
IEEE Expert, Vol. 11, No. 1, pp. 56-62, Feb. 1996

Evaluating a formal KBS specification language

Frank van Harmelen1, Manfred Aben1, Fidel Ruiz2, Joke van de Plassche2

1 SWI, University of Amsterdam, Roetersstraat 15
1018 WB Amsterdam, The Netherlands
email: frankh@swi.psy.uva.nl.

2 NICI, University of Nijmegen, The Netherlands

Abstract. In recent years, the knowledge engineering community has begun to
explore formal specification languagesas a tool in the development of knowledge-
based systems. These formal knowledge modelling languages have a number
of advantages over informal languages, such as their precise meaning and the
possibility to derive properties through formal proofs. However, these formal
languages also suffer from problems which limit their practical usefulness: they
are often not expressive enough to deal with real world applications, formal models
are complex and hard to read, and constructing a formal model is a difficult, error
prone and expensive process. The goal of the study presented in this paper is
to investigate the usability of one such formal KBS modelling language, called
(ML)2 . (ML)2 is strongly based on the structure of the knowledge-models used
in the KADS KBS development method. We first designed a set of evaluation
criteria. We then applied (ML)2 in two case-studies and scored the language on
our evaluation criteria. (ML)2 scored well on most of our criteria. This leads us to
conjecture that the close correspondencebetween the informal KADS models and
the formal (ML)2 models avoids some of the problems that traditionally plague
formal specification languages.

1 Introduction

Formal modelling languages have begun to play an increasing role in the knowledge
acquisitioncommunity in the last few years, as witnessed by a steady stream of proposals
for such formal languages for KBS modelling. A number of these languages are reviewed
in [3] and [5]. These modelling languages differ from both the high level informal
modelling languages, e.g. as used in KADS [8], and from directly executable languages.

Various authors have argued the advantages of such formal modelling languages:
they reduce the vagueness and ambiguity of informal descriptions, they allow for vali-
dation of completeness and consistency through formal proofs, and they bridge the gap
between the informal model and the design of a system.

1 The research reported here was carried out in the course of the KADS-II project. This project is
partially funded by the ESPRIT Programme of the Commission of the European Communities
as project number 5248. The partners in this project are Cap Gemini Innovation (F), Cap Gemini
Logic (S), Netherlands Energy Research Foundation ECN (NL), ENTEL SA (ESP), Lloyd’s
Register (UK), Swedish Institute of Computer Science (S), Siemens AG (D), Touche Ross MC
(UK), University of Amsterdam (NL) and Free University of Brussels (B).



However, these advantages come at a price: as is well known from software engineer-
ing, these formal languages suffer from problems which severely limit their practical
usefulness: they are often not expressive enough to deal with real world applications,
formal models are complex and hard to read, and constructing a formal model is a
difficult, error prone and expensive process.

In this paper we investigate the usability of one such formal KBS modelling language,
called (ML)2 [7]. This language has been developed since 1990, and specifically aims
at formalising the KADS model of expertise [8]. We conducted this study at a point
when the language definition had become stable, and when the language plus a set of
tools to support its use had been applied in a number of cases both inside and outside
our research group.

In order to analyse the usability of (ML)2, we proceeded as follows. First of all,
we designed a set of criteria to evaluate (ML)2. We then performed a small case-study,
constructing an expertise model in (ML)2, in order to try out and refine our evaluation
criteria. Subsequently, (ML)2 was used to construct a second model which formed the
basis for our language evaluation. These case-studies were used to score (ML)2 on our
evaluation criteria.

We assume that the reader of this paper has a basic knowledge of the structure of
KADS expertise models. Knowledge of the (ML)2 language is helpful but not required
for reading this paper. In order to remind the reader of the central notions of KADS
and (ML)2, we give a very brief description of both. More detailed descriptions can be
found in [8] for KADS and [7] for (ML)2.

2 Evaluation Criteria

As a first step we designed a set of evaluation criteria that we used to evaluate the
usability of (ML)2. Although the main aim of this study was to evaluate a specific
formal language, we believe that this list of criteria can be of general use in similar
evaluation studies.

