
Trapping fermionic and bosonic helium atoms





VRIJE UNIVERSITEIT

Trapping fermionic and bosonic helium atoms

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. T. Sminia,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de faculteit der Exacte Wetenschappen
op woensdag 1 juni 2005 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Roland Johannes Wilhelmus Stas

geboren te Eindhoven



promotor: prof.dr. W. Hogervorst
copromotor: dr. W. Vassen





The work described in this thesis was performed with support from the ‘Space Research
Organization Netherlands’ (SRON), and was carried out at the Laser Centre of the Vrije
Universiteit Amsterdam.

Cover design: Jaconelle Schuffel, Roland Stas
Printed by PrintPartners Ipskamp BV, Enschede

ISBN 90-9019353-7



Contents

1 Introduction 1

1.1 Laser cooling and trapping 2

1.2 Metastable helium 3

1.3 Laser-cooled frequency standards 6

1.4 Outline of thesis 8

2 A magneto-optical trap setup for two metastable helium isotopes 9

2.1 Overview of setup and vacuum system 10

2.2 Laser systems 12

2.2.1 Fiber laser systems 12

2.2.2 Diode laser 15

2.3 Source and recycling apparatus 16

2.4 Collimation section 17

2.5 Zeeman slower 20

2.6 Magneto-optical trap 25

2.7 Diagnostic tools 27

2.8 Experimental control 28

2.9 Setup for 389 nm experiments 29

2.10 Single isotope trapped samples 30

2.10.1 Time-of-flight measurement 30

2.10.2 Absorption imaging 32

2.10.3 Characteristics of samples 36

vii



Contents

3 Magneto-optical trap for metastable helium at 389 nm 39

3.1 Theory of the 389 nm MOT 41

3.1.1 Comparison with 1083 nm MOT 41

3.1.2 Loading process 42

3.2 Experimental setup 45

3.2.1 Vacuum apparatus and production of slow metastables 45

3.2.2 Laser setup at 389 nm 47

3.2.3 MOT diagnostics 47

3.3 Results and discussion 49

3.3.1 MOT results 49

3.3.2 Trap loss 52

3.3.3 Auxiliary Zeeman slower 56

3.3.4 Comparison with 1083 nm MOT 57

3.4 Conclusion and outlook 58

4 Theory of homonuclear ionizing collisions of laser-cooled metastable

helium isotopes 59

4.1 Cold ionizing collisions of He* atoms 60

4.2 Theoretical model 62

4.2.1 Ionization cross section 63

4.2.2 Effective potential 64

4.2.3 Numerical analysis of one-dimensional scattering 66

4.2.4 Ionization rate coefficient 73

4.2.5 Symmetrization of scattering states 75

4.3 Unpolarized rate coefficients 82

5 Experimental ionization rates of laser-cooled metastable helium iso-

topes 87

5.1 Trap loss and ionization 88

5.2 Overview of trap loss mechanisms 89

5.2.1 Collisions in 4He* samples 90

5.2.2 Collisions in 3He* samples 93

5.2.3 Ionization rate 94

5.3 Ionization rates for light-assisted collisions 95

5.4 Ionization in the absence of trapping light 97

viii



Contents

5.5 Polarization effects 99

5.6 Discussion and conclusions 100

6 Simultaneous magneto-optical trapping of a boson-fermion mixture of

He* atoms 103

6.1 Prospects for a quantum degenerate mixture 103

6.2 Experimental setup 105

6.3 Trapping of single isotopes 106

6.4 Simultaneous trapping of both isotopes 108

6.5 Conclusion 110

7 Atomic fountain clock based on 3He* 111

7.1 Fountain of laser-cooled 3He* atoms 113

7.2 Clock transition in magnetic field 116

7.3 Method of separated oscillatory fields 117

7.4 Expected stability 120

7.5 Expected accuracy 121

7.6 Monte Carlo simulations 122

7.7 Discussion and conclusions 124

Appendix A Laser cooling transitions 127

Appendix B Atom flux from a ballistic expansion 139

Appendix C Interaction potentials for 3He* + 3He* 145

Bibliography 149

List of publications 165

Summary 167

Samenvatting 169

ix





Chapter 1

Introduction

Cold atom research is a typical example of Atomic, Molecular and Optical (AMO)
Physics. With experiments directed at the manipulation of atoms with external
fields, it characterizes modern AMO Physics, where the aim to control the inter-
nal and external degrees of freedom of atoms, molecules and light fields plays a
key role. Wieman, Pritchard and Wineland [213] have pointed out that the aim
for control goes hand in hand with a characteristic approach: in AMO Physics,
known physics is used to devise innovative techniques to better isolate and con-
trol atomic systems, so that the systems can be explored with higher precision
and new physical phenomena may be discovered. This approach, having re-
sulted in an increasingly precise control of atoms and molecules, can be traced
back to the work of Rabi [158] on radio-frequency resonance techniques and has
recurred in later developments, such as the work of Kastler [22, 75, 94] on op-
tical pumping, the work of Ramsey [160] on atomic frequency standards, and
the work of Paul [144] on ion traps. Cold atom research was initiated by the
work on laser cooling, a development that fits in perfectly with the preceeding
research developments. Control of the degrees of freedom of atoms is central to
cold atom research, including the work presented here.1

In this thesis, experimental and theoretical work is discussed on samples of
laser-cooled metastable (2 3S1) helium atoms (He*). Studies are performed on
both helium isotopes, 3He* and 4He*. The experiments and theoretical work
concern the interaction of He* atoms with laser light in laser cooling processes,
and collisions between laser-cooled He* atoms. An introduction to techniques
of laser cooling and trapping is given in Section 1.1 and the work presented
in this thesis is further introduced in Section 1.2. Atomic fountains for fre-
quency metrology are an important application of laser cooling and trapping

1The dominating role of the aim to control the internal and external degrees of freedom of
atoms, molecules and light fields is also discussed by Kleppner [96] and Chu [33].
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Chapter 1

techniques and the possibilities of an atomic fountain based on 3He* atoms are
discussed in Section 1.3. Section 1.4 gives a chapter-by-chapter outline of this
thesis.

1.1 Laser cooling and trapping

Techniques of laser cooling and trapping form the basis of cold atom research
and have dominated the field of AMO Physics for more than two decades now.
The first ideas stem from 1975, when Hänsch and Schwalow [74], and Wineland
and Dehmelt [216] suggested that atoms (and ions) can be cooled with laser
light. The first experiments (on neutral atoms) have been performed by Ba-
lykin, Letokhov and Minogin [4, 5, 11, 12] in Russia and by Metcalf and Phillips
[152, 156] in the United States. Subsequent experiments, that have triggered
enormous interest, were performed a few years later: in 1985, cooling of atoms
in a three-dimensional optical molasses was demonstrated by Chu et al. [34],
and, in 1987, the confinement of atoms in a magneto-optical trap (MOT) was
achieved by Raab et al. [157]. In the years following, several review articles have
appeared (see e.g. [1]), and recently also a textbook [130]. In 1997, the Nobel
Prize for Physics was awarded to three laser cooling pioneers [32, 37, 151].

The cooling mechanism, proposed in 1975 and demonstrated in three di-
mensions by Chu et al. in 1985, is referred to as Doppler cooling and plays an
important role in this thesis. The mechanism is named after the Doppler shift
that plays a central role: moving atoms, that are illuminated from all direc-
tions with laser light tuned to the red from an atomic transition, predominantly
scatter photons from counter-propagating beams, as the Doppler shift brings
this light closer to resonance. In such a configuration, atoms are cooled to a
temperature that is limited by the heating effects associated with the stochastic
processes of absorption and spontaneous emission of photons [130]. Doppler
cooling is characterized by a large capture velocity and temperatures around
1 mK [130]. Several other cooling mechanisms—sub-Doppler cooling, such as
polarization gradient cooling and magnetically induced laser cooling, and sub-
recoil cooling, such as velocity-selective coherent population trapping and Ra-
man cooling—have been demonstrated afterwards, and can be used to obtain
even lower temperatures. Typically, the capture velocity of these cooling mecha-
nisms is small, so that the cooling mechanisms are used in parallel with Doppler
cooling or sequentially. In the present work, only Doppler cooling is applied.

Magneto-optical trapping, as demonstrated by Raab et al. in 1987, is another
laser cooling and trapping technique that plays an important role in this the-
sis. In the standard (six-beam) configuration, three orthogonal pairs of counter-
propagating laser beams, tuned to the red from an atomic transition, with mu-
tual opposite circular polarizations, are superimposed with a magnetic quadru-
pole field. Atoms with a sufficiently small velocity are captured in the MOT and
confined near the zero point of the magnetic field. The trapped sample also
undergoes cooling and the temperature can be derived from Doppler cooling
theory [130] (if other cooling mechanisms can be neglected).
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Introduction

Pioneering laser cooling experiments were performed with alkali atoms, for
which at that time continuous-wave laser sources were available to drive laser
cooling transitions. However, it was soon recognized that laser cooling could
also be applied to metastable noble gas atoms by driving a closed transition
between a metastable state and a higher-excited state [6, 129, 178].

1.2 Metastable helium

Much effort has been invested in the development and understanding of new
laser cooling techniques, and the acquired knowledge has been applied in many
experiments, taking advantage of the unique properties of cold atoms. Here, an
overview is given of experimental and theoretical work concerning cold He*
atoms. First, special features of He* are indicated that provide unique opportu-
nities for cold atoms experiments.

The helium atom, consisting of a nucleus and two electrons, has a relatively
simple structure.2 With one electron excited from the core to a metastable state,
the He* atom behaves as a single valence electron atom. However, coupling
between the spins of the open s-state core and the excited electron gives rise to
states with parallel spins (triplet) and antiparallel spins (singlet), as shown in
Fig. 1.1. The metastable 2 3S1 state has a lifetime of 7.9 ks (Appendix A) and
can be regarded as an effective ground state in all experiments discussed in this
thesis.

There are two naturally occurring isotopes, 3He which is a fermion, and
4He which is a boson. The isotopes have different level structures due to the
mass difference and the fact that 3He has a nuclear spin I = 1

2 . Therefore,
the level structure of 3He shows hyperfine structure, which is absent for 4He.
The structure differences between the isotopes are not visible on the scale of
Fig. 1.1. In the experiments presented in this thesis, laser cooling is performed
on transition 2 3S1 → 2 3P (wavelength 1083 nm) in the case of 3He and 4He
and also on transition 2 3S1 → 3 3P (wavelength 389 nm) in the case of 4He. A
discussion of the (hyper)fine structure and Zeeman effect on states 2 3S1, 2 3P
and 3 3P of 3He and 4He is presented in Appendix A, along with a discussion
of the optical excitation of the laser cooling transitions.

An important feature of the He* atom for laser cooling experiments is the
large amount of internal energy of 19.82 eV stored in the metastable 2 3S1 state
that gives rise to the phenomenon of Penning ionization (PI) [145],

He* + X → He + X+ + e− (PI). (1.1)

where X is any atom with an ionization energy that is smaller than the inter-
nal energy of He*; only helium and neon in their ground states have ioniza-
tion energies that are larger, 24.59 eV and 21.56 eV, respectively. In magneto-

2This enables accurate atomic structure calculations, that can be confronted with precision
measurements on laser-cooled atoms. The simplest of atoms, hydrogen, cannot be laser-cooled,
as a continuous-wave laser to drive the Lyman-α transition (at 121.67 nm) with sufficient inten-
sity is not (yet) available [56].
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Figure 1.1. Grotrian diagram of the lowest energy levels of the helium atom (adapted
from [195]). States 2 1S and 2 3S are metastable. The main decay processes are a
two-photon electric-dipole transition in the case of 2 1S, and a single-photon magnetic-
dipole transition in the case of 2 3S. A discussion of the (hyper)fine structure and Zee-
man effect on the laser cooling transitions with wavelengths of 1083 nm and 389 nm is
presented in Appendix A.

optically trapped samples of He* atoms, collisions between He* atoms are fre-
quent. These collisions can give rise to Penning ionization or, with the formation
of a molecular ion, associative ionization (AI)

He* + He* → He + He+ + e− (PI), (1.2)

He* + He* → He+
2 + e− (AI). (1.3)

The large internal energy of He* allows the use of charged-particle detectors,
such as channel electron multipliers or microchannel plates (MCPs), as diagnos-
tic tools with near unity detection efficiency. Detection of He+ ions produced
in magneto-optically trapped He* samples provides information on collisions
between trapped atoms, while detection of He* atoms can be used to determine
the temperature or the number of trapped atoms in the samples. A drawback
of the large internal energy of He* and the resulting reactivity concerns the pro-
duction of He* atoms. Plasma sources have a rather small metastable produc-
tion efficiency, leading to relatively small He* fluxes. This does not have to be
a problem, as the He* beam can be collimated with the curved-wavefront tech-
nique (see Chapter 2).

Using a Zeeman slower to decelerate the collimated beam (Chapter 2), He*
atoms can be captured in a MOT. The resulting magneto-optically trapped sam-
ples, typically containing over 108 atoms, can be used as a starting point for a
wide range of experiments. In the present work, trapping light with a wave-
length of 1083 nm is used to trap samples containing either 3He* atoms or
4He* atoms (see Chapter 2). Using two trapping frequencies, the simultaneous
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magneto-optical trapping of both isotopes is achieved (see Chapter 6). Using
trapping light with a wavelength of 389 nm, magneto-optical trapping of 4He*
atoms is demonstrated. The MOT is investigated and it is shown that, although
the trap has a limited capture velocity, samples of high phase-space density can
be obtained—a result of the reduced two-body loss rate (see Chapter 3).

A drastic increase of phase space density (more than six orders of magni-
tude) can be achieved if the sample is transferred to a magnetic trap. Using the
technique of forced rf-evaporative cooling, Bose-Einstein condensation (phase
space density of order one) of a sample of 4He* atoms has been achieved [147,
162, 199]. As magnetically trapped 4He* atoms are (locally) spin-polarized, Pen-
ning ionization is suppressed by four orders of magnitude due to spin conser-
vation (Wigner’s spin-conservation rule). Since the first reports in 1995 of Bose-
Einstein condensation of Rb, Na and Li [3, 20, 21, 44], many groups are studying
Bose-Einstein condensates in dilute vapors. A condensate of 4He* atoms pro-
vides unique opportunities, as condensed 4He* atoms can be detected with al-
most unit detection efficiency, allowing the measurement of quantum statistical
properties of the condensate with high spatial and temporal resolution.

Techniques of evaporative cooling can also be applied to trapped samples
containing a mixture of bosonic 4He* atoms and fermionic 3He* atoms. Al-
though this has not yet been demonstrated, it is expected that this could lead to
Fermi degeneracy of 3He* atoms or quantum degeneracy in a mixture of both
isotopes. As the interspecies scattering length is expected to be very large, a
quantum degenerate mixture could be used to study phase separation (if the
scattering length is positive) or stability properties of the mixture (if the scatter-
ing length is negative). As a first step, 3He* and 4He* atoms must be simultane-
ously confined in a MOT. Simultaneous magneto-optical trapping is reported in
this thesis: a discussion is presented in Chapter 6, along with a further introduc-
tion of experimental and theoretical work on quantum degenerate mixtures.

Magneto-optically trapped samples of He* atoms can also be used to study
cold (ionizing) collisions. At low temperatures, the de Broglie wavelength asso-
ciated with the atomic motion becomes very large leading to quantum threshold
behavior where the collision process is dominated by the lowest allowed angu-
lar momentum partial waves. With the number of collisional degrees of free-
dom reduced, it is possible to study quantum mechanical collision effects with
high precision. In the present work, ionizing collisions of He* atoms are investi-
gated in the absence of trapping light by monitoring ion production rates in the
trapped sample with a charged-particle detector (Chapter 5). Similar studies
have been performed with other metastable noble gas atoms [95, 141]. How-
ever, in the case of He*, the relatively simple atomic structure allows a clear
analysis of the collision process. A theoretical model including quantum thresh-
old behavior, Wigner’s spin-conservation rule and quantum statistical symme-
try requirements is derived to analyze the experimental result (Chapter 4). The
model is complementary to the more complete (and precise) close-coupling the-
ory, developed for 4He* atoms [111, 204, 205], as it provides clear insight into the
process of ionizing collisions without requiring heavy numerical calculations.
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The presence of near-resonant (trapping) light strongly modifies the dynam-
ics of cold collisions. Due to the small relative velocity, atom pairs absorb and
emit photons during the collision, giving rise to an increased collision cross sec-
tion. These so-called light-assisted collisions (sometimes optical or photoasso-
ciative collisions) form the dominant loss process in magneto-optically trapped
samples of He* atoms and are studied in this thesis by monitoring loss rates
from the trapped samples (see Chapters 2 and 3). Related experiments on pho-
toassociation spectroscopy have been reported, where probe light is used to
excite a bound state between two colliding atoms and information on the in-
teratomic potentials is obtained. These experiments have led to the creation of
giant (0.5 µm) dimer molecules [112, 113].

Cold He* atoms have been been used in several other experiments.3 The
large stored energy in He* atoms allows an efficient damage of photoresist-
coated surfaces. Manipulating a He* beam with laser light, sub-wavelength
sized structures can be created in nanolithography experiments [150]. Further-
more, the large recoil velocity of He* has been used to create atomic beamsplit-
ters via Bragg scattering from standing light waves [100] or velocity-selective
coherent population trapping [106]. Also laser cooling with a bichromatic force
[30] and other schemes involving nonmonochromatic light fields [27–29] have
been demonstrated, as well as deceleration by combined optical and electric
fields in a Stark slower [174]. Laser cooling techniques have also found appli-
cation in the field of frequency metrology. In the next section, possibilities of an
atomic fountain clock based on 3He* atoms are discussed.

1.3 Laser-cooled frequency standards

Laser cooling techniques have been used to manipulate atomic samples into
a perturbation-free environment, where precision measurements can be per-
formed with long interrogation times. With Doppler and pressure broadening
effects suppressed, atomic transition frequencies and lifetimes have been mea-
sured with high precision [140]. In the field of atomic frequency standards,
laser cooling techniques have led to major advances with the development of
microwave atomic fountain clocks [35, 93]. The use of Ramsey’s method of sep-
arated oscillatory fields [159] in a fountain based on cold atoms has resulted in
frequency stabilization with unprecedented stability and accuracy [15, 50, 110],
and an improvement of the time standard.4 Nowadays, frequency stabilization
and electronic frequency measurements can be performed with such high pre-
cision that considerable effort is devoted to realizing standards for other SI base
quantities that can be related to a frequency measurement.

It is interesting to consider an atomic fountain clock based on 3He* atoms,
as large numbers of 3He* can be confined using laser cooling techniques and
the hyperfine transition 2 3S(F = 3/2) → 2 3S(F = 1/2), with a transition

3The list of experiments with cold He* atoms given here is not exhaustive.
4Data from cesium fountain clocks is included in the calculation of the International Atomic

Time (TAI) [15].
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frequency of 6.7 GHz, is suitable for the stabilization of a microwave signal
using the method of separated oscillatory fields. Compared to the existing
fountain clocks, based on 133Cs or 87Rb, a 3He* fountain clock allows the in-
vestigation of several innovative aspects. Most importantly, collisions between
fermionic atoms (133Cs and 87Rb are bosons) can be studied with high preci-
sion [60, 107, 186], and the corresponding contribution to the uncertainty of
the accuracy budget can be investigated. Controlling the internal state of the
launched atoms, quantum threshold behavior and quantum statistical effects
can be observed through the cold collision frequency shift. If an atomic sam-
ple is prepared in a single spin state, the collision cross section is expected to
be very small compared to the shift in fountain clocks based on 133Cs or 87Rb,
where it contributes significantly to the accuracy budget [50]. Another innova-
tive aspect of a 3He* fountain clock is the direct detection of atoms with charged-
particle detectors. The detection efficiency of He* atoms with MCP detectors is
almost unity, ensuring a high signal-to-noise ratio. Finally, the development
of atomic clocks based on new atomic species is interesting for measurements
of possible variations of the fine-structure constant,5 as the dependence of the
hyperfine transition frequencies on the fine-structure constant is dependent on
the atomic number [155]. The comparison of the output frequencies of atomic
frequency standards based on different atomic species provides one of the best
ways to perform laboratory tests of the stability of fundamental constants over
a timescale of ∼1 yr [18].

To investigate the possibilities of an atomic fountain clock based on 3He*
and to determine the feasibility of the investigation of these innovative aspects,
a theoretical study has been performed, including Monte Carlo simulations of
the interrogation of atoms in magnetic fields of limited homogeneity. The study
is presented in Chapter 7 and shows that, as a result of the small mass, the rel-
atively high temperature of a laser-cooled 3He* sample and the magnetic field
dependence of the clock transition, the 3He* fountain clock has an expected sta-
bility and accuracy that is significantly inferior to that of Cs and Rb fountain
clocks.6 It is also shown that the expected visibility of Ramsey fringe patterns is
poor and it is concluded that it would not be sensible to perform an experimen-
tal study of a 3He* fountain clock at the time being.

5Such experiments are motivated by the development of string theory models, that allow
for, or even predict, variations of the fine-structure constant α with time and space [201]. A
recent analysis of the spectrum of quasars [209] suggests that α may have changed over the cos-
mological time scale (1010 yr), while a second (independent) analysis [187] is not in agreement.
An overview of experimental bounds on the variation of the fine-structure constant is given in
[201].

6At the time of writing (2004), the most accurate atomic clock is a cesium (microwave) atomic
fountain clock with an accuracy of σν/ν0 < 4 × 10−16, dominated by the uncertainty in the
black-body radiation shift (2.5 × 10−16) and the uncertainty of the cold collision frequency shift
(1.5 × 10−16) [50]. It must be noted that with the introduction of frequency combs [84], that
accurately divide optical frequencies into countable microwave frequencies, much effort is de-
voted to the development of all-optical atomic clocks [51], where ultimate accuracies of 10−18

have been predicted [46]. The most accurate optical clock, based on a single 88Sr+ ion, has an
accuracy of 3.4 × 10−15 [120].
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1.4 Outline of thesis

This thesis consists of seven chapters and three appendices. Following the in-
troduction, Chapter 2 presents a discussion of the experimental setup and the
characterization of magneto-optically trapped samples containing a single He*
isotope, either 3He* or 4He*. Chapter 3 presents an experimental study of a
magneto-optical trap utilizing light at 389 nm. Chapter 4 presents a theoretical
model for ionizing collisions between laser-cooled He* isotopes and Chapter 5
presents experiments where the ionization rate coefficients for these collisions
are measured. Chapter 6 presents the simultaneous trapping of large numbers
of both 3He* atoms and 4He* atoms, indicating implications for quantum de-
generacy research. Finally, Chapter 7 presents the results of a feasibility study
for frequency metrology with 3He* in an atomic fountain clock. Appendix A
presents a discussion of the (hyper)fine structure and Zeeman effect on atomic
states relevant for the experiments. Also, optical excitation of the laser cooling
transitions is reviewed with the help of the electric dipole operator, and tables
with atomic data and data concerning the optical excitation and laser cooling
parameters are presented. Appendix B presents the derivation of the expression
used to analyze TOF signals in Chapter 2. Appendix C presents the calculation
of the interatomic potentials for two 3He* atoms in the 2 3S1(F) state. These
potentials are used in the theoretical model of Chapter 4.

8
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A magneto-optical trap setup for two

metastable helium isotopes

Magneto-optical trapping of 4He* atoms has been reported in several publi-
cations with an increasing number of trapped atoms. The first experiments
[13, 101], following naturally from the pioneering work performed with alkali
atoms, demonstrated the trapping of 4He* atoms with light with a wavelength
of 1083 nm, probing transition 2 3S1 → 2 3P2. However, light-assisted ionizing
collisions turned out to give rise to large trap loss [13] and the obtained trapped
atom numbers were small, about 104. For the pursuit of Bose-Einstein conden-
sation in a dilute gas of 4He* atoms, a magneto-optical trap (MOT) operating in
a novel regime was developed. With a large detuning of the trapping light from
the atomic resonance, ∆ = −25 Γ with Γ the natural linewidth of the laser cool-
ing transition, trap loss due to light-assisted collisions was reduced and up to
3 × 107 atoms were confined [164]. Further optimization has resulted in MOTs
containing over 109 atoms [148, 196] (and Bose-Einstein condensation has been
achieved [147, 162, 199]). Recently, magneto-optical trapping of 3He* atoms has
been reported also [102, 103]. In a MOT of tetrahedral configuration [179], up to
105 atoms were confined.

In this chapter, a setup is described that allows magneto-optical trapping
of large numbers of 3He* and 4He* atoms using light with a wavelength of
1083 nm: up to 4 × 108 4He* atoms and 3 × 108 3He* atoms have been confined
separately, and up to 1.5 × 108 atoms of both isotopes have been confined si-
multaneously. The setup is based on an apparatus that was built by Rooijakkers
and further extended by Herschbach and Tol, and several parts of the setup are
well described in their publications [163, 164] and theses [77, 195]. Here, focus is
on the innovating aspects of the setup, which are mainly connected with simul-
taneous Zeeman slowing and magneto-optical trapping of both isotopes, and

9
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reference is made to the above-mentioned works for details of designs and ex-
perimental techniques that were straightforwardly copied. In an early stage, the
setup has been used to study the magneto-optical trapping of 4He* atoms with
light with a wavelength of 389 nm; these experiments are reported in Chapter 3.
Although Chapter 3 provides a complete description of the 389 nm setup, dif-
ferences with the (final) 1083 nm setup are discussed for the sake of clarity in a
separate section of this chapter (Section 2.9).

The current chapter is composed as follows. Section 2.1 presents an overview
of the setup and discusses the vacuum system. The following sections present
the successive discussions of laser systems (Section 2.2), the beam source and
recycling apparatus (Section 2.3), the collimation section (Section 2.4), the Zee-
man slower (Section 2.5), the MOT (Section 2.6), diagnostic tools (Section 2.7)
and the (computer-controlled) system for experiment control (Section 2.8). Sec-
tion 2.9 discusses differences with the setup used for the 389 nm experiments.
The chapter is concluded with a characterization (temperature and density pro-
file) of trapped samples of single isotopes; these samples constitute the starting
point for the collision experiments of Chapter 5. The characterization of the
two-isotope MOT is discussed in Chapter 6, with a focus on optical pumping
effects and implications for quantum degeneracy experiments.

2.1 Overview of setup and vacuum system

A schematic view of the setup is given in Fig. 2.1. A beam of metastable he-
lium (He*) atoms is extracted from a DC-discharge source, that is cooled with
liquid nitrogen to obtain a low beam velocity. The beam is collimated with the
curved-wavefront technique to improve brightness, and decelerated in a Zee-
man slower to a velocity around 50 m/s. The decelerated atoms are captured,
cooled and confined in a MOT, and the resulting sample of trapped atoms can
be studied in further experiments, making use of the available diagnostic tools.
A microchannel plate (MCP) detector with a negative high voltage on its front

MOT

Zeeman slower

collimation

dc discharge
source

MCPs
extraction coil

CCD camera

Figure 2.1. Schematic overview of the setup with, going from left to right (down the
beam), source, collimation section, Zeeman slower (two parts plus extraction coil) and
MOT with diagnostic tools (two MCP detectors and a CCD camera).

10
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1

2

3

Figure 2.2. Picture of the MOT vacuum chamber and the second part of the Zeeman
slower. The first and second part of the Zeeman slower are connected by T-pieces and
a (pneumatically operated) valve, indicated by (1). This way, the ultrahigh-vacuum in
the MOT chamber can be disconnected from the lower quality vacuum in the first part of
the Zeeman slower. The diameter of the MOT chamber is 30 cm. The picture was taken
before the mounting of optics and magnetic coils. Characteristics of the turbomolecular
pumps indicated by (2) and (3) can be found in Table 2.1.

plate attracts all ions produced in the sample. A second MCP detector that is
shielded electrically from the cloud by a grounded grid, measures the flux of
He* atoms escaping in its direction (after the trap is switched off). In addition, a
CCD camera is used to obtain absorption and fluorescence images of the trapped
sample; the images are used to determine the density profile, the number of
trapped atoms and the size of the sample. The light used for laser manipulation
(collimation, Zeeman deceleration, magneto-optical trapping) and absorption
imaging has a wavelength of 1083 nm and is generated with three solid-state
laser systems.

Naturally, the He* beam and trapped sample are under vacuum conditions.
The vacuum system consists of a series of interconnected chambers, specially
designed for the various sections of the setup. The source is housed in a cube-
shaped aluminum vacuum chamber with a length of 20 cm (measured along the
direction of the beam). The chamber is connected to the collimation section vac-
uum chamber (made of aluminum, length of 56 cm) by a cone-shaped skimmer
with a hole of 1 mm diameter. The collimation section chamber is connected
to the Zeeman slower tubes by bellows and a T-piece (length 25 cm). The bel-
lows are connected to the collimation section chamber and incorporate a flow
resistance consisting of a tube with a length of 100 mm and an inner diame-
ter of 3 mm. The T-piece joins the bellows and the first Zeeman slower tube

11



Chapter 2

and is pumped by a turbomolecular pump. The two Zeeman slower tubes are
made of stainless steel and are electrolytically polished on the inside. The first
tube has a length of 197 cm and an inner diameter of 25 mm, while the second
tube has a length of 58 cm and an inner diameter of 32 mm. The two tubes
are connected by a vacuum piece consisting of two T-pieces, that are pumped
by turbomolecular pumps and joined by a pneumatically actuated valve. The
total distance from collimation section chamber to the end of the second tube is
291 cm. The second tube is welded onto a reentrant flange that is mounted onto
the MOT vacuum chamber. The chamber has a diameter of 30 cm and is con-
structed from stainless steel (type 316). As shown in Fig. 2.2, it provides good
optical access to the trapped samples by way of nine (uncoated) windows. Two
windows are reentrant (Larson Electronic Glass, 3 3/4 -inch outer diameter), al-
lowing MOT coils to be mounted close to the trap center. The chamber is sealed
with conflat flanges.

All vacuum sections are pumped by turbomolecular pumps manufactured
by Pfeiffer Vacuum. Information on the pumps is given in Table 2.1, along
with the pressures measured in the various chambers while the helium beam
is present. If the source is shut down, so that the helium load is removed,
the pressure in the MOT chamber drops to about 7 × 10−11 mbar. To achieve
this pressure, the chamber has been baked for seven days at a temperature of
200 °C.

2.2 Laser systems

To perform laser cooling, light with a wavelength of 1083 nm is needed to excite
transition 2 3S1 → 2 3P2 in case of 4He, and 2 3S1(F = 3

2) → 2 3P2(F = 5
2)

in case of 3He. As the isotope shift of the laser cooling transition is 34 GHz,
which is too large to bridge with a modulator, two separate fiber lasers are used
for the two isotopes. For absorption imaging, a narrow-band diode laser is
used. Stabilizing the laser frequency to one of the above-mentioned transitions,
absorption imaging has been applied to trapped samples containing a single
isotope. The two-isotope MOT (Chapter 6) has been studied with MCP detectors
only.

2.2.1 Fiber laser systems

The fiber lasers used in the experiments are commercial systems delivering a
high-power, single-mode laser beam with a wavelength that is tunable around
1083 nm. A laser with an output power of 1 W (IPG, model YLD-1BC) is used
for the laser manipulation of 3He* atoms and a laser with an output power of
about 2 W (IPG, model YLD-2BC) is used for 4He* atoms. The lasers consist of a
single-mode fiber, doped with Yb3+ ions, that is pumped by multiple 1 W multi-
mode diode lasers. The ytterbium-doped fiber acts as a gain medium, showing
very broad absorption and emission bands, with ∼800 nm to ∼1064 nm for
absorption and ∼970 nm to ∼1200 nm for emission [143]. The fiber is seeded

12
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Table 2.1. Characteristics of the turbomolecular pumps (Pfeiffer Vacuum) used in the
setup and pressures with the helium source present. Sections indicated as Zeeman
slower 1, 2 and 3 refer to the T-pieces mounted between the collimation section and the
first Zeeman slower tube (1), between the first Zeeman slower tube and the pneumati-
cally actuated valve (2) and between the valve and the second Zeeman slower tube (3).

section of
vacuum
apparatus

type pressure
(mbar)

volume
flow rate
(for He)

(l/s)

compression
ratio (for He)

source chamber TMH 521a 7 × 10−5 b 500 5 × 107

collimation
section

TPH 520a 1 × 10−7 b 500 5 × 107

Zeeman slower 1 TMU 071Pa — 55 1 × 107

Zeeman slower 2 TMU 521c <

1 × 10−9 b

500 5 × 107

Zeeman slower 3 TPU 062Hd — 49 2.6 × 108

MOT chamber TMU 521c 7 × 10−10 500 5 × 107

a Backed by a scroll vacuum pump (Varian, type SH-100). For a backing pressure of about
0.1 mbar, the volume flow rate is 0.3 l/s.

b Pressure reading is not corrected for the high concentration of helium in the vacuum.
c Backed by a turbomolecular pump (Pfeiffer Vacuum, type TMH 064/TMU 064) with a

volume flow rate (for He) of 42 l/s and a compression ratio (for He) of 7 × 104. This pump
maintains a backing pressure < 5 × 10−4 mbar and is backed by a diaphragm pump
(Varian, type 949-9452) with a volume flow rate of 1.3 l/s, maintaining a backing pressure
of about 1 mbar.

d Backed by a diaphragm pump (Varian, type 949-9452) with a volume flow rate of 1.3 l/s,
maintaining a backing pressure of about 1 mbar.
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Figure 2.3. Setup for saturated absorption spectroscopy.

by a tunable Distributed Bragg Reflector (DBR) diode laser. The wavelength of
the seed laser can be tuned over 2 nm (around 1083 nm) by manual adjustment
of the temperature of the laser diode through the control unit. Fine tuning of
the wavelength is achieved with a voltage (between 0 V and 5 V) applied to the
modulation input of the control unit, that adjusts the current through the seed
laser. The modulation range is a few GHz for both fiber laser systems.

The fiber lasers are frequency stabilized to the laser cooling transitions of
either isotope using a low-frequency-modulation locking technique. A few
mW of laser light is used to perform saturated absorption spectroscopy in an
rf-discharge gas cell, filled with either 3He or 4He gas to a pressure of about
0.1 mbar; a schematic setup is shown in Fig. 2.3. Modulating the laser fre-
quency with a low-frequency signal at 8 kHz through the modulation input,
an error signal is obtained by demodulating the saturated absorption signal ob-
tained from the photo-diode with a lock-in amplifier. The error signal is applied
to a PI controller that is connected to the modulation input of the control unit.
The resulting feedback loop stabilizes the laser frequency to the Lamb dip in the
saturated absorption spectrum.

The linewidth of the (stabilized) fiber lasers is determined from heterodyne
beat experiments against the diode laser discussed in Section 2.2.2, that has a
full width at half-maximum (FWHM) linewidth of 0.4 MHz. For laser YLD-1BC,
500 power spectra are recorded over a period of 26 s, and for laser YLD-2BC,
1000 power spectra are recorded over a period of 51 s; the recorded spectra are
averaged. The averaged beat note spectrum has a Gaussian shape indicating
inhomogeneous broadening usually associated with technical noise. Therefore,
the width of the beat note is assumed to be the square root of the sum of squared
laser linewidths. Laser YLD-1BC has a FWHM linewidth of 1.6 MHz and laser
YLD-2BC has a FWHM linewidth of 3.0 MHz. The specified short-term (1 ms)
stability of the lasers is ∼ 1 MHz.
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Figure 2.4. Saturated absorption spectrum and error signal after demodulation in the
case of 3He*. The Doppler broadened spectrum shows Lamb dips from four transition
and two cross-overs. The etalon marker indicates the frequency scale. The transitions
2 3S1(F) → 2 3P(F ′) in 3He are indicated by C1–C9 as defined in Fig. 2.9. Transition C3

is the laser cooling transition. The graph is taken from [87].

2.2.2 Diode laser

The diode laser system (Toptica, model DL100) is a commercial system de-
livering a single-mode laser beam with a power of 37 mW in a narrow fre-
quency band tunable around a wavelength of 1083 nm. The system consists
of a external-grating extended-cavity diode laser in a temperature-stabilized
laser head together with a control unit containing electronics for laser frequency
scanning and stabilization, and laser head temperature stabilization. The DL100
system is based on the system presented in [161] and detailed information can
be found there. In the following, some aspects concerning the implementation
of the laser system in the setup are discussed.

The laser diode is mounted in an external-grating extended-cavity configu-
ration, where a cavity is formed between the laser diode and a reflection grating
mounted on a piezo actuator. The grating is mounted in the Littrow configu-
ration, where the first-order diffracted beam is reflected collinear with the in-
cident beam and re-imaged on the diode facet [63]. Setting the laser frequency
to the laser cooling transition of either isotope, the laser frequency of the ex-
tended cavity system is coarsely tuned by changing the grating angle with a
micrometer screw in the laser head. The scanning range is 7 nm around the
central wavelength of 1083 nm. For a given angle of the reflection grating, the
laser frequency is tuned manually by adjusting the diode temperature and piezo
voltage through the control unit electronics. Fine-tuning of the laser frequency
is achieved by changing the current through the diode.

To stabilize the frequency to the atomic transition, the diode current is mod-
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ulated at a frequency of 20 MHz, through a bias-T connection on the diode.
Using a setup as depicted in Fig. 2.3, an error signal is obtained from the photo
diode signal using the so-called Pound-Drever-Hall technique [19]. Figure 2.4
shows the saturated absorption signal from the photo diode and the resulting
error signal. The laser frequency is stabilized with two feedback signals. To
compensate for fast frequency fluctuations, the error signal is applied directly
to the diode through a FET-current control with a large bandwidth of 5 MHz.
In addition, the error signal is applied to a PID regulator that steers the diode
current through the control box (bandwidth of 1 MHz).

A heterodyne beat experiment between the diode laser and an LNA laser
with a FWHM linewidth of 0.16 MHz [195] has shown that the linewidth of the
diode laser depends slightly on the settings of the control system. For time
intervals of several minutes, the FWHM linewidth is 0.4 MHz [87].

The laser beam profile from the diode shows two intensity maxima and de-
viates strongly from a Gaussian (TEM00) mode. Therefore, the beam is coupled
through a polarization-maintaining single-mode fiber; the output beam, with a
Gaussian mode, has a power of about 10 mW.

2.3 Source and recycling apparatus

The He* beam is generated with a DC-discharge source with a design based on
Fahey et al. [57] and a construction identical to Rooijakkers et al. [163]. In the
source, helium atoms are excited to the metastable 2 3S1 state by collisions with
electrons in an electric DC-discharge that is maintained through a nozzle. The
nozzle is a canal with a length of 10 mm and an inner diameter of 0.25 mm in
a slab of liquid-nitrogen-cooled boron nitride, a material that combines poor
electric conductivity with good thermal conductivity. As collisions lead to de-
excitation, only atoms that are excited in the 1 cm expansion region between
nozzle and skimmer are likely to survive in the metastable state. The current
running through the discharge is set to 8 mA, so that the intensity of the He*
beam is 4 × 1014 s−1sr−1 and the fraction of He* atoms in the beam is 10−4 (see
Chapter 5). The velocity distributions of the 3He* beam and 4He* beam have
been measured with a time-of-flight (TOF) technique and are shown shown in
Fig. 2.5. The differences between the velocity distributions is due to the mass
difference between the isotopes. The area with velocity v < 1375 is shaded,
indicating the fraction of atoms that is decelerated in the Zeeman slower.

If the source is operated with a 3He gas or a 3He – 4He gas mixture, a recy-
cling apparatus is used to purify and recycle the gas, as the 3He isotope with its
small natural abundance of 1.4× 10−4 % (see Appendix A) is rather expensive.1

The apparatus is connected to the source chamber, so that all gas that does not
end up in the beam is recycled. The amount of gas that ends up in the beam

1The gas consumption of the source (without recycling) is estimated at 0.13 atm l/h, while
1 atm l of 3He gas costs about USD 100 (anno 2004).
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Figure 2.5. Velocity distributions of the 3He* beam and 4He* beam from the source at a
discharge current of 8 mA. The fraction captured in the Zeeman slower is shaded. In the
case of 3He* (4He*), the fraction amounts to 8% (58%). Furthermore, the most probable
velocity is 1724 m/s (1247 m/s), the mean velocity is 1897 m/s (1369 m/s), and the
FWHM is 909 m/s (531 m/s). The pressure drop over the nozzle and the resulting gas
flow differ by ∼ 20% for the presented velocity distributions.

is at most 10−3 of the helium consumption of the source. A flowchart of the
recycling apparatus is shown in Fig. 2.6.

If the recycling apparatus is in operation, the purification stages contain-
ing molecular sieve material (see Fig. 2.6) are cooled with liquid nitrogen and
valves 1, 2, 6 and 8 are opened, while the other valves are shut. Helium gas
is pumped from the source vacuum chamber into the purification stages by the
turbomolecular pump and the scroll pump backing it. The gas is returned to the
source through a variable leak valve. To avoid contamination of the recycled he-
lium gas, the recycling loop is interrupted if the source is not in use. Valves 6, 8
and 2 are closed (in that order), and valve 3 is opened to the atmosphere of the
laboratory. To start up the recycling, valve 3 is closed and valve 4 is opened un-
til the tubes connecting the backing pump and valves 2, 3 and 4 are evacuated.
Then, valves 2, 6 and 8 are opened and the source is ready for use. If valves 2
and 6 are closed, the recycling system can be filled up from the filling cylinder
by opening valves 5a and 5b. Finally, with valves 1, 3, 7 and 8 opened the source
is operated with 4He gas without recycling.

