a class “Conference” and a class
“City” connected with a property “locatedin” and a small data setIJCAI03 located_in

Acapulco (see Figure 4.2). We can now derive thatAcapulco is an instance of “City”.
Now, let us change the ontology in such a way that “City” gets a superclass “Location”
and the domain of “locatedin” is changed to “Location”. This is a backward compatible
change from the data accessibility point of view, i.e. we can still access all data via the

4.1. Vocabulary and Assumptions 63

Conference City
located_in

Conference Location
located_in

City

IJCAI03 Acapulco
located_in

version 1

IJCAI03 Acapulco
located_in

version 2

Figure 4.2: A change in a small ontology.

ontology, and the ontology still describes the data correctly. However, if we now query
for instances of “City”, we do not retrieveAcapulco anymore, as it is only known as
instance of “Location”.

The fact whether a change is compatible or not depends on what is to be preserved.
In the example above, this was either the data itself, or the answers queries for instance
data. The following perspectives are possible:

• data preservation—no data is lost in transformation from the old version to the new
one;

• ontology preservation—a query result obtained using the new version is a superset
of the result of the same query obtained using the old version;

• consequence preservation—if an ontology is treated as a set of axioms, all the
facts that could be inferred from the old version can still be inferred from the new
version;

• consistency preservation—if an ontology is treated as a set of axioms, the new
version of the ontology does not introduce logical inconsistencies.

In Chapter 6, we discuss a number of specific variants of the first two perspectives in
detail.

Thus, te effect of a change can not be described in general but should always be
related to a specific usage scenario. A particular change can then be associated with
different consequences for different types of usage. In example above, we could specify
for the class “City” that there is no effect on data accessibility, but that the effect on a
query for the instances is that some of the previous instances cannot be found anymore.

4.1.3 Different Change Representations

Changes between two ontology versions can be represented in a number of different
ways. Each of these ways provides different information at a different level of detail.
Among others, we can find the following change representations. For two versionVold

andVnew of an ontology, we can have:

ontologies only: the old versionVold and the new versionVnew of the ontology; this
provides no explicit change information, but can be used as a basis to find other
change information;

64 Framework for Ontology Evolution

Wine

Red wine White wine

Chardonnay Cabernet
blanc

Vin gris
Sauvignon

blanc

White
ZinfandelPetite

Syrah Chianti

Cabernet
Sauvignon Riesling

Wine

Red wine White wine

Chardonnay

Cabernet
blanc

Vin grisSauvignon
blanc

White
Zinfandel

Petite
Syrah Chianti

Cabernet
Sauvignon

Rosé wine

Weisser
Riesling

(a) (b)

Figure 4.3: Two versions of an ontology (a and b).

log of changes:a record of the changes as they are performed; this is list of changes that
applied toVold results inVnew;

structural diff: a mapping between concepts and properties in one version and their
counterparts in the new version, together with a list of added and removed con-
cepts;

conceptual relations: an explicit (but possibly partial) specification of the conceptual
relations between concepts inVold and corresponding concepts inVnew.

These representations are illustrated in the following example. Suppose that we are
developing an ontology of wines. In the first version (Figure 4.3a), there is a classWine
with two subclasses,Red wine andWhite wine. The hierarchy also includes some specific
types of red and white wines. Figure 4.3b shows a later version of the same ontology
fragment. Note the changes: there is a new subclass ofWine, Rosé wine; the classes
that were previously subclasses ofWhite wine—Cabernet blanc, White Zinfandel, and
Vin gris—are now subclasses of the new classRosé wine; theRiesling class is renamed
to Weisser Riesling.

One of the easiest change representations to create, with the appropriate tool sup-
port, is achange logbetween versions. A change log records an exact sequence of
changes that occurred when an ontology developer updatedVold to arrive atVnew. Many
ontology-editing tools, such as Protéǵe 4, OntoEdit (Sure et al., 2002) and others, record
changes that developers make. There are several detailed proposals for the information
that logs should contain (e.g., versioning in KAON (Stojanovic et al., 2002; Maedche
et al., 2003),CONCORDIA (Oliver et al., 1999)). For example, the evolution framework
of KAON provides a number of “add”, “set” and “delete” operations. The log contains a
list of specific operations, such as “AddPropertyDomain” or “RemoveSubConcept” with
references to the concepts or properties that they operate on.

Most logs of ontology changes are quite similar to the KAON format. They contain
simple ontology changes, where the level of granularity at which changes are specified

4The Prot́eǵe project, seehttp://protege.stanford.edu/

4.1. Vocabulary and Assumptions 65

is close to a single user-interface operation. A log is that it provides a complete and un-
ambiguous change specification at a very fine level of detail. Figure 4.4 shows a possible
log of changes between versions from Figure 4.3.

Feb 25 13:36, user,
changeName oldName=Riesling, newName=Rheinriesling

Feb 25 13:37, user,
changeName oldName=Rheinriesling, newName=Weisser Riesling

Feb 25 13:37, user,
addSuperclass child=Cabernet blanc, parent=Ros é wine

Feb 25 13:37, user,
removeSuperclass child=Cabernet blanc, parent=White wine

Figure 4.4: A fragment of a log of changes for the example in Figure 4.3.

Change logs may not always be available, however. In a dynamic and de-centralized
environment such as the Semantic Web, we may have access only to the old and the new
version of an ontology, but not to the record of the change. Furthermore, change logs are
less useful in an environment where several editors update an ontology at the same time:
interleaving the logs to find out the final effect of changes is a difficult task in itself.
Therefore, there are a number of ways to represent change that relateVold andVnew

directly, without taking into account the specific sequence of changes that has actually
taken place.

A structural diff (Noy and Musen, 2002) provides a map of correspondences be-
tween frames inVold andVnew. For each from inVold it identifies whether or not there
is a corresponding frame inVnew (its image) or whether a frame was deleted, or a new
frame was added. Figure 4.5 shows a structural diff between ontology versions in Figure
4.3. The structural diff shows that the classRosé wine was added, the classRiesling was
renamed intoWeisser Riesling, the classCabernet blanc changed its superclass, and so
on. PROMPTdiff (Noy and Musen, 2002) is an example of a tool that uses heuristics to
create a structural diff automatically. It uses persistent identifiers of the frames in differ-
ent versions, or, if such identifiers are not present, structural relations between ontology
elements.

A structural diff provides adeclarativeview of changes: it represents the mapping
between versions but it does not contain the operations that one needs to perform to get
from one version to another. We call the mapping between frames in different version
also theevolution relationbetween frame versions.

A set ofconceptual relationsspecifies the conceptual relation between framesacross
versions, i.e. the relation between a frame inVold and the image of that frame inVnew.
In our example in Figure 4.3, after creating the classRosé wine, we moved a number of
classes that were previously subclasses ofWhite wine to theRosé wine subtree. In this
case, a conceptual change could specify that the classWhite wine in Vnew is asubclass
of the classWhite wine in Vold. Similarly, it could specify thatRiesling in Vold is equiva-
lent to Weisser Riesling in Vnew. Sometimes, when a consistent interpretation of already
annotated datasets is essential, updates are intentionally specified as sets of conceptual

66 Framework for Ontology Evolution

Figure 4.5: A table representing a fragment of the structural diff between two ontology versions.

changes. For example, the EMTREE thesaurus,5 which is used by Elsevier to index sci-
entific publications, specifies updates by defining that specific terms become subsumed
by other terms, or that they became synonyms of other terms. In the OntoView sys-
tem (Klein et al., 2002a) developers can augment a change description with conceptual
relations between frames across versions.

The list of change representations in this section is not exhaustive. For example,
some systems store concept-history information, associating with each concept a list of
concepts that it was derived from, whether a concept was “retired” and which concept
replaced it (Oliver et al., 1999). The systems with the primary purpose of data trans-
formation may store a set of operations that is a specific “recipe” for transforming data
instances. Other ways to represent change may develop as ontology evolution becomes
more and more common.

4.2 Elements of the Framework

Based on the assumptions that we described in the previous section, we can now sketch
the main components of our framework for ontology versioning. It consists of:

• a meta-ontology of change operations;

• the notion of complex changes;

• the notion of a transformation set;

• a “template” for the specification of the relation between different ontology ver-
sions.

The elements are described in more detail in the next chapters.

4.2.1 Meta Ontology of Change Operations

We defined anontology of change operationsthat specifies a large number of standard
changes to an ontology. This ontology is a central element in our framework because

5Seehttp://www.elsevier.com/locate/emtree .

4.2. Elements of the Framework 67

different tools using the framework must agree on the basic part of the ontology. As
tools use different formalisms for change representation for different tasks or augment
information represented in one formalism with information in another, the set of basic
operations is the “common language” that they share. This requirement to agree on
a common set of basic change operations is similar to the requirement that agents on
the Semantic Web share a common ontology language, such as OWL. Defining such an
standard set is not unrealistic: once there is a common ontology language (e.g., once
OWL becomes a standard), developing and agreeing on an ontology of basic changes
is doable. Essentially, an ontology of basic changes is directly related to the ontology
language itself and constitutes a set of operations to build an ontology in this language.
We present the ontology of change operations in more detail in the Chapter 5.

4.2.2 Complex Change Operations

Besides the basic change operations, the ontology of change operations also contains
complex change operations. Complex change operations are operations that are com-
posed of multiple basic operations or that incorporate some additional knowledge about
the change.

Complex operations provide a mechanism for grouping a number of basic operations
that together constitute a logical entity. For example, a complex operationsiblings move
consists of several changes of superclass relations.

Complex changes could also incorporate information about the implication of the
operation on the logical model of the ontology. For example, a complex change might
specify that the range of a property isenlarged, that is, that the filler of the range changed
to a superclass of the original filler. To identify such changes, we need to query the logical
theory of the ontology. In contrast, basic changes can be specified by using the structure
of the ontology only.
Complex operations provide a number of benefits over basic ones.

• Complex operations can be used to improve the user interface for the task of verify-
ing and approving changes. Quite often, an ontology editor performs a number of
changes that are all part of one “conceptual” operation. Some complex operations,
like sibling move, capture this knowledge. Visualizing these operations helps the
user to verify modifications.

• Complex operations can be used to transform instance data with less data loss. For
example, consider the move of a class: if we just had the “remove class” and “add
class” operations, we will loose all instances of that class; knowing that the class
was moved allows to move the instance data, too.

• Complex operations enables us to determine the effect of operations more pre-
cisely. If we only know that the range of a property has changed, we cannot tell
anything about the effect on data. However, if we know that the range of the prop-
erty isenlarged, we know that all old instance data is still valid.

The set of complex change operations is never finished or complete. It is always
possible to define new complex changes that are useful in some setting. At the same time,

68 Framework for Ontology Evolution

changeName oldName=Riesling, newName=Weisser Riesling
addSuperclass child=Cabernet blanc, parent=Ros é wine
addSuperclass child=Vin gris, parent=Ros é wine
removeSuperclass child=Cabernet blanc, parent=White wine
removeSuperclass child=Vin gris, parent=White wine

Figure 4.6: A fragment of a transformation set for the example in Figure 4.3

a specific application does not have to use (or commit to) all complex change operations.
The set of basic operations is already sufficient to specify all possible transformations.
In the Chapter 5 we describe a number of complex operations in more detail.

4.2.3 Transformation Set

Another important element of the framework is a transformation set. It provides a set
of change operations that specify howVold can be transformed intoVnew. The trans-
formation set uses the operations from the ontology of changes. A transformation set is
not unique, there are often multiple ways to construct a transformation set for a specific
change. The formal definition of a transformation set is:

Definition 1 (Transformation set) Given two versions of an ontologyO, Vold andVnew,
a transformation setT (Vold, Vnew) is a set of ontology-change operations that applied
to Vold results inVnew. The operations inT (Vold, Vnew) can be performed in any order,
with one exception: all operations thatcreatenew classes, properties, and instances are
performed first.

Figure 4.6 presents one possible transformation set for versions in Figure 4.3. The
transformation set in the figure contains only basic changes: each change is a single
knowledge-base operation. The set can also include complex changes: for example, we
can combine two operations that add a superclass and remove a superclass for the same
class into a singlemove operation.
A transformation set is different from a log in the following aspects.

• A log contains a record ofall the operations that actually took place (including all
intermediate steps) during the ontology-editing process. A transformation set spec-
ifies only the necessary operations achieve to the resulting change. For example,
a log can contain the facts that a conceptRiesling was renamed toRheinriesling,
which was again renamed toWeisser Riesling, while a transformation set would
only contain the renaming ofRiesling to Weisser Riesling (Figures 4.4 and 4.6).

• A log is anordered sequenceof actions. A transformation set is anunordered set
of actions.6

6There is some very limited partial ordering for transformation sets: mainly, we assume that all “create”
operations happen first (see Chapter 5.

4.2. Elements of the Framework 69

• A log is auniquerepresentation of the actual change process. A transformation set
does not need to be unique. For any two versions of an ontologyVold andVnew

there can be several (and, often, there are many) valid transformation sets. Figure
4.3 shows a fragment of one version of a transformation set. An alternative (and
also correct) transformation set that rather than changing the superclasses of the
Vin gris class, first deletes the class altogether, and then creates the class with this
name again, now as a subclass of theRosé wine class.

• A log contains operations at a specified, usually low,level of granularity. For
example, it would usually contain such operations as adding or removing a super-
class, but not moving a class or a set of classes from one subtree to another.

Note that if a log of changes between two ontology versions consists of operations
that do not undo other operations, this log is by definition a transformation set between
these two versions.

A minimal transformation set is a special variant of a transformation set. It consists
of a set of operations that is sufficient andnecessaryto transformVold into Vnew.

Definition 2 (Minimal transformation set) A transformation setT (Vold, Vnew) is min-
imal if removing any operation from the set results in a set that is no longer a transfor-
mation set fromVold to Vnew.

The minimal transformation set provides a condensed specification of the change that
can be used to re-execute the change and to derive additional information it.

4.2.4 Template for Change Specification

The fourth component of our framework is a template that can be used to describe how
two ontology versions are related. The template uses several of the change represen-
tations that we distinguished in Section 4.1.3. An assumption behind the template for
change specification is that it is often not possible to fill it in completely, because not
all information is available. However, we have developed several methods and heuris-
tics that help to derive new information from the available change information. These
methods are outlined in Section 4.3.2.

The (partly) filled-in template can be used as a separate mapping ontology that gives
information about the consequences of the changes for different types of usage. Chapter 6
in this book shows how the change specification can be used for three different tasks.

The template has the following elements (see Chapter 5 for a more technical descrip-
tion):

Descriptive meta-data: book-keeping information likedate of release,author of the
changes, and the number of the versions. This describes the what, when and who
of the change and can be used to identify the versions and changes in a setting of
collaborative development.

Minimal transformation set: the kernel of the template, as it forms a complete oper-
ational specification of the change. It can be used to re-execute the change, to

70 Framework for Ontology Evolution

translate or re-interpret data sets, and as a basis for deriving additional information
about the change.

Conceptual relations: the relation between concepts across versions as specified by the
ontology engineer. This facilitates data access by improving the interpretation and
querying of data sources that were described with different versions of ontologies.

Complex changes:a higher-level description of some of the changes. Together with
the minimal transformation set, we can use the complex operations to create data-
transformation scripts. Also, complex changes allow us to determine in more detail
the effect of changes on data accessibility and specific logical queries. Moreover,
visualizing complex rather than basic changes, makes validation and approval tasks
much easier for users.

Change rationale: the intention behind the change. The rationale specifies whether the
change is a fix of an error, a more specific description, or an update of the real
world. The intention can be used to decide which version to use and can help to
visualize the change.

For the specification of a rationale, the list suggested by Cimino (1996) could be
used as a starting point. Based on an analysis of several medical vocabularies, he
distinguishes two reasons of deletion and five reasons for additions. The reasons
for deletion are:

• obsolescence: deleting a term because it is not in use anymore;

• discovered redundancy: deleting a term because the it appears that it is
synonym with another term.

The reasons for additions are:

• simple addition: adding a term because it represent a truly new concept;

• refinement: adding a term to allow greater levels of detail to be specified;

• precoordination: adding a term which represents the combined use of mul-
tiple existing terms;

• disambiguation: adding terms because they distinguish between the differ-
ent meanings of a homonym term;

• redundancy: adding a term because it represents a different name for an
existing concept.

Note that this list of Cimino only specifiespossiblereasons, but not a policy for
changing vocabularies. This is the reason that “redundancy” exists both as a reason
for addition and as a reason for deletion.

4.3 Creating Change Specifications

The previous section described the main static components of the framework for ontology
change. We will now sketch the methods to use these components. The methods fall into

4.3. Creating Change Specifications 71

two categories: the first category is about methods for finding change information when
we just have two version of an ontology (Section 4.3.1), the second category consists
of methods for deriving additional change information (Section 4.3.2). In the following
chapter, we will describe these methods in more detail. Three tools that implement some
of these transformations are described in Chapter 7.

Figure 4.7 gives a graphical overview of the different change representations and
some of the possible translations between them.

 transformation set

change log

complex
changes

ontology Vnewontology Vold

conceptual
relations

structural
diff

ontology of
change

operations

minimal
transformation set

Figure 4.7: A schematic representation of the relations between different change representations:
a transformation set between two versions, specified with operations from the ontology of change
operations, and possible translations to and from other change representations.

4.3.1 Finding Changes

When we just haveVold andVnew, we can create a transformation set and a structural
diff.

Vold and Vnew → transformation set If we have bothVold andVnew, we can compare
the two versions to create automatically a transformation set between them. Two tools
that help in comparing ontology versions and creating a transformation set are described
in Chapter 7.

Vold and Vnew → structural diff Starting fromVold andVnew, we can also create
a structural diff between both. This specification maps the concepts and properties in
the old version to their counterpart in the new version. If concepts in an ontology have
immutable concept ids, a simple tool can create a diff between versions identifying for
each frameF in Vold its image inVnew. If we do not have immutable concept ids, tools
such as PROMPTdiff (Noy and Musen, 2002) use a set of heuristics based on concept
names, class-tree structure, and concept definitions to create a structural diff.

72 Framework for Ontology Evolution

4.3.2 Deriving New Information

We can use change information that we already have (for example, the transformation set
or structural diff that is created in the previous section) to derive additional information
about the change. As a result, havingsomeinformation about change enables us to
complete the change specification by deriving additional elements of it. Even in the
case that we cannot fill in all the pieces, we might still be able to support tasks that we
could not support before. We now describe some of the transformations from one change
description to another.

Change log→minimal transformation set Many ontology-editing tools provide logs
of changes (e.g., Protéǵe, OntoEdit). These changes are often at the level of simple
knowledge-based operations: adding a superclass to a class or removing one. We can
transform logs into transformation sets by translating the operations into our vocabulary
of basic changes and finding and removing all redundant changes.

Transformation set→minimal transformation set Similarly, we can transform trans-
formation set into minimal transformation sets by finding and removing all redundant
changes.

Transformation set → complex changes If we have a transformation set consisting
of basic operations, we can use heuristics to combine these basic operations to create
complex change operations. For instance, if we have a set of siblings in a class hierarchy
and each of these siblings had the same class added as a superclass and the original
superclass removed, we can infer that the whole set of siblings was moved together from
one part of the hierarchy to another. In addition to the set of basic changes, we may need
direct access toVold to find complex changes.

Structural diff → complex changes If we have a structural diff, we can use the in-
formation in it to create more useful change descriptions. Consider for example the
structural diff in Figure 4.5. Knowing thatRiesling becameWeisser Riesling and that
the name is the only difference between the two classes, we can identify achangeName
operation.

Transformation set→ conceptual relations If we have a transformation set with both
basic and complex operations defined between versions, we can use a set of heuristics to
suggest conceptual relations between frames in versions to the user. For example, if we
add a property to a class, we might suggest to the user that the new version of the class
has become a subclass of the old version.

Structural diff → conceptual relations Similarly, we can use a structural diff to derive
conceptual relations. For instance, the mappings of a structural diff directly suggest
equivalence relations betweens concepts.

4.4. Summary 73

Vold Vnew and structural diff → conceptual relations When both versions of the
ontology are available and we have the evolution relation between concepts, we can use
a automated reasoner to derive conceptual relations between the concepts in the old and
new version of the ontology. Of course, this only works if a decidable logic underlies the
ontology language. Tot do so, we add the old concept definition to the new version of the
ontology and compute the subsumption relation between the old and new version of the
concept.

4.4 Summary

In this chapter, we described the basic assumptions and elements of our framework for
ontology evolution. The main elements of the framework are the ontology of change
operations, the notion of complex changes, the transformation set, and the template for
change specification.

The methods that we described illustrate how we can derive new change information
from other change representations. This makes it possible to supplement information
about change, and therefore to support ontology-evolution tasks that the original change
information did not allow.

In the next chapter, we describe the ontology of change operations and the complex
changes. The succeeding chapter shows how the change specification can be used for
different ontology tasks. Tools that implement some of the methods and that support
these tasks are described in Chapter 7.

Chapter 5

Ontology of Change Operations

In the previous chapter, we have outlined our framework for ontology evolution. A key
element of the framework is thetransformation set, which represents a complete op-
erational specification of the change. A transformation set is specified as a number of
change operations. In this chapter we define the vocabulary for these change operations
and organize them into anontology of change operations.

In addition, we define achange specification language, based on the ontology of
change operations. We do this by proposing an RDF-based syntax for the operations and
linking the ontology of change operations to the meta-model of the ontology.

The chapter is organized as follows. We start with a discussion of the objectives and
requirements for a change specification language. Then, we use the metamodel of two
well-known ontology representation formalisms, i.e. OWL and OKBC, to define a set
of basic change operations. This is followed by a discussion of a number of complex
changes in Section 5.4. In Section 5.5 we extend the ontology of change operations for
OWL to a general change specification language.

5.1 Usage and requirements

The general goal of a change specification language is to provide a vocabulary and syn-
tax to express an accurate specification of a change. Apart from its specific use in our
ontology evolution framework, a change specification language can be useful for other
tasks as well. In the following scenarios a change specification could help.

Change reverting or re-execution A description of the changes that are performed in
an ontology can be used to undo them, thus bringing the ontology back to its
original state. Also, the specification can be used to re-execute the changes in
a variant of the ontology, or on data sets that are described with the ontology.

Effect Analysis A complete change specification can be used as an important source
for analyzing the effect of the changes on the compatibility of the ontology with

76 Ontology of Change Operations

data sets (Heflin and Hendler, 2000) or with other ontologies (Stuckenschmidt and
Klein, 2003).

Tool Interaction Tools need to exchange unambiguous specifications of modifications
when they interact in an ontology development process. If ontologies are devel-
oped in a collaborative process (Pinto and Martins, 2002; McGuinness, 2000),
specifications of the changes performed by one developer need to be communi-
cated to other developers and/or applications.

The transaction logs that are produced by some ontology editors, e.g. OntoEdit (Sure
et al., 2002) and Protéǵe 1 are examples of change specifications. However, these logs
have proprietary formats, while for a useful interaction between different tools astandard
language is needed. The language that we present in this chapter (in Section 5.5) aims to
be such a language. To function as a standard, it should fulfil a number of requirements.

Sufficient expressiveness:The language should be sufficiently rich to specify all possi-
ble modifications to an ontology, i.e. it should be capable of representing arbitrary
transformation sets between ontologies.

Because a transformation set specifies changes in thespecificationof an ontology,
the language should be complete with respect specification changes. This implies
that it should be capable to express changes that do not constitute a logical change,
but it does not require the language to be capable of specifyingrepresentation
changes (see Section 4.1.1 for an explanation of the different levels of change).

Minimality: The required commitment of users should be minimal, i.e. the users should
not be forced to commit to a larger vocabulary than strictly necessary. This require-
ment follows from the distributed context of the framework for ontology evolution:
different tools and / or users might need to exchange information about ontology
change, and there should be no unnecessary obstacles for the adoption of the lan-
guage.

Different levels of granularity: A general language for ontology change should sup-
port different levels of granularity for change descriptions, as different tasks re-
quire specifications at different levels (see also Chapter 3). For undo-operations, a
fine-grained specification is needed, whereas effect analysis often requires a spec-
ification at a more coarse-grained level.

These requirements are in some sense conflicting and we have to find a balance between
them for our change specification language.

From the many possible change representations (see Chapter 4), we have chosen to
base our change representation onchange operations. Change operations are precisely
defined additions, removals or modifications to the definition of a concept, a property, or
an ontology as a whole. If we relate this to the different types of ontology changes that
are described in Section 4.1.1, it means that change operations modify thespecification
but are ignorant about therepresentation. As a consequence, according to the above

1The Prot́eǵe project,http://protege.stanford.edu .

5.2. OKBC Ontology Language 77

definition there exist no operation that specifies a change to an equivalent representation.
Our idea of change operations is comparable with the taxonomy of operations for ER-
model changes that is proposed by Roddick et al. (1994).

The main reason for supporting change operations as change representation is that
they can be used for acompletespecification of transformations. Using the change oper-
ations, one can specify a recipe that is sufficient to transform one version of an ontology
into another version of the ontology. However, a set of change operations does not give
a complete specification of thechangeitself, it only gives a complete specification of the
operational transformation. There are many aspects of an ontology change, such as the
reason, the conceptual consequence and the meta-data that are not covered by change
operations.

A second reason for the choice for change operations is the third requirement, i.e.
allowing different levels of granularity. Change operations can be aggregated into com-
posite operations that perform several modifications in one step. By choosing for either
composite operations or simple operations, one can vary the level of granularity of a
change specification.

To produce the list of basic change operations on ontologies, we exploit the meta-
model of the ontology language. Each ontology that is represented in a specific ontology
language is an instantiation of the meta model of that language. Therefore, each change
in an ontology can be seen as a set of additions, removals and modifications of one of the
elements of the meta model.

Using the meta-model as a source for the change operations has two advantages.
First, we abstract from representational issues, as the meta model describes the modeling
constructs and not the representation. In contrast, if we would look at the syntax of the
language, we would define changes at the representation level. Second, a by iterating
over all elements of the meta model of an ontology language, we get a list of operations
that is completewith respect to the possible changes of ontologies. We can specify
every possible change with the “add” and “delete” operations for each element of the
knowledge model,

In the next two sections we look at two different ontology languages. First, we look
at the OKBC knowledge model (Chaudhri et al., 1998a). Second, we will consider the
Web Ontology Language OWL (Bechhofer et al., 2004), a W3C recommendation. By
comparing their respective knowledge models, we will conclude that OWL is a superset
of OKBC in most aspects. This suggests that the procedure that is followed to define
change operations for OWL can be applied to other languages as well.

5.2 OKBC Ontology Language

The Open Knowledge Base Connectivity is a protocol for accessing knowledge bases.
The OKBC knowledge modelis the implicit representation formalism that underlies
all the operations provided by OKBC. It supports an object-oriented representation of
knowledge. The knowledge model is extensive and well defined, and has several im-
plementations (Fergerson et al., 2000; Farquhar et al., 1997). In this section we give an
informal description of the OKBC knowledge model. For a formal characterization, we

78 Ontology of Change Operations

refer to chapter 2 in the OKBC specification (Chaudhri et al., 1998b).

5.2.1 OKBC Knowledge Model

As OKBC is a frame-based representation mechanism, aframe is the central object in
the model. A frame represents an entity in the domain of discourse. There are three
main types of frames:class frames, which represent sets of entities,slot frames, which
represent binary relations, andindividual frames, which represent single entities.

If entities are member of a class, they are said to beinstanceof that class. The other
way around, the class is called thetypeof that instance. A class can be asubclassof
another class: if this is the case, then all instances of the subclass are also instances of
the other class.

All frames can be related via slots to other frames or constants. Slots that are associ-
ated with a frame are calledown slotsof such frame. For example, an individual frame
“GeorgeBush” can be related with the own slot “presidentof” to the frame “United
States”. Class frames can also have own slots, although this is much less common. An
example is the identifier that is associated with classes in some categorization systems:
e.g. in UNSPSC the class of “ballpoint pens” is associated via the own slot “code” to
the string “44.12.17.4”.

Besides own slots, class frames can also be associated with a collection oftemplate
slots, that describe slots that are considered to hold for all members of that class. For
example, the class “blueball point pens” can have the template slot “inkcolor” to the
constant “blue”, meaning that everyinstanceof “blue ball point pens” should have the
value “blue” for the slot “inkcolor”. Template slots of a class inherit to its subclasses.

Slots that are related to a frame can have associated with them a set offacetsandfacet
values. Facets and facet values describe characteristics of the combination of a frame and
a slot. For example, the facet “value-type” and value “President” associated with the slot
“rules” in the class frame “Republic” specifies that that value of the slot “rules” for each
instance of a republic should be an instance of a president (as opposed to monarchies,
where the slot “rules” should relate to an instance of a king or queen).

The OKBC knowledge model contains a number of standard facets, concerning the
value-type, the inverserelation, thecardinality and theequivalenceof the slot among
others.

Figure 5.1 shows a UML class diagram of the main elements of the OKBC knowl-
edge model. For the sake of clarity, we made a few simplifications. First, we modeled
constraints as a separate class, although constraints are either specified by a facet or are
defined as global constraints on a slot. In the OKBC model, all constraints exist in two
different variants: both as a facet and as an slot on a slot. As a second simplification, we
didn’t show all types of constraints. The constraints that are missing in the picture are:

• disjointness of slots;

• numeric minimum and numeric maximum for slot values;

• subset of values of a slot;

• collection type of multiple slot values: multiple values are either treated asset, list
or bag.

5.3. Web Ontology Language OWL 79

5.2.2 Change operations for OKBC

The OKBC meta model gives us some insight in the main elements of an ontology change
language. In principle, a simple change of an ontology is either an addition, removal or
modification of one of the elements of the meta model. The cardinality constraints in
the meta-model function as additional restrictions on the list of possible change opera-
tions. For example, the ‘inverse slot’ constraint requires the specification of the name
of opposite slot, which is represented by the cardinality “1” on the association between
“InverseC” and “Slot” classes in the meta-model. Therefore, it is not possible to add or
remove an inverse constraint on itself, but it should also coincide with the addition or
removal of a value for the inverse constraint (i.e. a slot).

As an example, we will list a number of change operations for the OKBC model.
For this, we use theSlot class and its direct relations in the OKBC meta model. Each
of these elements can be added and removed, and if they have an argument value, they
can be modified. Note that abstract classes in the meta model can not be instantiated and
therefore they are not used to generate change operations. This procedure results in the
operations that are listed in Table 5.1.