Expressiveness. A first concern is whether our language was expressive enough. Were
certain things impossible to express? Were some things difficult to express?

Frequency of Errors. One of the problems with formal specifications is that their con-
struction is an error prone activity. What were the most common errors made when
using (ML)2? What was the frequency of these errors? Can we identify why these errors
occurred so frequently? Can we find a way to avoid these common errors?

Redundancy. To achieve compactness and maintenance, redundancy should be avoided
in formal specifications. Was redundancy present in our formal models? Can we identify
different types of redundancy? Where does the redundancy occur? Can we think of ways
to avoid it? What were the most frequently used constructions in our language? Can we
remove or simplify these frequently occurring constructions?



KADS and (ML)2

A KADS expertise model consists of three layers: domain, inference and task layer (for
the purposes of this paper we ignore the strategic layer). The domain layer contains
a description of the domain knowledge of a KBS application. This description should
be as much as possible independent from the role this knowledge plays in the reason-
ing process. In (ML)2 , such use-independent descriptions of domain knowledge are
formalised as a set of theories in order-sorted first-order predicate logic.
The inference layer of a KADS expertise model describes the reasoning steps (or:
inference actions) that can be performed using the domain knowledge, as well as the
way the domain knowledge is used in these inference steps. In (ML)2 , the inference
layer is formalised as a meta-theory of the domain layer, and each inference action is
represented by a predicate which is axiomatised in an order-sorted first-order theory.
The inputs and outputs of an inference action (called knowledge roles) correspond to
arguments of these predicates. These roles (terms in the meta-theory) are described
in domain-independent terminology, which is connected to domain specific predicates
in the domain layer by a naming relation which is specified as a rewrite system (so
called lift-operators). The relations between the inference steps through their shared
input/output-roles are represented in KADS by a dependency graph among inference
steps and knowledge roles. Such a graph is called an inference structure, and specifies
only data-dependencies among the inferences, and not the order in which they should
be executed.
This execution order among the inference steps is specified at the task layer. For this
purpose, KADS uses a simple procedural language with primitive procedures to execute
inference steps and predicates to test the contents of knowledge roles. These procedures
can be combined using sequences, conditionals and iterations. This procedural language
is formalised in (ML)2 through quantified dynamic logic.

Locality of Change. Since formal specifications will have to be refined and maintained,
it is important that changes to a formal model remain local. Do changes propagate
through the formal models? If so, what were the causes for global changes, and can they
be avoided?

Reusability. Reusability of model fragments and of entire models is an important goal
in knowledge acquisition. Do our formal models enable reusability?

Guidelines and Tool-Support. In earlier research, we have developed a set of guidelines
on how to construct (ML)2 models, as well as a set of software-tools to support the
construction process. Were these guidelines useful? Were there any guidelines missing?
Was the toolsupport useful? Were any tools missing?

3 Case Studies

The following case-studies were used to evaluate (ML)2 on the criteria described above.

Adaptation Study. In this study we took an already existing (ML)2 model of a simple
scheduling task, plus an alternative model of the same task described in a different



language. The task was an incremental procedure for constructing a time schedule,
which had been formalised in (ML)2 before we started our study. The alternative model
was formalised by others in the language KARL. This alternative model contained a
much more elaborate version of the revision subtask. The goal of this study was to adapt
the given (ML)2 specification to have the same elaborate subtask as specified in the
KARL model, and to observe the effects of these changes on the model as a whole.

Construction Study. In this second study, we performed the process for which (ML)2

is intended: we took an informal conceptual model and constructed the formal version
of this model in (ML)2. The particular conceptual model was a simple allocation task.
It allocates employees to offices on the basis of a given set of constraints by choosing a
complete allocation and subsequently fixing the constraint-violations that occur.

Reusability Study. A third study was aimed at evaluating a library of (ML)2 model-
fragments by reusing existing model-fragments for the construction process. In this
paper, we do not further report on this study. Details can be found in [4].

We carefully chose all inputs to these case-studies to be of a high quality. The
inputs for the adaptation study were reviewed publications, and constructed by experts.
The input for the construction study was highly rated by KADS experts. This ensured
that any problems found by or during formalisation would not be due to flaws in the
conceptual model that could reasonably have been avoided.

