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ABSTRACT. Deoxycytidine kinase (dCK) and deoxycytidine deaminase (dCDA) are two key enzymes in the 
activation and inactivation, respectively, of deoxycytidine and its antiviral and anticancer analogues. One 
purpose of this study was to determine whether or not the deoxycytidine-converting activity of both enzymes 
would correlate with growth inhibition by 2’,2’-difluorodeoxycytidine (dFdC), a deoxycytidine analogue with 
established antitumour activity in solid tumours. Another aim of this work was to determine the effects of normal 
nucleotides on dCK. dCK and dCDA activities were measured with both deoxycytidine and dFdC as substrates 
in 5 solid tumour cell lines, but no correlation with cellular sensitivity to dFdC was found with either substrate. 

The normal dCK activities with deoxycytidine as substrate varied between 0.8 and 13 nmol/hr/lOh cells. The 
activities determined with dFdC as substrate were remarkably similar in all 5 cell lines (1.1-1.6 nmol/hr/106 
cells). dCDA activities varied considerably with both substrates (20-30-fold). Because dFdC markedly affected 
intracellular concentrations of cytidine 5’-triphosphate (CTP) and uridine 5’-triphosphate (UTP), we studied 
their effects on deoxycytidine- and dFdC-phosphorylating activities in 3 cell lines (i.e., A2780, WiDr and 

C26-10) with a similar dCK activity but major differences in dFdC sensitivity. 1 mM CTP inhibited deoxy- 
cytidine phosphorylation (at 230 p,M) by 20-30% in A2780 and C26-10 cells, but increased that of WiDr cells 
by approximately 70%. CTP did not affect dFdC phosphorylation (at 230 p,M) in A2780 cells, but did increase 
it by 40% in WiDr cells. At 1 and 10 I.LM of deoxycytidine the effects of CTP on dCK activity in A2780, C26-10 
and WiDr cells were less pronounced. 1 mM UTP enhanced deoxycytidine phosphorylation at 230 PM in WiDr 
cells by approximately 40%, whereas dFdC phosphorylation was increased 40% by UTP in C26-10 cells but 
decreased by 70-80% in WiDr cells. UTP caused a more pronounced increase in dCK activity at 1 and 10 p,M 
deoxycytidine in C26-10 cells, but provoked a higher inhibition in A2780 and WiDr cells at 10 I.LM. Because 
of these complex results, dCK kinetics were studied in greater detail. Biphasic kinetics for deoxycytidine were 

observed in all 3 cell lines, with K,,, values of 23.2 and 0.4 ~.LM for A2780 cells, 15.9 and 1.5 PM for C26-10 cells, 
and 27.2 and 0.9 FM for WiDr cells. In all 3 cell lines, adenosine 5’-triphosphate (ATP) was the optimal 

phosphate donor, as compared to CTP and UTP. In conclusion, the efficiency of dCK (V,,,/K,,, ratio) seems to 
correlate with accumulation of dFdCTP, the active metabolite of dFdC, and with cellular sensitivity. UTP 
and CTP, which are seriously affected in cells exposed to dFdC, display varying effects in these solid tumour cell 
lines. Both activation and inhibition have been observed; the physiologically low CTP pools and the relatively 
minor effect on dCK in A2780 cells seem to favour dFdC phosphorylation in these cells, which are the most 
sensitive. BIOCHEM PHARMACOL 51;7:911-918, 1996. 
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dCK$ (E.C.2.7.1.74), a py rimidine salvage enzyme, cataly- 

ses the phosphorylation of deoxycytidine to its monophosphate 
dCMP, as well as the phosphorylation of several deoxyribonu- 
cleoside analogues that play a role in cancer and antiviral treat- 

ment [I-3]. One of the physiological roles of this enzyme is 
deoxycytidine reutilization, although deoxyadenosine and de- 

oxyguanosine are also good substrates [l, 31. dCDA (EC 3.5.4.5) 
catalyses the deamination of cytidine, deoxycytidine, and its ana- 
logues [4,5]. Both enzymes have been associated with sensitivity 

and resistance to 1 -P-D-arabinofuranosylcytosine (am-C) [&8], 

the best known deoxycytidine analogue, commonly used in the 
treatment of leukemia. But, overall, dCK is considered the most 
important of the two enzymes with respect to the efficacy of 

deoxycytidine analogues [3, 691. The regulation of this enzyme 
is quite complex. In leukemic cells especially, UTP has been 