2.4 Collimation section

In the collimation section, the He* beam is collimated in horizontal and vertical
direction applying the curved-wavefront technique [7, 163, 203]. Collimation
leads to an increase of brightness of the beam and is based on the interaction
of atoms in the beam with two pairs of counter-propagating, convergent laser
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Figure 2.6. Flow chart of the recycling apparatus. Valves 1 and 5a are angle valves
(Balzers, KF-25), valves 2–4, 6 and 7 are diaphragm valves (Nupro, SS-DLS6mm), valve
5b is a pressure reduction valve (Messer, Spectron FM62) and valve 8 is a variable leak
valve (Granville-Phillips, series 203). All valves are manually actuated. Purification
stage P1 is filled with type 4A molecular sieve (sodium zeolite with a pore size of 4 Å)
and purification stage P2 is filled with type 13X molecular sieve (sodium zeolite with
a pore size of 10 Å). The pressure in the purification stages depends on the amount of
helium gas in the system and varies between 100 mbar and 250 mbar. Characteristics
of the turbomolecular pump (Pfeiffer Vacuum, TMH 521) and scroll vacuum pumps
(Varian, type SH-100) are given in Table 2.1.
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beams resonant with the atomic transition. To provide insight in the collima-
tion process, the force exerted by a single laser beam on an atom is considered,
neglecting the saturation effects [115] induced by the three other beams.

The force exerted by a laser beam on an atom is referred to as the radiation
pressure force and can be written as [195]

Frad = h̄k
Γ

2
I/ f Isat

1 + I/ f Isat

1 + γ/Γ(
1 + γ/Γ

)(
1 + γΓ/Γ ′2) + (2∆/Γ ′)2

, (2.1)

where k = 2π/λ is the wave number (with λ the wavelength) and I the inten-
sity of the laser light; the laser lineshape is assumed to be Lorentzian with line-
width γ. The force depends on the line strength of the transition that is driven
by the laser light: the corresponding saturation intensity, f Isat, is the product of
a relative line strength factor f [195] and the saturation intensity for the tran-
sition between stretched magnetic substates, i.e. transition MJ = 1 → M ′

J = 2
in the case of 4He* and MF = 3

2 → M ′
F = 5

2 in the case of 3He*. It is shown in
Appendix A that Isat = 0.167 mW/cm2 for both isotopes. For a single atom, the
relative line strength factor is the inverse of the relative strength associated with
the excited transition (see Section 2.10.2); in the case of linearly polarized light,
used in the collimation section, f ≈ 2 for either 3He* or 4He* in any magnetic
substate. Finally, Γ/2π = 1.62 MHz is the natural linewidth of the transition,
Γ ′ = Γ

√
1 + I/ f Isat is the power-broadened linewidth of an atomic transition, h̄

is Planck’s constant divided by 2π and ∆ is the detuning of the laser frequency
with respect to the atomic transition frequency, including the Doppler effect and
Zeeman effect.2

As the radiation pressure force saturates to

F(max)
rad = lim

I→∞
Frad = h̄k

Γ

2
, (2.2)

atoms are captured by the collimating light beams only if their transverse ve-
locity is smaller than vcap = (L/R)vz, with L the length of the region (measured
along the beam) where atoms interact with the light beams, R the radius of
curvature of the collimating light beams and vz the longitudinal velocity of the
atom. Then they essentially follow a trajectory with the same radius of curva-
ture R as the wavefront of the laser beam. The force in a convergent wave and
the resulting trajectories of atoms are described in detail in [203].

The collimation section is constructed as described by Rooijakkers et al. [163].
About 200 mW of resonant light is used. The linearly polarized beams have an
elliptical profile with rms radii of 3 mm × 38 mm (long dimension along the
atomic beam) and a central intensity of 62 mW/cm2, corresponding to about
370 Isat. To obtain maximum increase in beam intensity, the interaction range is

2The expression for the force differs from the textbook expression [130]

Frad = h̄k
Γ

2
I/ f Isat

1 + I/ f Isat + (2∆/Γ)2 = h̄k
Γ

2
I/ f Isat

1 + I/ f Isat

1
1 + (2∆/Γ ′)2 ,

where it is assumed that γ ≪ Γ.
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put as close as possible to the nozzle, starting at a distance of about 3 cm. For a
typical radius of curvature R = 12 m; with an interaction length L = 10 cm, the
capture velocity is vcap = 10 m/s.

For a given choice of the radius of curvature R, the collimation depends
on the intensity of the laser beams and longitudinal velocities. As the Zeeman
slower decelerates atoms with longitudinal velocities <∼ 1375 m/s, the radii of
curvature and alignment of the beam pairs are optimized for the number of
atoms in the magneto-optical trap, as suggested by Herschbach [77]. An ex-
tensive analysis of the curved-wavefront technique, pointing out discrepancies
between theoretical predictions and experimental results for collimation of a
4He* beam is given by Tol [195].

2.5 Zeeman slower

Atoms from the collimated beam are decelerated in the Zeeman slower from
about 1375 m/s (depending on the slowing light intensity) to a velocity around
50 m/s. The deceleration occurs over a distance of 2.7 m, where the atoms are
in resonance with a circularly polarized, counter-propagating laser beam. The
changing Doppler shift is compensated by the Zeeman shift in an inhomoge-
neous magnetic field, a technique applied for the first time by Phillips and Met-
calf [152]. By exciting the cycling transition, MJ = 1 → M ′

J = 2 in the case of
4He* and MF = 3/2 → M ′

F = 5/2 in the case of 3He*, the slowing light exerts a
radiation pressure Frad with f = 1, as given by Eq. (2.1).

The magnetic field points along the axis of the Zeeman slower and has been
measured with a Hall probe. The result is shown in Fig. 2.7, where a positive
magnetic field value indicates a field pointing towards the source. The field is
generated by two tapered solenoids and an extraction coil and changes direction
three times. Deceleration takes place between the positions of maximum mag-
netic field (Bmax = 540 G) and minimum magnetic field (Bmin = −317 G), where
atoms and slowing light are resonant and the radiation pressure force provides
a deceleration exceeding the acceleration of free fall g by more than four orders
of magnitude. The extraction coil generates a positive magnetic field and is de-
signed to exactly compensate the magnetic field from the second solenoid in
the center of the MOT around z = 2.99 m (see inset of Fig. 2.7). The field Bmax is
chosen to be smaller than 563 G, where a level crossing in the Zeeman diagrams
of both the 3He* and the 4He* atom gives rise to optical pumping to nonslowed
magnetic substates, if the slowing light is not perfectly σ+ polarized [164].

To obtain a deceleration from about 1375 m/s to around 50 m/s, the slowing
light is detuned to the red of the laser cooling transition by 500 MHz.3 Using

3Due to the large detuning, interaction of slowing light with atoms in the trapped sample is
negligible.
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Figure 2.7. Magnetic field component Bz on the axis of the Zeeman slower. The field
changes from Bmax = 540 G to Bmin = −317 G and has roughly a square root shape
along the beam axis. The inset shows an enlarged part at the position of the MOT.

the resonance condition4

kv(z) = µBB(z)/h̄ − ∆laser, (2.3)

with ∆laser/2π = −500 MHz, one sees that for a magnetic field Bmax an atom
velocity vmax = 1360 m/s is resonant with the slowing light and for a field
Bmin velocity vmin = 61 m/s is resonant. The capture velocity vmax is signifi-
cantly larger compared to slowers constructed for a 4He* beam only [164], as
a 3He* beam has a significantly larger mean velocity (see Fig. 2.5). The slower
presented here can be used for the deceleration of 3He* atoms or 4He* atoms,
as well as for the simultaneous deceleration of both 3He* and 4He* atoms with
two slowing light frequencies.

To design a Zeeman slower for multiple isotopes, the deceleration process
has been analyzed with Newton’s equation of motion given by Frad = dp/dt =

m(d2z/dt2). Starting from the magnetic field profile B(z) of Fig. 2.7 and slowing
light intensity I(r, z), the equation has been solved numerically, with a solution
given by ζ(t), while incorporating effects of the finite linewidth of the slowing
laser and power broadening of the atomic transition. Intensity I(r, z) represents

4The resonance condition is easily derived in the reference frame of a decelerating atom. If
the atom has a velocity v(z) opposite to the wave vector of the slowing light k, the slowing light
frequency in the reference frame can be written ωlaser = ω0 + ∆laser + ∆Doppler, where ω0 is the
transition frequency of the unperturbed atom, ∆laser is the detuning of the slowing light from
ω0, and ∆Doppler = −k · v = kv(z) is the Doppler shift. In the magnetic field of the Zeeman
slower, the atomic transition frequency undergoes a Zeeman shift, ωatom = ω0 + ∆B, where
∆B = µBB(z)/h̄ is the Zeeman shift [41]. The resonance condition is written ωlaser = ωatom, or
kv(z) = µBB(z)/h̄ − ∆laser.
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Figure 2.8. Atom velocities v = dζ(t)/dt as a function of position z = ζ(t) in the
Zeeman slower for a high intensity slowing beam and a low intensity slowing beam.
The slowing beams are focussed onto the skimmer. For the high (low) intensity beam,
the central intensity is 540Isat (270Isat) at the maximum B-field and 100Isat (50Isat) at
the minimum B-field. The gray band indicates resonant velocities; for atom veloci-
ties at the band edges, the deceleration has half the maximum value; the height of the
band is given by (1/2k)[(γ + Γ)2 + (γ + Γ)ΓI(0, z)/Isat]1/2, reaching a minimum value
of 24 m/s (17 m/s) in case of the high (low) intensity beam. Atoms leave the slower
at a velocity of about 50 m/s, except 4He* atoms with initial velocities of 1100 m/s,
1200 m/s and 1300 m/s in case of the low intensity slowing beam. The radiation pres-
sure force is too weak and the atoms are lost at velocities of 881 m/s, 874 m/s and
846 m/s, respectively.
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a slowing laser beam with an rms diameter of 1.2 cm, that is focussed by a lens
( f = 2.2 m) onto the skimmer in the collimation section vacuum chamber. The
resulting beam profile anticipates the transverse spreading (due to transverse
heating) of the decelerated beam given by [90, 195]

rrms(z) =
√

1
10 vrec[vz(0) − vz(t)] t, (2.4)

where t = ζ−1(z) and vrec = h̄k/m is the recoil velocity. Using the slowing
light intensity I

(
rrms(z), z

)
, solutions are shown in Fig. 2.8 for two slowing light

powers and various initial velocities.5

The solutions show significant differences between the two He isotopes as
a result of the different masses. With the slowing force equal for both isotopes,
3He* atoms experience a larger deceleration than 4He* atoms. For a large slow-
ing light intensity (I ≥ 100Isat), the effects of the mass difference are small: both
isotopes are decelerated from velocities of 1375 m/s to around 50 m/s. How-
ever, at small slowing laser intensity (I ≥ 50Isat), simulations show that the
deceleration process of 4He atoms with velocities v >∼ 1100 m/s stops around a
velocity of 870 m/s. For 3He* atoms, deceleration to 50 m/s occurs for intensi-
ties down to I ≥ 33Isat. As fluctuations in the radiation force are not included
in the calculation, the occurrence of longitudinal velocity spreading in the beam
is neglected. Solutions ζ(t) are still expected to provide a good approximation
for the deceleration process, as the range of resonant velocities (gray band in
Fig. 2.8) is much larger than the recoil velocity, vrec = 0.0920 m/s for 4He* and
vrec = 0.122 m/s for 3He* (see Appendix A). Deviations can be expected if
recoil kicks accumulate in the forward direction and the absorption rate is too
small to compensate for the reduced deceleration. These effects can be taken
into account in a Monte Carlo simulation [206], which is outside the scope of
the present discussion.

As discussed in Section 2.1, the Zeeman slower is constructed from two
double-walled tubes. The outer diameter is 35 mm and cooling water flows
between the walls. The first Zeeman slower tube carries the first solenoid and
has an inner diameter of 25 mm. The second tube carrying the second solenoid
and the extraction coil, has an inner diameter of 32 mm. The distance between
the location of the magnetic field minimum and the MOT center is minimized to
achieve optimum loading of the MOT. The slowing light is split off from the fiber
laser beam and detuned to the red from the laser cooling transition by 500 MHz

5Considering the Zeeman deceleration process, Napolitano et al. [138] have derived adiabatic
following condition a(z) < a∞, where

a(z) = −dv

dt
= −v

dv

dz
= −v

µB

h̄k

dB

dz
=

µB

h̄2k2
(h̄∆laser − µBB)

dB

dz
,

is the deceleration at resonance and a∞ = F(max)
rad /m = h̄kΓ/(2m). The condition is a convenient

tool for anyone designing a slower, but does not have to be satisfied along the entire deceleration
distance. At points where the solenoids change by one turn, the deceleration is allowed to be
larger than a∞, as long as there are stretches between these points where the field gradient is
much smaller [195].
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Figure 2.9. Transitions and laser frequencies. Transition MF = 3/2 → M ′
F = 5/2 of

C3 and transition MJ = 1 → M ′
J = 2 of D2 are the cycling transitions used for the

deceleration of 3He* atoms and 4He* atoms, respectively. Both transitions have a Landé
g-factor of 1. Transition C9 has a Landé g-factor of −1.9.

with a 250 MHz AOM (A.A Opto-Electronic, model AA.MT.250/A0.4-IR) in a
double pass configuration.

For the simultaneous deceleration of 3He* and 4He* atoms, the polarization
of the slowing light is tuned with a quarter-wave plate (in a rotatable mount)
to obtain maximum loading of atoms in the MOT. The polarization of the 4He*
slowing light is of critical importance in the case of simultaneous deceleration,
as optical pumping effects frustrate the deceleration of 3He* atoms if the light
has a significant σ− component. Figure 2.9 displays the slowing frequencies νZS3

and νZS4 and the transitions at 1083 nm, and shows that the isotope shift and
fine-structure splitting are of the same order of magnitude, so that transitions
C9 and D2 are separated by less than a GHz. Calculation of Zeeman diagrams
shows that resonant excitation of transition MF = 3/2 → M ′

F = 1/2 of C9

by the σ− component of νZS4 occurs at a magnetic field of 199 G. Excited 3He*
atoms have a high probability of decaying into a nonslowed magnetic substate
and escape the slower at a velocity around 843 m/s. These optical pumping
effects are observed in the experiments of Chapter 6 as a critical dependence of
the loading rate of 3He* atoms on the polarization of the 4He* slowing light.
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Figure 2.10. MOT configuration (left) and magnetic field component Bz on the axis of
the Zeeman slower in the trapping region (right). The magnetic field from the MOT has
a (radial) field gradient of 14 G/cm.

2.6 Magneto-optical trap

The decelerated atoms are captured, cooled and confined in a magneto-optical
trap of the standard (six-beam) configuration, as suggested by Dalibard [157, in
closing remarks] and realized for the first time by Raab et al. [157]. Figure 2.10
shows a schematic view of the six-beam MOT configuration: three orthogonal
pairs of counter-propagating laser beams with mutual opposite circular po-
larizations intersect at the zero point of a superimposed magnetic quadrupole
field. When the laser frequency is detuned to the red of the laser cooling tran-
sition (∆laser < 0), atoms experience the cooling effect of a three dimensional
optical molasses combined with a confinement by the spatial dependence of
the radiation pressure force due to Zeeman shifts in the magnetic field.

An estimate for the force on the axis of a single beam pair (assuming f = 1
everywhere) is given by

F(x, v) = h̄k
Γ

2

{
I+/Isat

1 + Itot/Isat

1 + γ/Γ(
1 + γ/Γ

)(
1 + γΓ/Γ ′2) + (2∆+(x, v)/Γ ′)2

− I−/Isat

1 + Itot/Isat

1 + γ/Γ(
1 + γ/Γ

)(
1 + γΓ/Γ ′2) + (2∆−(x, v)/Γ ′)2

}
, (2.5)

where the power-broadened linewidth is Γ ′ = Γ
√

1 + Itot/Isat and the detuning
is ∆±(x, v) = ∆laser ∓ kv ∓ (µB/h̄)(∂B/∂x)x. The effect of laser beams in other
directions is taken into account in the saturation of the transition [115].

The force is different compared to usual MOTs [130], as trapping light de-
tuning is extraordinarily large, ∆laser/2π = −25 (Γ/2π) = −40 MHz. As dis-
cussed by Herschbach [77], two regimes can be distinguished for the motion of
trapped atoms: the capture regime, where atoms with a large velocity of about
50 m/s are captured in the trap, and the molasses regime in which atoms have
small velocities and small displacements from the center of the trap. As shown
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Figure 2.11. Radial (solid line) and axial (dashed line) acceleration due to the radiation
pressure force in the MOT. For the radial direction, I+ = I− = 8 mW/cm2 and ∂B/∂x =

14 G/cm. For the axial direction, I+ = I− = 13 mW/cm2 and ∂B/∂x = 28 G/cm. The
total trapping intensity Itot = 59 mW/cm2

in Fig. 2.11, force F(x, v) is strong in the capture regime, where x ≈ 0.01 m
and v ≈ 50 m/s, and weak in the molasses regime, where x ≈ 0.003 m and
v ≈ 1.5 m/s. Consequently, absorption probabilities are small in the molasses
regime, so that the light-assisted ionizing collision rate is small and large num-
bers of He* atoms can be confined in the MOT [164].

The trapping light is detuned by −40 MHz with an AOM (IntraAction Corp.,
model 40R) in a single pass configuration. With beam splitter plates, the light is
split in six beams that enter the MOT chamber through uncoated windows (see
Fig. 2.2). Two beam pairs are at an angle of 45° with the direction of gravity and
one pair, entering the chamber through the reentrant windows, is at an angle of
90°. The beams can be aligned independently and have a large rms diameter of
27 mm; the total central intensity is 59 mW/cm2. The MOT coils are wound with
insulated copper wire with a 2 mm × 3 mm rectangular cross-section. Consist-
ing of 24.5 windings, the coils have an inner diameter of 55 mm, outer diameter
of 77 mm and a height of 17 mm, and are mounted in water-cooled, cylindrical
boxes (with a circular hole in the center) of polyvinyl chloride (PVC) with an
inner (outer) diameter of 45 mm (89 mm). The boxes are mounted in the reen-
trant windows and the coils, in an anti-Helmholtz configuration, produce an
axial magnetic gradient of about 1.2 G/cm per ampere. The reentrant windows
are separated by a distance of 40 mm. For the two-isotope MOT, laser beams
from the two fiber lasers for the two isotopes are overlapped and coupled into
a single-mode, polarization-maintaining fiber to achieve perfect overlap at the
expense of laser power. To compensate for the loss of laser power, the rms di-
ameter of the trapping beams is reduced and a larger magnetic field gradient is
used. Experimental details and the characterization of the two-isotope samples
are provided in Chapter 6. The characterization of the trapped samples of single
isotopes is presented in Section 2.10.
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Figure 2.12. Schematic view of the MCP detectors in the MOT vacuum chamber.

2.7 Diagnostic tools

The trapped He* samples are studied with four diagnostic tools. A microchan-
nel plate detector with a negative high-voltage on its front plate attracts all pos-
itive ions created in the sample and is used to measure ion production rates
in the trapped samples.6 A second MCP detector is electrically shielded by a
grounded grid and is used to perform time-of flight measurements with the
trapped samples (see Section 2.10.1). An imaging system based on a charge-
coupled device (CCD) camera can be used to obtain fluorescence images of the
trapped sample. Also, with an additional probe laser pulse, absorption images
can be obtained (see Section 2.10.2).

The MCP detectors are two-stage MCP assemblies (Hamamatsu, model F4655)
with an active area diameter of 14.5 mm. The detectors are operated in current
mode configuration, i.e. as a DC-current amplifier [219], and the current signal
is converted to a voltage, amplified and recorded on a digital oscilloscope. A
neutral He* atom can be detected with an MCP detector, because of its large in-
ternal energy of 20 eV. If the He* atom hits a MCP channel, the internal energy
releases an electron with high probability, initiating an avalanche of electrons in
the channel.

The unshielded MCP detector is operated at a voltage of −1620 V and is
mounted as shown in Fig. 2.12, at a distance l1 = 106(2) mm from the MOT

center. The detector points towards the MOT center, i.e. the detector surface
is perpendicular to the line connecting MOT center and center of the detector
surface. The shielded detector is mounted in a similar manner at a distance
l2 = 106(2) mm from the MOT center and is operated at a voltage of −1500 V.

6Chapters 3 and 5 present experiments where ion production rates are measured to deter-
mine ionization rate coefficients for cold collisions of He* atoms.
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The line connecting detector center and MOT center (which is perpendicular to
the detector surface) makes an angle of 22.2° with the direction of gravity. As
discussed in Appendix B, the orientation of the detector is important for the
analysis of the TOF signals. Both detectors are mounted such that He* atoms
from the (decelerated) atomic beam cannot directly hit the detector surface.

The imaging system consists of a CCD camera (Cohu, RS-170 monochrome
1/2-inch, model 6312-2001) with a 2/3-inch objective lens mounted in front of
a 2-inch magnifier lens. The objective lens is uncoated and has a focal length of
50 mm and a relative aperture of f /2.8. The magnifier lens has an anti-reflection
coating for 1083 nm and a focal length of 600 mm. The two lenses image the
trapped sample with a magnification M = 0.17 onto the 786-pixel × 488-pixel
CCD image sensor (Texas Instruments, TC245) that has a pickup area with di-
mensions 6.4 mm × 4.8 mm. Background light is blocked by an infrared edge
filter. The aperture stop of the imaging is formed by the camera objective and
the field stop is formed by the CCD sensor. Consequently, the entrance win-
dow of the system is situated in object space and has a rectangular profile with
dimensions 37 mm × 28 mm. The angular aperture is 53 mrad.

2.8 Experimental control

To perform experiments on the trapped samples, various components of the
setup are controlled from a standard IBM PC compatible computer extended
with a digital I/O card, a frame grabber card and a GPIB card. These inter-
face cards are controlled from a program written in LabVIEW (National Instru-
ments); the program is built from subroutines (subVIs) provided by the manu-
facturers of the interface cards.

The digital I/O card (Viewpoint Systems, model DIO-128) is used to actuate
setup components in a predefined time sequence with high resolution. The
card contains a digital signal processor, memory and clock, and has 64 output
channels. A timetable with TTL signals for the output channels is loaded into the
memory from the LabVIEW program and is executed with a resolution of 1 µs,
independent of the processor of the computer host. The card is used to control
AOM drivers for the switching of trapping, slowing and probe light on a µs scale,
and mechanical shutters (Uniblitz, models LS2T2 and LS6T2) for the switching
of trapping and slowing light on a ms scale. Furthermore, it is used to control
two current switches (high voltage power MOSFETs), one for the MOT coils and
one for the second Zeeman slower coil, and to trigger the frame-grabber card as
well as a digital oscilloscope to record signals from the MCP detectors.

The frame-grabber card (Data Translation, model DT3152) is used to record
images from the CCD camera. The images can be stored on the hard drive of
the computer as bitmaps with the LabVIEW program. A digital oscilloscope
(Tektronix, model TDS210) is connected to the computer through the GPIB card
(National Instruments, model PCI-GPIB). Oscilloscope traces can be transferred
to the computer and stored on the hard drive with the LabVIEW program.
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Figure 2.13. Top view of the 389 nm MOT vacuum chamber. The vertical MOT laser
beams are not shown. Dimensions are given in mm.

2.9 Setup for 389 nm experiments

In an early stage, the setup has been used to study the magneto-optical trap-
ping of 4He* atoms with 389 nm light. Afterwards, the setup was significantly
changed to improve vacuum conditions and to allow trapping beams with a
large rms diameter. Differences with the setup discussed so far are presented in
the following. The laser system used to produce the 389 nm light is described
elsewhere [97, 98].

In the 389 nm setup, the magnetic field in the second Zeeman slower tube
has a minimum value of −160 G and the slowing light is detuned to the red of
the laser cooling transition by 250 MHz. The maximum magnetic field is 540 G,
so that atoms are decelerated from a velocity of about 1100 m/s to a velocity
around 30 m/s. (cf. Section 2.5).

The 389 nm MOT vacuum chamber is schematically depicted in Fig. 2.13; a
picture is shown in Fig. 3.3. The second Zeeman slower tube is welded onto the
chamber and has an inner diameter of 25 mm. The windows in the horizontal
plane have an anti-reflection coating for 389 nm and are glued into the stain-
less steel chamber with epoxy (UHU Plus two-component epoxy adhesive), so
that the chamber is bakeable up to 90 °C only. The Zeeman slower is pumped
by a single turbomolecular pump (Pfeiffer Vacuum, type TMU 071P, Table 2.1)
through a T-piece mounted between the first and second Zeeman slower tubes.
The pressure in the MOT chamber, pumped by a turbomolecular pump (Pfeiffer
Vacuum, type TPU 062H, Table 2.1), was 2 × 10−9 mbar when the helium beam
was absent, and 1 × 10−8 mbar when the beam was present.
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A quadrupole magnetic field with the symmetry axis in the vertical direc-
tion is produced by two MOT coils that are wound around the vacuum chamber.
Each coil consists of 17 windings of water-cooled copper tubing. The trapping
beams have an rms diameter of 8 mm and the total central intensity is about
330 mW/cm2. In the horizontal plane, beams are retro-reflected. Separate ver-
tical beams are used as the corresponding windows are uncoated.

The trapped sample was studied with two channeltron detectors (Dr. Sjuts,
model KBL 210 and model KBL 1010). The detectors are used for detection of
ion production rates and to perform TOF measurements on the trapped sam-
ples. A CCD camera (Pulnix, model TM-6AS) is used for imaging of 707 nm
fluorescence, emitted by a steady-state 389 nm MOT. Absorption imaging was
not applied in the 389 nm experiment. Further details are provided in Chap-
ter 3.

2.10 Single isotope trapped samples

Trapped samples are characterized by their temperature, number of trapped
atoms and effective volume (the samples have a Gaussian density distribution).
The temperature is derived from a TOF measurement with the shielded MCP de-
tector, as explained in Section 2.10.1. The number of trapped atoms and effec-
tive volume are derived from absorption images recorded with the CCD camera.
This detection technique is discussed in Section 2.10.2. Experimental results for
trapped samples containing a single isotope, either 3He* or 4He* are presented
in Section 2.10.3. Samples containing both isotopes are discussed in Chapter 6.

2.10.1 Time-of-flight measurement

In a TOF measurement, the trap is switched off and atoms from the sample,
undergoing a ballistic expansion, hit the unshielded MCP detector and pro-
duce a TOF signal. The trap is switched off by blocking the trapping light and
slowing light with AOMs and removing the magnetic fields for MOT and Zee-
man slower with the corresponding current switches (only the second Zeeman
slower solenoid and extraction coil are switched). The TOF signals, that are
recorded on a digital oscilloscope, are shown in Fig. 2.14 for samples of both
isotopes.

A TOF signal yields information on the velocity distribution of the trapped
atoms and, therefore, the temperature of the sample. As the MCP detector is
operating in a linear output regime, the signal is proportional to the rate of
atoms hitting the detector surface S , given by

RMCP =
∫∫

S
(Φ ·n) dσ, (2.6)

where n is the unit normal on S pointing into the detector and

Φ(x, y, z; t) = n(x, y, z; t) u(x, y, z; t), (2.7)
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Figure 2.14. Time-of-flight signals. The time at which the TOF signal peaks depends on
temperature and mass of the isotope.

is the atom flux associated with the expanding sample, with u(x, y, z; t) the local
velocity (see Appendix B). To obtain the temperature of the sample, the signal
is analyzed with a least square fitting procedure. In Appendix B, it is shown
that for our setup the fitting function can be written as

RMCP =
1√

1 + a2

∫ r

−r

∫ x2

x1

(aΦx(x, y, ax + b; t) − Φz(x, y, ax + b; t)) dxdy (2.8)

with r = 6.43 mm, a = 0.408, b = −114.5 mm, x1 = 34.1 mm and x2 = 46.0 mm
(defining the dimension, orientation and distance from the MOT center of the
MCP detector). Atom flux components Φx(x, y, z; t) and Φz(x, y, z; t) depend on
temperature. The initial spatial distribution of the sample can be neglected as
the radius of the trapped cloud is small compared to the radius of the ballisti-
cally expanded cloud that hits the detector. Detected atoms cover a solid angle
of 1.2 × 10−3 sr.

It is conceivable that magnetic field gradients produced by eddy currents
disturb the trajectories of the atoms at the start of a TOF measurement. However,
the MOT coils are mounted in PVC boxes and placed in reentrant windows, and
the steel chamber walls are at a sufficient distance from the trapped sample, so
that these effects can be neglected. No evidence of disturbed trajectories was
observed.

As the area under a TOF signal is proportional to the number of trapped
atoms in a sample N, TOF measurements can be used for the determination
of N, if the MCP detector is calibrated. To analyze the two-isotope MOT, the
MCP detector operating at the voltage of −1500 V is calibrated with absorption
images and TOF signals are used to determine trapped atom numbers. This is
discussed in Chapter 6.
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2.10.2 Absorption imaging

To determine the density distribution of the trapped sample, absorption images
are taken. The trap is switched off and, after 500 µs when magnetic fields have
disappeared, a resonant laser beam is sent through the sample, into the CCD

camera. The sample is imaged onto the CCD chip, appearing as a shadow in the
probe light. To avoid pushing of the atoms by the light, a beam of low intensity
(I <∼ 0.05Isat) is used, that is switched on for a short time of 100 µs.

The probe light is generated with the Toptica diode laser. Applying a mag-
netic field to the discharge cell in the saturated absorption spectroscopy setup,
the Lamb dips are shifted with the Zeeman effect and the laser frequency is sta-
bilized at 27 MHz from the (unperturbed) atomic transition. A resonant probe
beam, switchable at a nanosecond timescale, is obtained with an AOM (Neos
Technologies, Q-switch model N33027-50-5-I) operating at 27 MHz, in a single
pass configuration.

The interaction between the probe light and the atomic sample can be treated
with rate equations [195]. For a low intensity beam, traveling through a sample
with density distribution n(x, y, z), along the y-axis in positive direction, the
intensity I(x, y, z, ) satisfies Lambert-Beer’s law7

dI(x, y, z)

dy
= −h̄ω

Γ

2
I(x, y, z)

I ′sat
n(x, y, z), (2.9)

7As discussed by Tol [195], the intensity of the probe beam satisfies (quantum numbers apply
to 4He*; for 3He*, replace J by F, J ′ by F ′, MJ by MF, and M ′

J by M ′
F)

dI

dy
= −h̄ω

Γ

2
I

I ′sat
(∑MJ

nMJ
− ∑M ′

J
nM ′

J
)

with

I ′sat =
∑MJ

nMJ
− ∑M ′

J
nM ′

J

∑M ′
J
∑MJ

(ΘM ′
J MJ

/3) CM ′
J MJ

χM ′
J MJ

(nMJ
− nM ′

J
)

.

Here, nMJ
and nM ′

J
are the population of magnetic substates MJ and M ′

J , respectively, ΘM ′
J MJ

takes into account the polarization of the light, CM ′
J MJ

=
∣∣〈J 1; MJ(M ′

J − MJ)|J ′M ′
J〉

∣∣2 is the

relative strength of electric dipole transition MJ → M ′
J expressed in terms of Clebsch-Gordan

coefficients 〈j1 j2; m1m2|jm〉, and χM ′
J MJ

is a line-shape factor for the transition.
For samples released from the MOT, all χM ′

J MJ
are the same and the effective saturation in-

tensity can be written as I ′sat = f Isat/χ, where f is a rational number that depends on the
polarization of the light, the population of the magnetic substates and the relative strengths of
the transitions between substates. Writing n = ∑MJ

nMJ
+ ∑M ′

J
nM ′

J
, expressions can be derived

for two extreme situations. In the initial state, when the interaction of probe light and atoms
has just started, nM ′

J
= 0 and

dI

dy
= −h̄ω

Γ

2
I

I ′sat
n.

After a time of about 50 µs, a steady state is reached, where dnM ′
J
/dt = 0 and

dI

dy
= −h̄ω

Γ

2
I/I ′sat

1 + I/I ′sat
n

At small intensities, I ≪ I ′sat, the two cases are described by the same expression with different
values of I ′sat. Details can be found in Tol [195].

32



A magneto-optical trap setup for two metastable helium isotopes

where
I ′sat =

f Isat

χ(T)
(2.10)

is an effective saturation intensity (Isat = 0.167 mW/cm2), that accounts for
Doppler broadening of the atomic transition and the distribution of atoms over
the magnetic substates. It is assumed that I(x,−∞, z) ≪ I ′sat. The solution of
Lambert-Beer’s law is given by

I(x, y, z) = I(x,−∞, z) exp
[
−σa

∫ y

−∞
n(x, y ′, z) dy ′

]
(2.11)

with absorption cross-section

σa = h̄ω
Γ

2
1

I ′sat
=

3λ2

2π

χ(T)

f
. (2.12)

Doppler broadening is included in the line shape factor

χ(T) =

√
m

2πkBT

∫ ∞

−∞

1
1 + 4(∆ − kv)2/Γ2 exp[−mv2/(2kBT)] dv, (2.13)

which is the convolution of the natural Lorentz line shape of the transition and
a Maxwell-Boltzmann velocity distribution describing the trapped sample. The
laser linewidth of 0.4 MHz (0.25 Γ/2π) is too small to have a significant effect
on the relative absorption.

The distribution over magnetic substates is described by numerical factor f .
For an unpolarized sample8 probed by linearly-polarized light, factor funpol is
the inverse of the mean relative transition strength with MJ = M ′

J for 4He*
and MF = M ′

F for 3He*. It can be derived from Fig. 2.15, that funpol = 18/10 for
4He* and funpol = 2 for 3He* atoms.9 The interaction between the atoms and the
linearly-polarized light leads to polarization of the sample. For experimental
conditions, steady state is reached after about 50 µs [195]. The corresponding f

factor can be obtained by solving the rate equations. An analytical expression
and tabulated values for common two-level systems (including J = 1 → J ′ = 2
and F = 3/2 → F ′ = 5/2) are given in [66]. For a 4He* sample, fsteady = 17/10
and, for a 3He* sample, fsteady = 25/14. Consequently, optical pumping leads
to a decrease of the f factors by 6% for 4He* and by 11% for 3He*.

As the samples have a Gaussian shape, the density distribution is given by

n(x, y, z) =
N

(2π)3/2σxσyσz
exp

(
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z

)
, (2.14)

8When a sample is released from the trap, magnetic fields are switched off and any polariza-
tion is assumed to be washed out.

9Tol [195] has shown that, for equally populated magnetic substates nJ (unpolar-
ized samples), f is independent of the polarization of the light and can be written
finit = 3(2J + 1)/(2J ′ + 1) in the case of 4He*, and finit = 3(2F + 1)/(2F ′ + 1) in the case of
3He*.
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Figure 2.15. Relative strengths of electric dipole transitions between magnetic substates
for 4He* (J = 1 → J ′ = 2) and 3He* (F = 3/2 → F ′ = 5/2).

with N the number of atoms, and σx, σy and σz the rms radii of the sample.
The cloud is assumed to be cylindrically symmetric (σy = σx) around the z-
axis. To obtain the three parameters determining the density distribution, the
transmittance

Iout(x, z)

Iin(x, z)
=

Iabs(x, z) − Ibgr(x, z)

Iprb(x, z) − Ibgr(x, z)
(2.15)

is determined from three pictures: a raw absorption image Iabs(x, z) of the
cloud, a probe image Iprb(x, z) under the same conditions but without the cloud,
and a background image Ibgr(x, z) without probe light. Substituting Eqs. (2.11)
and (2.14) into Eq. (2.15) results in an expression for the transmittance,

Iout(x, z)

Iin(x, z)
= exp

{
−h̄ω

Γ

2
χ(T)

f Isat

N

2πσxσz
exp

[
− x2

2σ2
x
− z2

2σ2
z

]}
, (2.16)

that is used as a fitting function in a least square fitting procedure. The temper-
ature obtained from a preceding TOF measurement is used as input.

The transmittance obtained from a 3He* sample with T = 2.1 mK is shown
in Fig. 2.16; profiles along the x-axis and z-axis are shown in Fig. 2.17. In the
fitting procedure f factors for unpolarized samples are used. This should result
in a small rise of absorption. However, there should also be a drop in absorption
because the atoms get pushed by the light. As shown in [195], both effects are
small in the 100 µs period of probing and since they cancel each other out at
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Figure 2.16. Absorption image of a 3He* sample after an expansion of 0.5 ms.
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Table 2.2. Experimental details.

trapping light detuning ∆laser/2π = −40 MHz
total trapping light intensity Itot = 59 mW/cm2

magnetic field gradient
∂B

∂z
= 2

∂B

∂ρ
= 28 G/cm

Table 2.3. Characteristic parameters of the magneto-optically trapped He* samples.
Experimental errors correspond to one standard deviation.

3He* 4He*

T (mK) 2.0(3) 1.9(1)

N (−) 2.6(9) × 108 3.7(5) × 108

σρ (cm) 0.20(3) 0.20(2)
σz (cm) 0.14(1) 0.15(2)
V (cm3) 0.09(3) 0.09(2)
n0 (cm−3) 3.0(5) × 109 4.4(4) × 109

least partly, both are neglected. The rms radii of the sample in the MOT are
obtained by correcting for the expansion of the sample over a time of 500 µs.
The values are consistent with fluorescence imaging measurements.

2.10.3 Characteristics of samples

Samples containing a single isotope have been optimized for trapped atom
number and analyzed with TOF measurements and absorption imaging. Ex-
perimental details concerning the trapping light and magnetic field used for
the MOT are summarized in Table 2.2. The results of the measurements are pre-
sented in Table 2.3, listing temperature T, trapped atom number N, rms radii σρ

and σz, volume V = (2π)3/2σ2
ρ σz, and central density n0 = N/V.

For 4He* samples, the number of trapped atoms is comparable to other MOTs
[24, 148, 196]. As our detuning and intensity of the trapping light as well as
our magnetic field gradient are comparable to those in other experiments, also
the central density and volume are of the same order of magnitude. For our
3He* sample, the trapped atom number is an improvement by three orders of
magnitude compared to results reported previously [102, 103].

The temperature of our samples is higher than predicted by theory [115],

T =
h̄Γ

4kB

1 + Itot/Isat + (2∆laser/Γ)2

2|∆laser|/Γ
≈ 1.1 mK (2.17)

The difference is probably caused by the trapping beam alignment that has been
optimized for trapped atom number and by an intensity imbalance of about
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30% in one of the trapping beam pairs. Pushing of the cloud towards the MCP

by remaining magnetic field gradients is unlikely as the strength and direction
of the corresponding force depend on the magnetic substate of the atom, and
magneto-optically samples are (almost) unpolarized (see Section 5.5).

The single-isotope samples presented here are the starting point for the study
of cold ionizing collisions of 3He* atoms or 4He* atoms, as discussed in Chap-
ter 5. The simultaneous trapping of both isotopes is discussed in Chapter 6.
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Magneto-optical trap for metastable helium

at 389 nm

A magneto-optical trap (MOT) is a standard tool in the production of cold atomic
gases, allowing investigation of cold-collision phenomena [211] as well as the
realization of Bose-Einstein condensation (BEC) in alkali-metal species [3] and,
more recently, in metastable triplet 4He [147, 162], referred to as 4He*. Meta-
stable triplet helium has a high (19.8 eV) internal energy, which allows for
real-time diagnostics and increased sensitivity in BEC probing. Unfortunately,
the high internal energy also introduces strong Penning ionization losses in
magneto-optically trapped atomic clouds, which imposes limits on the maxi-
mum achievable density. The two-body loss rate coefficient associated with this
process is about 5 × 10−9 cm3/s for a MOT on the 2 3S1 → 2 3P2 transition at
1083 nm [196], which is about two orders of magnitude larger than the loss rate
coefficient in a standard alkali-metal MOT. In BEC experiments, a MOT is used
as a bright source of cold atoms to load a magnetic trap with large numbers of
atoms. Moreover, as a starting point for evaporative cooling, a dense magne-
tostatically trapped cloud is desired. So ideally, the magneto-optically trapped
cloud must provide this high density. In the present work, we explore the fea-
sibility and the possible advantages of a MOT using the 2 3S1 → 3 3P2 tran-
sition at 389 nm for metastable helium, in comparison with the conventional
2 3S1 → 2 3P2 (1083 nm) magneto-optical trap.