4 The Evaluation of the Criteria

Expressivity This criterion is concerned with the ability of (ML)2 to describe KADS
models of expertise. We encountered no problems that indicate that parts of KADS
models of expertise are impossible to express in (ML)2. The problems concerning
the expressivity that we encountered were all the result of errors in the models. The
limitations of the formal language reveals errors: something that can not be expressed, is
often an error. Therefore, we can conclude that (ML)2 is suitable for describing KADS
models of expertise. This is not a very surprising conclusion as the structure of (ML)2

depends strongly on the structure of the conceptual modeling language that is used to
describe the models of expertise. It is therefore in principle clear how objects in the
conceptual description must be mapped onto (ML)2 constructs.

Errors in the Formalisation Process Not many errors were made during the formali-
sation process: in the beginning approximately three errors per page of specification text
were made, in the last formalisation only approximately one and a half error per page
specification text was made. The most frequent errors are typing errors. Most of these
can be located easily with the available tools (a parser and a checker for the syntax of
(ML)2). It seems therefore that the formalisation process in (ML)2 is not an error prone
activity. We suspect that this is mostly due to the fact that the formalisation process is
strongly guided by the conceptual model.



Redundancy and Repetition We can distinguish redundance within models and repe-
tition between models. Redundancy within models occurs if some piece of knowledge
has to be represented more than once in the same model. The major disadvantage of this
kind of redundancy is that it is difficult to modify the knowledge in a model such that
it remains consistent. Fortunately, this kind of redundancy was not present in the con-
ceptual models that we studied, and was therefore also not present in the corresponding
(ML)2 models.

Repetition between models occurs when the same piece of knowledge has to be
represented for all the models. This kind of repetition is especially present in the task
layer of (ML)2 models. Although this kind of repetition is not harmful, it is very time-
consuming to generate these parts of the model. However, it is not possible to remove
these parts as they are necessary for checking the correctness of the model.

A possible solutionwould be to generate these parts automatically by a tool. We have
found templates for modules that could be used for this purpose (initial and intermediate
knowledge role and task programs). Especially the template for task programs is suitable
for this. This does not remove the redundancy from the model, but it saves much time
in the formalisation process and is not hard to realise.

Locality of Changes With locality of changes we mean the amount of actual changes
that are necessary to fix an error in an (ML)2 model or to modify an (ML)2 model. In
other words, how far the changes propagate through the model. Therefore, this criterion
is important for determining the applicability of (ML)2 in practice. Reusability makes it
necessary to (partly) modify an existing model for the formalisation of another model.
Also it is inevitable that errors will be made while building formal models. However,
we do not want changes in our model to affect significant parts of the rest of the model.

The modifications that we applied in the models all had a local character. The reason
for this is the restricted interaction between the various layers, and the modularisation
within the layers. Changes in the form of the domain knowledge affect only the lift-rules
in the inference layer and changes in the task layer are confined to the modules in the
inference and task layer which are part of the modified task. Altogether, we can conclude
that modifications in the formal model tend to be local.

Reusability Can we reuse (parts of) the specifications of models for the formalisation
of other models? Because modifications in the formal model tend to be local, this
reusability depends for a great deal on the similarities between models.

There are two ways to syntactically reuse parts of formal models. The first is with
templates that we have found for inference and task layer modules. These templates
consist mostly of complete modules and not of smaller portions of a module. This
is caused by the grainsize of the reusable elements within KADS conceptual models.
The templates we found during the formalisation of the office-assignment model were
templates for initial and intermediate dynamic knowledge roles, task programs and the
task-definitions module. The modules that belonged to one of these classes of modules
all had the same structure.

The second way of reusing model fragments are general domain theories for various
kinds of knowledge like arithmetic and set theory, and property axioms for relations like



transitivity, reflexivity and symmetry. A library can be constructed from these general
theories, which can then be used in other models by selecting the necessary modules
from the library and inserting them in the domain layer.