Operation Description

Add Slot create a slot
Remove Slot delete a slot
Add Domain add a domain attribute to an existing slot, together with an argument

to the attribute (i.e. a class name)
Remove Domain remove a domain attribute to an existing slot
Modify Domain change the reference from one class to another class
Add Some-Value Constraint add a global existential constraint to the slot, together with a reference

to an individual
Remove Some-Value Constraint remove the global existential constraint
Modify Some-Value Constraint change the reference from one individual to another individual
Add Cardinality Lower Bound add a global minimal cardinality constraint to the slot, together with a

value (a non-negative integer)
Remove Cardinality Lower Bound remove a global minimal cardinality constraint to the slot
Modify Cardinality Lower Bound change the value for the minimal cardinality constraint
. . . similar operations for the other cardinality constraint and the inverse

and equivalence constraint

Table 5.1: A number of change operations for ontologies expressed in an OKBC knowledge
model.

5.3 Web Ontology Language OWL

We will now turn our attention to the Web Ontology Language OWL. We will follow the
same procedure as with OKBC: we first present the meta model, and then we will define
a list with change operations.

80 Ontology of Change Operations

Cl
ass

Va
lue

Ty
pe

C

Va
lue

Co
ns

tra
int

{a
bs

tra
ct}

So
me

Va
lue

sC

Co
ns

tra
int

{a
bs

tra
ct}

Ca
rdi

na
lity

Co
ns

tra
int

mi
nC

ard
ina

lity
:N

on
Ne

gat
ive

Int
ege

r
ma

xC
ard

ina
lity

:N
on

Ne
gat

ive
Int

ege
r

tem
pla

te_
slo

t
Ind

ivi
du

al

In
ve

rse
C.

Sl
ot

Eq
uiv

ale
nc

eC
.

do
ma

in
typ

e

Fa
ce

t

loc
al

co
ns

tra
int

...

Fr
am

e

ow
n_

slo
t

0..
* ins
tan

ce
0..

*

0..
*

0..
*

0..
*0..

1

0..
*

0..
1

glo
ba

l c
on

str
ain

t

1
1

0..
1

0..
*

0..
* 0..

*
0..

*

0..
*

1
1

0..
*

0..
*

su
bc

las
s

0..
*

0..
*

Figure 5.1: A simplified representation of the OKBC knowledge model.

5.3. Web Ontology Language OWL 81

5.3.1 OWL meta model

OWL comes in three different flavors: OWL Lite, OWL DL and OWL Full. OWL Lite
is the simplest variant. Its language constructs are a subset of the language constructs in
OWL DL. Also, in OWL Lite references to classes are often restricted tonamedclasses,
while in OWL DL anonymous class definitions can be used. For example, in OWL DL it
is possible to state that a class is equivalent to the intersection of two other classes, while
this is not possible in OWL Lite.

The difference between OWL DL and OWL Full is more subtle. They share the same
vocabulary and modeling constructs, but OWL DL places several constraints on the use
of the language constructs. According to the OWL Language Reference (Bechhofer et al.,
2004), the main constraints are the following.

• “OWL DL requires a pairwise separation between classes, datatypes, datatype
properties, object properties, annotation properties, ontology properties (i.e., the
import and versioning stuff), individuals, data values and the built-in vocabulary.
This means that, for example, a class cannot be at the same time an individual.

• In OWL DL the set of object properties and datatype properties are disjoint. This
implies that the following four property characteristics:

– inverse of,

– inverse functional,

– symmetric, and

– transitive

can never be specified for datatype properties.

• OWL DL requires that no cardinality constraints (local nor global) can be placed
on transitive properties or their inverses or any of their superproperties.

• Annotations are only allowed if they are explicitly typed asAnnotationProperty’s
and if they are not used in property axioms.

• All axioms must be well-formed, with no missing or extra components, and must
form a tree-like structure. This implies that all classes and properties that one refers
to should be explicitly typed as OWL classes or properties, respectively.

• Axioms (facts) about individual equality and difference must be about named in-
dividuals.”

In the remainder of this chapter, we will focus on OWL Full, as the other variants can
be seen as restricted versions of the full language. Where necessary we will make the
distinction between the variants.

OWL differs from OKBC in a number of aspects. Besides a few terminological
differences (the most notable is that a slot is called a property), we can see the following
differences.

• In OWL, the set of slot constraints is divided into global and local constraints. That
is, a specific constraints is either a global constraint that holds for all values of the
slot (e.g. “functional”), or it is a local constraint that only restricts the values of

82 Ontology of Change Operations

a slot when used in a specific class (e.g. “has-value”). In OKBC, all constraints
can be applied both globally and locally. The following constraints can be applied
locally in OKBC, but only globally in OWL:

– inverse of a slot;

– equivalence of a slot;

– values are subset of the values of another slot (called “subslot” if applied at
global level).

• There is a difference between the built-in constraints in OKBC and OWL. The
following constraints in OWL do not exist in OKBC:

– symmetry of slots (global);

– transitivity of slots (global);

– “inverse functional” constraint2 (global);

– existential constraint (local).

On the other hand, the following built-in constraints in OKBC are missing in OWL:

– disjointness of a slot;

– numeric minimum and maximum for values of a slot;3

– collection type of slot values.

The difference between OWL and OKBC with respect to slot constraints is sum-
marized in Table 5.2.

• In OWL “slot–facet–value” triples are classes themselves. That is, a constraint on
a slot, called a “property restriction”, defines a class. For example, the property
restriction “age–hasvalue–27” defines the class of things that have the value “27”
for the slot “age”, i.e. the class of all 27 years old things.

• In OWL arbitrary classes can be formed by combining other classes via boolean
operations, forming so-calledcomplex classes. In OKBC, it is only possible to use
theunionof classes as filler for the value-type restriction.

• Slots in OWL are divided into slots that can have instances as their value, and slots
that can have data type values.

• Classes and individuals in OWL can be declared as equivalent or disjoint.

Figure 5.2 shows a UML class diagram of the OWL meta model.
Based on these differences, we can not conclude that one knowledge model is con-

tained in the other model. However, when we look carefully at the differences, we can
see that the elements of OKBC that are missing in OWL are quite rare. For example, it is
difficult to think of examples or a practical usage of the local equivalence constraints on
slots, or a local inverse constraint. It is likely that these constructs are present in OKBC
for reasons of symmetry with the global constraints. The disjointness of slots seems to be

2This can be represented in OKBC by defining a global cardinality restriction on the inverse of a slot.
3Although this can be mimicked in OWL by defining a data type that is restricted to a certain range of

numeric values.

5.3. Web Ontology Language OWL 83

Cl
ass

En
um

era
ted

Cl
ass

Va
lue

Ty
pe

Va
lue

Co
ns

tra
in

Ex
ist

en
tia

lR
est

ric
tio

n
Va

lue

Co
mp

lex
Cl

ass

Un
ion

Cl
ass

Co
mp

lem
en

tC
las

s
Int

ers
ec

tio
nC

las
s

Pro
pe

rty
Re

str
ict

ion

Pro
pe

rty
Fu

nct
ion

al:
 Bo

ole
an

Ca
rdi

na
lity

Co
ns

tra
int

mi
nC

ard
ina

lity
:N

on
Ne

gat
ive

Int
ege

r
ma

xC
ard

ina
lity

:N
on

Ne
gat

ive
Int

ege
r

do
ma

in
ran

ge

sub
Class

equ
iva

ele
nt

Ind
ivi

du
al

me
mb

er

sub
Pro

per
ty

equ
iva

len
t

inve
rse

Ob
jec

tPr
op

ert
y

Un
iqu

e:
Bo

ole
an

Sy
mm

etr
ic:

 Bo
ole

an
Tra

nsi
tiv

e:
Bo

ole
an

Da
tat

yp
eP

rop
ert

y

eq
uiv

ael
en

t

dif
fer

en
t

disjoint

Figure 5.2: A UML representation of the OWL meta model.

84 Ontology of Change Operations

constraint OWL OKBC

symmetry G -
transitivity G -
inverse functional G -
inverse G GL
equivalence G GL
values are subset G GL
disjointness - GL
numeric bounds - GL
collection type - GL
existentiality L -

Table 5.2: The slot constraints for which OKBC and OWL differ. A ‘G’ means that the constraint
can be specified at global level, a ‘L’ means applicability at the local level, and a minus sign (-)
means not applicable at all.

the most useful construct that is missing in OWL. Besides these aspects, we can consider
the OWL knowledge model as almost a superset of OKBC for practical applications. In
the remainder of this book we will use the OWL (Full) knowledge model.

5.3.2 OWL Change Operations

Based on the meta-model that we sketched above, we can produce a complete list of
change operations for the OWL variants.

The main effect of the differences between the variants of OWL on the change opera-
tions is that the operations for OWL Lite are a subset of the operations for OWL DL and
OWL Full. In addition, the values for the arguments of some of the operations in OWL
Lite are restricted. For example, in OWL Lite, the argument of theadd class equivalence
operation is restricted to a class ID in OWL Lite, but can be an arbitrary class definition
in OWL DL and OWL Full.

The differences between OWL Full and OWL DL do not have direct effect on the
set of change operations. The reason is, that for each of the constraints multiple axioms
have to be checked to find a violation of the constraints. For example, to find an illegal
inverse-functional datatype propertyX, one needs the information that (1)X is a datatype
property, and (2)X is inverse-functional. Change operations, however, operate on named
entities and do not have any other information about the context of the operation, i.e.
about other axioms in the model. As a result, it is not possible to enforce the OWL DL
constraints by restricting the set of operations.

Table 5.3 gives a summary of the change operations for the OWL language. The
complete list of operations is printed in Appendix B and are defined in the ontology at
http://ontoview.org/changes/2/1 .

For most of the operations, defining them was very straightforward, as they are just
additions, deletions and modification of elements of the knowledge model. However,
there are some additional considerations behind the definitions, which are discussed be-
low.

5.3. Web Ontology Language OWL 85

Object Operation(s) Argument(s)

class related operations
class add, remove class definition
restriction add, remove restriction definition + type
restriction filler modify 2 restriction fillers
cardinality upper/lowerbound add, remove cardinality restriction
cardinality upper/lowerbound modify property ID + 2 values
restriction type make∀, make∃ restriction definition
superclass relation add, remove, modify 1 / 2 class definitions
class disjointness add, remove, modify 1 / 2 class definitions
class equivalence add, remove, modify 1 / 2 class definitions
property related operations
property add, remove property definition
domain add, remove, modify 1 / 2 class definitions
range add, remove, modify 1 / 2 class definitions
superproperty relation add, remove, modify 1 / 2 property definitions
property equivalence add, remove, modify 1 / 2 property definitions
property inverse add, remove, modify 1 / 2 property definitions
property symmetry set, unset property ID
property functionality set, unset property ID
property transitivity set, unset property ID
property inverse-functionality set, unset property ID
property type make datatype / make object property ID
individual related operations
individual add, remove individual definition
individual equivalence add, remove individual definition
individual distinctness add, remove individual definition
operations for both classes, properties and individuals
resource type add, remove, modify 1 / 2 class ID’s
resource label add, remove, modify 1 / 2 strings
resource comment add, remove, modify 1 / 2 strings
resource annotation add, remove, modify property ID + 1 / 2 values

Table 5.3: Overview of the change operations for the OWL languages.

Modify versus add / delete: The list of change operations also contains “modify” op-
erations, which specify that an old value is replaced by a new value. For example, a
Modify Range operation specifies that the filler of the range of a property has changed.
Of course, these operations can also be formed by combing a “delete” and an “add” op-
eration. We have included them in the list of basic changes because this information
is often available. For instance, logs of changes provided by tools will often contain
information on modifications.

Arguments: All “modify” operations take two arguments, i.e. both the old value and
the new value. In principle, this is not required for the execution of the operations.
However, one of the goals of a transformation set is to have acompletespecification that
allows reversing the changes. To achieve this goal we also need the old value for the
modification operations.

86 Ontology of Change Operations

Property restrictions vs. subclass / equivalence relations: From a frame-based per-
spective, there is a difference between attaching slots to classes and adding subclass rela-
tions between classes. However, from a Description Logic point of view, adding property
restrictions to classes is exactly the same as adding a subclass relation between the re-
striction and the class (or adding an equivalence relation in case of “defined classes”).
Because it is based on Description Logics, in OWL adding property restrictions is also
the same as adding subclass / equivalence relations.

Although the logical meaning is the same, the idea behind the action is in most cases
quite different. We therefore decided to introduce different operations for adding a sub-
class relation between two classes and adding a subclass relation between a class and a
property restriction (and similar for the equivalence relation).4 To distinguish between
property restrictions that representnecessaryconditions (resulting in a subclass relation
between the class and the restriction) the and those that representnecessary and suffi-
cientconditions (resulting in an equivalence relation), we give an extra argument to the
Add Property Restriction operation.

Cardinality: For the operations that modify the cardinality we make a distinction be-
tween upper bound modification and lower bound modifications. This causes some inef-
ficiency (e.g. a change in the exact cardinality requires two operations), but it makes the
specification complete and gives a fine-grained granularity. Also, it reflects the way in
which cardinalities are represented in the meta model better.

Changing complex arguments: Many operations can be used with complex argu-
ments, for example boolean class definitions or anonymous class descriptions. The list of
operations do not provide support to alter these complex definitions itself. If we would do
this, the meaning of the operations would become very little, as they would come close
to syntactic changes of definitions. Instead, we use complete (anonymous) definitions as
arguments to the operations. This means that we only allow ’top-level’ modifications,
i.e. adding and removing restrictions and complex classes as a whole, but no arbitrary
modifications.

5.4 Complex Operations

The operations that we have defined in the previous sections are calledbasic change
operations. Each of the basic change operations modifies onlyonespecific feature of
the OWL knowledge model. This basically means that there are “add” and “delete”
operations for each element of the knowledge model. This set of operations ensures
the completeness of the ontology of basic changes since it is sufficient for defining a
transformation set from any ontology versionVold to any other ontology versionVnew.
While not being the most useful or efficient, such transformation set can contain the
operations that delete all elements inVold and then add all elements inVnew.

4We can, however, notenforcethat all restriction additions are represented using this operations. It is very
well possible to represent it using a regularAdd Subclass operation.

5.4. Complex Operations 87

In this section, we extend the set of operations withcomplex change operations. In
Chapter 4, we already introduced these operations and explained why they are useful.
We now describe them in detail.

5.4.1 Types of Complex Operations

There are two dimensions that can be used to distinguish between different types of
complex operations. On one hand, there is a distinction betweenatomicandcomposite
operations, on the other hand there is a distinction betweensimpleandrich operations.
Figure 5.3 shows these two dimensions of complex operations.

complex complex

basic complex

composite

atomic

simple rich

Figure 5.3: The relation between atomic–composite and simple–rich operations.

Composite operationsprovide a mechanism for grouping a number of basic oper-
ations that together constitute a logical entity. For example, a complex operationsib-
lings move consists of several changes of superclass relations.Atomic operations are
operations that cannot be subdivided into smaller operations.

Rich changesare changes that incorporate information about the implication of the
operation on the logical model of the ontology. For example, a rich change might specify
that the range of a property isenlarged, that is, that the filler of the range changed to a
superclass of the original filler. To identify such changes, we need to query the logical
theory of the ontology. In contrast,simple changescan be detected by analyzing the
structure only.

There are several procedures that can be followed to define complex operations. We
explain them and refer to Table 5.4 for examples. To definerich operations, we can first
extend all basic operations that “modify” a class filler (e.g.Modify Range, or Modify
Subclass) with a proposition that specifies the subsumption relation between the old and
the new filler. Thus doing, we can define two variants of each modify operations that
are called “changed to superclass” and “changed to subclass”. This is the first block of
changes in Table 5.4. Second, we can do something similar for operations that have prop-
erties as arguments, defining “changed to subproperty” and “changed to superproperty”
variant. Similarly, we can incorporate knowledge about the “direction” in which the car-
dinality is changed, i.e. whether it increased or decreased. This is the reason for having
operations likeIncrease Cardinality Upperbound as well as operations likeRestrict Car-
dinality (see third block in table). Other methods that incorporate other knowledge might
be possible as well.

88 Ontology of Change Operations

To definecompositeoperations, we have to find useful or common combinations
of atomic operations. The usability of a composite operation depends on the specific
goals in an ontology evolution situation and can therefore not be determined beforehand.
Specific goals may come with their own set of useful complex operations. To find some
of the common operations, we used the analysis presented in Chapter 3, where we looked
at current change management strategies. This resulted in a list of common “hierarchy
operations”, likeAdd Subtree. These operations are listed in the second block of the
right column in Table 5.4.

Some combinations of basic operations are common because they represent a “men-
tal” operation. This is the case for the operationsChange To Primitive andChange To
Defined, which changes the relation between a class and its property restrictions to “sub-
class” relations or “equivalence” relations, respectively.

Another reason for defining a composite operation can be the fact that there is a syn-
tactic shortcut in the language. A shortcut states multiple axioms with only one language
construct. If such a shortcut ia used, the axioms that are defined by it are performed in
combination. An example of this is theallDifferent statement in OWL: it states that
all mentioned individuals are different from each other, resulting in pairwise disjointness
axioms between all individuals. To support this, we defined the operationsAdd Disjoint
Set andRemove Disjoint Set, which both take the whole set of individuals as argument.
Note that does not make sense to define operations that adds or removes members from
the set of disjoint individuals, as we cannot identify the set other than by its complete
extension.

It should be clear from the above that the list of operations in Table 5.4 is not complete
or finished, as new complex operations can always be defined. As is sketched in the
framework in the previous chapter, in some situations it can be useful to distill complex
operations from a set of basic operations. For this process, calledenrichmentwe use
rules and heuristics that are described in Chapter 6.

5.4.2 Hierarchical Ordering of Operations

Above we listed a number of complex operations for the OWL language, and in Sec-
tion 5.3.2, we presented the set of basic operations. Especially for rich operations, it is
often the case that the complex operations are a specific variant of the basic operation.
For example, increasing the cardinality of a property restriction is a kind of modification
to a cardinality restriction. Therefore, it makes sense to build a hierarchy of all opera-
tions.

We have done this by modeling each change operations as a class, and defining sub-
sumption relations between these classes. For example, the basic changeModify Do-
main has two (complex) subclasses:Modify Domain To Superclass andModify Domain
To Subclass. Thus doing, we have created an ontology of operations. In this ontology
the characteristics of each change type are specified via property restrictions.

By organizing the change operations in a class hierarchy we exploit the inheritance
mechanism to specify common properties of change operations in an efficient way. For
example, all changes in property restrictions require two arguments to identify the source,
namely the class identifier and the property identifier. Since all changes in property

5.5. Ontology Change Language 89

Operation Type

Restrict Range R
Modify Range To Subclass R
Extend Range R
Modify Range To Superclass R
Restrict Domain R
Modify Domain To Subclass R
Extend Domain R
Modify Domain To Superclass R
Modify Equivalence To Subclass R
Modify Equivalence To Superclass R
Modify Disjointness To Subclass R
Modify Disjointness To Superclass R
Modify Type To Subclass R
Modify Type To Superclass R
Modify Superclass To Subclass R
Modify Superclass To Superclass R
Modify Restriction-Filler To Subclass R
Modify Restriction-Filler To Superclass R
Modify Equivalence To Subproperty R
Modify Equivalence To Superproperty R
Modify Inverse To Subproperty R
Modify Inverse To Superproperty R

continued in next column

continued
Operation Type

Restrict Cardinality CR
Extend Cardinality CR
Increase Lowerbound R
Decrease Lowerbound R
Increase Upperbound R
Decrease Upperbound R
Add Subtree C
Delete Subtree C
Move Subtree C
Delete Subclasses C
Delete Class And Move Siblings Up C
Move Siblings C
Move Siblings Down CR
Move Siblings Up CR
Move Siblings To New Subclass CR
Move Slots To New Referring Class C
Split Into Multiple Siblings C
Merge Multiple Siblings C
Change To Primitive CR
Change To Defined CR
Add Disjoint Set C
Remove Disjoint Set C

Table 5.4: A number of complex change operations for OWL

restrictions are subclasses ofProperty Restriction Change, we can easily specify this fact
for all operations at once.

Some of the operations in the change ontology are abstract. These operations cannot
be instantiated, they are only introduced for structuring purposes. This is represented in
the ontology by annotating them with a property “role”, which is either “concrete” or
“abstract”. For convenience, we have called the abstract categories. . . Change, while
operations that can be instantiated are called areAdd . . . , Remove . . . andModify . . . ,
etc. The complete ontology of change operations can be found athttp://ontoview.

org/changes/2/1 .

5.5 Ontology Change Language

An hierarchy of change operations is not yet a language that can be used to specify
changes. In this section, we explain how we build a change specification language from
the hierarchy of change operations. This language provides the constructs and the struc-
ture for specifying ontology change.

90 Ontology of Change Operations

5.5.1 Model of Ontology Change

The language for ontology change is defined by extending the hierarchy of change oper-
ations into an “ontology about ontology change”. In this ontology we model the relations
between the most important concepts around ontology change. With this ontology, we
can specify an actual change as instance data that conforms to the ontology. Figure 5.4
shows a graphical representation of the model.

change operation
effect

ontology

rdf:Resource definition

from

to

old_Filler

new_Filler

...hierarchy
of atomic

operations...

change_specification
explanation
date
author

operation

source

target

defines

composite operation atomic operation
consists_of

Figure 5.4: The ontology of ontology change.

The most general concept in the hierarchy of operations is called “change operation”.
This concept has two subclasses. One is a “composite operation”, which is either one
of the predefined composite operations that are described in Section 5.4, or an arbitrary
combination of atomic operations. The latter type of composite operations can be formed
by relating several atomic operations via theconsists of relation to a composite operation.
These arbitrary composite operations provide a mechanism to cluster related operations
and specify their shared characteristics. We assume that all properties of a composite
operation inherit to its components. It is in some sense comparable with a transaction
mechanism in databases. The other subclass of a “change operation” is an “atomic oper-
ation”. This is the top-level concept of the hierarchy of change operations that is defined
in the previous sections.

This “change operation” concept is related to actual definitions of concepts via a
“from” and a “to” property, which refer to the old and new version of a definition, re-
spectively. “Definitions” are the subset of resources that define classes, properties or
individuals.5 A set of change operations is called a “change specification”. A change

5This definition is intentionally informal. A class or property definition is nothing more than a specification
of a number of properties for a named resource, and can thus only be identified as a resource. In practice,
definitions are formed by all statements in one file about a named resource that use properties from the OWL

5.5. Ontology Change Language 91

specification has a source and target ontology, which define concepts and properties. The
“defines” relation between an ontology and definitions is implicitly derived from the file
containment, i.e., we assume a “defines” relation between the ontology resource and the
definition if the definition is contained in an ontology.

All change classes use the “from” and “to” properties to refer to the source and target
of the change, respectively.6 In addition, most change classes have properties that specify
an argument for a change operations. For example, one of the arguments for the operation
Modify Upperbound that changes the maximum cardinality is an integer specifying the
new cardinality restriction.

In our ontology of change, we have made all operations instances of a “Change
Class”. This class has property “effect”, which allows us to annotate theclass ofoper-
ations (i.e. not a specific change in one ontology, but the operation in general) with the
effect of the change. In Chapter 6 we discuss in more detail what the different types of ef-
fects for changes can be. By defining several subproperties of “effect” we can distinguish
between the different tasks that are influenced by a change.

5.5.2 Syntax and Interpretation of Change Specification

Since we defined an ontology to structure the operations and model ontology change, we
do not need to define a syntax for the representation of actual changes. Instead, we can
use the representation format that comes with the ontology language that we use. Our
ontology of basic change operations uses OWL as “ontology language”. This implies that
actual changes can be represented as RDF data. In its simplest form, a change description
looks as follows.

<ov:Set_Transtivity >
<ov:from rdf:resource ="..ontology/1/#larger"/>
<ov:to rdf:resource ="..ontology/2/#larger"/>

</ ov:Set_Transtivity >

This piece of RDF data specifies that there is a change of typeSet Transtivity from
the resource “larger” in one version of an ontology to the resource “larger” in another
version of the ontology. In other words, the property “larger” is declared as transitive.

For operations that take datatype values as arguments, we use the datatype properties
“old Value” and “newValue” instead of the “oldFiller” and “new Filler” properties.
The following example represents that a minimum cardinality restriction of 4 on the
property “hasWheels” is added in the class ”Car”. The ontology of changes provides the
properties “onProperty” and “value” to specify the necessary arguments.

<ov:Add_Lowerbound >
<ov:from rdf:resource ="..ontology/1/#Car"/>
<ov:to rdf:resource ="..ontology/2/#Car"/>
<ov:on_Property rdf:resource ="..ontology/1/#hasWheels"/>
<ov:new_Value >4</ ov:new_Value >

</ ov:Add_Lowerbound >

language specification.
6Additions and removals of classes or properties are the only exceptions, since they only have one of these

two properties.

92 Ontology of Change Operations

The fact that both our ontology of changes and OWL itself can be represented in
RDF, makes it possible to represent complex arguments. The RDF representation of
the complex argument can just be inserted as value of a property in our ontology. For
example, to express that a person became a vegetarian, the following RDF definition can
be used.

<ov:Modify_Restriction_Filler >
<ov:from rdf:resource ="..ontology/1/#Person"/>
<ov:to rdf:resource ="..ontology/1/#Person"/>
<ov:onProperty rdf:resource ="..ontology/1/#eats"/>
<ov:old_Filler rdf:resource ="..ontology/1/#Meat"/>
<ov:new_Filler >

<owl:Class >
<owl:complementOf >

<owl:Class >
<owl:unionOf rdf:parseType ="Collection">

<owl:Class rdf:resource ="..#Meat"/>
<owl:Class rdf:resource ="..#Fish"/>

</ owl:unionOf >
</ owl:Class >

</ owl:complementOf >
</ owl:Class >

</ ov:new_Filler >
</ ov:Modify_Restriction_Filler >

In this example, the value of the property “newFiller” is a complex class definition.
Note that “modification” operations, such as the one above, specify the new value as well
as the old value. The old value is required to use the change specification for “undoing”
changes, or when the operations need to be inverted.

A complete change specification often consists of several operations. We can group
them together into one RDF document, using theChange Specification class as a place-
holder for the meta-data. A simple change consisting of two operations can look as
follows.

<rdf:RDF >

<ov:Change_Specification about ="">
<ov:author >Michel Klein </ ov:author >
<ov:date >August 12, 2004 </ ov:date >

</ ov:Change_Specification >

<ov:Set_Transtivity >
<ov:from rdf:resource ="..ontology/1/#larger"/>
<ov:to rdf:resource ="..ontology/2/#larger"/>

</ ov:Set_Transtivity >

<ov:Add_Lowerbound >
<ov:from rdf:resource ="..ontology/1/#Car"/>
<ov:to rdf:resource ="..ontology/2/#Car"/>
<ov:onProperty rdf:resource ="..ontology/1/#hasWheels"/>
<ov:new_Value >4</ ov:new_Value >

</ ov:Add_Lowerbound >

</ rdf:RDF >

5.6. Discussion 93

From the example it is clear that other elements of a change specification can be
easily added. Composite operations can be added in a similar way, by grouping them
into a “composite operation” class and connecting them via “consistsof” properties. In
Chapter 8 we show how we build a change specification for a real ontology evolution.
This study also contains examples of the representation of composite operations.

There are four assumptions with respect to the interpretation of the change specifica-
tion.

• First, when the specification is executed, we assume that the “create” operations are
performed before the other operations. This makes it possible to execute “modify”
operations that use newly created concepts or properties.

• When concepts or properties that are mentioned in the “from” and “to” properties
are only identified with a fragment identifier (not a complete URI, i.e. “#Car ”), we
look at the “source” and “target” values in the header of the change specification.
The complete URI of the item in the “from” property can be found by attaching
the fragment identifier to the value of the “source” property, whereas the URI for
the item in the “to” property can be composed from the value of the “target” and
the fragment identifier.

• We also assume that there exists an evolution relation between the concepts that
are referred in the “from” and “to” properties. In the example above, there is an
evolution relation betweenCar in version 1 andCar in version 2.

• Finally, if concepts or properties are not mentioned in the change specification, we
assume an evolution relation between them when the fragment identifiers of both
items in the different versions are syntactically equivalent.

5.6 Discussion

The language is just a specification mechanism and it does not impose restrictions on the
actual change that is specified by its operations, neither on the correctness of the spec-
ification, nor on its efficiency. It is possible to use these constructs to specify incorrect
transformations between two ontology versions, or transformations that are much more
complicated than necessary. Also, inconsistencies in the specification can exists, e.g. the
removal of a property restriction that didn’t exist. The question how to cope with this is
a procedural one and is not relevant for language itself.

One of the requirements for a change specification language was to allow for different
granularity of the specification. Our language has this possibility because it can use both
atomic operations and complex operations. Moreover, with the possibility to define ad-
hoc composite relations, an arbitrary level of granularity can be achieved.

The change specification language that we propose is different from the versioning
approaches that work with additions and deletions of RDF triples to and from the repos-
itory that is formed by an ontology definition (Ognyanov and Kiryakov, 2002). Our
operations are at a higher level and contain more knowledge about the change. This
results in more meaningful operations and more efficient specifications.

94 Ontology of Change Operations

By using OWL for the ontology of change and RDF for the syntax of the change
specification, we immediately have a large resource of tools that can be used process the
specification. In Chapter 8, we show how we feed the ontology of changes and a actual
change specification to a RDF query engine, which allows us to query for the effect of
the change in a relatively easy way.

Chapter 6

Change Process

Note: Section 6.5 of this chapter has been published as part of an article in the pro-
ceedings of the IJCAI 2003 conference (Stuckenschmidt and Klein, 2003).

In this chapter we describe how the evolution framework can be used to manage
ontology changes. We start, in Section 6.1, with a description of the change process. In
this description we explain how an ontology could evolve and how a change specification,
as introduced in Chapter 4, can becreatedand usedfor performing ontology-related
tasks.

The creation process itself is detailed in Section 6.2. We provide a number of dia-
grams to explain how the different elements of a change specification can be derived and
provided. For two of these processes, we present heuristics that can be used. After that
we discuss for three different ontology-related tasks how the change framework can be
used to solve some of the problems that are caused by evolving ontologies. The described
tasks do not form a exhaustive list of possible ontology evolution tasks, but they address
a number of the common problems that were identified in Chapter 3.

Section 6.3 describes the task of data retrieval and interpretation. It contains an anal-
ysis of different types of compatibilities between ontology versions and data sources,
and a number of methods to (partly) interpret the data sources correctly. In Section 6.4,
we describe how our framework can be aligned—and thus used—for the ontology syn-
chronization methodology developed by Oliver (2000). Section 6.5 describes how the
framework can be used for assessing the integrity of mappings between ontologies. Fi-
nally, Section 6.7 outlines some other possible usages of the change specification, e.g.
editing support and collaborative working, visualization of changes, and for maintaining
consistency.