reported to play an important role in the regulation of dCK 
activity. UTP was found to be the optimal phosphate donor in 
MOLT-4 and Ehrlich ascites cells [lo, 111, and could also reverse 
the inhibition of dCK by its most prominent feedback inhibitor 

dCTP [12]. Sarup et al. [13] showed that both UTP and CTP 
could inhibit deoxycytidine phosphorylation in leukemic blasts 
by 25% and 15-28%, respectively. No other effects of CTP on 

dCK activity have been reported until now. Most studies on dCK 
kinetics have been performed on enzyme extracts obtained from 

lymphoid cells or tissues, both normal and malignant [l, 3, l& 
131. Only a few studies on dCK activity and regulation have been 
performed on enzyme from solid tumours and tissues [3, 14, 151. 

dFdC (gemcitabine) is a relatively new deoxycytidine 

analogue with established clinical activity in solid malignancies, 
such as ovarian and non-small cell lung cancer [ 16-181. The 
major mechanisms of action of this compound are exerted by the 

phosphorylated metabolites and include incorporation into 
nucleic acids [19, 201. To gain more insight into the role of both 
dCK and dCDA in the antitumour activity of dFdC in solid 

tumour cell lines, we used dFdC as a substrate in addition to 
deoxycytidine to evaluate dCK in a panel of five solid tumour cell 

lines, characterized previously for their sensitivity to dFdC [21]. 

One effect of exposing these cell lines to dFdC is a major distur- 
bance in concentrations of CTP and UTP [21], two nucleotides 
with effects on dCK activity [lO-131. 

Therefore, the effects of these ribonucleotides on dCK 

enzyme activity and kinetics with deoxycytidine and dFdC 
as substrates were studied in three solid tumor cell lines: the 

human ovarian carcinoma cell line A2780, the human co- 
lon carcinoma cell line WiDr, and the murine colon car- 
cinoma cell line C26-10. These cell lines were selected 

because of their different sensitivity to dFdC (despite simi- 
lar deoxycytidine phosphorylating activity) and the fact 
that all three were used for an extensive study of dFdCTP 
accumulation and the accompanying changes in normal 

ribonucleotide pools [21]. 

MATERIALS AND METHODS 
Materials 

dFdC, dFdU, and [5e3H]-dFdC (16.7 Ci/mmol) were kindly 
provided by Eli Lilly 6r Co., Indianapolis, IN. Deoxycyti- 

dine, CTP, and UTP were purchased from Sigma Chemical 
Co., St. Louis MO. Deoxy-[5-3H]-cytidine (25 Ci/mmol) 

was obtained from Amersham International, Buckingham- 
shire, U.K. All other chemicals were of analytical grade and 

commercially available. 

Cell Culture 

The sources of the human ovarian carcinoma cell lines 
A2780 and OVCAR-3, the human colon carcinoma cell 

line WiDr, the human head and neck squamous cell carci- 

noma cell line UM-SSC-14C, and the murine colon carci- 

noma C26-10 cells have been described previously [21, 221. 
Cells were maintained in exponential growth in Dulbecco’s 
Modification of Eagle’s Medium (Gibco Laboratories, 

Grand Island, NY) suppl emented with 5% heat-inactivated 
fetal calf serum (Gibco), 1 mM L-glutamine (Sigma), and 
250 ng/mL gentamicin at 37°C and 5% CO,. Previously we 
used A2780, C26-10, and WiDr cells for extensive studies 

of dFdC metabolism, in which considerable differences in 
chemosensitivity and metabolism were observed. Given 

these results and the similarity of deoxycytidine and dFdC 
phosphorylation, these cell lines were selected for more 

detailed studies. All enzyme assays were performed with 

enzyme extracted from cells harvested 2 days after seeding, 
when cells were in the exponential growth phase. 

dCK Assay 

The assay for dCK was performed as described previously 

[14]. Briefly, for determination of dCK activities in cell 
lines, a minimum of 25.106 cells were required. The cell 
pellets were resuspended in cold dCK buffer (0.3 M Tris- 

HCl, 50 p,M P-mercaptoethanol, pH 8.0), sonicated and 
centrifuged. The 10,000 g supernatant was immediately 

used in the enzyme assays. One part of the undiluted su- 
pernatant was taken for determining its protein content 
using the Biorad Bradford protein assay [23]. To 25 PL 

