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Introduction

Dendritic cells (DC) are bone marrow derived profes-
sional antigen presenting cells (APC). Since the recog-
nition of DC in lymphoid organs in 1973 [1] remarkable
progress has been made in the understanding of their
origin and their important role in the immune system.

DC comprise a heterogeneous population, with dif-
ferent properties and characteristics. Langerhans cells,
the ¢rst DC described, are widely distributed in human
skin, oesophagus, cervix and buccal epithelia. Other DC
have been reported in the dermis of the skin and in the
interstitium of all tissues with exception of the brain
(interstitial or tissue DC). They may also be found in the
a¡erent lymph (veiled DC), in the cortical zones of the
lymph nodes and in the spleen (interdigitating DC) [2].
The primary function of DC is to act as sentinels
between the outside world and the body. For this pur-
pose they possess a high capacity for antigen uptake and
processing. Following antigen uptake and in the pres-
ence of appropriate `danger signals', DC migrate rapidly
toT-cell areas in the lymph nodes where they can initiate
an immune response [3]. In contrast to other members
of the APC family (macrophages, B cells) DC are capa-
ble of inducing primary immune responses by the acti-
vation of na|« ve T cells [4].

Escape from immune surveillance by cytotoxic T cells
(CTL) is a fundamental feature of tumours and con-
tributes to their uncontrolled growth. Although tumour
cells express tumour antigens, antigen presentation by
tumour cells to T cells is an ine¡ective process. The
number of antigenic peptide containing major histo-
compatibility complex (MHC) molecules on tumour
cells and the chance that their recognition by sparse
antigen speci¢c T cells will occur is very low. Moreover,
tumour cells mostly lack co-stimulatory surface mole-
cules necessary for stimulation and clonal expansion of
T cells. Indeed, antigen presentation in the absence of
co-stimulatory signals can lead to T-cell anergy rather
than to T-cell activation. The central role of DC in the
initiation of immune responses and new methods for the

ex vivo expansion of DC creates possibilities for the
development of novel immunotherapeutic strategies
against tumours and other diseases. This makes the ex
vivo generation of DC an interesting tool in the develop-
ment of vaccines for cancer patients.

This review outlines recent progress in the under-
standing of the place of DC within the haematopoietic
lineage, their role in antitumour immunity and new
experimental approaches for the application of DC in
the immunotherapy of cancer patients.

Origin

More and more facts about the nature of the precursor
and the growth factors necessary for the development of
DC are emerging. DC originate from haematopoietic
stem cells. This was ¢rst demonstrated in the mouse and
the rat. In mouse bone marrow a common MHC class
II-negative progenitor for granulocytes, macrophages
and dendritic cells was demonstrated in cultures supple-
mented with granulocyte-macrophage colon-stimulating
factor (GM-CSF) [5]. In experiments with human
peripheral blood and bone marrow, stimulated by leuko-
cyte conditioned medium, colonies containing pure DC
and DC mixed with macrophages were observed [6].
These reports strongly suggested the existence of a com-
mon myeloid progenitor for granulocytes, monocytes
and DC, which was later identi¢ed as a pluripotent
CD34+ stem cell [7].

In vitro three sources of DC have been identi¢ed: a
myeloid CD34+ progenitor cell, a lymphoid precursor
and peripheral blood monocytes [8, 9]. Di¡erent cyto-
kines are necessary for the development of DC subsets
from these progenitors. For example, lymphoid DC can
develop in the absence of GM-CSF [10], but they can
mature from CD34+ progenitors in the presence of
CD40-ligand (CD40) [11]. The functional properties of
lymphoid DC may be di¡erent in comparison to mye-
loid DC [9]. Resident lymphoid DC have been suggested
to be instrumental in maintaining peripheral tolerance
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whereas migratory myeloid DC instigate immune re-
sponses upon encountering foreign antigens [12]. In this
review we will further focus on the myeloid DC.

