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1 Introduction

1.1 Motivation

Much of the current work on V&V of knowledge-based systems has the following characteristics:
Firstly, it is aimed at verifying properties of the implementation of a KBS (e.g. in rules or frames).
Secondly it verifies properties which are independent of the particular task of the KBS (e.g.
loop-freeness of a rule-set, absence of redandant rules, etc). Thirdly, it verifies properties of
the knowledge of a KBS, but ignores the control strategy that is employed (e.g. forward or
backward reasoning, exhaustive or non-exhaustive, etc).

In this paper, we propose a complementary approach to V&V of KBS, namely: (i) we verify
properties that are independent of a particular implementation formalism, but that are based on
a more abstract analisys of the knowledge involved in a KBS; (ii) we verify properties which
exploit the characteristics of the specific task of the KBS; (iii) the verification of these properties
is based on the particular reasoning strategy that is employed to use this knowledge.

This complementary approach to existing V&V techniques is required for the following
reasons:

Multiple models: modern Knowledge Engineering techniques proceed through a series of
models [Wielinga et al., 1992] of which implementation is one of the last in the process. One
would like to do V&V on earlier models. In particular the Conceptual Model plays an important
role in the development process.
All this is similar to the Software Engineering life cycle (such as requirement analysis, spec-
ification, design, implementation), where we would like to do V&V in earlier stages than
the implementation. (see [Fensel, 1995] for a comparision of the modelling techniques from
Software Engineering and Knowledge Engineering).

Repair strategies: Current V&V techniques give no prescription on how to repair a fault
once found. For example, there are multiple ways of repairing a dead-end rule (e.g. removing
the rule, or adding a condition to some other rule). Current techniques do not tell us how to
choose between these different repairs. This absence of repair-prescriptions is due to the very
generic nature of the properties identified by current V&V techniques (which are completely
independent of the particular task of the specific KBS that is being validated). Once we verify
properties that are task specific, we can verify against a specification of the intended behaviour
of the KBS, and consequently also prescribe repair strategies.

In this paper, we will illustrate our general approach using a conceptual model for a wide
class of diagnostic systems. For such diagnostic systems, the following are examples of the task
specific properties that we will investigate: definition of what a diagnosis is, maximal size of a
diagnosis (e.g. single faults), maximal number of alternative diagnosis (e.g. unique diagnosis),
preference on diagnoses (e.g. only the most urgent diagnoses), and thresholds on diagnoses (e.g
compute only diagnoses with a minimal reliability).

Although we will illustrate our approach on diagnostic systems, our approach is by no means
limited to such systems. Similar properties can be identified for other types of KBS, for example
for planning systems.

1.2 Related work

In the Knowledge Engineering community, much work has been done on task specific conceptual
models, but very little has been done on deriving properties of such models. Examples of work
dealing with deriving properties of conceptual models are the following:

[vanHarmelen & Aben, 1995] already proposes to do validation and verification on the basis
of conceptual models, but still only studies task-independent properties of conceptual models.
As a consequence this work suffers from some of the same problems as the traditional V&V
approach (e.g. lack of repair strategies).

[Benjamins, 1994] does indeed formulate task dependend properties of conceptual models,
but does so using only informal descriptions of both the conceptual model and of the properties.
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Consequently, this work does not lend itself as the basis for a sufficiently formal approach to
validation and verification.

The work in [Fensel et al., 1996] is very close to our aims (namely the formal derivation
of task dependent properties of a conceptual model), but has so far only been applied to small
examples. Furthemore, it puts more emphasis on the dynamic and algorithmic behaviour of a
KBS, whereas we focus on the declarative I/O specificiation of a KBS.

Recent work by [Cornelissen et al., 1997] is again very similar in goals to ours, but uses a
different method for proving properties. They use the hierarchical decomposition structure of a
conceptual model as a basis for their proofs. We will use a non-hierarchical decomposition for
the same purpose. They have also applied their techniques to diagnostic conceptual models, but
our conceptual models and our properties are closer to realistic diagnostic systems.

Summarising, our goals are as follows:
� Verification and validation of conceptual models instead of implementations of KBS.� Verification of task-specific properties.� Give prescriptions on how to change the conceptual model when a desired property fails

to hold.