10,000 g supernatant (2-14 pg protein/FL), 25 PL of sub- 
strate mixture was added. The substrate mixture was pre- 
pared by mixing 2 volumes of Mg-ATP (50 mM ATP in 2 5 

mM MgCl,, pH 7.4) (f’ ma concentration in the reaction 1 
mixture: 10 mM ATP), 2 volumes of [5-3H]-deoxycytidine 
or [5-3H]-dFdC and one volume of dCK buffer. For activity 
measurements under saturated substrate conditions, the fi- 

nal concentration of deoxycytidine (0.04 Ci/mmol) and 
dFdC (41.8 Ci/mol) was 230 FM. The enzyme activity was 
measured with and without 0.1 and 1 mM final concentra- 

tion CTP or UTP in three of the five solid tumour cell 
lines: A2780, WiDr, and C26-10 cells. dCK activity was 
also determined with CTP or UTP as phosphate donors (10 
mM final concentration). The reaction mixture was incu- 
bated for 15-60 min at 37°C. The reaction was terminated 
by heating at 95°C for 3 min and the subsequent addition 
of 10 FL 5 mM unlabeled deoxycytidine or dFdC to visu- 
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alize the spots. The substrate (deoxycytidine or dFdC) was 

separated from the product (dCMP or dFdCMP) by thin 

layer chromatography on PEI (polyethylene imine) cellu- 
lose layers, with distilled water as eluent. The spots could be 
visualised under UV light, marked and cut out. Radioac- 
tivity was estimated in a liquid scintillation counter, after 
addition of 9 mL Optima Gold (Packard Instrument B.V., 
Chemical Operations, Groningen, The Netherlands). En- 

zyme activities were expressed as nmol product formed per 
hour per lo6 cells (nmol/hr/106 cells) and were linear in 

time and enzyme concentration. Because dialyzing the sam- 

ples or adding tetrahydrouridine to inhibit dCDA did not 

change the outcome of the assay, they were, therefore, 
omitted. Dialysing would remove intracellular nucleotides 

and nucleosides that theoretically could interfere with the 
assay. However, the concentration of UTP is less than 800 
pmol/106 cells (21). Cells are suspended in 1 mL and sub- 

sequently diluted, resulting in a maximum of 2 FM in the 
enzyme suspension; in the assay mixture this would be di- 
luted at least two-fold, resulting in nucleotide concentra- 

tions too low to interfere with the assay. Because dCTP 
concentrations in cells are at least IOO-lOOO-fold lower 

than CTP, this possible interference would also be negligi- 

ble. The separation procedure used (TLC) enabled us to 
determine how much label was consumed; this would not 

be possible if filter discs similar to those employed by sev- 
eral other investigators were used. Assays were designed in 
such a way that deoxycytidine consumption was less than 
10%. Due to the higher K, of deoxycytidine for deamina- 
tion compared to phosphorylation, it would be unlikely 

that, under these conditions, deoxycytidine concentrations 
would be reduced by deamination by more than 10%. ATP 
measurements showed that no significant degradation oc- 

curred during the assay. In other kinase assays, addition of 

inhibitors of nucleotide degradation did not affect the en- 
zyme activities (data not shown). 

For the apparent K,,, determinations, the deoxycytidine 
concentration ranged from 0.4 to 230 p,M. The measured 
activities were linear in time and corrected for >lO% sub- 

strate conversion. K,,, and V,,, were calculated using the 
statistical application (linear regression analysis) of the 

Symphony 2.0 computer program (Lotus Development 
Corporation). 

dCDA Assay 

The assay was performed as described previously [14]. 
Briefly, the reaction was performed in crude cell extracts 
with a final substrate (deoxycytidine or dFdC) concentra- 

tion of 500 PM. Product and substrate were separated by 
means of HPLC with isocratic elution. Deoxycytidine and 
deoxyuridine were separated on a LiChrosorb 5-RP-18 col- 

umn (Chrompack, Bergen op Zoom, the Netherlands) with 
10 mM ammonium dihydrogen phosphate, pH 6.5 as 

eluent. dFdC and dFdU were separated using a FBondapack 

cl8 column (Waters-Millipore, Etten-Leur, the Nether- 
lands), with PicB, (Waters) in 15% methanol (final con- 

centration heptane sulfonic acid 5 mM), pH 3.1. Peaks 
were detected and quantitated using their absorption at 254 
and 280 nm. 

