
Explanation-based generalisation

=

Partial evaluation

Frank van Harmelen
Alan Bundy

DAI Research Paper No. 347

Copyright c©1986 Alan Bundy and Frank van Harmelen

Submitted to Artificial Intelligence Journal

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15450948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Explanation-based generalisation
=

Partial evaluation1

Frank van Harmelen
Alan Bundy

Department of A.I.
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN

Scotland

Abstract

We argue that explanation-based generalisation as recently proposed in the machine
learning literature is essentially equivalent to partial evaluation, a well known tech-
nique in the functional and logic programming literature. We show this equivalence
by analysing the definitions and underlying algorithms of both techniques, and by
giving a Prolog program which can be interpreted as doing either explanation-based
generalisation or partial evaluation.

1 Introduction

An interesting development in the field of machine learning is the advent of a tech-
nique called explanation-based generalisation (EBG). This name was first coined in
[Mitchell et al., 1986], but the technique can be traced back to [Mitchell, 1983], and
earlier to [DeJong, 1981] and [Mitchell, 1982]. This technique tackles the problem
of formulating general concepts on the basis of specific training examples. For
some considerable time, the functional programming community, and more re-
cently the logic programming community, has been discussing a technique called
partial evaluation (PE) as a program optimisation method (see [Futamura, 1971]
for an early paper on PE, [Ershov, 1982] for PE in functional programming, and
[Komorowski, 1982], [Venken, 1984], and [Takeuchi & Furukawa, 1986] for PE in
logic programming). This paper shows that, in the context of logic programming,
the two techniques, although developed for different purposes, do in fact consist of
the same algorithm, and can both be implemented by (almost) the same piece of
code. This close resemblance between EBG and PE has not been noted before, and
indeed, a number of papers (such as [Prieditis & Mostow, 1987]), apparently treat
EBG and PE as complementary techniques to achieve different goals, whereas in
fact the two techniques are the same, as argued in this paper.

The rest of the paper is organised as follows: In section 2 and 3 we give brief
descriptions of both EBG and PE. Section 4 paraphrases the definition of EBG
to show that PE and EBG are essentially equivalent. Section 5 gives small im-
plementations of both PE and EBG, and by comparing the two programs we see
again that the two techniques are almost the same. Section 6 discusses the issue of
guided versus unguided search that arises from the comparison of EBG and PE,
and finally section 7 gives a worked example often used in the EBG literature to
show how the computation corresponds to PE.

1The research reported in this paper was supported by SERC grant GR/44874.
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2 Explanation-based generalisation

EBG is a technique to formulate general concepts on the basis of a specific training
example. The EBG algorithm consists of two stages. In the first stage EBG
analyses a single training example in terms of knowledge about the domain and
the goal concept under study, and produces an explanation of why the training
example is an instance of the goal concept. The resulting explanation-structure is
then used as the basis for formulating the general concept definition by generalising
this explanation, i.e. abstracting it from the particular training example.

As input, the EBG algorithm expects the following items:

• Goal concept:
A definition of the concept to be learned.

• Training example:
A specific instance of the goal concept.

• Domain theory:
A set of rules to be used in explaining why the training example is an instance
of the goal concept

• Operationality criterion:
A predicate over concept definitions, specifying the form in which the learned
concept definition must be expressed. This criterion defines a set of easily
evaluated predicates from the domain theory.

Given these four inputs, the task is to determine a generalisation of the training
example that is a sufficient definition for the goal concept and that satisfies the
operationality criterion. Re-expressing the goal concept in these terms will make
it operational with respect to the task of efficiently recognising examples of the
concept. It is assumed that the input-definition of the goal concept does not satisfy
the operationality criterion.

As mentioned above, the EBG algorithm is usually described as consisting of
two stages:

1. Explain:
Construct an explanation in terms of the domain theory that shows how the
training example satisfies the goal concept definition. This explanation must
be constructed so that each branch of the explanation structure terminates in
an expression that satisfies the operationality criterion.

2. Generalise:
Determine a set of sufficient conditions under which the explanation holds,
stated in terms that satisfy the operationality criterion. This is accomplished
by regressing (back propagating) the goal concept through the explanation
structure. The conjunction of the resulting expressions constitutes the desired
concept definition. This is typically done using a modified version of the goal-
regression algorithm described in [Waldinger, 1977] and [Nilsson, 1980].