In the remainder of this paper, we shall first present our conceptual model of diagnostic systems
(section 2). We shall then show how this model can be used for verification (section 3) and
validation (section 4) of task-specific properties. In section 5 we will illustrate our approach in
a small example.

2 A conceptual model for diagnosis

In general, a diagnostic problem arises if there is a discrepancy between the observed behaviour
of a system (e.g. an artifact) and how the system should behave, in other words, the expected
behaviour does not correspond with reality. The diagnostic task is to find out the cause of this
discrepancy. A diagnostic method computes the solutions for a diagnostic problem by using a
model of the expected behaviour (the behaviour model, BM), the actually observed behaviour
OBS, and contextual information CXT. The computed solutions of a diagnostic problem represent
an explanation for the observed behaviour.

Our conceptual model of diagnostic problem solvers is based on the following general
account of their functionality: An explanation distinguishes two types of observations: it covers
some observations, and it does not contradict other observations. The explanation is restricted
to a vocabulary of special candidates that could be causes of a behaviour discrepancy (e.g.
components). Usually we are not interested in all possible explanations, but only the most
reasonable explanations. We also want to represent an explanation as a solution that a user can
interpret. (For example, in medical domains, users are usually interested in the disease, and not
in all the current states of the parts of the patient’s body).

Together, these six aspects written in italics make up the particular notion of diagnosis that is
realised in a given method. We can capure these general characteristics of a diagnostic method
in the following formal definition:

When given as input the behaviour model BM, a context CXT and a set of observations OBS,
a diagnostic method computes a set of solutions Sol such that:

Definition 1 (Diagnosis)

OMap
�������	��
����������������������������� �� "!

# �$
&% #(' �*) + # +-,/.10324����� ���5������� �� "!
�*) + # +-,/.107624����� 8 �� "!
�*) + # +-,/.107624����� 9:����������� �� "!
#;=<�>@? A �� "!

Select
� # �B� #DC � �� "!

Solform
� # C �E� >�F �
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Each of the six underlined terms is a parameter in our representation of diagnostic methods.
Varying one or more parameters amounts to describing a different diagnostic method. The
observation-mapping OMap determines which observations must be explained (or: covered)�����������

, and which need only not be contradicted (
�����@�����

). E is an explanation for the observed
behaviour by covering some observations (

2 �����
), and not contradicting others (

62 �����
). We write24�����

and
62 �����

as different symbols to emphasise that one is not necessarily the negation of the
other, and that neither is necessarily the same as the classical entailment

2
. E is expressed in a

particular vocabulary
<�>@?

. We are interested in the most reasonable explanations, determined
by a selection criterion Select. The form of the solution (Solform) determines the representation
of the final result of the method. We will use the term explanations for the set

# �
. Since the

notion of an explanation is determined by the first four parameters, we will write
# � 
 ����� F �� ����� >  "��� OMap

�524����� �524����� � <�> ? �

as a shorthand for the set of explanations computed by the first part of the diagnostic model 1,
and !	����
  > � � ��� OMap

�524�������524����� � <�> ? �
Select

�
Solform

�

as a shorthand for the entire conceptual model of Def. (1).
The dependencies between all these components of a diagnostic method is shown in figure

1. This graphical representation of our conceptual model illustrates that the model does in fact
correspond to the inference layer of a full KADS model [Wielinga et al., 1992]. Such models
are widely used in the Knowledge Engineering community, both in research and in applications.

Obsmap

Obs-cov

Obs-con

Cxt Bm

Cover

Voc

Contra

Es-cov

Es-voc

Es-con

intersect

EsselectedE-selectSolformSol

Obs

Figure 1: Components of diagnostic methods and their relations. Ovals are components, boxes are their
inputs/outputs, thick boxes are inputs/outputs of the entire method

In [tenTeije, 1997] we have shown that this model is sufficiently general to capture a wide
class of diagnostic models, including such varying types of diagnosis as: a pure abductive
system, an abductive system with preferences or abstractions, a set-covering system, a pure
consistency based system, a consistency based system with abstractions, or with fault modes, or
with preferences.