Although the 389 nm transition was recently used in laser cooling experi-
ments [174], it has not found wide application yet. This mainly relates to the
fact that 10% of the 3 3P2 population decays via the 3 3S1 state (Fig. 3.1), making
a closed laser cooling transition between magnetic substates impossible. In ad-
dition, the shorter 389 nm wavelength leads, in combination with a linewidth
Γ/2π = 1.51 MHz, to a relatively high saturation intensity Isat = 3.35 mW/cm2
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Figure 3.1. Helium level scheme. The long-lived 2 3S1 metastable state is populated in
a DC discharge. The 2 3S1 → 3 3P2 (389 nm) and 2 3S1 → 2 3P2 (1083 nm) laser cooling
transitions are indicated with bold arrows.
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(see Appendix A). In comparison, the 2 3S1 → 2 3P2 transition at 1083 nm has
almost the same linewidth, but a saturation intensity of only 0.167 mW/cm2. To
maximize the number of trapped atoms, dedicated metastable helium magneto-
optical traps are operated at large detuning and intensity [23, 146, 196]. This
implies the need for a high-power laser setup. Nevertheless, the concept of a
389 nm magneto-optical trap is appealing. An interesting feature of the 389 nm
transition is the momentum transfer per photon, which is 2.8 times larger than
for the 1083 nm photons. Since both transitions have nearly equal linewidths,
the spontaneous cooling force increases proportional to the photon momentum.
This offers the possibility to compress the cloud substantially in comparison to
a 1083 nm MOT at the same detuning and power. Unfortunately, compression
may lead to increased losses predominantly due to light-assisted (photoasso-
ciative) collisions. However, the two-body loss rate coefficient is expected to be
smaller for the 389 nm case (see Section 3.3.1), so that the cloud may be com-
pressed without loss of too many metastables. Furthermore, it should be noted
that the 1083 nm and 389 nm transitions are electronically alike, which greatly
facilitates the comparison between the two MOT types. Finally, the 389 nm MOT

differs from the 1083 nm MOT in yet another respect: two 389 nm photons con-
tain sufficient energy to ionize an atom in the 2 3S1 state. This may introduce
observable additional losses.

In this chapter, we report on the study of a prototype 389 nm MOT for 4He*
atoms. In Section 3.1 we present some theoretical considerations regarding laser
cooling and trapping at 389 nm. Next, we outline our experimental setup in
Section 3.2. Results are given in Section 3.3. Conclusive remarks and an outlook
are presented in Section 3.4.

3.1 Theory of the 389 nm MOT

3.1.1 Comparison with 1083 nm MOT

The large photon momentum transfer modifies the equilibrium conditions in a
389 nm MOT with respect to the 1083 nm situation. This follows from regarding
the motion of an atom, trapped in a one-dimensional MOT, as an overdamped
harmonic oscillation [115, 176]. Within this picture, the oscillation frequency
ωosc and damping coefficient ǫd, for small velocities and small deviations from
trap center, are given by

ω2
osc = 4h̄k

4δSζ

m(1 + 2S + 4δ2)2 , (3.1)

ǫd = 4h̄k2 4δS

m(1 + 2S + 4δ2)2 , (3.2)

with k being the wave number of the MOT laser light, m the atomic mass, δ =

∆/Γ with ∆ the laser detuning from resonance, S = I/Isat the saturation param-
eter, with I being the intensity per MOT beam, and ζ representing the spatial
derivative of the position-dependent Zeeman detuning. The theoretical frame-
work in which Eqs. (3.1) and (3.2) are derived assumes that the Doppler shift
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∆rec, corresponding to the recoil velocity, is small compared to the linewidth Γ.
In the 389 nm case, however, ∆rec/Γ = 0.44, which invalidates the assumption
of a small recoil Doppler shift. Nevertheless, we proceed with our comparison
between a 389 nm MOT and 1083 nm MOT based on Eqs. (3.1) and (3.2), assum-
ing that the conclusions will be approximately correct.

The large photon momentum transfer at 389 nm implies two general differ-
ences between the 389 nm and a 1083 nm MOT, which follow immediately from
Eqs. (3.1) and (3.2). First, bearing in mind that k389/k1083 = λ1083/λ389 ≈ 2.8,
it is obvious that for an equal saturation parameter and detuning the damping
coefficient increases by a factor (k389/k1083)

2 ≈ 7.8 as compared to a 1083 nm
MOT. Although this does not alter the temperature in the MOT, which does not
depend on wavelength and is expected to be almost equal for the two cases, the
damping time τ389 is shortened to (k1083/k389)

2 τ1083 ≈ 0.13τ1083 [115]. Second,
for identical MOT parameters, the spring constant κ = mω2

osc is increased by a
factor 2.8. This has implications for the size of the trapped cloud, which is de-
termined by the equipartition of the potential and kinetic energies. The volume
V of the cloud is (following the definition of V as given in Section 3.2.3)

V =

(
2πkBT

κ

)3/2

, (3.3)

where for simplicity we have assumed an isotropic three-dimensional (3D) har-
monic oscillator (kB is Boltzmann’s constant). It follows that the volume de-
creases by a factor (k389/k1083)

3/2 ≈ 4.6, i.e. the cloud is compressed with re-
spect to the 1083 nm situation.

3.1.2 Loading process

All magnetic substates participate in the atom-laser interaction, as the magneto-
optically trapped cloud is contained at low magnetic field strengths and irradi-
ated from six directions with circularly polarized light. Therefore, the presence
of the second decay channel of the 3 3P2 state will not limit the operation of the
MOT, as long as there is loading of atoms from the outer regions of the MOT vol-
ume. Loading, however, may be frustrated by the nonclosed cycling transition
as well as by the relatively large Doppler shift. More specifically, the question
arises whether the slowing process of atoms entering the MOT volume can be
completed before a spontaneous emission via the 3 3S1 cascade takes the atom
to a different, nonresonant magnetic substate. If not, the atom needs to be re-
pumped to the cycling transition; otherwise it will escape from the MOT volume.
To make a conservative estimate of the capture velocity of a 389 nm MOT, a sim-
ple 1D model for an atom traversing the MOT volume is used. In this model,
the MOT is replaced by a 389 nm Zeeman slower with a length equal to the MOT

beam diameter and a slowing laser with detuning equal to the MOT detuning.
We calculate the position-dependent, instantaneous photon scattering rate

for atoms at a given velocity v, interacting with a counterpropagating, red-
detuned laser beam at 389 nm inducing σ+ transitions. This laser beam repre-
sents the two MOT laser beams counterpropagating the atomic beam at angles of
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Figure 3.2. (a)–(c) 389 nm and (d) 1083 nm photon scattering rates as a function of
distance from the MOT center for M = 1 → M ′ = 2 (solid line), M = 0 → M ′ = 1
(dashed line), and M = −1 → M ′ = 0 (dash-dotted line) transitions.

±45◦ with respect to the atomic beam (see Section 3.2.1). We assume the atoms
to be predecelerated by a Zeeman slower, so that we can choose any initial ve-
locity. We take Zeeman detuning, laser intensity, and Doppler shift into account,
the latter of which is taken to be kv/

√
2 to correct for the ±45◦ angle between the

atom and (real) laser beams. Furthermore, we consider all three σ+ transitions,
i.e. M = −1 → M ′ = 0, M = 0 → M ′ = 1 and M = 1 → M ′ = 2 (referred to as
the laser cooling or cycling transition). In Fig. 3.2, plots are shown of the photon
scattering rate for the three σ+ transitions as a function of the distance from the
center of the MOT, measured along the symmetry axis of the Zeeman slower.
The MOT light boundaries are at about ±10 mm from the MOT center (see also
Section 3.2.2), and the atoms are moving into the positive direction. Figure 3.2(a)
shows the familiar behavior of the scattering force in a MOT. An atom, moving
into the positive direction at a typical intra-MOT velocity v = 1 m/s, scatters
an increasing number of photons from the counterpropagating MOT laser beam
as it moves farther away from the MOT center. Consequently, it will be slowed
down and eventually pushed back towards the center.

The model can also be used to investigate the capture of atoms emerging
from the Zeeman slower. As the slowing light is σ+-polarized, atoms are op-
tically pumped into the M = 1 state and are only captured in the MOT if the
scattering rate for transition M = 1 → M ′ = 2 is sufficiently large. First,
we consider atoms that emerge from the slower with a velocity v = 75 m/s
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(not shown in Fig. 3.2). Choosing a MOT detuning of −35 MHz, an intensity of
30Isat, and a magnetic-field gradient of 20 G/cm (these conditions are typical for
a 1083 nm MOT), the model shows that atoms are not resonant with the slow-
ing light inside the MOT volume and no atoms are captured. Next, we lower
v to 35 m/s. We observe that the atoms now interact strongly with the laser
light within the MOT volume (see Fig. 3.2(b)). However, the peaks in the scat-
tering rate of the different σ+ transitions hardly overlap in space, as a result of
their different Zeeman detunings. Slowing these atoms down to zero velocity
requires about 190 absorption-emission cycles, whereas it takes about 20 cycles
(corresponding to a velocity reduction of only 4 m/s) for the atom to end up in
one of the nonabsorbing (M = −1 or M = 0) states. Consequently, the capture
process is interrupted. Before this M-state atom becomes sufficiently resonant
again, such that it is optically pumped back to the M = +1 state, it will have
traveled out of resonance with the cycling transition and can no longer be cap-
tured by the MOT. Only for velocities v < 20 m/s, an atom ending up in the
wrong M state is repumped fast enough to continue the deceleration towards
zero velocity (Fig. 3.2(c)). From these simulations we conclude that the cap-
ture velocity of the 389 nm MOT is about 24 m/s. This velocity is much smaller
than the ∼ 75 m/s capture velocity of a typical 1083 nm MOT. Figure 3.2(d)
illustrates the superior loading capabilities of a 1083 nm MOT of 15 mm radius.
The smaller Doppler shift allows for faster atoms to be captured, whereas the
closed cycling transition does not impose any constraints on the magnetic-field
strength. In fact, the 1083 nm MOT diameter sets the maximum stopping dis-
tance, and thus limits the capture velocity. Within the picture provided by the
model, increasing the diameter of a 389 nm MOT will not solve the problem de-
scribed above. To avoid optical pumping to nonresonant magnetic substates in
the outer regions of the MOT, only small magnetic-field gradients can be toler-
ated. Then, to maintain sufficient confinement of the trapped atoms, only small
MOT laser detunings are allowed, thereby limiting the capture velocity.

We stress that this model is based on crude simplifications and ignores im-
portant features of the MOT. For instance, the orthogonal MOT laser beams, in
combination with the spatially varying, three-dimensional magnetic-field vec-
tor induce σ± as well as π transitions. Therefore, the conditions required for
repumping to the laser-cooled state may be less stringent than predicted by our
simple model, and we conclude that the capture velocity of a 389 nm MOT will
be somewhat larger than 24 m/s. As will be discussed in Section 3.2.1, the
relatively low capture velocity has negative consequences for the loading rate,
which may be partially overcome by the implementation of an auxiliary Zee-
man slower in the apparatus. In Section 3.3.3 we present the results of a test
of this auxiliary Zeeman slower concept, as well as a derivation of the 389 nm
MOT capture velocity from experimental data.
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Figure 3.3. Picture of the MOT vacuum chamber with anti-Helmholtz coils and optics.
The second part of the Zeeman slower is welded onto the MOT chamber. Scattered
laser light (wavelength 389 nm) is visible on mirrors and windows. The channeltron
detectors are connected to vacuum feedthroughs.

3.2 Experimental setup

3.2.1 Vacuum apparatus and production of slow metastables

The first stage in our atomic beam apparatus involves a liquid nitrogen-cooled
DC-discharge source, producing a beam of 4He* atoms that is laser collimated
using the curved-wavefront technique. The beam source is based on the source
described by Rooijakkers et al. [163]. The collimated beam enters a differentially
pumped two-part Zeeman slower that reduces the longitudinal velocity from
1000 m/s to ∼ 25 m/s. Laser light with a wavelength of 1083 nm is obtained
from a commercial 2 W fiber laser (measured bandwidth 8 MHz) and used for
slowing and collimation. The laser is stabilized to the 2 3S1 → 2 3P2 transi-
tion using saturated absorption spectroscopy in an rf-discharge cell. The slow-
ing light is detuned by −250 MHz using an acousto-optical modulator (AOM).
Downstream the Zeeman slower the MOT vacuum chamber is located, with
20 mm diameter laser windows for the MOT beams (see Figs. 3.3 and 3.4). Two
channel electron multipliers (channeltrons) are mounted inside to separately
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Figure 3.4. Schematic top view of the MOT vacuum chamber. Not shown are the vertical
MOT laser beams. Dimensions are given in mm.

detect ions and metastables. Both channeltrons are operated with negative high
voltage at the front end; however, one of them is put more closely to the cloud,
thereby attracting all positively charged particles and leaving only the neutral
metastables to be detected by the other. Also, the detector of metastables is par-
tially hidden behind an aperture in the wall of the vacuum chamber (Fig. 3.4),
that shields of its electric field considerably. Two 50 A coils, wound around
the vacuum chamber and consisting of 17 turns copper tubing each, produce
a quadrupole magnetic-field with a gradient of 43 G/cm along the symmetry
axis. The field of the second part of the Zeeman slower inside the MOT region is
counteracted with a compensation coil, mounted at the position of the Zeeman-
slower exit. The pressure in the MOT chamber is 2 × 10−9 mbar, and increases
to 1 × 10−8 mbar when the 4He* beam is switched on.

The reduced capture velocity of a 389 nm MOT is a significant limitation,
since a helium atomic beam expands dramatically due to transverse heating
during Zeeman deceleration [114]. Calculations of the rms size of the atomic
beam along the slowing trajectory show an increase in the rms atomic beam
diameter by a factor 1.7 when tuning the end velocity from 75 m/s down to
25 m/s. This may lead to a decrease of a factor 3 in metastable flux. In con-
junction with the limited MOT volume, this inevitably will result in a reduced
loading rate. To minimize atomic beam expansion at the end of the Zeeman
slower, we overlap the slowing laser beam with an additional 1083 nm beam,
with identical circular polarization and similar intensity, but different detuning
(∆/2π = −80 MHz) obtained using a second AOM. By choosing the same sign
of the quadrupole magnetic-field gradient along the slower axis as that of the
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Zeeman slower itself, an auxiliary Zeeman slowing stage only centimeters up-
stream of the MOT volume is established. This should allow trapping of atoms
with velocities up to 75 m/s at the end of the Zeeman slower. A calculation of
the atomic beam diameter for this case indicates that the loading rate may be
increased by a factor 2.4 compared to the case where the Zeeman slower slows
atoms down to a velocity of 24 m/s.

3.2.2 Laser setup at 389 nm

The MOT laser light is obtained by frequency doubling the output of a Coherent
899 titanium:sapphire (Ti:S) laser (778 nm with few-hundred kHz bandwidth) in
an enhancement cavity containing a 10 mm Brewster-cut LBO crystal. The cavity
length is locked to the fundamental wavelength using the Hänsch-Couillaud
scheme. The Ti:S laser is pumped by 10 W at 532 nm from a Spectra-Physics
Millennia X laser. We routinely produce 700 mW of 389 nm light; peak values
of over 1 W of 389 nm at 2.1 W fundamental power have been achieved. We
measured 4% short-term (∼ 10 ms) power fluctuations in the 389 nm output.1

The LBO crystal is flushed with oxygen, which increases the output power by
about 10%. A small portion of the UV output is used to stabilize the wavelength
to the 2 3S1 → 3 3P2 transition with saturated absorption spectroscopy, while
Zeeman-tuning the Lamb dip allows continuous adjustment of the detuning
between 0 MHz and ±150 MHz. Further details can be found in [97, 98]. A
combination of cylindrical and spherical lenses transforms the UV beam into
a round, parallel and approximately Gaussian beam with 8 mm waist. The
beam profile is truncated by a 20 mm circular aperture, followed by a series
of nonpolarizing beamsplitters that split the UV beam into four beams. The
individual beam intensities are chosen such that two beams in the horizontal
plane can be retrorefelected, while the intensity of the two vertical beams along
the symmetry axis of the quadrupole field ensures a more or less spherical 4He*
cloud.

3.2.3 MOT diagnostics

Time-of-flight measurement

The internal energy of helium metastables can be exploited in measuring time-
of-flight (TOF) spectra of a MOT. A channeltron directly detects part of the
expanding cloud after the atoms in the MOT have been released by suddenly
switching off the MOT laser, the magnetic coils, and the slowing beams. The
integrated TOF signal as obtained in such an experiment is proportional to the
total number of trapped atoms, while fitting the recorded signal to a Maxwell-
Boltzmann TOF distribution function gives the temperature of the cloud. In our
experiment, the channeltron is operated in pulse-counting mode:2 using an am-

1Throughout this chapter, presented uncertainties and noise levels correspond to one stan-
dard deviation.

2The channeltron cannot be operated in current mode, as it saturates at large count rates.
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plifier/discriminator, the count rate is not dependent on the momentary gain of
the channeltron. The output of the amplifier/discriminator is subsequently in-
tegrated by a calibrated ratemeter. The obtained TOF signals are analyzed with
a fitting procedure. The integrated TOF signal gives the number of detected
atoms, whereas a Maxwell-Boltzmann fit to the data, which also takes into ac-
count the response time of the ratemeter, reveals the temperature. With an accu-
rate measurement of the solid angle covered by the detection area, the accuracy
in the absolute number of trapped atoms is determined by the detection effi-
ciency of low-velocity He* atoms, which is estimated to be in the range 10–70%
(see also Refs. [163, 196], and references therein). This measuring method there-
fore cannot provide better than 50% accuracy in the absolute number of trapped
atoms.

Fluorescence detection

In addition to the determination of the MOT atom number by time-of-flight mea-
surements, we monitor the fluorescence of the cloud using a calibrated charge
coupled device (CCD) camera to independently determine the number of atoms.
The cascade via the 3 3S1 state generates photons with a wavelength of 707 nm,
that are far more efficiently detected by a camera than photons from a 1083 nm
MOT. Moreover, the 707 nm light does not suffer from reabsorption, because of
the insignificant population of the 2 3P2 level. Therefore, we can safely assume
the monitored fluorescence to be proportional to the number of atoms at each
point in the cloud image, even at the highest densities obtained in our MOT. To
calibrate the camera, we use a small fraction of the Ti:S laser output, with the
laser tuned to 707 nm. In the atom number determination, we use dichroic mir-
rors to block all other wavelengths scattered from the MOT, most importantly
the abundant 389 nm light. To extract the number of atoms N from the observed
fluorescence power Pfluor we use the empirical equation of Townsend et al. [197],
which relates the emitted power to the number of atoms:

Pfluor = Nh̄ω
Γ

2
6CS

1 + 6CS + 4δ2 . (3.4)

In the above equation, S = I/Isat, where Isat is the saturation intensity in the
case of σ+ transitions in an optically pumped environment, and I is the laser
intensity of a single MOT beam. The phenomenological factor C incorporates
the effects of reduced saturation; as the six circularly polarized MOT laser beams
traverse the cloud in different directions and at varying angles with the quadru-
pole magnetic field, all transitions between the ground- and excited-state Zee-
man levels must be considered, and the saturation intensity Isat, as defined
above, no longer applies. It is pointed out in Ref. [197] that C lies somewhere
halfway the average of the squared Clebsch-Gordan coefficients of all involved
transitions, and 1. For the 2 3S1 → 3 3P2 389 nm transition, the average of
the squares of the Clebsch-Gordan coefficients is 0.56. Therefore, we adopt
C = 0.8 ± 0.2, as also chosen by Browaeys et al. [23]. This value incorporates
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a realistic estimate and an uncertainty that covers the range of all physically
possible values of C.

The fluorescence image of the cloud is also used to determine the volume
of the cloud. From a fit to a Gaussian distribution, we obtain the rms size in
the radial (σρ) and axial (σz) directions, and the volume V = (2π)3/2σ2

ρ σz (V
contains 68% of the atoms). For a cloud with Gaussian density distribution,
this definition of V conveniently connects the number of atoms N to the central
density n0 via N = n0V. This provides all necessary information to deduce the
density distribution as n(ρ, z) = n0 exp(−ρ2/2σ2

ρ − z2/2σ2
z ).

Ion detection

In the MOT vacuum chamber, positive ions are produced in Penning-ionizing
collisions of a 4He* atom with another 4He* atom or with a background-gas
molecule. These ions are subsequently attracted to and detected by the obvi-
ous channeltron detector, and the resulting output current provides a rough
measure of the number of trapped atoms. This signal is particularly useful for
optimization purposes. Moreover, the signal is used to monitor the trap de-
cay after the loading of the MOT has suddenly been stopped (see Section 3.3.2).
This channeltron is operated at a sufficiently low voltage, such that the output
current can safely be assumed to vary linearly with the detection rate.

3.3 Results and discussion

3.3.1 MOT results

Temporal fluctuations in the MOT

While observing the fluorescing cloud in real time with the CCD camera, we
noticed nonperiodic intensity fluctuations on a 50 ms time scale. Also, the cloud
was irregularly "breathing". To determine the source of these fluctuations, we
first took a series of ten pictures of the cloud. The shutter time for each picture
was 1/60 s, and the elapsed time between two subsequent exposures was about
5 s. Fitting the cloud size for each individual picture, we obtain an average
MOT volume with a standard deviation of 9%, while the temperature remained
constant within 2.5%. According to Eqs. (3.1) and (3.3), this may be related to
the unstable laser power. In that case the resulting density fluctuations should
influence the rate at which ions are produced in two-body Penning collisions.
To observe this, we compared the continuous ion signal with the laser intensity
as a function of time. It turns out that the 4% laser intensity noise correlates to
the ion signal noise, though it does not explain all irregularities in the ion signal.
Using Eq. (3.3), we find that the measured intensity fluctuations may give rise
to 6% variations in the deduced MOT volume.
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Atom number and density distribution

The maximum number of loaded atoms as derived from the fluorescence is
2.5(3) × 107 at a detuning ∆/2π = −35 MHz and gradient ∂B/∂z = 39 G/cm.
The total intensity in this case is about 100Isat. It is possible to run the MOT at in-
tensities as low as 40Isat, although the number of trapped atoms increases with
intensity. To ensure a reliable estimate of the cloud dimensions and fluorescence
intensity, we take the average of five subsequent images. The uncertainty in the
number of trapped atoms mainly arises from the inaccuracy of the value of the
phenomenological constant C (8%), as well as from the uncertainty associated
with the fluorescence measurement, including a 4% inaccuracy in the calibra-
tion and by shot-to-shot fluctuations between the individual images used in the
average. To ensure consistency between the results of the fluorescence and TOF

measurement, we have to assign a value of 15(2)% to the detection efficiency of
the channeltron. A Gaussian density function fits well to the cloud image. From
the fit we infer the rms radii in the z and ρ dimensions and, thus, the volume V.
At an optimized trapped atom number, we find V = 0.020(5) cm3. By increas-
ing the magnetic-field gradient to ∂B/∂z = 45 G/cm, and decreasing the de-
tuning to ∆/2π = −35 MHz, the cloud was compressed to V = 0.0043(4) cm3.
Still, it contained 1.7(2) × 107 atoms.

Compared to a 1083 nm MOT, typical values for the volume V of the 389 nm
MOT are found to be 6 to 25 times smaller [196]. Although the auxiliary laser
beam at 1083 nm acts as a seventh MOT beam, its effect on the cloud volume is
negligible on account of its large detuning (80 MHz), and the relatively small
photon momentum of the 1083 nm light. Using Eq. (3.1) and Eq. (3.3), V can be
corrected for the different magnetic-field gradients, saturation parameters, and
temperatures for the 389 nm and 1083 nm cases. It follows that the observed
compression of the cloud, due to only the increased laser cooling force, is ap-
proximately a factor 5, as predicted in Section 3.1.1. The optimum number of
atoms is achieved with a relatively large magnetic-field gradient, about twice as
large as in a 1083 nm MOT.

With the knowledge of N and V we can determine the central density n0 =

N/V, which is 1.4(5)× 109 cm−3 in the case of optimized trapped atom number.
The large error bar, indicating the spread about the mean of the central densities
obtained from each picture, is probably due to the correlation between the vol-
ume and the 389 nm laser power fluctuations. A sudden increase in power leads
to a smaller volume, while the fluorescence intensity increases, resulting in an
overestimate of the trapped atom number. The aspect ratio σz/σρ of the cloud
turns out to be 0.96(2). We compared this with the aspect ratio as predicted by
Eq. (3.1): since at equilibrium kBT = κρ〈ρ2〉 = κz〈z2〉, with κρ and κz the spring
constants of the MOT in the radial and axial directions, respectively, it follows
that

√
κρ/κz = σz/σρ, resulting in an aspect ratio of 0.79. This may indicate a

small temperature difference between the ρ and z directions, also observed in a
1083 nm MOT [196].
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Figure 3.5. Two typical TOF spectra (solid curves) and corresponding fits to the data
(dashed curves), at detunings ∆/2π = −35 MHz and ∆/2π = −28 MHz, respectively.
The nonzero offset at t ≤ 0 ms is ascribed to loss of metastables during loading of the
MOT, due to imperfect alignment.

Temperature

Fitting a Maxwell-Boltzmann distribution function to the TOF spectra reveals
the temperature T of the atoms in the MOT (Fig. 3.5). A nonzero offset at t ≤ 0 is
observed, which becomes more prominent (at the expense of trapped metasta-
bles) when the MOT laser beams are misaligned. The offset may incorporate the
loss of metastables due to radiative escape [211], but our setup does not allow
us to discriminate between different sources of hot metastables. Measured tem-
peratures range from 0.93(3) mK for ∆/2π = −41 MHz and S = 19, to 0.47(2)
mK at ∆/2π = −9 MHz and S = 15. In the latter case, however, the number of
atoms in the MOT is limited to only 2.2 × 105.

Generally, temperatures in a 1083 nm MOT lie slightly above the prediction
by Doppler cooling theory [23, 102, 126, 133, 146, 196], given by [115]

kBT = − h̄Γ

4
1 + 2N S + (2δ)2

2δ
, (3.5)

with N is the dimensionality of the molasses. When using Eq. (3.5) to cal-
culate the 389 nm molasses temperature in order to test our results, two fea-
tures that distinguish the 389 nm transition from the 1083 nm transition are
relevant. First, the transition strength, determined by the Einstein coefficient
A389/2π ≡ Γ389/2π = 1.51 MHz, is slightly less compared to the 1083 nm tran-
sition, Γ1083/2π = 1.62 MHz (see Appendix A). Second, the 10% decay via the
3 3S1 cascade slightly reduces the diffusion, as the recoil of the photons involved
is randomly distributed. A recalculation of the momentum diffusion constant
for this case yields a 3% reduction. Thus, we expect the 389 nm molasses tem-
perature to be 11% lower with respect to the 1083 nm case. The predicted tem-
peratures now become 1.0 mK for ∆/2π = −41 MHz and S = 19, and 0.38 mK
for ∆ = −9/2π MHz and S = 15. Comparing these values with the measured
temperatures given above, we find that for detunings larger than ∼ 25 MHz the
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Figure 3.6. Lower curve: typical nonexponential decay of the ion signal after the load-
ing has been stopped at t = 0 ms. Upper curve: ion signal obtained after averaging
over ten decay curves.

measured values lie slightly below the theoretical values. For smaller detun-
ings, this situation inverts and the measured temperatures tend to exceed the
prediction of the properly modified Eq. (3.5). This behavior might indicate that
at large detuning sub-Doppler mechanisms are more efficient than at small de-
tuning. In the case of smaller detunings, however, the use of Eq. (3.5) becomes
questionable: the large 389 nm photon recoil sets the recoil-temperature limit to
32 µK, just below the Doppler limit of 36 µK.

3.3.2 Trap loss

The number of atoms N in the MOT is governed by the well-known rate equa-
tion [13]

dN(t)

dt
= L − αN(t) − β

∫
n2(r, t) d3r (3.6)

where L denotes the loading rate, and α and β are the linear and quadratic loss
rate coefficient, associated with processes involving one and two metastables,
respectively. Accordingly, when the loading is interrupted, the local density n

changes in time following
dn

dt
= −αn − βn2. (3.7)

Assuming a Gaussian density profile with a time-independent width, the losses
can be expressed in terms of the central density n0:

dn0(t)

dt
= −αn0(t) − β

2
√

2
n2

0(t). (3.8)

The losses are largely due to Penning-ionizing collisions, which yield one pos-
itively charged ion per loss event. These ions are attracted towards the ion
detector, resulting in an ion flux ϕ.

The loss rate constants are determined from the trap decay which occurs
when the loading is stopped by simultaneously blocking all 1083 nm laser beams
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entering the apparatus. This disables the Zeeman slower and collimation sec-
tion, and prevents the auxiliary slowing laser beam from contributing to the
two-body collision rate via light-assisted collisions. Switching off the colli-
mation minimizes the Penning ionization contribution of metastables from the
atomic beam and, thus, reduces the background signal.

Collisional loss

The decay of the MOT is observed by recording the current ϕ(t) from the ion-
detecting channeltron [13, 196]:

ϕ(t) = V

(
ǫaαn0(t) +

ǫbβ

4
√

2
n2

0(t)

)
+ B. (3.9)

Here, B is a constant background signal and ǫa and ǫb are the efficiencies with
which ions are produced and detected for losses due to background and two-
body collisions, respectively. Collisions that do not lead to Penning ionization
but do result in trap loss, e.g. collisions with ground-state helium atoms, reduce
ǫa. Radiative escape may affect ǫb. For the fit procedure, the ratio ǫ = ǫb/ǫa

must be known. From the increase in background pressure when the helium
atomic beam is running, we deduce that the background gas consists for 80% of
helium when the MOT is on. Unfortunately, our setup is not suited for experi-
mental determination of ǫ, as done by Bardou et al. [13]. They experimentally
found ǫ = 4± 1. Since in our case the background gas involves mainly ground-
state helium atoms, we expect ǫa to be smaller than unity. The value of ǫb is
probably close to unity: following Tol et al. [196], one finds that for the 1083 nm
case ǫb ≈ 0.98. We take the obvious underestimate ǫ = 1, which implies that the
result of the fit for βn0 has to be considered an upper limit. The result for α can
also be obtained by fitting the tail of the decaying ion signal, where the density
is low enough to neglect the contribution of the two-body losses. In this way,
the significance of ǫ in the determination of α is strongly (but not completely)
reduced.

A typical example of a decaying ion signal is depicted in Fig. 3.6. The de-
cay clearly shows nonexponential behavior, indicating that two-body collisions
contribute significantly to the total losses. Since laser power fluctuations cause
density fluctuations, much noise is visible in the ion signal. Therefore, an aver-
age of ten decay transients is fitted, as also shown in Fig. 3.6. Unfortunately, this
may affect the reliability of the fitted parameters as the two-body loss rate de-
pends nonlinearly on intensity. However, apart from intensity noise, the 389 nm
output remained constant over a period sufficiently long to perform the mea-
surements.

The fit procedure yields values for the exponential time constant α and the
nonexponential time constant βn0. We typically find α = 2 s−1 and βn0 = 3 s−1.
This gives the rate coefficient β from the fit parameter βn0, using n0 from the
fluorescence measurement. We find β = 1.0(4) × 10−9 cm3/s, at a detuning of
−35 MHz. Assuming a value ǫ = 4, the result becomes β = 6(2)× 10−10 cm3/s.
The value β = 1.0(4) × 10−9 cm3/s, which we interpret as the upper limit,
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is significantly below the value for the 1083 nm case of 5.3(9) × 10−9 cm3/s,
reported by Tol et al. [196] using the same detuning and similar saturation.

The small value for β may be explained by a simple argument from cold-
collision theory. During a light-assisted collision, two 4He* atoms are reso-
nantly excited to a molecular complex. For small detunings, this occurs at a
relatively large internuclear separation, where the molecular potential V(R) is
well-approximated by the dipole-dipole interaction

V±(R) = ±C3

R3 , (3.10)

with R the internuclear distance and C3 ≃ h̄Γ(λ/2π)3 [211]. The excitation
by the red-detuned MOT laser light takes place resonantly when the molecular
potential energy compensates the detuning. The resonance condition sets the
so-called Condon radius RC:

RC =

(
C3

h̄|∆|

)1/3

. (3.11)

The red detuning selects an attractive molecular state. Once excited, the two
atoms are accelerated towards small internuclear distances, where Penning ion-
ization occurs with high probability. It follows from Eqs. (3.10) and (3.11) that
the Condon radius for excitation with 389 nm light is smaller by λ1083/λ389 ≈
2.8 compared to excitation with 1083 nm light. Classically, the cross section for
the collision is determined by the square of the Condon radius, and is therefore
expected to decrease by almost a factor 8.

To identify the role played by light-assisted collisions in the total two-body
losses, we assume that β, as defined in Eq. (3.7), can be decomposed in two
terms: βSS and βSP. Here βSS is the rate coefficient for losses due to collisions
between 2 3S1 atoms in the absence of light, whereas βSP takes into account the
light-assisted collisional losses, depending (for a given detuning and saturation
parameter) on the cross section and the Condon radius. We neglect collisions
between excited-state atoms, since the excited-state population in our far-red-
detuned MOT does not exceed 0.01. We can define βSS and βSP also via Eq. (3.7),
with the total density n replaced by the 2 3S1 density nS:

dnS

dt
= −αnS − (βSS + βSP)n2

S. (3.12)

Since the excited-state population is small, nS ≈ n. It now follows immediately
from Eqs. (3.7) and (3.12) that, to good approximation, β = βSS + βSP.

Loss rate coefficient βSS has been measured in a 1083 nm MOT by Tol et

al. [196] to be βSS
1083 = 2.6(4) × 10−10 cm3/s. Subtracting this value from the

total rate coefficient β1083 = 5.3(9) × 10−9 cm3/s, we infer βSP
1083 = 5(1) ×

10−9 cm3/s, which is much larger than βSS
1083. In contrast, the upper limit we find

for β389 is of the same order of magnitude as βSS
389 (since the 1083 nm and 389 nm

magneto-optical traps, operated under the same conditions, are assumed to lead
to similar populations of the 2 3S1, M = −1, 0, 1 levels, we can take βSS

389 =
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Figure 3.7. Two-photon loss rate constant α2ph versus MOT detuning for total saturation
parameter Itotal/Isat = 6S = 110.

βSS
1083). To obtain the upper limit for βSP

389, we subtract βSS
389 from β389 and find

βSP
389 ≤ 7(3) × 10−10 cm3/s. This is in good agreement with the prediction fol-

lowing our simple argument. Finally, with 0 ≤ βSP
389 ≤ 7(3) × 10−10 cm3/s and

βSS
389 = 2.6(4) × 10−10 cm3/s, we can derive an upper and lower limit for the

total quadratic loss rate coefficient, 2 × 10−10 ≤ βSP
389 ≤ 1 × 10−9 cm3/s.

Two-photon ionization

From the fit to the ion signal decay, we extract the linear loss rate coefficient
α. Unlike the situation in 1083 nm magneto-optical traps, α is not solely de-
termined by background-gas collisions, but also by the two-photon ionization
rate. We assume that each loss event involves only one 4He* atom and ignore
photoionization of the molecular complex formed during a light-assisted colli-
sion, as this process enters Eq. (3.8) via β. Hence the loss rate coefficient can be
written as

α = αbgr + α2ph, (3.13)

where αbgr denotes the background-gas collisional rate, and α2ph accounts for
the two-photon ionization loss rate. Two processes can be thought to cause
the ionization: (instantaneous) two-photon ionization of a 2 3S1 atom, or pho-
toionization of an atom in either the 3 3P2 or the 3 3S1 state. The latter state is
populated only during the cascade and has a lifetime of only 35 ns, so its contri-
bution will be negligible. The instantaneous two-photon ionization probability
pinst is, for not too large detuning ∆, dependent on intensity S and trapping
light detuning ∆, according to

pinst ∝
S2

∆2 . (3.14)

The photoionization probability ppi of a helium atom in the 3 3P2 state is sim-
ply proportional to the incident laser intensity and the cross section for pho-
toionization, which varies only slowly with wavelength [31]. Neglecting this
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wavelength dependence, the probability of photoionization simply becomes the
product of the upper 3 3P2 state population and the ionization probability itself.
For the two-step process, this leads to a dependence on intensity and detuning
as

ppi ∝
S2(Γ/2)2

∆2 + (S + 1)(Γ/2)2 . (3.15)

When ∆2 ≫ (S + 1)(Γ/2)2, this dependence takes on a form similar to Eq. (3.14).
We confirmed this behavior by measuring α2ph as a function of MOT detuning,
as shown in Fig. 3.7. We also checked the intensity dependence, as shown in
Fig. 3.8. In both cases, we determined αbgr by measuring α as a function of back-
ground pressure, while keeping the detuning and intensity fixed. Assuming a
linear variation of αbgr with pressure, against a fixed background α2ph, a fit to
the data points yields αbgr ≈ 1.5(1) s−1. Under typical experimental conditions,
we find α2ph ≈ 0.5 s−1.

Chang and Fang [31] calculated photoionization cross sections of many sin-
glet and triplet states in helium, including the 3 3S and 3 3P states, for various
wavelengths. Using their results, we find photoionization rates of about 2 s−1.
Since the fraction of n = 3 atoms in our MOT is typically below the 1% level,
the net loss rate due to the two-step process then would be one order of magni-
tude smaller than the measured value for α2ph. This suggests that instantaneous
two-photon ionization dominates over the two-step ionization losses.

3.3.3 Auxiliary Zeeman slower

To test the performance of the auxiliary Zeeman slower, we first optimized the
number of atoms in the MOT in the absence of the extra slowing laser. Then,
leaving the MOT parameters unaltered, we unblock the auxiliary laser beam
and vary the slowing laser intensities and Zeeman coil current iteratively until
a new optimum for the number of atoms is established. Indeed, blocking the
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additional laser beam again interrupts the loading, demonstrating that we have
tuned the end velocity of the Zeeman slower above the capture velocity of the
MOT. With the auxiliary Zeeman slower on, the number of atoms is larger by
40% compared to the case without the auxiliary Zeeman slower. Starting from
Eq. (3.6), with α, β, and n0 known from experiment, we calculate that the aux-
iliary Zeeman slower enhances the loading rate by a factor 1.6. Despite this
improvement, the loading rate remains low. By solving Eq. (3.6), with the mea-
sured values for the loss rate constants and the steady-state number of atoms
as input, we find a loading rate slightly below 108 s−1. Tol et al. [196] state a
value of 5 × 109 s−1 for their 1083 nm MOT. This difference is explained by the
smaller MOT diameter, the reduced flux of slow atoms from the Zeeman slower
due to atomic beam expansion, and imperfect collimation due to the relatively
large bandwidth of the 1083 nm laser.

Starting from the intensity and detuning of the slowing light and an expres-
sion for the magnetic field in the Zeeman slower, the end velocity of decelerated
atoms can be calculated (see Section 2.5). Confronting the calculations with
experimental observations, we derive a capture velocity of 35 m/s for a MOT

without an auxiliary slowing beam. Apparently, the prediction of a 24 m/s cap-
ture velocity by the model of Section 3.1.2 is an underestimate, and the true
capture velocity lies closely to the velocity determined by the resonance condi-
tion. Therefore, it is likely that the π and σ± transitions, caused by MOT laser
beams orthogonal to the quantization axis, occur at rates at least comparable to
the 10% decay via the 3 3S1 cascade. Apparently, the nonclosed character of the
389 nm transition plays a minor role, even in the case of relatively large (∼ 40 G)
magnetic fields.

We derive from the settings of the Zeeman slower that atoms with a velocity
<∼ 75 m/s are further slowed down to a velocity of 35 m/s by the auxiliary
Zeeman slower. This translates to an increase in loading rate by a factor 1.7, in
reasonable agreement with the result of the test described above.

3.3.4 Comparison with 1083 nm MOT

Table 3.1 contains MOT results for the 389 nm and 1083 nm case [196]. The MOTs
have similar detuning and saturation parameters, which optimize both density
and trapped atom number. The smaller number of atoms, N, in the 389 nm
MOT is explained by the small loading rate. Despite this small number, the cen-
tral density n0 is equal to that of a 1083 nm MOT containing over one order of
magnitude more atoms. This is the result of the smaller loss rate constant β,
the larger laser cooling force, and the larger magnetic-field gradient. The latter
not only contributes to the compression of the cloud, but also reflects the neces-
sity of a large Zeeman detuning to compensate the larger Doppler shift of the
atoms to be captured from the Zeeman-decelerated 4He* beam. Furthermore,
we observe that the 0.5 s−1 contribution of two-photon ionization to the losses
in the 389 nm MOT is small compared to the 21 s−1 two-body loss rate in a large
1083 nm MOT.
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Table 3.1. Comparison of the 389 nm MOT and the 1083 nm MOT described in Ref. [196].
The typical results for both MOTs are obtained under conditions that optimize both
density and atom number. For the 389 nm case, ǫ = 1 is assumed.