The cytokines that support the proliferation and
di¡erentiation of myeloid DC precursors in vitro are
GM-CSF, interleukin-4 (IL-4) and tumour necrosis fac-
tor-a (TNF-a) [13^15]. In the mouse GM-CSF alone is
su¤cient for the generation of DC from their precursors.
In humans GM-CSF alone increases both the number of
monocytes, macrophages and DC. Addition of TNF-a
to GM-CSF increases the proportion of DC, probably
by the inhibition of granulocyte di¡erentiation. Addi-
tion of stem cell factor (SCF or cKit-ligand) or Flt3-
ligand, both factors capable of stimulating expansion of
early CD34+ progenitors, to the culture medium can
increase the yield of DC generated from haemotopoietic
stem cells [16]. The combination of GM-CSF and TNF-a
is widely used to generate DC from CD34+ stem cells
derived from bone marrow, umbilical cord blood or
peripheral blood [17^19]. For the generation of DC
from peripheral blood monocytes the combination of
interleukin 4 (IL-4) and GM-CSF is used [14]. Under
these conditions monocytes develop into a DC popula-
tion without further proliferation. In vitro IL-4 sup-
presses the acquisition of macrophage properties by the
CD14+ precursor. It is still unclear whether interconver-
sion between macrophages and DC via the CD14+
monocyte takes place in vivo.

Cytokines important for the generation of DC in vivo
still need to be identi¢ed. In transgenic mice with ex-
cessive levels of GM-CSF there was a 50% increase in
DC in thymus and spleen and a threefold increase in
lymph node DC [20]. GM-CSF surprisingly does not,
however, appear to be the most important growth factor
for DC in vivo. In GM-CSF null mice and GM-CSF
receptor null mice normal DC of all phenotypes were
present in all lymphoid organs with only a small decrease
in DC levels [20]. The one exception was lymph nodes of
GM-CSF receptor null mice, which showed a threefold,
decrease in DC [20].

Morphology

DC are large cells with an irregular shape [21]. Constant
formation and retraction of long cytoplasmatic processes
or veils (410 mm) is responsible for the characteristic
appearance of DC (Figure 1). In peripheral tissues this
characteristic enhances the e¤cacy of antigen uptake
and in the lymph nodes it increases the likelihood of
DC-T cell interaction. DC have a lobulated nucleus, a
large Golgi apparatus and many multi-vesicular bodies.
The large Golgi apparatus is necessary for the synthesis
of high amounts of MHC class II molecules, co-
stimulatory molecules and cytokines. Birbeck granules,
rod-shaped intra-cytoplasmic organelles, are found in
Langerhans cells and DC generated in vitro from CD34+
progenitor cells, but not in DC generated from mono-
cytes [22]. The function of these granules is not clear.

The multi-vesicular bodies comprise endosomes, lyso-
somes and MHC class II enriched compartments (MIIC)
[23], all of which are involved in the processing and
presentation of exogenous antigens. These endosomes
are excreted from the cell as exosomes, which are also
capable of stimulating an antigen speci¢c T-cell response
[24]. In the absence of speci¢c DC lineage markers these
morphological features have long been considered as the
hallmarks of the quintessential DC.

Functional stages and phenotypes

DC, as a distinct leukocyte population, are de¢ned more
by the lack than by the presence of selectively expressed
cell surface antigens. Maturational changes of DC are
associated with functional changes and alteration in
surface antigen expression. The two main functional
stages are the immature and the mature DC. The imma-
ture or tissue DC's main function is antigen uptake and
processing whilst the mature DC's main function is anti-
gen presentation and T-lymphocyte activation (Table 1).
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Figure 1. Morphology of monocyte derived DC. The adherent fraction
of peripheral blood mononuclear cells of a normal donor was cultured
for seven days with GM-CSF and IL-4. (a) Phase contrast microscopy
at 100¾ magni¢cation of the cells in a culture disk on day 5 shows DC
in clusters or as individual cells with the typical long cytoplasmatic
veils. (b) CD86 staining of the cultured monocyte derived DC at 400¾
magni¢cation.



DC progenitors, comprising 0.1%^1% of the periph-
eral blood mononuclear cells (PBMC), are spread via
the blood into peripheral tissues, where they develop to a
stage referred to as an immature or tissue DC. Tissue
DC are characterised by a low motility and high capacity
of antigen uptake and processing. The mechanisms of
antigen capture are macropinocytosis, receptor medi-
ated endocytosis and phagocytosis. Macropinocytosis
endows immature DC with the ability to take up large
volumes of £uid containing soluble antigens. Immature
DC express receptors involved in antigen uptake (Fc-
receptor, mannose receptor) [25]. Receptor mediated
antigen uptake allows an extra capacity for antigen
capture with some degree of selectivity for non-self
molecules [23]. The mannose receptor contains several
carbohydrate binding domains and mediates endocyto-
sis or phagocytosis of antigens that express mannose or
fructose residues. Antigen capture by DC is so e¤cient