It is important to notice that this definition of a conceptual model for diagnosis introduces
a task-specific ontology. This task-specific ontology will be the basis for the verification and
validation of properties in the subsequent sections. This is in sharp contrast with results from
traditional work on V&V of KBS, which is typically framed in a task-independent ontology
(for instance in terms of premises and conclusions of rules). This introduction of a task-specific
ontology is a crucial step in our attempt to tackle more task-specific properties in the verification
process.

1In this paper we freely mix first-order and higher-order notation, quantifying over higher order paramaters such as OMap.
In [tenTeije & vanHarmelen, 1996c] we have carefully formalised all the notions from this paper in a three-layered meta-
architecture, using only first-order logic in each of the layers.
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3 Verification of properties

In this section, we deal with properties that are required for a legal or meaningful conceptual
model. Any conceptual model that fails any of these properties does not qualify as a meaningful
model of a diagnostic method.

3.1 Type information

Input and output of the all components must be of the right type, for example Select must be a
relation between a set of explanations and a single explanation:

Select : set of explanations � explanation
�

and OMap must be a mapping from a set of observables to a binary tuple of sets of observables:

OMap : set of observables ��
�
set of observables, set of observables

�

We will not further elaborate on this rather obvious check on the correctness of specification
of a conceptual model, except to say that these and other type-correctness properties can be used
to verify that the conceptual model is a meaningful diagnostic model.

3.2 Observation Mapping OMap

The OMap parameter determines which observations must be covered by the explanantion, and
which need only be consistent with the explanantion. We refer to definition 3 for a number of
examples of this mapping. Two requirements on this parameter are that firstly it assigns a role
to at least all the given observations in

�����
(ie no observations may be ignored):

If OMap
�������	��
���$���������$�����B�

then
����� ; ���$����� + �$����� �

and secondly that the division of observations is uniquely determined by the given observations���*�
, ie OMap must be a function:

OMap
�������

1
�36


OMap
�������

2
�
�
�����

1
6
 �����

2

Again, as with all properties in this section, these properties must hold for the conceptual
model to be a meaningful diagnostic model.

3.3 The consequence relations
2 �����

and
2 �����

Typically, the standard notions of first order entailment and consistency are used to model the
notions of diagnostic of covering and consistency. However, a large number of other entailment
relations is available in the literature. There is no clear notion of what properties an entailment
entailment

2
should minimally satisfy, but [Hacking, 1994] suggests reflexivity, (

� 2 �
),

transitivity (if
� 2 �

and
� 2 ,

then
� 2 ,

) are suggested as minimal. Other properties
which might be considered (but which do not hold for many non-classical deduction relations)
are monotonicity (if

� 2(�
then

��� , 2-�
) and dilution (if

� 2 �
then

� 2(���D,
), or weaker

versions of monotonicity such as: if
� 2 �

and
� 2(,

then
��� , 2(�

.
Although no widely accepted minimal conditions on consequence relations exist, any par-

ticular set of restrictions that turns out to be useful for a particular application can be enforced
as part of the verification of the conceptual model.

Whatever values of
2"�����

and
24�����

we choose, it will always be necessary to obey the con-
ceptual requirement that covering represents a stronger notion of explanation than consistency:�
	 2 ������� �

�
�	 624�����*9�� �

This property follows from the stronger but natural requirement:�	 24������� �
�

�
	 24������� �
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3.4 The explanatory vocababulary
<*> ?

Only few requirements can be imposed on the choice of vocabulary of explanations, except
that the vocabulary must be uniquely determined by the behaviour model, that the vocabulary
must be contained in this behaviour model, and that observables are not allowed to explain
themselves:

<*> ? ����)
1
�/6
 <*> ? ����)

2
�
�
��)

1
6
 �*)

2<*> ? ����) � ; F � � ��� � F �����*) �
<*> ? ����) ��� > ��� ����� � � F � �3
��

Notice that the use of the set of possible
> ��� ����� � � F � � is another example of the use of the

task-specific ontology that we introduce to formulate the particular properties that we verify.