Guidelines Generally, the guidelines for constructinga formal model from a conceptual
model were clear and easy to follow. The guidelines are quite extensive; there are over 60
of them. These guidelines are organised in different groups, which affect different parts
of the model. The first group prescribes how to transform the structure of the informal
conceptual model into a skeletal formal model. The second group of guidelines gives
suggestions on how to add additional structure to the formal model and how to specify
the signatures, the axioms and the lift-rules.

The main problem with the guidelines was the fact that their application by hand
is very time-consuming. We suggest two ways of improving this process. First we can
use templates, i.e., reusable syntactic constructs that are essentially compilations of the
guidelines. A typical example is the combination of a number of guidelines which each
suggest a part of a module in the formal specification into a single template that gives
the default structure of the entire module. The advantage of such templates, is that larger
parts of the specification are generated quickly, the disadvantage is that these larger
templates are less generally applicable.

An alternative way to improve the formal model construction process is automated
support by a software tool that takes an informal model and semi-automatically creates
an initial formal model. Our results with this approach are described in [6]

There are two issues that are not handled by the guidelines. The formalisation of the
primitive inference actions is one of them. The guidelines generate the overall structure
of the formal model (for instance the connections in the inference structure), but within
this structure, the inference actions are left as “gaps” that must still be filled in. Another
lack in the support of the guidelines is the modularisation of the domain layer.

5 How formalisation reveals errors

Since we deliberately chose our input models to be of high quality, it is remarkable that
the formalisation of the office assignment model revealed many errors in it. We must
therefore conclude that formalisation reveals certain aspects that can not be seen in the
conceptual model. A logical question is then how formalisation reveals these errors.

We found four ways that formalisation helps in finding errors. The first is that
because of the error, a part of the model can not be described in (ML)2. The second is
that the detailed examination of the model that is necessary for the formalisation reveals
the error. In this case, the erroneous part of the conceptual model can be formalised, but
this gives a different interpretation to the model than the intended one. The third is that
the formal specification reveals the grainsize of inference steps, which may then turn
out to be too complex to be primitive, or too simple for inclusion in the formal model.
The final and fourth way of finding an error is that formalisation may reveal redundant
parts in the specification, which are repetitions of other parts of the model.

We will take a look at the errors that were found by the formalisation of an office
assignment task. This task attempts to assign a given set of employees to a given set of



offices under a given set of constraints. We will use one part of this model to illustrate
the errors that can occur, namely the revise task.

The office assignment task

The office assignment task takes the following inputs:

– a floorplan of a building indicating the layer of a set of office rooms;
– properties of these offices (e.g. the size of the offices, which offices have computer

connections, which offices are noisy);
– a set of employees that must be allocated to the offices;
– properties of each employee (e.g. are they smokers or not, are they a manager, a

secretary or a programmer, what projects do they work on)
– constraints that are emposed on the office assignment, such as: smokers must not

share with non-smokers, a manager must be close to the secretary, a programmer
needs a computer connection, etc.

– requests which should be fulfilled if possible (e.g. mr. X wants to share an office
with mrs. Y, the secretary would like a quiet room).

Given these inputs, the office assignment task is to find an allocation of all employees
to an office in such a way that no constraint is violated, and that as many requests as
possible are fulfilled.
The task is established through a simple propse-test-revise cycle: the propose subtask
generates a complete assignment (i.e. a room allocation for each employee) without
considering the constraints and requests. The test substask then tests for any violations
of constraints and requests in this proposed solution. If a constraint turns out to be
violated, a fix is proposed in the revise task.
Since the revise task is used to illustrate the error-types that were uncovered through
formalisation, we describe it in some more detail. Fig. 1 shows the inference structure
of the revise task.
The only fix that the revise task proposes for a candidate solution that violates a constraint
is an exchange of two employees. Such an exchange is called a transformation. Such a
transformation is constructed using the set of conflicts (= the assignments that violate
constraints) and the currently proposed, incorrect solution. This transformation is used
to compute the old local situation, i.e. the two assignments that are going to be switched,
and the new local situation, i.e. the two assignments after the exchange. These two
situations are compared with respect to the number of requests and constraints that they
violate. The local situation with the least constraints and request violations is used to
construct a new proposed solution.