that only picomolar and nanomolar concentrations of
antigen are needed for antigen presentation [23]. Intern-
alised antigens enter the endocytic pathway of the cell
for processing and class II restricted presentation. DC
are also capable of presentation of exogenous antigen on
MHC class I molecules [26, 27]. Following antigen
uptake and recognition of potential `danger', DC are
mobilised and they migrate via a¡erent lymph vessels to
the draining lymph nodes or via blood to the spleen [4].
Mobilisation of DC is accompanied by maturation. Pro-
gression into the mature stage requires signalling and
this can be achieved in vitro using live bacteria, lipopoly-
saccharide (LPS) or in£ammatory cytokines such as
TNF-a or IL-1b [28]. P-glycoprotein, a transmembrane
glycoprotein capable of pumping chemotherapeutic
agents out of the cell and inducing of drug-resistance
[29], has recently been shown to have a physiological
function mediating the mobilisation of DC [30]. Migra-
tion of DC could be blocked by anti MDR-1-antibodies
and MDR-1 antagonists in an in vitro skin model [30].

Maturation of DC is accompanied by a decrease of
receptors associated with antigen uptake and an in-
crease in expression of receptors associated with antigen
presentation. Mature DC therefore express a high level
of class I and II MHC structures, adhesion molecules,
and co-stimulatory molecules for T-lymphocyte stimula-
tion [17, 31].Vice versa, T cells may also play an impor-
tant role in activating DC and thus further enhancing
the T-cell stimulatory capacity of DC [32, 33]. Ligation
of CD40 on DC and CD40-ligand on T cells induces
DC maturation (upregulation of adhesion and co-stim-
ulatory molecules) and production of IL-12 by DC, a
key cytokine for the generation of T helper (Th) 1 and
CTL responses [34^37]. The mature stage of DC ends in
cell growth arrest and ¢nally cell death by apoptosis in
the draining lymph node [38, 39]. IL-10 increases the
apoptosis rate of DC [40] while CD40-ligand inhibits
Fas-mediated and spontaneous apoptosis in DC [33].
DC apoptosis in lymph nodes may serve to prevent
overstimulation of the immune response. The estimated
in vivo life span of DC varies from three days to four
weeks [41].

DC in malignant disease

In head and neck cancer, nasopharyngeal tumours,
bladder, lung, oesophageal, cervix and gastric carcino-
ma DC in¢ltration of the primary tumour has been
associated with signi¢cantly prolonged survival and a
reduced incidence of metastatic disease [42^50].

In patients with breast cancer a reduction in DC
function has been demonstrated [51]. A decreased num-
ber and potency of DC might in part explain the
observed general immune suppression and de¢ciency in
cellular immune responses against the tumour in cancer
patients. The molecular mechanism of this DC dysfunc-
tion probably re£ects a defective maturation of the DC,
caused by soluble substances (e.g., IL10, vascular endo-
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Table 1. Phenotype of dendritic cells.

Kind of cell surface antigen [85^90] Immature DC Mature DC

Products of MHC
MHC class I and II
CD1a

Receptors for antigen-uptake
Mannose receptor
CD64 (FcgRI)
CD32 (FcgRII)
CD16 (FcgRIII)

Integrins and adhesins
CD54 (ICAM-1)
CD58 (LFA-3)
CD11a (LFA-1)
CD11b (Mac-1)
CD11c (gp150.95)
CD29 (b1 integrin)

Lineage restricted markers
Monocyte/macrophage
CD68
CD14 (LPS receptor)
CD115 (M-CSF receptor)

Myeloid
CD33

Lymphoid
CD8
CD4
CD2
CD3

B lymphocytes
CD19^22

NK cells
CD56
CD57

Co-stimulatory molecules
CD80 (B7.1)
CD86 (B7.2)
CD40

DC restricted molecules
CD83
S100
CMRF-44
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thelium growth factor (VEGF) and transforming growth
factor b (TGF-b) released by tumour cells [52^54].