RESULTS 
dCK and dCDA Measurements with 
Deoxycytidine and dFdC as Substrates 

In Table 1, sensitivity to dFdC and dCK, as well as dCDA 

activities, as determined at saturating substrate concentra- 
tions (230 FM) in five different solid tumour cell lines, are 

summarized. The human ovarian carcinoma A2780 cells 
were most sensitive to dFdC, both at short (4-hr) and long 
exposure. The two colon carcinoma cell lines, C26-10 (mu- 
rine) and WiDr (human), were least sensitive to dFdC. The 

measured enzyme activities were linear within the incuba- 
tion time and protein concentration range applied. dCK 
activities with the natural substrate deoxycytidine varied 

considerably, from 1.0 to 12.8 nmol/hr/106 cells. dCK ac- 
tivities as determined with the deoxycytidine analogue 
dFdC were remarkably similar between the cell lines, vary- 

ing only from 1 .l to 1.6 nmol/hr/106 cells. For dCDA ac- 
tivities, a considerable variation was observed both with 

deoxycytidine (30-fold, from 0.1 to 3 nmol/hr/106 cells) 
and dFdC (20-fold, from 0.6 to 12 nmol/hr/106 cells). How- 

ever, the pattern of activity was different for each substrate, 
with UMSSC-14C having the highest activity with deox- 
ycytidine as substrate and OVCAR-3 with dFdC. 

Apparent K, and V_ Values 

Although C26-10, WiDr, and A2780 cells showed very 
different sensitivity patterns (Table l), these three cell lines 

TABLE 1. Sensitivity to dFdC and deoxycyticlme kinase (with ATP as phosphate donor) and deoxycytidine deaminase activ- 
ities with different substrates 

dCKP dCDAt 

Cell line Sensitivity* deoxycytidine dFdC deoxycytidine dFdC 

C26-10 238 1.24 I!Z 0.25 1.11 kO.10 2.15 f 0.57 0.92 f 0.18 
WiDr 205 1.01 k 0.10 1.18 + 0.04 0.22 f 0.03 1.35 + 0.15 
A2780 7 1.01 + 0.09 1.24 f 0.05 0.12 f 0.04 0.63 + 0.15 
OVCAR-3 36 12.8 + 1.0 1.21 k 0.13 2.33 L 0.08 11.9f3.6 
UM-SSC-14C 34 5.28 If: 0.53 1.61 + 0.04 2.95 f 0.43 4.66 + 0.65 

* Sensmvity to dFdC IS expressed as the IC,, in nM after 4-hr exposure followed by a 68-hr drug-free period [Zl]. 

t Activmes (measured at 230 (LM substrate concentratmn for kmase and 500 FM for the deaminase) are expressed as nmol product formed/hr/106 cells and are means f SEM 

of 3-6 separate experiments. Protem content was 0.1-0.2 m&O6 cells. 
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TABLE 2. Biochemical characteristics of C26-10, WiDr, and A2780 cells and effect of dFdC on CTP and UTP 

C26.10 WiDr A2780 

Nucleotide* Effect of dFdC Nucleotide* Effect of dFdC Nucleotide* Effect of dFdC 

Nucleotide (pmol/106 cells) (%)-I (pmol/106 cells) (%)-t (pmoY106 cells) (%)P 

UTP 789 f 105 161 56OL41 115 630 + 210 111 
CTP 458 f 38 153 168 + 17 86 219 i7 65 58 
dFdCTPS 31+31 33f 18 lOOf 

Values are means + SEM of 3-5 separate experiments [21]. 

* UTP and CTP concentratmns are those of untreated cells. Values are means k SEM of 3-5 separately harvested cell pellets [21] 

+ % of control UTP or CTP concentration after 4-hr exposure to 1 FM dFdC. 

$ dFdCTP concenttatmn in pmol/106 cells after a 4-hr treatment with 1 FM dFdC. 

were remarkably similar in dCK activity with either sub- 
strate. Therefore, we selected these three lines to study dCK 
kinetics to see whether or not differences in apparent K, 

and/or V,,, values would explain the differences in dFdC 

sensitivity and dFdCTP accumulation. In Table 2, some 
biochemical characteristics of these cell lines (fully de- 
scribed previously [21]) are summarized. Data as observed at 

a 4-hr exposure to dFdC are presented, because we also used 
a 4-hr exposure in the growth inhibition experiments. The 
general pattern was comparable after 24-hr exposure. In 

short, UTP concentrations in untreated cells were compa- 
rable in the three cell lines, but CTP was higher in C26-10 
cells. In contrast, the effect of dFdC was different, resulting 

in an increase for UTP and CTP in C26-10 but a decrease 
in CTP in WiDr and A2780 cells. dFdCTP accumulation 
was higher in A2780 cells compared to the other cell lines. 