96 Change Process

6.1 Change Process Model

About the diagrams in this chapter
For the process diagrams in this chapter, we use a
slightly extended flowchart notation. The rounded
boxes represent activities, the diamonds represent
choices and the solid arrows give the order of activ-
ities (the flow). The dashed arrows stand for input
and output of data (knowledge, documents or manual
input). In general, the data at the right side of the
diagram are aids in the process, whereas the data
at the left is the goal or result of the process. The
uncommon icons are explained below.

change log document

data
sources multiple documents

transform-
ation set data element

conceptual
relations

manual input

In an uncontrolled and distributed setting, we
assume that ontologies will evolve in a unpre-
dictable way. Besides extensions and adaptations
for specific purposes, ontologies will probably
also be composed from parts of other ontologies.
Figure 6.1 sketches an example of a possible on-
tology evolution process. An ontology A is ex-
tended with some definitions from ontology C,
and the next two versions evolve in parallel. Each
of the versions may continue to exist. In contrast
with software products, where a new version of-
ten is meant to replace a previous version, there
is not one “end product”, but there will be many
versions which might be all in use. As a conse-
quence, the termlife cycle is not appropriate for
describing the development of an ontology; in-
stead, we use the termlife trace.

Not only the evolution process is unpre-
dictable, also the use of ontologies can not be told
beforehand. We cannot always assume a specific

task for which the ontologies will be used, and we can also not guarantee that only the
most recent versions of the ontologies will be used. As a result, an ontology-related
task in a setting with evolving ontologies requires to determine the interplay of arbitrary
versions for that specific task.

C

A

B

Figure 6.1: A possible evolution process of an ontology. The large ovals represent ontologies
whereas the smaller ovals represent parts of ontologies.

Figure 6.2 specifies the change management process for evolving ontologies. Starting
from a selected task, the first activity is to determine the specific versions from the ontol-
ogy’s life tracethat are relevant for that task. The selection procedure is different for the
respective tasks. For example, for change validation and approval—a task were a person

6.1. Change Process Model 97

select relevant
ontology versions

evolving ontology

generate
change

information

select task

more?
y

conceptual
relations

change log

change
meta-data

n

execute
task

data
sources

end

two ontology versions

change information

system

ontology

Figure 6.2: The process of managing ontology change for ontology-related tasks.

has to approve ontology changes that are proposed—it usually means that the newly cre-
ated version and the original version are selected. For data retrieval, the version that is
used to annotate the data and the version that will be used to retrieve the data should be
selected. The result of this step is the identification of two ontology versions.

The next step consists of generating the change specification between these two ver-
sions. Dependent on the available information and the required knowledge for the tasks,
new knowledge about the relation between the two identified ontology versions will be
derived. The precise procedures for this are explained in the next section.

When enough information about the change between the identified versions is avail-
able, this knowledge can be used to perform the selected task, for example on data sources

98 Change Process

or other ontologies. If, and to what extent the tasks can be performed successfully, de-
pends on the knowledge about the change that is available in the end. In general, the aim
of the change management methodology is to let tasks to be performed at least partially.

6.2 Creating the Change Specification

In Chapter 4, we have seen that there are a number of different ways to represent changes.
As said, our assumption is that we do not know beforehand which information about
the change is present. We either have the specification of both versions, or we have
a change log with the new versions, or some conceptual relations, and so on. Based on
editor logs or explicitly provided information, the change specification might also contain
administrative meta-data and a rationale for the change. In this section we describe the
processes to generate additional information about the change. Some of these processes
are precise and others are based on heuristics.

To generate the additional change information, for each of the processes in this sec-
tion should be checked whether the information required for its execution is available.
This should be repeated until none of the processes can be executed anymore. Note that
the output of some of the processes can be used as input for others; therefore, processes
that could not be executed in the first round, could be executable in a next round.

6.2.1 Generating a Transformation Set

In many cases, it will be possible to create a transformation set between the two ontology
versions. This can be done either by analyzing a log of an ontology editor or by compar-
ing two ontology versions. Figure 6.3 specifies the steps and the choices. An editor-log
could provide a bit more information than the two definitions of the ontology. Therefore,
if both are available, using the log is preferable. For example, a log could reveal that a
concept definition changed in several steps fromX in V1 to Y in V2. The transformation
set based on a log would than contain a set of change operations fromX to Y . Based
on the two ontology specifications, it might not be possible to discover that conceptX
turned into conceptY , so we would have an operation to deleteX and another operation
to addY . Both transformation sets are correct, but the second contains less information.
If a transformation set is produced from two ontology versions, we need to know which
old definitions have evolved in which new definitions. Therefore, producing a mapping
first is required.

Two tools for generating a transformation set from two ontology specifications are
described in Chapter 7. Deriving a transformation set from a log basically consist of
removing redundant operations and translating the editor operations into the vocabulary
for the transformation set. We currently do not have an implementation of this procedure.
In Chapter 8, we describe how we provide change information for a realistic series of
evolved ontologies.

6.2. Creating the Change Specification 99

produce
transformation

set

change log

versions
available?

n

y

create
transset
from log

log
available?

n

y

end

end

two ontology
versions

transform-
ation set

end

create
transset from

versions

mappingproduce
mapping

Figure 6.3: The process for generating a transformation set between two ontology versions.

6.2.2 Generating Two Versions

By its definition, if only one of the ontology versions is available, we can use the trans-
formation set to generate the missing versions from it. For this, also the change log can
be used. Figure 6.4 shows this process. The process can be executed in both directions:
the old version can be re-generated from the new versions, and a new version can be
generated from an old version.

6.2.3 Generating Complex Changes

When a transformation set has been produced, it can be processed to find complex oper-
ations, as is shown in Figure 6.5. We either use editor logs as a source for finding these
operations, or the transformation set. Besides that, we might have to use both ontology
versions to detect some specific complex operations.

Both the transformation set and the logs have their pros and cons as source for com-
plex operations. A disadvantage of the editor-log is that it might lack the required ab-

100 Change Process

produce
ontology
versions

change log

log
available?

n

y

create
versions from

transset

transset
available?

n

y

create
versions
from log

two ontology
versions

end

end

end

transform-
ation set

Figure 6.4: The process for generating two ontology versions from either a transformation set or
a change log.

straction. For example, it could be that the editor log contains several non-successive
moves of classes that result in a “subtreemove” in the end. This is not clearly visible in
the log, but is easily detectable in the transformation set, where the order is not important
anymore and the redundant operations are removed. On the other hand, for an advanced
editor, the log file might already contain complex operations, such as “subtreemove”.
As with the previous process, we do not have an implementation for finding complex
operations in a log. Providing a general procedure is difficult, as the procedure heavily
depends on the (logging capabilities of the) editor.

To generate a complex change from a set of basic changes in the transformation set,
we can sometimes use a set of rules. For other changes, we may not have a definitive set
of rules for finding the complex changes and will need to use heuristics to determine if a
complex change occurred. In the rest of this section we describe some rules and some of
the heuristics that can be used. As is the case with the set of complex operations, the set
of rules and heuristics is not complete and can be extended with additional ones.

Detection Rules

There are two types of rules to detect complex operations. The first type of rules uses
the transformation set or the editor log file. Consider again the example of the wine

6.2. Creating the Change Specification 101

produce
complex

operations

change log

transset
available?

n

y

find patterns
in log

log
available?

n

y

end

complex
operations

find complex
operations

create
transset from

versions

transform-
ation set

two ontology
versions

Figure 6.5: The process for generating complex operations.

ontology from Chapter 4 (especially Figure 4.3). In this example, three classes that were
subclasses ofWhite wine in Vold became subclasses ofRosé wine in Vnew. We assume
that we have an instantiated ontology of basic changes between the two versions. We can
view this change as a set of several basic operations:

1. remove a superclass relation betweenVin gris andWhite wine

2. add a superclass relation betweenRosé wine andVin gris

3. repeat the same for classesCabernet blanc andWhite Ziinfandel

If we look at this set of operations conceptually, we can see that a complex operation
was performed: a set of siblings was moved to a different location in the class hierarchy.
There are two levels of “enrichment” that we can identify in this example. First, we can
recognize the “add superclass”–“remove superclass” sequence for each of the classes
Vin gris, Cabernet blanc, andWhite Ziinfandel as amove in the tree. Second, we can
recognize thatVin gris, Cabernet blanc, andWhite Ziinfandel were and remain siblings in
the class hierarchy and thus we have a “move siblings” operation.

The set of rules to recognize this change is rather simple: as long as we know that the
classA in theVnew is the same as the classA in Vold (this information is readily available
in a mapping) and their superclasses are different, we can identify a “move” operation.
To recognize that a set of siblings was moved together, we compare arguments of the

102 Change Process

“move” operations. If theto andfrom arguments for a set of “move” operations are the
same, we have a “move siblings” operation. We can summarize the rules for determining
a move of siblings to a new place in a hierarchy with the following three rules:

1. A classC ∈ Vold hasn direct subclasses:subC1, subC2, · · · , subCn

2. There exists a classnewC ∈ Vnew and more than one of its subclasses belong to
the listsubC1, subC2, · · · , subCn;

3. These new subclasses ofnewC are no longer subclasses ofC (i.e., no multiple
inheritance).

A second class of rules does not just use the transformation set to detect complex
changes, but also accesses the ontology versionsVnew and / orVold. Suppose we know
that a range of a propertyP was changed fromC1 to C2. If we have access toVold,
we can check whetherC2 is a subclass ofC1 in Vold. If it is, then the range of the
propertyP was restricted. As a result, for example, some instances that use this property
may become invalid. On the other hand, if we know thatC2 is a superclassof C1 in
Vold, we also know that the range of the propertyP has become less restrictive (another
complex operation). If our task is data interpretation, we can conclude that no instances
were affected. Therefore, if all we have, for example, areVnew and a transformation set
with basic operations, these are the complex operations we will not be able to identify.
Restricting a range of a property is an example of such an operation.

In Chapter 7, we describe a tool that uses the mapping between concepts and the two
ontology versionsVold andVnew to identify a number of those complex changes.

Detection Heuristics

In the ideal case, we can use rules to precisely identify complex changes that involve
multiple classes, e.g., a group of sibling classes that was moved to a new place in the
class hierarchy. However, if other changes have been made between the same versions,
the conditions for the rule might not be met, for example because one of the classes
involved has been deleted later on. In other words, while in principle we can specify a
precise set of rules to determine when a complex operation occurs, in practice additional
changes in the ontology involving the same concepts, may make a decision that a complex
change has occurred less clear-cut.

Consider for example the following operation: group a set of siblings to create a new
superclass (create a new abstraction). We would have such an example if we grouped the
Rośe wines in Figure 4.3a together to create theRosé wine class, but have left this new
class as a subclass ofWhite wine.

In the ideal case, we have the following conditions that describe the case when such
an operation has occurred:

1. A classC ∈ Vold hasn direct subclasses:subC1, subC2, · · · , subCn

2. There is a classnewC ∈ Vnew such that:

• newC is a direct subclass ofC

6.2. Creating the Change Specification 103

• ∀ subC ∈ Vnew such thatsubCi is a direct subclass ofnewC, subCi was a
direct subclass ofC in Vold

However, the user may have also, for example, added other subclasses tonewC (e.g.,
adding new types of rosé wines). He may have also added another level of classes be-
tweenC andnewC.

To cope with these kind of problems, we have to replace the exact rules by heuristics
that allow for some noise in the set of change operations. This can be done by changing
the precise criteria to approximate criteria. For example, we can rephrase the conditions
for newC above resulting in a heuristic of the following form:

• newC is a subclass ofC (not necessarily direct)

• Among the direct subclasses ofnewC, mostcome fromsubC1, subC2, · · · , subCn

To make this practically usable, the values for the approximate criteria such asmost
need to be determined empirically. This could lead to computable criteria such as “more
than 50% of subclasses ofnewC must be former subclasses ofC” or “there is at most
one level of classes betweenC andnewC”.

6.2.4 Generating Evolution Relations

Figure 6.6 shows the process for finding theevolution relation, i.e. the mapping between
corresponding constructs in the old version and the constructs in the new version of
the ontology, specifying which concept has evolved in what other concept. Basically,
there are three options for generating the mappings. If the ontology contains persistent
identifiers for concepts and relations, those can be used. If not, then the change log can
be used to find the mappings. Changes in the identifier of a concept are a common cause
that prevents mappings from being found. A change log, however, will often explicitly
contain the information that an identifier of a concept has changed, and thus provide
the “trace” of the changes between two versions of a concept. If a log is not available
either, then mapping heuristics have to be applied. Such heuristics are similar to those
that are used for schema matching (Rahm and Bernstein, 2001), but they are normally
much more tolerant, in the sense that less evidence is required for a match to be accepted.
The requirements can be lowered because the chance for two concepts that are similar
to be a match is much larger when we assume that the ontologies are derived from each
other, than for unrelated schemas. PROMPTdiff (Noy and Musen, 2002) is a tool that
implements around 10 heuristics for creating mappings between concepts in different
versions of ontologies.

6.2.5 Generating Conceptual Relations

The conceptual relation between two concepts specifies the intended semantic relation
between the two versions of a concept or relation, i.e., whether the changed version
should be considered equivalent to the original version, or that it subsumes or is sub-
sumed by the other. As is explained in Section 4.1.1, this is in the end an interpretation
of the person that will use the changed concepts.

104 Change Process

produce
mapping

log
available?

n

y

create
mapping from

identifiers

identifiers
available?

n

y

create
mapping from

log

end

mappings

persistent
identifiers

versions
available?

n

y

suggest
mapping from

versions

two ontology
versions

create
versions

change log

end

Figure 6.6: The process for generating a mapping between constructs in different versions of the
ontology.

The process for finding conceptual relations is specified in Figure 6.7. There are many
possible inputs for generating conceptual relations. First of all, if both versions of the on-
tology are available and the semantics of the ontology can be expressed in a Description
Logic (Baader et al., 2003)—as is e.g. the case with OWL DL—the exact subsump-
tion and equivalence relations according to the definitions can be computed automati-
cally. Examples of reasoning systems that are capable of doing this are FaCT (Bechhofer
et al., 1999) and RACER (Haarslev and Moller, 2001). However, the computed sub-
sumption relation between concepts might not always be the intended interpretation of
the conceptual relation. Consider the example from Section 4.1.1, where an additional
property restriction “fuel-type” is added to the class “Car”. If modeled as a defined
class, a reasoner will derive that the new version of car is a subset of the old version
(see Figure 6.8), although the person who performed the change might consider them as

6.2. Creating the Change Specification 105

produce
conceptual

relations

change log
both

versions
available?

n

y

derive
subsumption

and equivalence

reasoner? n

y

produce
complex

operations

produce
mapping

suggest
equivalence

suggest
subsumption

use
heuristics?

n

y

conceptual
relations

produce
ontology
versions

transform-
ation set

two ontology
versions

mapping

end

ask
human?

n

y

end

validate and
add relations

two ontology
versions

domain
knowledge

complex
changes

Figure 6.7: The process for generating conceptual relations between constructs in different ver-
sions of the ontology.

106 Change Process

Figure 6.8: A tiny subsumption hierarchy with two versions of the definition of “Car” before and
after classification.

equivalent. Therefore, validation of the derived relation by a domain expert is necessary.

Heuristics

If an exact computation of the logical relation can not be done, heuristics can be used to
suggest conceptual relations to a human expert that understands the domain of discourse.

There are two sources for such suggestions. First, based on themappingbetween
concepts in the old version of the ontology and those in the new version, suggestions for
equivalence relations can be made. If it is known that a specific concept in one version of
the ontology maps onto a concept in another version, there is basis to assume that there
exists an equivalence relation between both concepts, especially if there is no difference
in the definition of the concept.1

Second, if there is a difference in the definition, we can use thetransformation setto
suggest conceptual relations between both versions of the concept. Based on our obser-
vations about the possible effect of changes to concepts in their place in the hierarchy,
we present in Table 6.1 a number of suggestions for the conceptual relation between the
old and new concept for specific change operations.

operation x in Cnew x Cold

Add Property Restriction ⊆
Remove Property Restriction ⊇
Add Label −
Add Equivalent Class ⊆
Remove Equivalent Class ⊇
Add Superclass ⊆
Remove Superclass ⊇
Extend Cardinality ⊇
Restrict Cardinality ⊆

Table 6.1: Heuristics rules that suggest the the effect of respective operations on conceptual rela-
tion between the new conceptCnew and the old conceptCold. A “−” means that the operation
does not provide basis for a suggestion about the resulting conceptual relation.

1Note that we use the assumption that two concepts with the same name but in a different name space are
different until they are explicitly said to be equivalent.

6.3. Retrieval and Interpretation of Data 107

When a change is described with multiple operations, a suggestion for a conceptual
relation can only be done if all operations result in the same suggestion; if not, the ex-
pected effect of the respective operations is probably opposite and a useful suggestion is
not possible.

6.3 Retrieval and Interpretation of Data

We now turn our attention to the usage of the change specification for specific tasks. In
this and the next three sections, we describe the process for a number of those tasks.

A very prominent application of the ontology change framework is data retrieval and
interpretation. In such a scenario, we assume that ontologies are used to describe the
“meaning” of pieces of data. Computers use the knowledge in ontologies to combine
and relate the data in a—from a human stance—meaningful way. This is typically the
situation that is envisaged for the Semantic Web (see the introductory chapter).

In such a situation, one can think of at least two different tasks that can be performed:

data retrieval: for a (combination of) term(s) in an ontology, retrieve the pieces of data
that are instances of it;

data interpretation: for a given piece of data, get the most specific concept or relation
that is accurately describing it.

In this section, we describe how the ontology evolution framework can be used for data
interpretation and data retrieval. However, before we can do this, we first have to an-
alyze the precise problem that occurs when performing these tasks. This is done in
Section 6.3.1, where we discuss the issue of compatibility. After we have done this, we
specify two mechanisms to cope with changing ontologies when performing these tasks.
The first one is a method to determine whether a changed ontology can be used instead of
the original one (Section 6.3.2), the second mechanism is an approach to partly translate
data sources.

6.3.1 Compatibility of Changed Ontologies

Changes in ontologies can cause that data cannot be interpreted or retrieved correctly
anymore, because the version of the ontology might not match the version of the data
source anymore. In general terms, this is called incompatibility.

Types of Compatibility

We first define precisely what we mean with “compatibility”. In general terms, compati-
bility is the capability that allows the substitution of one subsystem (or functional unit),
for the originally designated system (or functional unit) in a relatively transparent man-
ner, without loss of information and without the introduction of errors.2 This definition

2Slightly adapted definition from the Wikipedia encyclopedia, based on the Glossary of Telecommunication
Terms, Federal Standard 1037C.

108 Change Process

mentions two different requirements for a compatible substitution: no information loss,
and correctness. In the setting that we consider, we can make this definition more precise.
For data interpretation, in addition to the correctness, theprecisionof the interpretation
is an aspect to consider. If pieces of data are to be interpreted, it could be that they are
correctly typed, but not with the most specific terms possible. For data retrieval, we can
distinguish between two different variants of the ‘no information loss’ requirement. The
first interpretation is that a query, using concepts and relations from the ontology, gives
exactly the same answer for two versions of an ontology. The second interpretation is
that all information is accessible via both versions of the ontology, but not necessarily
via the same query.

Altogether, this results in four different interpretations of compatibility of ontologies
and data:

A: being able to use another version of the ontology to retrieve all data using the same
query;

B: being able to use another version of the ontology to retrieve all data;

C: being able to use another version of the ontology to interpret all data correctly and
as precise as possible;

D: being able to use another version of the ontology to interpret all data correctly.

Besides these variants of compatibility, it is also of interest to know whether changes
that produce incompatible versions of ontologies, actually introduce errors. If not, the
incompatible ontologies are still usable to retrieve or interpretpart of the data correctly.
We call this kind of relation between ontology versions and data sourcesincomplete
compatible.

Directions of Compatibility

Compatibility between ontologies and data sources can be considered in two different
directions: inprospective useand inretrospective use. These terms, which are borrowed
from database schema versioning literature (Roddick, 1995), are illustrated in Figure 6.9.
“Prospective use” is using a newer version of an ontology with a data source that con-
forms to an older version, and “retrospective use” is using an older version of an ontol-
ogy with a data source that conforms to a more recent ontology. Unlike with some more
controlled environments, in an uncontrolled environment we cannot expect that one in-
compatibility is more important than the other. More specifically, in database systems
the most important direction is often prospective use, i.e. using a new database schema
to access older data. In a distributed setting, however, both directions of incompatibility
should be taken care of.

When the change to an ontology results in a revision that can be used prospectively,
it is called abackward compatiblechange. This is the case when the modification in the
ontology does not affect the existing definitions, i.e., when the change is a monotonic
extension. Heflin and Hendler (2000) show that the addition of concepts or relations
are such extensions. When used on a data source, ontologies that are extended in this

6.3. Retrieval and Interpretation of Data 109

Ontology
version 1

Ontology
version 2

Ontology
version 3

Ontology
version 4

datasource datasource datasource datasource

conforms to conforms to conforms to conforms to

prospective useretrospective use

Figure 6.9: Examples of prospective and retrospective use of ontologies.

way yield the same perspective as when the original ontology is used. Changes are
calledupward compatiblewhen data sources that obey the new ontology can be used
retrospectively. For example, this is true for a deletion of an independent class.

Notice that both backward compatibility and upward compatibility are transitive:
when the changes fromv1 to v2 as well as the changes fromv2 to v3 are backward
compatible, then the changes fromv1 to v3 are also backward compatible.

Consequently, if we know that all subsequent revisions to an ontology up to a certain
version are backward compatible, it is also possible to name the resulting version of the
ontology itselfbackward compatible. However, it is never allowed to call a version of
an ontologyupward compatible, because the semantics of future versions are not known
beforehand. It is always possible that new versions of ontologies will introduce new
things that cannot correctly be interpreted via older ontology versions. Thus,backward
compatibilitycan be a characteristic of an ontology, butupward compatibilitycan not be.

The change management framework can help to determine the type of compatibility
between versions of ontologies and to translate data to achieve a maximal data accessi-
bility.

6.3.2 Determining Compatibility

To determine the compatibility between different versions of ontologies, we look at the
effect of the different operations in the transformation set between two ontology versions.
The complex operations allow to describe that combinations of basic operations can have
a less destructive effect on the compatibility when applied together than the sequence of
basic operations themselves.

Earlier, we have given the example of a slot that is “moved up” in the hierarchy.
If we treat this operation as a sequence of two operations, removing the slot from the
subclass and then adding it to the superclass, the instance data of the slot is lost in the
first operations. However, the composite effect of the two operations does not violate the
integrity of the instance data.

To give an impression of the effects, Table 6.2 lists a number of the operations that
are defined in Chapter 5 and describes the effects on the different types of compatibil-

110 Change Process

ity of ontologies. The characters in the second column of the table refer to variants of
compatibility in the list above. If the character for a specific compatibility is present,
it means that the specific type of compatibility is broken by that operation. Note that
the table specifies “worst-case scenarios”. It tells that a specific compatibility cannot
be guaranteed anymore, but this does not mean thateverycombination of data and the
two ontology versions are incompatible. For example, in general deleting a concept is
incompatible for data retrieval and precise interpretation (variants A, B and C), but if a
specific data source does not contain instance data for that concept, it does not harm the
interpretation. However, in an uncontrolled and distributed setting we cannot assume that
we know something about the data itself.

Note that in this analysis we assume that there are only explication changes, i.e. that
the conceptualization itself is not changed. In case there are conceptual changes as well,
we cannot guarantee the compatibility and have to use the explicit conceptual relations
between the version of constructs to re-interpret data (see next section).

Operation Broken Explanation

Add Class C The added class might describe the data more
precisely.

Remove Class ACD Instances of the class have a less specific type,
but can always be retrieved via the most gen-
eral class.

Add Property - All data can still be retrieved and interpreted.
Remove Property ABCD If there exists a value for the removed prop-

erty, we don’t know anything about the value
anymore.

Add Property Restriction ABCD Old values for properties might not be valid
anymore.

Remove Property Restriction - Everything which was valid before is still
valid.

Modify Superclass To Superclass (“move a
class up in the hierarchy”)

- There can be fewer inherited property restric-
tions for the class, but all properties are still
known.

Modify Superclass To Subclass (“move a
class down in the hierarchy”)

AB There can be additional inherited property re-
strictions which could invalidate some data.

“Widen” a property (restriction), e.g.,In-
crease Cardinality or Change Range to Su-
perclass

- All values for the property are still valid.

Delete Class And Move Siblings Up ACD Instances of the deleted class itself have a less
specific type

Table 6.2: The effect of change operations on different types of data compatibility.

The table lists the effect on retrospective use, i.e. it specifies whether thebackward
compatibility can be maintained or not. To determine the effect on prospective use, there
are two options. First, the transformation set between the two version of the ontology
can be calculated in the other direction. This means that, instead of deriving the required
operations betweenVold andVnew, the operations to transformVnew into Vold should be
calculated. The other option is to determine theinversefor each operation, and look up
the effect for these operations. The inverse of “add” operations are “delete” operations

6.3. Retrieval and Interpretation of Data 111

(and vice-versa), and the inverse of “modify” operations are “modify” operations with
the “from” and “to” argument exchanged. Thechange to superclass and change to
subclass are also each others inverses.

6.3.3 Partly Translating Data

In the section above we described how the change operations can be used to determine
the compatibility when a changed ontology is used instead of the original ontology in a
specific direction and for a specific task. If the ontology is compatible for a specific task,
this means that the changed ontology can be used instead of the original ontology without
loss of information and without introducing errors. If not compatible anymore, we might
still be able use the ontology to retrieve or interpret data. Below we will describe a
procedure to retrieve data via ontologies that changed in a way that we calledincomplete
compatibleabove.

For data retrieval, we not only exploit the change operations, but also the conceptual
relations between the concepts in the old and the new version of the ontology. We assume
that we have simple conjunctive queries without negation. It requires further investigation
to know how this approach can be applied in the case of more complex queries. The
method is as follows:

1. for each changed concept or property, look up whether a conceptual relation be-
tween the original and the new version is specified.

• if an equivalence relation exists, replace the concept in the query with the
equivalent concept from the old ontology;

• if a subsumption relation exists:

– if the new concept is superclass of the old concept, replace the concept
in the query with the concept from the old ontology;

– if the new concept is subclass of the old concept, remove the concept
from the query.

2. if the concept has been deleted, replace the concept in the query with the union of
the subclasses of the concept from the old ontology.

3. if the property has been deleted, replace the property in the query with the union
of the subproperties of the property in the old ontology.

• if no subproperties existed, remove the related concepts from the query;

4. if the operation involves a merge of the concepts, use union of old concepts to
replace new concepts;

5. if the operation involves a split of the concept, remove the concept form the query.

For interpreting data, a similar algorithm can be used, which is basically an inverted
version of the algorithm above.

112 Change Process

6.4 Ontology Synchronization

The termontology synchronizationis introduced by Oliver (2000). She defines synchro-
nization as “the periodic process by which developers update the local vocabulary to
obtain the benefits of shared-vocabulary updates, while maintaining local changes that
serve local needs”. This process is very common in the health-care domain, where local
hospitals use adapted versions of national or international terminology standards. Keep-
ing the local versions up-to-date with the evolving global version is necessary to stay
current with new insights and for being able to exchange information with other users of
the vocabulary.

In this section, we describe the approach for ontology synchronization developed by
Oliver, calledCONCORDIA, and relate the underlying models in her methods to elements
in our framework. We then show how her synchronization methods can be applied within
our framework for ontology evolution.

6.4.1 CONCORDIA Synchronization Approach

TheCONCORDIA synchronization approach is developed specifically for medical vocab-
ularies. Consequently, it makes a number of assumptions about the structure of the on-
tology and the development process. First of all, theCONCORDIA methods assume that
there is onesharedversion of an ontology and one or morelocal versions of an ontology
that are derived from the shared one. Second, the one and only goal of the approach is to
bring the local versions in line with the shared version. This basically means that the lo-
cal versions should be made pureextensionsof the shared version. Third, it assumes that
every concept has a constant and unique identifier, which is separate from a meaningful
name that can change and can possibly have synonyms.

The knowledge model ofCONCORDIA consists of three elements. The first element
is called thestructural model. In essence, this model defines the meta model for the
vocabularies. It defines how concepts are defined, the relations between them, and the
elements of attributes. In Section 6.4.2, we show the precise models as we compare them
with the elements in our framework. The second element of theCONCORDIA model is
called thechange model. This model defines all different changes that can be applied
to vocabularies, distinguishing between changes to local vocabularies and changes to the
shared vocabulary. Thirdly, thelog modeldefines an exchange format for changes.

The CONCORDIA change process is as follows. Over time, change operations that
are defined in the change model can be applied by the developers of the vocabulary
versions, which results in a divergence of the shared and local versions. Once in a while,
the vocabularies will be synchronized. Oliver has defined asynchronized state, which
specifies the desired target state of the vocabularies. In this state, both every concept,
and every subsumption relation between concepts, and every attribute–value pair in the
shared vocabulary should also be present in a local vocabulary. In addition to this, the
concepts should have the same unique identifiers in both versions. The synchronization
is performed by processing the log of the changes that are made in the shared version
during the time period between the last synchronization actions and the current moment.
For each of the changes in the log, a list ofaction choicesis defined. Each of those actions

6.4. Ontology Synchronization 113

defines a sequence of steps that should be performed to bring the local vocabulary in a
synchronized state w.r.t. a specific change in the shared vocabulary. The choice between
different actions is partly based on the conflicts with the structural model that are possibly
introduced by the actions. For example, for adding a concept, a criterion is whether or
not a concept with the same name already exists. If this is the case, an action should be
chosen which also renames one of the concepts.

6.4.2 Alignment with Change Framework

The CONCORDIA methodology uses a different knowledge model than the OWL-based
knowledge model that we assume in our framework (see Section 5.3). Also, the as-
sumptions about the evolution process are restricted to a specific scenario. However, for
a subset of all possible evolution scenarios and ontologies, theCONCORDIA synchro-
nization methods are applicable within our framework as well. Although the terms are
different, the basic elements that are present inCONCORDIAalso exist in our framework.
In the next paragraphs we will compare the elements of both approaches. We then show
how theCONCORDIA approach can be performed within our framework and discuss the
extension that should be made to make it applicable to a broader set of ontologies.

Ontology Meta Model

What is called “structural model” by Oliver, is the meta model of the ontology language
for us. The meta model that is used inCONCORDIA is designed specifically for medical
vocabulary and therefore less general than what we use. To apply the synchronization
methods in our framework, we will consider theminimally requiredelements and express
them in our knowledge model. TheCONCORDIAapproach requires that a sharedconcept
consists of at least: 1) a unique identifier, 2) a name, 3) a non-empty set of parents,
and 4) a usage status. We discuss how each of these concepts can be represented in our
framework.

