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Abstract. Neural networks are becoming popular analysis tools in spatial
research, as is witnessed by various applications in recent years. The per-
formance of neural network analysis needs to be carefully judged, however,
since the theoretical underpinning of neuro-computing is still weakly enve-
loped. In the present paper we will use the logit model as a benchmark for
evaluating the result of neural network models, based on an empirical case
study from Italy. The present paper aims to assess the foreseeable impact of
the high-speed train in Italy, by investigating competition effects between
rail and road transport modes. Two statistical models will then be com-
pared, viz. the traditional logit model and a new technique for information
processing, viz. the feedforward neural network model. In the study two
different cases – corresponding to a different set of attributes – are investi-
gated, namely by using only ‘time’ attributes and by using both ‘time’ and
‘cost’ attributes. From an economic viewpoint, both models appear to high-
light the advantage of introducing the high-speed train system in that they
show high probabilities of choosing the improved rail transport mode. The
feedforward neural net model seems to provide reasonable predictions com-
pared to those obtained by means of a logit model. An important lesson
however, is that it is important to define properly the neural network archi-
tecture and to train sufficiently the network during the learning phase.

1. Introduction

The analysis of spatial behaviour in changing networks (e.g., as a result of
the introduction of a new technology or new mode) is fraught with many
difficulties of an analytical and empirical nature. The purpose of this paper
is to assess the intermodal substitution effect as a result of the high-speed
train (HST) in Italy. This requires an investigation of the competition ef-
fects of two main transport modes, viz. rail and road. Competition effects
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between distinct transport modes are usually analysed by means of discrete
choice models, e.g., a logit model. Their general purpose is to assess the
choice behaviour based on a utility function related to each transport mode
in relation to relevant explanatory attributes (e.g. time, cost, distance) asso-
ciated with that mode. Clearly, there are also alternative approaches, such
as spatial interaction models and neural network (NN) models. Since our
purpose is to estimate the new rail – and consequently road – probabilities
for the entire network in Italy after the introduction of the HST, two
methodologically different models will be tested against one another, viz.
the conventional behaviourally-based logit model and the neurocomputing-
based feedforward NN model.

NN analysis has a fairly recent history, although its roots can be traced
back to McCullough and Pitts (1943) who modelled simple neurons as bi-
nary threshold units. After several decades of desperate research attempts,
the real breakthrough took place approximately a decade ago, when Rumel-
hart et al. (1986) showed the scientific potential of back-propagation NNs.
More recently, recurrent back-propagation methods have been introduced in
NN analysis (see Taber 1995). NN research has been applied in a wide
variety of fields, such as telecommunication, pattern recognition, network
forecasting etc. Various applications of NN models in the transport sector
do in the meantime exist, particularly in relation to engineering issues like
incident detection, pavement performance or traffic control (see e.g. among
others, Dougherty 1995; Himanen et al. 1997; Reggiani et al. 1997).
Regrettably, however, thus far only a few applications related to transport
economic behaviour or spatial behaviour do exist (see e.g. Fischer and
Gopal 1994; Reggiani and Tritapepe 1997). There is certainly a need to test
results from NN models on their behavioural contents. This is the principal
goal of the present article. The comparative application of our two compet-
ing models depends principally on two background factors: 1) the necessity
to provide a broader range of predicted values (rather than a single point
prediction); 2) the need to investigate the potential of the new technique for
information processing, i.e. the feedforward NN, compared to the bench-
mark of a traditional logit model.

The aim of the present paper is not to describe theoretical aspects of the
models used, as we may refer here to previous works and publications
cited therein (Nijkamp et al. 1996a, 1997). For the sake of completeness
however, in Sect. 2 a brief introduction to neurocomputing will be offered.
Section 3 will describe the basic characteristics and earlier results of our
empirical application (in Subsects. 3.1 and 3.2); next, we will present in
Subsects. 3.3 and 3.4 the predictions of our models as a result of the intro-
duction of the HST in Italy. These predictions will then mutually be com-
pared in Sect. 3.5. Finally, Sect. 4 contains some concluding remarks.
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2. A brief introduction to neurocomputing