In patients with metastatic malignant melanoma DC
isolated from regressing metastases showed a potent
T-cell stimulatory capacity whereas a depressed T-cell
activation and downregulation of co-stimulatory mole-
cules was observed in DC from progressive lesions [55].
From these data it would appear that the tumour-
dependent cytokine environment is responsible for DC-
mediated tolerance or anti-tumour immune response
induction. In vivo modulation of this environment by
tumour reduction and/or activation and di¡erentiation
of DC might diminish the tolerance induction and en-
hance the immune response. Recently we observed a
higher percentage of draining lymph node DC in locally
advanced breast cancer patients treated with neo-adju-
vant chemotherapy in combination with GM-CSF in
comparison with stage I^II breast cancer patients and
patients treated with neo-adjuvant chemotherapy with-
out GM-CSF (Luykx et al., manuscript in preparation).

DC vaccination and immunotherapy

Another way of circumventing the immune suppressive
conditions in cancer patients is by the ex vivo generation
of autologous DC, followed by tumour-antigen loading
and re-injection into the patient: the so-called DC vac-
cination.

In animal studies this approach has resulted in pro-
tection against tumours and also a reduction in the size
of established tumours [56^61]. Based on these promis-
ing results in murine models clinical trials are being
initiated all over the world.

Methods for in vitro generation of DC for vaccination
purposes

Several methods are employed for the generation of
human DC in vitro from haematopoietic precursor cells
in peripheral blood. One approach utilises proliferating
CD34+ precursors harvested from bone marrow, cord
blood or peripheral blood in combination with GM-CSF
and TNF-a [14, 17, 18]. Peripheral blood under normal
conditions contains only 0.1% of CD34+ cells and there-
fore mobilisation with granulocyte colony-stimulating
factor (G-CSF) and leukapheresis is required to increase
the yield of CD34+ cells [17, 62]. Another approach
makes use of non-proliferating peripheral blood CD14+
cells or monocytes [14, 63]. Using this culture method
3^8 ¾ 106 DC can be obtained from 40 ml of blood.
The yield of DC from cultured CD34+ cells varies from
1 ¾ 106 from 500 ml of peripheral blood to 1.7 ¾ 106 per
single ml of normal adult bone marrow dependent on
the cytokine mixture used [16, 62]. Monocyte derived
DC need GM-CSF, IL-4 and serum. The type of serum
that is used varies among laboratories and consists of
either foetal calf serum (FCS), human pooled serum
(HPS), or autologous serum or plasma. FCS should be

avoided in therapeutic use because of the potential risk
of immunogenicity and infection. In clinical trials FCS
can be avoided since it is also possible to generate DC in
its absence [14, 17, 63, 64].

A unique type of DC can be derived from a malignant
clone of Philadelphia chromosome-positive chronic mye-
logenous leukemia (CML) cells in vitro [65]. These ma-
lignant DC are capable of antileukemic autologous
T-cell response induction without the necessity for addi-
tional exogenous antigen [65]. Phase I studies with CML
derived DC vaccination are ongoing.

Antigen loading of DC

Many tumour cells express tumour-associated antigens
(TAA), which can be recognised by speci¢c cytotoxic T
lymphocytes. TAA, such as di¡erentiation antigens, pro-
tein products of oncogenes and antigens of viral origin,
are attractive candidates for use in tumour vaccines [66^
69].

Clinical use of DC as tumour vaccines requires load-
ing of DC with TAA for induction of CTL response and
tumour speci¢c immunity. In vitro generated autologous
DC from cancer patients can be pulsed with peptides,
proteins or mRNA, fused with carcinoma cells [59] or
transfected with genes that encode for the TAA.

Unfractionated tumour-derived peptides, acid-eluted
peptides from tumour cells or cell lines, tumour cell
derived mRNA and synthetic peptides can all be used
for the pulsing of DC [70, 71]. Addition of peptides to
the culture medium during the maturation of DC results
in an e¡ective loading of these peptides into MHC class
I complexes. Tumour derived peptides will consist of a
mixture of TAA, present in the distinct tumour, and
might, therefore, be e¡ective even when expression of
certain antigens is lost [72, 73]. A disadvantage might be
the risk of generating auto-immune responses. For the
use of synthetic TAA no tumour tissue is necessary and
the purity of the product might enhance the e¡ectiveness
of the vaccine. An important limitation for the use of
tumour-derived peptides as a source of antigen might be
the availability of su¤cient tumour necessary for the
isolation of antigen. In contrast, antigen loading of DC
with nucleic acids requires just a small amount of
tumour cells [71]. The technique of isolating the mRNA
content of cells, which can then be ampli¢ed using
RT-PCR, is nowadays well established. The correspond-
ing cDNA libraries of mRNA o¡er a virtually unlimited
source of tumour antigens. Another disadvantage of pep-
tide pulsed DC vaccines is the dissociation of peptides
from MHC molecules and MHC epitopes. In contrast
to pulsing, transduction of DC with genetic material
encoding TAA can result in a stable expression of anti-
gens and a long-term antigen presentation [74, 75].