These two steps can be summarised as follows: the first step creates an explanation
structure that separates the relevant feature values of the input example from the ir-
relevant ones. The second step analyses this explanation structure to determine the
particular constraints on these feature values that are sufficient for the explanation
to apply in general.

If the language used for expressing the input predicates and rules is logic, then
the first step (explanation) amounts to proving that the input example is indeed
an instance of the goal concept, in such a way that all the leaves of the proof tree
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are operational predicates, while the second step consists of building a more general
version of this proof that does not depend on any of the irrelevant feature values of
the input example.

3 Partial evaluation

The main goal of PE is to perform as much of the computation in a program
as possible without depending on any of the input values of the program. The
theoretical foundation for PE is Kleene’s S-M-N theorem from recursive function
theory [Kleene, 1962, page 342]. This theorem says that given any computable
function f of n variables, f = f(x1, . . . , xn), and k (k ≤ n) values a1, . . . , ak for
x1, . . . , xk, we can effectively compute a new function f ′ such that

f ′(xk+1, . . . , xn) = f(a1, . . . , ak, xk+1, . . . , xn)

The new function f ′ is a specialisation of f , and is easier to compute than f for
those specific input values. The PE algorithm can be regarded as the implemen-
tation of this theorem, and is in fact slightly more general in the context of logic
programming: it allows not only that a number of input variables are instantiated,
but also that these variables can be only partially instantiated to terms that contain
nested variables. Furthermore, the PE algorithm allows k in the above theorem (the
number of instantiated input variables), to be 0, that is, no input to f is specified
at all. Even in this case the PE algorithm is often able to produce a definition of
f ’ which is equivalent to f but more efficient, since all the computations performed
by f that are independent of the values of the input variables can be precomputed
in f ’. Thus, the PE algorithm takes as its input a function (program) definition,
together with a partial specification of the input of the program, and produces a
new version of the program that is specialised for the particular input values. The
new version of the program will then be less general but more efficient than the
original version.

The PE algorithm works by symbolically evaluating the input program while in
the mean time trying to 1) propagate constant values through the program code,
2) unfold procedure calls, and 3) branching out conditional parts of the code. If the
language used to express the input program is logic, then the symbolic evaluation
of the program becomes the construction of the proof tree corresponding to the
execution of the program.

As mentioned, a special case of PE is when none of the values for the input
variables x1, . . . , xk are given (in other words, k = 0). In this case, the PE algorithm
cannot do as much optimisation of the input program, and as a result the new
program will not be as efficient. However, the new program is no longer only a
specialisation of the original program, but indeed equivalent to it. Thus, in this
way PE can be used as a way of reformulating the input program in an equivalent
but more efficient way.

4 EBG = PE

It has been the reformulation of EBG in terms of logical deduction (as given in
[Kedar-Cabelli & McCarty, 1987]) which has made the definition of it precise enough
in order to allow the comparison between EBG and PE. In order to see that the
processes performed by EBG and PE as described above, although formulated in
different contexts, are indeed the same when rephrased in terms of logic, we first
identify the inputs of EBG with the inputs of PE.
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• The goal concept of EBG corresponds to the name of the program to be
partially evaluated.

• The domain-theory consists of the clauses and facts that constitute the pro-
gram to be partially evaluated.

• The operationality criterion corresponds to the criterion that PE uses to stop
the symbolic construction of the proof tree.

The normal PE algorithm is hardwired to only stop the construction of this proof
tree at axioms in the form of single predicates (unit clauses, or facts, in Prolog
terminology). However, as we shall see below, the PE algorithm can be trivially
changed so that it becomes parametrised over the operationality definition.

• The training example of EBG corresponds to the values of the input variables
x1, . . . , xk.

However, as described above, PE does not really need the values for these variables.
Furthermore, as remarked in [Mitchell et al., 1986, page 67], EBG does not really
need the training example either. In EBG the training example is only used to
guide the algorithm through the relevant transformation of the goal concept, thereby
reducing the search space for the explanation step, but it is not strictly necessary
for the execution of this step. To facilitate the comparison of EBG and PE we
can therefore assume for the moment that no training example is given, but we will
return to this point in section 6. When no training example is given, the second step
in the EBG algorithm becomes superfluous: it is no longer necessary to abstract
away from the particular feature values of the training example.