In OWL, URI’s (Berners-Lee et al., 1998) are used as unique identifiers. Each con-
cept and property (except for anonymous concepts, which are only used as building
blocks for other named entities) is identified with a name, syntactically often represented
as a fragment identifier, e.g., “#Book ”. In the RDF/XML framework, such fragment iden-
tifiers are transformed into a URI reference by appending the fragment identifier to the
in-scope base URI (as described in Beckett, 2003). Thus, each concept and property has
a unique identifier in the form of a URI.

The name of concepts and properties often coincide with the fragment identifier that
forms part of the unique identifier. This conflicts with the requirement inCONCORDIA

that the unique identifier is persistent and unconnected with the meaningful name. How-
ever, by using therfds:label attribute for concepts and properties, we can give them
a name that is not connected to the identifier. To be compatible with theCONCORDIA

model, we also have to require that the identifier will not change.
The parents of a concept in OWL are specified viardfs:subClassOf statements.

Although these statements are optional for OWL class definitions, the requirement that

114 Change Process

every concept has at least one parent is met by the fact that every OWL class is a subclass
of owl:Thing .

The usage status is something that is not present in OWL. However, via the mech-
anism of “annotation properties”, we can define additional attributes of concepts and
properties. With the following definition, we can add the usage status to the OWL meta
model.

<owl:AnnotationProperty rdf:about ="#usageStatus">
<rdf:range >

<owl:Class >
<owl:oneOf rdf:parseType ="Collection">

<owl:Thing rdf:about ="#current"/>
<owl:Thing rdf:about ="#retired"/>

</ owl:oneOf >
</ owl:Class >

</ rdf:range >
</ owl:AnnotationProperty >

A specific class definition would use this property as follows:

<owl:Class rdf:about ="#Book">
<rdfs:label >Book</ rdf:label >
<cc:usageStatus rdf:resource ="current"/>

</ owl:Class >

In addition to concepts, theCONCORDIA model also contains properties, calledat-
tributes. Attributes consist of at least: 1) a unique identifier, 2) a name, and 3) a usage
status. All these elements can be expressed in our model as well, in a way similar to the
way in which their counterparts in concepts are expressed.

The knowledge model of alocal vocabulary is an extension of the model of the shared
vocabulary. Both concepts and attributes have an additional property “site-of-origin”,
whose value is either “shared”, “locally modified” or “local-only”. Moreover, the value
of “usage-status” can also be “hidden” or “preserved”, and there is an additional list of
superclasses that specify the superclasses of a concept in thesharedvocabulary.

Change Operations

The “change model” inCONCORDIA is the equivalent of our ontology of change oper-
ations. There is one major difference between both models. InCONCORDIA, “delete”
operations do not exist because all concepts are persistent. Instead, there are two differ-
ent variants of removal for both concepts and attributes. In a shared vocabulary, a concept
or attribute can be “retired”, which means that it is not meant to be used for future anno-
tations anymore. In a local vocabulary, concepts and properties will be “hidden”. This
means that they are still available in the shared vocabulary, but that they are not used at
the local site.

Besides this, the change operations also differ on some minor points. InCONCOR-
DIA , there are a few change operations that are specific for its structural model, such as
“add translation code” and “delete synonym”. Because these operations refer to optional
elements of the structural model, we can ignore them for our purpose of expressing the
minimally required elements. Also, there are two types of “merge” operations: in one

6.4. Ontology Synchronization 115

variant, the resulting concept is the same as one of the two old concepts, in the second
variant, the two original concepts are merged into a new one.

We incorporate the additionalCONCORDIA change operations in our framework by
extending the ontology of change operations with some new complex operations. Note
that a basic assumption in our framework is that the set of complex changes can always
be extended if this is desired for a specific purpose. Table 6.3 shows howCONCORDIA

changes that are not in our ontology of operations can be expressed as complex opera-
tions.

CONCORDIA operation Complex operation

Retire concept retire class
subclass ofclass change
consists of:
• add annotation with property “usageStatus” and value
“retired”
• modify subclass for each subclass to the parent

Retire attribute retire property
subclass ofproperty change
consists of:
• add annotation property with property “usageStatus” and
value “retired”

Merge two concepts into one of
the two concepts

incorporate class
subclass ofmerge class
consists of:
• merge class for A andB into C
• delete class for B
• add class equivalence for A andC

Correct concept name replace name subclass ofclass change
consists of:
• modify annotation property with property “label” and value
“new name”

Replace concept name replace name subclass ofclass change
consists of:
• modify annotation property with property “label” and value
“new name”
• add annotation property with property “synonym” and value
“old name”

Table 6.3: Operations from theCONCORDIA change model that do not have a direct counterpart
in the ontology of change operations, and their specification as complex operation.

Change Representation

The “log model” in CONCORDIA is the counterpart of our change representationlan-
guage. In CONCORDIA, the log is used to represent the changes that have occurred in
the shared vocabulary. The log is an ordered sequence of change records, where each

116 Change Process

of the records contains one change operation, its operands, and meta-data such as a time
stamp, natural language explanation, and author information. For each of the elements
in the change record, a one-to-one mapping to elements in our change representation
language can be made. The only difference is the maintenance of order. In a change log
in CONCORDIA, the order is explicitly represented, while a change representation in our
framework contains a set of operations, where we require that “create operations” are
executed before other operations. For the purpose of re-executing changes in an other
ontology where the identifiers are persistent, the latter requirement gives the same re-
sult as keeping the complete order. In short, the change representation in our framework
can be used as basis for ontology synchronization in Oliver’s methodology if the “create
operations” are parsed before the other operations.

6.4.3 Discussion

In the above paragraphs we have described how the minimally required elements of the
CONCORDIA synchronization methodology can be expressed in our framework. Doing
this, we have shown that the synchronization approach can be applied for vocabular-
ies that follow the assumptions of Oliver when they are expressed in OWL and their
evolution is described within our framework. This allows us to perform ontology syn-
chronization for a specific subtype of ontologies.

A question that follows from this is whether the described approach can be extended
towards a generally applicable synchronization methodology. This means the approach
should neither require any extensions of the knowledge model of the ontology, nor should
it make any assumptions about the usage. To answer this question, we have to analyze
what the precise goals of the methodology are, and which of its elements are necessary
and which not.

TheCONCORDIA synchronization procedure appears to have two related goals. One
is to update the local vocabulary with changes that have occurred in the global vocabu-
lary, the other is to maintain a number of invariants of a synchronized ontology. These
invariants are described in the definition of asynchronized state. Combined with the fact
that the knowledge model inCONCORDIA should meet the requirements for expressing
medical vocabularies, this gives three different origins for elements behind the method-
ology. They either enable:

1. expressing medical vocabularies, or;

2. maintaining particular invariants, or;

3. re-executing the global changes.

For a generic ontology synchronization procedure, the elements that have their origin
in the first two goals are not relevant. This means that the extension to the knowledge
model for representing meaningful names is not strictly required. The same holds for
some of the steps in the “action choices” that have the specific goal to guarantee that each
concept and subclass relation in the shared ontology is available in the local ontology.

6.5. Determining the Integrity of Mappings 117

The elements that are required are those that allow the re-execution (within the local
ontology) of changes that are performed in the global ontology. The basic principle be-
hind these elements is that it should always be possible to trace back the original concept
in the local vocabulary. This is implemented via three main mechanisms: 1) having per-
sistent identifiers, 2) not being able to delete something (but instead flagging concepts as
“hidden” or “retired”), and 3) update procedures in the “action choices”.

Unfortunately, the first two mechanism can not be implemented in an unrestricted
setting. It cannot be guaranteed that identifiers are persistent. Also, it is not possible to
prohibit deletions, and for flagging the status of concepts an extension of the knowledge
model is required. Therefore, in general the synchronization approach is not applicable
in an unrestricted setting.

However, one could think of other ways to achieve the same principle, i.e. being able
to trace back the original concept. The problem of having no persistent unique names can
be partly solved by exploiting the evolution relation. The goal of a persistent identifier is
to be able to trace the evolution of a concept. If a first step is added to the procedure which
finds the predecessor of the concept, the concept can be traced back. One of the problems
with deletions is that local changes on globally deleted concepts might get lost as well.
This could possibly be addressed by a procedure that first reverts a local ontology to its
original state, then executes the deletions that have occurred in both the local and global
ontology, and than re-executes the changes that have been made to the local ontology.
Further research about synchronization within a particular setting is required to find out
whether these directions are sufficient.

6.5 Determining the Integrity of Mappings

A third application of the framework is determining the integrity of mappings between
ontologies. That is, we consider the changes that occurred in a specific ontology and
we determine whether mappings to that ontology are still usable after these changes.
Because the validity of mappings can only be decided for a specific type of usage, we
consider a particular context, namely subsumption reasoning in modular ontologies. In
the next section, we present our approach to modular ontologies and we define what
we mean with “integrity” of mappings. After that, we describe the actual method for
verifying the mappings in Section 6.5.2.

6.5.1 Modular Ontologies

There are a number of reasons to mention why a modular setup is important to consider.

Distributed Systems: In highly distributed systems such as the Semantic Web, modu-
larity naturally exists in terms of physical location. Providing interfaces and mech-
anisms for connecting these natural modules is a prerequisite for easy maintenance.

Large Ontologies: Modularization also helps to manage very large ontologies we find
for example in medicine or biology. Here modularity helps to maintain and reuse

118 Change Process

parts of the ontology as smaller modules are easier to handle than the complete
ontology (Rector, 2003).

Efficient Reasoning: A specific problem that occurs in the case of distributed and large
models is the problem of efficient reasoning. The introduction of modules with lo-
cal semantics and clear interfaces will help to develop efficient reasoning methods
(McIlraith and Amir, 2001).

In order to improve ontology maintenance and reasoning in the way suggested above, a
modular ontology architecture should have the following characteristics.

Loose Coupling: In general, we cannot assume that two ontology modules have any-
thing in common. This refers to the conceptualization as well as the specific logical
language used for the interpretation of objects, classes or relations.

Self-Containment: In order to facilitate the reuse of individual modules we have to
make sure that modules are self-contained. In particular, the result of certain
reasoning tasks such as subsumption or query answering within a single module
should be possible without having to access other modules.

Integrity: Having self-contained ontology modules may lead to inconsistencies that
arise from changes in other ontology modules. We have to provide mechanisms
for checking whether relevant knowledge in other systems has changed and for
updating our modules accordingly.

Approach

Our approach can be summarized with the following three descriptions.

View-Based Mappings: We adopt the approach of view-based information integration.
In particular, ontology modules are connected by conjunctive queries. This way of
connecting modules is more expressive than simple one-to-one mappings between
concept names but less expressive than the logical language used to describe con-
cepts.

Compilation of Implied Knowledge: In order to make local reasoning independent from
other modules, we use a knowledge compilation approach. The idea is to compute
the result of each mapping query off-line and add the result as an axiom to the on-
tology module using the result. During reasoning, these axioms replace the query
thus enabling local reasoning.

Change Detection and Automatic Update:Once a query has been compiled, the cor-
rectness of reasoning can only be guaranteed as long as the class hierarchy of the
queried ontology module does not change. In order to decide whether the compiled
axiom is still valid, we propose a change detection mechanism that is based on a
taxonomy of ontological changes and their impact on the class hierarchy.

6.5. Determining the Integrity of Mappings 119

View-Based Mappings

Besides the concepts that are defined in a standard way, we considerexternally defined
conceptsin the setting of modular ontologies. Externally defined concepts are assumed
to be equivalent to the result of a query posed to another module in the modular ontology.
This way of connecting modules is very much in spirit of view-based information integra-
tion which is a standard technique in the area of database systems (Halevy, 2001). We use
the notion of an external concept definition which is an axiom of the formC ≡ M : Q
where M is a module and Q is a conjunctive query over the signature of M. Queries
over ontological knowledge are defined as conjunctive queries, where the conjuncts are
predicates that correspond to classes and relations of an ontology. Further, variables in a
query may only be instantiated by constants that correspond to objects in that ontology.
The claim that all conjuncts relate to elements of the ontology allows us to determine the
answer to ontology-based queries in terms of instantiations of the query that are logical
consequences of the knowledge base.

A model-based semantics for modular ontologies has been defined in Stuckenschmidt
and Klein (2003), using the notion of a distributed interpretation proposed by (Borgida
and Serafini, 2002) in the context of distributed description logics. Using the notion of
logical consequence that can be defined on the basis of this semantics, we can turn our
attention to the issue of reasoning in modular ontologies. For the sake of simplicity, we
only consider the interaction between two modules in order to clarify the basic principles.
Further, we assume that only one of the two modules contains externally defined concepts
in terms of queries to the other module.

Compilation of Implied Knowledge

As mentioned in the requirements for modular ontologies, we are interested in the pos-
sibility of performing local reasoning. For the case of ontological reasoning, we focus
on the task of deriving implied subsumption relations between concepts within a single
module. For the case of internally defined concepts, this can be done using well estab-
lished reasoning methods (Donini et al., 1996). Externally defined concepts, however,
cause problems: being defined in terms of a query to the other module, a local reason-
ing procedure will often fail to recognize an implied subsumption relation between these
concepts. Consequently, subsumption between externally defined concepts requires rea-
soning in the external module as the following theorem shows.

Theorem 1 (Implied Subsumption) LetE1 andE2 be concepts that are externally de-
fined by queriesQ1 andQ2, thenE2 subsumesE1 if and only ifQ2 subsumesQ1 in the
context of the ontology they refer to.

This theorem which can easily be proven using the model-theoretic semantics of
external concept definitions implies the necessity to decide subsumption between con-
junctive queries in order to identify implied subsumption relations between externally
defined concepts. In order to decide subsumption between queries, we translate them
into internally defined concepts in the module they refer to. A corresponding sound and
complete translation is described in (Horrocks and Tessaris, 2000). Using the resulting

120 Change Process

concept definition, to which we refer asquery concepts, we can decide subsumption
between externally defined concepts by local reasoning in the external ontology.

We can avoid the need to perform reasoning in external modules each time we per-
form reasoning in a local module using the idea of knowledge compilation (Cadoli and
Donini, 1997). The idea of compilation is to perform the external reasoning once and add
the derived subsumption relations as axioms to the local module. These new axioms can
then be used for reasoning instead of the external definitions of concepts. For the exact
algorithm that is used to compile the new axioms, we refer to Stuckenschmidt and Klein
(2003).

If we want to use the compiled axioms instead of external definitions, we have to
make sure that this will not invalidate the correctness of reasoning results. We call this
situation, where the compiled results are still a correct representation of as integrity. We
formally define integrity as follows:

Definition 3 (Integrity) We consider integrity of two ontology modulesM,Mj to be
present ifM,Mj |= M c whereM c is the result of replacing the set of external concept
definitions inM by compiled axioms.

At the time of applying the compilation this is guaranteed by Theorem 1, however,
integrity cannot be guaranteed over the complete life-cycle of the modular ontology. The
problem is that changes to the external ontology module can invalidate the compiled
subsumption relationships. In this case, we have to perform an update of the compiled
knowledge.

6.5.2 Verifying Integrity

In principle, testing integrity might be very costly as it requires reasoning within the ex-
ternal ontology. In order to avoid this, we propose a heuristic change detection procedure
that analyzes changes with respect to their impact on compiled subsumption relations.
Work on determining the impact of changes on a whole ontology is reported in (Heflin
and Hendler, 2000). As our goal is to determine whether changes in the external ontol-
ogy invalidates compiled knowledge, we have to analyze the actual impact of changes on
individual concept definitions. We want to classify these changes as eitherharmlessor
harmfulwith respect to compiled knowledge.

Determining Harmless Changes

As compiled knowledge reflects subsumption relations between query concepts, a harm-
less change is a set of modifications to an ontology that does not change these subsump-
tion relations. Finding harmless changes is therefore a matter of deciding whether the
modifications affect the subsumption relation between query concepts. We first look at
the effect of a set of modifications on individual concepts.

Assuming thatC represents the concept under consideration before andC ′ the con-
cept after the change there are four ways in which the old versionC may relate to the
new versionC ′:

6.5. Determining the Integrity of Mappings 121

1. the meaning of concept is not changed:C ≡ C ′ (e.g. because the change was in
another part of the ontology, or because it was only syntactical);

2. the meaning of a concept is changed in such a way that the concept becomes more
general:C v C ′

3. the meaning of a concept is changed in such a way that the concept becomes more
specific:C ′ v C

4. the meaning of a concept is changed in such a way that there is no subsumption
relationship betweenC andC ′.

The same observations can be made for a relation before and after a change, denoted
asR andR′ respectively. The next question is how these different types of changes
influence the interpretation of query concepts. We take advantage of the fact that there
is a very tight relation between changes in concepts of the external ontology and implied
changes to the query concepts using these concepts. A sketch of the proof for this lemma
can be found in Stuckenschmidt and Klein (2003).

Lemma 1 (Monotonicity of Effect) Let c(Q) be the set of all concept names andr(Q)
the set of all relation names occurring in queryQ, let further C ∈ c(Q) and R ∈
r(Q) then changingC has the same impact on the interpretation ofQ as it has on the
interpretation ofC, in particular, we haveC v C ′ =⇒ Q v Q′ andC ′ v C =⇒ Q′ v
Q whereQ′ is the query as being interpreted after changingC. Analogously, a change
of R has the same effect on the complete query.

We can exploit this relation between the interpretation of concepts and queries in or-
der to identify the effect of changes in the external ontology on the subsumption relations
between different query concepts. First of all the above result directly generalizes to mul-
tiple changes with the same effect, i.e. a queryQ becomes more general(specific) or stays
the same if none of the elements inc(Q)∪ r(Q) become more specific(general). Further,
the subsumption relation between two query concepts does not change if the more gen-
eral(specific) query becomes even more general(specific) or stays the same. Combining
these two observations, we derive the following characterization of harmless change.

Theorem 2 (Harmless Change)A change is harmless with respect to compiled knowl-
edge (i.e.Q1 v Q2 =⇒ Q′

1 v Q′
2) if for all compiled subsumption relationsC1 v C2

whereCi is defined by queryQi we have:

X ′ v X for all X ∈ c(Q1) ∪ r(Q1)

X v X ′ for all X ∈ c(Q2) ∪ r(Q2)

Proof 1 We assume thatX ′ v X for all X ∈ c(Q1) ∪ r(Q1). Applying lemma 1
with respect to allX ∈ c(Q1) ∪ r(Q1) we deriveQ′

1 v Q1. We further assume that
X v X ′ for all X ∈ c(Q2) ∪ r(Q2). Using lemma 1 we getQ2 v Q′

2. This leads us
to Q′

1 v Q1 v Q2 v Q′
2. Theorem 2 is established by transitivity of the subsumption

relation.

122 Change Process

The theorem provides us with a correct but incomplete method for deciding whether
a change is harmless. This basic method can be refined by analyzing the overlap ofc(Q1)
andc(Q2) in combination with the relations they restrict.

Characterizing Changes

Now we are able to determine the consequence of changes in the concept hierarchy on
the integrity of the mapping, we still need to know what the effect of specific modifi-
cations on the interpretation of a concepts is (i.e. whether it becomes more general or
more specific). As our goal is to determine the integrity of mappings without having
to do classification, we describe what theoretically could happen to a concept as result
of a modification in the ontology. To do this, we use the ontology of operations that is
presented in Chapter 5. We use both basic changes but also complex changes, as they
allow us to define the effect more precisely. Table 6.4 contains a list of operations and
their effect on the classification of concepts.

Operation Effect
Attach a relation to conceptC C: Specialized
Complex: Change the superclass of conceptC to a concept lower in the
hierarchy

C: Specialized

Complex: Restrict the range of a relationR (effect on allC that have a
restriction onR)

R: Specialized,
C: Specialized

Remove a superclass relation of a conceptC C: Generalized
Change the concept definition ofC from primitive to defined C: Generalized
Add a concept definitionA C: Unknown
Complex:Add a (not further specified) subclassA of C C: No effect
Define a relationR as functional R: Specialized

Table 6.4: Some modification to an ontology and their effects on the classification of concepts in
the hierarchy.

The approach for characterizing changes is a heuristic, in the sense that the table
specifies whatcould happen to concepts (i.e., the “worst-case” scenarios) and that for
some operations the effect is “unknown” (i.e. unpredictable). In contrast to (Franconi
et al., 2000) who provides complete semantics of changes we prefer to use heuristics in
order to avoid expensive reasoning about the impact of changes.

Update Management

With the elements that we described in the section above, we now have a complete pro-
cedure to determine whether compiled knowledge in one module is still valid when other
ontology modules have changed. The complete procedure is as follows:

1. create a list of concepts and relations that are part of the “subsuming” query of any
compiled axiom;

6.6. Visualization 123

2. create another list of concepts and relations that are part of the “subsumed” query
of any compiled axiom;

3. achieve the modifications that are performed in the external ontology;

4. use the modifications to determine the effect on the interpretation of the concept
and relations.

5. check whether there are concepts or relations in the first, “subsuming”, list that
became more specific, or concepts or relations in the second, “subsumed”, list that
became more general, or concepts or relations in any of the lists with an unknown
effect; if not, the integrity of the mapping is preserved.

We describe the procedure in a more structured way in Algorithm 6.1. The algorithm

Require: Ontology ModuleM
Require: Ontology ModuleMj

for all compiled axiomsC1 v C2 in M c do
for all X ∈ c(Q1) ∪ r(Q1) do

if effect onC is ’generalized’ or ’unknown’then
M c := Compile(M,Mj)

end if
end for
for all X ∈ c(Q2) ∪ r(Q2) do

if effect onX is ’specialized’ or ’unknown’then
M c := Compile(M,Mj)

end if
end for

end for

Algorithm 6.1: Update

triggers a (re-)compilation step only if it is required in order to resume integrity. Oth-
erwise no action is taken, because the previously compiled knowledge is still valid. In
principle, all steps in the algorithm could be automated.

The approach described in this section provides us with a computationally cheap
method to detect the impact of changes in ontologies on subsumption reasoning in a
related ontology. In Chapter 8, a practical study is described in which the approach is
executed.

6.6 Visualization

We can use complex operations to improve the user interface for the task of verifying
and approving changes. Quite often, an ontology editor performs a number of changes
that are all part of one “conceptual” operation. Some complex operations, like sibling
move, capture this knowledge. Visualizing these operations could help the user to verify

124 Change Process

modifications and to understand the potential effects of changes on applications that use
the ontology.

We have developed a visualization for the difference between two ontology versions
that explicitly shows some of the complex operations. The mechanism consists of dis-
playing the new version of the ontology, and adding to it classes from the old version
that were deleted or moved. Different visual clues, such as fonts, colors, and tooltips, are
used to identify whether classes were added, deleted, moved to a new location, changed,
and so on. A tool that implements this visualization is described in Chapter 7. Chapter 8
contains the result of a small-scale experiment that shows that there is some evidence
to assume that the visualization indeed improves the understanding of changes in large
ontologies.

6.7 Discussion

In this chapter, we described two things. First, we pictured the general process of using
the change framework, and second, we explained how the change framework can be used
in three different ontology tasks for which evolution is relevant. The selection of tasks
is a more-or-less arbitrary choice between possible tasks. There are many other tasks
imaginable that also could be linked to the change framework.

For example, a mechanism could be developed to keep an ontology in a consistent
state, or within a specific OWL variant. To implement this, a set of rules—in the same
flavor as the ones described in (Stojanovic et al., 2002)—has to be developed that specify
required follow-up changes for specific change operations.

Also, we can use the compatibility effects of the ontology changes (see Section 6.2)
to decide whether the identity of an ontology has changed. If so, a new identifier has to
be assigned.

In the next two chapters, we will apply some of the methods described in this chap-
ter. Chapter 7 describes three computerized tools that implement (parts of) the processes,
whereas Chapter 8 contains three practical studies in which we used the tools and meth-
ods.

Part III

Applying the framework

Chapter 7

Tool Support

Note: Parts of this chapter are based on earlier publications. Large chunks of Sec-
tion 7.1 have been published in (Klein et al., 2002a), co-authored by Dieter Fensel,
Atanas Kiryakov and Damyan Ognyanov. The OntoView tool is jointly developed
with Atanas Kiryakov and Damyan Ognyanov.
The tool described in Section 7.3 is developed by Natasha Noy, based on joint work on
complex change operations. It has been presented as poster at ISWC 2003 (Noy and
Klein, 2003). Follow-up work as been published at ISWC 2004 (Noy et al., 2004).

In this chapter and the following one, we apply the framework described in the last
three chapters. As the framework gives directions for coping with a problem that will
only exist in a future situation, we cannot perform realistic evaluations of the described
framework and the methods. Instead, we will do two things to provide some evidence
for the framework. In this chapter we will describe three computerized tools that can
automate some of the tasks that play a role in the framework. In the next chapter, we
describe three practical studies in which we illustrate how to use parts of the framework
with realistic ontologies.

We first describe the toolOntoView, which implements a change detection proce-
dure for RDF-based ontologies. The role of this tool is to produce a transformation set
(as is described in Section 6.2.1). Then, we describe two extensions to the PROMPT-
diff tool (Noy and Musen, 2002). The first extension uses the mappings produced by
PROMPTdiff as a basis for producing a transformation set. The second extension is able
to detect some composite changes and presents these in a conveniently arranged way to
the user.

7.1 Change detection in RDF-based ontologies

In this section, we describe a system called OntoView. Its main function is to compare
versions of ontologies and to highlight the differences. OntoView is inspired by the Con-
current Versioning System CVS (Berliner, 1990), which is used in software development

128 Tool Support

to allow collaborative development of source code. The first implementation was also
based on CVS and its web-interface CVSWeb1. However, during the ongoing devel-
opment of the system, we gradually shifted to a complete new implementation that is
build on available components, such as the Jena Semantic Web toolkit2 and an ontology
storage system, i.e. Sesame3.

The underlying ideas of the system do not depend on a specific ontology language.
However, the implementation of specific parts of the system assume RDF based lan-
guages. For example, this is the case with the mechanism to detect changes. In the re-
mainder of this article, we will use DAML+OIL4 (Fensel et al., 2000; Fensel and Musen,
2001) and RDF Schema (RDFS) (Brickley and Guha, 2000) as ontology languages.

The main feature of OntoView is its ability to compare ontologies at a structural
level. The comparison function is inspired by UNIXdiff , but the implementation is
quite different. Standarddiff compares file version at line-level or at character-level,
highlighting the lines that textually differ in two versions. OntoView, in contrast, com-
pares version of ontologies at astructurallevel, showing which definitions of ontological
concepts or properties have changed. An example of the output of the tool after compar-
ing two versions of an ontology represented in DAML+OIL is shown in Figure 7.1.5

The comparison function distinguishes between additions, deletions and definition
changes. The order of the definitions in the file and the particular RDF representation is
not important. Each type of change is highlighted in a different color.

7.1.1 Detecting changes

There are two main problems with the detection of changes in ontologies. The first
problem is the abstraction level at which changes should be detected. Abstraction is
necessary to distinguish between changes in the representation that affect the meaning,
and those that don’t influence the meaning. It is often possible to represent the same
ontological definition in different ways. For example, in RDF Schema, there are several
ways to define a class:

<rdfs:Class rdf:ID ="ExampleClass"/>

or:

<rdf:Description rdf:ID ="ExampleClass">
<rdf:type rdf:resource ="...org/2000/01/rdf-schema#Class"/>

</ rdf:Description >

Both are valid ways to define a class and have exactly the same meaning. Such a change
in the representation would not change the ontology. Thus, detecting changes in the
representationalone is not sufficient.

1Available fromhttps://www.cvshome.org/cyclic/cyclic-pages/web-cvsweb.html
2Seehttp://www.hpl.hp.com/semweb/jena.htm
3A demo is available athttp://sesame.aidministrator.nl
4Available fromhttp://www.daml.org/language/
5This example is based on fictive changes to the DAML+OIL example ontology, available fromhttp:

//www.daml.org/2001/03/daml+oil-ex.daml .

7.1. Change detection in RDF-based ontologies 129

Figure 7.1: Comparing two ontologies

However abstracting too far can also be a problem: considering thelogical meaning
only is not enough. In (Bechhofer et al., 2001) is shown that different sets of ontological
definitions can yield the same set of logical axioms. Although the logical meaning is not
changed in such cases, the ontology definitely is. Finding the right level of abstraction is
thus important.

Second, even when we have found the correct level of abstraction for change detec-
tion, the conceptual implication of a change is not yet clear. Because of the difference
between conceptual changes and explication changes (as described in section 4.1.1), it
is not possible to derive the conceptual consequence of a change completely from the
visible change (i.e., the changes in the definitions of concepts and properties). Heuristics
can be used to suggest conceptual consequences, but the intention of the engineer deter-
mines the actual conceptual relation between versions of concepts. In the next section,

130 Tool Support

we explain the algorithm that we used to compare ontologies at the correct abstraction
level.

7.1.2 Rules for changes

The algorithm uses the fact that the RDF data model (Lassila and Swick, 1999) under-
lies a number of popular ontology languages, including RDF Schema and DAML+OIL.
The RDF data model basically consists of triples of the form<subject, predicate,

object> , which can be linked by using the object of one triple as the subject of another.
There are several syntaxes available for RDF statements, but they all boil down to the
same data model. A set of related RDF statements can be represented as a graph with
nodes and edges. For example, consider the following DAML+OIL definition of a class
“Person”.

<daml:Class rdf:ID ="Person">
<rdfs:subClassOf rdf:resource ="#Animal"/>
<rdfs:subClassOf >

<daml:Restriction >
<daml:onProperty rdf:resource ="#hasParent"/>
<daml:toClass rdf:resource ="#Person"/>

</ daml:Restriction >
</ rdfs:subClassOf >

</ daml:Class >

When interpreted as a DAML+OIL definition, it states that a “Person” is a kind of
“Animal” and that the instances of its “hasParent” relation should be of type “Person”.
However, for our algorithm, we are first of all interested in the RDF interpretation of it.
That is, we only look at the triples that are specified, ignoring the DAML+OIL meaning
of the statements. Interpreted as RDF, the above definition results in the following set of
triples:

subject predicate object

Person rdf:type daml:Class

Person rdfs:subClassOf Animal

Person rdfs:subClassOf anon-resource

anon-resource rdf:type daml:Restriction

anon-resource daml:onProperty hasParent

anon-resource daml:toClass Person

This triple set is depicted as a graph in Figure 7.2. In this figure, the nodes are
resources that function as subject or object of statements, whereas the arrows represent
properties.

The algorithm that we developed to detect changes is the following. We first split the
document at the first level of the XML document. This groups the statements by their
intended “definition”. The definitions are then parsed into RDF triples, which results in
a set of small graphs. Each of these graphs represent a specific definition of a concept
or a property, and each graph can be identified with the identifier of the concept or the
property that it represents.