In recent years – and mainly in the last ten years – there have been various
efforts to emulate the human learning process by means of artificial ma-
chine learning (see Kodratoff and Michalski 1990). Computers have be-
come so much a part of our lives that it is often forgotten that they are sim-
ply executors of procedures supplied to them. Of course, their computing
power is very high, but they do not self-improve with experience. This is
the main difference with respect to the human learning process, which,
while performing any kind of activity, is able to improve the way it per-
forms its tasks. Computers work on the basis ofalgorithmswhich are a se-
ries of instructions supplied to them in order to achieve a desired aim.
Such algorithms are representations of human knowledge. In other words,
humans are able to develop their behaviour bylearning, while computer
power is limited only to those tasks for which a human is capable to elabo-
rate an algorithm (see Aleksander and Morton 1990). It should be added
however, that in recent years it is increasingly recognized that machine
learning is to some extent possible in relation to emergent computation and
artificial life, where computers learn from their environment and modify
their behaviour accordingly. Such new research directions hold a great pro-
mise to imitating the human brains. According to the above described pri-
mary difference with learning processes it is possible to defineneurocom-
puting as the first alternative to programmed computing (see Hecht-Nielsen
1990). Neurocomputing technology is one of various technologies (such as
genetic algorithms, fuzzy logic, fractal systems, cellular automata etc.)
which are usually denoted by the common namebiocomputing. “Biocom-
puting refers to biologically inspired approaches to creating software” (see
Valdes 1991). The idea behind biocomputing is the attempt to explain com-
plex phenomena by means of a few number of simple rules, according to
the principle that intricate structures like living systems are made out of
simpler components (cells).

Then, starting both from the need of emulating the human learning pro-
cess – which is based on experience – and from the concept of biocomput-
ing, neural networksrepresent a new technology for information processing
based on current theories concerning the way the human brain works. In a
human brain, nerve cells, called neurons, are the fundamental elements of
the central nervous system. The central nervous system is made up of
about 5 billion neurons; their simple cooperation generates a complex be-
haviour. The basic features of a neuron may be summarized as follows (see
Davalo and Naim 1991):

• it receives signals coming from other neurons;
• it integrates these signals;
• it propagates the resulting signal to other neurons (with different intensi-

ties) by means of electrochemical connections.

Thus, analogously, the structure of NNs is generally represented by logical
units (“neurons”) connected by channels of communication which inter-
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compute independently, since each unit cooperates in the transmission of
information by means of a different “weight”1 . By changing the values of
the weights such as to get the desired output, the learning process takes
place; NNs are trained to output the desired results. Especially the back-
propagation algorithm is able to assign back the mean-squared error signal
from the output units to the input units. In this sense NNs can learn from
experience; this is the key advantage of NNs over conventional algorithms.

The application areas of NNs are broad and widespread, although the
main task is pattern recognition. In particular, in recent years, they have
been adopted for image processing, speech synthesis, noise filtering, ro-
botic control, financial modelling, etc.

The term ‘neural networks’ is used to describe a number of different
models which are usually distinguished into two classes: NNswithout and
with supervisor. This difference is based on the difference in learning pro-
cesses. In fact, the networks withunsupervised trainingdo not need the tar-
get outputs and they modify the weights by means of competitive learning
algorithms, in response to the input data. On the other hand, thesupervised
training implies the knowledge of input/output data in order to find, during
the learning phase, the weights2 of the network which minimize the error
function of the target outputs and the network outputs. Although different
training algorithms3 exist, the most utilized one is the back-propagation al-
gorithm.

In the application described in the next section, we will use the above
mentioned NN model, viz. the feedforward NN model which is character-
ized by a back-propagation algorithm as learning procedure.

3. An application of neural networks in transport

3.1 Introduction

As mentioned above, NNs are well suitable for solvingpattern recognition
problems. They have been applied in various areas for solving this specific
task and, in general, they have shown a very good performance.

Of course, much attention has also been paid to this new technology in
the transportation area and, again, the majority of the applications has been
developed for solving patterns recognition problems, in particular for traffic
control (as already mentioned in Sect. 1).