MOT wavelength 389 nm 1083 nm

Detuning ∆/2π (MHz) −35 −35
Magnetic field gradient ∂B/∂z (G/cm) 41 20
Total intensity (Isat) 100 90
Number of atoms N 2 × 107 5 × 108

Loading rate L (s−1) < 108 > 5 × 109

Central density n0 (cm−3) 4 × 109 4 × 109

Volume V (cm3) 0.005 0.12
Temperature T (mK) 0.85 1.1
Two-body loss rate βn0 (s−1) 3 21
Two-body loss rate constant β (cm3/s) 1.0(4) × 10−9 5.3(9) × 10−9

Two-photon ionization loss rate
constant α2ph (s−1)

0.5 0

3.4 Conclusion and outlook

We have shown that it is possible to build a magneto-optical trap for 4He* atoms
using transition 2 3S1 → 3 3P2 at 389 nm. Our prototype MOT demonstrates
that a 389 nm MOT offers the advantage of a dense, cold cloud of metastable
helium atoms, as compared to a 1083 nm MOT. The relatively large density
is allowed by the reduced two-body loss rate coefficient β, whereas the large
spontaneous force facilitates substantial compression of the cloud. Intensity
noise on the 389 nm output, however, compromises the measurement accuracy.
Together with the high background pressure and the small value of β, this has
complicated an accurate determination of its value. We conclude that β lies
between the experimentally determined upper limit 1.0 × 10−9 cm3/s, and the
two-body loss rate constant in the absence of light, 2× 10−10 cm3/s determined
in Ref. [196]. Two-photon ionization losses, although present, do not exclude
the future possibility of a 389 nm MOT containing large numbers of metastable
helium atoms at high phase-space density. To this end, however, the loading
rate of the MOT must be improved. A bare 389 nm MOT has limited loading ca-
pabilities since the large Doppler shift implies a reduced capture velocity, and
the required Zeeman-slower settings then give rise to a smaller flux of slow
metastables. The nonclosed character of the 389 nm transition, however, does
not play an important role in the process of magneto-optical trapping. In a
supplemental study [99, 200], magneto-optical trapping at 389 nm has been in-
vestigated starting from a large 1083 nm MOT. Phase-space densities around
4× 10−6 have been achieved and collisions in the presence of 389 nm light have
been studied.
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Theory of homonuclear ionizing collisions

of laser-cooled metastable helium isotopes

Soon after the first demonstration of laser cooling and trapping of neutral atoms,
it was recognized that collisions between atoms have a profound effect on the
physics of laser-cooled atomic gases [70]. It was already known from stud-
ies of spin-polarized hydrogen [72, 183] that collisions at low kinetic energies
(∼ 10−7 eV in gases with a temperature T = 1 mK) show many new effects that
are absent for collisions at room temperature. Although the unusual features
of these so-called cold collisions1 have attracted much attention by themselves,
current interest in cold collisions is due to their importance in various research
areas that have emerged since the advent of laser cooling and trapping. The
pivotal role of collisions played in experiments on quantum degenerate gases,
atomic clocks, quantum computing and cold molecule formation is discussed
in [26].

In this chapter, we present a theoretical study of cold ionizing collisions of
both 3He and 4He atoms in the metastable 2 3S1 state, henceforth denoted by
3He* and 4He*, respectively. Starting from the relevant molecular potentials,
a model for homonuclear collisions is derived, taking into account quantum
threshold behavior, Wigner’s spin-conservation rule and quantum statistical
symmetry requirements. The model can be applied to collisions of both 3He*
and 4He* atoms and shows that, as a result of different quantum statistical sym-
metry for the two isotopes and the presence of a nuclear spin in the case of
3He, different cross sections are expected for the two isotopes. As the model

1Following Suominen [191], we will refer to collisions in laser cooled gases, where tempera-
tures are between ∼ 1 mK and ∼ 1 µK, as cold collisions. In Suominen’s terminology, ultracold
collisions correspond to temperatures below ∼ 1 µK, the temperature range of evaporative cool-
ing and quantum degeneracy.
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provides clear insight into the process of ionizing collisions without requiring
heavy numerical calculations, it is complementary to the more complete (and
precise) close-coupling theory that has been developed for 4He* collisions by
Venturi et al. [204, 205] and Leo et al. [111]. To verify the validity of our model,
the results of both calculations are compared, showing good agreement.

Section 4.1 provides an overview of the basic properties of cold ionizing col-
lisions of He* atoms, emphasizing Wigner’s spin-conservation rule and the role
played by quantum threshold behavior and quantum statistical symmetry. In
Section 4.2, we present the theoretical model and use it to derive values for
the ionization cross sections and rate coefficients for homonuclear collisions of
laser-cooled 3He* and 4He* atoms. In Section 4.3, we compare the model to
the close-coupling theory of [111, 204, 205]. In Chapter 5, the model is used to
analyze the results of an experimental study of ionizing collisions in magneto-
optically trapped clouds of 3He* or 4He* atoms.

4.1 Cold ionizing collisions of He* atoms

The collisions studied in this chapter are those leading to Penning (PI) or asso-
ciative ionization (AI),

He* + He* → He + He+ + e− (PI), (4.1)

He* + He* → He+
2 + e− (AI). (4.2)

As the He* atom has an internal energy of 19.8 eV and the ionization energy is
24.6 eV, the internal energy of two He* atoms exceeds the He ionization limit
by 15 eV, making the (inelastic) collisions of Eqs. (4.1) and (4.2) highly exother-
mic. An overall understanding of PI and AI processes has been provided by the
simple classical-dynamical model of Herman and Čermák [76, 227], where ion-
ization is envisaged as an auto-ionizing transition between two quasi-molecular
states,2

He* + He* → [He2*] →
[
He+

2 + e−
]
→ He + He+ + e−. (4.3)

In the case of Penning ionization, the transition is to an unbound state of the
molecular ion, which then dissociates. In the case of associative ionization, the
final state is bound and the molecular ion itself is the reaction product. The
aim of this section is to indicate the main features of ionizing collisions at mK
temperatures. At this, details about the reaction mechanism of Penning and as-
sociative ionization are unimportant and, henceforth, we will not distinguish
between Penning and associative ionization and use the term Penning ioniza-
tion to denote both processes. An extensive treatment of the subject of Penning
ionization can be found in [227].

As the interaction driving the auto-ionizing transition of Eq. (4.3) is of an
electrostatic nature [227], it only induces transitions between molecular states

2With the high ionization probability associated with PI and AI of He* atoms, the energy
width associated with quasi-molecular state [He2*] is so large that the concept of a transition
between states becomes rather artificial.
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of equal total electronic spin. Therefore, ionization rates associated with the
reactions of Eqs. (4.1) and (4.2) depend on the total spin states on the reactant
and product side of the reaction formulas. For both reactions, the reactants
carry an electronic spin of s = 1 and can form total spin states with S = 0, 1
or 2, while the products, carrying s = 1

2 (except for ground state helium, which
carries no electronic spin), can only form states with S = 0 or 1. Clearly, Penning
ionization conserving total electronic spin is only possible for collisions with
S = 0, 1 and an ionization reaction of atoms colliding with S = 2 can occur only
if spin conservation is violated.

It has been shown [58, 182] that a very weak spin-dipole magnetic interac-
tion can induce spin flips and mediate Penning ionization in collisions of He*
atoms with S = 2. The corresponding ionization rate is four orders of magni-
tude smaller compared to those of collisions with S = 0 and S = 1, for which
total electronic spin is conserved [184]. The strong suppression of Penning ion-
ization by spin conservation is known as Wigner’s spin-conservation rule [124]
and has been observed [82] for collisions of He* atoms.3

At the mK temperatures of a laser-cooled sample of He* atoms, collisions
occur at relative kinetic energies E = µv2

r /2 ≈ 10−7 eV, where µ = m/2 is the
reduced mass of the colliding atoms, with m the mass of the He atom, and vr

the relative velocity between the atoms. The de Broglie wavelength of atomic
motion Λ = h/µvr ≈ 250 a0, with h Planck’s constant, is much larger than
the typical scale of the interatomic potential.4 In this case, the collisions are
dominated by quantum threshold behavior [16, 91, 92, 132, 214]. The collision
process can be described conveniently using the partial wave method,5 as the
ionization cross section, written as a sum of partial wave contributions,

σ(ion) = ∑
ℓ

σ(ion)
ℓ

, (4.4)

is dominated by only a few partial waves ℓ. It is shown in Refs. [91, 92, 210]
that for inelastic exothermic collisions, such as Penning ionizing collisions, the
quantum threshold behavior of the ℓth partial cross section is given by

σ(ion)
ℓ

∝ k2ℓ−1 if k → 0. (4.5)

Here, k = (2µE/h̄2)1/2 is the wave vector of the asymptotic relative motion of
the colliding atoms, with h̄ = h/2π. In a sample of laser-cooled He* atoms, the

3The suppression of Penning ionization in magnetically trapped samples of spin-polarized
4He* atoms has allowed the realization of a Bose-Einstein condensate of metastable helium
atoms [147, 162]. Although relatively high densities are obtained in the condensate (n ≈
1013 cm−3), the losses due to ionizing collisions give rise to lifetimes of several seconds.

4Here, we are interested in collisions in the absence of a light field. Cold collisions in the
presence of light are fundamentally different and should be treated by quantum mechanical
methods that explicitly treat the dissipation due to excited state spontaneous emission during
the collision [91, 92]. In that case, several interatomic potentials must be taken into account. In
Chapters 3 and 5, we present a study of these so-called light-assisted (or optical) collisions in
magneto-optically trapped clouds of He* atoms.

5The method of partial waves is treated in many textbooks, see e.g. [36].
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cross section for Penning ionizing collisions is dominated by the s-wave con-
tribution σ(ion)

0 , which diverges as 1/k if k → 0. Elastic collisions have very
different threshold properties: the cross section σ(elas)

0 approaches a nonvanish-
ing constant, σ(elas)

1 ∝ k4 and σ(elas)
ℓ>1 ∝ k6, if k → 0 [43, 210].

Spin conservation and the diverging cross section are specific features of ion-
izing collisions of He* atoms. For homonuclear collisions, also a fundamental
principle plays an important role: dealing with identical particles,6 the sym-
metrization postulate of quantum mechanics applies. This postulate requires
that the quantum mechanical state of a colliding pair of identical atoms has
even or odd symmetry under exchange of the atoms. The symmetrization of
the quantum state—even if the identical particles are bosons, and odd if they
are fermions—imposes restrictions on the partial waves that contribute to the
cross section. This can lead to an increase or a decrease of the cross section
compared to collisions of non-identical particles [43]. Since the 3He atom is a
fermion and the 4He atom is a boson, the quantum states describing colliding
atom pairs have different symmetry and the cross sections are composed of par-
tial wave contributions in a different way.

Wigner’s spin-conservation rule, quantum threshold behavior and the sym-
metrization postulate are the main ingredients for the theoretical model pre-
sented in Section 4.2. We will use the model to determine the ionization cross
sections of homonuclear collisions of 3He* and 4He* atoms. Using the cross
sections, we will derive values for the ionization rate coefficients K(th)

SS for unpo-
larized atomic samples, i.e. samples in which the atoms are equally distributed
over the magnetic substates. In Chapter 5 we will determine these rate coeffi-
cients experimentally and use the model to analyze the results.

4.2 Theoretical model

Theoretical studies of ionizing collisions of laser-cooled He* atoms have so far
focused almost exclusively on collisions of 4He* atoms. To investigate the fea-
sibility of Bose-Einstein condensation, detailed theoretical studies of collisions
of spin-polarized 4He* atoms have been performed [58, 182, 205]. Collisions
of unpolarized 4He* atoms have also been subject of theoretical studies. Juli-
enne and Mies [91] have provided an estimate for the Penning ionization rate
of cold unpolarized 4He* atoms using close-coupling scattering theory adapted
to ionizing collisions by multichannel quantum-defect methods. In a report on
the experimental study of ionizing collisions of 4He* atoms, Mastwijk et al. [126]
have also reported a theoretical prediction of the ionization rate for unpolarized
atoms. Recently, a detailed study of collisions of 4He* atoms has been reported
by Venturi et al. [204, 205] and Leo et al. [111]. They use complex potentials to

6Two particles are identical if their physical properties are exactly the same, this preclud-
ing the possibility of an observation that could distinguish between them [128, Chapter 14]. A
discussion of the properties of systems of identical particles, correcting some misleading argu-
ments in literature, is presented in [10, Chapter 17].
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adapt close-coupling scattering theory to inelastic collisions and calculate elas-
tic and inelastic cross sections for spin-polarized and unpolarized 4He* atoms.
In Section 4.3, we will compare our model to these calculations.

For 3He* atoms, only a very basic theoretical study of cold ionizing collisions
has been performed so far. In a report on the experimental study of homonu-
clear ionizing collisions of 3He* and 4He* atoms, Kumakura and Morita [102]
present a theoretical model to explain the observed difference in ionization rates
between the two isotopes.

The theoretical model presented here is complementary to the more com-
plete close-coupling theory of [111, 204, 205], as it provides clear insight with-
out requiring heavy numerical calculations, and can be applied to ionizing col-
lisions of both 3He* and 4He* atoms. In the spirit of the approach by Orzel et al.

[141], we will consider ionizing collisions of He* atoms to be the result of two
subsequent events. This assumption allows us to use a simple expression for
the ionization cross section.

4.2.1 Ionization cross section

From a semi-classical point of view, two stages can be distinguished in the pro-
cess of a cold ionizing collision of two He* atoms. As collision energies are
small, elastic scattering of the atoms occurs at a relatively large internuclear
distance R >∼ 100 a0. For partial waves ℓ > 0, the radial wave function ukℓ(R)

(cf. Eq. (4.8)) is scattered by the centrifugal barriers, while scattering for ℓ = 0
takes places at the internuclear distance where the local de Broglie wavelength
Λ(R) = h/{2µ[E − V(R)]}1/2 becomes comparable to the size of the potential,
i.e. dΛ(R)/dR ≈ 1 [91, 92]. Here, V(R) is the interaction potential of the col-
liding atoms (cf. Fig. 4.1). As ionization occurs at a small internuclear distance
R ≈ 5 a0, where the electron clouds of both atoms start to overlap [227], the
elastic scattering process can be considered to precede the inelastic process of
ionization. Here we assume that scattering occurs well before the atoms ap-
proach the distance where ionization takes place, so that the two processes can
be treated separately.

As Penning ionization is a strong inelastic exothermic process, we can write
the ionization cross section for collisions with total electronic spin S as [141]

(2S+1)σ
(ion)

=
π

k2 ∑
ℓ

(2ℓ + 1) (2S+1)P
(tun)
ℓ

(2S+1)P
(ion)

, (4.6)

where (2S+1)P
(tun)
ℓ is the probability for the atoms to reach a small internuclear

distance, and (2S+1)P
(ion)

is the probability for ionization to occur at that place.7

7In single-channel calculations, inelastic processes can be taken into account using
the complex potential approach [88]. In this case, the inelastic cross section, σ(abs) =

(π/k2) ∑ℓ (2ℓ + 1)(1 − | exp(2iδℓ)|2), is defined as to account for the total loss of probability
flux introduced by the imaginary part of the potential and expressed by the complex phase

shifts δℓ. Analogously, cross section (2S+1)σ
(ion)

of Eq. (4.6) can be interpreted as a measure for
total flux loss induced by tunneling to small internuclear range and subsequent ionization of
the colliding atoms.
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Figure 4.1. Ab initio potential energy curves in atomic units, calculated for 4He* by
Müller et al. [136]. Bohr radius a0 = 0.5291772083 × 10−10 m and Hartree energy Eh =

e2/4πǫ0a0 = 4.35974381 × 10−18 J.

As total spin S is conserved during ionization, (2S+1)P
(ion)

is very small (≪ 1) for
collisions that violate Wigner’s spin-conservation rule. Here, we neglect ioniz-
ing collisions with S = 2 and assume that 5P

(ion)
= 0. As ionization occurs with

essentially unit probability for the other spin states (Müller et al. [136] report an
ionization probability of 0.975), we set 1P

(ion)
= 3P

(ion)
= 1, so that

(2S+1)σ
(ion)

=





π

k2 ∑
ℓ

(2ℓ + 1) (2S+1)P
(tun)
ℓ if S = 0 or S = 1,

0 if S = 2.
(4.7)

In the next sections we will calculate the partial wave tunneling probabili-

ties (2S+1)P
(tun)
ℓ and determine the ionization cross section (2S+1)σ

(ion)
for S = 0

and S = 1. The energy dependence of the probabilities (2S+1)P
(tun)
ℓ gives rise to

an energy dependent (2S+1)σ
(ion)

, that displays the quantum threshold behav-
ior of the inelastic collisions of Eq. (4.5). The probabilities are obtained from a
one-dimensional scattering calculation of a plane wave incident on an effective
potential. The potential is derived in Section 4.2.2 and the scattering calculation
is performed in Section 4.2.3. In this calculation, symmetry requirements are not
taken into account; we will discussed the consequences of the symmetrization
postulate in Section 4.2.5.

4.2.2 Effective potential

As the helium atom, with only two electrons and a nucleus, has a relatively
simple structure, interatomic potentials can be calculated with high accuracy.
Figure 4.1 shows the short-range part (3.5 a0 < R < 14.0 a0) of the potential
curves for two metastable 2 3S1 helium atoms obtained from Müller et al. [136].
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The curves are the result of ab initio calculations in the Born-Oppenheimer ap-
proximation, where the total electronic spin S is a good quantum number. The
possible values S = 0, S = 1 and S = 2 correspond to a singlet, triplet and
quintet potential (1V(R), 3V(R) and 5V(R)), respectively. In Fig. 4.1, the curves
are labelled in Hund’s case (a) notation 2S+1Λ±

g/u [105], where Λ = |ML| with
ML the quantum number of the projection of the total electronic orbital angular
momentum along the internuclear axis of the molecule, g/u stands for gerade
or ungerade, i.e. positive or negative symmetry under inversion of all electronic
coordinates of the molecule, and ± indicates positive or negative symmetry un-
der reflection through a plane including the internuclear axis. As all electrons of
the He* atom are in s-states, colliding atom pairs can only have zero total orbital
angular momentum, indicated8 by Λ = Σ.

The potentials can be extended to large internuclear distance using a cal-
culation of the dispersion interaction of two He* atoms reported by Yan and
Babb [223]. Using multipole expansion −C6/R6 − C8/R8 − C10/R10, they have
calculated dispersion coefficients C6 = 3276.680 a.u., C8 = 210566.55 a.u. and
C10 = 21786760 a.u. Here, we construct potentials valid for R > 3.5 a0 by fitting
the short-range potential curves of Fig. 4.1 smoothly onto the long-range dis-
persion interaction around ∼ 20 a0 by interpolation using a cubic spline fitted
to R6 × (2S+1)V(R).

The elastic scattering for collisions with S = 0 and S = 1 is governed by
potentials 1V(R) and 3V(R), respectively. Within the framework of the partial
wave method, potential scattering by (2S+1)V(R) is described by the radial wave
equation [88]

− h̄2

2µ

d2

dR2 ukℓ(R) +

[
h̄2

ℓ(ℓ + 1)

2µR2 + (2S+1)V(R) − E

]
ukℓ(R) = 0, (4.8)

where k = (2µE/h̄2)1/2 is the wave vector associated with the asymptotic rel-
ative motion, ℓ is the quantum number of the relative angular momentum, µ

is the reduced mass, and ukℓ(r) is the radial wave function.9 Eq. (4.8) can be
interpreted as a one-dimensional Schrödinger equation (R ≥ 3.5 a0), describing
the potential scattering of a particle of mass µ by effective potential

(2S+1)Vℓ(R) = (2S+1)V(R) +
h̄2

ℓ(ℓ + 1)

2µR2 , (4.9)

where the second term is the well-known centrifugal potential.

To calculate the probability (2S+1)P
(tun)
ℓ of atom pairs to reach the distance

where ionization occurs, we modify the effective potential curves to simulate

8The absolute value of the projected total electronic orbital angular momentum along the
internuclear axis of the molecule is denoted by the capital Greek letter that corresponds to the
Latin letter, with which an atomic term is indicated if the quantum number associated with its
orbital angular momentum would have the same value as Λ, i.e. Λ = 0, 1, 2 is indicated by
Σ, Π, ∆, respectively [105].

9Using the method of partial waves, the relative wave function of the colliding atoms is
expressed as a sum of partial waves [88], ψk(R) = ∑ℓ ∑m Ym

ℓ
(θ, φ)ukℓ(R)/R, where Ym

ℓ
(θ, φ) is

a spherical harmonic and ukℓ(R) is a radial wave function satisfying the radial wave equation.
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the ionization process. In the spirit of [141], we set the curves to a constant
value for small internuclear distances, and extend the range of R to negative
values,

(2S+1)Ṽℓ(R) =

{
(2S+1)Vℓ(R0) R ≤ R0,
(2S+1)Vℓ(R) R > R0,

(4.10)

where R0 = 6.1 a0 is chosen to be the location of the potential curve minimum.
This way, we avoid reflections of the radial wave function from artificial fea-
tures of the potential energy curve at R0. Modeling the interatomic interaction
by Ṽℓ(R), potential scattering is described by the one-dimensional Schrödinger
equation (−∞ < R < ∞)

− h̄2

2µ

d2

dR2 ukℓ(R) +
[
(2S+1)Ṽℓ(R)− E

]
ukℓ(R) = 0, (4.11)

and ionizing collisions correspond to the transmission of the relative particle10

to R < 0: for atoms that reach the region of small R, where ionization takes
place, the corresponding relative particle will propagate freely to R = −∞ and
never reflect back to R > R0. The disappearance of the particle to R < 0 results
in a loss of probability flux, typical of an inelastic process, such as Penning
ionization.

Figure 4.2 shows plots of Ṽ0(R), Ṽ1(R), and Ṽ2(R) for homonuclear collisions
of both 3He* and 4He* atoms, where we have used the reduced mass µ = m/2,
with m = 3.01603 u for 3He* and m = 4.0026 u for 4He*, and 1 u = 1822.89 a.u.
For an atomic sample with a thermal velocity distribution with temperature T,
the mean collision energy is given by 〈E〉 = 3

2 kBT; this relation is used to express
the potentials in units of temperature.

The barriers formed by centrifugal potentials with ℓ = 1, 2, . . . are five or-
ders of magnitude smaller than the potential energy associated with the short-
range attraction of the colliding atoms. However, even the lowest barrier, with
ℓ = 1, is large compared to the temperature of ∼ 1 mK that is typical of sam-
ples of laser-cooled He* atoms and the barrier heights increase with increas-

ing ℓ. Therefore, the probability (2S+1)P
(tun)
ℓ is small for ℓ = 1 and decreases

rapidly for larger values of ℓ, and the cross section (2S+1)σ
(ion)

of Eq. (4.6) is
expected to be dominated by the s-wave contribution. In Section 4.2.3, we use
numerical methods to study the scattering by potential (2S+1)Ṽℓ(R) and calcu-

late (2S+1)σ
(ion)

for a range of collision energies. We show that contributions
with ℓ > 1 can be neglected at mK temperatures.

4.2.3 Numerical analysis of one-dimensional scattering

A simple approach to one-dimensional potential scattering starts from the de-
termination of stationary states in the potential. These states are described by
wave functions ukℓ(R) that are solutions of the time-independent Schrödinger

10The two-body problem of a colliding atom pair is separated into two one-body problems,
that of the center of mass of the atom pair and that of the relative particle [36, 88].
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Figure 4.2. Potentials (2S+1)Ṽℓ(R) with centrifugal barriers. The centrifugal interaction
is smaller than the short-range attraction by five orders of magnitude.

equation of Eq. (4.11). For R ≤ R0, the potential Ṽℓ(R) is constant and the equa-
tion takes the form of a homogeneous, second-order differential equation with
constant coefficients. For such an equation the general solution is given by

ukℓ(R) = A exp(ik1R) + A ′ exp(−ik1R), (4.12)

where k1 = {2µ[E − Ṽℓ(R0)]/h̄2}1/2 is the local wave vector and A and A ′

are complex-valued constants. As we are interested in potential scattering of a
(relative) particle coming in from R ≫ 1, we need to determine the stationary
state that corresponds to the sum of an incident and a reflected wave for R ≫ 1,
and a single transmitted wave for R ≤ R0. We only satisfy this requirement
by setting A = 0 in Eq. (4.12), obtaining a solution that consists of a single
plane wave traveling in the direction of negative R. As there are no boundary
conditions determining constant A ′, we can set it to A ′ = 1, so that we finally
obtain

ukℓ(R) = exp(−ik1R) for R ≤ R0. (4.13)
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Figure 4.3. s-wave scattering of 4He* atoms with S = 0 and E = 9.5 × 10−9 a.u. (E =

2.0 mK; k = 8.3 × 10−3 a0
−1). (a) Real and imaginary part of wave function uk0(R).

(b) Potential 1V0(R) (solid line) and the asymptotic kinetic energy E (dotted line). At
these low collision energies, the de Broglie wavelength is much larger than the typical
scale of the interatomic potential, giving rise to significant quantum reflection. The
transmission probability 1P

(tun)
0 = 0.66.

An analytical solution of Eq. (4.11) is not possible for R > R0. However,
specifying relative kinetic energy E and quantum number ℓ, a numerical solu-
tion can be obtained using the numerical routine NDSolve of MATHEMATICA

V4.1. From Eq. (4.13), we can obtain the values of ukℓ(R) and dukℓ(R)/dR at a
location R1 = −10 a0 in the constant potential region,

ukℓ(R1) = exp(−ik1R1), (4.14)
d

dR
ukℓ(R1) = −ik1 exp(−ik1R1). (4.15)

Inserting these complex boundary conditions in routine NDSolve, we can derive
a numerical solution for R1 < R < R2, with R2 ≫ 1. Examples of solutions for
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Figure 4.4. Enlargement of the short range behavior of wave function uk0(R). For small
internuclear distances, the wave function experiences rapid oscillations and potential
1V0(R) displays an attractive molecular interaction, which exceeds the collision energy
by six orders of magnitude.

homonuclear collisions of 4He* atoms with S = 0, E = 2.0 mK, and ℓ = 0 or
ℓ = 2 are shown in Figs. 4.3–4.5.

The scattering process of a particle with wave vector k by potential Ṽℓ(R)

can be analyzed using the corresponding stationary state ukℓ(R). Calculating
the probability fluxes J in and J tr associated with incident and transmitted plane

waves, respectively, the transmission probability (2S+1)P
(tun)
ℓ can be written as

[36]
(2S+1)P

(tun)
ℓ =

J tr

J in
. (4.16)

For the transmitted wave of Eq. (4.13), the probability flux is [36]

J tr =
h̄

2iµ

[
u∗

kℓ(R)
d

dR
ukℓ(R) − ukℓ(R)

d
dR

u∗
kℓ(R)

]
= − h̄k1

µ
, (4.17)
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Figure 4.5. d-wave scattering of 4He* atoms with S = 0 and E = 9.5 × 10−9 a.u.
(E = 2.0 mK; k = 8.3 × 10−3 a0

−1). (a) Real and imaginary part of wave function
uk2(R). (b) Potential 1V2(R) (solid line) and the asymptotic kinetic energy E (dotted
line). The barrier height of 1.6 × 10−7 a.u. (T = 33 mK) is much larger than E, so that
the transmission probability is very small, 1P

(tun)
2 = 5.8 × 10−4.

where the minus sign indicates a probability flux directed to negative R. For
R = R2 ≫ 1, we can again assume a constant potential and the wave function
can be approximated by a sum of two counter-propagating plane waves,

ukℓ(R2) = Ã exp(ik2R2) + Ã ′ exp(−ik2R2), (4.18)

with k2 = {2µ[E − Ṽℓ(R2)]/h̄2}1/2, so that the corresponding probability flux
can be written as

J =
h̄k2|Ã|2

µ
− h̄k2|Ã ′|2

µ
. (4.19)

Clearly, the first term corresponds to the reflected wave traveling to positive
R and the second term is J in, corresponding to the incident wave traveling to
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Figure 4.6. The partial wave ionization cross sections (S = 0) for 3He* (dashed lines)
and 4He* (solid lines) show the familiar quantum threshold behavior 1σ
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ℓ ∝ k2ℓ−1 if

k → 0.

negative R. Consequently, the transmission probability can be written as

(2S+1)P
(tun)
ℓ =

k1

k2
|Ã ′|−2. (4.20)

We derive values for Ã and Ã ′ by matching expression Eq. (4.18) at R = R2 to
numerical solution ukℓ(R2),

ukℓ(R2) = Ã exp(ik2R2) + Ã ′ exp(−ik2R2),
d

dR
ukℓ(R2) = ik2Ã exp(ik2R2) − ik2Ã ′ exp(−ik2R2),

(4.21)

Choosing R2 such that Ṽℓ(R2) = E/1000, we make sure that the numerical solu-
tion is well approximated by a sum of counter-propagating plane waves: prob-

abilities (2S+1)P
(tun)
ℓ are accurate within a few tenths of a percent. Furthermore,

the difference between probabilities 1P
(tun)
ℓ and 3P

(tun)
ℓ at a given collision energy

E is only a few percent, as potentials 1Ṽ(R) and 3Ṽ(R) differ very little in the
region where elastic scattering takes place: |3Ṽ(R) − 1Ṽ(R)|/|1Ṽ(R)| < 10−4

for R > 20 a0.
The wave functions of Figs. 4.3 and 4.5 correspond to transmission prob-

abilities 1P
(tun)
0 = 0.66 and 1P

(tun)
2 = 5.8 × 10−4, respectively. In the case of

d-wave scattering, reflection is almost complete, as E is much smaller than the
barrier height. However, there is also considerable reflection in the case of s-
wave scattering, where a centrifugal barrier is absent. Here, quantum reflection
occurs due to the mismatch between the long asymptotic de Broglie wave and
the rapidly oscillating wave in the region of small internuclear separation.

Inserting the reduced mass µ for either 3He* or 4He* atoms, we calculate the
transmission probabilities (2S+1)P0(E), (2S+1)P1(E) and (2S+1)P2(E) for S = 0, 1
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model and limit the accuracy of the calculated cross sections. Mean values 〈1σ

(ion)
ℓ 〉 are

averaged over an integer number of oscillations. Collision energy E = 1.9 × 10−9 a.u.(
v = (2E/µ)1/2 = 1 × 10−6 a.u.

)
and S = 0.
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Figure 4.8. Enlargement of Fig. 4.7 around the potential minimum. Choosing R0 =

6.1 a0, variations are about 0.2%.

over a wide range of collision energies. Applying

(2S+1)σ
(ion)
ℓ (E) =

π

k2 (2ℓ + 1) (2S+1)P
(tun)
ℓ (E), (4.22)

we obtain partial wave ionization cross sections (2S+1)σ
(ion)
0 (E), (2S+1)σ

(ion)
1 (E)

and (2S+1)σ
(ion)
2 (E) for both isotopes. It can be seen in Fig. 4.6 that the resulting

cross sections satisfy the quantum threshold behavior of Eq. (4.5).
To determine the dependence of the cross sections on the adapted short-
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range part of the potential, we have calculated the variation in the cross sections
as a function of R0 for various collision energies; an example of such a calcula-
tion is shown in Figs. 4.7 and 4.8. If R0 is close to the location of the potential
curve minimum at 6.1 a0, the variations are smallest (less than 0.2%). This can
be understood from the large increase in kinetic energy that the relative particle
experiences in the attractive part of the potential. As the de Broglie wavelength
becomes of the order of a0 at these large energies, quantum reflection in the po-
tential becomes a minor effect and the cross sections are relatively insensitive
to variations in the potential. Moreover, with R0 at the potential minimum, the
effective potential curve is smooth and reflection from artificial features (kinks)
is avoided.

It has been shown in calculations that the ionization cross sections for 4He*
are enhanced if the s-wave scattering length 5a associated with the quintet po-
tential is near a singularity [111]. The s-wave scattering length describes elas-
tic collisions in the low-temperature limit [43] and shows a singularity (goes
through ±∞) whenever a bound state is removed from the potential [111]. From
experiments, it has been determined that 5a = 214 a0 = 11.3 nm with an er-
ror of a few nm [175] and a theoretical prediction gives 152 a0 < 5a < 230 a0

(or 8.0 nm < 5a < 12.2 nm) [49]. In both cases the scattering length is suffi-
ciently far from the singularity to neglect enhancement of the ionization cross
sections. For 3He* atoms, the s-wave scattering length for S = 2 is predicted to
be 94 a0 < 5a < 113 a0 (or 5.0 nm < 5a < 6.0 nm). This is also sufficiently small
to neglect effects on the ionization cross sections.

4.2.4 Ionization rate coefficient

In the experiments of Chapter 5, we study ionizing collisions by monitoring
the ion production rate dNion(t)/dt = KSS

∫∫∫
n2(r, t) d3r in magneto-optically

trapped atomic samples of 3He* or 4He* atoms. The ionization rate coefficient
KSS (particle−1 cm3/s) depends on the temperature T of the sample and can be
written in terms of an ionization cross section σ(ion)(E) as [91]

KSS(T) =
∫ ∞

0
σ(ion)(E) P(MB)

T (vr) vr dvr, (4.23)

with

P(MB)
T (vr) =

√
2
π

v2
r

(kBT/µ)3/2 exp
(
− v2

r
kBT/µ

)
, (4.24)

the Maxwell-Boltzmann distribution for the relative velocity in the atomic sam-
ple under study.11

Correspondingly, we can calculate partial wave ionization rate coefficients

(2S+1)Kℓ(T) =
∫ ∞

0

(2S+1)σ
(ion)
ℓ (E) P(MB)

T (vr) vr dvr, (4.25)

11The collision energy depends on relative velocity via E = µv2
r /2 and the root mean square

of the relative velocity, 〈v2
r 〉1/2 = (kBT/µ)1/2 = (2kBT/m)1/2, is

√
2 times the root mean square

of the velocity of each collision partner.
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Figure 4.9. Rate coefficients 1Kℓ(T) (ℓ = 0, 1, 2) for 3He*, calculated from the model
including p and d-wave barrier temperatures.
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Figure 4.10. Rate coefficients 1Kℓ(T) (ℓ = 0, 1, 2) for 4He*, calculated from the model
including p and d-wave barrier temperatures.

and determine
(2S+1)K(T) = ∑

ℓ

(2S+1)Kℓ(T), (4.26)

the ionization rate coefficients associated with a potential (2S+1)V(R). Using nu-
merical integration, (2S+1)K0(T), (2S+1)K1(T) and (2S+1)K2(T) are determined
for both helium isotopes.12 The quantum threshold behavior of the rate coeffi-
cients is given by

(2S+1)Kℓ ∝ k2ℓ if k → 0. (4.27)

12As |3Ṽ(R) − 1Ṽ(R)|/|1Ṽ(R)| < 10−4 for R > 20 a0, differences between 1σ
(ion)
ℓ and 3σ

(ion)
ℓ ,

and 1Kℓ and 3Kℓ are only a few percent. For convenience, we have only performed the calcula-
tions for S = 0 and used the results for both S = 0 and S = 1.
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Figure 4.11. Comparison of the rate coefficients 1Kℓ(T) for 3He* (dotted lines) and 4He*
(solid lines).

In particular, we find (2S+1)K0 → constant if k → 0, as the divergence of σ0

is canceled by v = h̄k/µ. Figs. 4.9 and 4.10 show plots of the coefficients for
a large temperature range, for 3He* and 4He*, respectively. The energy of the
centrifugal barriers for ℓ = 1 and ℓ = 2 is indicated by dashed vertical lines.
For temperatures T < 5 mK, the contribution of the d-wave becomes very small
and can be ignored if an accuracy of 5% is sufficient. Fig. 4.11 shows plots of the
coefficients for both isotopes. Comparing partial wave coefficients for the two
isotopes, we see that the dependence on temperature is similar and that curves
differ by less than 50%.

We have neglected the atomic hyperfine structure of the interatomic poten-
tials for 3He*. As it is four orders of magnitude smaller than the attractive inter-

action at short range, its effect on (2S+1)σ
(ion)
ℓ and (2S+1)Kℓ is negligible. There-

fore, the calculations for 3He* and 4He* are identical, apart from the use of a
different reduced mass.

4.2.5 Symmetrization of scattering states

Although the interatomic interaction is almost identical in the case of 3He* and
4He*, giving rise to (2S+1)σ

(ion)
ℓ and (2S+1)Kℓ that are similar, the description

of the collision process in terms of partial waves is very different due to the
different quantum statistical nature of the two isotopes. As we are dealing with
a system of identical particles—bosons in the case of 4He* and fermions in the
case of 3He*—the scattering states have a distinct symmetry under exchange of
the atoms and partial wave contributions associated with states with improper
symmetry must be excluded from summations like Eq. (4.26).
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Bosonic 4He*: Symmetric states

During a collision of two 4He* atoms, the total electronic spin S and relative an-
gular momentum ℓ are conserved separately, and both S and ℓ are good quan-
tum numbers.13 Ignoring the radial part of the quantum states, a basis for the
atom pairs is given by {

|(S1)A(S1)BSMS ℓm〉
}

. (4.28)

Here the atoms are assumed to be distinguishable and are labeled with A and B.
Both atoms carry a spin S1 = 1 and the total electronic spin S is the result of the
addition of these spins. Quantum numbers MS and m are associated with the
projection on the internuclear axis of the total electronic spin and the relative
angular momentum ℓ of the two atoms, respectively.

For identical bosons, such as two 4He* atoms, physical states must be sym-
metric under exchange of the two atoms. Such states are obtained applying
symmetrizer S = (1 + P12)/

√
2 to the basis vectors, (see [36, complement DXIV]

or [25, Section 2.3.1])

|S1S2, SMS, ℓm〉 =
1√
2

[
1 + (−1)S+ℓ

]
|(S1)A(S1)BSMS ℓm〉. (4.29)

As the states differ from zero only if S + ℓ is even, we can conclude that it is
not possible to construct states with the proper symmetry if S = 0 or S = 2
and ℓ is odd, or if S = 1 and ℓ is even. Consequently, the corresponding partial
wave ionization rate coefficients must be excluded from the summation and, for
a scattering channel (S1S2, SMS), we can write

1K = ∑
ℓ even

1Kℓ, (4.30)

3K = ∑
ℓ odd

3Kℓ. (4.31)

As total electronic spin is conserved, each long-range scattering channel corre-
lates to a single short-range molecular potential of Fig 4.1. Consequently, the
strong suppression of ionization in the quintet potential (Section 4.2.1), allows
us to set 5K = 0 for S = 2.

Fermionic 3He*: Antisymmetric states with hyperfine structure

During a collision of two 3He* atoms, the total atomic angular momentum F =

F1 + F2 and the relative angular momentum of the two atoms ℓ are conserved
separately. Here, Fi = Si + Ii (i = 1, 2), the total angular momentum Fi of an
atom is the sum of its electronic spin Si and its nuclear spin Ii.

Ignoring the radial part of the quantum states and assuming distinguishable
atoms, a basis for the atom pair is given by

{
|(S1 I1F1)A(S1 I1F2)BFMF, ℓm〉

}
, (4.32)

13Conservation of total parity does not give rise to extra selection rules, as the total parity
operation, inverting all electronic and nuclear coordinates, has eigenvalues (−1)ℓ [67].
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where atoms A and B have identical electronic and nuclear spins, S1 = 1 re-
spectively I1 = 1

2 , that add up to F1 for atom A and F2 for atom B. The latter
two add up to the total atomic angular momentum F with projection onto the
internuclear axis MF. Quantum numbers ℓ and m are the angular momenta as-
sociated with the relative motion of the two atoms and its projection onto the
internuclear axis, respectively.

If both atoms are in the lower hyperfine level, so that F1 = F2 = 3
2 , F can take

the values 0, 1, 2 and 3. If both atoms are in the upper hyperfine level, so that
F1 = F2 = 1

2 , F can take the values 0 and 1. Finally one atom in the lower state,
while the other is in the upper gives rise to F = 1 and F = 2.

As a 3He atom is a fermion, the physical states describing an atom pair must
be antisymmetric under exchange of the atoms. Applying antisymmetrizer
A = (1 − P12)/

√
2 to the basis states, we obtain

|S1 I1F1, S1 I1F2, FMF, ℓm〉 =
1√
2

[|(S1 I1F1)A(S1 I1F2)BFMF, ℓm〉

+(−1)F1+F2−F+ℓ+1|(S1 I1F2)A(S1 I1F1)BFMF, ℓm〉
]

(4.33)

If F1 = F2, the physical states are given by

|S1 I1F1, S1 I1F1, FMF, ℓm〉 =

1√
2

[
1 + (−1)ℓ−F

]
|(S1 I1F1)A(S1 I1F1)BFMF, ℓm〉, (4.34)

only differing from zero if F − ℓ is even. Therefore, we must exclude odd (even)
partial waves when calculating the ionization rate coefficient for even (odd) F.
If F1 6= F2, the physical states can be written

|S1 I1F1, S1 I1F2, FMF, ℓm〉 =
1√
2

[|(S1 I1F1)A(S1 I1F2)BFMF, ℓm〉

+(−1)ℓ−F+1|(S1 I1F2)A(S1 I1F1)BFMF, ℓm〉
]

. (4.35)

As these states never equal zero, we cannot derive selection rules based on the
value of F. For each value, F = 1 or F = 2, there is exactly one state of positive
parity and one of negative parity. For the states with positive (negative) parity,
only even (odd) partial waves contribute to the collisions.14

Due to the atomic hyperfine interaction, S is not a good quantum num-
ber for large internuclear distances, where an atom pair is characterized by
(F1F2, FMF). The ionization rate coefficient associated with the atom pair can-
not be written as a sum of the partial wave contributions (2S+1)Kℓ, calculated in
Section 4.2.3. However, S is a good quantum number for R <∼ 30 a0, where the
molecular interaction dominates and Wigner’s spin-conservation rule applies.