A similar pattern in dFdCTP accumulation was observed at 
lower (0.1 FM) and higher (10 p,M) dFdC concentrations. 

However, at 0.1 FM it was not always possible to measure 
dFdCTP accumulation (2 1). 

l- 

/ 

FIG. 1. A typical Lineweaver-Burk plot of dCK activity of an 
experiment with A2780 cells; with C26-10 and WiDr cells, 
similar plots were obtained. 

Biphasic kinetics for dCK were observed in all three cell 
lines (with ATP as a phosphate donor) as illustrated in Fig. 
1 for A2780 cells. The enzyme kinetic pattern was con- 

firmed using Eadie-Hofstee plots (not shown). In Table 3, 

the apparent K,,, and V,,, as measured under standard con- 
ditions (Pi donor ATP, no addition of CTP or UTP) are 

summarized. The difference between K,, and Km, values of 

the two human cell lines was more pronounced (30-60- 
fold) than for the murine C26-10 cells (lo-fold). In con- 
trast, in all three cell lines the difference in V,,,, and V,,, 

values was only 3-fold. The V,,,/K,,, ratio, an indication oi 
the efficiency of phosphorylation, was lowest for the murine 
colon cancer cell line C26-10, both at high and low sub- 
strate concentrations. The V,,,/K,,, ratio in A2780 and 

WiDr cells was comparable at both concentration ranges. 
Deoxycytidine phosphorylation was most efficient in the 

low K, range, because the V,,,/K,,, ratios were 4- to 17-fold 
higher than at high deoxycytidine concentrations. 

Effect of Different Phosphate Donors 

on Deoxycytidine and dFdC Phosphorylation 

Because it has been reported that UTP might be a better 
phosphate donor than ATP in leukemic cells [lo, 111 we 
measured dCK activity with three different phosphate do- 

nors and with deoxycytidine and dFdC as substrates (Table 
4). For deoxycytidine as substrate, ATP was the optimal 

phosphate donor in all three cell lines; the activities of dCK 
with CTP or UTP as phosphate donor were not more than 

TABLE 3. Apparent K, and V,, values as calculated from 
dCK assays with ATP as phosphate donor 

C26-10 WiDr A2780 

K ml 1.48 f 0.28 0.91 f 0.18 0.38 + 0.08 
K m2 15.9 f 2.9 27.2 f 3.5 23.2 AZ 5.7 
V max, 0.18 + 0.02 0.59 k 0.06 0.27 f 0.07 

$::;;;~I 
0.57 + 0.15 1.88 + 0.19 0.90 z!z 0.16 
0.13 + 0.01 0.75 + 0.14 0.83 + 0.11 

Inax rn: 0.03 f 0.00 0.07 + 0.01 0.05 + 0.01 

Apparent K,,, is expressed in FM and V,,,, as pmol product formed/hr/lO” cells. 

Values are means + SEM calculated from 4-5 separate expenments. 
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TABLE 4. dCK activities with deoxycytidine and dFdC as substrates, measured with different phosphate donors 

Substrate* 

deoxycytidine + 

dFdC + 

Pi donor? 

ATP 
UTP 
CTP 
ATP 
UTP 
CTP 

C26.10 WiDr A2780 

1.24$ k 0.25 
0.48 + 0.03 (39)§ 
0.42 IL 0.03 (34) 
1.11 + 0.10 

1.01 * 0.03 (94) 
0.99 k 0.08 (84) 

1.01 + 0.10 
0.44 Ik 0.04 (45) 
0.33 If: 0.03 (33) 
1.18kO.04 
0.30 f 0.03 (25) 
0.90 + 0.08 (83) 

1.01 + 0.09 
0.54 f 0.10 (53) 
0.57 f 0.13 (56) 
1.24 zk 0.05 

0.34 k 0.04 (30) 
1.12 + 0.06 (86) 

* Substrate (deoxycytidine or dFdC) concentratmn was 230 PM. 

t Phosphate donor (ATP, UTP, OT CTP) concentration was 10 mM. 

i: Activnes are expressed as nmol product formed/hr/lOh cells and are means k SEM of at least 3 separate experiments. 