However, NNs have at least two features which distinguish themselves
from other methodologies. For example, they are suitable for exploratory
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1 Here a weight is a real number assigned to a connection between two units
2 The weights are the values (adaptive coefficients) assigned to the links between the units of
the network. The aim of the training phase is to find the values of the weights which will
produce a reasonable output in response to input
3 The aim of a training algorithm is to minimize the error function by adjusting the value of
the weights



data analysis (see Nijkamp et al. 1996a) due to the following characteris-
tics:

• NNs do not a priori require algorithms or rules’ development; this fea-
ture may be very useful in cases of a large quantity of data (e.g., in a
GIS context; see Fischer 1994) in which the knowledge of the exact
statistical model for explaining the phenomenon examined is lacking.

• NNs can learn and then forecast even on the basis of incomplete, noisy
and fuzzy information.

Furthermore, NNs may also be very useful in a forecasting context. In fact,
in microeconomic applications, classical models, which are based on micro-
variables, are often used by adopting aggregated variables, under the as-
sumption that classes of individuals behave in the same way. Therefore, the
statistical models often reflect the limits associated with this assumption.
NNs seem to be able to overcome this limit by capturing the stochastic ele-
ments neglected in the previous assumption. In addition, NN models can
capture nonlinearities that a traditional discrete choice network models can-
not. Also the transparibility of NN results is an interesting potential, as re-
sults may be used to forecast behaviour in other regions or sectors. This is
a major advantage compared to discrete choice models, where parameters
must be re-estimated for each relevant region.

This latter peculiarity will be investigated and tested in the following
application, where the standard logit model will be compared with the feed-
forward NN model. It should be noted that also the logit model has several
strong points. In particular, it gives information on the effect of each inde-
pendent variable on the dependent variable, thus avoiding the ‘black box’
impression of NN models.

The experiments will be carried out by using aggregated data referring
to a modal split problem for road-rail competition after the introduction of
the foreseen HST in Italy.

3.2 Results from previous experiments

As mentioned in Sect. 1, the aim of the empirical application described in
this study is to investigate the impact of the HST in Italy. The entire Italian
territory (except the Sardinia Island) has been subdivided into 67 areas cor-
responding to both single provinces and an aggregation of two or three pro-
vinces; such a subdivision is shown in Fig. 1.

The introduction of the HST is studied by evaluating how the rail mode
and the road mode flows vary, as a result of the implementation of the
HST system in Italy. This is a typicalmodal split problemfor an entire net-
work. To test the sensitivity of the results, two methodologically different
models are used, the classical logit model and the new NN model. An illus-
trative scheme of such a problem is depicted in Fig. 2.

As mentioned in Sect. 1, the present analysis refers to the experiments
carried out in previous work (see Nijkamp et al. 1996a, 1997). In these
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studies the best configuration of the models has been investigated; they are
consequently utilized in the present study. The approach adopted for this
purpose consists of calibrating (training) the models by using the same data
set4 (containing 698 observations5) and in testing them by means of a test-
set which contains 349 observations referring to other links (never used be-
fore; thus we may speak ofspatial forecasting). The results are evaluated
by means of the Average Relative Variance (ARV) statistical indicator (see
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Fig. 1. Subdivision of the Italian land

4 The whole data set has been kindly provided by the Italian State Railways (‘Ferrovie dello
Stato’) and it refers to Census data (1987)
5 Each observation contains variables such as the attributes (e.g. ‘distance’, ‘time’ and ‘cost’)
and the flows with reference to each transport mode.



e.g. Nijkamp et al. 1996a, 1997; Fischer and Gopal, 1994). This NN analy-
sis is conducted in two phases:

1. by investigating three different possible NN architectures (see Nijkamp
et al. 1996a);

2. by varying the attributes in both models (see Nijkamp et al. 1997).