14The selection rule for the contribution of partial waves can always be expressed in terms of
parity of the corresponding quantum state: positive parity corresponds to even partial waves
and negative parity to odd ones [25, Section 2.3.1]. We have expressed the selection rule in terms
of S and F in view of convenience.
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Figure 4.12. Enlargement around R = 30 a0 of the short-range potentials for 3He* with
F = 1 and negative parity. The inset shows the potential curves for 25 a0 < R <

50 a0; as the hyperfine interaction is small compared to the molecular interaction at
small internuclear distance (R <∼ 30 a0), the potentials show up as a single curve. The
hyperfine splitting of 3He* is ∆hf = 6.739701177 GHz. The calculation of the curves is
presented in Appendix C.
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Figure 4.13. Deviation from potential 5V(R) (cf. Fig. 4.1) of the short-range poten-
tials for 3He* with F = 1 and negative parity. As potential 5V(R) applies to 4He*
[136], it does not show hyperfine structure. The hyperfine splitting of 3He* is ∆hf =

6.739701177 GHz.

To calculate the rate coefficient, we must analyze the evolution of the states of
the colliding atom pair in the region where the atomic hyperfine interaction and
molecular interaction are of the same order of magnitude.

In Appendix C, the adiabatic potentials including atomic hyperfine structure
are calculated. Figures 4.12 and 4.13 show the adiabatic potentials of negative
parity with F = 1 around R = 30 a0, where the molecular exchange interaction
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becomes larger than the atomic hyperfine splitting. The exchange interaction
increases exponentially for decreasing R (see Eq. (C.4)), so that the potential
curves diverge rapidly. To determine the nature of the quantum state evolu-
tion through this region of internuclear distance, we compare the absolute en-
ergy difference |En − Em| of two scattering states, |m〉 and |n〉 (with equal total
atomic angular momentum F and equal relative angular momentum ℓ), with
the change in the coupling between the scattering states during one period of
oscillation in the quasi-molecular system [45, Section 76],

∣∣∣∣
1

ωnm

d
dt

〈n|Hexch|m〉
∣∣∣∣ =

∣∣∣∣
1

ωnm
vr

d
dR

〈n|Hexch|m〉
∣∣∣∣ , (4.36)

where vr is the relative velocity of the colliding atoms, and 1/ωnm = h̄/|En −
Em| is the period of oscillation in the quasi-molecular system. Neglecting the
asymptotic kinetic energy, the relative velocity

vr ≈
√

2
[
−(2S+1)V(R)

]
/µ ≈ 4 × 10−5 a.u.

at R = 35 a0. The coupling between the scattering states can be approximated
within one order of magnitude by the exchange energy given by Eq. (C.4), so
that

d
dR

〈n|Hexch|m〉 ≈ −10−14 a.u.

At R = 35 a0, the energy difference between the scattering states is on the order
of the hyperfine splitting, so that the period of oscillation can be approximated
as (1/ωnm) ≈ 1/2π∆hf = 1 × 1012 a.u. The absolute change in the coupling
during one period of oscillation,

∣∣∣∣
1

ωnm
vr

d
dR

〈n|Hexch|m〉
∣∣∣∣ ≈ 4 × 10−7 a.u.,

is much larger than the absolute energy difference between the scattering states

|En − Em| ≈ h∆hf ≈ 1 × 10−12 a.u.

Therefore, the evolution around R = 35 a0 is well approximated by a diabatic
transition [45, Section 76], where the Hamiltonian of the system is assumed
to change infinitely fast and the state of the quasi-molecular system remains
unchanged.

To determine the ionization rate coefficient associated with a scattering state,
we can expand the state onto the eigenstates of the short-range molecular Hamil-
tonian, and determine the fraction of ionizing states (S = 0, 1) in the expansion.
The expansions only involve the angular part of the quantum states involved.
For the molecular states, the angular part can be derived applying the anti-
symmetrizer to the vectors of an appropriate basis. Ignoring the radial part of
the quantum states and assuming that the atoms are distinguishable, we write
down a basis for the atom pair where the short-range molecular interaction is
diagonal, {

|(S1 I1)A(S1 I1)BSI, FMF, ℓm〉
}

. (4.37)
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Here, I is the quantum number associated with the sum of the nuclear spins I =

I1 + I2 and S is associated with the sum of the electronic spins S = S1 + S2. The
basis vectors of Eq. (4.32) can be expressed in the short-range basis of Eq. (4.37)
using 9-j symbols [229]

|(S1 I1F1)A(S1 I1F2)BFMF, ℓm〉 = ∑
S

∑
I

|(S1 I1)A(S1 I1)BSI, FMF, ℓm〉

× 〈(S1 S2)S(I1 I2)I F|(S1 I1)F1(S2 I2)F2 F〉 (4.38)

where

〈(S1 S2)S(I1 I2)I F|(S1 I1)F1(S2 I2)F2 F〉

= [(2S + 1)(2I + 1)(2F1 + 1)(2F2 + 1)]1/2





S1 I1 F1

S2 I2 F2

S I F



 . (4.39)

Antisymmetrizing the vectors of the basis of Eq. (4.37), we obtain the physi-
cal states,

|S1 I1, S1 I1, SI, FMF, ℓm〉 =
1√
2
[1 + (−1)ℓ−S−I ]

× |(S1 I1)A(S1 I1)BSI, FMF, ℓm〉, (4.40)

that are different from zero only if ℓ − S − I is even. The states are the angular
parts of the eigenstates of the short-range interaction of two 3He* atoms: writ-
ing the eigenstates as |2S+1Σ

+
g/u I, FMF, ℓm〉, the corresponding angular part is

given by Eq. (4.40).
As F and ℓ are good quantum numbers during a collision, a scattering state

|S1 I1F1, S1 I1F2, FMF, ℓm〉 is expanded onto the molecular states with the same F

and ℓ, i.e. the expansion can be confined within the subspace defined by F and
ℓ. Table 4.1 lists all possible combinations of F and ℓ for both scattering states
and molecular states, and can be used to determine the molecular subspace
associated with a scattering state.

A partial wave rate coefficient Kℓ(F1F2, F) associated with scattering state
|S1 I1F1, S1 I1F2, FMF, ℓm〉 can be expressed as a weighted sum of coefficients
(2S+1)Kℓ associated with molecular states |S1 I1, S1 I1, SI, FMF, ℓm〉,

Kℓ(F1F2, F)

= ∑
S 6=2

(2S+1)Kℓ ∑
I

|〈S1 I1, S1 I1, SI, FMF, ℓm|S1 I1F1, S1 I1F2, FMF, ℓm〉|2 , (4.41)

neglecting ionization for S = 2. In accordance with a diabatic transition, the
weights are projections of the scattering state onto the ionizing molecular states
of the subspace defined by F and ℓ. As an example, we calculate coefficients
Kℓ(

3
2

3
2 , F) for scattering states with F1 = F2 = 3

2 . Writing

|F1 F2 F MF〉scat = |S1 I1F1, S1 I1F2, FMF, ℓm〉 (4.42)

|S I F MF〉mol = |S1 I1, S1 I1, SI, FMF, ℓm〉 (4.43)
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Table 4.1. Distinguishing between even and odd ℓ, all occurring values of total
atomic angular momentum F for two 3He* atoms, associated with molecular states,
F = |S − I|, . . . , S + I, and scattering states, F = |F1 − F2|, . . . , F1 + F2, are listed. During
a collision, parity (−1)ℓ and total atomic angular momentum F are conserved sepa-
rately. These conservation laws determine the molecular subspace associated with a
scattering state in a diabatic transition. Consequently, scattering state ( 3

2 , 3
2 ) with odd ℓ

and F = 3 transforms into molecular state 5Σ+
g (I = 1) (with ℓ and F conserved).

ℓ even Molecular
state

F = |S − I|,
. . . , S + I.

F = |F1 − F2|,
. . . , F1 + F2.

Scattering state

2S+1Σ
+
g/u (I) (F1, F2)

5Σ+
g (I = 0) 2 0 (1

2 , 1
2)

3Σ+
u (I = 1)





0

1

2

1

2

} {
(3

2 , 1
2)

(1
2 , 3

2)

1Σ+
g (I = 0) 0

0

2

}
(3

2 , 3
2)

ℓ odd Molecular
state

F = |S − I|,
. . . , S + I.

F = |F1 − F2|,
. . . , F1 + F2.

Scattering state

2S+1Σ
+
g/u (I) (F1, F2)

5Σ+
g (I = 1)





1

2

3

1 (1
2 , 1

2)

3Σ+
u (I = 0) 1

1

2

} {
(3

2 , 1
2)

(1
2 , 3

2)

1Σ+
g (I = 1) 1

1

3

}
(3

2 , 3
2)
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the states are expanded onto the molecular states as

|3
2

3
2 0 MF〉scat =

√
2
3 |0 0 0 MF〉mol −

√
1
3 |1 1 0 MF〉mol, (4.44)

|3
2

3
2 1 MF〉scat =

√
10
27 |0 1 1 MF〉mol +

√
5
9 |1 0 1 MF〉mol −

√
2
27 |2 1 1 MF〉mol,

(4.45)

|3
2

3
2 2 MF〉scat =

√
2
3 |1 1 2 MF〉mol +

√
1
3 |2 0 2 MF〉mol, (4.46)

|3
2

3
2 3 MF〉scat = |2 1 3 MF〉mol. (4.47)

The F = 0 state is expanded onto singlet and triplet states only and

Kℓ(
3
2

3
2 , 0) = 2

3(1Kℓ) + 1
3(3Kℓ). (4.48)

For the F = 1 and F = 2 states, the expansions show that the diabatic transition
transforms the scattering states into a superposition of ionizing an non-ionizing
molecular states. Calculating the projections, we obtain

Kℓ(
3
2

3
2 , 1) = 10

27(1Kℓ) + 5
9(3Kℓ), (4.49)

Kℓ(
3
2

3
2 , 2) = 2

3(1Kℓ). (4.50)

Considering the F = 3 state, we see that Kℓ(
3
2

3
2 , 3) = 0, as it is expanded onto

quintet states only. This result can also be obtained from Table 4.1 requiring
conservation of angular momenta F and ℓ.

Taking into account conservation of total parity, we can write the ionization
rate coefficient for a homonuclear collision of two 3He* atoms, characterized by
(F1F2, F), as

K(F1F2, F) =





∑
ℓ even

Kℓ(F1F2, F) for positive parity,

∑
ℓ odd

Kℓ(F1F2, F) for negative parity.
(4.51)

For F1 = F2, the summation is over even ℓ if F = 0 or F = 2, and over odd ℓ if
F = 1 or F = 3.

4.3 Unpolarized rate coefficients

Using the ionization rate coefficients obtained in the previous section, we can
derive the unpolarized ionization rate coefficients K(th)

SS , i.e. the rate coefficient
for a laser-cooled sample of He* atoms where the magnetic substates of the
atoms are evenly populated.

For an unpolarized sample of 4He* atoms we obtain

K(th)
SS,4He =

1
(2S1 + 1)2 ∑

S
∑
MS

(2S+1)K = 1
9

[
(1K) + 3(3K)

]
(4.52)
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Figure 4.14. Partial wave ionization rate coefficients 1Kℓ and unpolarized rate coeffi-
cient K(th)

SS for 3He* and 4He*.

where 1K and 3K are given by Eqs. (4.30) and (4.31), respectively. For mK tem-
peratures, only partial waves up to ℓ = 1 have to be taken into account15 and
we obtain

K(th)
SS,4He ≈ 1

9

[
(1K0) + 3(3K1)

]
, (4.53)

where 1K0 and 3K1 are the partial wave ionization rate coefficients for 4He*,
calculated in Section 4.2.3 and displayed in Fig. 4.9.

In the case of 3He*, we are interested in an unpolarized gas of atoms in the
F1 = F2 = 3

2 hyperfine level. The unpolarized rate coefficient is given by

K(th)
SS,3He =

1
(2F1 + 1)2 ∑

F
∑
MF

K(F1F2, F). (4.54)

15For T = 2 mK, K1/K0 = 0.34 and K2/K0 = 0.007 for 4He* and K1/K0 = 0.22 and K2/K0 =

0.003 for 3He*.
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Figure 4.15. Ratio of unpolarized ionization rate coefficients K(th)
SS,3He/K(th)

SS,4He, including
partial wave contributions up to ℓ = 2.

Table 4.2. Comparison between various theoretical results.

Ref. T (µK) K(th)
SS This work

4He* [126] 500 7.3 × 10−11 7.5 × 10−11

[111] 1 1.0 × 10−10 7.7 × 10−11

[111] 500 1.1 × 10−10 7.5 × 10−11

[111] 1000 1.1 × 10−10 8.3 × 10−11

[102] 500 2.2 × 10−10 7.5 × 10−11

3He* [102] 500 1.0 × 10−9 2.0 × 10−10

Taking into account only s-wave and p-wave contributions, we use Eqs. (4.48)–
(4.51) to obtain

K(th)
SS,3He ≈ 1

16

[
4(1K0) + 1

3(3K0) + 10
9 (1K1) + 5

3(3K1)
]

, (4.55)

where 1K0, 3K0, 1K1 and 3K1 are the partial wave ionization rate coefficients for
3He*, calculated in Section 4.2.3 and displayed in Fig. 4.10. The ionization rate
coefficients for an unpolarized sample of 3He* atoms and 4He* atoms are dis-
played in Fig. 4.14. It can be seen in Fig. 4.15, where the ratio of the unpolarized
rate coefficients for the two isotopes is displayed, that unpolarized 3He* atoms
have a larger rate coefficient than unpolarized 4He* atoms for temperatures be-
tween 10 µK and 100 mK.

In Table 4.2, we compare our model to the theoretical work reported in
Refs. [102, 111, 126]. We see that our model agrees well with the results the
detailed close-coupling theory of [111] and the simpler calculation of [126], but
that there is a large discrepancy with the results of Kumakura and Morita [102].
However, this is not surprising, since their model does not account for quantum
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reflection for s-wave scattering. As we have shown in Section 4.2.3, quantum
reflection is significant and we estimate that the omission of this effect leads to
rate coefficients that are too large by factor of about 2. Moreover, Kumakura and
Morita assume that the evolution of the scattering states during the collision of
two 3He* atoms can be approximated by an adiabatic transition. Consequently,
they apply the noncrossing rule [139] to derive the number of ionization chan-
nels for each partial wave ionization rate coefficient. As shown in 4.2.5, the
system is well approximated by a diabatic transition and we estimate that the
assumptions of an adiabatic transition leads to an unpolarized rate coefficient
that is 50% too large. This would explain the difference in ratio K(th)

SS,3He/K(th)
SS,4He

between our model and the value reported by Kumakura and Morita.
At T = 2 mK, our model predicts

K(th)
SS,4He = 9.9 × 10−11 cm3/s, (4.56)

K(th)
SS,3He = 1.8 × 10−10 cm3/s, (4.57)

K(th)
SS,3He/K(th)

SS,4He = 1.8. (4.58)

In Chapter 5, we report the experimental study of homonuclear ionizing colli-
sions in laser-cooled samples of 3He* atoms and 4He* atoms at this temperature.
There, we will use our model to analyze the measurements.
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Experimental ionization rates of

laser-cooled metastable helium isotopes

Magneto-optical traps (MOTs) have been deployed with great success in the
experimental study of inelastic collisions at mK temperatures [210, 211]. As
magneto-optical trapping forces have a limited capture velocity and only act
on particles that are resonantly excited by the trapping light, reaction products
from inelastic collisions are generally not confined in the trap. Measurement of
the consequent trap loss is an excellent tool to study the collision processes at
mK temperatures, as loss rates can be accurately determined, either by monitor-
ing the decreasing atom number in the MOT (if the loading of atoms is stopped),
or by detection of the flux of reaction products escaping from the trap in steady
state.

Experiments have shown [13, 23, 102, 103, 126, 127, 149, 196] that trap loss
from magneto-optically trapped He* samples is dominated (in a good vacuum)
by light-assisted ionizing collisions, where colliding atom pairs are excited at
large internuclear distance to an attractive resonant dipole-dipole potential [191,
210, 211] that asymptotically connects to the atom-pair state 2 3S + 2 3P2.1 Light-
assisted collisions are not suited to investigate effects of quantum threshold
behavior and quantum statistical symmetry requirements, as the dynamics of
these collisions is very complex [191, 210, 211] and the number of partial waves
contributing in a collision is relatively large.2 The number of contributing par-
tial waves is larger compared to collisions in the absence of trapping light (par-
tial waves up to ℓ = 6 contribute in light-assisted collisions in He* samples with

1For 3He* samples, the corresponding atom-pair state is given by
2 3S (F = 3

2 ) + 2 3P (F ′ = 5
2 ).

2On the other hand, light-assisted collisions provide a wealth of information about (for in-
stance) molecular structure in studies concerning photoassociation spectroscopy [80, 113].
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a temperature T = 0.5 mK [102]), because the resonant dipole-dipole interaction
with its long range lowers the centrifugal barriers.

In Chapter 4, it is predicted that quantum threshold and quantum statisti-
cal effects are clearly observable for collisions where ionization is not preceded
by optical excitation. As these collisions contribute very little to the total loss
rate in a MOT, the corresponding ionization rate coefficients cannot be obtained
from trap loss measurements. However, an accurate determination of these
rate coefficients is possible from comparative measurements (with an electron-
multiplier detector) of ion production rates in the absence and presence of the
trapping light, a method applied for the first time by Bardou et al. [13].

In this chapter, we present an experimental investigation of the isotopic dif-
ference in the ionization rates associated with cold collisions of He* atoms in
the absence of light fields. We present measurements of trap loss due to light-
assisted collisions and comparative ion production rate measurements in the
absence and presence of trapping light. From these measurements we deter-
mine the ionization rate coefficients in the absence of light fields. We have per-
formed the measurements on the magneto-optically trapped samples of either
3He* or 4He* atoms that are described in Chapter 2. The isotopic difference in
the rate coefficients is interpreted with the theoretical model of Chapter 4.

In Section 5.1, we distinguish between linear and quadratic trap loss mech-
anisms and show that ionization rates can be deduced from trap loss measure-
ments if the contribution of ionizing mechanisms to trap loss is determined.
In Section 5.2, we present an overview of trap loss mechanisms occurring in
our He* samples. The loss mechanisms are subdivided into ionizing and non-
ionizing contributions, and estimates of the respective ionization and trap loss
rates are given. Section 5.3 presents trap loss measurements on magneto-opti-
cally trapped samples of 3He* and 4He* atoms, and the subsequent determina-
tion of the ionization rate coefficients associated with light-assisted collisions.
In Section 5.4, we present the experimental determination of the ionization rate
coefficients KSS,3He and KSS,4He in the absence of the trapping light. The rate
coefficients are corrected for polarization of the magnetic substate distribution
in Section 5.5. The analysis of the results and comparison with the theoretical
model is presented in Section 5.6.

5.1 Trap loss and ionization

For magneto-optically trapped He* samples, the time-evolution of the number
of trapped atoms N can be described by the phenomenological equation [13, 23]

dN(t)

dt
= L − αN(t)− β

∫∫∫
n2(r, t) d3r, (5.1)

where t denotes time. Writing down this differential equation, we assume that
N(t) is controlled by three simultaneously occurring processes, corresponding
to the three terms on the right-hand side of the equation. The first term is a
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constant loading rate L, representing the capture of atoms from the deceler-
ated atomic beam into the MOT. The second and third term are the linear trap
loss rate and quadratic trap loss rate, respectively, defined in terms of the local
atomic density of the sample n(r, t), if L = 0, by

dn(r, t)

dt
= −α n(r, t) − β n2(r, t). (5.2)

The nomenclature of the loss rate terms refers to their proportionality to density
n(r, t) and density squared n2(r, t). Analogously, the proportionality constants,
α and β, are referred to as the linear and quadratic loss rate coefficient, respec-
tively.

Both linear and quadratic trap loss are caused by a number of different loss
mechanisms, that can be subdivided into ionization mechanisms and mecha-
nisms where atoms are lost without the formation of ions. The ion production
(not necessarily He+ or He+

2 ) associated with ionization mechanisms can be ex-
pressed as an ionization rate,

dNion(t)

dt
= ǫaαN(t) +

ǫbβ

2

∫∫∫
n2(r, t) d3r, (5.3)

where ǫa and ǫb are the weights of ionization mechanisms in linear and quad-
ratic trap loss, respectively. The quadratic ionization rate is half of the ionizing
quadratic trap loss rate, as a single ion is formed for every pair of colliding He*
atoms that is lost from the trap.

Ionization rates in He* samples can be measured accurately with an MCP

detector. If the ionization weights associated with a He* sample (ǫa and ǫb)
have been determined, ionization rate measurements can be used to study trap
loss and to determine the ionization rate coefficient KSS in the absence of trap-
ping light. Section 5.2 presents an overview of the linear and quadratic trap
loss mechanisms occurring in the He* samples, subdivided into ionizing and
non-ionizing processes. The ionization weights ǫa and ǫb are determined from
estimates of ionization and trap loss rates associated with linear and quadratic
trap loss mechanisms, respectively.

5.2 Overview of trap loss mechanisms

For the He* samples studied in this chapter, only collisional loss mechanisms
give rise to significant ionization and trap loss rates.3 Quadratic trap loss is
determined by collisions between trapped He* atoms, while linear trap loss
results from collision with particles traversing the trapping volume, such as
background gas particles and He atoms from the atomic beam. If cross sec-
tion data are available for the appropriate collision energy, ionization and trap
loss rates can be calculated from the atomic density in the trapped sample, the

3As we are using trapping light with a wavelength λ = 1083 nm, photoionization of trapped
He* atoms can be neglected. In Chapter 3, we have shown that photoionization leads to signifi-
cant linear trap loss if trapping light with λ = 389 nm is used.
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Table 5.1. Total cross section σ and trap loss rate for collisions of trapped 4He* atoms
with 4He(1 1S) atoms from the atomic beam (Er = 4.9 meV) and background gas (Er =

16.5 meV). For a beam with flux F, the loss rate is given by σF, whereas background gas
with density ñ give rise to a loss rate σv̄rñ. Here, v̄r = (2Er/µ)1/2 is the mean relative
velocity of the colliding atoms and µ = m/2 their reduced mass, with m the mass of the
4He atom.

Reagent Er σ F ñ σF or σv̄rñ

(meV) (10−16 cm2) (cm−2 s−1) (cm−3) (s−1)
4He 4.9 200a 1014 — ∼ 2
4He 16.5 140b — 1 × 107 0.02
a Vrinceanu et al. [207].
b Mastwijk [125, Chapter 5] and Rothe et al. [168].

background gas density and the atomic beam flux. For all relevant collision pro-
cesses involving 4He* atoms, cross section data can be found in literature4 and
ionization and trap loss rates can be calculated. This is not possible for 3He*
samples, as the number of reported collision studies on the fermionic isotope is
very limited. However, relevant cross sections are not expected to show a large
isotopic dependence and, after having estimated loss rates from 4He* samples,
we will map out trap loss from 3He* samples assuming similar cross sections
for both isotopes.

5.2.1 Collisions in 4He* samples

For 4He* samples, linear trap loss is dominated by collisions with 4He atoms
in the 1 1S ground state from the atomic beam. At the collision energy Er ≈
4.9 meV, Penning or associative ionization is forbidden by energy conservation5

and the cross section associated with these non-ionizing collisions has a value of
σ = 200× 10−16 cm2 [207]. The beam of ground state He atoms has an estimated
intensity on the order of 1019 s−1 sr−1, corresponding to a flux on the order of
F = 1014 cm−2 s−1 at the position of the trapped sample, i.e. a distance of 3.7 m
in front of the source. The consequent trap loss rate (per trapped 4He* atom)
can be calculated easily as σF ≈ 2 s−1. For convenience, the calculation is also
presented in Table 5.1.6

At the low pressure in the trapping chamber of 7.0 × 10−10 mbar, trap loss
due to collisions with background gas particles is relatively small. The back-
ground gas consists mainly of 4He atoms, with a corresponding partial pressure

4An overview of collision studies with 4He* atoms can be found in [185, 227].
5At thermal collision energies, associative ionization (or the Hornbeck-Molnar process [85]),

He(n 2S+1L) + He(1 1S) → He+
2 + e, only occurs if the excited atom He(n 2S+1L) is in a state

that is higher-lying than 3 1S [212].
6In contrast to other work [23, 79, 149, 196], the beam of He* atoms is not separated from the

beam of ground state He atoms.
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Table 5.2. Ionization cross section σ and ionization rate σv̄rñ for collisions between
trapped 4He* atoms and thermal background gas molecules. The ionization rates are
upper limits, as they are obtained assuming a background gas density ñ = 1.2 ×
106 cm−3, corresponding to a partial pressure p̃ = ñkBT = 5 × 10−11 mbar, the total
partial pressure for all background gas constituents other than ground state helium.
Here, v̄r = (2Er/µ)1/2 is the mean relative velocity of the colliding atoms and µ their
reduced mass.

Reagent Er σ σv̄rñ

(meV) (10−16 cm2) (s−1)

H2 22 0.1a 2 × 10−4

H2O 6.0 131b 9 × 10−4

O2 4.7 8c 4 × 10−5

N2 4.1 2d 1 × 10−5

a Martin et al. [123].
b Mastwijk [125, Chapter 5]; calculated from the relation σ = k/v̄r, where

v̄r = (8kBT/πµ)1/2 is the mean relative velocity of a gas at temperature T.
c Parr et al. [142].
d Yamazaki et al. [222].

p̃ = 6.5 × 10−10 mbar. Other constituents, presumably H2O and H2 (and less
likely N2 and O2), contribute a partial pressure of 5 × 10−11 mbar. In Table 5.1
the trap loss rate associated with collisions with background 4He atoms is cal-
culated from the background gas density ñ = p̃/kBT and the mean collision
velocity v̄r = (2Er/µ)1/2, with Er ≈ 16.5 meV. The resulting rate of 0.02 s−1 is
considerably larger than the trap loss rate from collisions with background gas
molecules. The cross sections for collisions of trapped 4He* with H2O, H2, N2

and O2 are all smaller than 300× 10−16 cm2 [125, Chapter 5] and the correspond-
ing contribution is at most 3 × 10−3 s−1. As Penning ionization is an important
reaction mechanism in these collisions, their contribution to the ionization rate
is of more concern.

As shown in Table 5.2, ionization cross sections for collisions of 4He* with
background gas molecules are all relatively small, except for collisions with
H2O molecules.7 As the background gas composition is unknown, we cannot
make an accurate estimate of the linear ionization rate. However, we obtain
an upper limit of 9 × 10−4 s−1 assuming that, next to 4He atoms, only H2O
molecules are present. Ionization rates for various background gas composi-
tions are presented in Table 5.2.

Another source of linear ionization is formed by collisions of trapped 4He*
atoms with 4He* atoms from the atomic beam. As discussed in Chapter 2, the
capture velocity of the Zeeman slower is 1350 m/s and 4He* atoms with a larger

7The large cross section results from a large attractive force between 4He* and H2O, a conse-
quence of the permanent dipole moment of the H2O molecule [125, Chapter 2].
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Table 5.3. Ionization cross section σ and trap loss rate σv̄rñ for collisions between
trapped 4He* atoms and 4He* atoms from the atomic beam. About half of the atoms
emerging from the source have a longitudinal velocity v < 1350 m/s and are deceler-
ated in the Zeeman slower to a velocity around 50 m/s. Collisions with the nonslowed
beam are dominant.

Reagent vbeam Er σ F σF

(m/s) (meV) (10−16 cm2) (cm−2 s−1) (s−1)
4He* 1586 6.5 181a 4 × 1011 b 7 × 10−3

4He* 50 0.0064 1160c 8 × 109 d 9 × 10−4

a Obtained from σ = σ1(E1/Er)α, where E1 = 1 meV, σ1 = 318 × 10−16 cm2 and α = 0.3.
Müller et al. [136] have shown that the cross section for 4He*–4He* collisions satisfies this
(semi-classical) energy dependence for collision energies 0.1 meV < Er < 100 meV.

b Rooijakkers [163] reports a maximum flux after collimation of 1012 s−1 cm−2. Correcting
for the source current used here and the capture of 50% of the flux in the Zeeman slower,
we obtain a maximum flux of nonslowed atoms travelling through the trapped sample of
4 × 1011 cm−2 s−1.

c Venturi et al. [204]; calculated from the relation σ = k/v̄r, where v̄r = (8kBT/πµ)1/2 is the
mean relative velocity of a gas a temperature T.

d Simulations of the Zeeman deceleration process have shown that, due to transverse
heating, the flux of slowed atoms is smaller by a factor of 50, compared to the flux of
nonslowed atoms.

velocity are not decelerated. At the position of the trapped cloud, this results
in a metastable beam with a slowed and a non-slowed part. At the source cur-
rent used, the velocity distribution of the metastable beam is such that about
half of the atoms are captured in the Zeeman slower. These atoms are slowed
to a velocity of 50 m/s. The remaining atoms form the non-slowed beam, that
traverses the trapped sample with a mean velocity of 1586 m/s. Based on the
source current used in our setup, the central flux of 4He* atoms in the non-
slowed beam is estimated to be 4 × 1011 cm−2 s−1. Calculations show that the
flux in the slowed beam is smaller by a factor of 50 due to transverse heat-
ing of the atomic beam in the deceleration process. To estimate the ioniza-
tion occurring in the capture process of decelerated He* atoms from the beam
into the MOT, we assume that the decelerated atomic beam travels through the
trapped sample prior to the capture process. Using ionization cross sections
from literature, we calculate the ionization rates for collisions with non-slowed
(vbeam = 1587 m/s) and slowed (vbeam = 50 m/s) atoms in Table 5.3.

Linear ionization is determined by collisions with slowed and non-slowed
atoms in the metastable beam and by collisions with background gas molecules.
The rates add up to an upper limit of 8.8 × 10−3 s−1. The corresponding trap
loss rate is small compared to the total linear trap loss rate of ∼ 2 s−1, that is
dominated by collisions with ground state 4He atoms from the atomic beam.
Calculating the ratio of the loss rates, we determine an ionization weight ǫa <∼
10−3.
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Table 5.4. Ionization cross section σ and ionization rate for collisions between magneto-
optically-trapped 4He* atoms in the presence and absence of near-resonant light with
a wavelength λ = 1083 nm. The density in the trapped samples n(r) and the trapped
atom number N are obtained from Table 5.5.

Reagent Er σ (σv̄r/N)
∫

n2(r) d3ra

(µeV) (10−12 cm2) (s−1)
4He* + light 0.01 16b 4
4He* 0.01 0.4b 0.1
a For samples with a Gaussian density distribution, as given by Eq. (5.5), the ionization rate

can be written βn0/4
√

2 in the presence of trapping light and Kn0/2
√

2 in the absence of
trapping light.

b Tol et al. [196]; calculated from the relation σ = k/v̄r, where v̄r = (8kBT/πµ)1/2 is the
mean relative velocity of a gas a temperature T.

For magneto-optically trapped samples of 4He* atoms similar to those stud-
ied here, it has been shown [77, 196] that quadratic loss is dominated by ioniz-
ing light-assisted collisions. Ionizing quadratic trap loss makes up for 97.5% of
the total quadratic loss, while escape of fast 4He* atoms is responsible for the
remaining 2.5% of the loss events, either through fine-structure-changing colli-
sions (1.9%) or (presumably) radiative escape (0.6%) [77, Chapter 5] [99]. This
means that in the presence of trapping light ǫb ≈ 1. The ionization cross section
for light-assisted collisions is exceptionally large due to the optical excitation
of the colliding atom pair to long-range dipole-dipole potentials [210, 211]. For
the trapping light intensity and detuning used in the experiments, the ioniza-
tion cross section is 16× 10−12 cm2. Using the number of the trapped atoms and
the density profile of our samples (see Table 5.5), we obtain an ionization rate
of 4 s−1, as shown in Table 5.4. As two atoms are lost from the MOT for every
produced ion, a typical quadratic trap loss rate is twice as large, 8 s−1.

Also in the absence of trapping light, ionizing collisions dominate quadratic
trap loss. As shown in Table 5.4, the cross section is smaller by a factor of 40,
yielding an ionization rate of 0.1 s−1. The corresponding loss rate is 0.2 s−1. As
fine-structure-changing collisions and radiative escape do not play a role in the
absence of trapping light, virtually all trap loss is due to Penning ionization and
ionization weight ǫb is again very close to one.

5.2.2 Collisions in 3He* samples

For 3He* samples, trap loss is governed by the same trap loss mechanisms as
for 4He* samples, but a similar calculation of trap loss and ionization rates is
not possible, as collision studies on 3He* are rare [185, 227] and cross section
data available in literature are very limited. However, relevant cross sections
are not expected to show a large isotopic dependence and we will assume the
same order of magnitude for both isotopes. In the following, we only discuss
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trap loss mechanisms yielding different loss rates for both isotopes and show
that differences in ionization weights ǫa and ǫb are negligible.

As the velocity of 3He* atoms from the source is larger and therefore, the
nonslowed portion is larger (90%, see Chapter 2), the ionization rate associated
with linear trap loss is expected to be almost twice as large. However, it is still
negligible compared to ionization rates from light-assisted collisions and, as the
ionization cross section for collisions in the absence of light fields is expected
to be about twice as large compared to 4He (Chapter 4), the ionizing linear trap
loss is small compared to that in the absence of a light field as well.

For 3He* samples, we assume an analogous domination of the quadratic trap
loss by ionizing light-assisted collisions. Due to its smaller masses, 3He atoms
are accelerated towards each other at a larger rate, so that the probability for
spontaneous decay at internuclear distances R >∼ 10 a0 decreases compared to
light-assisted collisions of two 4He* atoms. The smaller decay probability re-
sults in an increase of fine-structure-changing collisions at the expense of radia-
tive escape.8 However, the total contribution of the two non-ionizing processes
to trap loss is expected to be approximately the same, so that ionizing light-
assisted collisions dominate quadratic trap loss for 3He* samples. Furthermore,
hyperfine changing collisions do not contribute to quadratic trap loss as these
inelastic collisions are forbidden by energy conservation. Trapped 3He* atoms
are in the lower F = 3

2 hyperfine level and the endothermal hyperfine changing
collision requires an energy larger than the hyperfine splitting Ehf = 28 µeV,
corresponding to a temperature Ehf/ 3

2 kB = 0.2 K.

5.2.3 Ionization rate

Reviewing the obtained loss rates, we can draw the same conclusions for both
isotopes. Linear trap loss is dominated by collisions of trapped atoms with
ground state atoms from the atomic beam, giving rise to a trap loss rate on the
order of 2 s−1. Linear ionization is the result of collisions with slowed and non-
slowed atoms from the atomic beam, and collisions with background molecules,
yielding a rate of about 1 × 10−2 s−1. This ionization rate is small compared
to the quadratic ionization rates associated with ionizing collisions of trapped
atoms in the presence and absence of trapping light. Therefore, we can set, to
a good approximation, ǫa = 0 and ǫb = 1, both in the presence and absence of
trapping light, for both isotopes. Consequently, the ionization rate of Eq. (5.3)
can be approximated by

dNion(t)

dt
≈ β

2

∫∫∫
n2(r, t) d3r. (5.4)

Finally, quadratic trap loss is dominated by quadratic ionization. For 4He* sam-
ples, the corresponding rate is 8 s−1 in the presence of trapping light, and 0.2 s−1

in the absence of trapping light. For 3He* samples, the rates are expected to be
larger as a result of the different quantum statistical symmetry.

8The reasoning is based on the model for light-assisted collisions developed by Gallagher
and Pritchard [65].
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5.3 Ionization rates for light-assisted collisions

We have determined the ionization rate coefficient β/2 for light-assisted col-
lisions of 3He* or 4He* atoms from trap loss experiments, where the decay of
the trapped atom number in the MOT is monitored when the loading of atoms
to the MOT is abruptly stopped [210, 211]. The loss rate coefficients α and β

determine the exact shape of the decay and are obtained via curve fitting. For
magneto-optically trapped samples of alkali atoms, trap loss experiments are
usually performed by monitoring the fluorescence of trapped atoms, as the
fluorescence light intensity is proportional to the trapped atom number [197].
However, we can make use of Eq. (5.4), that gives the relation between ioniza-
tion rate dNion(t)/dt and the density distribution of the trapped sample n(r, t),
and determine the loss rate coefficients using the unshielded MCP detector (see
Chapter 2). As the negative high voltage on the front plate of the detector is
exposed to the sample, positive ions are attracted to the detector, producing a
current signal that is proportional to the ionization rate. The current signal is
converted to voltage signal ϕ(t) and monitored with a Tektronix TDS 210 digital
oscilloscope.

As shown in Chapter 2, the magneto-optically trapped He* samples have a
Gaussian density distribution, that can be written as

n(x, y, z, t) = n0(t) exp

(
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z

)
, (5.5)

with n0(t) the time-dependent density in the center (x = y = z = 0) of the sam-
ple, and σx, σy and σz the radii of the three-dimensional Gaussian distribution.
Introducing the effective volume V = (2π)3/2σxσyσz, such that n0(t) = N(t)/V,
the evolution of central density n0(t) can be obtained from Eq. (5.1) as

dn0(t)

dt
=

L

V
− αn0(t) − β

2
√

2
n2

0(t). (5.6)

If the loading of atoms into the MOT is abruptly stopped, the central density
shows a decay that is proportional to the decay of the trapped atom number.
Solving Eq. (5.6) with L = 0, an expression for the decay is obtained,

n0(t) =
n0(0)(

1 +
βn0(0)

2
√

2α

)
exp(αt) − βn0(0)

2
√

2α

. (5.7)

The current signal measured with the MCP is proportional to the ionization
rate of Eq. (5.4). For a Gaussian density distribution, the rate can be written as
dNion/dt = Vβn2

0/4
√

2, so that the current signal, converted into a voltage, can
be written as

ϕ(t) = eReff
β

4
√

2
n2

0(t) + ϕbgr, (5.8)

where e is the electron charge and Reff is an effective resistance. Substitution
of Eq. (5.7) into Eq. (5.8) gives an expression for the decaying ionization signal,
from which α and βn0(0) can be obtained by fitting to the measured decay trace.
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Figure 5.1. Ionization signal for a trap loss measurement on a 3He* sample. At t = 0,
the input of atoms to the MOT is stopped abruptly. The rapid decay of the ionization
signal (black dots) is non-exponential, as shown in the inset. Fitting the signal to our
model (grey line) yields trap loss rates βn0(0) = 20 s−1 and α = 0.7 s−1.

The loading of atoms into the MOT is stopped by blocking the Zeeman slow-
ing light with the acousto-optic modulator used for frequency detuning the
slowing light from the atomic transition. Ionization rate decays are averaged
four times using the digital oscilloscope. It has been verified that the variations
in the central density are small enough that an averaged decay curve allows an
accurate determination of loss rates α and βn0(0). An example of an averaged
ionization trace and a fit is displayed in Figure 5.1.

We have performed trap loss measurements on the 3He* and 4He* samples
discussed in Chapter 2. Loss rates α and βn0(0) are determined in the fitting
procedure. The central density in the samples n0(0) is derived from absorption
imaging, so that the loss rate coefficient β can be determined. The resulting rate
coefficients, α and β, are presented9 in Table 5.5, along with other experimental
results, including numbers discussed in Chapter 2.

The linear loss rate coefficients are on the order of 2 s−1, as estimated for
linear trap loss due to collisions with ground state atoms from the atomic beam.
Reversing the reasoning of Section 5.2.1, we can determine the intensity of the
beam of ground state atoms. Using the total cross section σ = 200 × 10−16 cm2

for collisions between trapped 4He* atoms and ground state 4He atoms from
the atomic beam, and the distance between source and trapped sample, we cal-
culate that the loss rate coefficient α = 0.6(3) s−1 corresponds to an intensity of
4 × 1018 s−1 sr−1. Rooijakkers et al. [163] report a maximum intensity of 4He*
atoms of 5 × 1014 s−1 sr−1. Correcting for the source current here, we obtain an
intensity of 4× 1014 s−1 sr−1 and a fraction of 4He* atoms in the atomic beam of
10−4.

The quadratic loss rate coefficient for 3He*, β3He = 5.5(8) × 10−9 cm3/s,

9Throughout this chapter, presented uncertainties correspond to one standard deviation.
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Table 5.5. Characteristic parameters of the magneto-optically trapped He* samples.
Experimental errors correspond to one standard deviation.