5 Withm parentheses, the relative activq is given as compared wth the enzyme actlvtty with .4TP as phosphate donor, set at lOO%, values are calculated from means of at 

least 3 separate expermlents 

0 

A2780 C26.10 

cell line 

WiDr 

CdR + UTP 

TT 

A2780 C26-10 

cell line 

dFdC + CTP 

A2780 C26.10 

cell line 

WiDr 

A2780 C26-10 With 
II I. 6 

200 I 

t dFdC + UTP 

cell me 

FIG. 2. The effects of CTP and UTP on deoxycytidine phosphorylation (A) and dFdC phosphorylation (B), both at a con- 
centration of 230 pM. The open bars represent the relative phosphorylating activity in the presence of 0.1, the hatched bars 
at 1 mM CTP or UTP compared to that with only ATP in the reaction mixture, which was set at 100%. Values are means +: 
SEM of 3-5 separate experiments. *CdR, deoxycytidine. 
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56% and 62% of the activity with ATP, respectively. ATP 

was the optimal phosphate donor for dFdC phosphorylation 
as well, although with CTP enzyme activities almost similar 
to those with ATP were observed in all three cell lines, and 

in C26-10 cells UTP was as efficient as ATP as a phosphate 
donor. 

Effect of CTP and UTP on dCK 
Activity with Deoxycytidine or dFdC as Substrates 

Figure 2 summarizes the effects of CTP and UTP on dCK 
activity using ATP as phosphate donor. 0.1 mM CTP had 
no effect on A2780 cells, decreased dCK activity slightly in 

C26-10, and increased it somewhat in WiDr cells. 1 mM 
CTP decreased dCK activity with deoxycytidine as sub- 
strate in A2780 and C26-10 cells by 20-30%, but not with 

dFdC as substrate. In WiDr cells, however, 1 mM CTP 
increased deoxycytidine-phosphorylating activity up to 
165% and that of dFdC phosphorylation up to 140%. The 

effects of UTP were more complex; 0.1 mM UTP increased 
dCK activity in A2780 and WiDr cells and decreased it in 
C26-10 cells. Although 1 mM UTP increased enzyme ac- 

tivity in WiDr cells, it caused a slight decrease in A2780 
cells and did not affect dCK activity in C26-10 cells. UTP, 

however, had markedly different effects on dFdC phosphor- 

ylation. Although 0.1 mM UTP increased enzyme activity 
in A2780 and C26-10 cells by 50 and 25%, respectively, 
activity was inhibited by 40% in WiDr cells. At 1 mM UTP 
only in C26-10 cells, an increase in activity of 50% was 
observed, and in WiDr as well as A2780 cells enzyme ac- 
tivity was inhibited markedly, by 70 and 40%, respectively. 

Based on the biphasic enzyme kinetics we also studied 
the effects of 1 mM CTP and UTP at 2 other deoxycytidine 

concentrations: 1 (low) and 10 (intermediate) PM in com- 
parison with 230 PM (saturating) (Table 5). For CTP, the 

inhibitory effect in A2780 cells was comparable at 1, 10, 

and 230 FM deoxycytidine and in C26-10 cells at 1 and 230 
PM (20-30%). CTP did not affect dCK activity at 10 PM 
deoxycytidine in C26-10 and WiDr cells. In the latter cell 

line, CTP increased enzyme activity at 1 and 230 PM more 
than 40%. For UTP, a similar inhibiting effect on deoxy- 

cytidine phosphorylation was observed at all 3 deoxycyti- 

TABLE 5. The relative effects of 1 mM CTP and UTP on 
dCK activity at different deoxycytidiie concentrations, with 
ATP as phosphate donor 

deoxyc ytidine 
Addition (l.lM) C26.10 WiDr A2780 

CTP + 1 82* f 8 143 f 14 88 f 6 
10 105rt3 105 + 12 75 f 23 

230 71* 17 165 f 7 78 f 7 
UTP + 1 210 + 17 91 f5 88 f 14 

10 196f 17 65 f9 54 + 13 
230 lOI? 21 142 f 20 86 * 10 

* dCK activities measured without CTP or UTP at the given deoxycytidine concen- 

trations were set at 100%; values are means k SEM of 34 separate expenments. 

dine concentrations in A2780 cells. In contrast, in C26-10 

cells, the activity was increased considerably at 1 and 10 
I_LM deoxycytidine, and in WiDr cells a marked stimulation 
was observed only at 230 FM. At 10 FM deoxycytidine, an 
inhibition of 35% was found. 