Then, we locate for each graph in the new version the corresponding graph in the
previous version of the ontology. Those sets of graphs are then checked according to a

7.1. Change detection in RDF-based ontologies 131

online#Person

online#Animal

rdfs:subClassOf

rdfs:subClassOf

daml:Class

http://www.w3.org/1999/02/22-rdf-syntax-ns#typedaml:toClass

daml:Restriction

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

online#hasParent

daml:onProperty

Figure 7.2: An RDF graph of a DAML class definition.

number of rules. Those rules specify the “required” changes in the triples set (i.e., the
graph) for a specific change operation.

The rules have the following format:

IF exist:old
<A, Y, Z >*

exist:new
<X, Y, Z >*

not-exist:new
<X, Y, Z >*

THEN change-type A

They specify a set of triples that should exists in one specific version, and a set that should
not exists in another version (or the other way around) to signal a specific type of change.
With this rule mechanism, we were able to specify almost all types of change (except for
the identifier change).

For example, a rule to specify a change in the property type looks as follows:

IF exist:old
<X, rdf:type, rdf:#Property>
<X, rdf:type, daml:#TransitiveProperty>

exist:new
<X, rdf:type, rdf:#Property>

not-exist:new
<X, rdf:type, daml:#TransitiveProperty>

THEN Unset_Transitivity

The rules are specific for a particular RDF-based ontology language (in this case
DAML+OIL), because they encode the interpretation of the semantics of the language
for which they are intended. For another language the rules would have specified other
combinations of changes that signal a higher-level change. The semantics of the language
are thus encoded in the rules. For example, the rules above do not point out a change in
values of predicates, but a change in the type of property. This is a change that is related
to the specific semantics of DAML+OIL.

The described mechanism relies on the “materialization” of allrdf:type statements
that are encoded in the ontology. In other words, the closure of the RDF triples according

132 Tool Support

to the used ontology language has to be computed. For this materialization, the entail-
ment and closure rules in the RDF Model Theory6 can be used. For example, the rules
in example above depend on the existence of a statement<X,rdf:type,rdf:#Property> .
However, this statement can only be derived using the semantics of therdfs:subPropertyOf

statement, which—informally spoken—says that if a property is an instance of typeX,
then it is also an instance of the supertypes ofX. The application of the rules thus has
to be preceded by the materialization of the superclass- and superproperty hierarchies in
the ontology.

7.1.3 Discussion

The tool detects changes in RDF-based ontologies and uses rules to find specific opera-
tions. Doing this, it comes up with a set of change operations between ontology versions.
This set can be used as input for other processes that are described in Chapter 6.

The change detection methods that we developed follows the principle of abstract-
ing sets of smaller changes into higher level changes. The algorithm that we developed
starts with an ontology that is represented in the RDF data model. It first parses a textual
representation of the ontology into RDF triples, in order to find the changes in the data
model instead of the textual representation, and search for added and deleted statements.
Then, it groups the statements into individual class- and property definitions of the ontol-
ogy. The changes in the sets of statements that form these definitions are then analyzed
to detect the basic changes from our change ontology. Further, the basic changes are
aggregated into complex changes. Each step in this procedure results in a higher level
representation of the differences, and allow us the derive other conclusions about the
consequences of the change.

A useful extension of the tool would be to allow humans tocharacterizethe concep-
tual implication of the changes between two versions of the definitions that are shown.
The user could be given the option to label changed versions of concepts either as “iden-
tical” (i.e., the change is an explication change), or as “conceptual change”, e.g. using
a drop-down list next to the definition. In the latter case, the user could specify the
conceptual relation between the two versions of the concept. For example, the change
in the definition of “hasParent” could by characterized with the relationhasParent 1.1

subPropertyOf hasParent 1.3. This would give the tool an additional function in the
framework, namely recording the conceptual relation between concepts or properties.

7.2 Change Operations in PROMPTdiff

PROMPTdiff is a tool developed by Noy and Musen (2002), as a plug-in for the Protéǵe
ontology editor.7 PROMPTdiff uses a set of heuristics to find mappings between frames
(i.e. concepts, slots, etc.) in the old version of the ontology and frames in the new version.
In this section, we describe how we extended the functionality of this tool and integrated
it with our framework.

6http://www.w3.org/TR/rdf-mt/
7Both the editor and the plug-in can be achieved viahttp://protege.stanford.edu .

7.2. Change Operations in PROMPTdiff 133

7.2.1 Basic Functionality

The PROMPTdiff tool takes two Protéǵe projects (consisting of an ontology and instance
data) and tries to match frames in the old version with frames in the new version. It uses
several heuristics that have proven to be useful for general ontology alignment. These
heuristics are applied with less strict assumptions about the amount of similarity between
concepts that is required to form a match. This is possible because the probability that
two concept descriptions refer to the same concepts is much higher when one ontology
is derived from another than when they are developed on their own.

Example of the heuristics used are “if a frame is of the same type (i.e. class, slot,
instance) and has the same name, it is probably the same”, and “if there is a matched
class which has only one unmatched subclass in both versions, those two subclasses are
probably the same”. The resulting pairs, i.e. the frames that are matched across versions,
are called “images” of each other.

The matched frames are classified into three groups, i.e.unchanged, isomorphicand
changed. These levels indicate whether the matching frames are different enough from
each other to warrant the user’s attention. If a frame and its image are marked as “un-
changed”, they have the same slots with the same values. In other words, they have the
same set of relations and none of the related frames have changed. An “isomorphic”
change implies that the corresponding slots and facet values of two frames are images of
each other, but not necessarily identical images. In informal terms, this means that the
two frames have the same set of relations, but that related frames might have changed.
Finally, “changed” means that the frames have slots or facet values that are not images
of each other. Informally, they have a different set of relations to other frames. For
“changed” and “isomorphic” images, the tool also shows an explanation why the image
is of a particular type. For example, it lists the slot that is new or the value that has
changed.

Figure 7.3 on the following page shows a screenshot of the result of running the
PROMPTdiff tool. The ontologies that are used are the parts of the UNSPSC classifica-
tion hierarchy. The practical study in Section 8.3 contains a more extensive description
of this ontology. The main element in the screen is an image table that shows mappings
between frames. The first two rows are added frames that do not have a image in the
original version. Similarly, the next seven lines represent deletions. The following five
lines depict frames that are mapped onto each other, but with different names. The last
column explains the reason behind the mapping. For example, for the selected row the
reason is that both versions of the class have the same superclass and subclasses. The
column “map level” shows in which category the change is classified. This is illustrated
in the bottom part of the screen, where the affected relations to other frames are shown.
For example, the change in the selected row is categorized as “isomorphic”, which means
that it has the same slots and values but that at least one of the referenced frames. In this
case its superclass (“Electicalequipmentandcomponents....”) has been modified.

134 Tool Support

Figure 7.3: A screenshot of the original version of PROMPTdiff.

7.2. Change Operations in PROMPTdiff 135

7.2.2 Place within Framework

When we relate this to our framework, we see that PROMPTdiff produces theevolution
relationbetween the elements of two ontology versions. That is, it specifies which frame
has likely evolved into which other frame. As explained in the processes in Chapter 6, the
evolution relation provides a basis for producing most other forms of change information.

In principle, the mappings produced by PROMPTdiff could be exported in our change
representation language as “unspecified” changes, i.e. changes for which only the “to”
and “from” are specified. For the example in Figure 7.3 on the preceding page, this would
look as follows. Note that a change specification uses the assumption that if two frames
have the same local part of their identifier (in this case their name), they are mapped by
default. Consequently, only for the frames that have a different name an explicit change
is specified.

<ov:Change_Specification >
<ov:source rdf:resource ="http://www.eccma.com/unspsc/8/0"/>
<ov:target rdf:resource ="http://www.eccma.com/unspsc/8/4"/>

</ ov:Change_Specification >

...

<ov:Change >
<ov:from rdf:resource ="&old;Gear_boxes_or_housings"/>
<ov:to rdf:resource ="&new;Gear_box_housings"/>

</ ov:Change >

<ov:Change >
<ov:from rdf:resource ="&old;Wiring_ducts"/>
<ov:to rdf:resource ="&new;Busways"/>

</ ov:Change >

The exported mapping can then be validated by a human, or directly be used as
input—together with other sources—for one of the other processes, e.g. for suggestion
conceptual relations, or for detecting complex changes.

Instead of exporting the mappings directly, we have extended the tool to perform two
other tasks. First, it uses that mappings together with the ontology versions to create a
set of change operations that translates the original version into the newer version, and
second, it analyses the ontology versions and finds a number of rich operations.

7.2.3 Producing Transformations

To create a minimal transformation set, we extended the program in such a way that it
compares the complete definitions of the mapped frames. For each of these frame pairs,
the program looks at its slots, their values, their facets and the values of the facets. If there
is a difference for one of these items, the slot–facet–value triples of both versions of the
frames are stored. This results in change information such as is sketched Figure 7.4 on
the following page.

To get change operations, this “raw” change information has to be translated into
higher-level information. This involves two steps. First, changes in the built-in slots and
facets of the OKBC knowledge model are interpreted. For example, a change in the slot

136 Tool Support

Class "Merlot"
OLD:

slot : :DIRECT-SUPERCLASSES
facet: -
value: "White Wine"

NEW:
slot : :DIRECT-SUPERCLASSES
facet: -
value: "Red Wine"

Class "Red Wine"
OLD:

slot : :DIRECT-SUBCLASSES
facet: -
value: -

NEW:
slot : :DIRECT-SUBCLASSES
facet: -
value: "Merlot"

Figure 7.4: An example of the “raw” change information for two versions of two classes.

:DIRECT-SUBCLASSES is interpreted as a change in the “subclass” relation, and a change
in the facet:VALUE-TYPE of a slot is interpreted as a change of a “∀-slot-restriction”.
This interpretation allows us to distinguish e.g. between an addition of a slot-restriction
and the addition of superclass-relations. The second step is the aggregation of successive
deletions and additions on the same slot or facet into “modification” operations. The
result of the interpretation is a list of change operations for each frame with—when
appropriate—the old and new values.

The lists of operations contain the changes for every relation between a frame and an
other frame. This causes two problems. The first problem is that the aggregated operation
set is redundant and that it therefore does not form aminimaltransformation set. For the
example in Figure 7.4, we would have both an operation for the change of the superclass
relation for the frame “Merlot” and an operation for the change of the subclass relation
for the frame “Red Wine”. Another problem with the change list is that it contains change
operations for elements that are not definedwithin the frame, but inside other frames. For
example, the:DIRECT-INSTANCES slot contains the instances of a class, but this is defined
within the instance itself, by declaring its “type”.

To solve this problem, we have extend the PROMPTdiff classification of changes
with two specific types of changes, namely “direct-change” and “implicit-change”. This
results in five different categories for theextentof the change.

Implicitly-changed: the slots or facets that are defined within the frames are different or
have a different frame as their value, but all these differences are the consequence
of the direct-change of another frame (i.e. a deletion). For example, if a slot is
removed from an ontology, the slot-restrictions for that slot are also removed from
the frames. The latter removals are implicit changes.

7.2. Change Operations in PROMPTdiff 137

Figure 7.5: A number of change operations detected by the PROMPTdiff extension for a class
called “Intervalof Time”.

Directly-changed: the slots or facets that are defined within the frames are different or
have a different frame as their value. For example, the change of the cardinality (a
facet) of a slot-restriction.

Changed: the slots or facets of the frames are different or have a different frame as
their value. An example is the introduction of a subclass with another class; this is
defined within the subclass itself, and is therefore not a direct change.

Isomorphic: the sets of slots or facets of the frames are equal but at least one of them
has a directly-changed frame as its value. For example, if the class that forms the
range of a slot is changed, the slot itself is called “isomorphic”.

Unchanged: the sets of slots or facets of the frames are equal but at least one of them
has a changed frame as its value.

Note that the set of implicitly-changed frames is a subset of the set of directly-changed
frames, which is again a subset of the changed frames. The sets of isomorphic and
unchanged frames are disjoint with each other and with the set of changed frames.

The direct changes are the ones that form the minimal transformation set. We provide
an export function that saves the list of operations in a file. The category of implicit
changes is useful to filter out the changes that were not the result of editing action within
a frame. For example, if for validation purposes one wants to show all editing actions
that have occurred between two versions, one should select the direct-changes without
the implicit changes. However, in a transformation set the implicit changesare required,
as they are necessary for reversing the change.

We also implemented some algorithms in the tool to detect some rich operations,
especially the ones that specify that a specific filler became a superset or a subset. For
this, we queried the knowledge model of the old versions of the ontology to know whether
the image of a new value was a superclass or subclass of the old value. If this was the case,
we changed the operations accordingly. For example, the operationModify Superclass
could be specialized intoModify Superclass To Subclass, or Modify Range into Modify
Range to Subrange. Figure 7.5 illustrates how the tool shows the detected changes.

138 Tool Support

7.3 Visualizing changes

We will now describe the PROMPTdiff user interface for visualizing some of the complex
changes between ontology versions. The interface was inspired by the interface that
Microsoft Word uses to present changes. In Word, the text that is deleted is crossed out
and the added text is underlined, and there is also color coding for these two types of
changes. Note however, that Word does not identify complex operations, such as move.

7.3.1 Visual metaphors

We use a similar user-interface paradigm to show differences between ontology versions.
However, we showstructuraldifferences rather than text differences and we identify and
visualizecomplex changes, such as the ones identified in Chapter 5. Figure 7.6 on the
next page shows how PROMPTdiff presents the result of comparing two versions of the
UNSPSC ontology. The UNSPSC ontology8 is a standardized hierarchy of products and
services that enables users to consistently classify the products and services they buy and
sell. Based on the input of the users, a new version is published from time to time. Typical
differences between two versions are additions of new products, or re-classifications of
existing products.

In the figure showing the PROMPTdiff result, the classes that were deleted are crossed
out, the added classes are underlined, and classes that were renamed or changed are in
bold. We also use color coding to make the changes even more apparent. So, for exam-
ple, we can see that the classification of “Powerconditioningequipment” has undergone
a number of changes: three classes were added (“DistributionPowerTransformers”, “In-
strumentTransformers”, and “PowerSupplyTransformers”), one was deleted (“Trans-
formers”), and one was renamed (“Powerdistributionunits PDUs”). The tooltip shows
the old name of the renamed class.

Figure 7.7 on page 140 shows complex changes in these two versions of the UNSPSC
ontology: The addition of several classes rooted at “DistributionandControl centers
andaccessories” as an addition of a tree of classes. The class “Electricalequipment
andcomponentsandsupplies” was moved to this location from a different position in
the tree. The icon at the root of the added subtree has an overlayed add icon () indicating
that all classes in this subtree have the same status—they were all added in this version.
Similarly, if a whole tree was deleted, an overlayed delete icon () identified the tree-
level operation. The tooltip at the moved class indicates where the class was moved
from.

Figure 7.8 on page 140 shows the moved class in its old position in the hierarchy: the
class appears in grey and the tooltip indicates where the class was moved to.

In addition, a warning icon () overlayed with the class icon indicates that the subtree
rooted at the class has undergone some changes (Figure 7.7 on page 140). However,
unlike with the tree add (when we use theicon), the subtree either contains different
changes or has both changed and unchanged classes. In Figure 7.7 on page 140, for
example, the user can see that one of the subtrees rooted at a subclass of “Electrical

8Seehttp://www.eccma.org/unspsc/ .

7.3. Visualizing changes 139

Figure 7.6: Comparison of two versions of the UNSPSC ontology in PROMPTdiff. The classes
that were deleted are crossed out and the added classes are underlined.

140 Tool Support

Figure 7.7: Comparison of two versions of the UNSPSC ontology in PROMPTdiff. The added
classes are underlined. The class icon with an add icon indicates an addition of the whole tree.
The class icon with an overlayed warning icon indicates that the subtree rooted at the class has
undergone some changes.

Figure 7.8: Comparison of two versions of the UNSPSC ontology in PROMPTdiff. The class
“Electrical equipmentandcomponentsandsupplies” was moved to a different place in the class
hierarchy.

7.3. Visualizing changes 141

equipmentandcomponentsandsupplies” (i.e., “Electricalhardwareandsupplies” has
not changed at all, whereas all the others have changed.

To summarize, we visualize two types of changes: (1) class-level changes and (2)
tree-level changes. For class-level changes, the class-name appearance indicates whether
the class was added, deleted, moved to a new location, moved from a different location,
or its name or definition has changed. If all classes in a subtree have changed in the same
way (were all added or deleted, for example), then the changed icon at the subtree root
indicates that the tree-level operation.

7.3.2 Navigation among changes

In practice only a small portion of an ontology changes from one version to another (Noy
and Musen, 2002). Furthermore, many ontologies have deep class hierarchies with many
levels and, since there are simply more classes at the lower levels, changes are more
likely to occur at those levels. Therefore, these changes are not directly visible if a user
expands only the first few levels of a class-hierarchy tree. Therefore, just as users can
navigate to the “next” and “previous” changes in comparing text documents, we enable
PROMPTdiff users to iterate through changes using the “next” and “previous” buttons.
However, unlike text documents, tree hierarchies are not linear. Therefore, the notion of
nextandpreviousnode in the tree is not well defined.

For a tree nodeN , we define thenext nodeas the next node in a depth-first traversal
of the tree with backtracking. For a tree nodeN , we define theprevious nodeas a
reversal of the next-node operation: NodeP is the previous node forN , previous(N),
if N is equal tonext(P).

For example, in Figure 7.6 if class “Powerconditioningequipment” is selected, the
next changed class is “Distributionpower transformers”. If “Sliprings” is selected, the
next change is “Transformers” and the next one is “Controlrelays”. Note that “Control
relays” is in the next subtree.

7.3.3 Conclusions and Future Work

In this section, we have presented a tool for examining changes between ontology ver-
sions. The PROMPTdiff-extension displays the new version of the ontology, adding to
it classes from the old version that were deleted or moved. It uses different visual clues,
such as fonts, colors, and tooltips, to identify whether classes were added, deleted, moved
to a new location, changed, and so on. We identify and present to the user both basic and
complex changes. Currently, PROMPTdiff does not display all the changes that we pre-
sented in Chapter 5, although internally it identifies more of them.

Another natural extension of the current tool would be enabling users to accept and
reject changes. For example, a user can reject a change that added a new class, and the
system will delete the class from the new version. If the user accepts this change, the
visualization for the class will change to the default one (it will no longer stand out as
one of the changes).

Chapter 8

Practical Studies

Note: The study in Section 8.2 is published as part of a paper in the ISWC 2003
workshop on Semantic Integration (Klein and Stuckenschmidt, 2003).

This chapter describes three studies in which we show how some of the elements of
the framework can function in realistic settings. First, we study the changes within a line
of ontology versions. We use our change specification language (Chapter 5) to represent
one specific version change, and we show how we can use this specification together with
the ontology of change operations to query for addition information about the change.

In a second study, we show how the process to determine the integrity of mappings
between ontologies (as is described in Section 6.5) works when applied to an (artificial)
ontology that contains mappings to a real-world evolving ontology. For this study, we
use an ontology that evolved within a case study on a methodology for ontology devel-
opment.

Finally, we describe an experiment in which we compare an “intelligent” visualiza-
tion of changes (as is described in Chapter 7) with a traditional visualization. As subject
ontologies, we used two versions of the UNSPSC ontology.

8.1 Specifying and Querying a Change Specification

In this study, we will show that our change specification language can be used to specify
changes in a realistic ontology evolution scenario. For this, we use an evolution line of
the BioSAIL ontology.1

We start a description of the ontology itself, followed by a discussion of its evolution.
Then, in Section 8.1.3, we specify the change using the language that has been proposed
in Chapter 5. After that, we illustrate how we can query the specification. Appendix C

1We would like to thank Zachary Pincus for providing us with the complete trace of ontology versions
together with an explanation of the rationale of the changes, and for the description of its development and
usage.

144 Practical Studies

gives the complete specification of the changes, the queries and the answers to the queries
that are discussed in this section.

8.1.1 BioSAIL Ontology

The BioSAIL ontology is developed within the BioSTORM project (Buckeridge et al.,
2002). The general goal of this project is to develop and evaluate knowledge represen-
tations and problem solving methods to facilitate public health surveillance of multiple
disparate data sources.2

Data for monitoring the health of the population are becoming available from many
different sources. More-and-more, surveillance systems are exploring the analysis of
non-clinicalhealth data, such as school absenteeism and pharmacy sales, in an attempt
to increase the timeliness of outbreak detection. However, it is difficult to use this data
directly, as there are no standards for the encoding of this data.

In order to integrate these data sources, the BioSAIL (BioSTORM Systems Abstrac-
tion and Interface Layer) ontology is developed. BioSAIL describes basic conceptual
elements of non-clinical data and allows users to build detailed, customized descriptions
of specific data sources and formats from these elements.

The versions of the BioSAIL ontology that we use contain on average 180 classes and
around 70 properties. The ontology is modeled with the Protéǵe editor and consequently
uses the Protéǵe knowledge model (Fergerson et al., 2000). This knowledge model is a
slightly adapted version of the OKBC knowledge model (the latter one is described in
Section 5.2).

The main concepts that are modeled in the BioSAIL ontology are “data providers”
and “measurements”. Measurements are described with a “measurement specification”,
using “LOINC terms”. The relations between these concepts are depicted in Figure 8.1.

Measured_Property

Measurement_Specification

LOINC_Term

LOINC_Term(s)*

Property_Measured

Measurement

Specification_for_Measurements

Data_Provider

Originating_Data_Source Measurement_Stream*

Figure 8.1: The main concepts in the BioSAIL ontology and their relations.

2http://smi-web.stanford.edu/projects/biostorm/

8.1. Specifying and Querying a Change Specification 145

Example types ofdata providers, are “schools”, “employers”, “pharmacies” and
“emergency call centers”.Measurementsare pieces of data or groups of related data.
A measurement specificationdescribes a measurement by providing metadata about its
elements. For example, a measurement could be about the “demographics” in a specific
hospital. The measurement specification would say that it consists of the elements “gen-
der” and “birth-date”. The names of these elements are taken from a standardized vocab-
ulary, called LOINC. This stands forLogical Observation Identifiers Names and Codes
and it provides universal identifiers for laboratory and other clinical observations.3 In
the BioSAIL ontology, the LOINC terms also link to ameasured property, which is a
controlled vocabulary oftypesof properties. Figure 8.2 shows a part of the hierarchy of
these properties.

Besides these concepts, the ontology also contains utility classes, with hierarchies of
concepts to describe time points and time intervals, locations, the dimension of measure-
ments, like “mass”, “volume”, “area” or “frequency”, etcetera.

8.1.2 Ontology Evolution

The change of ontology versions that we have range from version 1.6 release 1 to version
2.2 release 1, in total 16 different versions. According to the author of the ontology, most
changes are minor: moving of classes in the hierarchy, adding and subtracting slots,
changing slot overrides, etc. There is a small number of major changes, for example the
change of groups of attributes to meta slots. Table 8.1 summarizes the changes between
the different versions.

Version Classes Slots Instances
from to A D R C A D R C A D R C Total

1.6r1 1.6r2 − − − − − − − − − − − 3 3
1.6r2 1.6r3 − − 1 2 2 2 − 2 − − − 13 22
1.6r3 1.6r4 − − 1 2 1 − − − − − − − 4
1.6r4 1.6r5 − − − − − − − − − − − − 0
1.6r5 2.0r1 − − 1 2 − 1 − − − − − − 4
2.0r1 2.0r2 33 1 2 13 7 8 1 2 17 − − 13 97
2.0r2 2.0r3 6 7 4 15 1 − − 4 1 − − 8 46
2.0r3 2.0r4 − 1 − − − − − − − − − − 1
2.0r4 2.1r1 21 24 2 1 3 2 − 9 − 25 − − 87
2.1r1 2.1r2 7 − 5 19 3 − − 4 3 6 − 21 68
2.1r2 2.1r3 − − − 3 − − − 1 − − − 8 12
2.1r3 2.1r4 7 − 2 3 2 − − 4 9 − − 21 48
2.1r4 2.1r5 1 − − 2 − − 5 − 1 − − 1 10
2.1r5 2.1r6 − − − − − − − − − − − 1 1
2.1r6 2.2r1 − − − 7 − − − 3 192 − − 3 205

Total 75 33 18 69 19 13 6 29 223 31 0 92 608

Table 8.1: Changes in the BioSAIL ontology. Each row represents the changes from the version
number in the first column to the next version. ‘A’ stands for ‘addition’, ‘D’ for ‘deletion’, ‘R’ for
‘renaming’, and ‘C’ for ‘change in the definition’.

3Seehttp://www.loinc.org/

146 Practical Studies

Outgoing_Calls

Human_Communication_Made

isa

Website_Visits

isa

Outgoing_Emails

isa

911_Calls
isa

Incoming_Calls
isa

FBI_Calls

isa

Incoming_Emails

isa

Total_Absent
Absenteeism

isa

Total_Enrollment

isa

Clinic_Visit_Information

Date_of_Call_for_Visit
isa

Case_Dispositionisa

Date_of_Visit

isa

Non-Traditional_Medical_Data

isa

Prescription_Orderedisa

Lab_Test_Orders

isa

Aspirin_Sales

Pharmacy_Sales

isa

Anti-Diarrheal_Sales

isa

Cough_Drug_Sales

isa

Cold-Cough_Drug_Sales

isa

Resource_Usage

Fresh_Water_Flow
isa

Sewage_Flow
isa

Non-Traditional_Data

isa

isa

Environmental_Dataisa

Veterinary_Data

isa

Emergency-911_Data

isa

Human_Behavior

isa

Drug_Quantity

isa

Daily_Dose

isa

Days_Supply

isa

Dispense_Date

isa

Drug_ID

isa

Display_Name
isa

Last_Fill_Date
isa

Severity

isa

Ingredient

isa

Rx_Number

isa

Expire_Date

isa

Fill_Type

isa

Special_Instructions_Given

isa

Affected_Med

isa

Pollen_Count
isa

Wind_Direction
isa

Animal_Illness
isa

Animal_Counts

isa

GIS_Y_Coordinate

isa

Side

isa

Hospital_Address

isa

CBD_Call_Type

isa

Statusisa

Score

isa

Census_Block_Group

isa

Incident_ID

isa

GIS_X_Coordinate

isa

Area_Coding

isa

Dispatch_Code

isa

Coughs_Detected

isa

isa

isa

isa

Figure 8.2: A part of the hierarchy of “measured properties” in the BioSAIL ontology.

8.1. Specifying and Querying a Change Specification 147

For determining the number of changes, we use the tool that is described in Sec-
tion 7.2. We subsequently compare all versions with the succeeding versions and count
the number of classes, slots and instances that are added, deleted, renamed or modified.
The category of changed frames (i.e. the ‘C’ columns)excludesrenamed frames, so a
frame that is renamed and otherwise changed (e.g. a slot value changed) is counted twice
in the totals. This is also the reason that the number of renamed frames can be higher
than the total number of changed frames, e.g. for the classes in the change from 2.0r4 to
2.1r1.

When looking at the table, there are a number of things that attract attention. First, we
can see that in general most changes have to do with classes, except for the last revision
in which a large number of instances is added. Also, we see that most modifications
are additions, followed by changes in the definitions, deletions and renamings. A likely
explanation for this is that the ontology is in a development phase, in which extensions
are more common than deletions.

Something else that strikes is that there is one revision (from 1.6r4 to 1.6r5) in which
nothing has changed. We checked this manually and came to the same conclusion; al-
though the order of definitions is different, the defined classes, slots and instances are
identical, and even the size of the files are equal. The time-stamps of the files are more
than two weeks apart, so a possible explanation can be that the developer forgot whether
he already created a revision and created a new one to be on the safe side.

It is also worth mentioning that most changes typically occur in the first or second
revision after a version number change (e.g. from 2.0 to 2.1). A possible explanation for
this is the following. The author explained that version number changes were initiated
by major changes in the structure. It could be that such structure changes involve other
changes, which were either performed in the same revision, or in the revision following
the structure change.

As an example for the remainder of this section, we consider the change from version
v2.1 release 3 to version 2.1 release 4. We choose this specific transition because it is
a change that can relatively easy be understood. The major change is the introduction
of another type of “time point”. In the first version (i.e. version 2.1r3), there is just one
class that models time points, called “Pointin Time”. This concept has slots for day,
month, hours, etcetera. In the newer version, an artificial time point is introduced, called
“BioWAR Time Tick” (to facilitate the recording of time in a simulation). Together with
this, a concept “Y-M-D-H-M-SPoint in Time” is defined to replace the old concept.
Both concept are made a subclass of a new abstract class “PointIn Time”. Figure 8.3
shows the subclasses of “TimeComponents” before and after the change.

The change of the time concept has consequences for slots or concepts that use this
concept. For example, the range of the slot “Ending” used to be “Pointin Time”, but is
“Y-M-D-H-M-S Point in Time” in the new version.

8.1.3 Creating the Change Specification

To produce the change specification, we start with the tool that is described in Section 7.2.
This tools does two things: first, it suggests a mapping between the concepts in the old
and the new version, and second, based on this mapping, it calculates the required change

148 Practical Studies

Figure 8.3: The hierarchy of “TimeComponents” in the original and the newer version of the
ontology.

operations. Some of the calculated change operations are already complex changes.
However, as the tool is an extension of the Protéǵe-tool, its knowledge model is not
completely compatible with the knowledge model that we used for our change specifi-
cation language. To solve this, we manually translate the operations into the ones in our
vocabulary. This translation involves the following actions.

• We replace the OKBC operations with the respective OWL operations, e.g.,change
own slot :VALUE-TYPE within a slot definition is replaced withChange Range.

• If a classA has template properties without a facet value, we addA to the domain
of these properties. This is because the Protéǵe knowledge model specifies the
applicability of a slot to a class via template slots, whereas in OWL this is done
via the “domain” of a slot. For example, the template slot “hour” in a class “Point
in Time” in the Prot́eǵe knowledge model is translated into a property “hour” with
“Point in Time” as (subset of) the domain.

• We replace the “abstract” and “concrete” roles of classes with an annotation prop-
erty “role”, with an instance “Abstract” and “Concrete” as value, respectively. In
this way, we are able to represent an aspect of the Protéǵe knowledge model that
is not part of the OWL knowledge model.

• We ignore numeric minimum and maximum values. We could have represented
this via XML Schema datatypes that are specifically defined for a numeric range;
however, we decided to leave them out because our set of basic change operations
does not include specific operations for changes in numeric minimum and maxi-
mum value (as this is not part of the OWL knowledge model).4

We translate all operations that are detected by the tool directly into our vocabulary
and do not created complex operations ourselves. If the tool detects several changes
on one entity, we represent this as a composite change (composed of multiple atomic
changes). Appendix C.1 lists the complete change specification between both versions,
represented in RDF. Here, we give two examples. The first example is a class addition.
This operation is represented in a straightforward way: the operationAdd Class has one
property with the complete new definition as its value.