Both algorithms now consist of only one step, namely constructing a proof tree
for the goal concept (EBG terminology) or input predicate (PE terminology) using
the rules of the domain theory, such that the leaves of this tree are all operational
predicates. The conjunctions of all these leaves then forms the “reformulation of
the goal concept” (EBG terminology) or the “more efficient program” (PE termi-
nology).

It is now clear that both EBG and PE take as their inputs a goal predicate,
a domain theory and an operationality criterion, and reformulate the original def-
inition of the goal predicate in terms of operational predicates using the domain
theory to justify the reformulation. Both EBG and PE perform this reformulation
by constructing a proof tree with the goal predicate as the root-node and only op-
erational predicates at the leaves, with the rules of the domain theory constituting
the proof steps inside the tree.

5 EBG = PE by implementation

Figure 1 gives the definition of a small partial evaluator for Prolog programs 2. 3

2Throughout this paper we use the standard Edinburgh syntax for Prolog programs: variables
start with uppercase letters or underscores, constants start with lowercase letters. As usual in
Edinburgh syntax Prolog systems, the predicate clause(Head, Body) searches through the clause
set for a clause that unifies with Head:-Body backtracking over clauses in the clause set for multiple
solutions.

3This implementation of a partial evaluator only serves an illustrational purpose, and is barely
of any practical value. To arrive at a practical partial evaluator, this program would have to be
extended with facilities to deal with built-in predicates, and to avoid looping on recursive programs.
However, the above program does illustrate the essential elements of the PE algorithm necessary
for our discussion.
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peval(Leaf, Leaf) :- clause(Leaf, true).
peval((Goal1, Goal2), (Leaves1, Leaves2)) :-

peval(Goal1, Leaves1),
peval(Goal2, Leaves2).

peval(Goal, Leaves) :-
clause(Goal, Clause),
peval(Clause, Leaves).

Figure 1: Partial evaluator.

The predicate peval takes a predicate as its input in the first argument and symbol-
ically simulates the execution of this predicate, returning the leaves of the resulting
proof tree in the second argument. Notice that the other input to PE (the code of
the program to be optimised) is implicit in the Prolog database, using the clause-
predicate). Not surprisingly, this partial evaluator looks very much like the standard
Prolog interpreter that it simulates. Figure 2 shows such a Prolog interpreter in
Prolog.

prolog(Leaf) :- clause(Leaf, true).
prolog((Goal1, Goal2)) :-

prolog(Goal1),
prolog(Goal2).

prolog(Goal) :-
clause(Goal, Clause),
prolog(Clause).

Figure 2: Prolog Interpreter.

The main difference between peval and prolog is that peval also returns the set
of leaves of the proof tree as the result of the computation, thereby providing a
reformulation of the input predicate in terms of the leaves of the tree.

The formulation of EBG shown in figure 3 is taken from [Kedar-Cabelli & McCarty, 1987,
page 6] with small cosmetical changes (the 1st clause has been deleted, since it only
served to remove vacuous true conjuncts from the final set of leaves, and con-
junctions are no longer represented as lists, but rather using Prolog’s standard
‘,’-functor).

ebg(Leaf, GenLeaf, GenLeaf) :-
operational(Leaf), !,
call(Leaf).

ebg((Goal1, Goal2), (GenGoal1, GenGoal2), (Leaves1, Leaves2)) :-
ebg(Goal1, GenGoal1, Leaves1),
ebg(Goal2, GenGoal2, Leaves2).

ebg(Goal, GenGoal, Leaves) :-
clause(GenGoal, GenClause),
copy((GenGoal:-GenClause), (Goal:-Clause)),
ebg(Clause, GenClause, Leaves).

Figure 3: Explanation-based Generalisation.