DISCUSSION 

This study shows that, based on enzyme properties, the 
metabolism of deoxycytidine and dFdC differs markedly in 

cell lines of solid tumour origin, even within cell lines 

derived from a similar organ. Although, in general, dCDA 

activity was higher with dFdC as substrate than with de- 
oxycytidine, no correlation was evident between sensitivity 

and dFdC-deaminating activity, as had already been estab- 
lished for deoxycytidine deamination and sensitivity to de- 
oxycytidine analogues [14]. The discrepancies between 

dCDA activity measured with deoxycytidine compared to 
activity with dFdC as substrate, are most probably due to 

differences in K,,, and V,,, for the two substrates. In addi- 

tion, the substrates may cause a different conformation of 
the enzyme, resulting in different kinetics and regulation 

properties. 
A remarkable observation was the similarity of dFdC 

phosphorylation in all cell lines tested, despite considerable 

variation in deoxycytidine phosphorylation rates. Although 
it can not be excluded that other deoxynucleoside kinases 

can use dFdC as a substrate, one can assume that dCK is the 
major enzyme responsible for dFdC phosphorylation [1, 2, 
10, 241. This would mean that dCK in these cells is suffi- 
ciently high to catalyze dFdC phosphorylation. Thus, the 

observed similarity in the cellular capacity for dFdC phos- 
phorylation cannot account for the differences in sensitiv- 
ity of the studied cell lines, which varied 1.2 to 3+fold, 

depending on exposure time (Table 1) [21]. Differences in 
nucleoside transport do not seem to be limiting because 

dFdCTP accumulation is rather rapid [21] and chemosen- 
sitivity to other nucleoside analogues, dependent on the 
same carrier, is similar. 

This study also shows that CTP as well as UTP can 
significantly affect dCK-catalysed phosphorylation of both 
deoxycytidine and dFdC as measured in relatively crude 
extracts of disrupted cells. Although this does not neces- 
sarily reflect the situation in intact cells, it probably gives a 
better indication of cellular regulation mechanisms than 
purified enzyme systems. Differences in enzyme regulation 
may play a role in determining the chemosensitivity of a 
cell line. We observed biphasic enzyme kinetics for de- 
oxycytidine phosphorylation in all three cell lines studied 
with apparent Km, values well below 5 PM. These results, 
although obtained in cell extracts, are very well in line with 
those of Bohman and Eriksson [25], who observed similar 
biphasic kinetics for dCK purified from human leukemic 
spleen. Most studies on dCK kinetics, however, have been 
limited to a low deoxycytidine concentration range (~10 
p,M) [l, 3, 12, 13, 261, precluding measurement of K,,, val- 
ues in a higher range; thus, reported apparent K,,, values 
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vary from 0.6 to 9 FM, depending on the dCK source and 

experimental conditions. The apparent K,,,, values in our 

cell lines are in this range. For human leukemia HL-60 
cells, only Singhal et al. [27] reported a very high apparent 
K, of 300 FM. Although Stegmann et al. [28] measured 
dCK activity in rat leukemia cells at a broad deoxycytidine 
concentration range (up to 1.5 mM), these authors reported 

only one K,,, value of 9.4 p,M deoxycytidine. Considering 
the V,,,/K,,, ratio, an indicator for phosphorylation effi- 

ciency, dCK from the murine colon cancer cell line C26-10 

appears to be the least efficient, both at low and higher 
deoxycytidine concentrations. The ratio is 6-fold lower 

than that for A2780 cells. For dFdC and deoxycytidine, an 
almost similar efficiency was reported for CHO cells [2]. 
Assuming this also holds for our cell lines, one might ex- 
tend the differences in V,,,/K,,,, which we found for effi- 

ciency of deoxycytidine phosphorylation, to that of dFdC 
phosphorylation. The pattern in V,,,/K_, ratio correlates 

with the accumulation and retention pattern of dFdCTP, as 

observed in these cell lines [Zl]. A2780 accumulated the 
highest dFdCTP levels, closely followed by WiDr (depend- 
ing on exposure time), both in vitro and in Go. C26-10 

cells and colon 26 tumours accumulated the lowest 
dFdCTP levels and retention was less than 24 hr, in con- 

trast to A2780 and WiDr cells and tumours. This pattern 

follows the chemosensitivity of the cell lines quite nicely 

n41. 
Most studies on dCK enzyme kinetics are based on dCK 

assays performed with ATP as phosphate donor, because 
ATP is assumed to be the optimal substrate. For dCK from 

MOLT-4 cells [lo, 291 and Ehrlich ascites tumour cells [ll], 
it was shown that UTP was a better phosphate donor than 

ATP. In the solid tumour cell lines described in this paper, 

ATP was the most efficient phosphate donor for phosphor- 

ylation of both deoxycytidine and dFdC. Only in C26-10 
cells was UTP as efficient as ATP for dFdC phosphoryla- 
tion, and in the two human tumour cell lines only 30% of 
the activity with ATP was measured. CTP was a reasonable 
phosphate donor for dFdC phosphorylation in all three cell 
lines. 