5.1 Incorrect Models can not be Formalised

As the expressiveness of any formal language is less than that of natural language, there
are certainly models that are expressible in natural or informal language, but that are
not expressible in a formal language. Ideally, the formal language would allow a way
to write down all methodologically correct models, and disallow all methodologically
incorrect models. In our case studies we found that in all cases where (ML)2 precluded



solution

decompose

transformation

compute

old local
situation

new local
situation

compare

assemble

new
solution

conflicts

requirementsrequests

update

Fig. 1. the revise task of the office assignment model

us to straightforwardly formalise the models, it turned out that these models were
methodologically unsound.

Missing dependencies are the best example of errors that were revealed because it
was impossible to formalise the conceptual model. Missing dependencies occur when
an output knowledge role of a primitive inference action can not be computed from its
input knowledge roles. Sometimes it is difficult to see from the conceptual descriptions
what the contents of the knowledge roles is. Therefore, it is easy to make these kinds
of errors. Such an error can only be solved by finding the right knowledge roles that
contain this knowledge and making this an input to the inference action.

One example of such a missing dependency is concerned with the inference action
compare. This inference action compares the two local situations with respect to the
constraints. However, there are also assignments that are not restricted to these local
situations, but involve also other assignments of the solution. As a consequence, we
need the knowledge role solution as an input to the inference action compare. The
improved inference structure is shown in figure 2.

5.2 Detailed Examination reveals Errors

The detailed examination that is necessary for the formalisation of a model often reveals
errors. In this case, the erroneous part of the conceptual model can be formalised, but



solution
old local
situation

new local
situation

compare requirementsrequests

update

Fig. 2. the corrected inference structure of compare

this gives a different interpretation to the model than the intended one.
An obvious objection to the use of formal methods to find imperfections in the

informal model would be that taking a closer look at the informal model would have
revealed the errors anyway. Our response to this is twofold. First, we took high quality
informal models as a starting point: experts in the KADS method did not find flaws in the
model. Second, formal methods are a tool for having a closer look at the model, providing
rigorous support where informal methods apparently fail. Another objection would be
to say that implementation of the informal model would have revealed the imperfections
anyway. In fact, a detailed look at an implementation of the office allocation task shows
that the implementation is unfaithful to the informal model at exactly those places where
we found the imperfections in the informal model. Indeed, the programmers discovered
the errors, but since they encoded a correction in the implementation, the implementation
does not correspond to the specification anymore, a situation that is highly undesirable
as it hampers maintenance and documentation.

The errors that were revealed in this way are confusing names of inferences and
control knowledge that was modelled on the inference layer instead of on the task layer.

Names of Inferences are Confusing. This is one of the most frequent errors. The
involved inferences had names that were inconsistent with the conceptual descriptions
of these inferences in a KADS reference document [1]. The names of the inference
action’s did not match with the description of the inference actions that took place. This
can be very confusing, because it is not clear what inference should be formalised: the
inference which is described in the conceptual model or the inference with the same
name in the reference document.

The causes of these errors are the vagueness of the model of expertise and the
ambiguous description of the library inferences in the reference document, which are
susceptible to various interpretations.

An example of a confusing name of an inference is decompose. The description
of this inference action in the conceptual model says that a transformation is proposed
which could solve the conflict. This proposition is done by selecting a conflict (= an
assignment that violates a constraint) from the set of conflicts, and an assignment
from solution that is different from the selected conflict. These two are used to con-
struct a transformation. However, the definition of decompose according to the reference
document is to choose a set of components from some composite structure. This defini-
tion does not match with the conceptual description of the inference action. It seems that



the decompose in the conceptual model is a combination of two selects, for selecting a
conflict and an assignment, and an assemble, for constructing a transformation.

The Inference Layer contains Control Knowledge. This kind of error occur because
control dependencies between modules are represented on the inference layer instead
of on the task layer. Often these dependencies are described as conditional actions in
the inference action: the decision when an inference has to be applied is also part of the
inference. Such an error can be solved very easily by modeling this dependency on the
task layer.