4If we would have translated this via XML Schema datatypes, the changes could have been represented
asModify Range operations from one defined data-type to another. It is even possible to define new complex
changes—subclasses ofModify Range—that specify the change in more detail, e.g.Reduce Range of Datatype
Property etc.

8.1. Specifying and Querying a Change Specification 149

<ov:Add_Class >
<ov:to >

<owl:Class rdf:about ="&new;#Y-M-D-H-M-S_Point_in_Time">
<rdfs:subClassOf rdf:resource ="&new;#Point_In_Time"/>
<rdfs:comment >

Instances of this class provide a format to enter a specific
point in time, at whatever granularity is necessary.

</ rdfs:comment >
</ owl:Class >

</ ov:to >
</ ov:Add_Class >

Second, we show how a composite change is specified. As described in the meta-
ontology in Section 5.5, composite changes are connected to atomic changes via the
consists of property. The example below consists of three atomic changes: aChange
Range To Subclass and twoRemove Range operations. The atomic operations specify
the old and / or new values of the aspect that is changed viaoldFiller andnewFiller

properties. Note that in our interpretation of the ontology, the values of theto andfrom

properties are inherited to the operations where the composite change consists of.

<ov:Composite_Change >
<ov:from rdf:resource ="&old;#Expiration_Time"/>
<ov:to rdf:resource ="&new;#Expiration_Time"/>
<ov:consists_of >

<ov:Change_Range_To_Subclass >
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>
<ov:newFiller rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ ov:Change_Range_To_Subclass >
</ ov:consists_of >
<ov:consists_of >

<ov:Remove_Range >
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>

</ ov:Remove_Range >
</ ov:consists_of >
<ov:consists_of >

<ov:Remove_Range >
<ov:oldFiller rdf:resource ="&old;#Amount_of_Time"/>

</ ov:Remove_Range >
</ ov:consists_of >

</ ov:Composite_Change >

The change specification also contains the “evolution relations” between the entities
in the old and the new version of the ontology. For concepts or properties that have
changed, their evolution relation is implicitly specified in the operations via thefrom

and to properties. For the other entities, we use the assumption that an identical frag-
ment identifier in two different files implies an evolution relation (see Section 5.5). For
example, if both versions contain a concept that has identifier#Time_Components , we
assume that there is an evolution relation between the concepts&old;#Time_Components

and&new;#Time_Components .
Note that there are many different valid change specifications for the same change.

In the example above, we follow the output of the tool and base our specification on the
mappings that it detects. However, as the complete list of changes reveals, it could be
that the evolutions that are suggested by the tool are not the ones that actually performed

150 Practical Studies

by the ontology editor. Especially, it is very likely the concept “Pointin Time” has
evolved into “Y-M-D-H-M-S-Pointin Time”, and that a new concept “PointIn Time”
was specified (see again Figure 8.3). This would have resulted in a different change
specification that does not haveChange Range To Subclass operations for the properties
that had “Pointin Time” as range.5

8.1.4 Querying the Change Specification

Now that we have a complete specification of changes represented as instance data of our
ontology of change operations, we can exploit the knowledge in that ontology to derive
additional information about the changes that have occurred. To illustrate this, we load
both the change specification and the ontology of change operations into Sesame (Broek-
stra et al., 2002a), a system for storing and querying RDF data.

Then, we query the resulting data repository for three things: 1) for the list of entities
that have changed, 2) for each entity all operation types that are valid, and 3) the effects
of that change—if known. For this, we use the RDF query and transformation language
SeRQL (Broekstra and Kampman, 2003b). This language provides constructs to create
new RDF statements as a result of a query. We used this feature to retrieve the effect
from the ontology of change operations to combine it with the subjects of the change
operations.

The complete query and result can be found in Appendix C.2. A part of the output is
listed below: it shows that the entity “Beginning” in the old version is changed by the op-
erationChange Range To Subclass, and that the effect (here the effect on classification)
is that property becomes more specific. It also shows that the entity “ExpirationTime”
is changed by a composite change, which does not give much additional knowledge, and
some other changes, likeRemove Range andChange Range To Subclass. Again the
effect is that the concept becomes more specific.

old:Beginning
ov:changed_by ov:Change_Range_To_Subclass ;
ov:has_effect ov:Specialized .

old:Expiration_Time
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change_Range_To_Subclass ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Remove_Range ;
ov:has_effect ov:Specialized .

8.1.5 Summary

In this section, we analyzed an actual change in an ontology evolution process and rep-
resented this change within our specification language. As the ontologies used were

5This does not mean that the former specification is incrrect, but it can mean that the specification is more
verbose and less efficient (e.g., the effects on data validity calculated from this specification might be worse).

8.2. Determining Integrity of Ontology Mappings 151

available as Protéǵe files, we were able to use the tool described in the previous chap-
ter to create a change set. This resulted in a list of changes, some of which were im-
plicit or isomorphic. Selecting the changes that were categorized asdirectly-changed
andimplicitly-changedyielded a minimal transformation set in the Protéǵe terminology.
Using a few rules, we were able to translate the Protéǵe-based operations to the appro-
priate OWL-based change operations.

The process illustrated how composite changes can be specified by grouping several
atomic operations. Also, it showed that basic operations can be intermixed with complex
operations, e.g.Change Range To Subclass. It is imaginable how changes can be rep-
resented at different levels of granularity by choosing either basic operations or complex
operations for specifying the change. Finally, we sketched how the change specification
in combination with the ontology of change operations could be used to answer queries
about the change.

8.2 Determining Integrity of Ontology Mappings

In Chapter 6, we have described a mechanism to define modular ontologies and map-
pings between them that allows for local containment of terminological reasoning. This
modularization mechanism makes it possible to perform subsumption reasoning within
an ontology without having to access other ontologies. This mechanism coincided with
a change analysis method that predicts the effect of changes on the concept hierarchy.
This method determines whether the changes in one ontology affect the reasoning inside
other ontologies or not. Together, these mechanisms allow ontologies to evolve without
unpredictable effects on other ontologies.

In this section, we will show how these methods work in a realistic example. For this
we use a case study that is undertaken in the WonderWeb project6.

8.2.1 Ontology in Case Study

In the WonderWeb case study, an existing database schema in the Human Resource (HR)
domain is used as the basis for an ontology. The first version of the ontology is cre-
ated by a tool that automatically converts a schema into an ontology (Volz et al., 2002).
In the next phase, the quality of the ontology is improved by relating this ontology to
the foundational ontology DOLCE (Gangemi et al., 2002). First, the HR ontology is
aligned with the DOLCE ontology, and in several successive steps the resulting ontology
is further refined. During this process, the ontology changes continuously, which causes
problems when other ontologies refer to definitions in the evolving ontology. Therefore,
in our case study, evolution management is important during the entire life-cycle of the
ontology development process.

We assume that we have another ontology—we call it thelocal ontology—that uses
terms and definitions from the evolving DOLCE+HR ontology—theexternal ontology.
As an example, we define a very simple ontology about employees (see Figure 8.4). Our

6The WonderWeb project aims at developing scalable infrastructure for the semantic web. For more infor-
mation, seehttp://wonderweb.semanticweb.org/ .

152 Practical Studies

example ontology introduces the concept ‘FulltimeEmployee’ and defines a superclass
‘Employee’ and two subclasses ‘DepartmentMember’ and ‘HeadOfDepartment’ using
terms from the DOLCE+HR ontology.

Employee

Fulltime
Employee

Department
Member

HeadOf
Department

DOLCE+HR ontology

Figure 8.4: A simple ontology (left) with some concepts (dashed ovals) that are defined using
terms from the DOLCE+HR ontology (schematically represented by a large oval).

The specific problem in our case is that the changes in the DOLCE+HR ontology
could affect the reasoning in the local ontology. We want to be able to predict whether
or not the reasoning in the local ontology is still valid for specific changes in the external
ontology.

Changes in DOLCE+HR

The evolution of the DOLCE+HR ontology consisted of several steps. Each of these
steps involves some typical changes. We will briefly summarize them and show some
changes that are typical for a specific step.

In the first step, the extracted HR ontology is aligned with the DOLCE foundational
ontology, i.e. the concepts and properties in the HR ontology are connected to concepts
and properties in the DOLCE ontology via subsumption relations. For example, the con-
cept ‘Department’ from the HR ontology is made a subclass of ‘Social-Unit’ in DOLCE.

Next, in the refinement step, many changes are made. Some property restrictions are
added, and some additional concepts and properties are created to define the HR concepts
more precisely. For example, the concept ‘Administrative-Unit’ is introduced as a new
subclass of ‘Social-Unit’, and the concept ‘Departments’ is made a subclass of it. Also,
the range of the property ‘email’ is restricted from ‘Abstract-Region’ to its new subclass
‘Email’.

In the next step, a number of concepts and properties are renamed to names that
better reflect their meaning. For example, ‘Departments’ is renamed to ‘Department’
(singular), and the two different variants of the relation ‘managerid’ are renamed to
‘employeemanager’ and ‘departmentmanager’.

In the final step, the tidying step, all properties and concepts that are not necessary
anymore are removed and transformed into property restrictions. For example, the prop-
erty ‘employeeemail’ is deleted and replaced by an existential restriction in the class
‘Employee’ on the property ‘abstractlocation’ to the class ‘Email’.

8.2. Determining Integrity of Ontology Mappings 153

8.2.2 Definitions in the Local Ontology

If we consider the local ontology, we have a concept hierarchy that is built up by the
following explicitly stated subsumption relations (see Figure 8.4 again):

FulltimeEmployee v Employee

DepartmentMember v FulltimeEmployee

HeadOfDepartment v FulltimeEmployee

This ontology introduces ’Full time employee’ as a new concept, not present in the
case study ontology. Consequently, this concept is only defined in terms of its relation to
other concepts in the local ontology.

All other concepts are externally defined in terms of ontology based queries over the
case study ontology. The first external definition concerns the concept ’Employee’ that
is equivalent to the ’Employee’ concept in the case study ontology. This can be defined
by the following trivial view:

Employee ≡ HR : Employee(x)

Another concept that is externally defined is the ’Head of Department’ concept. We
define it to be the set of all instances that are in the range of the ’department manager’
relation. The definition of this view given below shows that our approach is flexible
enough to define concepts in terms of relations.

HeadOfDepartment ≡ HR : ∃y[departmentManager(y, x)]

An example for a more complex external concept definition is the concept ’department
member’ which is defined using a query that consists of three conjuncts, claiming that a
department is an employee that is in the hasmember relation with a Department.

DepartmentMember ≡ HR : ∃y[Department(y) ∧ has member(y, x) ∧
Employee(x)]

Compiling Implied Knowledge

To allow for local reasoning inside this ontology, we have to derive the subsumption
relations between the externally defined concepts, and add these relations to the local
ontology.

We immediately see that the definition of Employee subsumes the definition of De-
partmentMember, as the former occurs as part of the definition of the latter.

|= DepartmentMember v Employee (8.1)

At a first glance, there is no relation between the definition of a Head of Department
and the other two statements as it does not use any of the concept or relation names.
However, when we use the background knowledge provided by the external ontology we

154 Practical Studies

can derive some implied subsumption relations. The reasoning is as follows. Because
the range of the departmentmanger is set to ’Department’ and the domain to ’Manager’,
the definition of HeadofDepartment is equivalent to:

∃y[Department(y) ∧ department manager(y, x) ∧Manager(x)]

As we further know that Manager is a subclass of Employee and departmentmanager is
a sub-relation of hasmember, we can derive the following subsumption relation between
the externally defined concepts:

|= HeadOfDepartment v Employee (8.2)

|= HeadOfDepartment v DepartmentMember (8.3)

When the relations 8.1–8.3 are added to the local ontology, it possible to do subsumption
reasoning without having to access the DOLCE+HR ontology anymore.

8.2.3 Finding and Characterizing Changes

To find changes in ontologies, we can use one of the tools that is described in the previous
chapter. Figure 8.5 shows a screenshot of the OntoView tool when applied to a fragment
of the case study ontology. The detected change operations are printed in the left upper
corner of each marked change. The figure shows that the old definition of ‘Departments’
can be transformed into the new definition with three change operations: 1) change the
superclass relation from ‘Social Unit’ to ‘Administrative-Unit’, 2) change to comment,
and 3) add a specific property restriction. Note that the first one is actually a complex
operationconcept moved down, because ‘Administrative-Unit’ is a subclass of ‘Social
Unit’. In the future, the tool should be able to export these changes as RDF instance data
for the change ontology.

Now we know the change operations, we can try to give a useful characterization of
the effect on the concepts. This is not possible for all concepts. For example, the con-
cept ‘Departments’, underwent several changes during the whole process: its superclass
has changed to a subclass of the original superclass and some property restriction are
removed. Both changes have an opposite effect. As a result, we have to characterize
the effect of the change as “Unknown”. On the contrary, the effect on the relation ‘de-
partmentmanager’, is clear: the relation is renamed from ‘managerid’—which has no
conceptual effect—and the range is changed form ‘Employee’ to ‘Manager’. Because
‘Manager’ is a subclass of ‘Employee’, this change makes it more specific.

Impact on Compiled Relations

The methods described above provide us with abstract information about the impact of
changes within an ontology. More specifically, they provide information about the se-
mantic relation between the old and the new version of a concept or a relation.

We now use this procedure to check whether the implied subsumption relations in our
case study are still valid. For the sake of simplicity, we restrict us here to relation 8.3:

|= HeadOfDepartment v DepartmentMember

8.2. Determining Integrity of Ontology Mappings 155

Figure 8.5: Comparison of the aligned and refined version of the DOLCE+HR ontology. The
highlighted areas represent changed statements. Note the detected change operations (marked
with a box).

For this compiled axiom, the list of ’subsuming’ concepts and relations would contain
‘Department’, ‘hasmember’, and ‘Employee’, while the list of subsumed concepts and
relations would be ‘Department’, ‘departmentmanager’, and ‘Manager’. Based on the
characterization of these concepts, the procedure concludes that this relation is still valid.
We will now illustrate that the conclusions of the procedure are correct by studying the
impact of changes mentioned in the problem statement.

Example 1: The Employee Concept The first change we observed is the removal of
properties from the Employee concept. Our rules tell that this change makes the new
version more general compared to its old version:

Employee v Employee′

According to our procedure, this shouldn’t be a problem because Employee is in the
’subsuming list’.

When we analyze this change, we see that it has an impact on the definition of the
concept DepartmentMember as it enlarges the set of objects allowed to take the first place
in the hasmember relation. This leads to a new definition ofDepartmentMember′

156 Practical Studies

with DepartmentMember v DepartmentMember′. As DepartmentMember was
already more general than HeadOfDepartment and the Employee concept is not used in
the definition of the latter the implied subsumption relation indeed still holds.

Example 2: The departmentmanager Relation In the second example, we have to
deal with a change affecting a relation that is used in an external definition. The relation
departmentmanager is specialized by restricting its range to a more specific concept
making it a subrelation of its previous version:

department manager w department manager′

Again, this is harmless according to our procedure, as departmentmanager is in the
‘subsumed list’.

The analysis shows that this change has an impact on the definition of the con-
cept HeadOfDepartment as it restricts the allowed objects to the more specific Class
Manager. The new definitionHeadOfDepartment′ is more specific that the old one:
HeadOfDepartment′ v HeadOfDepartment. As the old version was already more
specific than the definition of DepartmentMember and the departmentmanager relation
is not used in the definition of the latter the implied subsumption is indeed still valid.

Example 3: The Department Concept The different changes of the definition of the
department concept left us with no clear idea of the relation between the old and the
new version of the concept. In this specific case, however, we can still make assertions
about the impact on implied subsumption relations. The reason is that the concept occurs
in both the list of subsuming concepts and the list of subsumed concepts. Moreover, it
plays the same role in the query concepts, namely restricting the domain of the relation
that connects an organizational unit with the set of objects that make up the externally
defined concept. As a consequence, the changes have the same impact on both definitions
and thus do not invalidate the implied subsumption relation. In general, we can conclude
that an implied subsumption relation is still valid if the changed concept occurs in and
plays the same role in both definitions involved.

8.2.4 Discussion

In this section, we applied the procedure that was sketched in Section 6.5 in a case study
with an ontology that evolved independently. The local ontology that we defined con-
sisted of only a few concepts and relations, in order to keep the example understandable.
We designed the local ontology in such a way that we were able to show a number of
different situations that could occur. With this carefully designed local ontology, we were
able to demonstrate that the procedure can be used to heuristically determine that some
changes do not have impact on interfaces that are defined between ontologies. However,
it is still a question what the benefits of the procedure are with more complex ontologies.
It is clear that more externally defined concepts and more complex local ontologies will
result in more “unknown” effects. To compensate for this, we need additional heuristic
rules that specify consequences for specific situations, e.g. such as the rule formulated

8.3. User Study of Change Visualization 157

in example 3 in the previous paragraph. This requires further analysis of the effect of
changes in subsumption relations.

8.3 User Study of Change Visualization

In Chapter 7, we presented a tool that implements a visualization mechanism for com-
plex changes. The goal of visualizing changes is to ease the task of analyzing ontology
changes. Such an analysis can be useful in several situations, e.g. to validate changes
made by somebody else, or to annotate changes with the conceptual relations between
versions of constructs. For a visualization of changes, we need both the evolution rela-
tion between constructs andcomplexchanges. In this section we describe a user study
in which we compare the visualization of complex changes with a traditional change
visualization.

8.3.1 Aims

Our hypothesis is that this visualization makes it easier for users to analyze the changes
that have occurred, compared to traditional visualizations that show the differences concept-
by-concept. With this study, we want to provide some evidence for this claim.

As our claim is thatanalyzingchanges is easier, we need a task that actually requires
users tounderstandthe changes. We think that reverse-engineering a previous version of
an ontology is such a task. When reverse-engineering a complex change, e.g. the addition
of a tree, a user needs to understand that the change is a whole, or he will spend a lot
of time in reverse-engineering all the constituting changes one-by-one. If our hypothesis
is true, the subjects that use the visualization will spend less time in reverse-engineering
the old versions than the subjects that use a traditional side-by-side visualization of the
changes.

8.3.2 Methods

We used two groups of subjects for our experiment. We gave both groups a Protéǵe editor
with thenewversion of an ontology loaded. We presented the subjects from one group
with the visual-diff, and the subjects in the other group with a text-based representation
of the change. We asked both groups to reverse-engineerold versions of the ontology,
using the given change representation. We measured the time it took them to complete
the task and calculated the accuracy afterwards.

As object for the experiment, we used a real ontology evolution scenario, namely a
subset of two versions of the UNSPSC ontology. UNSPSC7 is a standardized hierarchy
of products and services that enables users to consistently classify the products and ser-
vices they buy and sell. We used version 8.0 and 8.4 (in ECCMA numbers8) The subset
is formed by the classes which have a code that start with a ’3’. In version 8.0, this

7Seehttp://www.eccma.org/unspsc/
8The management of UNSPSC has recently been taken over, and the version numbering has changed as

well.

158 Practical Studies

selection consist of 3070 classes. The changes between version 8.0 and version 8.4 are
the following: 28 class are added (11 of them form a ’subtree addition’), 3 class were
removed, 1 subtree is moved, and 8 class are renamed.

For the text-based presentation of the changes, we used a free text diff tool.9 This
tool presents the old and new version side-by-side, and displays the different changes
(line added, line changed, line deleted) in different colors.

To prevent that we would compare the wrong thing, i.e. a GUI-based representation of
the ontology with a text-based representation, we made some improvements to the text-
based representation. First, we translated the ontology in a ’neutral’ syntax, to prevent
that the obscurity of the RDF syntax would interfere with the results. Each class is
defined on two lines: the first line contains the class name and the meta-class between
brackets, the second line the superclass of the class. The classes are separated by blank
lines. The order of the definitions is a depth-first order of the hierarchy.

Resistors (Class)
subclass-of Printed_components

Fusistors (Commodity)
subclass-of Resistor

Second, we reordered the text files in such a way that added classes were actually
displayed as added lines, changed classes as changed lines, and deleted classes as deleted
lines. If we would have skipped this reordering, the tool would have detected that a
block of approximate 2500 lines was added and another block of 2000 lines was deleted
(mainly because of a large subtree move). This would have made it unsuitable for a fair
comparison.

8.3.3 Subjects

We performed the experiment with 11 subjects. Six of the subjects used the visual-diff
for the task, five used a text-diff. The subjects were selected from members of two de-
partments of two different universities, i.e. 7 from the Computer Science department of
theVrije Universiteitin Amsterdam (NL) and 4 members from the Medical Informatics
department of Stanford University (USA). We selected persons that were familiar with
both ontology modeling and the Protéǵe ontology editor. None of the users had any expe-
rience with the visualization itself. Because of technical reasons, all subjects in Stanford
performed the task using the visual-diff. Two of the subjects from Amsterdam also used
the visual-diff, the others used a text-diff. The difference between both subject groups
is less than it seems to be, as both groups consist of international academic workers,
with only one Dutch individual in the Amsterdam group and two non-US citizens in the
American group.

We gave all users a short (less than 5 minutes) period to make themselves familiar
with tools and the specific visualization of the changes. We presented them with three
windows: two Prot́eǵe editors with an old and a new version of a tiny ontology (10
classes), and one with the appropriate visualization of the changes, i.e. either a text-diff
or the visual-diff (see Figure 8.6). This toy example contains several complex changes,

9ExamDiff, http://www.prestosoft.com/ps.asp?page=edp_examdiff

8.3. User Study of Change Visualization 159

Figure 8.6: The visualizations used for training the subjects. On the left a text-diff of a change in
a toy ontology and on the right the visual-diff for the same change.

like trees added, individual classes deleted and added, and classes moved.
We pointed all subjects to the buttons that they could use to navigate through the

changes (for both tools), but we did not explain elements of the visualization. All subjects
reported within the five minutes that they understood enough of the visualization to start
the experiment.

8.3.4 Results and Discussion

In our sample group of 11 users, the average time to complete the whole task was less for
the users that used the visual-diff than for the users that used the traditional diff. Table 8.2
gives an overview.

Text-diff Time Errors Visual-diff Time Errors
subject 1 20:00 3 subject 6 15:09 1
subject 2 19:52 2 subject 7 10:46 1
subject 3 20:47 2 subject 8 17:22 0
subject 4 20:11 1 subject 9 17:03 0
subject 5 27:54 2 subject 10 20:54 2

subject 11 25:57 1
Average 21:45 2.0 Average 17:51 0.83

Table 8.2: The time needed to reverse-engineering the old version of the ontology with the differ-
ent tools, and the number of errors made.

160 Practical Studies

The average number of errors is more than two times larger for the text-diff users
than for the users of visual-diff. This suggests that the visual-diff gives a betteroverview
of what actually happened, which reduces the chance to miss changes.

Additionally, the figures show that most time measurements for the text-diff tool are
very close to each other, while thevariation of measurements is much larger for the
visual-diff. A possible explanation for this is that the text-diff tool stimulates people to
work in a very mechanic manner, in which each change costs a comparable amount of
time. The explanation for the larger variation for the visual-diff measurements would
then be that different subjects put more or less effort in understanding the changes.

Because the test set is very small, it is difficult to draw reliable conclusions about
the significance of the differences found. Nevertheless, we performed unpaired “students
t-test” to get an impression of the significance of the differences for both the number
of errors and the time measurements. The first test tells that the number of errors made
with the visual-diff are significantly less than the errors made with the text-diff. The
probability of getting the figures in the third and sixth column in Table 8.2 when the two
tools arenot different is only 2.7 %. This means that it is very likely that the tools have
a different effect on the number of errors made. Another test for the time measurements
tells that the difference is not significant. If the test is performed for all measurements,
we get a probability of 18.7% forwronglyconcluding that the tools are different. Even
when we omitted the outliers, i.e. the measurements that were more than 2 times the
standard deviation different from the average, we find that this probability is still 7.6%.
This is too high to safely conclude that the visual-diff is better.

Altogether, we can say that the figures suggest that the visual-diff helps users in
understanding the change, but the experiment is too small to draw strong conclusions.
A more comprehensive analysis, with larger data groups or with other experiments, for
example based on think-aloud protocols, is necessary.

Chapter 9

Conclusions

In this final chapter of the thesis, we look both back and forward. We look back by
summarizing the key points of the thesis (Section 9.1) and by reviewing the research
questions with which we started in the first chapter (Section 9.2). In Section 9.3, we look
forward and discuss open issues and future research directions.

9.1 Key Points and Conclusions

The thesis starts with a description of the “Semantic Web”, a foreseen extension of the
current World Wide Web that contains explicit knowledge descriptions (i.e. ontologies)
which can by used by computers. As this extension will have the same decentralized and
uncontrolled organization as the current generation of the web, we will have a situation in
which not only the information on the web changes continuously, but also the knowledge
that is used to interpret it.

To understand the artifacts and relations that play a role in this situation, we then
discuss different languages that are meant for publishing data and knowledge on the
web (Chapter 2). The datamodels that underly the languages dictate their respective
role in the Semantic Web. XML functions as an general encoding mechanism for both
data and knowledge, and XML Schema can be used to prescribe its structure. RDF is
a basic datamodel that is used as a means to represent semantic relationships between
“things” on the web, calledresources. RDF Schema is used to specify categories of
things and additional knowledge about relationships. We show how RDF Schema can
be extended to use more expressive knowledge representation languages for describing
RDF relationships and data.

We analyze the problems caused by evolving ontologies in three different ways (see
Chapter 3). First, we perform a literature study and provide an overview of more than
ten aspects in which ontologies can differ. We distinguish differences between ontology
languages from differences between the ontologies themselves. The latter can be further
divided into differences in the things that are described and differences in theway in
which things are described. This distinction appears to be important for determining

162 Conclusions

what effect changes have. Second, we compare ontology evolution with database schema
versioning. This reveals that both are in theory not very different: for example, schemas
for object-oriented databases can be seen as ontologies, and distributed databases are
not centrally maintained. However, the facts that i)in practiceontologies have richer
data models, ii) that they are by nature developed in a decentralized way, and iii) that
they are often used as data themselves, justify a specific approach for ontology change
management. Such an approach has to deal with a larger set of possible changes, would
have to account for different usage scenarios, and allow for incomplete information about
the changes. As a third technique to analyze the problems caused by evolving ontologies,
we have conducted a series of interviews with maintainers of large ontologies. These
interviews give us some insight in the methods that are applied in practice. In appears
that commonly used techniques are: i) dividing ontologies into separately maintained
parts, ii) minimizing changes or restricting the types of changes that are allowed, and iii)
using databases for low-level versioning support.

All this results in three major assumptions on which we built a framework for further
exploring change management methods for distributed ontologies. The first assumption
is that there are different levels at which an ontology can be interpreted (i.e. the con-
ceptualization, specification, and representation level). It can happen that changes are
performed or detected at one level, but that the consequences are determined by changes
in another level. As there is not necessarily a one-to-one relation between changes at dif-
ferent levels, sometimes human knowledge about a change is required to decide about the
influence on other interpretation levels. Second, the effect of changes varies for different
tasks in which ontologies are used. Web-site navigation, accessing data, and subsump-
tion reasoning are differently affected by changes in an ontology. The third assumption
is that there are many different, and possibly incomplete ways in which changes can be
specified. We can not presuppose that one of these is present. For example, we may have
just two distinct ontology specifications. Based on these assumptions, we have designed
a change process model that describes at an abstract level how to handle ontology change.
Also, we have developed a representation for ontology change that can function as inter-
mediary language. The main element of this representation is a so-called “transformation
set”, which is a set of operations that completely specify the change.

As a vocabulary for the change representation, we propose a taxonomy of change
operations (see Chapter 5). Because it is influenced by the expressivity of the ontology
language considered, the set of operations is to some extent language specific. We de-
rived the set by iterating over all the elements in themeta-modelof the ontology language,
creating “add”, “delete” and—when appropriate—“modify” operations for all elements.
In this way, we abstracted from representational issues and had a guarantee that we cov-
ered all possible modifications. To decide on which language we would base our change
representation, we compare two well-known knowledge representation formalisms: the
OKBC knowledge model and the OWL (Full) ontology language. By comparing their
respective knowledge models, we conclude that strictly speaking neither of these is a
subset of the other. However, it appears that the things that are not present in OWL are
quite rare in practice, for examplelocal equivalence or inverse restrictions on properties.
Therefore, we decide to use OWL as basis for our change operations.

In addition to the operations that are directly derived from the knowledge model of the

9.1. Key Points and Conclusions 163

ontology language, we also introducecomplex operations. These operations can be used
to group together several basic operations, and/or to encode additional characteristics
of the change operations. Operations that cluster other operations can be used when
the constructing operations form a logical unit (e.g. removing something and adding it
somewhere else), and when the composite effect of operations is different from the effect
of operations on their own. Operations that encode additional knowledge can be used
to define specialized variants of other operations, e.g. an operation that specifies that
the range of a property isrestricted instead of justmodified. Complex operations are
useful for both visualizing and understanding changes and for determining their effect.
The possibility to define complex changes forms an extension mechanism that allows for
task- or domain-specific representations of change.

The framework consists—besides a representation for changes—also of an abstract
process model for ontology change management (Chapter 6). Basically, this model de-
scribes the following steps: 1) change information should be created from the sources
that are available, 2) heuristics, algorithms or human input should be used to enrich this
information (e.g. resulting in a set of change operations), and 3) ontology evolution re-
lated tasks can be performed with help of the enriched change information. Together with
others we developed two tools that can be used to create change information (step 1). We
also specify several processes for deriving new information from existing change infor-
mation (step 2). In addition, we describe how to perform four ontology evolution related
tasks (from step 3). First, we explain how we can use an ontology to access or interpret
instance data of another version of the ontology. Second, we describe a procedure that
heuristically determines the validity of mappings between ontology modules. This proce-
dure predicts whether subsumption reasoning within one module is still valid if changes
have occurred in an ontology from which concepts or relations are imported. Third, we
adapt a methodology for the synchronization of related, but independently evolving on-
tologies to be used within our framework. Finally, we show a tool that visualizes changes
at an abstract level to help people with understanding these.

In the final part of the thesis, we describe three practical studies. These studies do
not evaluate the framework as a whole, but they apply particular elements in a realistic
setting. First, we analyze an actual evolution history of an ontology that describes medi-
cal information sources. This study gives us insight in the distribution of different types
of changes (additions, deletions, modification) in the different phases of its development.
We use the developed change representation to specify one particular transition in the
evolution history. The study also sketches how the ontology of change operations, when
annotated with effects of operations on specific tasks, can be used to query for the effect
of a particular change. Second, we apply the procedure for determining the integrity of
mappings between ontology modules on a small but realistic ontology evolution. For
this, we use an ontology that is extracted from a database schema and refined in several
successive steps. This study reveals that the heuristics predict the effects correctly, but it
also questions the usability of the procedure for more complex mappings and ontologies.
Finally, we perform a user study to evaluate a high-level visualization of changes. We
have visualized changes in a large (around 3000 classes) subset of the UNSPSC ontol-
ogy and gave users a tasks that required them to understand what had changed. The study
suggests that the visualization can indeed help with understanding changes. The users

164 Conclusions

performed the task with significant less errors and—on average—in less time

9.2 Reviewing the Research Questions

In the introductory chapter, we formulated the following central research question.