3.5 The selection component Select

For a meaningful component that selects prefered explanations among all possible explanations,
we demand that it indeed only does selection, ie:

Select
� # ��� # �

�
#
	1# �B�

(1)

and that it does do some form of selection (ie. it is not trivial):
� # � # �

:
#�	1# � � 9

Select
� # �B� # ��

This second requirement is equivalent to disallowing the other direction of (1).
Furthermore, we demand that Select is defined for all possible sets of explanations:

# �$
 ����� F �  � ��� >  ��� OMap
�524�������524����� � <*> ? �

�
� #

: Select
� # �B� # �

Examples of often used values for the selection component are subset-minimality (selecting
only those explanations for which no subset is also an explanation) and cardinality-minimality
(selecting only those explanations whith the smallest number of elements):

Definition 2 (Selection criteria)
;

- � �� :� # ��� # ��� 9 � # C 	 # �
:
# C�� #

#- � �� � # �B� # ��� 9 � # C 	 # �
:
' # C '�� ' # '

Notice that both of these selection criteria satisfy all the requirements listed above.

3.6 The representation of solutions Solform

As with the selection component, we demand that a solution form exists for any explanation
that is generated by the preceding components:

# �$
 ����� F �� "� ��� >  ��� OMap
��2 �������524����� � <*> ? � � # ��� � F 
 % #('

Select
� # �B� # � A

�� � > F
: Solform

� # ��� � F �E� >�F �

4 Validation of properties

In this section we discuss properties of a conceptual model that can be used to capture the
intended functionality of a diagnostic KBS. We will show how such properties can be used to
validate the functionality of a KBS, and how our knowledge of these properties can be used to
adjust the conceptual model if the KBS fails to satisfy the intended properties.
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4.1 Properties following from OMap

The following gives some examples of different reasonable definitions of the OMap compo-
nent, which maps observations into those that must be explained and those that must not be
contradicted:

Definition 3 (Definitions of OMap)
omap1 encodes the assumption that any observable not known to be true can be taken

as false�$����� 
 �����
�$����� 
 %B9 > ' > 	 > ��� ����� � ��� >  ��� ���*� A

omap2 corresponds to abductive diagnosis (all observations must be covered)�$����� 
 �����
�$����� 
 �

omap3 corresponds to consistency-based diagnosis in the sense of [Reiter, 1987]�$����� 
 �
�$����� 
 �����

omap4 requires that all abnormal findings must be covered and none of the normal
findings must be contradicted�$����� 
 % > 	 ����� ' � �� > � � � F � > � A�$����� 
 % > 	 ����� '  > � � � F � > � A

omap5 requires that all observed symptoms must be covered, and no unobserved
symptom must be contradicted�$����� 
 % > 	 ����� ' � > � � ��� � � � > � A�$����� 
 % > 	 ����� '  � 
 ����� � � � > � A

We will now formulate a theorem that we can use during validation if it turns out that a
diagnostic KBS produces too many explanations. For the above definitions, if we define the
following ordering:

Definition 4 (Ordering on OMap’s)

omap1 � omap2 � omap4 � omap3
omap2 � omap5 � omap3

then the following theorem holds:

Theorem 5 (A stronger OMap gives more solutions)

OMap � OMap
C
�

� ����� F �� "� ��� >  ���  � OMap
�  � ; ����� F �� "� ��� >  "� �  � OMap

C �  � � 2

This theorem tells us that if we want to reduce the number of explanations, then we must
replace the current definition for the observation-mapping by a definition which is lower in the
ordering.

However, under some conditions, the inclusion is actually an equality (so changing the OMap
has no influence on the number of solutions):

Theorem 6 (A stronger OMap under negation-as-failure has no effect))

OMap

���3���������$������� �

OMap
C 
 ��� C����� ��� C����� � �

���$����� + �$����� �	
 ��� C����� +-� C����� �
�

����� F �� ����� >  "���    � OMap
�52����	� �52����	�:�    ��
 ����� F �� "� ��� >  "� �    � OMap