The effects of CTP and UTP on dCK activity were quite 

pronounced, both with deoxycytidine and dFdC as sub- 
strates. The chosen nucleotide concentrations, 0.1 and 1 
mM CTP and UTP, are in the range of normal cellular 

concentrations in the three tested cell lines, including the 
shifts caused by exposure of the cells to dFdC (Table 2) 
[21]. Considerable differences were observed for the effects 

on deoxycytidine and dFdC phosphorylation, possibly re- 
lated to the mechanism of substrate binding to dCK as 
proposed by Shewach et al. [29]. This sequential Bi-Bi 
mechanism may involve different conformational changes 
for deoxycytidine and dFdC as substrates, leading to differ- 
ent affinities for CTP and UTP. At lower substrate con- 
centrations including a more physiological concentration of 
1 PM, only for C26-10 cells were considerable differences 
for the effects of UTP observed, with a 2-fold increase at 1 
FM but not at 230 p,M. In 2 other studies, an activation (at 

2-10 PM deoxycytidine) by UTP was observed [12,26], and 

in another, inhibition was found, albeit at a lower deoxy- 

cytidine concentration (0.2 PM) [13]. These effects were all 
found in cells from a myeloid origin (although different 
species were used as the source), as well as normal and 
leukemic cells. Habtayesus et al. [30] reported a different 
substrate specificity for murine dCK as compared to human 
dCK. It seems likely that regulation of dCK is very much 
species-, tissue-, and proliferation-dependent. Extrapola- 
tion of enzymatic characteristics from one source should be 

done with great caution. 
The implications of these results with respect to the shift 

in CTP and UTP pools as a result of exposure to dFdC are 
not entirely clear. An increase in CTP seems favourable for 
dFdC phosphorylation. However, probably as a result of 
CTP-synthetase inhibition, CTP pools decreased initially 
in all three cell lines, but were restored to levels higher than 

control at 24 hr after removal of the drug [21]. The accom- 
panying increase in UTP seems more favourable for deoxy- 
cytidine than for dFdC phosphorylation. Because the in- 

crease in UTP was lowest in A2780 cells, this may be 
related to the higher sensitivity of this cell line to dFdC as 

compared to C26-10 cells. One possibility to clarify the role 
of CTP and UTP in dFdC phosphorylation would be the 

combination of dFdC with an antimetabolite capable of 
affecting CTP and UTP pools. It has been suggested that 
N-phosphon-acetyl-L-aspartate (PALA), a potent inhibitor 
of pyrimidine de nova synthesis, would increase the effect of 
ara-C by depletion of CTP and, subsequently, dCTP pools 
[3 1, 321. Indeed, in several cell lines, PALA can potentiate 

the effect of ara-C [31, 331 but this is not true of all cell 
lines [33]. Under conditions enabling potentiation of ara-C 

[33], we could not demonstrate a similar effect for PALA 

and dFdC (data not shown) in leukemic cell lines. No data 
are available on solid tumor cell lines. 

Our findings on the effects of UTP and CTP are not in 
line with those of Shewach et al. [IO]. For dCK purified 
from MOLT-4 cells, dFdC was phosphorylated most effi- 
ciently with UTP as phosphate donor, leading these authors 
to suggest that high UTP concentrations would be favour- 

able for dFdC phosphorylation. The discrepancy between 
these and our findings may be explained by the difference 

in dCK source. Thus, an approach representative of the 
actual physiological situation in the tumour cells seems to 
give a better prediction as to the regulation of dCK in that 

source. 
In conclusion, the differential effects of CTP and UTP 

on deoxycytidine and dFdC phosphorylation seem to 
potentiate dFdC anabolism more in sensitive A2780 
cells compared to the other lines. The efficiency of de- 
oxycytidine phosphorylation may be an indication of 
dFdCTP accumulation and, consequently, chemosenstivity 
to dFdC. 
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