“Which mechanisms and methods are required to cope with ontology change
in a dynamic and distributed setting, where ontologies are used as means to
improve computerized information exchange?”

The overview of key issues above already provided a partial answer to this question.
Hereafter, we will discuss the three smaller questions in which the general question was
split up.

What are the specific characteristics of change management for distributed ontologies?

When answering this question, it is useful to distinguish between characteristics that are
related to the nature of ontologies themselves, and characteristics related to the uncon-
trolled and distributed setting in which they are typically used and evolve. The following
characteristics are related to the nature of ontologies:

• Change-management procedures for ontologies should take into account that there
are different levels of interpretation for ontologies. This has as a consequence that
the appearance of the change (i.e. the change in representation or specification) can
not be used as only source for determining the consequences. For each change one
should consider whether it propagates to other levels of interpretation, i.e. whether
it is also a change in the specification or in the conceptualization.

• There is not one specific characteristic of an ontology that a change management
procedure should try to preserve, because ontologies can be used for different
tasks. A general procedure that prescribes required follow-up changes to main-
tain a valid state can therefore not be developed. Instead, the consequences of
changes for specific ontology use-cases should be considered.

• The expressivity and the semantics of specific ontology languages influence the
details of the change-management procedures. The fact that ontology languages
are typically quite expressive gives many different types of changes. The formal
semantics behind an ontology language can sometimes be exploited to solve spe-
cific problems, for example in determining the logical relation between old and
new versions of concepts.

Characteristics that are related to the distributed usage of ontologies are:

• A change-management method for ontologies can not assume that specific infor-
mation about a change is present or can be acquired. Sometimes the change history
might even be unknown. The change management methods should thus be able to
work with incomplete and sometimes even inaccurate information.

9.2. Reviewing the Research Questions 165

• It is not known who uses which ontology version for which purpose. This means
that ontology change management procedures should not only consider the relation
between the most recent and the “previous” version, but take the relations between
all versions into account.

What is an adequate representation of changes between ontologies?

The function of a change specification is to exchange information about change between
users, tools, or individual processes in the change management task. In Chapter 4, we
described several representations of ontology change. Each of these encodes knowledge
about the change that is potentially useful in particular situations. Based on this, we
can conclude that a comprehensive change specification consists of at least the following
pieces of information about an ontology change:

• an operational specification of change, i.e. the required steps to transform the old
version into the new version;

• the conceptual relation between old and new versions of constructs in an ontology;

• meta-data about the change;

• the evolution relation between constructs in the old and new version;

• task or domain specific consequences of changes.

For the operational specification of the change (the transformation), sets ofchange
operationscan be used. This is a common way to specify changes in database versioning
as well. Ontology change operations specify modifications to an ontology in a precise and
unambiguous way. Because a specification via operations can be verbose, we propose a
minimal transformation setas an efficient specification for transformations. This is a set
of ontology-change operations that applied to the old version of the ontology results in
the new version, in which all operations are required to achieve the new version.

The operations that are required to specify all possible changes can be derived from
the meta-model of the ontology language that is used. By iteration over all elements of the
meta-model, we can guarantee that every change can be specified. We discovered that it
can be beneficial to use also specialized operations and composite operations. This makes
it possible to specify a different characteristic for a specific variant of the operation, or
for the combination of the constituting operations. We propose a mechanism that can be
used to extend the set of defined basic operations with additional and specificcomplex
operations.

It appeared that a transformation set on its own can be used as basis for deriving
several of the other aspects of a change specification. The minimal transformation is
therefore an efficient and concise representation for changes, although not complete (be-
cause not all information about a change can be derived from it).

What methods and techniques can be developed to solve possible problems caused by
ontology change?

Because of the characteristics described above, it is not possible to design a general
procedure for ontology change management. Instead, there is a need for a variety of

166 Conclusions

methods that start from different types of change information and that support particular
tasks. In this thesis we described a framework in which several of such methods have
a place. There are three different roles for methods or techniques: i) generating change
information, ii) deriving additional information about the change, and iii) solving specific
problems in specific situations.

We found the following methods and techniques to be useful.

Comparison algorithms Comparison algorithms are used to find the specific changes
that occured between two ontology versions.

Ontology mapping When there is no trace of changes between ontology versions and
there are also no persistent identifiers for concepts, mapping techniques are useful
to find out which concept evolved into which other concept.

Reasoning servicesSubsumption reasoning is helpful to determine conceptual relations
between versions of concepts, whereas consistency checks can be used to evaluate
the state of a changed ontology.

Human validation In some situations input from humans experts is required to explicate
the reasons behind a change, for example to specify whether the conceptualization
has changed.

Change visualization A visualization of changes at a higher level of abstraction can
help users or developers to understand changes, especially when one “abstract
change” involves multiple smaller changes.

Effect Prediction Heuristics The ultimate effect of changes is sometimes difficult to
determine because the effects of multiple changes can interfere, and because the
process can be computationally expensive. Heuristics that look at basic change
operations are sometimes useful to predict or exclude effects.

Guidelines For some change related tasks, for example data translation or ontology syn-
chronization, it is possible to formulate guidelines or protocols that prescribe steps
to be taken to prevent problems or to achieve a specific result.

Besides these, new methods and techniques can be added to the framework if specific
tasks ask for it, or if new types of change information become available.

9.3 Outlook

One of the things that become clear throughout this thesis is that traditional database
management solutions are not sufficient for change management of distributed ontolo-
gies. Instead, specific techniques and methods are needed. In this thesis, we explore the
problem of ontology change and sketch a general framework that can be used to relate
ontology-evolution tasks and methods. As part of this, we outlined several methods that
solve some envisioned problems and perform particular tasks.

9.3. Outlook 167

The outlined procedures still need to be fine-tuned and evaluated for concrete tasks.
Many of the described methods seem to work better for relatively small changes than
for larger changes. Therefore, the evaluations of the procedures should also consider the
practical usability: is the amount of changes between ontology versions in practice small
enough to derive usable results?

The developed framework describes a limited number of tasks. It can and should be
extended with other evolution tasks and other types of change information. Analyzes
of specific ontology-evolution use-cases are required to come up with additional and
specific tasks related to ontology change. New ontology management tools, for exam-
ple tools that support collaborative development, can also be reasons for extending the
framework.

A basic assumption in this thesis is that ontologies evolve in a distributed and uncon-
trolled setting. In such a development scenario, the social issues around ontology change
management are by definition not relevant because all developers work independent of
each other. Therefore, we do not discuss procedures for collaborative development. How-
ever, in practice we see that many large ontologies are still maintained in a (somewhat)
centralized way. In these situations, social procedures are relevant. Further research is
needed to find answers to questions related to best practices for proposing changes, vali-
dating changes suggested by others, reaching mutual agreement, and resolving conflicts
when different changes are proposed by different parties.

The assumption about a distributed and uncontrolled setting is motivated by the idea
of the Semantic Web. From one perspective, this makes the future applicability of our
work slightly uncertain. The idea of the Semantic Web still has to shape up, so we can
not yet tell what the exact role of ontologies will be, and how such ontologies will be
developed. We will have to wait for the answers to these questions before we can tell
whether change management as we sketched it in this thesis is an important issue, or that
other problems than the ones we envisaged will be important.

However, when looking at this from a wider perspective, we see that the research in
this thesis does not rely on the Semantic Web. Independent from the unfolding of the
Semantic Web, we observe a trend in computer science towards distributed computing,
which means that several devices at different locations are involved in performing com-
puterized tasks. The internet itself, where many computers co-operate to transport and
process data, is probably the largest example of this. It becomes even more apparent with
the idea of web-services, which are basically tasks that are executed on other computers
via the Web. We can also see this trend at a smaller scale, for example with the rise of in-
telligent personal devices, like mobile phones, PDA’s, digital camera’s, MP3-players, and
even “smart clothing”. More and more, these devices are able to connect to each other,
whether wireless or wired, and co-operate or exchange information. Yet another example
of this trend is called grid-computing, which is the concept that computing power can be
requested where needed and provided where available. What is common in all these situ-
ations is that computerized devices co-operate and exchange information with previously
unknown other devices, while each of them uses information in a particular way. This
can be partly facilitated by standardization of communication protocols and data formats,
but will increasingly require semantic descriptions of data and tasks. This makes another
trend in computer science: semantic descriptions are getting more important. Also in

168 Conclusions

database research we discover developments towards semi-structured formats based on
XML and distributed usage of databases over the web, which require distributed seman-
tic descriptions of the contents. Given the inevitable evolution of applications and data,
together with the trends towards distributed computing and the increasing role of seman-
tic descriptions, we expect that change management for distributed knowledge structures
will become even more important in the future.

Appendix A

Guideline for Interviews

Ontology itself

1. What is the goal of the ontology?

2. How many people are using the ontology?

3. Is there instance data attached to the ontology?

(a) If yes, is the instance data centralized or distributed?

(b) Do you know all the places were instance data of the ontology resides?

4. Is the ontology modularized?

(a) What is the criterion for modularization?

Ontology development

5. When did the development of the ontology start?

6. What is your role with respect to the development of this ontology?

7. Who else is involved in the development of this ontology?

(a) What is their role?

8. Who provides the content knowledge of the ontology?

9. Who does the modeling?

170 Guideline for Interviews

Current change management

10. How often do changes occur?

11. Who is performing the changes?

12. Are changes validated by somebody?

(a) By who?

13. Are changes verified?

(a) How?

(b) By who?

14. If yes to 4, has the modularization criterion ever changed?

(a) How often?

(b) From what to what?

(c) Why?

15. Do you apply some versioning system, for example “assigning versioning num-
bers”, “using a source control system”?

(a) Can you explain how it works? For example, when do you check in, or how
do you assign version numbers?

16. Are there official releases?

(a) Is there a predefined schedule for the releases?

(b) How often are there releases?

(c) How are official releases published?

Reasons for change

17. Could you mention specific motives for performing changes?

18. I’ve looked at several of your ontologies and discovered several types of change.

(a) Are there changes in the ontology that do not fall in one of those categories?

(b) Can you describe them?

(c) Which types occur most often? And second, third often?

19. Are different types of change handled in different ways? For example, I can imag-
ine that modeling changes force a major update, while bugs only give a minor
release.

171

Problems caused by changes

20. Did the evolution of the ontology cause problems for you?

(a) If yes, what kind of problems?

(b) How did you solve them?

(c) Were there problems that you couldn’t solve?

21. Did you take any measures in advance to prevent possible problems that could
come with the evolution? (E.g. prefixes for names to assure uniqueness, etc.)

22. If “distributed” answered to 3.a, were the changes / new releases announced to the
users?

(a) Do you know whether they updated their instance data?

(b) If yes, were they forced to update?

Desired support form versioning systems

23. What kind of support from a versioning system would be helpful for you?

24. I listed several kinds of support. Could you please explain which are would be
helpful for and which won’t?

Closing

25. Finally, are there some things that you think might be relevant but are not covered
in this interview?

Attachments

Prompt question 18

Different types of change:

• changing the modeling choices (e.g. introducing meta-classes)

• restructuring domain knowledge

• extensions to the domain

• correcting errors

172 Guideline for Interviews

Prompt question 24

Aspects of versioning support:

• Data accessibility
being able to access older instance data via a newer version of the ontology (or
vice versa)

• Consistent reasoning
being able to get know whether specific types of reasoning provide the same answer
over the new ontology as they did over the old

• Synchronization
being able to update local copies of ontologies according to changes that occurred
in a remote one

• Data translation
being able to update instance data so that it conforms with a new version of an
ontology

• Management of development
being able to verify and authorize changes step by step

• Editing support
being able to edit changes in the ontology without losing specific values, facets or
instance data

• Propagation support
being able to automatically delete or update frames in the ontology if other parts
are changed

Appendix B

Ontology of Change Operations

The table below lists all classes that represent basic change operations. The complete
ontology, including all complex operations, can be found athttp://ontoview.org/

changes/2/1 . The last column in the table tells for which variant of OWL the opera-
tions are relevant: F stands for OWL Full, D for OWL DL, and L for OWL Lite.

Object Operation Argument(s) Variant

Ontology Add Class Class definition FDL
Ontology Remove Class Class ID FDL
Class Add Superclass Class ID FDL
Class Remove Superclass Class ID FDL
Class Modify Superclass Two class ID’s FDL
Class Add Equivalent Class Class description or ID FDL
Class Remove Equivalent Class Class description or ID FDL
Class Modify Equivalent Class Two class descriptions or ID’s FDL
Class Add Disjoint Class Class description or ID FD
Class Remove Disjoint Class Class description or ID FD
Class Modify Disjoint Classs Two class descriptions or ID’s FD
Class Add Restriction Restriction & S or SF FDL
Class Remove Restriction Restriction FDL
ValueRestriction Change To Universal Restriction – FDL
ValueRestriction Change To Existential Restriction – FDL
ValueRestriction Modify Restriction Filler Class description or ID’s FDL
CardinalityRestriction Add Lowerbound Integer FDL
CardinalityRestriction Remove Lowerbound Integer FDL
CardinalityRestriction Modify Lowerbound Two integers FDL
CardinalityRestriction Add Upperbound Integer FDL
CardinalityRestriction Remove Upperbound Integer FDL
CardinalityRestriction Modify Upperbound Two integers FDL
Resource Add Type Class ID F
Resource Remove Type Class ID F
Resource Modify Type Two class ID’s F
Resource Add Label Value FDL
Resource Remove Label Value FDL
Resource Modify Label Two values FDL

continued on next page

174 Ontology of Change Operations

continued from previous page
Object Operation Argument(s) Variant

Resource Add Comment Value FDL
Resource Remove Comment Value FDL
Resource Modify Comment Two values FDL
Resource Add Annotation Property ID & Value FDL
Resource Remove Annotation Property ID & Value FDL
Resource Modify Annotation Property ID & Two values FDL
Individual Add Equivalent Individual Individual FDL
Individual Remove Equivalent Individual Individual FDL
Individual Modify Equivalent Individual Two individuals FDL
Individual Add Disjoint Individual Individual FDL
Individual Remove Disjoint Individual Individual FDL
Individual Modify Disjoint Individual Two individuals FDL
Ontology Add Individual Individual definition FDL
Ontology Remove Individual Individual ID FDL
Ontology Add Property Property definition FDL
Ontology Remove Property Property ID FDL
Property Add Domain Class description or ID FDL
Property Remove Domain Class description or ID FDL
Property Modify Domain Class description or ID FDL
Property Add Range Class description or ID FDL
Property Remove Range Class description or ID FDL
Property Modify Range Class description or ID FDL
Property Set Functionality – FDL
Property Unset Functionality – FDL
Property Add Symmetry – FDL
Property Remove Symmetry – FDL
Property Set Transitivity – FDL
Property Unset Transitivity – FDL
Property Set InverseFunctionality – FDL
Property Unset InverseFunctionality – FDL
Property Add Superproperty Property ID FDL
Property Remove Superproperty Property ID FDL
Property Modify Superproperty Two property ID’s FDL
Property Add Equivalent Property Property ID FDL
Property Remove Equivalent Property Property ID FDL
Property Modify Equivalent Property Two property ID’s FDL
Property Add Inverse Property Property ID FDL
Property Remove Inverse Property Property ID FDL
Property Modify Inverse Property Two property ID’s FDL
Property Change To DatatypeProperty Property ID FDL
Property Change To ObjectProperty Property ID FDL

Appendix C

Change Specification for
BioSAIL ontology

C.1 Change Specification between v2.1r3 and v2.1r4

<?xml version ="1.0"?>
<! DOCTYPE rdf:RDF [

<! ENTITY old "http://www-smi.stanford.edu/projects/biostorm/v21r3" >
<! ENTITY new "http://www-smi.stanford.edu/projects/biostorm/v21r4" >

]>

<rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs ="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:ov ="http://ontoview.org/changes/2/1#">

<ov:Add_Class >
<ov:to >

<owl:Class rdf:about ="&new;#Compass_Direction">
<rdfs:subClassOf rdf:resource ="&new;#Kind-of-Property"/>
<rdfs:subClassOf >

<owl:Restriction >
<owl:onProperty rdf:resource ="&new;#Unit"/>
<owl:allValuesFrom rdf:resource ="&new;#Compass_Direction_Units"/>

</ owl:Restriction >
</ rdfs:subClassOf >

</ owl:Class >
</ ov:to >

</ ov:Add_Class >

<ov:Add_Class >
<ov:to >

<owl:Class rdf:about ="&new;#Compass_Direction_Units">
<rdfs:subClassOf rdf:resource ="&new;#Allowed_Units"/>

</ owl:Class >
</ ov:to >

176 Change Specification for BioSAIL ontology

</ ov:Add_Class >

<ov:Add_Class >
<ov:to >

<owl:Class rdf:about ="&new;#Environmental_Measurement">
<rdf:type rdf:resource ="&new;#Data_Provider_Metaclass"/>
<rdfs:subClassOf rdf:resource ="&new;#Data_Provider"/>

</ owl:Class >
</ ov:to >

</ ov:Add_Class >

<ov:Add_Class >
<ov:to >

<owl:Class rdf:about ="&new;#Y-M-D-H-M-S_Point_in_Time">
<rdfs:subClassOf rdf:resource ="&new;#Point_In_Time"/>
<rdfs:label >

Instances of this class provide a format to enter a specific
point in time, at whatever granularity is necessary.

</ rdfs:label >
</ owl:Class >

</ ov:to >
</ ov:Add_Class >

<ov:Remove_Label >
<ov:from rdf:resource ="&old;#Point_in_Time"/>
<ov:to rdf:resource ="&new;#Point_In_Time"/>
<ov:oldFiller >

Instances of this class provide a format to enter a specific point
in time, at whatever granularity is necessary.

</ ov:oldFiller >
</ ov:Remove_Label >

<ov:Change >
<ov:from rdf:resource ="&old;#Weather_Data"/>
<ov:to rdf:resource ="&new;#Wind_Direction"/>

</ ov:Change >

<ov:Change_Range_To_Subclass >
<ov:from rdf:resource ="&old;#Beginning"/>
<ov:to rdf:resource ="&new;#Beginning"/>
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>
<ov:newFiller rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ ov:Change_Range_To_Subclass >

<ov:Change_Restriction_Filler_To_Subclass >
<ov:from rdf:resource ="&old;#DateTime_Datum"/>
<ov:to rdf:resource ="&new;#DateTime_Datum"/>
<ov:oldFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&old;#Datum_Contents"/>
<owl:allValuesFrom rdf:resource ="&old;#Point_in_Time"/>

</ owl:Restriction >
</ ov:oldFiller >
<ov:newFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&new;#Datum_Contents"/>

C.1. Change Specification between v2.1r3 and v2.1r4 177

<owl:allValuesFrom rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>
</ owl:Restriction >

</ ov:newFiller >
</ ov:Change_Restriction_Filler_To_Subclass >

<ov:Change_Range_To_Subclass >
<ov:from rdf:resource ="&old;#Ending"/>
<ov:to rdf:resource ="&new;#Ending"/>
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>
<ov:newFiller rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ ov:Change_Range_To_Subclass >

<ov:Composite_Change >
<ov:from rdf:resource ="&old;#Expiration_Time"/>
<ov:to rdf:resource ="&new;#Expiration_Time"/>
<ov:consists_of >

<ov:Change_Range_To_Subclass >
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>
<ov:newFiller rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ ov:Change_Range_To_Subclass >
</ ov:consists_of >
<ov:consists_of >

<ov:Remove_Range >
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>

</ ov:Remove_Range >
</ ov:consists_of >
<ov:consists_of >

<ov:Remove_Range >
<ov:oldFiller rdf:resource ="&old;#Amount_of_Time"/>

</ ov:Remove_Range >
</ ov:consists_of >

</ ov:Composite_Change >

<ov:Composite_Change >
<ov:from rdf:resource ="&old;#Measurement"/>
<ov:to rdf:resource ="&new;#Measurement"/>
<ov:consists_of >

<ov:Remove_Property_Restriction >
<ov:oldFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&old;#Expiration_Time"/>
<owl:allValuesFrom rdf:resource ="&old;#Point_in_Time"/>

</ owl:Restriction >
</ ov:oldFiller >

</ ov:Remove_Property_Restriction >
</ ov:consists_of >
<ov:consists_of >

<ov:Remove_Property_Restriction >
<ov:oldFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&old;#Expiration_Time"/>
<owl:allValuesFrom rdf:resource ="&old;#Amount_of_Time"/>

</ owl:Restriction >
</ ov:oldFiller >

</ ov:Remove_Property_Restriction >
</ ov:consists_of >

178 Change Specification for BioSAIL ontology

<ov:consists_of >
<ov:Add_Property_Restriction >

<ov:newFiller >
<owl:Restriction >

<owl:onProperty rdf:resource ="&new;#Expiration_Time"/>
<owl:allValuesFrom rdf:resource ="&new;#Time_Components"/>

</ owl:Restriction >
</ ov:newFiller >

</ ov:Add_Property_Restriction >
</ ov:consists_of >

</ ov:Composite_Change >

<ov:Composite_Change >
<ov:from rdf:resource ="&old;#Specific_Interval_of_Time"/>
<ov:to rdf:resource ="&new;#Specific_Interval_of_Time"/>
<ov:consists_of >

<ov:Change_Restriction_Filler_To_Subclass >
<ov:oldFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&old;#Beginning"/>
<owl:allValuesFrom rdf:resource ="&old;#Point_in_Time"/>

</ owl:Restriction >
</ ov:oldFiller >
<ov:newFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&new;#Beginning"/>
<owl:allValuesFrom rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ owl:Restriction >
</ ov:newFiller >

</ ov:Change_Restriction_Filler_To_Subclass >
</ ov:consists_of >
<ov:consists_of >

<ov:Change_Restriction_Filler_To_Subclass >
<ov:oldFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&old;#Ending"/>
<owl:allValuesFrom rdf:resource ="&old;#Point_in_Time"/>

</ owl:Restriction >
</ ov:oldFiller >
<ov:newFiller >

<owl:Restriction >
<owl:onProperty rdf:resource ="&new;#Ending"/>
<owl:allValuesFrom rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ owl:Restriction >
</ ov:newFiller >

</ ov:Change_Restriction_Filler_To_Subclass >
</ ov:consists_of >

</ ov:Composite_Change >

<ov:Change_Range_To_Subclass >
<ov:from rdf:resource ="&old;#Valid_Until_Time"/>
<ov:to rdf:resource ="&new;#Valid_Until_Time"/>
<ov:oldFiller rdf:resource ="&old;#Point_in_Time"/>
<ov:newFiller rdf:resource ="&new;#Y-M-D-H-M-S_Point_in_Time"/>

</ ov:Change_Range_To_Subclass >

C.2. Querying Changes and Effects 179

</ rdf:RDF >

C.2 Querying Changes and Effects

C.2.1 Query
construct DISTINCT Object <ov:changed_by> OperationType;

<ov:changed_by> NestedOperationType;
<ov:has_effect> Effect

from Operation <ov:from> Object;
<serql:directType> OperationType

[<ov:effect> Effect],
[Operation <ov:consists_of> NestedOperation

<serql:directType> NestedOperationType
[<ov:effect> Effect]]

using namespace
rdf = <!http://www.w3.org/1999/02/22-rdf-syntax-ns#>,
rdfs = <!http://www.w3.org/2000/01/rdf-schema#>,
owl = <!http://www.w3.org/2002/07/owl#>,
ov = <!http://ontoview.org/changes/2/1#>,
old = <!http://www-smi.stanford.edu/projects/biostorm/v21r3#>,
new = <!http://www-smi.stanford.edu/projects/biostorm/v21r4#>

C.2.2 Result

The formatting of the result is slightly edited for the purpose of readability. The RDF
data is represented in the N3-syntax (Berners-Lee, 1998).1

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix new: <http://www-smi.stanford.edu/projects/biostorm/v21r4#> .
@prefix old: <http://www-smi.stanford.edu/projects/biostorm/v21r3#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ov: <http://ontoview.org/changes/2/1#> .

old:Point_in_Time
ov:changed_by ov:Change ;
ov:changed_by ov:Remove_Label .

old:Weather_Data
ov:changed_by ov:Change .

old:Beginning
ov:changed_by ov:Change_Range_To_Subclass ;
ov:has_effect ov:Specialized .

old:DateTime_Datum
ov:changed_by ov:Change ;
ov:changed_by ov:Change_Restriction_Filler_To_Subclass .

old:Ending

1For an easy to read explanation, seehttp://www.w3.org/2000/10/swap/Primer .

180 Change Specification for BioSAIL ontology

ov:changed_by ov:Change_Range_To_Subclass ;
ov:has_effect ov:Specialized .

old:Expiration_Time
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change_Range_To_Subclass ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Remove_Range ;
ov:has_effect ov:Specialized .

old:Measurement
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Remove_Property_Restriction ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Add_Property_Restriction .

old:Specific_Interval_of_Time
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change ;
ov:changed_by ov:Composite_Change ;
ov:changed_by ov:Change_Restriction_Filler_To_Subclass .

old:Valid_Until_Time
ov:changed_by ov:Change_Range_To_Subclass ;
ov:has_effect ov:Specialized .

Samenvatting

Het internetis een geweldig succesvolle toepassing van computertechnologie. Waar het
World Wide Web tien jaar geleden nog voornamelijk een hulpmiddel voor academici
was, is het in 2004 als informatiebron niet meer weg te denken uit de maatschappij. Dit
succes verhult echter dat de rol van computers bij het vergaren van informatie via het in-
ternet heel beperkt is. Computers zorgen voor de opslag, het transport en het weergeven
van gegevens, maar aan het selecteren, combineren of interpreteren van informatie dra-
gen ze nauwelijks bij. Dit veroorzaakt bijvoorbeeld de vaak gehoorde klacht “dat je veel
te veel terugkrijgt bij het zoeken”. De reden dat computers weinig behulpzaam zijn bij
het selecteren en combineren van informatie is tweeledig. Ten eerste is de informatie op
webpagina’s vrijwel altijd geschreven voor mensen; voor computers is de informatie niet
meer dan een rij niet-verwerkbare letters. Ten tweede vereisen zulke taken vaak achter-
grondkennis over het onderwerp van de informatie, en computers hebben deze kennis
van zichzelf niet.

Sinds enkele jaren wordt daarom op wereldwijde schaal onderzoek gedaan naar een
“nieuwe generatie” internet: een uitbreiding van het huidige internet waarbij achter-
grondkennis is toegevoegd en de informatie zo gestructureerd is dat computers het kun-
nen verwerken. Deze nieuwe versie van het internet wordt hetsemantische webgenoemd.
Naast pagina’s met informatie voor mensen en computers, bevat het semantische web
ook documenten die achtergrondkennis over een bepaald onderwerp specificeren. Deze
specificaties worden in de informaticaontologiëengenoemd, afgeleid van het begrip met
dezelfde naam in de filosofie. De in de informatica gebruikte ontologieën hebben vaak
de vorm van een hiërarchische indeling van categorieën en subcategorieën en hun eigen-
schappen. Een eenvoudige ontologie zou bijvoorbeeld kunnen beschrijven dat een “Stu-
dent” een subcategorie van “Persoon” is, met als specifieke eigenschap dat er een relatie
“ingeschrevenaan” met een “Universiteit” is.

Dit proefschrift gaat over het omgaan met wijzigingen in op het internet gepub-
liceerde ontologiëen. Veranderingen in de kennisbeschrijvingen kunnen namelijk invloed
hebben op de geldigheid van de bewerkingen die computers met de informatie uitvo-
eren. Het beheersen van de effecten van veranderingen in kennisspecificaties is geen
nieuw probleem, ook bij het onderhouden van kennis-gebaseerde computerprogramma’s
en databanken komt dit voor. De specifieke moeilijkheid in het semantisch web is dat
het internet een “anarchistische” structuur heeft, in de zin dat iedereen in staat is te pub-
liceren wat hij wilt en dat er geen centrale autoriteit is die procedures kan afdwingen.
Veel klassieke oplossingen voor het omgaan met veranderingen zijn gebaseerd op het

182 Samenvatting

volgen van bepaalde wijzigingsprocedures en zijn daarom niet toepasbaar op het inter-
net.

Om dit probleem aan te pakken bestuderen we in dit proefschrift allereerst de ver-
schillende computertalen die worden gebruikt voor het publiceren van gegevens en ken-
nis op het internet. Daarbij kijken we vooral naar de datamodellen die aan de verschil-
lende talen ten grondslag liggen, omdat deze bepalen wat feitelijk vastgelegd wordt wan-
neer te taal gebruikt wordt om gegevens te beschrijven. DeeXtensible Markup Language
(XML) is een taal die als algemeen coderingsmechanisme voor zowel gegevens als ken-
nis gebruikt kan worden, waarbij alleen deel–onderdeel relaties worden vastgelegd.XML
Schemais een taal waarmee de indeling van XML documenten beschreven kan worden.
De RDF taal (Resource Description Framework) maakt het mogelijk om de eigenschap-
pen te beschrijven van objecten die een adres op het internet hebben, zoals webpag-
ina’s, maar ook boeken, of zelfs begrippen die genoemd worden in kennisbeschrijvin-
gen. Met behulp van deze taal kan bijvoorbeeld gespecificeerd worden dat een document
een bepaalde auteur heeft, of dat de relatie “is getrouwd met” op mensen van toepassing
is. De eenvoud van RDF is tegelijkertijd de kracht van de taal: doordat eigenschappen
van zowel concrete objecten als van abstracte begrippen—waaronder elementen van de
taal zelf—kunnen worden beschreven, kan de taal gebruikt worden om een complexere
taal te definïeren. Dat is reeds gedaan metRDF Schema, een taal waarmee categorieën
van objecten kunnen worden gedefinieerd en extra informatie over relaties kan wor-
den beschreven. Wij laten zien hoe een computertaal die kennis nog gedetailleerder
kan beschreven kan worden gedefinieerd met behulp van RDF als uitbreiding van RDF
Schema.