C �52����	� �52����	� �    �
2 we will write 
�����������������������! " " "#%$&#' " " ( and 
�����������������)�*���! " " +#!$�,-#' " + ( as a shorthand notation for two notions of explana-

tion which only differ in component $ .
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This is so because for negation as failure we have
�	 2 9�� � � �	 62 � �

or equivalently �
	 2 � � � �	 62 9 � ��

The left-hand side of this corresponds exactly to the use of
2����	�

as
2 �����

, and the right-hand
side corresponds to the use of

2 ��� �
as
24�����

.
Thus, whereas theorem 5 told us that moving to an OMap definition which is lower in

the ordering might reduce the number of alternative explanations, theorem 6 puts bounds on
this result by stating that given the value of some other parameters (in this case

2:����� 24�����
) the

number of alternative explanations actually remains constant when moving down in the ordering
of observation mappings.

4.2 Properties following from
2 �����

and
24�����

In [tenTeije & vanHarmelen, 1996a] we have used the work on approximate deduction relata-
tions from [Schaerf & Cadoli, 1995] to define approximate notions of diagnosis, by using their
approximate deduction relations as values for the parameters

2 �����
and

2 �����
. We will not report

on the details of this work. For the purposes of this work it suffices to know that an ordering
can be defined on entailment-relations, on the basis of the soundness or completeness of the
deduction relation:

Definition 7 (Ordering on
2

)
� 2

�
2 C � � �
	 2 �

�
	 2 C � �

Thus, some approximate entailment relations
2 C

are sound but incomplete approximations of
the classication entailment relation

2
(namely when

2
�
2 C

), while other approximations are
complete but unsound (namely when

2 C
�
2

). In [tenTeije & vanHarmelen, 1996a] we have
shown how such approximate entailment relations can be used to influence the size, number and
quality of various notions of diagnosis. Some of these results are summarised below:

Theorem 8 (Weakening an unsound
2 �����

gives larger abductive solutions))
24����� � 2 C ����� � #
	 ����� F �� "� ��� >  ���    � omap2

��2 ��������   �
�� #/C�� #

:
#DC�	 ����� F �� "� ��� >  "� �    � omap2

�52 C ����� �

If we take for
2 �����

the classical entailment relation, than this theorem says that any abductive
diagnosis obtained using an unsound deduction relation is contained in a classical diagnosis.

We can exploit this theorem to reduce the size of individual diagnoses. Notice that
this is different from theorem 5 which affected the number of alternative diagnoses. In
[tenTeije & vanHarmelen, 1996b] we have shown examples of the use this: if a systems yields
only very large diagnoses, this might prevent us from taking specific action on the diagnosis,
since not all causes can be treated simultaneously. Strengthening the

2:�����
component to be more

unsound will yield smaller diagnoses. In [tenTeije & vanHarmelen, 1996b] we have shown how
such reductions can be obtained by retaining only the most urgent or the most dangerous of the
contributing causes.

A similar theorem on using incomplete definitions of
2 �����

enable us to increase the number
of alternative diagnoses. This can be useful if no diagnosis can be found at all. By including
less reliable parts of the behaviour model, it becomes possible to increase the chance of finding
a diagnosis after all.
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4.3 Properties following from
<�> ?

The choice of vocabulary influences the number of competing diagnoses which are computed:
a smaller vocabulary may lead to a reduction in diagnoses:

Theorem 9 (Smaller vocabulary gives fewer explanations)
<*> ? ;=<�> ? C

� ����� F �� "� ��� >  ���    � < > ? �    � ; ����� F �� ����� >  "���    � <�> ?�C �    �

4.4 Properties following from Select

As for the components OMap,
2"�����

and
2 �����

it is possible to define an ordering on values for
this parameter. If we define the obvious ordering on selection criteria:

Definition 10 (Ordering on selection critera)

Select � Select
C � �

Select
� # �B� # �

� Select
C � # ��� # � �

then the following theorem follows immediately:

Theorem 11 (Stronger selection criteria give fewer explanations)

Select � Select
C
�
!�� ��
  > � � ���    � Select

�    � ; !�� ��
  > � � � �    � Select
C �    �

As before, we can exploit this theorem to reduce the number of diagnoses if during validation
it turns out that the KBS produces too many competing diagnoses.