The predicate ebg takes a training example as its first argument, and the goal con-
cept as its second (thus, the first argument will be an instantiation of the second),
and returns as its output in the third argument a list of conjuncts that form the
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leaves of the proof tree for the goal predicate. Again, certain parts of the input
to ebg are implicit: both the domain theory and the operationality criterion are
provided from the Prolog database rather than being given as explicit arguments.
As is clear from comparing figures 1 and 3, the EBG and PE code are very similar.
They differ only in two small respects: the ebg code uses an explicit operationality
criterion to stop the construction of the branches of the proof tree, whereas peval
only stops when it finds unit clauses. The peval code can be trivially changed to
take an explicit operationality criterion into account, by changing the first clause
of figure 1 into

peval(Leaf, Leaf) :-
operational(Leaf), !,
call(Leaf).

and then supplying an appropriate definition of operational.
The second and more important difference between peval and ebg is the fact

that peval includes the unification with operational predicates in the conjuncts it
returns, thereby restricting the reformulation of the goal concept. Ebg on the other
hand takes care not to include these unifications in the resulting set of operational
leaves. The extra second argument of ebg is intended to perform exactly this role:
the first and second argument of ebg maintain exactly the same proof tree, but for
the unifications with operational predicates in clause 1, which are not included in the
third argument, which contains the final set of leaves. Leaving out the unifications
of operational predicates at the leaves of the proof tree corresponds to the generali-
sation step of the EBG algorithm. In the words of [Kedar-Cabelli & McCarty, 1987,
page 5]:

“The generalization is formed by propagating rule substitutions but ig-
noring fact substitutions when creating the proof tree.”

However, the code for peval can be trivially changed to disregard unifications with
operational predicates using the standard double-negation technique in Prolog to
avoid variable bindings from successful goals. The updated version of clause 1 of
the code for peval above has to be changed into

peval(Leaf, Leaf) :-
operational(Leaf), !,
not not call(Leaf).

A final difference between the code for ebg and peval to do with the generalisation
process is the use of copy in the third clause of ebg. The role of the copy predicate
is to ensure that the generalised tree exactly mirrors the specific tree, by having
GenGoal:-GenClause and Goal:-Clause be exact copies, with new variables. How-
ever, as argued above, it is not really necessary to provide the EBG algorithm with
a training example. Therefore we do not have to maintain two separate versions of
the proof tree, one specific and one general version, but we only need the general
proof tree, and we can remove the copy predicate from the code of ebg.

After these rather trivial changes, the remaining differences between the formu-
lations of peval and ebg are purely cosmetic, showing that they are indeed the
same algorithm.
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6 The provision of a training example

As already mentioned above, EBG is usually described as needing a training ex-
ample for the reformulation of the goal concept, but this training concept is not
really necessary for the execution of EBG. The only purpose it serves is to restrict
the number of possible reformulations of the goal concept by guiding the search
through all possible rules from the domain theory. Although this reduction in the
search space for the EBG algorithm is clearly desirable, there is a rather high price
to be paid for this. The resulting reformulation of the goal concept is no longer
equivalent to the original definition, but only represents sufficient (but possibly
unnecessary) conditions for an example to be an instance of the goal concept. In
[Mitchell et al., 1986, page 57] this problem of sufficient-but-unnecessary conditions
is mentioned as a topic for further research. However, as the comparison of EBG
with PE shows, this problem can be solved by simply giving no training example
at all. The S-M-N theorem then ensures us that the resulting reformulation will
be equivalent to the original goal concept. Of course the computation is no longer
guided by a target example, and is therefore much more expensive. Only when we
are interested in just one special case is it still useful to provide a training example.

7 Worked example

We take the example from [Mitchell et al., 1986] and [Prieditis & Mostow, 1987] to
illustrate the behaviour of the code that has been developed above. This example
is one that is often used in the machine learning literature, and comes originally
from [Borgida et al., 1985]. Consider the following Prolog database:

7



% Goal concept:
safe to stack(X, Y) :-

lighter(X, Y).

% Example:
on(box1, table1).
volume(box1, 10).
isa(box1, box).
isa(table1, table).
colour(box1, red).
colour(table1, blue).
density(box1, 10).

% Domain theory:
lighter(X, Y) :-

weight(X, W1),
weight(Y, W2),
smaller(W1, W2).

weight(X, 500) :- isa(X, table).
weight(X, Y) :-

volume(X, V),
density(X, D),
times(V, D, Y).

% Operationality criterion:
operational(Goal) :-

member(Goal, [times( , ), smaller( , ),
on( , ), volume( , ),
isa( , ), colour( , ),
density( , )]).