Na het bestuderen van de talen, analyseren we als tweede stap de problemen die
door wijzigingen in ontologiëen worden veroorzaakt. We doen dit op drie verschillende
manieren. Ten eerste beschrijven we op basis van een literatuurstudie meer dan tien ver-
schillende aspecten waarin ontologieën van elkaar kunnen verschillen, en dus waarin ze
kunnen veranderen. Het blijkt onder andere relevant te zijn om onderscheid te maken
tussen een verandering in de kennis zelf en een verandering in de manier waarop de
kennis is beschreven. Ten tweede vergelijken we het veranderingsproces van schema’s
voor databanken met het veranderingsproces van ontologieën. Het blijkt dat beide the-
oretisch niet veel van elkaar verschillen, maar dat sommige problemen bij het beheren
van databanken in de praktijk nauwelijks een rol spelen, terwijl die problemen bij het
beheren van ontologieën vrijwel altijd aanwezig zijn. Wij beargumenteren dat daarom
een aparte methodiek voor het omgaan met wijzigingen in ontologieën noodzakelijk is.
Zo’n methodiek moet rekening houden met de verschillende taken waarvoor ontologieën
gebruikt kunnen worden en kunnen werken met incomplete informatie over wijzigingen.
Als derde onderdeel van de probleemanalyse hebben we een aantal interviews afgenomen
bij beheerders van grote ontologieën. Hieruit hebben we een aantal gangbare technieken
voor het omgaan met wijzigingen kunnen destilleren, zoals het opdelen van ontologieën
in delen die apart worden beheerd en het verbieden van bepaalde soorten wijzigingen.

Vanuit de analyse van de problemen formuleren we drie uitgangspunten voor een
methodiek voor het omgaan met wijzigingen in ontologieën op het internet. Het eerste
uitgangspunt is dat ontologieën op meerdere interpretatie niveaus beschouwd kunnen
worden, namelijk het conceptualisatie-niveau, het specificatie-niveau en het represen-

183

tatie-niveau. Wijzigingen die ińeén van de niveaus worden aangebracht of gedetecteerd,
kunnen gevolgen hebben opéén van de andere niveaus. Omdat er geenéén-op-́eén relatie
is tussen veranderingen op de verschillende niveaus, is soms een menselijk oordeel nodig
om de consequenties van veranderingen te bepalen. Het tweede uitgangspunt is dat het
effect van wijzingen verschilt voor de verschillende taken waarvoor een kennisbeschri-
jving wordt gebruikt. Redeneertaken kunnen op een andere manier worden beı̈nvloed
door wijzigingen dan het opvragen van informatie. Het derde uitgangspunt is dat er veel
verschillende manieren zijn om informatie over wijzigingen te specificeren, maar dat we
er op in het semantisch web niet vanuit kunnen gaan dat een van deze representaties
beschikbaar is.

Op basis van deze uitgangspunten ontwikkelen we methodiek die bestaat uit een pro-
cesmodel voor het omgaan met veranderingen in ontologieën en een taal waarmee wi-
jzigingen beschreven kunnen worden. Het centrale onderdeel van een wijzigingsbeschri-
jving is een “transformatie-set”, een verzameling van wijzigingsoperaties die de veran-
dering volledig beschrijft.

Welke wijzigingen op een ontologie mogelijk zijn hangt af van de ontologietaal die
wordt gebruikt. De verzameling van alle mogelijke wijzigingsoperaties creëren we door
naar het kennismodel van de ontologietaal te kijken. Zo’n model definieert welke ken-
niselementen (zoals categorieën, relaties, eigenschappen, eigenschappen van relaties)
met een taal beschreven kunnen worden. Door voor ieder kenniselement “add”, “ remove”
en “modify” operaties te definiëren, verkrijgen we een verzameling operaties waarmee
alle mogelijke wijzigingen beschreven kunnen worden. We werken deze operaties uit
voor de ontologietaal OWL (Web Ontology Language), omdat uit een vergelijking met
een andere veel gebruikt kennismodel OKBC (Open Knowledge Base Connectivity) bli-
jkt dat het kennismodel van OKBC praktisch bevat is in dat van OWL.

Als aanvulling op de wijzigingsoperaties die afgeleid zijn van het kennismodel van
de ontologietaal—de basale operaties—introduceren we zogenaamde “complexe oper-
aties”. Dit zijn operaties die een samenvoeging zijn van verschillende basale operaties of
die extra informatie over de wijziging bij zich dragen. Het kan nuttig zijn om basale op-
eraties te groeperen wanneer de wijzigingen een logische eenheid vormen (bijvoorbeeld
het verwijderen van iets op de ene plek en het weer toevoegen op een andere plek), of
wanneer het effect van de operaties tezamen anders is dan het gecombineerde effect van
de afzonderlijke operaties. Operaties die extra kennis over een wijzigingen bij zich dra-
gen kunnen worden gebruikt om specifieke varianten van basale operaties te definiëren,
bijvoorbeeld een operatie die niet alleen specificeert dat het bereik van een bepaalde
eigenschap veranderd is, maar ook dat hetbeperktis. Deze complexe operaties zijn on-
der andere nuttig bij het visualiseren van veranderingen. De mogelijkheid om specifieke
complexe operaties te definiëren is een mechanisme dat het mogelijk maakt om domein-
of taakspecifieke veranderingsspecificaties te creëren.

Naast een taal voor het specificeren van wijzigingen, bevat de methodiek ook een
procesmodel voor het omgaan met veranderingen in ontologieën. Dit model beschrijft
de volgende stappen: 1) de beschikbare informatie over de wijzigingen wordt verza-
meld, 2) heuristieken, afleidingsregels en inschattingen van mensen worden gebruikt
om deze informatie aan te vullen, 3) met behulp van deze informatie worden veran-
deringsgevoelige taken uitgevoerd. In het kader van dit onderzoek zijn twee computer-

184 Samenvatting

programma’s ontwikkeld die helpen bij het verzamelen van informatie over wijzigingen
(stap 1). Voor het uitvoeren van stap 2 beschrijven we verschillende recepten voor het
aanvullen van de informatie. Daarnaast laten we zien hoe vier veranderingsgevoelige
taken kunnen worden uitgevoerd met behulp van de gegenereerde wijzigingsinformatie
(stap 3). We leggen allereerst uit hoe gegevens die beschreven zijn via een oudere versie
van een ontologie via een nieuwere versie beschikbaar gemaakt kunnen worden. Ten
tweede beschrijven we hoe zonder veel rekentijd bepaald kan worden of vertalingen
tussen ontologiëen nog geldig zijn nadat́eén van de twee gewijzigd is. Als derde laten
we zien hoe een bestaande methode voor het “in de pas” laten lopen van twee versies van
ontologiëen die onafhankelijk van elkaar worden beheerd, kan worden gebruikt binnen
onze methodiek. De vierde taak die gebruik maakt van de veranderingsinformatie is het
visualiseren van wijzigingen. We beschrijven een computerprogramma dat wijzigingen
op een abstract niveau kan tonen aan gebruikers.

In het laatste deel van het proefschrift beschrijven we drie praktische studies. Deze
studies evalueren niet de methodiek als geheel, maar laten zien hoe sommige elementen
van de methodiek in een realistische setting kunnen worden toegepast. In de eerste studie
beschouwen we een bestaande ontwikkelingsgeschiedenis van een ontologie over medis-
che informatiebronnen. Hiermee krijgen we een indruk van de verdeling van soorten
wijzigingen (toevoegingen, verwijderingen) in de verschillenden fases van de ontwikke-
ling van een ontologie. We laten zien hoeéén specifieke versie-verandering kan worden
beschreven met behulp van de ontwikkelde taal. In de tweede praktische studie passen
we de methode om voor het bepalen van de geldigheid van een vertaling tussen ontolo-
gieën te bepalen toe op een klein maar realistisch veranderingsproces in een ontologie.
Ten slotte beschrijven we een gebruikersevaluatie van een abstracte visualisatie van wi-
jzigingen in een grote ontologie (ongeveer 3000 categorieën). De uitkomst suggereert
dat de visualisatie inderdaad helpt bij het overzien van de veranderingen.

De komende jaren moet blijken of en hoe het semantisch web vorm zal krijgen.
Hoewel het werk dat in dit proefschrift beschreven wordt zijn motivatie vindt in het se-
mantisch web, hangt de relevantie niet af van het al of niet slagen van het semantisch web.
Onmiskenbaar is in de informatica een trend waarneembaar naar systemen waarbij ver-
schillende computers met elkaar samenwerken. Hierbij valt te denken aanweb-services
(kleine taken die door andere computers op het internet worden uitgevoerd), maar ook aan
de vele elektronische apparaatjes die met elkaar kunnen communiceren, zoals mobieltjes,
digitale camera’s en MP3-spelers. Om met elkaar te kunnen samenwerken, moeten deze
computers gegevens uitwisselen met voorheen “onbekende” systemen. Dit kan deels
worden mogelijk gemaakt door standaardisatie van communicatieprotocollen, maar zal
ook vragen om expliciete semantische beschrijvingen van de data. Gegeven de onver-
mijdelijke veranderingen waarin zulke systemen onderhevig zijn, zal het omgaan met
wijzigingen in kennisbeschrijvingen een steeds belangrijker onderwerp worden.

Bibliography

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G.
(2000). Gene Ontology: tool for the unification of biology.Nature Genetics, 25:25–29.

Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P., editors (2003).The
Description Logic Handbook - Theory, Implementation and Applications. Cambridge University
Press.

Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. (1987). Semantics and Implementation of
Schema Evolution in Object-Oriented Databases.SIGMOD Record (Proc. Conf. on Manage-
ment of Data), 16(3):311–322.

Batini, C., Lenzerini, M., and Navathe, S. B. (1986). A comparative analysis of methodologies of
database schema integration.ACM Computing Surveys, 18(4):323–364.

Bechhofer, S., Goble, C., and Horrocks, I. (2001). DAML+OIL is not enough. InProceedings of
the International Semantic Web Working Symposium (SWWS), Stanford University, California,
USA.

Bechhofer, S., Horrocks, I., Patel-Schneider, P. F., and Tessaris, S. (1999). A proposal for a descrip-
tion logic interface. In Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., and Patel-Schneider,
P., editors,Proceedings of the International Workshop on Description Logics (DL’99), pages
33–36, Link̈oping, Sweden.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider,
P. F., and Stein, L. A. (2004). OWL web ontology language reference. W3c recommendation,
World Wide Web Concortium.

Beckett, D. (2003). RDF/XML syntax specification (revised). W3c working draft, World Wide
Web Concortium.

Berliner, B. (1990). CVS II: Parallelizing software development. In USENIX Association, editor,
Proceedings of the Winter 1990 USENIX Conference, pages 341–352, Washington, DC, USA.
USENIX.

Berners-Lee, T., Fielding, R., and Masinter, L. (1998). RFC 2396: Uniform Resource Identifiers
(URI): Generic syntax. Status: DRAFT STANDARD.

186 Bibliography

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web.Scientific American,
284(5):34–43.

Berners-Lee, T. (1998). Notation 3 – ideas about web architecture.http://www.w3.org/

DesignIssues/Notation3.html . Design Issues.

Bernstein, P. A., Halevy, A. Y., and Pottinger, R. A. (2000). A vision for management of complex
models.SIGMOD Record, 29(4):55–63.

Borgida, A. and Serafini, L. (2002). Distributed description logics: Directed domain correspon-
dences in federated information sources. In Meersman, R. and Tari, Z., editors,On The Move to
Meaningful Internet Systems 2002: CoopIS, Doa, and ODBase, volume 2519 ofLNCS, pages
36–53. Springer Verlag.

Borst, P. (1997).Construction of Engineering Ontologies for Knowledge Sharing and Reuse. PhD
thesis, Universiteit Twente.

Bowers, S. and Delcambre, L. (2000). Representing and transforming model-based information. In
First Workshop on the Semantic Web at the Fourth European Conference on Digital Libraries,
Lisbon, Portugal.

Brickley, D. and Guha, R. V. (2000). Resource Description Framework (RDF) Schema Specifica-
tion 1.0. Candidate recommendation, World Wide Web Consortium.

Brickley, D., Hunter, J., and Lagoze, C. (1999). ABC: A logical model for metadata interoperabil-
ity. Harmony discussion note, seehttp://www.ilrt.bris.ac.uk/discovery/harmony/

docs/abc/abc_draft.html .

Broekstra, J., Kampman, A., and van Harmelen, F. (2002a). Sesame: An architecture for storing
and querying RDF and RDF Schema. In Horrocks, I. and Hendler, J. A., editors,Proceedings of
the First International Semantic Web Conference (ISWC 2002), volume 2342 ofLecture Notes
in Computer Science, pages 54–68, Sardinia, Italy. Springer-Verlag.

Broekstra, J. and Kampman, A. (2003a). Inferencing and truth maintenance in RDF Schema:
exploring a naive practical approach. InWorkshop on Practical and Scalable Semantic Systems
(PSSS), ISWC 2003, Sanibel Island, Florida, USA.

Broekstra, J. and Kampman, A. (2003b). SeRQL user manual. Technical report, Aidministrator
BV.

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., and Horrocks, I. (2001). En-
abling knowledge representation on the web by extending RDF schema. InProceedings of the
10th World Wide Web conference, pages 467–478, Hong Kong, China. ACM Press.

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., and Horrocks, I. (2002b). En-
abling knowledge representation on the Web by extending RDF Schema.Computer Networks,
39(5):609–634.

Buckeridge, D. L., Graham, J., O’Connor, M. J., Choy, M. K., Tu, S. W., and Musen, M. A.
(2002). Knowledge-based bioterrorism surveillance. InAmerican Medical Informatics Associ-
ation Symposium, San Antonio, TX, USA.

Bibliography 187

Cadoli, M. and Donini, F. M. (1997). A survey on knowledge compilation.AI Communications,
10(3-4):137–150.

Chalupsky, H. (2000). OntoMorph: A translation system for symbolic logic. In Cohn, A. G.,
Giunchiglia, F., and Selman, B., editors,KR2000: Principles of Knowledge Representation and
Reasoning, pages 471–482, San Francisco, CA. Morgan Kaufmann.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and Rice, J. P. (1998a). OKBC: A pro-
grammatic foundation for knowledge base interoperability. InProceedings of the 15th National
Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI-98), pages 600–607, Menlo Park. AAAI Press.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and Rice, J. (1998b). Open knowledge base
connectivity 2.0. Technical report, Knowledge Systems Laboratory Stanford University.

Cimino, J. J. (1996). Formal descriptions and adaptive mechanisms for changes in controlled
medical vocabularies.Methods of Information in Medicine, 35(3):202–210.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., and Stein,
L. A. (2001). DAML+OIL (March 2001) Reference Description. W3C Note, World Wide Web
Consortium.

Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. (1996). Reasoning in description logics.
In Brewka, G., editor,Principles of Knowledge Representation, Studies in Logic, Language and
Information, pages 193–238. CSLI Publications.

Elsevier/Embase, editor (2003).EMTREE 2003: The Life Science Thesaurus. Elsevier Science
Ltd, paperback edition.

Farquhar, A., Fikes, R., and Rice, J. (1997). The ontolingua server: A tool for collaborative
ontology construction.International Journal of Human-Computer Studies, 46(6):707–727.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein, M. (2000). OIL
in a nutshell. In Dieng, R. and Corby, O., editors,Knowledge Engineering and Knowledge
Management; Methods, Models and Tools, Proceedings of the 12th International Conference
EKAW 2000, number 1937 in LNCS, pages 1–16, Juan-les-Pins, France. Springer-Verlag.

Fensel, D. and Musen, M. A. (2001). The semantic web: A new brain for humanity.IEEE
Intelligent Systems, 16(2).

Fergerson, R. W., Noy, N. F., and Musen, M. A. (2000). The knowledge model of Protéǵe-2000:
Combining interoperability and flexibility. In Dieng, R. and Corby, O., editors,Knowledge
Engineering and Knowledge Management; Methods, Models and Tools, Proceedings of the 12th
International Conference EKAW 2000, number 1937 in Lecture Notes in Artificial Intelligence,
Juan-les-Pins, France. Springer-Verlag.

Franconi, E., Grandi, F., and Mandreoli, F. (2000). A semantic approach for schema evolution and
versioning in object-oriented databases. InComputational Logic 2000, number 1861 in Lecture
Notes in Computer Science, pages 1048–1062.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L. (2002). Sweetening
ontologies with DOLCE. In13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW02), volume 2473 ofLecture Notes in Computer Science, page
166 ff, Sig̈uenza, Spain.

188 Bibliography

Goldstein, M. K., Coleman, R. W., Tu, S. W., Shankar, R. D., O’Connor, M. J., Musen, M. A.,
Martins, S. B., Lavori, P. W., Shlipak, M. G., Oddone, E., Advani, A. A., Gholami, P., and
Hoffman, B. B. (2004). Translating research into practice: Sociotechnical integration of auto-
mated decision support for hypertension in three medical centers.Journal of American Medical
Informatics Association. E-publication ahead of print.

Grosso, W. E., Gennari, J. H., Fergerson, R. W., and Musen, M. A. (1998). When knowledge
models collide (how it happens and what to do). InProceedings of the 11th Workshop on
Knowledge Acquisition, Modeling and Management (KAW ’98), Banff, Canada.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.Knowledge
Acquisition, 5(2).

Haarslev, V. and Moller, R. (2001). Description of the RACER system and its applications. In
Proceedings of the Description Logics Workshop DL-2001, pages 132–142, Stanford, CA.

Halevy, A. Y. (2001). Answering queries using views: A survey.The VLDB Journal, 10(4):270–
294.

Heflin, J. and Hendler, J. (2000). Dynamic ontologies on the web. InProceedings of the Seven-
teenth National Conference on Artificial Intelligence (AAAI-2000), pages 443–449. AAAI/MIT
Press, Menlo Park, CA.

Hendler, J. and McGuinness, D. L. (2000). The DARPA agent markup language.IEEE Intelligent
Systems, 16(6):67–73.

Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C., van Harmelen,
F., Klein, M., Staab, S., Studer, R., and Motta, E. (2000). OIL: The Ontology Inference
Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty of Sciences. See
http://www.ontoknowledge.org/oil/.

Horrocks, I. and Tessaris, S. (2000). A conjunctive query language for description logic aboxes.
In AAAI/IAAI, pages 399–404.

Katz, R. H. (1990). Towards a unified framework for version modeling in engineering databases.
ACM Computing Surveys, 22(4):375–408.

Kitakami, H., Mori, Y., and Arikawa, M. (1996). An intelligent system for integrating autonomous
nomenclature databases in semantic heterogeneity. InDatabase and Expert System Applica-
tions, DEXA’96, number 1134 in Lecture Notes in Computer Science, pages 187–196, Zürich,
Switzerland.

Klahold, P., Schlageter, G., and Wilkes, W. (1986). A general model for version management
in databases. In Chu, W. W., Gardarin, G., Ohsuga, S., and Kambayashi, Y., editors,Twelfth
International Conference on Very Large Data Bases, pages 319–327, Kyoto, Japan. Morgan
Kaufmann.

Klein, M., Fensel, D., Kiryakov, A., and Ognyanov, D. (2002a). Ontology versioning and change
detection on the web. In13th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW02), number 2473 in LNCS, page 197 ff, Sigüenza, Spain.

Bibliography 189

Klein, M., Fensel, D., van Harmelen, F., and Horrocks, I. (2001a). The Relation between Ontolo-
gies and XML Schemas.Linköping Electronic Articles in Computer and Information Science,
6(4).

Klein, M., Kiryakov, A., Ognyanov, D., and Fensel, D. (2002b). Finding and characterizing
changes in ontologies. InProceedings of the 21st International Conference on Conceptual
Modeling (ER2002), number 2503 in LNCS, pages 79–89, Tampere, Finland.

Klein, M. and Noy, N. F. (2003). A component-based framework for ontology evolution. In
Proceedings of the Workshop on Ontologies and Distributed Systemsm, IJCAI ’03, Acapulco,
Mexico. Also available as Technical Report IR-504, Vrije Universiteit Amsterdam.

Klein, M. and Stuckenschmidt, H. (2003). Evolution management for interconnected ontologies.
In Workshop on Semantic Integration at ISWC 2003, Sanibel Island, Florida.

Klein, M. (2001a). Combining and relating ontologies: an analysis of problems and solutions. In
Gomez-Perez, A., Gruninger, M., Stuckenschmidt, H., and Uschold, M., editors,Workshop on
Ontologies and Information Sharing, IJCAI’01, Seattle, USA.

Klein, M. (2001b). XML, RDF, and Relatives (short tutorial).IEEE Intelligent Systems, special
issue on “Semantic Web Technology”, 16(2):26–28.

Klein, M. (2003). Knowledge Annotation for the Semantic Web, chapter Interpreting XML via an
RDF Schema. IOS Press, Amsterdam.

Klein, T. E., Chang, J. T., Cho, M. K., Easton, K. L., Fergerson, R., Hewett, M., Lin, Z., Liu,
Y., Liu, S., Oliver, D. E., Rubin, D. L., Shafa, F., Stuart, J. M., and Altman, R. B. (2001b).
Integrating genotype and phenotype information: An overview of the PharmGKB project.The
Pharmacogenomics Journal, 1:167–170.

Lassila, O. and Swick, R. R. (1999). Resource Description Framework (RDF): Model
and Syntax Specification. Recommendation, World Wide Web Consortium. See
http://www.w3.org/TR/REC-rdf-syntax/.

Lerner, B. S. (2000). A model for compound type changes encountered in schema evolution.ACM
Transactions on Database Systems, 25(1):83–127.

Maedche, A., Motik, B., and Stojanovic, L. (2003). Managing multiple and distributed ontologies
on the semantic web.The VLDB Journal, 12:286–302.

Marco, D. (2000). Building and Managing the Meta Data Repository: A Full Lifecycle Guide.
Wiley & Sons.

McGuinness, D. L. and van Harmelen, F. (2004). OWL web ontology language overview. W3c
recommendation, World Wide Web Concortium.

McGuinness, D. L. (2000). Conceptual modelling for distributed ontology environment. InPro-
ceedings of the Eighth International Conference on Conceptual Structures Logical, Liguistic,
and Computational Issues (ICCS2000), Darmstadt, Germany.

McIlraith, S. and Amir, E. (2001). Theorem proving with structured theories. In Nebel, B., editor,
Proceedings of the International Joint Conference on Artificial Intelligence IJCAI’01, pages
624–634, San Mateo. Morgan Kaufmann.

190 Bibliography

Noy, N. F. and Klein, M. (2003). Visualizing changes during ontology evolution. InCollected
Posters ISWC 2003, Sanibal Island, Florida, USA.

Noy, N. F. and Klein, M. (2004). Ontology evolution: Not the same as schema evolution.Knowl-
edge and Information Systems, 6(4):428–440.

Noy, N. F., Kunnatur, S., Klein, M., and Musen, M. A. (2004). Tracking changes during ontology
evolution. In3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan.

Noy, N. and Musen, M. (2002). PROMPTDIFF: A fixed-point algorithm for comparing ontol-
ogy versions. In18th National Conference on Artificial Intelligence (AAAI-2002), Edmonton,
Canada.

Ognyanov, D. and Kiryakov, A. (2002). Tracking changes in RDF(S) repositories. In13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management (EKAW02), number
2473 in LNCS, page 373ff, Sigüenza, Spain.

Oliver, D. E., Shahar, Y., Musen, M. A., and Shortliffe, E. H. (1999). Representation of change in
controlled medical terminologies.Artificial Intelligence in Medicine, 15(1):53–76.

Oliver, D. E. (2000).Change Management and Synchronization of Local and Shared Versions of a
Controlled Vocabulary. PhD thesis, Stanford University.

Pinto, H. S. and Martins, J. P. (2002). Evolving ontologies in distributed and dynamic settings. In
Proceedings of the Eighth International Conference on Principles of Knowledge Representation
and Reasoning (KR2002), Toulouse, France.

Proper, H. A. and van der Weide, T. P. (2000). A general theory for the evolution of application
models.IEEE Transactions on Knowledge and Data Engineering, 7(6).

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema matching.
VLDB Journal, 10(4).

Rector, A. (2003). Modularisation of domain ontlogies implemented in description logics and re-
lated formalisms including OWL. InProceedings of the 16th International FLAIRS Conference.
AAAI.

Robson, C. (2001).Real World Research. Blackwell Publishers, second edition.

Roddick, J. F., Al-Jadir, L., Bertossi, L., Dumas, M., Estrella, F., Gregersen, H., Hornsby, K.,
Lufter, J., Mandreoli, F., M̈annisẗo, T., Mayol, E., and Wedemeijer, L. (2000). Evolution and
change in data management issues and directions.ACM SIGMOD Record, 29(1):21–25.

Roddick, J. F., Craske, N. G., and Richards, T. J. (1994). A taxonomy for schema versioning based
on the relational and entity relationship models.Lecture Notes in Computer Science, 823:137–
148.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems.Information
and Software Technology, 37(7):383–393.

Sheth, A. P. and Larson, J. A. (1990). Federated database systems for managing distributed, hetero-
geneous, and autonomous databases.ACM Computing Surveys, 22(3):183–236. Also published
in/as: Bellcore, TM-STS-016302, Jun.1990.

Bibliography 191

Sommerville, I. (2001).Software Engineering. Addison-Wesley, 6th edition.

Staab, S., Erdmann, M., M̈adche, A., and Decker, S. (2000). An extensible approach for mod-
eling ontologies in RDF(S). InFirst Workshop on the Semantic Web at the Fourth European
Conference on Digital Libraries, Lisbon, Portugal.

Staab, S. and M̈adche, A. (2000). Axioms are objects, too - ontology engineering beyond the
modeling of concepts and relations. Technical Report 399, Institut AIFB, Universität Karlsruhe.

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N. (2002). User-driven ontology evolution
management. In13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW02), number 2473 in LNCS, Sig̈uenza, Spain.

Stuckenschmidt, H. and Klein, M. (2003). Integrity and change in modular ontologies. InProceed-
ingso of the 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico.

Stuckenschmidt, H. (2000). Using OIL for Intelligent Information Integration. In Benjamins, V. R.,
Gomez-Perez, A., and Guarino, N., editors,Proceedings of the Workshop on Applications of
Ontologies and Problem-solving Methods, 14th European Conference on Artificial Intelligence
ECAI 2000, Berlin, Germany.

Stuckenschmidt, H. (2003).Ontology-Based Information Sharing in Weakly-Structure Environ-
ments. PhD thesis, Vrije Universiteit Amsterdam.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D. (2002). OntoEdit: Col-
laborative ontology development for the Semantic Web. InFirst International Semantic Web
Conference (ISWC 2002), volume 2342 ofLNCS, pages 221–235. Springer.

Tu, S. W. and Musen, M. A. (1999). A flexible approach to guideline modeling. InAMIA Annual
Symposium, pages 420–424.

Ventrone, V. and Heiler, S. (1991). Semantic heterogeneity as a result of domain evolution.SIG-
MOD Record (ACM Special Interest Group on Management of Data), 20(4):16–20.

Visser, P. R. S., Jones, D. M., Bench-Capon, T. J. M., and Shave, M. J. R. (1997). An analysis of on-
tological mismatches: Heterogeneity versus interoperability. InAAAI 1997 Spring Symposium
on Ontological Engineering, Stanford, USA.

Volz, R., Oberle, D., Staab, S., and Studer, R. (2002). Ontolift prototype. Deliverable D11, EU/IST
Project WonderWeb.

Wedemeijer, L. (2001). Defining metrics for conceptual schema evolution. In Balsters, H.,
de Brock, B., and Conrad, S., editors,Database Schema Evolution and Meta-Modeling, 9th
International Workshop on Foundations of Models and Languages for Data and Objects (FoM-
LaDO/DEMM 2000), volume 2065 ofLecture Notes in Computer Science, pages 220–244.
Springer.

Wiederhold, G. (1994). An algebra for ontology composition. InProceedings of 1994 Monterey
Workshop on Formal Methods, pages 56–61, U.S. Naval Postgraduate School, Monterey CA.

Yan, B., Frank, M., Szekely, P., Neches, R., and Lopez, J. F. (2003). WebScripter: Grass-roots on-
tology alignment via end-user report creation. InProceedings of the 2nd International Semantic
Web Conference (ISWC2003), Sanibel Island, Florida.

SIKS Dissertation Series

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database
of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically
Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analy-
sis of Business Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoe-
meting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Mod-
elling; Automated modelling of Quality
Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and
neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical
Objects

1999-5 Aldo de Moor (KUB) Empowering
Communities: A Method for the Legit-
imate User-Driven Specification of Net-
work Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database
design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism for
Discrete Reallocation

2000
2000-1 Frank Niessink (VU)

Perspectives on Improving Software
Maintenance

2000-2 Koen Holtman (TUE)Prototyping of
CMS Storage Management

2000-3 Carolien M.T. Metselaar (UvA)
Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenader-
ing en actorperspectie

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence
Knowledge for User Interface Design

194 SIKS Dissertation Series

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in
Information Retrieval

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent
Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical
Patient Management

2000-8 Veerle Couṕe (EUR)
Sensitivity Analyis of Decision-Theoretic
Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Opti-
mization

2000-10 Niels Nes (CWI)
Image Database Management System
Design Considerations, Algorithms and
Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for
Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying
Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Pro-
gramming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version
Spaces with Instance-Based Boundary
Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A
Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on In-
formation Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for
Multi-Agent Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of
Large Object-Oriented Models, Views of
Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and
simulation language for work practice
analysis and design

2001-11 Tom M. van Engers (VU)
Knowledge Management: The Role of
Mental Models in Business Systems De-
sign

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analy-
sis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for In-
formation Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov
Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling
Electronic Environments inhabited by
Privacy-concerned Agents

195

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a
knowledge-based ontology of the legal
domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Ker-
nel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering:
Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel (KUB)
Integrating Modern Business Applica-
tions with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Applica-
tions

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive
Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches
to Modelling, Programming and Verify-
ing Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Ac-
tivity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations,
Models and Applications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Improv-
ing Main-Memory Database Perfor-
mance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning
About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Pres-
ence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Sup-
ported by Database Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence and
Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual
environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge In-
tensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided be-
haviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some
experimental studies on the interaction
between medium, innovation context and
culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural
Language Dialogue using Bayesian Net-
works

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia
information retrieval

196 SIKS Dissertation Series

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Oppo-
nent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation
Processes across ICT-Supported Organ-
isations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probabil-
ity, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004
2004-01 Virginia Dignum (UU)

A Model for Organizational Interaction:
Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-
business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis
of Approximation in Symbolic Problem
Solving

2004-04 Chris van Aart (UvA)
Organizational Principles for Multi-
Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process
Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestu-
urd onderwijs, een opstap naar abstract
denken, vooral voor meisjes

2004-08 Joop Verbeek (UM)
Politie en de Nieuwe Internationale In-
formatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale exper-
tise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explo-
rations into argument-based reasoning

2004-10 Suzanne Kabel (UvA)
Knowledge-rich indexing of learning-
objects

2004-11 Michel Klein (VU)
Change Management for Distributed
Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expres-
sions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On
Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations
in Strategic Equilibrium