Finally, referring to the questions raised in Sect. 1, the best configuration
results in Case A illustrated in Fig. 3 (according to theARVvalues for both
models); it corresponds to the case with only two attributes, i.e. the rail and
the road ‘time’. In Fig. 3 Case B is also illustrated, corresponding to the
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The provinces

2 Vercelli 21 Gorizia 41 Pesaro
3 Asti 22 Trieste 42 Livorno
4 Novara 23 Venezia 44 Grosseto
5 Alessandria 24 Padova 46 Roma
6 Pavia 25 Rovigo 47 Viterbo
7 Milano 26 Imperia 49 Chieti
8 Varese 27 Savona 50 Frosinone

10 Como 28 Genova 51 Latina
11 Brescia 29 Parma 54 Foggia
12 Piacenza 30 Reggio Emilia 55 Napoli
14 Trento 31 Modena 57 Potenza
15 Bolzano 32 Ferrara 59 Brindisi
16 Verona 33 Bologna 60 Taranto
17 Vicenza 35 Massa 61 Lecce
19 Pordenone 36 La Spezia 63 Reggio Cal
20 Udine 39 Siena 64 Messina

Aggregation of two provinces

9 Bergamo 38 Firenze 56 Salerno
Sondrio Pistoia Avellino

13 Cremona 40 Arezzo 58 Bari
Mantova Perugia Matera

18 Treviso 48 Pescara 62 Cosenza
Belluno Teramo Catanzaro

34 Forli 52 Caserta 67 Siracusa
Ravenna Isemia Ragusa

37 Pisa 53 Benevento
Lucca Campobasso

Aggregation of three provinces

1 Torino 45 Terni 66 Catania
Aosta Rieti Enna
Cuneo L’Aquila Caltanissetta

43 Ancona 65 Palermo
Macerata Trapani
Ascoli Piceno Agrigento
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Fig. 2. Scheme of a modal split problem between 67 areas

Fig. 3. Configuration of the two cases studied



case with 4 attributes, i.e. ‘time’ and ‘cost’ related to both transport modes.
This case will be analysed here further, as – in order to evaluate the impact
of the HST – it is important to take into account ‘cost’ attributes as eco-
nomic choice criteria.

Having described now two main background results to be used for our
new empirical forecasting experiments, we will describe in subsequent sec-
tions our findings for the expected competition effects between road and
rail in Italy. Air will not be included due to lack of spatial data, but might
certainly be an interesting addition. Subsections 3.3 and 3.4 will describe
the experiments related to Case A and Case B mentioned above. The mod-
els will be calibrated (trained6) by using the whole data set containing 1396
observations, while the impact of the HST will be evaluated only on the
links shown in Fig. 4.

In fact, according to the new data provided by the Italian State Rail-
ways, which refer to the new values of the attributes (rail ‘time’ and rail
‘cost’) after the introduction of the HST, the links7 which are supposed to
be connected by the new line HST are the following:
• Torino↔Bologna; Torino↔Roma; Torino↔Napoli; Milano↔Bologna;

Milano↔Roma; Milano↔Napoli; Venezia↔Roma; Venezia↔Napoli;
Genova↔Bologna; Genova↔Venezia; Genova↔Napoli; Bologna↔
Roma; Bologna↔Napoli; Roma↔Napoli.

We will now present in more detail the results for cases A and B.

3.3 Impacts of ‘time’ attributes: case A

In the previous subsection we have already referred to the two cases A and
B, which will be analysed and compared in this paper. The choice of these
cases was depending on the values of the statistical indicator evaluated on
the test-set (see above), as can be easily seen from Fig. 5.

Thus, according to Case A, it seems that, on the basis of both the prob-
lem under investigation and the data set, the choice of the transport mode
for the generic passenger does not depend on the ‘cost’ attributes.

By calibrating, respectively training, the logit model and the feedfor-
ward NN model (for a mathematical exposition on these models see
Nijkamp et al. 1997) by means of a (training) set containing 1396 observa-
tions, it is then possible to make intermodal forecasts by using the new val-
ues of the attributes related to the links which are supposed to be con-
nected by the HST (see above). Only for these links, in Table 1 the attri-
butesbeforeandafter the HST are shown.
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6 Note that for the NN model – in order to take into account of theoverfitting problem(see
e.g. Fischer and Gopal 1994; Reggiani and Tritapepe 1997) – it is necessary to know the point
(number of iterations) when stopping the learning-phase. Usually this stopping-point is deter-
mined by means of the Cross-Validating Technique (see e.g. again Reggiani and Tritapepe
1997); in the Cases A and B described here, the points which have been determined in the
work of Nijkamp et al. (1997) will be used
7 Each link has to be considered in both directions



The predicted flow probabilities obtained from the application of both
models are compared to the flow probabilities without the new HST con-
nection, and both are shown in Fig. 6 and in Table 2.