Transduction of DC can be achieved by non-viral
vectors [76], retroviral vectors [64, 74, 75, 77] and by
adenoviral vectors [57, 78, 79]. An advantage of gene
transfer to DC is the fact that endogenous expression
leads to MHC I presentation. Class I restricted presen-
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tation leads to generation of CTL against the protein
coded by the gene. The most e¤cient method for gene
transfer to DC still has to be determined [80]. The
combination of adenovirus-mediated gene transfer and
cationic liposomes or a polycationic amino acid com-
pound [81], seems to be a highly e¤cient method for
gene transfer into DC. A more potent immune response
could be induced by co-expression of transgenes for
cytokines such as GM-CSF or IL-12, to overcome in
vivo immune suppression, leading to a more e¤cient
activation and maturation of DC and subsequent stim-
ulation of Th1 and CTL response.

Clinical studies

At the moment only a few pilot studies with DC vacci-
nation have been published [73, 82^84]. Gjertsen et al.
[83] showed speci¢c T-cell responses against mutant-ras
in vaccinated pancreatic carcinoma patients. Vaccina-
tion was performed with mutant-ras peptide pulsed DC.
This study demonstrates the exquisite sensitivity of the
immune system, since mutant-ras has only one amino
acid di¡erent from the wild type protein and yet cyto-
toxic T cells could be generated capable of killing cells
expressing the mutant ras protein but not those with the
wild type protein. Hsu et al. [82] investigated the ability
of autologous monocyte-derived DC pulsed with tu-
mour-speci¢c idiotype protein and showed a measurable
anti-tumour cellular response in all four vaccinated
patients with B-cell lymphoma. One patient developed
a complete remission, one patient a partial remission
and in the third patient all evidence of disease disap-
peared. Murphy et al. [84] performed a phase I study
in patients with metastatic prostate cancer, who re-
ceived either prostate-speci¢c membrane antigen pep-
tide (PSMA), alone, autologous DC alone or PSMA
pulsed DC. No signi¢cant toxicity was observed and in
some patients who received PMSA pulsed DC a de-
crease in the serum PSA level was detectable. Vaccina-
tion of 16 melanoma patients with peptide- or tumour
lysate-pulsed DC was studied by Nestle et al. [73].
Autologous monocyte-derived DC were pulsed with
tumour-lysate or a cocktail of TAA peptides known to
be recognised by CTL. DC were injected directly into an
uninvolved inguinal lymph node. The vaccination was
well tolerated and no physical signs of auto-immunity
were detected. Anti-tumour immunity in vivo, assessed
as by delayed-type hypersensitivity (DTH) reactivity,
toward a helper antigen (KLH: keyhole limpet hemo-
cyanin) was induced in all patients and toward TAA
peptide pulsed DC in 11 patients. Objective responses
were evident in ¢ve patients and consisted of two com-
plete and three partial responses.

Conclusion

This review considers some aspects of the origin, physi-
ology and function of a relatively recently discovered

cell: the dendritic cell. Its professional antigen present-
ing properties makes it an interesting tool for cancer
immunotherapy. Over the coming years clinical studies
will address many questions concerning the best DC
culture methods, the optimum means of antigen loading
on DC, the most important TAA, and the most e¤ca-
cious vaccination schedules and dosages. The results of
the aforementioned clinical trials are very promising
and further studies will be necessary to demonstrate the
e¡ectiveness and impact on survival of this approach.
Survival bene¢t will be expected especially in patients
with minimal residual disease. DC-based therapies are
creating a major change in the prospects for cancer
immunotherapy. The results of DC vaccination trials
are awaited with high expectation.
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