Figure 4: Stacking Example.

Figure 4 includes the full input for the EBG algorithm (and therefore for PE),
excluding the definitions of the ‘built-in’ predicates smaller and times. Applying
both peval and ebg to this example, by calling

?- peval(safe to stack(X, Y), Reformulation).

and

?- ebg(safe to stack(box1, table1), safe to stack(X, Y),
Reformulation).

gives the result:

Reformulation = (volume(X, VX), density(X, DX),
times(VX, DX, MX), isa(Y, table),
smaller(MX, 500))

(i.e. anything lighter than 500 can be stacked on a table).

Notice that in this example, the ebg predicate was guided by its input example,
whereas the peval performed an unguided search. As a result, ebg only computes
the above reformulation of the goal criterion, whereas the unguided computation
performed by peval also returns the following two reformulations:
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Reformulation = (isa(X, table), volume(Y, VY), density(Y, DY),
times(VY, DY, MY), smaller(500, MY))

(i.e. a table can be stacked on anything heavier than 500)

Reformulation = (volume(X, VX), density(X, DX), times(VX, DX, MX),
volume(Y, VY), density(Y, DY),
times(VY, DY, MY), smaller(MX, MY))

(i.e. anything can be stacked on anything lighter)

These three formulations are generated by the two definitions of weight in the
domain theory. Since this definition is used twice (in the predicate lighter), we
would potentially get four reformulations of the goal concept, but the fourth for-
mulation would involve stacking two tables, both with weight 500, making the
operational predicate smaller false. The fourth reformulation is therefore rejected.
In this small example it is easy to see that the disjunction of all four alternative
reformulations forms exactly the set of leaves of the fully expanded proof tree for a
proof of the goal concept. This shows that PE gives a full equivalent reformulation
of the goal concept (namely the disjunction of all four alternative reformulations),
while EBG (guided by its example), only gives a reformulation whose conditions
can in general be too strong.

8 Conclusions

After having given a general description of explanation based generalisation and
partial evaluation, we have used a specific formulation of both of them in terms
of logical deduction to show that the two algorithms are essentially equivalent,
modulo a few minor differences to do with the stop criterion and with the way the
two formalisms treat unifications arising from leaves in the proof tree.

In general we believe that such rational reconstructions of apparently unrelated
algorithms in terms of each other is a useful activity, not only because it prevents
reinventing the wheel, but also because often such rational reconstructions generate
new insights in and additions to both versions of the algorithm. In this case, both
EBG and PE benefit from the comparison:

• It becomes clear that EBG consists strictly of a deductive reformulation of
the original goal concept in terms of operational concepts.

• The comparison with PE shows us that there is no reason why the training
example of EBG should be a ground term, although this is suggested by all
the examples in the papers on EBG referred to above.

• In fact, as argued in section 6 above, a training example is not necessary
at all for EBG. This means that a balance can be struck between the cost
of the search during the learning algorithm (high when no training example
provided) and the generality of the concept that is learned (more general when
no training example is provided).

• There is no strict need for PE to unfold the full proof tree all the way to
the final leaves, but it is possible to stop this process at previously specified
predicates, as defined by an explicit operationality criterion. This insight is
important because it might be used in solving two of the major problems
associated with PE, namely firstly the termination of unfolding recursively
defined predicates (it is not clear when to stop the potentially infinite unfolding
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of these predicates), and secondly the increase in size of the code after partial
evaluation (this often exponential increase is due to the unfolding of all the
conditional branches in the code).

• The current work on extending EBG to deal with imperfect theories ( [Raja-
money & DeJong, 1987] and [Doyle, 1986]) might have interesting implications
for the logic programming community.

• The same holds for the work of Utgoff and others [Utgoff & Mitchell, 1982],
showing that EBG leads to inventing “new” predicates, that were not explicit
in the original domain theory.

• A lot of current work in the PE field, in particular on the possibilities of
rejoining conditional branches and on heuristic guidance to the PE algorithm
will be of similar interest to workers in explanation-based machine learning.

Note

After this paper had been provisionally accepted for publication, it was brought to
our attention that similar results have been achieved simultaneously and indepen-
dently in [Prieditis, 1988].
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