By examining Fig. 6, some qualitative observations may be made:

• according to both the logit model and the feedforward NN model, the
introduction of the HST gives rise to an increase in the probabilities of
choosing the rail transport mode;

• in the NN model the increase in the rail probabilities is higher than in
the logit model;

• NN forecasts seem to follow a stochastic pattern while logit forecasts
tend to stabilize the predicted values.
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Fig. 4. Links which will be connected by the HST



These results emphasize the good ‘nonlinear pattern’ of an NN approach,
in comparison with logit model. On the other hand, the logit predictions
are surely helpful in order to better ‘optimize’ the NN results. Conse-
quently, the ‘combination’ of both results seems quite suitable in a forecast-
ing analysis where a slightly broader range of proper values may be pre-
ferred to ‘unique’ point values. Such a kind of sensitivity analysis is also
methodologically interesting, as it may increase our understanding of the
robustness of the predictions.
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Fig. 5. The results of spatial forecasting for the two cases studied

Table 1. The attributes ‘before’ and ‘after’ the HST for case A (time in minutes) including the
‘entrance’ and ‘exit’ time (data provided by the Italian Railways Company)

Attributes case A

Before high-speed train After high-speed train

O D tot rail time tot road time O D tot rail time tot road time

Torino Bologna 409 346 Torino Bologna 392 346
Torino Roma 549 589 Torino Roma 517 589
Torino Napoli 666 724 Torino Napoli 590 724
Milano Bologna 322 275 Milano Bologna 291 275
Milano Roma 488 533 Milano Roma 452 533
Milano Napoli 589 669 Milano Napoli 509 669
Venezia Roma 474 488 Venezia Roma 462 488
Venezia Napoli 679 624 Venezia Napoli 609 624
Genova Bologna 367 304 Genova Bologna 357 304
Genova Venezia 475 375 Genova Venezia 456 375
Genova Napoli 587 596 Genova Napoli 565 596
Bologna Roma 385 390 Bologna Roma 376 390
Bologna Napoli 532 526 Bologna Napoli 473 526
Roma Napoli 359 291 Roma Napoli 307 291



3.4 Impacts of ‘time’ and ‘cost’ attributes: case B

In this case, the analysis of the impact of the HST is undertaken by means
of four attributes, i.e. ‘time’ and ‘cost’ attributes for both models. These
values,beforeandafter the HST, are shown in Table 3.
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Fig. 6. Impact of the HST in the case with two attributes



In Fig. 7 and in Table 4, the probabilities predicted from these models,
compared to the probabilities of choosing rail or road transport modes be-
fore the introduction of the HST, are presented. They will concisely be
commented upon.

By examining Fig. 7, one can see that no drastic change occurs, with
reference to the previous case. The general considerations underlined for
case A (see the previous Sect. 3.3) still hold for case B. In particular, these
last results confirm the ‘robustness’ of the logit model which seems to
predict in case B the same values as those depicted in case A. The same
predictions in both the two cases are likely caused by the independence
from irrelevant alternative (IIA) feature underlying discrete choice models.
On the contrary, the NN approach seems to be more sensitive to changes in
the input information. Finally, in the next section, the predictions of both
models for both Cases A and B will be mutually compared.

3.5 Comparison of different cases

Next, a comparison of the results of the models for both cases is depicted
in Fig. 8 and in Table 5, by showing a homogeneity of results especially
for logit models. NN show slightly different values in the two cases, by un-
derlying their ‘intrinsic’ sensitivity to data variations.