5.3 Formal Specification reveals the Grainsize of Inferences

In the informal model, specification stops where the knowledge engineer is not interested
in further detail. Formalising the informal model by definition adds more detail to the
informal model, and reveals differences in complexity of the various inferences in the
informal model. Some inferences become very complex, others turn out to be trivial.

Inferences may be Trivial. As formalisation gives us the means to compare inferences
and their relative complexity, it can help identifying inferences which “do not do any-
thing”, i.e., are formally redundant. In these inferences, the output is equal to the input
(mostly there is only one input knowledge role). The cause of these trivial inferences
are the vague conceptual descriptions of the input and output knowledge roles, which
make it difficult to see the similarities between the two. When such a trivial inference is
found it is a modelling decision to remove it or not. There may be conceptual reasons
to maintain such inferences. As the inference is trivial the removal of the inference will
have no effect on the rest of the model. These errors are revealed clearly in the formal
specification of an inference action as it has no body.

The compute inference is such a trivial inference. This inference computes two
local situations, the old one and the new one. The old local situation consists of the two
assignments that are going to be switched, the new local situation of the two assignments
after the switch. The computation of the old local situation is, however, redundant as
this situation consists of the same assignments as those of the transformation. Removing
this output of the inference results in the inference structure that is shown in figure 3.

Inferences may be too Complex. When by formalisation an inference turns out to be
too complex, it is usually an indication that the conceptual model is not understood
well enough. Although it is a modeling decision when to stop decomposing a model,
formalisation may show that not all “leaves” of the model are equally primitive. This is
usually an indication of complexities in the model that are overlooked in the informal
expertise model. If we would have chosen to formalise these inferences, then the formal
specification would have been at least two to three times larger than specifications of
other inferences. Often it is possible to identify separate parts in the inference. It is
better to split up the complex inference in these different parts. This makes the inference
structure more clear.



transformation

new local
situation

compare requirementsrequests

compute
new

situation

update

Fig. 3. the inference structure after removing the computation of the old local situation

compare

restrictions

preferences

difference

count
constraint
violations

count
constraint
violations

number of
constraint
violations

old situation

number of
constraint
violations

new situation

old
situation

new
situation

Fig. 4. the refinement of the inference action compare

An example of such a complex inference is shown in figure 4, where the inference
action compare compares the number of violations of an old and a new situation.
This inference action can be split up in counting the number of violations for the new
situation, counting the violations of the old situation, and comparing these two. This is
shown in figure 4.

5.4 Formal Specification reveals Redundancies

Formal specifications also reveal redundancy by establishing that two model fragments
are identical, and the inference structure could be improved by removing one of them
and restructuring the model.

This can be seen in the revise task of the office assignment model, as it does not
completely correspond with the overall interpretation of a propose-test-revise cycle.
Normally, in such a cycle, the test part would examine if the application of a transfor-
mation that is proposed in the revise task yields a better solution. However, we can see
in figure 1 that the revise part of the office assignment model incorporates another test



phase. This makes the test part of the office assignment model redundant. The removal
of this extra test from the revise task results in the inference structure that is shown in
figure 5.

solution

transformation

propose
trans-

formation

conflicts

new solution

assemble

Fig. 5. the inference structure of revise without the extra test

6 Conclusions

In the above, we have evaluated the usabilityof the formal modelling language (ML)2 by
designing a set of evaluation criteria and applying these criteria to (ML)2 in a number of
case-studies. The evaluation criteria were: expressivity, frequency of errors, redundancy,
locality of changes, reusability and guidelines/support. We have seen that (ML)2 scored
well on most of these criteria. We contribute these relatively positive results to the close
connection that exists between the structure of the informal KADS models and the
formal (ML)2 models.

Concluding, we can say that formal specification for KBS modelling is both desirable
and possible. Formalisation is desirable because it reveals errors in conceptual models,
even when these were thought to be of high quality. Formalisation is also possible, but
only when extensive support is given in the form of guidelines and software-tools. The
close structural relation between informal and formal model makes it possible to give
such extensive support for a number of aspects of the formalisation process.