3He* 4He*

T (mK) 2.0(3) 1.9(1)

N (−) 2.6(9) × 108 3.7(5) × 108

n0 (cm−3) 3.0(5) × 109 4.4(4) × 109

α (s−1) 0.8(2) 0.6(3)
β (cm3/s) 5.5(8) × 10−9 3.3(7) × 10−9

KSS (cm3/s) 1.8(3) × 10−10 8(2) × 10−11

K
(eq)
SS (cm3/s) 1.9(3) × 10−10 1.0(2) × 10−10

is almost twice as large as the loss rate coefficient for 4He* samples, β4He =

3.3(7) × 10−9 cm3/s, which is in good agreement with the loss rate coefficient
determined for a similar 4He* sample in [196]. Kumakura and Morita [102]
have pointed out that the isotopic difference stems from a difference in the rel-
ative number of ionization channels, opened up by the lowering of centrifugal
barriers by the long-range, resonant dipole-dipole interaction. Quantum statis-
tical symmetry requirements play a role for these collisions, but the effects are
washed out, as the number of participating partial waves is much larger than
one. However, with an additional measurement, we can determine ionization
rate coefficients in the absence of trapping light, where these quantum statistical
effects are not obscured, as predicted in Chapter 4.

5.4 Ionization in the absence of trapping light

Collisions where ionization is not preceded by absorption of trapping light con-
tribute little to the ionization rate in magneto-optically trapped He* samples.
However, the corresponding ionization rate coefficients can be determined from
a comparative measurement of the ionization rate in the presence and absence
of trapping light, a method applied for the first time by Bardou et al. [13]. Dur-
ing a short time interval of 100 µs, the trapping and slowing light is blocked
using the acousto-optical modulators used for detuning of the frequencies from
the atomic transition. With the trapping light present, the observed ionization
signal

ϕon(t) = eReff
β

4
√

2
n2

0(0) + ϕbgr (5.9)

is relatively large. During the time interval where the trapping light is absent,
the ionization rate is much smaller, as it is determined by collisions between
either 4He*(2 3S) or 3He*(2 3S, F = 3

2 ) atoms. Introducing the ionization rate
coefficient in the absence of trapping light, KSS, the ionization signal can be
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Figure 5.2. Ionization rates in the presence and absence of trapping (and slowing) light.
The signals are averaged over 40 µs time intervals indicated by the shaded areas to
obtain (ϕ̄on − ϕ̄bgr) and (ϕ̄off − ϕ̄bgr).

written as
ϕoff(t) = eReff

KSS

2
√

2
n2

0(0) + ϕbgr. (5.10)

Blocking the trapping and slowing light every 200 ms for 100 µs, the ionization
signal is averaged 256 times using a Tektronix TDS 3032B digital oscilloscope.
The measurement is repeated with the atomic beam blocked to obtain the (con-
stant) background ionization signal ϕbgr(t), including an offset originating from
the MCP signal amplifier.

Examples of average ionization signals are displayed in Figure 5.2. To obtain
(ϕ̄on − ϕ̄bgr) and (ϕ̄off − ϕ̄bgr), the average of signals ϕon(t), ϕoff(t) and ϕbgr(t)

over 40 µs time intervals is determined, as indicated in Figure 5.2 . The mean
values are used to derive the ionization rate coefficient KSS as

ϕ̄on − ϕ̄bgr

ϕ̄off − ϕ̄bgr
=

β

2KSS
. (5.11)

The ratio of the ionization signals in the presence and absence of trapping light
equals the ratio the ionization rate coefficients β/2 and KSS

Although the atoms are not confined with the trapping light absent, the ex-
pansion of the trapped He* sample during 100 µs is insignificant and can be
neglected if the duty cycle of the experiment is chosen sufficiently long. As the
ionization signal in the presence of the trapping light is assumed to correspond
to the ionization rate coefficient β/2 as derived from the trap loss measurement
described in Section 5.3, it is checked that switching the light with a period of
200 ms does not influence the trapped sample.

Performing extensive comparative ionization rate measurements on our He*
samples, we have determined ionization rate coefficients KSS,3He = 1.8 (3) ×
10−10 cm3/s and KSS,4He = 8 (2) × 10−11 cm3/s (see also Table 5.5). Clearly, the
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ionizing rate coefficient for 3He* samples is larger than the coefficient for 4He*
samples. As shown by Herschbach et al. [79], the rate coefficients measured de-
pend on parameters of the MOT and must be corrected for the polarization in the
distribution over magnetic substates that is impressed on the He* samples by
optical pumping. The corrected rate coefficients can be compared with the the-
oretical model of Chapter 4, that assumes an equal distribution over magnetic
substates.

5.5 Polarization effects

In a MOT, optical pumping processes cause the magnetic substate distribution to
deviate from a uniform distribution, with the stretched substates slightly over-
populated. In these partially polarized samples, quadratic ionization rates are
smaller as compared with unpolarized samples. Calculating the substate dis-
tribution, a correction is derived for the rate coefficients KSS obtained in Sec-
tion 5.4.

Following the approach of [79], the process of optical pumping in a trapped
sample is described using a rate equation model. Starting from the intensity
and detuning of the trapping light, and an expression for the quadrupole mag-
netic field, rate equations are formulated and subsequently solved to obtain the
steady state substate population in the sample. In these calculations we take
into account that the intensities of the trapping beams are not balanced and that
(consequently) the trapped sample is not exactly centered on the zero point of
the magnetic field. The steady-state population PM satisfies ∑M PM = 1, where
M is the azimuthal quantum number.

For partially polarized 4He* samples, the ionization rate coefficient KSS can
be corrected to obtain the rate coefficient for an unpolarized sample,

K
(eq)
SS,4He = KSS,4He

〈
3P2

0 + 6P−1P1

〉
, (5.12)

where the expression between brackets is averaged over the trapped sample,
weighted by the local density. The expression is obtained by projecting a statis-
tical mixture of substates, given by (P−1, P0, P1), onto the quasi-molecular state

|1Σ+
g 〉 =

√
1
3 (| − 1; +1〉 + | + 1;−1〉 − |0; 0〉) , (5.13)

thereby neglecting partial waves ℓ = 1 and higher, and performing the average.
State |(MS)A; (MS)B〉 represents a pair of distinguishable atoms with quantum
numbers (MS)A and (MS)B, associated with the projection of respective spins
(S)A = 1 and (S)B = 1 onto the internuclear axis.

For 3He* samples, the subspace of ionizing quasi-molecular states associated
with ℓ = 0 is given by |0 0 0 MF〉mol, |1 1 0 MF〉mol and |1 1 2 MF〉mol (notation
defined in Eq. (4.43)) and projection of the statistical mixture onto the subspace,
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Table 5.6. Distribution of trapped atoms over magnetic substates for
experimental MOT parameters. The populations are averaged over
the trapped samples, where the local density is used as a weight.
The rather large intensity imbalance of two counterpropagating laser
beams (see Chapter 2) results in an asymmetric population of sub-
states. As 〈PMPM ′〉 6= 〈PM〉〈PM ′〉, it is not possible to substitute values
for 〈PM〉 into Eqs. (5.12) and (5.14).

4He* 〈P−1〉 = 0.21 〈P0〉 = 0.30 〈P1〉 = 0.49

3He*
〈P−3/2〉 = 0.16

〈P−1/2〉 = 0.21

〈P1/2〉 = 0.27

〈P3/2〉 = 0.36

followed by weighted averaging over the trapped sample, yields

K
(eq)
SS,3He = KSS,3He

〈32
13(P−3/2P−1/2 + P−3/2P1/2 + P−1/2P3/2 + P1/2P3/2)

+40
13(P−3/2P3/2 + P−1/2P1/2)

〉
, (5.14)

Here, we have assumed that partial wave rate coefficients 1K0 and 3K0 are iden-
tical.10 The averaged substate populations 〈PM〉, obtained from the rate equa-
tion model, are shown in Table 5.6. Please note that it is not possible to substi-
tute values for 〈PM〉 into Eqs. (5.12) and (5.14), as 〈PMPM ′〉 6= 〈PM〉〈PM ′〉.

The corrected rate coefficients are given in Table 5.5. Because of the dif-
ferent substate structure (J = 1 compared to F = 3/2) and different quan-
tum statistical symmetry, the corrections differ for the two isotopes, rather large
in case of 4He*, with K

(eq)
SS,4He = 1.33 KSS,4He, and smaller in case of 3He*, with

K
(eq)
SS,3He = 1.10 KSS,3He.

5.6 Discussion and conclusions

Clearly, the ionization rate coefficient for 3He* is larger than that for 4He*. As
shown in Chapter 4, this is a consequence of the different quantum statistical
symmetry of the two isotopes and the presence of a nuclear spin in the case of
3He*, properties that clearly manifests itself in ionizing collisions in the quan-
tum threshold regime.11 The ratio K

(eq)
SS,3He/K

(eq)
SS,4He = 1.8(5) agrees very well

to the theoretical prediction of 1.8 (at a temperature of 2 mK), which is an in-
dication that our model provides a good description of homonuclear ionizing
collisions of He* isotopes. For 4He*, this was already confirmed by comparison
of our results with other theoretical work reported in literature.

10It was shown in Section 4.2.4, that differences between 1Kℓ and 3Kℓ are only a few percent.
11In heavier metastable rare-gas systems, complementary studies of quantum statistical ef-

fects in ionizing collisions have been performed [95, 141]. As Wigner’s spin-conservation rule
does not apply for these heavy systems [52], quantum statistical effects can be observed as a
suppression or enhancement of ionization rates if trapped samples are polarized.
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The rate coefficients, K
(eq)
SS,3He = 1.9(3) × 10−10 cm3/s and K

(eq)
SS,4He = 1.0(2) ×

10−10 cm3/s, show a surprisingly good agreement with our theoretical predic-
tions at 2 mK of K(th)

SS,3He = 1.8 × 10−10 cm3/s and K(th)
SS,4He = 9.9 × 10−11 cm3/s.

There is also a good agreement with the calculated values of Leo et al. [111].
However, our values do not agree with other experimental values, that suffer
from mutual inconsistency themselves, as was pointed out by Leo et al. [111].

In particular, there are rather large discrepancies between the values re-
ported here and those reported by Kumakura and Morita [102] for 3He*. The
discrepancy between the theoretical predictions can be explained from too sim-
ple assumptions in the theoretical model of Kumakura and Morita (which shows
good agreement with their experimental results). As their model does not take
into account quantum reflection for s-wave scattering, it yields too large the-
oretical predictions. Furthermore, the model assumes adiabatic transitions in
3He collisions, thereby overestimating the ratio of ionization rate coefficients.
The discrepancy between the experimental values is more difficult to interpret.
The ionization rate coefficients are the result of an extensive analysis, including
the determination of the density distribution and temperature of the trapped
samples, as well as the distribution over the magnetic substates. The ionization
rate coefficient is particularly sensitive to the density in the sample. It must be
checked carefully if frequency drifts of the probe laser light or stray magnetic
fields are small enough to avoid incomplete absorption, which would result in
underestimation of the density and overestimation of the ionization rate coeffi-
cients. If the number of trapped atoms is obtained from fluorescence imaging
[102], an accurate calibration of the CCD chip is crucial. Furthermore, collisions
of trapped atoms with background atoms or atoms from the atomic beam must
be considered. If the trapped atom number is small (< 107), quadratic ion-
ization becomes small and other (linear) ionization mechanism possibly play a
part, hampering accurate measurements.

It would be interesting to extend the work presented in Chapters 4 and 5
to trapped samples containing both isotopes and study heteronuclear ionizing
collisions. In the case of collisions between distinguishable particles, quantum
statistical symmetry requirements should be absent, which could be confirmed
from an investigation of ionizing collisions. Another interesting extension of the
work presented here, is the study of the ionization rates for samples with a pre-
pared substate population. It might be possible to study depolarization due to
collisions [111]. Finally, ionizing collisions can also be investigated in the quan-
tum degenerate regime [175]. Ionization rates could be used to study quantum
statistical properties of a quantum degenerate mixture with high spatial and
temporal resolution. It is conceivable that phase separation in a quantum de-
generate mixture (see Chapter 6) can be observed through the ionization rate in
the sample.
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Simultaneous magneto-optical trapping of a

boson-fermion mixture of He* atoms

Metastable triplet helium (He*) provides unique possibilities for the study of
dilute quantum gases. Its metastability offers new detection strategies unavail-
able with alkali species. In particular, the Penning ionization process,

He* + He* → He+ + He(1 1S) + e− (6.1)

(or He* + He* → He2
+ + e−), provides a small but detectable flux of ions. This

real-time probe can be used to study density-dependent phenomena occurring
in trapped samples. The achievement of Bose-Einstein condensation in a dilute
gas of 4He* atoms [147, 162] has already demonstrated the feasibility of quan-
tum degeneracy experiments with metastable helium. Considering the avail-
ability of the fermionic isotope 3He*, research might be extended to Fermi de-
generacy and boson-fermion quantum degenerate mixtures. Recently, impres-
sive results were obtained in this field, including the observation of Pauli block-
ing of collisions [48], the study of boson-fermion quantum degenerate mixtures
of 6Li/7Li [173, 198], 6Li/23Na [73] and 40K/87Rb [134], and the formation of
molecular condensates in the BEC-BCS crossover regime [71, 89, 231]. With the
extra detection strategies, the 3He*/4He* mixture provides a unique new sys-
tem for quantum degeneracy experiments.

6.1 Prospects for a quantum degenerate mixture

In their liquid and solid phases, 3He, 4He and mixtures thereof have been stud-
ied extensively [215]. Although the underlying physics is closely related and
similar phenomena can be observed, the dilute gas regime is strongly deviant:
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the atomic densities are smaller by many orders of magnitude and the interpar-
ticle interactions are weak [108, 109]. Furthermore, at sufficiently low tempera-
tures, elastic scattering behavior is solely determined by the s-wave scattering
length, which is specific to the internal state of the atoms.

For pursuing quantum degeneracy in a magnetically trapped, dilute mixture
of 3He* and 4He* atoms, it is necessary that all atoms occupy the fully stretched
magnetic substate of the metastable 2 3S1 level. Only in these substates, the
F = 3/2, MF = 3/2 state for 3He* and the MJ = 1 state for 4He*, Penning ioniz-
ing collisions are strongly suppressed. For spin-polarized 4He* atoms, the two-
body loss rate constant is β ≈ 10−14 cm3/s [147, 162, 182], four orders of mag-
nitude smaller than in an unpolarized sample in a magneto-optical trap (MOT).
As this loss rate is induced by the spin-dipole interaction in pair collisions [182],
the loss rate for a spin-polarized mixture of 3He* and 4He* atoms is expected to
be of the same order of magnitude, i.e. ∼ 10−14 cm3/s. For spin-polarized 3He*
atoms, further suppression of the two-body loss rate is expected due to the van-
ishing cross-section for cold collisions of identical fermions, whilst hyperfine-
changing collisions between 3He* atoms cannot occur because of the inverted
hyperfine structure of the 2 3S1 level.

The low Penning ionization rates allow sympathetic cooling in a magnetic
trap of 3He* atoms by collisions with 4He* atoms that are cooled by rf-induced
evaporation. Evaporative cooling of fermions in different spin states [47] is
not applicable to 3He* atoms because Penning ionization rates will be too high.
These high ionization rates and the absence of magnetic field dependent Fesh-
bach resonances hamper the investigation of BCS-like phenomena.

The relevant parameters governing the sympathetic cooling process are the
boson-boson scattering length 4−4a and the boson-fermion scattering length
3−4a. Both experimental and theoretical values of 4−4a are available. The most
accurate experimental value is 11.3 nm with an error of a few nm [175]. A simi-
lar accuracy is achieved in a theoretical prediction: starting from a calculation of
the 5Σ+

g molecular potential of two spin-polarized atoms, Dickinson et al. [49]
investigate the wavefunction of the v = 14 least bound state in this potential and
arrive at upper and lower bounds of 12.2 nm and 8 nm, respectively. Mass scal-
ing of the molecular potential shows that the interspecies scattering length will
be exceptionally large. If 4−4a < 9.4 nm, then 3−4a is large and positive. Most
likely, 4−4a > 9.4 nm and then 3−4a is large and negative. For a conservative
estimate, 9 < 4−4a (nm) < 13, we find that 3−4a < −25 nm or 3−4a > 133 nm.
In either case, evaporative cooling of 3He* atoms via collisions with 4He* atoms
should be very efficient.

In the quantum degenerate regime the large value of 3−4a corresponds to a
large mean-field interaction. This allows a study of quantum phenomena such
as component phase separation [135] (if 3−4a > 0) or stability properties of the
mixture [134] (if 3−4a < 0) at atomic densities as low as n = 1013 cm−3. The
monitoring of ion production rates provides a unique detection tool for these
phenomena, especially in the case of phase separation, where different phases
and mixtures are expected as a function of the density of the bosons and/or
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fermions, which may be varied experimentally.
In this chapter, we present the first step towards the study of these mixtures

by discussing the realization and characterization of a MOT containing both He*
isotopes. Previously, several groups have studied samples of two atomic species
in a MOT, either two isotopes of a single element [42, 117, 131, 192, 221] or two
different elements [69, 119, 170–172, 177, 190, 193, 194, 218, 228]. In our MOT

up to 1.5 × 108 metastable atoms of each isotope are simultaneously confined
at a temperature of 2 mK and a total atomic density of ∼ 109 cm−3. These
numbers are comparable to single-isotope He* traps and present good prospects
for evaporative cooling experiments.

6.2 Experimental setup

In the experiment, a MOT is loaded from a collimated and Zeeman slowed He*
beam, produced by a liquid nitrogen cooled, DC-discharge source. The appara-
tus is similar to the 4He* apparatus described previously [196], modified to ma-
nipulate both helium isotopes, either separately or simultaneously. The beam
source is operated with an isotopically enriched mixture of the two helium iso-
topes containing approximately equal concentrations of each and is recycled
and purified using liquid nitrogen cooled molecular sieves. The two-isotope
beam is collimated by transversal laser cooling in two dimensions before enter-
ing the Zeeman slower.

Due to its smaller mass, 3He* atoms emerge from the source with a larger
mean velocity than 4He* atoms. To achieve a large flux of slow 3He* atoms, the
capture velocity of the Zeeman slower is increased to ∼ 1370 m/s. The MOT is
operated in a stainless steel vacuum chamber, where two anti-Helmholtz coils
produce a magnetic quadrupole field with an axial magnetic gradient dB/dz =

0.35 T/m.
Both helium isotopes are slowed and confined in the MOT with 1083 nm

light that is near resonant with the 2 3S1 → 2 3P2 optical transition (natural
linewidth Γ/2π = 1.62 MHz; saturation intensity Isat = 0.167 mW/cm2 for the
cycling transition). The isotope shift for this transition is 34 GHz and, therefore,
two separate ytterbium-doped fiber lasers are used, one for each isotope. The
lasers are frequency locked to the laser cooling lines using saturated absorption
spectroscopy in rf-discharge cells. The two laser beams are overlapped on a
non-polarizing beam splitter, producing two beams of about equal power con-
taining both frequencies. One beam is used for the transversal laser cooling of
the He* atomic beam, the other is coupled into a single mode polarization main-
taining fiber to achieve perfect beam overlap, and is used for the Zeeman slower
and the MOT. Acousto-optic modulators are used to generate the slowing fre-
quencies νZS3 and νZS4, and the trapping frequencies νMOT3 and νMOT4. Fig-
ure 6.1 gives an overview of the optical transitions at 1083 nm for each isotope,
together with the four laser cooling frequencies. The trapping beam is split up
into six independent Gaussian beams with 1/e2 intensity widths of 1.8 cm. The
total peak intensity is Ipeak = 57 mW/cm2 (Ipeak/Isat ≈ 335) for each frequency.
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The slowing beam is focused onto the atomic beam source. At the position
of the trapped cloud the 1/e2 intensity width is 2.2 cm and the two frequency
components have peak intensities of Ipeak = 9 mW/cm2 (Ipeak/Isat ≈ 54).

The trapped clouds are studied using two microchannel plate (MCP) detec-
tors. Operated at a voltage of −1.5 kV and positioned at a distance of 11 cm from
the trap center, the MCP detectors allow for independent monitoring of the ions
and He* atoms that escape the trap. With an exposed negative high voltage on
its front plate, one MCP detector attracts all ions produced in Penning-ionizing
collisions. The other MCP is mounted behind a grounded grid and detects only
He* atoms that exit the trap in its direction.

The decaying ion flux, measured on the unshielded MCP detector after in-
terrupting the loading of one or two isotopes, is used to study trap loss. The
signal is used to determine the loss rate coefficients α and β defined via dn/dt =

−αn − βn2 [13]. In this way, the ion production rate acts as a real-time probe to
monitor Penning-ionizing collisions in the trapped cloud [13, 78–80, 102, 103,
153].

The shielded MCP detector is used to perform time-of-flight measurements.
For this purpose, the trapping and slowing light for one or two isotopes, and
the magnetic field are switched off abruptly. During the free ballistic expan-
sion, a small fraction of the released atom cloud hits the MCP detector and the
resulting signal is used to determine the temperature of the trapped cloud and
the number of trapped atoms. An absolute calibration is performed using ab-
sorption imaging of the trapped cloud with a narrow-band diode laser and an
IR-sensitive CCD camera. Absorption imaging allows the determination of the
density distribution and atom number of the sample.

6.3 Trapping of single isotopes

First, we studied single-isotope MOTs of both isotopes separately. In these traps,
typically N = 3 × 108 3He* or 4He* atoms are confined at a central density
n0 = 3 × 109 cm−3 and a temperature T = 2 mK. The uncertainty in the atom
number determination is ∼ 30%. The density is limited to a few 109 cm−3 by
light-assisted Penning ionizing collisions. Previous studies of 4He* MOTs [23,
149, 196] report similar numbers.

The results of the 3He* MOT are similar to those of the 4He* MOT yielding
a number of trapped 3He* atoms that is three orders of magnitude larger than
reported previously [102, 103]. At first sight this may be surprising, as the level
structure of 3He is complicated by hyperfine splittings, as seen in Figure 6.1.
However, operated on transition C3, the 3He* MOT confines large atom numbers
without the application of repumping light to excite the F = 1/2 ground state.

Despite the inverted hyperfine structure of the excited state and the rela-
tively large splitting of 1125Γ between the F ′ = 3/2 and F ′ = 5/2 levels, the
high intensity of the trapping beams leads to significant off-resonant excitation
of transition C5 and decay into the F = 1/2 ground state. A repumping beam,
however, is not required, since the trapping and slowing frequencies νMOT3 and
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Figure 6.1. Overview of the optical transitions at 1083 nm of the 3He and 4He atom. The
trapping frequencies νMOT3 and νMOT4, and slowing frequencies νZS3 and νZS4 are also
included. The trapping and slowing frequencies are detuned from the laser cooling
transitions (C3 for 3He, D2 for 4He) by −40 MHz and −500 MHz, respectively. The
isotope shift puts laser frequencies νMOT4 and νZS4 near transition C9 of 3He.

νZS3 excite transitions C2 and C4 at a sufficiently high rate to repopulate the
F = 3/2 ground state. The frequency detuning of νZS3 from transition C2 is rela-
tively small, −32Γ, making this combination the dominant repumping route. In
absence of νZS3, sufficient repumping is provided by the excitation of transitions
C2 and C4 by frequency component νMOT3. The detunings from the transitions
are larger at 251Γ and −161Γ, respectively.

Figure 6.2a (solid curve) shows the 3He* signal and ion signal from a pure
3He* MOT, when the slowing light is switched off abruptly. Measurements with
the shielded MCP detector show zero loss of metastables from the trap irrespec-
tive of the presence of νZS3. The decay is dominated by Penning ionizing pair
collisions in the cloud, characterized by β33n0,3 = 5.2 s−1 and α = 0.7 s−1. With
n0,3 from absorption imaging, β33 ≈ 8 × 10−9 cm3/s is deduced. At equal de-
tuning and intensity of the trapping laser, we find for a pure 4He* MOT that
β44 ≈ 4 × 10−9 cm3/s. The isotopic difference between β33 and β44 is a result of
the different number of ionization channels for light-assisted collisions of pairs
of 3He* or 4He* atoms [102, 103].
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Figure 6.2. He* signals and ion signals observed when the slowing light is abruptly
blocked at t = 0. (a) Single-isotope 3He* MOT with (black) and without (gray) the
νMOT4 frequency component added at t = 0. (b) Two-isotope MOT.

6.4 Simultaneous trapping of both isotopes

In the two-isotope MOT, four frequencies are present and a second optical pump-
ing loss channel for 3He* atoms to the non-trapped F = 1/2 state is opened up.
Due to a relatively small frequency difference of −524Γ, the 4He trapping light
frequently excites transition C9. Now, the repumping provided by νMOT3 via
off-resonant excitation of C2 and C4 is insufficient. This can be seen in Fig. 6.2a
(dotted curve), where the effect is shown of frequency component νMOT4 on the
decay dynamics of the 3He* MOT. At t = 0, when the slowing light is blocked,
νMOT4 is added to the trapping light and a flux of 3He* atoms escaping the trap is
observed. The decaying ion signal indicates that the 3He* atoms are transferred
to the F = 1/2 state at a rate α = 7.8 s−1. However, this extra loss channel
does not limit the realization of a two-isotope MOT with a large number of 3He*
atoms. As shown in Fig. 6.2b, the two-isotope MOT loses 3He* atoms only if the
slowing light is blocked. During loading there is still sufficient repumping by
νZS3 and optical pumping loss is negligible.

In the Zeeman slower two frequencies, νZS3 and νZS4, are present to simul-
taneously slow the two isotopes. Here, optical pumping of 3He* atoms to non-
slowed substates by the 4He slowing light can occur if the slowing light is not
perfectly σ+ polarized. Calculations show that the MF = 3/2 → M ′

F = 1/2
Zeeman component of transition C9 becomes resonant with σ− polarized 4He
slowing light around B = 199 G.

After optimization of the slowing efficiency, the numbers of trapped atoms
in the two-isotope MOT are comparable to the corresponding numbers in single-
isotope traps; trapped atom numbers Ni ≈ 1.5 × 108 for each isotope (i = 3, 4)
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Figure 6.3. Flux of He* atoms after the subsequent release of 3He* atoms (at t =

−100 ms) and 4He* atoms (at t = 0 ms) from the two-isotope MOT. Two peaks cor-
responding to the two isotopes are observed. Only the second peak can be used to
determine an accurate temperature and atom number.

are obtained. These large atom numbers are obtained by applying only the four
frequencies νMOT3, νZS3, νMOT4 and νZS4.1 Fluorescence measurements with the
CCD camera show that the clouds of both isotopes have nearly equal size and
are spatially overlapped. Figure 6.3 shows the flux of He* atoms on the shielded
MCP after subsequent release of the two isotopes. First 3He* atoms are released
by switching off the νMOT3 and νZS3 components of the trapping and slowing
light. The quadrupole magnetic field perturbs the free ballistic expansion of
these atoms, giving rise to a shoulder on the first peak in the signal. The 4He*
atoms are released with a delay of 100 ms by simultaneously switching off the
remaining frequency components νMOT4 and νZS4 together with the magnetic
field.

In steady state, the loading rate of the MOT, R3,4 ≈ 3 × 108 s−1, is balanced
by the trap loss:

Ri = αiNi + βii

∫∫∫
n2

i d 3r + β34

∫∫∫
n3n4 d 3r, (6.2)

with i = 3, 4. For each isotope, the atom number confined in the two-isotope
trap is comparable to the atom number confined in the single-isotope trap. This
shows that loss due to interspecies collisions, characterized by β34, is small com-
pared to the loss processes characterized by α3 and β33, or α4 and β44. Different
collision mechanisms for homonuclear and heteronuclear collisions in the pres-
ence of resonant light are responsible for the differing loss coefficients. During
homonuclear collisions, resonant light can excite the atom pair to a resonant
dipole-dipole potential V(R) ∼ R−3. As heteronuclear collisions are governed
by a Van der Waals potential V(R) ∼ R−6, resonant excitation occurs at much
smaller internuclear distances, yielding loss rates that are smaller by about one
order of magnitude [210].

1In the related case of the simultaneous magneto-optical trapping of 6Li atoms and 7Li atoms,
eight different frequencies are needed to achieve significant atom numbers [131].
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6.5 Conclusion

We have demonstrated that it is possible to trap up to 1.5 × 108 3He* atoms
together with an equal number of 4He* atoms in a two-isotope magneto-optical
trap. For 4He*, this result is comparable to results achieved with single-isotope
MOTs and for 3He* it is an improvement by three orders of magnitude when
compared with previous results. This opens up the road to sympathetic cooling
of 3He* and realization of quantum degeneracy in a dilute gas of 3He* atoms or
a mixture of 3He* and 4He* atoms.
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Atomic fountain clock based on 3He*

In this chapter, the possibilities of an atomic fountain clock based on 3He* are
investigated. The intended clock transition 2 3S(F = 3/2) → 2 3S(F = 1/2) has
a transition frequency of 6.7 GHz and is very suitable for the stabilization of a
microwave signal using the method of separated oscillatory fields. As discussed
in Section 1.3, the 3He* fountain clock provides possibilities for innovative re-
search on atomic clocks. In particular, the cold collision frequency shift in a
clock based on a fermionic atomic species might be studied, and measurements
of a possible time variation of the fine-structure constant might be considered.

In the following, calculations are presented of the expected stability, accu-
racy and Ramsey fringe contrast of a 3He* fountain clock. Furthermore it is
investigated if an experimental study of the innovative aspects of the clock is
feasible. To provide a framework for the calculations, a brief discussion of
atomic fountain clocks is provided, where a 3He* fountain clock is used as a
starting point. Extensive treatments on atomic fountain clocks can be found in
[9, 15, 110].

In an atomic fountain clock a microwave frequency generator (local oscilla-
tor) is stabilized to an atomic hyperfine transition (clock transition) by means
of interrogation with separated oscillatory fields [159]. A schematic of a possi-
ble 3He* fountain clock is depicted in Fig. 7.1. The clock is operated in a cyclic
fashion with clock cycles of about 1 s. A cycle begins with the capture of about
4 × 108 atoms in a MOT. The trapped sample with a temperature of 0.2 mK
(obtained in optical molasses [79]) is launched upward with a velocity of about
3.3 m/s in a moving molasses [35]. The atoms fly up and down through a
cylindrical TE011 microwave cavity, where a (near) resonant microwave signal
drives the clock transition with a π/2 pulse; the interaction time of the atoms
with the microwave field is about 0.03 s and the time between the two passages
is about 0.4 s. The transition probability associated with the interrogation with
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TE011 microwave 
cavity at 6.7 GHz

MOT/
moving molasses

Pushing beam and
MCP detectors

homogeneous B-field 
in magnetic shielding

B0

300 mm

58 mm

∅ 10 mm

Figure 7.1. Schematic of a possible atomic fountain clock based on 3He*. The resonance
frequency of the cylindrical TE011 microwave cavity depends on the radius and height
of the cavity [87] and is very near the frequency of the clock transition. A state-selective
detection scheme is achieved using two MCP detectors and a laser beam. The laser beam
is resonant with the ground (or excited) state of the clock transition and pushes atoms
in this state to the detector that is displaced from the symmetry axis of the fountain.
Atoms in the other state fall onto the detector that is mounted directly under the cavity.
The latter has a hole in the center to transmit the vertical trapping beams.
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separated oscillatory fields depends strongly on the detuning of the microwave
frequency from the frequency of the clock transition and is measured with a
state-selective detection scheme. The probability signal is used to update the
error signal that is applied to the local oscillator.

In the interrogation region (microwave cavity and free flight region) a mag-
netic field of high spatial homogeneity and temporal stability is applied to raise
the degeneracy of the various hyperfine transitions. In the microwave cavity, a
single (∆m = 0) hyperfine transition is excited, so that the interrogation is lim-
ited to atoms in a specific magnetic substate. In a laser-cooled sample, the 3He*
atoms are about evenly distributed over the 2F + 1 = 4 magnetic substates,
MF = −3

2 ,−1
2 , +1

2 , +3
2 , so that the fraction of interrogated atoms is <∼ 0.25.1

7.1 Fountain of laser-cooled 3He* atoms

To determine the number of detected atoms in a clock cycle, the ballistic expan-
sion of a laser-cooled sample of 3He* atoms, launched upward, is modeled with
the expressions of Appendix B. As the initial size of the sample is small com-
pared to the (expanded) size at the microwave cavity, it can be neglected and all
atoms are assumed to originate from the MOT center. The atomic velocity com-
ponents are given by the Maxwell-Boltzmann distributions f (vx, σvx), f (vy, σvy)

and f (vz, σvz) of Eqs. (B.1), (B.2) and (B.33), respectively, where the rms veloc-
ities are assumed to be equal, σv,x = σv,y = σv,z = σv = (kBT/m)1/2, with T

the temperature of the sample and m the mass of the 3He atom. The number
of atoms with velocities between vx and vx + dvx, vy and vy + dvy, and vz and
vz + dvz is

N f (vx, σvx) f (vy, σvy) f (vz, σvz) dvxdvydvz =

N

(2π)3/2σ3
v

exp

[
−

v2
x + v2

y + (vz − vz,0)
2

2σ2
v

]
dvxdvydvz, (7.1)

with N the total number of atoms in the sample and vz,0 the mean launch ve-
locity. As the fountain geometry is cylindrically symmetric, it is convenient to
apply the coordinate transformation (vx, vy, vz) → (vr, ϕ, vz) with

vx = vr cos ϕ, (7.2)

vy = vr sin ϕ, (7.3)

vz = vz. (7.4)

The transformed distribution function is

N fcyl(vr, ϕ) f (vz, σvz) dvrdϕ dvz

=
N

(2π)3/2σ3
v

vr exp
[
−v2

r + (vz − vz,0)
2

2σ2
v

]
dvrdϕ dvz (7.5)

1To minimize collision frequency shifts, the atoms in the unprobed states are usually re-
moved using a microwave pulse and a laser beam [110]. The population of the probed state,
F = 1 and MF = 0, in a 87Rb fountain has been increased to 50% using a configuration of two
microwave cavities and laser beams [59].
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and the number of atoms with velocities between vr and vr + dvr, and vz and
vz + dvz is given by

N f (vr, σvr) f (vz, σvz) dvrdvz = N
∫ 2π

0

[
fcyl(vr, ϕ) f (vz, σvz) dvrdvz

]
dϕ

=
N√

2π σ3
v

vr exp
[
−v2

r + (vz − vz,0)
2

2σ2
v

]
dvrdvz (7.6)

Atoms that experience the interrogation with separated oscillatory fields and
reach the detection region afterwards, must fly up through the cavity holes,
reach an apex above the cavity, and fall back through the holes. This places a
restriction on both the radial and longitudinal velocity components vr and vz of
the detected atoms. To reach an apex above the cavity,

vz > vmin =
√

2(d + h)g (7.7)

with g = 9.81 m/s the acceleration of free fall, d = 300 mm the distance from
MOT center to the bottom of the cavity, and h = 58 mm the height of the cavity.
Atoms fall downward through the lower cavity hole if

vrt1 < ρ (7.8)

with ρ = 5 mm the radius of the cavity holes, and

t1 =
vz

g

(
1 +

√
1 − 2dg/v2

z

)
(7.9)

the time at which an atom with initial velocity vz (>
√

2dg) reaches z = d

after the apex. The number of detected atoms with initial velocity between vz

(> vmin) and vz + dvz can be determined from

N f̃ (vz) dvz = N
∫ ρ/t1

0

[
f (vr, σvr) f (vz, σvz)dvz

]
dvr

=
N√

2π σv

{
1 − exp

[
− (ρ/t1)

2

2σ2
v

]}
exp

[
− (vz − vz,0)

2

2σ2
v

]
dvz. (7.10)

The number of detected atoms can now be calculated as

Ndetect = N
∫ vmax

vmin
f̃ (vz) dvz, (7.11)

where vmax =
√

2Hg, with H = 1 m, the assumed height of the clock setup.
Clock cycles are assumed to begin with the launch of a sample containing

4 × 108 3He* atoms with a temperature T = 0.2 mK. As the fraction of atoms
in the probed magnetic substate is 0.25, it follows that N = 1 × 108. The num-
ber of detected atoms Ndetect can be calculated by numerical integration and is
plotted against the mean launch velocity vz,0 in Fig. 7.2. The number reaches a
maximum of 5.4× 103 for a velocity vz,0 = 3.3 m/s. The fraction Ndetect/N ≪ 1,
as the small atomic mass results in a relatively large rms velocity σv = 0.74 m/s
and a significant expansion and consequent cutting, both in the longitudinal
and radial direction, of the launched sample. Velocity distribution f̃ (vz) is plot-
ted in Fig. 7.3 for vz,0 = 3.3 m/s.
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Figure 7.2. Number of detected atoms as a function of launch velocity. The sample
contains N = 1 × 108 atoms and has a temperature of 0.2 mK. The microwave cavity
has a hole with a diameter of 10 mm, a height of 58 mm and is positioned 300 mm above
the MOT center (see Fig. 7.1).
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Figure 7.3. Velocity distribution f̃ (vz) for vz,0 = 3.3 m/s. The shaded area under the
curve, between vmin and vmax, represents the number of detected atoms.
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7.2 Clock transition in magnetic field

For the fountain geometry of Fig. 7.1, possible clock transitions are character-
ized by ∆M = 0. For 3He*, two hyperfine transitions, |3

2 ,±1
2〉 → |1

2 ,±1
2〉 (no-

tation |F, MF〉 valid for small magnetic fields), are suitable, displaying a differ-
ent magnetic field dependence. Considering the hyperfine interaction Hhf =

−2
3 hν0 I · S and Zeeman interaction HZeeman = µB(gSS + gII) · B in the (six di-

mensional) state space corresponding to state (2 3S, F) [41], the magnetic field
dependence of the transition frequencies is calculated as

ν± = ν0

[
1 ± 2

3(gS − gI)
µBB

ν0
+ (gS − gI)

(µBB

ν0

)2
]1/2

(7.12)

where ν0 = 6739701177 Hz [166, 167] and the Landé g-factors are given in Ta-
ble A.2. At a magnetic field typical for atomic fountain clocks of 133Cs or 87Rb,
Blow ≈ 1 G, both transitions depend linearly on magnetic field, with

∂ν±
∂B

= ±1
3(gS − gI)µB ≈ ±9.33 × 105 Hz/G. (7.13)

At large magnetic fields the transition frequencies show a different behavior.
While transition frequency ν+ increases monotonously, transition ν− has a min-
imum 2

3

√
2 ν0 ≈ 6.35 GHz at a magnetic field Bhigh = ν0/3µB(gS + gI) ≈ 803 G.2

At the minimum, the frequency depends only quadratically on magnetic field,
with

1
2

∂2ν−
∂B2 = 3

8

√
2

µB(gS − gI)
2

ν0
≈ 617 Hz/G2. (7.14)

The Zeeman shift of the clock transition is an important effect in the accuracy
budget of atomic fountains and is of critical importance for an atomic fountain
clock based on 3He*. Here, two basic configurations for a 3He* fountain clock
are considered, both based on transition ν−. In the low-field configuration, the
magnetic field in the interrogation region is Blow, so that the clock transition de-
pends linearly on magnetic field. In the high-field configuration, the magnetic
field is Bhigh and the clock transition depends quadratically on the magnetic
field.

For both configurations, the excited and ground states are denoted by |e〉
and |g〉, respectively. In the low-field configuration, the states can be written
|e〉 = |F, MF〉 = |1

2 ,−1
2〉 and |g〉 = |F, MF〉 = |3

2 ,−1
2〉, and can be expanded onto

the {|MS, MI〉} basis, using |F, MF〉 = ∑MS
∑MI

|MS, MI〉〈MS, MI |F, MF〉, as

|e〉 =
√

1
3 |0,−1

2〉 −
√

2
3 | − 1, +1

2〉, (7.15)

|g〉 =
√

2
3 |0,−1

2〉 +
√

1
3 | − 1, +1

2〉. (7.16)

2Including singlet-triplet mixing [121], the clock transition has a minimum at B = 795 G.
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In the high-field configuration, the states can be expanded onto the {|MS, MI〉}
basis as

|e〉 = −
√

1
2 |0,−1

2〉 +
√

1
2 | − 1, +1

2〉, (7.17)

|g〉 =
√

1
2 |0,−1

2〉 +
√

1
2 | − 1, +1

2〉. (7.18)

7.3 Method of separated oscillatory fields

To determine the transition probability for an interrogation with separated os-
cillatory fields, the atom can be approximated by a two-level system given by
Hamiltonian

Hatom =
h̄ω0

2
(
|e〉〈e| − |g〉〈g|

)
, (7.19)

where, in the low-field configuration ω0/2π ≈ 6.74 GHz, and in the high-field
configuration, ω0/2π ≈ 6.35 GHz. The coupling between a 3He* atom and the
microwave field

B = Bẑ cos(ωrf t) (7.20)

in the cavity is given by [202]

Hmd = (gSµBS + gIµBI) ·B ≈ gSSzµBB cos(ωrf t). (7.21)

In basis {|e〉, |g〉}, the Hamiltonian H = Hatom + Hmd is represented by

H = − h̄

2

(−ω0 + 2Ω1 cos(ωt) 2Ω0 cos(ωt)

2Ω0 cos(ωt) ω0 + 2Ω2 cos(ωt)

)
, (7.22)

where, in the low-field configuration, h̄Ω0 = −1
3

√
2 gSµBB and h̄Ω1 = 2h̄Ω2 =

2
3 gSµBB, and in the high-field configuration, h̄Ω0 = 1

4 gSµBB and h̄Ω1 = h̄Ω2 =
1
2 gSµBB.