An example of such an ordering between specific selection criteria is

#- � �� 
�

;
- � �� 

Individual selection criteria can be combined to form composite selection criteria, for instance
by taking the lexicographic, conjunctive or disjunctive combinations of the individial criteria.
The orderings betweeen individial selection criteria induce an ordering between these composite
selection criteria:

Theorem 12 (Orderings between composed selection criteria)
If we write Select � Select

C
as a graphical representation of Select � Select

C
, then:

Select1-
F ��� -Select2 �

Select1� �

Select1-
�� !

-Select2 Select1-
> � -Select2� �

Select2

Again, these results can be used to adjust the selection criterion of the diagnostic model if during
validation it turns out that too many competing diagnoses are computed by the system.
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5 An example

In many diagnostic applications, it is important to aim for the smallest number of competing
diagnoses (preferably only one, unique diagnosis). This is important because a large number
of competing makes it impossible to decide wich therapy or repair to select, since not all
competing diagnoses can be repaired or treated simultaneously (for reasons of cost or because
of interactions among the alternative treatments).

The theorems from the preceding section (section 4) allow us to validate this desired property
in terms of the parameters that are used to instantiate the generic conceptual model from section
2.

In particular, to obtain the smallest number of competing solutions, make:
� OMap lowest in the ordering from definition 4� 2 ����� highest in the ordering from definition 7� 2 ����� lowest in the ordering from definition 7� <*>@? lowest in the ordering from theorem 9� Select strongest in the ordering from theorem 10.

In other circumstances it might be desirable to obtain the largest number of competing
diagnoses (for instance if we are concerned with not missing any possible diagnosis in a safety-
critical situation). Similar validation results can be obtained for this purpose.

Besides validating the optimal number of competing diagnoses, we can also exploit the above
and other similar theorems to validate other properties such as the size of individial diagnoses.
In [tenTeije & vanHarmelen, 1996b] we have shown how we can also exploit the above and
similar theorems to validate properties concerning the reliability and urgency of diagnoses.

6 Conclusions

In this paper we have taken a conceptual (= implementation independent) model of a wide class
of diagnostic systems, and we have identified properties of this model that be used in both
verification and validation. In section 3 we listed a number of properties that could be used to
verify if a given conceptual model satifies minimum requirements of correctness. In section 4
we have given a number of theorems that can be used for two purposes: first to determine if a
given conceptual model has certain as intended properties, and secondly to determine how the
model should be adjusted if such property failed to hold.

This approach differs from much existing work on validation and verification of KBS in a
number of ways:

Our conceptual model is phrased in task-specific ontology (observation, explanation, cov-
ering, etc.), in contrast with the task-independent ontology used in tradition work on V&V
(premisse, conclusion, rule-set, etc.). This enables us to formulate a number of task-specific
properties for the purposes of validation and verification (such as orderings of components
that determine size and number of alternative diagnoses), in contrast with the task-independent
properties traditionally investigated in V&V (loops in a rule-set, redundancy of a rule-set, etc.).

Besides being task-specific, our conceptual model (and consequently the properties based
on it) are implementation-independent, again in contrast with traditional approach in V&V of
KBS, which have usually focussed on properties of the implementation language (production
rules, frames, etc.).

Two limitations of the work presented here are the following: first, we only deal with
properties concerning the functionality of the KBS, while ignoring the dynamics of the reasoning
process needed to realise this functionality. Our conceptual model is formulated using traditional
predicate-logic (although a number of meta-layers are required, see footnote 2). In order to deal
with the dynamics of the KBS, a richer formalism would be needed, such as the dynamic logic
used by [Fensel et al., 1996] or the temporal rules of [Cornelissen et al., 1997].

A second limitation is that we only study properties concerning the inference steps of the
KBS (our conceptual model corresponds to the inference layer of a KAD model, see section
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2), and we have ignored the properties of the knowledge-base which required to support this
reasoning (this would be the domain-layer, in KADS terminology). In a diagnostic context such
properties would concern the presence of certain types of knowledge, the completeness of the
knowledge, properties concerning the size and connectivity of the knowledge etc. Again, the
work by [Fensel et al., 1996] provides a good example of the kind of work that is needed in this
direction.
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