Besides these positive conclusions concerning desirability and feasibility of using
formal languages, there is also a negative conclusion from our work. Our case studies
have revealed difficulties with the reuse of model fragments. The ambiguous interpreta-
tions of the informal model fragments endangers the reuse of both formal and informal
model fragments. Further study is certainly needed in this area.



Related Work A recent study of the use of formal methods in industry can be found
in [2] The recommendations of this study can be summarized as follows. First, the
acceptance of formal methods must be improved by integrating the formal methods in
a broader methodology and by developing notations that can be used by non-logicians.
Second, tools must be robust, and tool support in validation is especially weak. (ML)2

attemps to address both these problems. First, (ML)2 is embedded in the KADS method,
and especially designed for that method. The notations in (ML)2 are tuned towards
knowledge engineers that are familiar with the KADS method, and avoid the in depth
knowledge required for understanding the underlying formal logics. Second, the em-
bedding of (ML)2 in the KADS method allows more informed toolsupport.

Limitations and Future Work The first limitation of the work described in this paper
is that we concentrated mainly on the transformation of the informal model to the
formal model. Another goal of the formal model is to bridge the gap between informal
model and design model. Future research should focus on the question whether the
transformation of the informal model to the design model through the formal model is
easier and/or gives better results than the direct transformation of the informal model
to the design model. The second limitation is that the two models that we used had a
restricted domain layer because of the precise knowledge that is necessary for the task.
Therefore, our evaluation focussed mainly on the inference layer. Formalisation of a
model that has a more elaborate domain layer could focus more on the evaluation of the
formal specification of the domain layer.

Acknowledgements. We are grateful to Anjo Anjewierden and Gertjan van Heijst for
their critical comments on an earlier version of this paper.

References

1. J. A. Breuker, B. J. Wielinga, M. van Someren, R. de Hoog, A. Th. Schreiber, P. de Greef,
B. Bredeweg, J. Wielemaker, J. P. Billault, M. Davoodi, and S. A. Hayward. Model Driven
Knowledge Acquisition: Interpretation Models. ESPRIT Project P1098 Deliverable D1 (task
A1), University of Amsterdam and STL Ltd, 1987.

2. D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial applications of
formal methods. Technical report, U.S. Department of Commerce, Technologyadministration,
National Institute of Standards and Technology, Computer Systems Laboratory, Gaithersburg,
MD 20899, USA, March 1993.

3. D. Fensel and F. van Harmelen. A comparison of languages which operationalise and for-
malise KADS models of expertise. The Knowledge Engineering Review, 9:105–146, 1994.

4. F. Ruiz, F. van Harmelen, M. Aben, and J. van de Plassche. Evaluating a formal specification
language. In L. Steels, A.Th. Schreiber, and W. Van de Velde, editors, A Future for Knowledge
Acquisition, Proc. 8th EKAW, number 867 in Lecture Notes in Artificial Intelligence, pages
26–45. Springer-Verlag, 1994.

5. J. Treur and Th. Wetter, editors. Formal Specification of Complex Reasoning Systems, Work-
shop Series. Ellis Horwood, 1993.

6. F. van Harmelen and M. Aben. Structure preserving specification languages for knowledge-
based systems. International Journal of Human Computer Studies, 1995. (Formerly Journal
of Man Machine Studies).



7. F. van Harmelen and J. R. Balder. (ML)2 : a formal language for KADS models of exper-
tise. Knowledge Acquisition, 4(1), 1992. Special issue: ‘The KADS approach to knowledge
engineering’, reprinted in KADS: A Principled Approach to Knowledge-Based System Devel-
opment, 1993, Schreiber, A.Th. et al. (eds.).

8. B. J. Wielinga, A. Th. Schreiber, and J. A. Breuker. KADS: A modelling approach to knowl-
edge engineering. Knowledge Acquisition, 4(1):5–53, 1992. Special issue ‘The KADS ap-
proach to knowledge engineering’. Reprinted in: Buchanan, B. and Wilkins, D. editors (1992),
Readings in Knowledge Acquisition and Learning, San Mateo, California, Morgan Kaufmann,
pp. 92-116.