The Hamiltonian has a more simple form in a frame that rotates around
the z-axis with angular frequency ω/2 [36, complement FIV]. The transfor-
mation to the rotating frame can be expressed in terms of rotation operator
R = exp(iωSzt/h̄) [36, complement FIV], with spin operator Sz, as

|ψ̃〉 = R|ψ〉, (7.23)

H̃ = RHR† − ih̄R
dR†

dt
. (7.24)

In basis {|e〉, |g〉}, the rotation operator is represented by matrix

R =

(
exp(iωt/2) 0

0 exp(−iωt/2)

)
. (7.25)

The matrix describing the Hamiltonian in the rotating frame becomes after ma-
trix multiplication

H̃ = − h̄

2

(
(ω − ω0) + 2Ω1 cos(ωt) Ω0(1 + exp(2iωt))

Ω0(1 + exp(−2iωt)) −(ω − ω0) + 2Ω2 cos(ωt)

)
. (7.26)
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Figure 7.4. Transition probability of an atom launched with a velocity of 3.3 m/s
through a microwave cavity with a uniform field. The lower side of the cavity is at
30 cm above the MOT center and the cavity height is 58 mm, so that the interaction time
τ = 28 ms and the free drift time T = 0.4 s. The central fringe has a fringe contrast of 1
and a FWHM width of 1.2 Hz.

As the interaction time between the atoms and the microwave field is much
longer than the oscillation period of the field, the oscillating terms can be ne-
glected (secular approximation [36, complement CXIII]),

H̃ ≈ − h̄

2

(
δ Ω0

Ω0 −δ

)
= − h̄

2
(Ω · σ), (7.27)

where detuning δ = ω − ω0, rotation vector Ω = Ω0x̂ + δẑ, and σ = σxx̂ +

σyŷ + σzẑ, with Pauli matrices σx =
(

0 1
1 0

)
, σy =

( 0 −i
i 0

)
and σz =

( 1 0
0 −1

)
.

The Schrödinger equation in the rotating frame,

ih̄
d
dt

|ψ̃〉 = H̃|ψ̃〉, (7.28)

can be solved by direct integration

|ψ̃(t)〉 = U(t, t0)|ψ̃(t0)〉 = exp
[ i

2
(σ · Ω)(t − t0)

]
|ψ̃(t0)〉. (7.29)

The evolution operator is more conveniently written as [36, complement AIX]

U(t, t0) =
{

I cos
[Ω

2
(t − t0)

]
+ i

(σ · Ω)

Ω
sin

[Ω

2
(t − t0)

]}
, (7.30)

where I =
(

1 0
0 1

)
is the unit matrix and Ω = |Ω| = (δ2 + Ω2

0)
1/2 is the Rabi

flopping frequency.
For an interrogation with separated oscillatory fields, the interaction of the

atoms with the microwave field in the cavity can be represented by rotation
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Figure 7.5. Transition probability of a sample of N = 5.4 × 103 3He* atoms with a
temperature of 0.2 mK, launched with a mean velocity of 3.3 m/s. Due to the large
spread in the vertical velocity, all secondary fringes are washed out and only the central
fringe survives. The fringe contrast is 0.6 and the FWHM width is 1.4 Hz.

vector,

Ω =





Ω0(t)x̂ + δẑ if 0 < t < τ,

δẑ if τ < t < τ + T,

Ω0(t)x̂ + δẑ if τ + T < t < 2τ + T,

(7.31)

where τ is the interaction time, the period of time the atom spends in the cav-
ity, and T is the free drift time, the period of time the atom spends above the
cavity. The magnetic field amplitude of the microwave field is chosen such that∫ τ

0 Ω0(t) dt = π/2. For an atom starting off in the ground state and a uniform
microwave field, i.e. Ω0(t) = Ω0, the transition probability can be written [159]

∣∣〈ẽ|U(2τ + T, 0)|g̃〉
∣∣2

= 4
Ω2

0
Ω2 sin2(Ωτ/2)

[
cos(δT/2) cos(Ωτ/2)

− δ

Ω
sin(δT/2) sin(Ωτ/2)

]2
(7.32)

where U(2τ + T, 0) = U(2τ + T, τ + T) U(τ + T, τ) U(τ, 0). The probability
is shown as a function of detuning in Fig. 7.4. The transition probability for
microwave excitation in a TE011 cavity, where magnetic field amplitude B =

B0 sin(πz/d) with the cavity between z = 0 and z = d, cannot be given in an
analytical form, but is easily calculated numerically.

Figure 7.5 shows the averaged Ramsey fringe pattern (using a sine-shaped
magnetic-field amplitude) of a sample of N = 5.4 × 103 3He* atoms with a tem-
perature of 0.2 mK and a mean launch velocity of 3.3 m/s (the vertical velocities
are distributed according to f̃ (vz), shown in Fig. 7.3). The FWHM width of the
central fringe is 1.4 Hz. Such a narrow fringe can in principle be used to stabilize
the microwave frequency to the clock transition.
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7.4 Expected stability

To characterize the performance of an atomic clock, the stability is a crucial
factor. The stability (or more precisely frequency instability) is a measure of
the stochastic and/or environmentally induced fluctuations of the output fre-
quency of an atomic frequency standard and is expressed as the Allan variance
of the fractional frequency difference

y(t) =
ν(t) − ν0

ν0
. (7.33)

The Allan variance is obtained from a measurement procedure, where the frac-
tional frequency difference is integrated over a time τ (not to be confused with
the interaction time τ of the method of separated oscillatory fields), typically
between 10 s and 104 s, to obtain averages

〈yk〉 =
1
τ

∫ tk+τ

tk

y(t) dt. (7.34)

From a set of N values for 〈yk〉, the Allan variance is obtained as [2]

σy(τ) =
1√

2(N − 1)

[
N−1

∑
k=1

(
〈yk〉 − 〈yk−1〉

)2
]1/2

. (7.35)

In fountain clocks, the stability contains noise contributions from the detec-
tion system (electron noise in the case of a MCP detector) and the interrogation
oscillator, as well as quantum projection noise [86]. For an atomic fountain clock
based on 133Cs with N = 6 × 105 it has been shown that detector noise and in-
terrogation oscillator noise can be made small compared to quantum projection
noise [169], that is given by [62, 217]

σy(τ) =
1

πQatom

√
Tc

τ

1√
N

, τ ≫ Tc. (7.36)

For a 3He* fountain clock, the number of detected atoms is considerably smaller,
so that the quantum projection noise contribution is larger and it is natural to
assume that the stability will be ultimately limited by quantum projection noise.

With a FWHM width of the central Ramsey fringes of ∆fringe = 1.4 Hz, the
quality factor of the transition Qatom = ν0/∆fringe = 4.8 × 109. Assuming a
100% detection efficiency, N = 5.4 × 103 and, for a typical cycle time Tc = 1 s,
the Allan variance is

σy(τ) = 9.0 × 10−13τ−1/2. (7.37)

This number is comparable to state of the art Cs beam atomic frequency stan-
dards [181], but inferior to atomic fountain clocks based on 133Cs, σy(τ) =

4 × 10−14τ−1/2 [110], or 87Rb, σy(τ) = 1.5 × 10−13τ−1/2 [110], or the optical
frequency standard based on a single 199Hg+ ion, σy(τ) ≤ 7 × 10−15τ−1/2 [18].
To obtain a stability of 10−15, an averaging time of τ = 8.08 × 105 s = 224 h is
required in the case of 3He*.
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7.5 Expected accuracy

A good stability is a prerequisite for an accurate atomic clock, but not all stable
clocks are accurate. Where the stability characterizes fluctuations of the out-
put frequency, the accuracy (or sometimes systematic inaccuracy) indicates the
level of precision at which the output frequency is known. Various effects of
fundamental and technical nature result in shifts of the output frequency from
the atomic frequency. Various measurements and calculations are performed
to determine these shifts, making up the so-called accuracy budget in an accu-
racy evaluation [110, 181]. For fountain clocks, the accuracy budget includes
(amongst others) the Stark shift due to blackbody radiation, the cold collision
frequency shift and the Zeeman shift. The corresponding uncertainties are a
few 10−16, resulting in a total (in)accuracy of 4 × 10−16 (or slightly larger) for
state of the art Cs fountain clocks [50]. For the 3He* fountain clock, the cold
collision frequency is expected to be negligible, as 3He is a fermion. As a result
of the magnetic field dependence of the clock transition (see Eq. (7.12)), the Zee-
man shift is expected to be relatively large. Here, the uncertainty of the Zeeman
shift correction is estimated, which can be considered a limiting value for the
accuracy of a 3He* fountain clock.

During the free flight stage in the Ramsey interrogation procedure, the evo-
lution of the quantum state of the (two-level) atomic system, undergoing a Zee-
man shift ωatom(t) = ω0 + δZeeman(t) is given by

U(τ + T, τ) = I cos
(
〈δ〉T/2

)
+ iσz sin

(
〈δ〉T/2

)
(7.38)

where

〈δ〉 =
1
T

∫ τ+T

τ

[
ω − ωatom(t)

]
dt = (ω − ω0) − 〈δZeeman〉 (7.39)

with 〈δZeeman〉 = (1/T)
∫ τ+T

τ δZeeman(t) dt. In the low-field configuration, the
clock transition depends linearly on magnetic field and the Ramsey fringe pat-
tern of a single atom is shifted by (Eq. (7.13))

〈δZeeman〉/2π ≈ (−9.33 × 105) × 〈B〉 (7.40)

where 〈B〉 = (1/T)
∫ τ+T

τ B(t) dt, with B in Gauss and 〈δZeeman〉 in rad/s. As-
suming that the magnetic field is known with an uncertainty δB < 0.1 mG
(order of magnitude of the best commercial NMR probes), the uncertainty in the
Zeeman shift correction is 〈δZeeman〉/2π ≈ 93 Hz. The corresponding relative
uncertainty is 1 × 10−8, which is far inferior to the uncertainty of Cs fountain
clocks (by almost eight orders of magnitude). It can be concluded that, as a re-
sult of the linear magnetic field dependence, the low-field configuration is not
suitable for frequency metrology.

In the high-field configuration, the clock transition depends only quadrati-
cally on the magnetic field and the Zeeman shift of the Ramsey fringe pattern
of a single atom is given by (Eq. (7.14))

〈δZeeman〉/2π ≈ 617 × 〈B2〉. (7.41)
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If the magnetic field is known with an uncertainty δB < 0.1 mG, the uncer-
tainty in the Zeeman shift correction is 〈δZeeman〉/2π ≈ 6 × 10−6 Hz and the
relative uncertainty is 1 × 10−15, which is comparable to the uncertainty of the
total accuracy budget of Cs fountain clocks. For Cs (and Rb) fountain clocks, the
Zeeman shift correction is deduced from a leveraged measurement of the mag-
netic field by recording Ramsey fringes on a magnetically dependent transition.
Choosing a transition with ∆M = 0 and a frequency close to the clock frequency,
the excitation is driven in the microwave cavity and the uncertainty of the re-
sulting correction is only <∼ 10−16 [110]. In the case of 3He*, a single ∆M = 0
field-dependent transition is available, ν+ (see Eq. (7.12)). As its transition fre-
quency is 7.8 GHz, excitation in the microwave cavity is not straightforward.

7.6 Monte Carlo simulations

The Zeeman shift correction of Eq. (7.41) applies to the Ramsey fringe pattern
of a single atom, as shown in Fig. 7.4. To determine the effect of the magnetic
field on the Ramsey fringe pattern of a sample of atoms (see Fig. 7.5), a Monte
Carlo simulation is performed. Only the high-field configuration is considered.

The simulation is performed with a code written in ANSI C. For a number
of 5400 atoms, the evolution of the quantum state is calculated with Eq. (7.30).
For each atom, a random velocity vz is generated, distributed according to the
probability function f̃ (vz) of Eq. (7.10). For a given magnetic field B(z) in the
interrogation region (microwave cavity and free flight region), the rotation vec-
tor Ω = Ω0(t)x̂ + δ(t)ẑ is determined and the corresponding transition prob-
ability is calculated. The Ramsey fringe pattern is obtained by calculating the
average transition probability for atoms in the sample, over a range of detun-
ings δ/2π = (ω − ω0)/2π, from −50 Hz to +50 Hz. Temporal instabilities of
the magnetic field profile are neglected, as they can be controlled at high level
with a stable current supply and mu-metal shields [87].

Ramsey fringe patterns are calculated for several magnetic field profiles of
limited homogeneity, expressed in terms of the rms deviation

σB =
1
T

∫ τ+T

τ

(
Bhigh − B(t)

)
dt, (7.42)

as experienced by an atom that is launched with a velocity vz = 3.3 m/s. For
a constant magnetic field B(t) = Bhigh, the relative homogeneity σB/B = 0 and
the fringe pattern is shown in Fig. 7.5. The central fringe has a contrast of 0.6
and a FWHM width of 1.1 Hz. Figure 7.6 shows the Ramsey fringe pattern for
three magnetic field profiles (also shown). For a magnetic field profile with a
relative homogeneity of σB/B = 5 × 10−7, the fringe profile hardly deviates
from the ideal case. However, if a relative homogeneity of σB/B = 3 × 10−5

or σB/B = 8 × 10−5 is chosen [39], the fringe pattern becomes distorted. In
the first case, an asymmetric central fringe is still visible (contrast of 0.6), but in
the second case, the central fringe is washed out and, although narrow features
(1 Hz) are visible, the contrast is only 0.15.
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Figure 7.6. Magnetic field profile in the interrogation region (0.30 m < z < 1.00 m) and
the resulting Ramsey fringe pattern for a sample of N = 1× 108 3He* atoms with a tem-
perature of 0.2 mK, launched upward with a mean velocity of 3.3 m/s. The number of
detected atoms is 5400. The relative homogeneity σB/B is indicated with the magnetic
field profile.
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7.7 Discussion and conclusions

The expected performance of the 3He* fountain clock is inferior to the per-
formance of 133Cs and 87Rb fountain clocks. Both the stability, σy(τ) = 7 ×
10−13τ−1/2, and the uncertainty of the Zeeman shift correction σν/ν = 1 ×
10−15, are larger by one order magnitude. Moreover, the contrast of the Ram-
sey fringe pattern depends strongly on the homogeneity of the magnetic field
in the interrogation region, as the vertical velocity distribution of the detected
atoms is fairly broad. Using conventional techniques, a relative magnetic field
homogeneity of the order of σB/B ≈ 6 × 10−5 can be obtained [39]. For homo-
geneities of this magnitude, the visibility of the corresponding Ramsey fringe
pattern could be as poor as 0.15. It should also be noted that the achievement
of a relative homogeneity better than 10−4 requires time-consuming shimming
techniques [87].

The expected performance hampers an investigation of the innovative as-
pects of the 3He* fountain clock, mentioned in Section 1.3. The relatively poor
stability makes an investigation of frequency shifts with a precision <∼ 10−15

virtually impossible, as averaging times τ > 100 h would be required.
The suppressed cold collision frequency shift in the 3He* fountain clock and

the negligible contribution to the accuracy budget are neutralized by the large
contribution of the Zeeman frequency shift. In Cs fountain clocks, the uncer-
tainty of the collision frequency shift is ≤ 5 × 10−16 [110], while the the uncer-
tainty of the Zeeman shift in the 3He* fountain clock is expected to be 1× 10−15.
For Rb fountain clocks, the collisional frequency shift is smaller by at least a fac-
tor of 50 [60, 186] and the corresponding uncertainty is only ≤ 1 × 10−16 [17].
Apart from its relative contribution to the accuracy budget, the cold collision
frequency shift in the 3He* fountain clock could never be investigated3 as the
atomic density in the interrogation region is very small, n = 4× 102 cm−3 at the
apex for a mean launch velocity of 3.3 m/s.

The output frequency of two atomic clocks based on different atomic species
can be compared to detect possible variations of the fine-structure constant
α = e2/4πǫ0h̄c. Variations in the ratio of the output frequencies are related
to variations in the fine-structure constant through [155]

d
dt

ln
(ν1

ν2

)
=

[
LdFrel(Z1) − LdFrel(Z2)

]1
α

dα

dt
. (7.43)

The function LdFrel(Z) that expresses the sensitivity of the hyperfine transi-
tion frequency of an atomic species to the fine-structure constant is plotted in
Fig. 7.7, with Z the atomic number. A measurement of the output frequency
of the 3He* fountain clock against a Cs fountain clock is characterized by a
sensitivity LdFrel(ZHe) − LdFrel(ZCs) = −0.74, that is larger than the sensitiv-
ity associated with a measurement of a Rb clock against a Cs fountain clock,

3The suppression of the collision frequency shift could be investigated by comparing the
frequency shift for a sample of identical fermions (MF = −1/2) to the frequency shift for a
sample of non-identical fermions (all MF equally populated).
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Figure 7.7. Function LdFrel plotted against atomic number Z.

LdFrel(ZRb) − LdFrel(ZCs) = −0.45. However, due to the relatively poor stabil-
ity and accuracy of the 3He* clock, measurements of the variation of α are not
expected to be as accurate as measurements that are obtained when comparing
a Rb and Cs clock, where d

dt ln(νRb/νCs) = (0.2 ± 7.0) × 10−16 yr−1 was deter-
mined [122]. Recently, the combined comparisons of microwave transitions in
133Cs and 87Rb and optical transitions in atomic hydrogen and 199Hg+ have led
to a limit on 1

α
dα
dt of (−0.9 ± 2.9) × 10−15 yr−1 [61].

Naturally, methods to improve the performance of the 3He* fountain clock
are conceivable. Detection of atoms in a limited velocity range (velocity selec-
tion) would yield an improvement of the fringe contrast. However, it would
also result in a decrease of the stability, which is undesirable. Further cooling of
the launched sample, which might be realized with sympathetic cooling (which
has not yet been demonstrated for 3He* atoms), would yield an improvement
of both the fringe contrast and stability. Still, the accuracy of the fountain clock
would be relatively poor due to the Zeeman shift of the clock frequency, while
a better knowledge or control of the magnetic field in the interrogation region
seems unrealistic for the time being. Therefore, it must be concluded that it
would not be sensible to perform an experimental study of a 3He* fountain
clock.

Finally, it should be noted that with the introduction of frequency combs
[84], much effort is devoted to the development of all-optical atomic clocks
[51]. It is very likely that in the near future optical clocks can be made more
accurate than microwave fountain clocks, while a superior stability has already
been demonstrated (mainly due to the high quality factor Qatom of optical tran-
sitions). The accuracy of microwave fountain clocks is predicted to approach
1 × 10−16 [110], where for single-ion optical clocks accuracies approaching 1 ×
10−18 have been predicted [46].
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Laser cooling transitions

In the various experiments discussed in this thesis, laser cooling of He* atoms
is performed using laser light with a wavelength of 389 nm or 1083 nm. In this
appendix, a discussion of relevant aspects of the associated atomic transitions
(referred to as laser cooling transitions) is presented. First, the (hyper)fine struc-
ture of the spectral terms connected by the transitions is discussed. The transi-
tion with wavelength λ = 1083 nm connects spectral terms 2 3S1 and 2 3P, and
the transition with λ = 389 nm connects 2 3S1 and 3 3P. Also, the Zeeman effect
on the relevant (hyper)fine-structure states is described, i.e. 2 3S1(F = 1

2 , 3
2) and

2 3P(F ′ = 1
2 , 3

2 , 1
2 , 3

2 , 5
2) for 3He (λ = 1083 nm), and 2 3S1, 2 3P0,1,2 and 3 3P0,1,2

for 4He (λ = 1083 nm and 389 nm). To determine the saturation intensity of
the laser cooling transitions, the optical excitation of the transitions is described
from a semi-classical point of view, where the interaction of laser light with the
atomic transition is represented by the electric dipole operator.

(Hyper)fine structure

For 4He, spectral terms n 3P are split up into fine-structure states. The 3He atom
has a nuclear spin I = 1

2 , so that spectral term 2 3S1 shows hyperfine struc-
ture and term 2 3P both fine and hyperfine structure. For the latter term, fine-
structure and hyperfine interaction are of the same order of magnitude and are
well described with a phenomenological theory that incorporates singlet-triplet
mixing [41, 83]. Figure A.1 shows the states and the intervals in-between for the
transitions with λ = 1083 nm of both 3He and 4He. Spectral term 3 3P has a sim-
ilar structure as 2 3P with energy intervals as given in the caption of Fig. A.1. As
a result of a large spin-spin and spin-other-orbit interaction, the fine-structure
intervals in the n 3P spectral term do not comply with the Landé interval rule
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Table A.1. Atomic properties of isotopes 3He and 4He.

3He 4He

Atomic mass m (amua) 3.0160b 4.0026b

Nuclear spin I 1
2 0

Natural abundance (%) 0.00014c 99.99986c

Ionization limit (cm−1) 198300d 198311d

Internal energy 2 3S1 state (cm−1) 159847d 159856d

a The atomic mass unit (1 amu or 1 u) corresponds to 1.6605 × 10−27 kg.
b Reference [8, 38, 40].
c Representative values obtained from atmospheric helium gas by mass spectrometry

[40, 165]. The isotopic ratio 3He/4He in natural materials varies from 1 × 10−8 (continental
rocks) to 5 × 10−4 (primitive solar system material and lunar soil) [208].

d Values calculated by Drake [54]. The internal energies for 3He are calculated from the
corresponding energies for 4He, taking into account the normal mass shift and first and
second order mass polarization corrections. The isotopic differences in the energies are
< 10−4 and irrelevant for the work presented in this thesis. Expressed in convenient units,
the internal energies are 24.59 eV for the ionization limit and 19.82 eV for the 2 3S1 state.

Table A.2. Values of the g-factors [41, 224, 225].

gS gL gI

3He, 2 3S1 2.002 0 2.317 × 10−3

4He, 2 3S1 2.002 0 0
3He, 2 1P 2.002 0.9999 2.317 × 10−3

3He, 2 3P 2.002 0.9999 2.317 × 10−3

4He, 2 3P 2.002 0.9999 0
4He, 3 3P 2.002 0.9999 0

[36, complement BXIV]. The transitions are denoted by D0–D2 for 4He, and C1–
C9 for 3He. Transitions D2 and C3 are the laser cooling transitions. Table A.1
provides an overview of some atomic properties of both isotopes.

Zeeman effect

The Zeeman effect on the various states is well described by Hamiltonian [41]

HZ = µB(gLL · B + gSS · B + gII · B), (A.1)

with g-factor as given in Table A.2. To calculate the Zeeman energy diagrams
for the states, the fine-structure interaction, hyperfine interaction and Zeeman
interaction are taken into account simultaneously. For the states of 4He and the
2 3S1(F) of 3He, (hyper)fine interaction Hamiltonians are constructed from the
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Figure A.1. Relevant levels and transitions in 3He and 4He around a wavelength of
1083 nm. The energy interval 2 3P0 – 2 3P1 is taken from [189], and interval 2 3P0 – 2 3P1

is taken from [68]. Spectral term 3 3P has a similar structure as 2 3P, with intervals of
659 MHz (3 3P1 – 3 3P2) and 8114 MHz (3 3P0 – 3 3P1) [225]. The hyper(fine) intervals in
spectral term 2 3P of 3He are taken from [154] and the hyperfine interval in 2 3S1 is taken
from [166, 167]. The isotope shift of transition 2 3S1 → 2 3P is taken from [230]. The
values provided in the figure are less accurate than the values reported in the various
references, as higher accuracies are irrelevant in the laser cooling experiments presented
in this thesis. Please note that the energy scale shows several discontinuities.
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values of the energy intervals. The calculations are confined to the subspaces
spanned by the corresponding states, i.e. mixing with other states is neglected.
For states 2 3P(F ′) of 3He, the phenomenological theory of [83] is applied, where
coupling by the (hyper)fine interaction of states 2 3P(F ′) to 2 1P is taken into
account.1 A thorough study of the Zeeman effect on the 1083 nm transitions
in 3He and 4He (including an overview of pre-existing work) is given in [41].
The Zeeman diagrams for the ground states, 2 3S1(F) and 2 3S1, are shown in
Figs. A.2 and A.3, respectively. The Zeeman diagrams for the excited states,
2 3P(F ′), 2 3P and 3 3P, are shown in Figs. A.4, A.5 and A.6, respectively. If the
Zeeman energy shift is small compared to the (hyper)fine splitting, the Zeeman
Hamiltonian can be approximated as

HZ = µBgJ J · B, (A.2)

in the case of 4He*, and
HZ = µBgF F · B, (A.3)

in the case of 3He*. As gJ > 0 and gF > 0 for the (hyper)fine states discussed
here, the energy curves of Figs. A.2–A.6 can be labeled (in the low-field limit) in
order of increasing energy with MJ = −J,−J + 1 . . . , J in the case of 4He*, and
MF = −F,−F + 1 . . . , F in the case of 3He*.

1A theoretical calculation of the 3He 2 3P structure with an accuracy of about 1 MHz has
confirmed the validity of the phenomenological approach [81].
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Figure A.2. Zeeman diagrams for the 2 3S states of 3He. For F = 1
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Figure A.3. Zeeman diagrams for the 2 3S states of 4He. Landé factor gJ = gS ≈ 2.002.
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Figure A.4. Zeeman diagrams for the 2 3P states of 3He.
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Figure A.5. Zeeman diagrams for the 2 3P states of 4He.
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Optical excitation

The interaction of laser light with an atomic transition |g〉 → |e〉 can be treated
with the electric dipole operator er [130]: the coupling of ground state |g〉 to
excited state |e〉 by a light wave

E(r, t) = Eǫq cos(k · r − ωt) (A.4)

is given by the square of the Rabi frequency,

Ω2
ge =

∣∣∣
〈
g
∣∣e(ǫq · r)

∣∣e
〉∣∣∣

2 E2

h̄2 =
∣∣∣
〈
g
∣∣erq

∣∣e
〉∣∣∣

2 E2

h̄2 , (A.5)

where E is the amplitude of the electric field of the laser light and 〈g|erq|e〉 is
the matrix element between ground and excited state of the component of the
electric dipole operator associated with the polarization of the light (given by
polarization vector ǫ). To simplify matters, three distinct polarization states
are considered:2 π-polarization (q = 0, ǫ0 = ẑ), σ−-polarization (q = −1,
ǫ−1 = (x̂− iŷ)/

√
2), and σ+-polarization (q = 1, ǫ1 = −(x̂ + iŷ)/

√
2) [55, 130].

The strength of the coupling (square of the Rabi frequency) depends on the elec-
tric field amplitude (or light intensity I = ǫ0E2c/2) and on the electron wave
functions of the atom through the dipole matrix element.

Electric dipole matrix elements can be calculated by reduction to the (L, S)

basis [130]. For the laser cooling transitions of 4He (2 3S1 → n 3P2), the matrix
element is reduced to

〈
2 3S1MJ

∣∣∣erq

∣∣∣n 3P2M ′
J

〉
= (−1)L ′−S−M ′

J

√
(2J + 1)(2J ′ + 1)

×
{

L ′ J ′ S

J L 1

} (
J 1 J ′

MJ q −M ′
J

) 〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣n 3P

〉

= (−1)M ′
J

√
15
9

(
1 1 2

MJ q −M ′
J

) 〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣n 3P

〉
, (A.6)

with q = M ′
J − MJ , L = 0, S = 1, J = 1, L ′ = 1 and J ′ = 2. For transition

MJ = 1 → M ′
J = 2,

〈
2 3S1, MJ = 1

∣∣∣erq

∣∣∣n 3P2, M ′
J = 2

〉
=

√
1
3

〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣n 3P

〉
. (A.7)

Matrix elements for J ′ = 0, 1 can be calculated in a similar manner.
For the laser cooling transition of 3He

(
2 3S1(F ′ = 3

2) → 2 3P2(F ′ = 5
2)

)
,

the hyperfine interaction must be taken into account and the matrix element is

2Other polarization states can be expanded onto these states.
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reduced to
〈

2 3S1(F = 3
2)MF

∣∣∣erq

∣∣∣2 3P2(F ′ = 5
2)M ′

F

〉

= (−1)1+L ′+S+J+J ′+I−M ′
F

√
(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
{

L ′ J ′ S

J L 1

} {
J ′ F ′ I

F J 1

} (
F 1 F ′

MF q −M ′
F

) 〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣2 3P

〉

= (−1)1/2−M ′
F

√
2

(
3/2 1 5/2
MF q −M ′

F

) 〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣2 3P

〉
, (A.8)

with q = M ′
F − MF. Quantum numbers L, S, J, L ′ and J ′ have the same values as

in the case of 4He, while F = 3
2 and F ′ = 5

2 . For transition MF = 3
2 → M ′

F = 5
2 ,

〈
2 3S1(F = 3

2)MF = 3
2

∣∣∣erq

∣∣∣2 3P2(F ′ = 5
2)M ′

F = 5
2

〉
=

√
1
3

〈
2 3S

∣∣∣
∣∣∣erq

∣∣∣
∣∣∣n 3P

〉
.

(A.9)
Other matrix elements with F ′ = 5

2 can be calculated in a similar manner. How-
ever, Eq. (A.8) cannot be applied to matrix elements with F ′ = 1

2 , 3
2 , as the corre-

sponding excited states are admixtures of states with J ′ = F ′− 1
2 and J ′ = F ′ + 1

2
[137]. To a good approximation, the matrix elements can be reduced to a sum of
two reduced matrix elements with J ′ = F ′− 1

2 and J ′ = F ′ + 1
2 . Resulting matrix

elements for all electric dipole transitions, 2 3S1(F)MF → 2 3P(F ′)M ′
F are given

in [137]. Although singlet-triplet mixing is neglected in these calculations, the
matrix elements are accurate to a few 10−3 [41].

For a given transition, the saturation intensity is defined as the intensity of
the light wave, I = ǫ0E2c/2, for which [130]

2Ω2
ge = Γ2. (A.10)

In this thesis, the saturation intensities associated with transitions MJ = 1 →
M ′

J = 2 and MF = 3
2 → M ′

F = 5
2 are denoted by Isat. As the reduction of the

matrix elements leads to identical expressions for both 3He and 4He, Eqs. (A.7)
and (A.9), the corresponding intensities Isat are given by the same expression in
both cases. Substituting Eqs. (A.7) and (A.9) into Eq. (A.5), and using Eq. (A.10)
and [118]

ω3

3πǫ0h̄c3
2L ′ + 1
2L + 1

∣∣∣∣
〈

2 3S
∣∣∣
∣∣∣erq

∣∣∣
∣∣∣n 3P

〉∣∣∣∣
2

= Γ, (A.11)

with ω = 2πc/λ (and L = 0 and L ′ = 1), it follows that

Isat =
πhcΓ

3λ3 . (A.12)

The values for Isat of the various laser cooling transition are given in Table A.3.
The values for the 1083 nm transitions of 3He and 4He are virtually the same.
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Laser cooling transitions

Table A.3. Spectroscopic data, saturation intensity and laser cooling parameters for the
various laser cooling transitions.

3He 4He 4He
2 3S1(F = 3

2) →
2 3P2(F ′ = 5

2)

2 3S1 → 2 3P2 2 3S1 → 3 3P2

Vacuum wavelength
λ (nm)

1083.4622a 1083.3306b 388.9751b

Lifetime excited state (ns) 98.0c 98.0c 94.8c

Lifetime ground (2 3S1)
state (ks)

7.9d 7.9d 7.9d

Linewidth transition
Γ/2π (MHz)

1.62c 1.62c 1.51c

Saturation intensity
Isat (mW/cm2)

0.167e 0.167e 3.35e

Doppler temperature
TDop (µK)

39.0 f 39.0 f 36.2 f

Recoil velocity vrec (m/s) 0.122g 0.0920g 0.256g

a Calculated from the wavelength associated with 2 3S1 → 2 3P2 in 4He and the transition
isotope shift [83, 180].

b Reference [54].
c Derived from theoretical oscillator strengths reported in [53]. The mass difference between

the 3He and 4He atom results in lifetimes and linewidths that differ by 10−4 for the
transitions at 1083 nm. For state 3 3P2 of 4He, the decay to state 3 3S1 is taken into account.

d The main decay process of the metastable 2 3S1 state is a single-photon magnetic-dipole
transition [104, 220].

e Calculated with Isat = πhcΓ/3λ3, see Eq. (A.12).
f Calculated with TDop = h̄Γ/2kB.
g Calculated with vrec = h̄k/m = h/λm.

137





Appendix B

Atom flux from a ballistic expansion

Considering a magneto-optically trapped sample of metastable atoms and a mi-
crochannel plate (MCP) detector at a given distance from the sample, the count
rate of atoms hitting the detector surface in a TOF measurement is determined.
For a detector set up in current mode configuration, the current signal is propor-
tional to the count rate, if the detector is operating in the linear output regime.
As an intermediate step, the atom flux vector field associated with a sample un-
dergoing a ballistic expansion is calculated. The coordinate system of Figure B.1
is used, so that gravity points in the −ẑ-direction.1

The atomic velocity components in the trapped sample, vx, vy and vz, are
assumed to be given by Maxwell-Boltzmann distributions,

f (vx, σvx) =
1√

2πσvx

exp
[
− v2

x

2σ2
vx

]
, (B.1)

f (vy, σvy) =
1√

2πσvy

exp

[
−

v2
y

2σ2
vy

]
, (B.2)

f (vz, σvz) =
1√

2πσvz

exp
[
− v2

z

2σ2
vz

]
, (B.3)

with σ2
vx, σ2

vy and σ2
vz variances of the one-dimensional distributions. Usually, a

trapped sample is in thermal equilibrium, σvx = σvy = σvz = (kBT/m)1/2, with
T the temperature of the sample and m the mass of the atom. However, for the
purpose of generality, different variances are assumed here. In accordance with
observations it is assumed that, at t = 0, the sample has a Gaussian density dis-
tribution n(x0, y0, z0) = N f (x0, σx0) f (y0, σy0) f (z0, σz0), where N is the number

1In Chapters 2 and 5, the z-axis is chosen as the symmetry axis of the anti-Helmholtz coils,
which lies in the horizontal plane.
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α

Zeeman
slower

l0

z

x

Figure B.1. Coordinate system in MOT vacuum chamber, and MCP detector for TOF

measurements. Gravity points in the −ẑ-direction.

of trapped atoms and

f (x0, σx0) =
1√

2πσx0

exp

[
− x2

0
2σ2

x0

]
, (B.4)

f (y0, σy0) =
1√

2πσy0

exp

[
− y2

0
2σ2

y0

]
, (B.5)

f (z0, σz0) =
1√

2πσz0

exp

[
− z2

0
2σ2

z0

]
, (B.6)

with σx0 , σy0 and σz0 the radii of the one-dimensional Gaussian distributions.
Consequently, the trapped sample is characterized at t = 0 by probability dis-
tribution

Fv,r0
(v, r0) = f (vx, σvx) f (vy, σvy) f (vz, σvz) f (x0, σx0) f (y0, σy0) f (z0, σz0), (B.7)

with v = (vx, vy, vz) and r0 = (x0, y0, z0). The number of particles in infinitesi-
mal volume dx0dy0dz0 at position r0 with velocity components between vx and
vx + dvx, vy and vy + dvy, and vz and vz + dvz can now be written as

NFv,r0
(v, r0) dvxdvydvz dx0dy0dz0, (B.8)

as
∫∫∫ ∫∫∫

Fv,r0
(v, r0) dvxdvydvz dx0dy0dz0 = 1.

Using Newton’s equations for the ballistic motion of a particle in the earth’s
gravitational field (acceleration of free fall g),

x = x0 + vxt,

y = y0 + vyt,

z = z0 + vzt − 1
2 gt2,





←→





vx = (x − x0)/t,

vy = (y − y0)/t,

vz = (z − z0)/t + 1
2 gt,

(B.9)
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Atom flux from a ballistic expansion

the number of particles is derived that are in infinitesimal volume dx0dy0dz0 at
r0 if t = 0, but are situated in infinitesimal volume dxdydz at r = (x, y, z) if
t ≥ 0. Applying the coordinate transformation v → r gives

NFr,r0
(r, r0, t) dxdydz dx0dy0dz0

= NFv,r0

(
v(r), r0

) ∣∣∣J(v, r)
∣∣∣ dxdydz dx0dy0dz0

=
1

(2π)3/2σvxσvyσvz
exp

[
− (x − x0)

2

2σ2
vxt2 − (y − y0)

2

2σ2
vyt2 − (z − z0 + 1

2 gt2)2

2σ2
vzt2

]

× N

(2π)3/2σx0σy0σz0

exp

[
− x2

0
2σ2

x0

− y2
0

2σ2
y0

− z2
0

2σ2
z0

]
1
t3 dxdydz dx0dy0dz0, (B.10)

with the Jacobian given by

J(v, r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂vx

∂x

∂vx

∂y

∂vx

∂z

∂vy

∂x

∂vy

∂y

∂vy

∂z

∂vz

∂x

∂vz

∂y

∂vz

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1
t3 . (B.11)

Integration over all space r0 gives the number of particles in infinitesimal vol-
ume dxdydz at r for a time t ≥ 0 during the ballistic expansion,

NFr(r, t) dxdydz = N
∫∫∫ [

Fr,r0
(r, r0, t) dxdydz

]
dx0dy0dz0

= N fx(x, t) fy(y, t) fz(z, t) dxdydz, (B.12)

where

fx(x, t) =
1√

2πσx(t)
exp

[
− x2

2σ2
x(t)

]
, (B.13)

fy(y, t) =
1√

2πσy(t)
exp

[
− y2

2σ2
y (t)

]
, (B.14)

fz(z, t) =
1√

2πσz(t)
exp

[
− (z + 1

2 gt2)2

2σ2
z (t)

]
, (B.15)

with σi(t) =
√

σ2
i0

+ σ2
vit

2 (i = x, y, z) the time-dependent rms radii of the ex-
panding sample.

According to Eq. (B.12), the time-dependent density distribution of the ex-
panding sample can be given in the form of a scalar field,

n(r, t) = N Fr(r, t) = N fx(x, t) fy(y, t) fz(z, t). (B.16)

The description of a sample of atoms by a continuous density distribution im-
plies the continuum hypothesis known from fluid dynamics [14]. The hypoth-
esis allows the introduction of the local velocity vector field u(r, t), not to be
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confused with the material velocity v = (vx, vy, vz) of an individual atom, and
the analogy can be further extended with the introduction of the atom flux vec-
tor field,

Φ(r, t) = n(r, t) u(r, t), (B.17)

where
∫∫

S(Φ ·n) dσ represents the rate at which atoms are flowing across sur-
face S , with n the unit normal on S [14]. Velocity field u(r, t) can be obtained
from density field n(r, t) using the continuity equation [14],

∇ · Φ = −∂n

∂t
. (B.18)

As the distribution functions of Eqs. (B.1)–(B.6) can be factorized (i.e. there is
no coupling between the three spatial dimensions indicated by x, y and z), the
local velocity components can be written u(r, t) =

(
ux(x, t), uy(y, t), uz(z, t)

)
.

Applying the chain rule, the continuity equation is written
(

1
fx

∂ fxux

∂x
+

1
fx

∂ fx

∂t

)
+

(
1
fy

∂ fyuy

∂y
+

1
fy

∂ fy

∂t

)
+

(
1
fz

∂ fzuz

∂z
+

1
fz

∂ fz

∂t

)
= 0,

(B.19)
and, using the method of separation of variables, separate partial differential
equations are obtained for the velocity components,

1
fx

∂ fxux

∂x
+

1
fx

∂ fx

∂t
= C1, (B.20)

1
fy

∂ fyuy

∂y
+

1
fy

∂ fy

∂t
= C2, (B.21)

1
fz

∂ fzuz

∂z
+

1
fz

∂ fz

∂t
= −C1 − C2, (B.22)

where C1 and C2 are constants. The (unique) physical solution is found by set-
ting C1 = C2 = 0. Applying the chain rule, the differential equations can be
written

∂ux

∂x
+

[
1
fx

∂ fx

∂x

]
ux = − 1

fx

∂ fx

∂t
(B.23)

∂uy

∂y
+

[
1
fy

∂ fy

∂y

]
uy = − 1

fy

∂ fy

∂t
(B.24)

∂uz

∂z
+

[
1
fz

∂ fz

∂z

]
uz = − 1

fz

∂ fz

∂t
. (B.25)

Solutions are easily found using routine DSolve of MATHEMATICA V4.1,

ux(x, t) =
σ2

vxt2

σ2
x(t)

x

t
, (B.26)

uy(y, t) =
σ2

vyt2

σ2
y (t)

y

t
, (B.27)

uz(z, t) =
σ2

vzt2

σ2
z (t)

(
z

t
+

gt

2

)
− gt. (B.28)
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Atom flux from a ballistic expansion

The expression for the atom flux vector field Φ(x, y, z; t) is obtained by substi-
tution of Eq. (B.16) and Eqs. (B.26)–(B.28) into Eq. (B.17).

The count rate measured with a MCP detector equals the atom flux integrated
over the detector surface S and can be written as surface integral2

RMCP =
∫∫

S
(Φ ·n) dσ, (B.29)

where n is the unit normal on S pointing into the detector. As an example, the
surface integral for an infinitely large detector surface, perpendicular to gravity,
at a distance l ′0 under a trapped sample is calculated:

RMCP =
∫∫

S
(Φ ·n) dσ =

∫ ∞

−∞

∫ ∞

−∞
(Φ(x, y,−l ′0; t) · (0, 0,−1)) dxdy

= −
∫ ∞

−∞

∫ ∞

−∞
Φz(x, y,−l ′0; t) dxdy

=
1

2
√

2π σ3
z (t)

1
t

[
gt2(σ2

z0
+ σ2

vzt2) + 2l ′0 σ2
vzt2

]
exp

[
(−l ′0 + 1

2 gt2)2

2σ2
z (t)

]
. (B.30)

This expression is also given in [226, Eq. (14)], where a derivation is given (based
on a single coordinate transformation) that is limited to detector surfaces per-
pendicular to the direction gravity. Using Eq. (B.29), count rates for (parametriz-
able) detector surface of arbitrary position and orientation can be calculated.

The MCP detector depicted in Fig. B.1 is at an angle α with respect to the
direction of gravity. The detector is pointing towards the MOT center, i.e. the
detector surface is perpendicular to the line connecting MOT center and center
of the detector surface. To obtain an analytical expression for the corresponding
count rate, the detector surface is modeled with a square S with sides 2r, cen-
tered at (x, y, z) = (xMCP, 0,−zMCP) = (l0 sin α, 0,−l0 cos α). The square is given
by explicit representation

S : z(x, y) = ax + b, with

{
x1 <x < x2,

−r <y < r,
(B.31)

with a = xMCP/zMCP, b = −l0
2/zMCP, x1 = xMCP − r/

√
1 + a2, and x2 = xMCP +

r/
√

1 + a2. Note that the MOT center is at (x, y, z) = (0, 0, 0). Count rate RMCP

is given by

RMCP =
∫∫

S
(Φ ·n) dσ =

1√
1 + a2

∫ r

−r

∫ x2

x1

(Φ(x, y, ax + b; t) · (a, 0,−1)) dxdy

=
1√

1 + a2

∫ r

−r

∫ x2

x1

(aΦx(x, y, ax + b; t) − Φz(x, y, ax + b; t)) dxdy (B.32)

The integral is not evaluated here, as it results in an inconvenient expression.
Eq. (B.32) is used in the fitting procedure of Chapter 2.

2Please note that (Φ ·n) ≥ 0 is required over the entire detector surface in order to obtain a
sensible result.
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Figure B.2. Calculated count rate on the MCP detector from a 3He* sample and a 4He*
sample. The samples contain 3 × 108 atoms and have a temperature of 2 mK. The total
number of counts is 4.05 × 105 for 3He* and 4.09 × 105 for 4He*.

The MCP detector used in the TOF measurements of Chapters 2 and 6 (Hama-
matsu, model F4655) has an effective diameter of 14.5 mm, and its position is
given by l0 = 106(2) mm and α = 22.2°, so that (xMCP, 0,−zMCP) =(40.1 mm, 0,
−98.1 mm). The disc-shaped surface is modeled with a square of equal surface
area, i.e. r = 6.43 mm.3 Furthermore, a = 0.408, b = −114.5 mm, x1 = 34.1 mm,
and x2 = 46.0 mm. As σx0 , σy0 , σz0 ≪ l0, the initial size of the cloud is set to
zero, σx0 = σy0 = σz0 = 0. Furthermore, the velocity distribution is assumed
to be isotropic, σvx = σvy = σvz = σv. Assuming a temperature of 2 mK and a
trapped atom number of 3 × 108, the count rate curves from the detector for a
sample of either 3He* or 4He* atoms are shown in Figure B.2.

Initial vertical velocity

If the trapped sample has a nonzero velocity component vz = vz0 (as in the case
for atomic fountain clocks utilizing moving molasses [35]), the corresponding
Maxwell-Boltzmann distribution is given by

f (vz, σvz) =
1√

2πσvz

exp
[
− (vz − vz0)

2

2σ2
vz

]
, (B.33)

yielding

fz(z, t) =
1√

2πσz(t)
exp

[
− (z + 1

2 gt2 − 2vz0t)2

2σ2
z (t)

]
. (B.34)

The corresponding velocity vector field component is given by

uz(z, t) =
σ2

vzt2

σ2
z (t)

(
z

t
+

gt

2

)
− gt +

σ2
z0

σ2
z (t)

vz0 . (B.35)

Count rate RMCP can again be calculated using Eqs. (B.17) and (B.29).
3Using numerical integration, it is determined that differences in the count rates for a disc-

shaped and square detector surface are negligible at mK temperatures.
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Interaction potentials for 3He* + 3He*

To calculate the ionization rate coefficient for a laser-cooled sample of 3He*
atoms, we must gain insight in the evolution of the electronic spins of the two
colliding atoms during collisions. At large internuclear distance, the atomic hy-
perfine interaction couples the electronic spin Si to the nuclear spin Ii to form
the total angular momentum of an individual atom Fi = 3/2 or 1/2. At short
internuclear distance, the molecular interaction couples the electronic spins to
form total electronic spin S. To determine the dynamics of the transition from
one coupling scheme to the other, we need to calculate the interaction poten-
tial for two 3He* atoms for total atomic angular momenta F = 0, 1, 2, 3. To
calculate the potentials, we take into account only the electronic interaction
and the atomic hyperfine structure [25, Chapter 2] and need to solve the time-
independent Schrödinger equation

(Hel + Hhfs)|ψ〉 = E|ψ〉. (C.1)

In the |r〉 representation, the electronic Hamiltonian (in the Born-Oppen-
heimer approximation) is given by [116, Chapter 13]

Hel = − h̄2

2m

n

∑
i

∇2
i −

N

∑
α

n

∑
i

Ze2

|Rα − ri|
+

n

∑
j

n

∑
i<j

e2

|ri − rj|
+

Z2e2

R
, (C.2)

where α refers to the N = 2 nuclei with atomic number Z = 2, and i and j

refer to the n = 4 electrons with mass m. The first term represents the kinetic
energy of the electrons; the second term represents the attractions between the
electrons and the nuclei, with ri the position of electron i and Rα the position
of nucleus α; the third term represents the repulsions between the electrons; the
last term represents the repulsions between the nuclei, with R = |R1 −R2| the
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internuclear distance. The electronic interaction gives rise to three electronic
configurations, indicated by 1Σ+

g , 3Σ+
u and 5Σ+

g .
For the 5Σ+

g state of 4He* + 4He* (where hyperfine interaction is absent),
the interaction potential 5V(R) has been calculated1 with ab initio methods by
Müller et al. [136]. The calculation applies to 3.5 a0 ≤ R ≤ 14.0 a0, but the po-
tential can be extended to large internuclear distance using a calculation of the
dispersion interaction, −C6/R6 − C8/R8 − C10/R10, by Yan and Babb [223], as
discussed in Chapter 4.

The interaction potentials for states 1Σ+
g and 3Σ+

u can be determined from
5V(R) using the exchange energy [111],

(2S+1)V(R) = 5V(R)− (2S+1)Vexch(R), (C.3)

where the exchange energy is given by
(2S+1)Vexch(R) = (2S+1)A Rγ exp(−βR), (C.4)

where γ = 4.91249, β = 1.183933 a.u., 1A = 6.3245 × 10−3 a.u. and 3A =

4.6317 × 10−3 a.u. ( 5A = 0).
The atomic hyperfine interaction is given by [166, 167]

Hhfs = −2
3 h∆hf(I1 · J1 + I2 · J2) = −1

3 h∆hf(F2
1 − S2

1 − I2
1 + F2

2 − S2
2 − I2

2), (C.5)

where ∆hf = 6.73970177 GHz. The hyperfine structure in inverted.
The electronic Hamiltonian is diagonal in basis

{
|S1 I1, S2 I2, SMS, IMI〉

}

(Hund’s case a coupling) with

Hel|S1 I1, S2 I2, SMS, IMI〉 = (2S+1)V(R) |S1 I1, S2 I2, SMS, IMI〉. (C.6)

The atomic hyperfine interaction is diagonal in basis
{
|S1 I1, S2 I2, F1MF1, F2MF2〉

}

(Hund’s case e coupling) with

Hhfs|S1 I1, S2 I2, F1MF1, F2MF2〉
= −1

3 h∆hf

[
F1(F1 + 1) + F2(F2 + 1) − 11

2

]
|S1 I1, S2 I2, F1MF1, F2MF2〉. (C.7)

We construct the corresponding diagonal matrices and apply (unitary) trans-
formations to a representation in basis

{
|S1 I1, S2 I2, SI, FMF〉

}
. In this basis, we

construct a matrix for the combined electromagnetic and hyperfine interaction
by adding the two. The corresponding potential curves are constructed by cal-
culating the eigenvalues of the matrix for a range of internuclear distances R.

As total angular momentum F and parity p are conserved, matrix elements
between states with different values of F and/or a different parity are zero.
Therefore, we can restrict calculations to submatrices of given total angular mo-
mentum and parity. We distinguish between submatrices for

F = 0 , p = + (C.8)

F = 1 , p = ± (C.9)

F = 2 , p = ± (C.10)

F = 3 , p = − (C.11)

1The ab initio calculations performed by Stärck and Meyer [188] and Gadéa et al. [64] are
more accurate than the calculations of Müller et al., but additional accuracy is irrelevant here.
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Interaction potentials for 3He* + 3He*
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Figure C.1. Interaction potentials for 3He* + 3He*, relative to the interaction potentials
for state 5Σ+

g of 4He* + 4He*.

Results are shown in Fig. C.1. Potential curves are depicted relative to 5V(R)

to show the important features. Around R = 35 a0, the electrostatic and atomic
hyperfine interaction are of the same order of magnitude. The electrostatic in-
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Appendix C

teraction increases exponentially and, as discussed in Chapter 4, a cold collision
along these potentials can be modeled as a diabatic transition, expanding the
eigenstate of the atomic hyperfine interaction |S1 I1, S2 I2, F1MF1, F2MF2〉 onto the
eigenstates of the electronic interaction

{
|S1 I1, S2 I2, SMS, IMI〉

}
.
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[153] M. Pieksma, M. Čížek, J. W. Thomsen, P. van der Straten, and
A. Niehaus, Energy distributions of He+ and He2

+ ions formed in ul-
tracold He(2 3S1)+He(2 3P2) collisions, Phys. Rev. A 66, 022703 (2002).

[154] J. D. Prestage, C. E. Johnson, E. A. Hinds, and F. M. J. Pichanick, Pre-
cise study of hyperfine structure in the 2 3P state of 3He, Phys. Rev. A 32,
2712–2724 (1985), note: Eq. (3) is incorrect: the Zeeman energies of the hy-
perfine levels of state 2 3S1 with MF = ±1

2 should be W(F,±1
2) = E/2 ±

(gj/2)µBB + 1
2 (−1)F−1/2 [

E2 ± 2
3 E(gJ − gI)µBB + (gJ − gI)

2(µBB)2]1/2.

[155] J. D. Prestage, R. L. Tjoelker, and L. Maleki, Atomic clocks and variations
of the fine structure constant, Phys. Rev. Lett. 74, 3511–3514 (1995).

[156] J. V. Prodan, W. D. Phillips, and H. Metcalf, Laser production of a very
slow monoenergetic atomic beam, Phys. Rev. Lett. 49, 1149–1153 (1982).

[157] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Trapping of
neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59, 2631–
2634 (1987).

[158] I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, A new method of
measuring nuclear magnetic moment, Phys. Rev. 53, 318 (1938).

[159] N. F. Ramsey, Molecular beams (Clarendon Press, 1969).

[160] N. F. Ramsey, Experiments with separated oscillatory fields and hydrogen
masers, Rev. Mod. Phys. 62, 541–552 (1990).

[161] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann,
V. Vuletic, W. König, and T. W. Hänsch, A compact grating-stabilized
diode laser system for atomic physics, Opt. Comm. 117, 541–549 (1995).

[162] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron,
C. I. Westbrook, and A. Aspect, A Bose-Einstein condensate of metastable
atoms, Science 292, 461–464 (2001).

159



Bibliography

[163] W. Rooijakkers, W. Hogervorst, and W. Vassen, An intense collimated
beam of metastable helium atoms by two-dimensional laser cooling, Opt.

Comm. 123, 321–330 (1996).

[164] W. Rooijakkers, W. Hogervorst, and W. Vassen, Laser deceleration and
trapping of metastable helium atoms, Opt. Comm. 135, 149–156 (1997).

[165] K. J. R. Rosman and P. D. P. Taylor, Isotopic composition of the elements
1997, Pure Appl. Chem. 70, 217–235 (1998).

[166] S. D. Rosner and F. M. Pipkin, Hyperfine structure of the 2 3S1 state of
He3, Phys. Rev. A 1, 571–586 (1970).

[167] S. D. Rosner and F. M. Pipkin, Errata: Hyperfine structure of the 2 3S1

state of He3 [Phys. Rev. A 1, 571 (1970)], Phys. Rev. A 3, 521–522 (1971).

[168] E. W. Rothe, R. H. Neynaber, and S. M. Trujillo, Velocity dependence of
the total cross section for the scattering of metastable He(3S1) by helium,
argon, and krypton, J. Chem. Phys. 42, 3310–3314 (1965).

[169] G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang,
A. N. Luiten, and C. Salomon, Quantum projection noise in an atomic
fountain: A high stability cesium frequency standard, Phys. Rev. Lett. 82,
4619–4622 (1999).

[170] M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flem-
ming, S. C. Zilio, and V. S. Bagnato, Simultaneous trapping of two dif-
ferent atomic species in a vapor-cell magneto-optical trap, Phys. Rev. A 52,
R4340–4343 (1995).

[171] M. S. Santos, P. Nussenzveig, L. G. Marcassa, K. Helmerson, J. Flemming,
S. C. Zilio, and V. S. Bagnato, Erratum: Simultaneous trapping of two
different atomic species in a vapor-cell magneto-optical trap [Phys. Rev.
A 52, R4340 (1995)], Phys. Rev. A 54, 1739 (1996).

[172] U. Schlöder, H. Engler, U. Schünemann, R. Grimm, and M. Weidemüller,
Cold inelastic collisions between lithium and cesium in a two-species
magneto-optical trap, Eur. Phys. J. D 7, 331–340 (1999).

[173] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubi-
zolles, and C. Salomon, Quasipure Bose-Einstein condensate immersed
in a fermi sea, Phys. Rev. Lett. 87, 080403 (2001).

[174] R. Schumann, C. Schubert, U. Eichmann, R. Jung, and G. von Oppen,
Laser cooling of metastable He atoms in an inhomogeneous electric field,
Phys. Rev. A 59, 2120–2125 (1999).

[175] S. Seidelin, J. Viana Gomes, R. Hoppeler, O. Sirjean, D. Boiron, A. Aspect,
and C. I. Westbrook, Getting the elastic scattering length by observing
inelastic collisions in ultracold metastable helium atoms, Phys. Rev. Lett.

93, 090409 (2004).

[176] K. Sengstock and W. Ertmer, Laser manipulation of atoms, in Advances in

atomic, molecular and optical physics, pp. 1–44 (Academic Press, 1995).

160



Bibliography

[177] J. P. Shaffer, W. Chalupczak, and N. P. Bigelow, Photoassociative ioniza-
tion of heteronuclear molecules in a novel two-species magneto-optical
trap, Phys. Rev. Lett. 82, 1124–1127 (1999).

[178] F. Shimizu, K. Shimizu, and H. Takuma, Laser cooling of a neon atomic
beam in metastable states, Jpn. J. Appl. Phys. 26, L1847–L1849 (1987).

[179] F. Shimizu, K. Shimizu, and H. Takuma, Four-beam laser trap of neutral
atoms, Opt. Lett. 16, 339–341 (1991).

[180] D. Shiner, R. Dixson, and V. Vedantham, Three-nucleon charge radius:
A precise laser determination using 3He, Phys. Rev. Lett. 74, 3553–3556
(1995).

[181] J. H. Shirley, W. D. Lee, and R. E. Drullinger, Accuracy evaluation of the
primary frequency standard NIST-7, Metrologia 38, 427–458 (2001).

[182] G. V. Shlyapnikov, J. T. M. Walraven, U. M. Rahmanov, and M. W.
Reynolds, Decay kinetics and Bose condensation in a gas of spin-
polarized triplet helium, Phys. Rev. Lett. 73, 3247–3250 (1994).

[183] I. F. Silvera, Spin-polarized hydrogen: Prospects for Bose-Einstein con-
densation and two-dimensional superfluidity, in Bose-Einstein condensa-

tion, edited by A. Griffin, D. W. Snoke, and S. Stringari, chapter 8, pp.
160–172 (Cambridge University Press, 1995).

[184] O. Sirjean, S. Seidelin, J. Viana Gomes, D. Boiron, C. I. Westbrook, A. As-
pect, and G. V. Shlyapnikov, Ionization rates in a Bose-Einstein conden-
sate of metastable helium, Phys. Rev. Lett. 89, 220406 (2002).

[185] P. E. Siska, Molecular-beam studies of Penning ionization, Rev. Mod. Phys.

65, 337–412 (1993).

[186] Y. Sortais, S. Bize, C. Nicolas, A. Clairon, C. Salomon, and C. Williams,
Cold collision frequency shifts in a 87Rb atomic fountain, Phys. Rev. Lett.

85, 3117–3120 (2000).

[187] R. Srianand, H. Chand, P. Petitjean, and B. Aracil, Limits on the time vari-
ation of the electromagnetic fine-structure constant in the low energy limit
from absorption lines in the spectra of distant quasars, Phys. Rev. Lett. 92,
121302 (2004).

[188] J. Stärck and W. Meyer, Long-range interaction potential of the 5Σ+
g state

of He2, Chem. Phys. Lett. 225, 229–232 (1994).

[189] C. H. Storry, M. C. George, and E. A. Hessels, Precision microwave mea-
surement of the 2 3P1 − 2 3P2 interval in atomic helium, Phys. Rev. Lett. 84,
3274–3277 (2000).

[190] C. I. Sukenik and H. C. Busch, Simultaneous trapping of rubidium and
metastable argon in a magneto-optical trap, Phys. Rev. A 66, 051402(R)
(2002).

[191] K.-A. Suominen, Theories for cold atomic collisions in light fields, J. Phys.

B 29, 5981–6007 (1996).

161



Bibliography

[192] W. Süptitz, G. Wokurka, F. Strauch, P. Kohns, and W. Ertmer, Simultane-
ous cooling and trapping of 85Rb and 87Rb in a magneto-optical trap, Opt.

Lett. 19, 1571–1573 (1994).

[193] G. D. Telles, W. Garcia, L. G. Marcassa, V. S. Bagnato, D. Ciampini,
M. Fazzi, J. H. Müller, D. Wilkowski, and E. Arimondo, Trap loss in a
two-species Rb-Cs magneto-optical trap, Phys. Rev. A 63, 033406 (2001).

[194] G. D. Telles, L. G. Marcassa, S. R. Muniz, S. G. Miranda, A. Antunes,
C. Westbrook, and V. S. Bagnato, Inelastic collisions of a Na/Rb mixture
in a magneto-optical trap, Phys. Rev. A 59, R23–R26 (1999).

[195] P. J. J. Tol, Trapping and evaporative cooling of metastable helium, Ph.D. thesis,
Vrije Universiteit Amsterdam (2005), unpublished.

[196] P. J. J. Tol, N. Herschbach, E. A. Hessels, W. Hogervorst, and W. Vassen,
Large numbers of cold metastable helium atoms in a magneto-optical
trap, Phys. Rev. A 60, R761–R764 (1999).

[197] C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M.
Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, Phase-space density in
the magneto-optical trap, Phys. Rev. A 52, 1423–1440 (1995).

[198] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.
Hulet, Observation of Fermi pressure in a gas of trapped atoms, Science

291, 2570–2572 (2001).

[199] Bose-Einstein condensation of metastable helium has been achieved in
the Laser Centre of the Vrije Universiteit Amsterdam on 27 January 2005
(A. S. Tychkov, T. Jeltes, P. J. J. Tol, N. Herschbach, W. Hogervorst, and
W. Vassen, to be published).

[200] A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst, and W. Vassen,
Two-color magneto-optical trap for metastable helium, Phys. Rev. A 69,
055401 (2004).

[201] J.-P. Uzan, The fundamental constants and their variation: observational
and theoretical status, Rev. Mod. Phys. 75, 403–455 (2003).

[202] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Stan-

dards (IOP Publishing Ltd, 1989).

[203] N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. As-
pect, A frequency-stabilized LNA laser at 1.083 µm: Application to the
manipulation of helium 4 atoms, J. Phys. II 1, 1407–1428 (1991).

[204] V. Venturi and I. B. Whittingham, Close-coupled calculation of field-free
collisions of cold metastable helium atoms, Phys. Rev. A 61, 060703 (2000).

[205] V. Venturi, I. B. Whittingham, P. J. Leo, and G. Peach, Close-coupled calcu-
lation of collisions of magnetostatically trapped metastable helium atoms,
Phys. Rev. A 60, 4635–4646 (1999).

[206] E. J. D. Vredenbregt and K. A. H. van Leeuwen, Laser cooling and trap-
ping visualized, Am. J. Phys. 71, 760–765 (2003).

162



Bibliography

[207] D. Vrinceanu and H. R. Sadeghpour, He(1 1S)–He(2 3S) collision and ra-
diative transition at low temperatures, Phys. Rev. A 65, 062712 (2002).

[208] L.-B. Wang, P. Mueller, R. J. Holt, Z.-T. Lu, T. P. O’Connor, Y. Sano, and
N. C. Sturchio, Laser spectroscopic measurement of helium isotope ratios,
Geophys. Res. Lett. 30, 1592–1595 (2003).

[209] J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow,
C. W. Churchill, J. X. Prochaska, and A. M. Wolfe, Further evidence for
cosmological evolution of the fine structure constant, Phys. Rev. Lett. 87,
091301 (2001).

[210] J. Weiner, Cold and ultracold collisions in quantum microscopic and mesoscopic

systems (Cambridge University Press, 2003).

[211] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and the-
ory in cold and ultracold collisions, Rev. Mod. Phys. 71, 1–85 (1999).

[212] H. F. Wellenstein and W. W. Robertson, Collisional relaxation processes
for the n = 3 states of helium. II. Associative ionization, J. Chem. Phys. 56,
1077–1082 (1972).

[213] C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trap-
ping, and quantum manipulation, Rev. Mod. Phys. 71, S253–S262 (1999).

[214] E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev.

73, 1002–1009 (1948).

[215] J. Wilks and D. S. Betts, An introduction to liquid helium, second edition
(Clarendon Press, Oxford, 1987).

[216] D. Wineland and H. Dehmelt, Proposed 1014∆ν < ν laser fluorescence
spectroscopy on Tl+ mono-ion oscillator III, Bull. Am. Phys. Soc. 20, 637
(1975).

[217] D. J. Wineland, W. M. Itano, J. C. Bergquist, and F. L. Walls, Proposed
stored 201Hg+ ion frequency standard, in Proceedings of the 35th Annual

Frequency Control Symposium, pp. 602–611 (1981).

[218] V. Wippel, C. Binder, W. Huber, L. Windholz, M. Allegrini, F. Fuso, and
E. Arimondo, Photoionization cross-sections of the first excited states of
sodium and lithium in a magneto-optical trap, Eur. Phys. J. D 17, 285–291
(2001).

[219] J. L. Wiza, Microchannel plate detectors, Nucl. Instrum. Methods 162, 587–
601 (1979).

[220] J. R. Woodworth and H. W. Moos, Experimental determination of the
single-photon transition rate between 2 3S1 and 1 1S0 states of He I, Phys.

Rev. A 12, 2455–2463 (1975).

[221] X. Xu, T. H. Loftus, J. L. Hall, A. Gallagher, and J. Ye, Cooling and trapping
of atomic strontium, J. Opt. Soc. Am. B 20, 968–976 (2003).

[222] M. Yamazaki, S. Maeda, N. Kishimoto, and K. Ohno, Classical trajectory

163



Bibliography

calculations of collision energy dependence of Penning ionization cross-
sections for N2 and CO by He* 2 3S; optimization of anisotropic model
potentials, Chem. Phys. Lett. 355, 311–318 (2002).

[223] Z.-C. Yan and J. F. Babb, Long-range interactions of metastable helium
atoms, Phys. Rev. A 58, 1247–1252 (1998).

[224] Z.-C. Yan and G. W. F. Drake, High-precision calculations of the Zeeman
effect in the 2 3PJ , 2 1P1, 2 3S1, and 3 3PJ states of helium, Phys. Rev. A 50,
R1980–R1983 (1994).

[225] D.-H. Yang, P. McNicholl, and H. Metcalf, Precision measurement of
the crossing between the (J, M) = (0, 0) and (1, 1) sublevels and fine-
structure splittings in 3 3P helium, Phys. Rev. A 33, 1725–1729 (1986).

[226] I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, A calculation of
the time-of-flight distribution of trapped atoms, Am. J. Phys. 70, 149–152
(2001).

[227] A. J. Yencha, Penning ionization and related processes, in Electron spec-

troscopy: Theory, techniques and applications, edited by C. R. Brundle and
A. D. Baker, volume 5, pp. 197–373 (Academic Press, 1984).

[228] Y. E. Young, R. Ejnisman, J. P. Shaffer, and N. P. Bigelow, Heteronuclear
hyperfine-state-changing cold collisions, Phys. Rev. A 62, 055403 (2000).

[229] R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry

and Physics (John Wiley & Sons, 1988).

[230] P. Zhao, J. R. Lawall, and F. M. Pipkin, High-precision isotope-shift mea-
surement of the 2 3S− 2 3P transition in helium, Phys. Rev. Lett. 66, 592–505
(1991).

[231] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta,
Z. Hadzibabic, and W. Ketterle, Observation of Bose-Einstein condensa-
tion of molecules, Phys. Rev. Lett. 91, 250401 (2003).

164



List of publications

HOMONUCLEAR IONIZING COLLISIONS OF LASER-COOLED METASTABLE

HELIUM ATOMS,
R. J. W. Stas, J. M. McNamara, W. Hogervorst, and W. Vassen,
to be submitted.
Based on Chapters 4 and 5.

SIMULTANEOUS MAGNETO-OPTICAL TRAPPING OF A BOSON-FERMION MIXTURE

OF METASTABLE HELIUM ATOMS,
R. J. W. Stas, J. M. McNamara, W. Hogervorst, and W. Vassen,
Physical Review Letters 93, 053001 (2004).
Chapter 6 is based on this publication.

MAGNETO-OPTICAL TRAP FOR METASTABLE HELIUM AT 389 NM,
J. C. J. Koelemeij, R. J. W. Stas, W. Hogervorst, and W. Vassen,
Physical Review A 67, 053406 (2003).
Chapter 3 is based on this publication.

Not related to this thesis

AN INTENSE, SLOW AND COLD BEAM OF METASTABLE NE(3S) 3P2 ATOMS,
J. G. C. Tempelaars, R. J. W. Stas, P. G. M. Sebel, H. C. W. Beijerinck,
and E. J. D. Vredenbregt, European Physical Journal D 18, 113–121 (2002).

PROSPECTS FOR BOSE-EINSTEIN CONDENSATION OF METASTABLE NEON ATOMS,
H. C. W. Beijerinck, E. J. D. Vredenbregt, R. J. W. Stas, M. R. Doery,
and J. G. C. Tempelaars, Physical Review A 61, 023607 (2000).

ORBIT DYNAMICS IN A LOW ENERGY ELECTRON LINEAR ACCELERATOR,
H. L. Hagedoorn, J. I. M. Botman, R. W. de Leeuw, and R. J. W. Stas,
in EPAC 96: Fifth European Particle Accelerator Conference, edited by S. Myers,
A. Pacheco, R. Pascual, Ch. Petit-Jean-Genaz, and J. Poole, pp. 944–946
(Institute of Physics Publishing, 1997).

165





Summary

This thesis presents experimental and theoretical work performed at the Laser
Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable
triplet helium (He*) atoms. Samples containing about 3× 108 He* atoms—either
fermionic 3He* atoms, bosonic 4He* atoms or mixtures thereof—are cooled to a
temperature around 1 mK and form the starting point of the presented studies.
The studies include an investigation of cold ionizing collisions in the absence
of resonant light, an investigation of magneto-optical trapping with ultraviolet
light, a feasibility study of an atomic fountain clock based on 3He* atoms and
the first demonstration of magneto-optical trapping of an isotopic mixture of
He* atoms. The metastable 2 3S1 state carries a large internal energy of 19.8 eV,
but can be regarded as an effective ground state in all studies presented, as its
lifetime is 7.9 ks.

Chapter 1 serves as an introduction and may be regarded as a motivation
for the research. The chapter places the work into a broader perspective and
presents phenomena of direct relevance to the work. It is shown that Penning
ionization gives rise to a strong reactivity of the He* atom and that it allows
the use of charged-particle detectors (microchannel plate detectors or channel
electron multipliers) as detection tools.

Samples of He* atoms are obtained in a magneto-optical trap (MOT) using
trapping light with a wavelength of 1083 nm. The light is resonant with atomic
transition 2 3S1(F = 3

2) → 2 3P(F ′ = 5
2) in case of 3He*, and 2 3S1 → 2 3P2 in

case of 4He*. The experimental setup used for the experiments is discussed in
Chapter 2. To characterize the trapped samples, absorption images are taken
with a CCD camera and time-of-flight measurements are performed using a mi-
crochannel plate detector. The number of atoms of about 3 × 108 is comparable
to other numbers reported for 4He* MOTs. However, it represents an improve-
ment by three orders of magnitude compared to results reported for 3He*.

Chapter 3 deals with the investigation of a new MOT for 4He* atoms using
trapping light with a wavelength of 389 nm. The trapping light drives the
non-closed atomic transition 2 3S1 → 3 3P2 and trapped samples are character-
ized with fluorescence images and time-of-flight measurements using a chan-
nel electron multiplier. Trap loss is studied by monitoring the ionization rate
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Chapter 7

in the trapped sample with a second channel electron multiplier; the ions are
formed in a Penning ionization process and are not confined in the trap. It is
observed that two-photon ionization has a small contribution to trap loss and
that trap loss due to light-assisted collisions is significantly smaller compared
to a 1083 nm MOT. As a result of the reduced trap loss and a stronger trapping
force, higher phase-space density can be obtained. However, the limited cap-
ture velocity hampers the trapping of a large number of atoms: up to 2 × 107

atoms have been confined.
Cold ionizing collisions in the absence of resonant light are studied in sam-

ples of 3He* or 4He* atoms. To analyze experimental results, a theoretical model
for homonuclear ionizing collisions of He* isotopes is presented in Chapter 4.
The model incorporates quantum threshold behavior, Wigner’s spin-conserva-
tion rule and quantum statistical symmetry requirements. Starting from molec-
ular potentials, the model is used to calculate the inelastic cross section for Pen-
ning ionization, as well as the ionization rate coefficient for an unpolarized sam-
ple. The model complements a more complete close-coupling theory reported
in literature and is applied to collisions of both 3He* atoms and 4He* atoms.

The experimental determination of the rate coefficients is presented in Chap-
ter 5. Measurements of trap loss due to light-assisted collisions and compar-
ative measurements of ionization rates in the absence and presence of trap-
ping light are performed successively. The derived ionization rate coefficient is
1.9(3) × 10−10 cm3/s in case of 3He*, and 1.0(2) × 10−10 cm3/s in case of 4He*.
The coefficients are corrected for polarization effects in the samples and show
very good agreement with the calculated values. The model shows that the
isotopic difference in the ionization rate coefficients results from the different
quantum statistical symmetry of the two isotopes and the presence of a nuclear
spin in the case of 3He.

The simultaneous magneto-optical trapping of both 3He* and 4He* atoms is
demonstrated for the first time in Chapter 6. As the number of trapped atoms
is about 1.5 × 108 of each isotope, the samples form a perfect starting point for
experiments aimed at quantum degeneracy in a mixture of spin-polarized 3He*
and 4He* atoms. Optical pumping of 3He* atoms to a non-trapped hyperfine
state is investigated and it is shown that large atom numbers can be confined
without additional repumping lasers.

Finally, the feasibility of an atomic fountain clock based on laser-cooled 3He*
atoms is investigated in Chapter 7. It is argued that an atomic fountain clock
based on 3He* atoms would allow the investigation of the suppression of the
cold collision frequency shift for identical fermions and that a clock based on
an atom with small mass is interesting for measurements of possible variations
of the fine-structure constant α. A calculation of the expected stability, accuracy
and Ramsey fringe contrast shows that the expected performance of the 3He*
fountain clock is significantly inferior compared to existing fountain clocks. As
this hampers the investigation of cold collision frequency shifts or precise mea-
surements of possible variations of α, it is concluded that it would not be sensi-
ble to perform an experimental study of a 3He* fountain clock at the time being.
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Samenvatting

Fermionische en bosonische heliumatomen in een
magneto-optische val

In dit proefschrift wordt experimenteel en theoretisch werk besproken dat is
uitgevoerd in het Laser Centrum van de Vrije Universiteit in Amsterdam. Het
betreft onderzoek aan wolken van lasergekoelde metastabiele heliumatomen
(He*), waarbij zowel fermionische 3He* atomen, bosonische 4He* atomen en
mengsels van beide isotopen zijn onderzocht. De wolken hebben een afmeting
van enkele millimeters en bevatten ongeveer 3 × 108 He* atomen bij een tem-
peratuur van ongeveer 1 mK. Het onderzoek is hoofdzakelijk gericht op kwan-
tumstatistische verschijnselen en bestaat uit een aantal deelstudies, waaronder
een onderzoek naar koude ioniserende botsingen in de afwezigheid van reso-
nant licht, een onderzoek naar het magneto-optisch opsluiten met behulp van
ultraviolet licht, een haalbaarheidsonderzoek ten aanzien van een atoomklok
gebaseerd op 3He* atomen en de eerste demonstratie ooit van de magneto-
optische opsluiting van een mengsel van 3He* en 4He* atomen. De metastabiele
toestand 2 3S1 heeft een interne energie van 19.8 eV en kan dankzij de levens-
duur van 7.9 ks worden beschouwd als de effectieve grondtoestand in alle hier
besproken experimenten.

Hoofdstuk 1 dient ter introductie en motivatie. Aan de ene kant wordt het
onderzoek in een breder perspectief geplaatst en aan de andere kant komen as-
pecten aan de orde die van groot belang zijn voor het onderzoek, zoals het pro-
ces van Penning-ionisatie. Er wordt duidelijk gemaakt dat Penning-ionisatie bij-
zondere detectiemogelijkheden biedt, namelijk het gebruik van charged-particle

detectoren (microchannel plate detectoren of channel electron multipliers) mogelijk
maakt.

In hoofdstuk 2 wordt de experimentele opstelling beschreven en komen
de eerste metingen aan koude He* wolken aan de orde. De wolken worden
gevormd in een magneto-optische val (MOT) waarbij gebruik wordt gemaakt
van laserlicht met een golflengte van 1083 nm. Dit licht is resonant met de atom-
aire overgang 2 3S1(F = 3

2) → 2 3P(F ′ = 5
2) in het geval van 3He*, en 2 3S1 →

2 3P2 in het geval van 4He*. De wolken worden geanalyseerd met behulp van
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Hoofdstuk 7

time-of-flight metingen met een microchannel plate detector en absorptiemetin-
gen met een CCD camera. Het behaalde aantal atomen van ongeveer 3 × 108 is
vergelijkbaar met getallen uit de literatuur als het gaat om 4He*. In het geval
van 3He* zijn de behaalde aantallen drie ordes groter dan eerder gepubliceerde
waarden.

Hoofdstuk 3 beschrijft de studie van een nieuw type magneto-optische val
voor 4He* atomen. Er wordt gebruik gemaakt van laserlicht met een golflengte
van 389 nm dat resonant is met de niet-gesloten overgang 2 3S1 → 3 3P2. De
4He* wolken worden geanalyseerd met behulp van time-of-flight metingen met
een channel electron multiplier en fluorescentie metingen met een CCD camera.
De verschillende verliesprocessen in de val worden geanalyseerd door te kijken
naar de ionenproductie in de wolk met een tweede channel electron multiplier; de
ionen ontstaan als gevolg van Penning-ionisatie en worden door een elektrisch
veld naar de detector getrokken. Het blijkt dat verlies ten gevolge van licht-
geïnduceerde botsingen (light-assisted collisions) aanzienlijk kleiner is dan in het
geval een magneto-optische val op basis van 1083 nm licht. Het verminderde
deeltjesverlies en de grotere lichtkracht leiden ertoe dat in een val op basis van
389 nm licht een grotere faseruimtedichtheid bereikt wordt dan in een val op
basis van 1083 nm licht. Aan de andere kant wordt het aantal deeltjes in de val
begrensd tot 2 × 107 door de beperkte invangsnelheid van de MOT. De bijdrage
aan deeltjesverlies door twee-foton-ionisatie blijkt klein.

Een aanzienlijk deel van dit proefschrift beschrijft een onderzoek aan koude
ioniserende botsingen in 3He* wolken en 4He* wolken, waarbij de nadruk ligt
op botsingen in afwezigheid van resonant licht. Ten behoeve van de analyse van
experimentele resultaten wordt in hoofdstuk 4 een theoretisch model gepre-
senteerd. Het model beschrijft homonucleaire ioniserende botsingen van He*
atomen en gaat uit van een aantal belangrijke eigenschappen van deze botsin-
gen, te weten het effect van kwantummechanische energiedrempels, Wigner’s
wet van behoud van spin en de symmetrie-eigenschappen van een systeem
van twee niet-onderscheidbare deeltjes. Uitgaande van de (relevante) molecu-
laire potentialen wordt het model gebruikt om inelastische botsingsdoorsnedes
voor Penning-ionisatie te berekenen en vervolgens ionisatiesnelheden in onge-
polariseerde He* wolken af te leiden. Het model wordt toegepast op beide iso-
topen en vormt een aanvulling op een meer volledige close-coupling berekening
bekend uit de literatuur.

Een verslag van de experimentele bepaling van de ionisatiesnelheden is te
vinden in hoofdstuk 5. Door een meting van het deeltjesverlies in aanwezigheid
van resonant licht te combineren met een relatieve meting van de ionisatie-
snelheid in aanwezigheid van resonant licht ten opzichte van de snelheid in
afwezigheid van resonant licht, worden de ionisatiesnelheidscoëfficiënten be-
paald. In het geval van 3He* is de coëfficiënt 1.9(3)× 10−10 cm3/s en voor 4He*
is de coëfficiënt 1.0(2) × 10−10 cm3/s. De coëfficiënten zijn gecorrigeerd voor
polarisatie-effecten in de wolken en komen zeer goed overeen met de berekende
waarden. Uit het model blijkt dat het verschil tussen de coëfficiënten het gevolg
is van de verschillende kwantummechanische symmetrie van de isotopen en de
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Samenvatting

aanwezigheid van een kernspin in het geval van 3He*.
Het onderwerp van hoofdstuk 6 is de eerste waarneming van een gelijktij-

dige opsluiting van 3He* en 4He* atomen in een magneto-optische val. Het be-
haalde aantal atomen in de val bedraagt ongeveer 1.5× 108 bedraagt per isotoop
en daarom vormen de opgesloten wolken een goed uitgangspunt voor exper-
imenten gericht op kwantum ontaarding (quantum degeneracy) in een mengsel
van spin-gepolariseerde 3He* en 4He* atomen. Het verlies van 3He* atomen
door optisch pompen komt uitgebreid aan de orde. Het blijkt dat dit deeltjesver-
lies, dat veroorzaakt wordt door een overgang van atomen naar een andere hy-
perfijntoestand, klein is en dat grote aantal atomen kunnen worden opgesloten.

Hoofdstuk 7 vormt de neerslag van een haalbaarheidsstudie naar een atoom-
klok gebaseerd op een lasergekoelde fontein van 3He* atomen. Er wordt be-
toogd dat een dergelijke atoomklok aandacht verdiend op basis van de inno-
vatieve onderzoeksmogelijkheden. Zo is het mogelijk de onderdrukking van
de frequentieverschuiving door atomaire botsingen in het geval van fermionen
te onderzoeken. Tevens biedt de klok door kleine atoommassa van 3He mo-
gelijkheden om eventuele variaties van de fijnstructuurconstante te bepalen. Uit
een berekening van de verwachte stabiliteit, nauwkeurigheid en contrast van de
Ramsey fringes blijkt echter dat een 3He* atoomklok veel slechter presteert dan al
bestaande fonteinklokken en dat een studie van de innovatieve aspecten daar-
door niet mogelijk is. De conclusie is dan ook dat het op dit moment niet zinnig
zou zijn om de 3He* atoomklok experimenteel te onderzoeken.
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