A first qualitative observation, by looking at Fig. 8, is that the feedfor-
ward NN model forecasts in Case B lower rail probabilities than in Case
A; on the other hand, the logit model forecasts in Case B higher rail prob-
abilities than in Case A. Then, by observing in more detail Table 5, it is
noteworthy that the above observation is valid for all links except for the
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Table 2. The rail mode flow probabilities ‘before’ and ‘after’ the HST for case A

Forecasted rail mode flow probabilities: case A

Neural net model Logit model

O D before HST after HST O D before HST after HST

Torino Bologna 0.6353 0.8108 Torino Bologna 0.6353 0.5903
Torino Roma 0.3900 0.6551 Torino Roma 0.3900 0.5869
Torino Napoli 0.3141 0.6502 Torino Napoli 0.3141 0.5944
Milano Bologna 0.4209 0.8228 Milano Bologna 0.4209 0.5460
Milano Roma 0.2949 0.6920 Milano Roma 0.2949 0.5699
Milano Napoli 0.2695 0.6266 Milano Napoli 0.2695 0.5758
Venezia Roma 0.3198 0.7259 Venezia Roma 0.3198 0.5828
Venezia Napoli 0.5858 0.6713 Venezia Napoli 0.5858 0.6068
Genova Bologna 0.6354 0.7939 Genova Bologna 0.6354 0.5869
Genova Venezia 0.4564 0.7858 Genova Venezia 0.4564 0.6119
Genova Napoli 0.2301 0.6636 Genova Napoli 0.2301 0.5999
Bologna Roma 0.1983 0.8341 Bologna Roma 0.1983 0.5630
Bologna Napoli 0.3049 0.6922 Bologna Napoli 0.3049 0.5802
Roma Napoli 0.2944 0.8282 Roma Napoli 0.2944 0.5523
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link Genova-Venezia(in both models). A few relatively large differences
are also to be ascribed to inaccuracies in some of the railway data used.
Clearly, the model results are influenced by the assumptions made in cases
A and B.

Of course, at least one question arises concerning the goodness of fit of
the predictions and, in particular, concerning the question which model pro-
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Fig. 7. Impact of the HST in the case with four attributes
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Table 4. The rail mode flow probabilities ‘before’ and ‘after’ the HST for case B

Forecasted rail mode flow probabilities: case B

Neural net model Logit model

O D before HST after HST O D before HST after HST

Torino Bologna 0.6353 0.8242 Torino Bologna 0.6353 0.5969
Torino Roma 0.3900 0.6204 Torino Roma 0.3900 0.5840
Torino Napoli 0.3141 0.6492 Torino Napoli 0.3141 0.5827
Milano Bologna 0.4209 0.8753 Milano Bologna 0.4209 0.5816
Milano Roma 0.2949 0.5927 Milano Roma 0.2949 0.5780
Milano Napoli 0.2695 0.5998 Milano Napoli 0.2695 0.5720
Venezia Roma 0.3198 0.6432 Venezia Roma 0.3198 0.5890
Venezia Napoli 0.5858 0.6680 Venezia Napoli 0.5858 0.5991
Genova Bologna 0.6354 0.7821 Genova Bologna 0.6354 0.5964
Genova Venezia 0.4564 0.7605 Genova Venezia 0.4564 0.5992
Genova Napoli 0.2301 0.6555 Genova Napoli 0.2301 0.5892
Bologna Roma 0.1983 0.7543 Bologna Roma 0.1983 0.5878
Bologna Napoli 0.3049 0.6061 Bologna Napoli 0.3049 0.5873
Roma Napoli 0.2944 0.8715 Roma Napoli 0.2944 0.5819

Fig. 8. Comparison of the predictions in the cases A and B



vides better results. In this respect, the following concluding considerations
may be relevant:

• according to the values of theARVindicators, which evaluate the ability
of the models for spatial forecasting, the feedforward NN model tends to
forecast slightly better than the logit model;

• although a conclusive ‘test’ concerning our forecasting analysis is not
entirely possible, a ‘global view’ on both the logit and NN results
teaches us that our findings are in general quite plausible;

• despite a global similarity on results of the two different approaches, the
relatively modest discrepancies suggest the validity – for each link – of
a slightly broader range of predicted values. Such a sensitivity analysis
of results from different methodologies may be appealing for planners or
decision-makers, as this focuses the attention more on the recognition of
the patterns of results than on individual point estimates which may be
hampered by data flows on separate links.

4. Conclusions

In the present paper the impact of the HST on modal split in Italy has been
studied. The analysis has been carried out by means of two methodologi-
cally different models in order to compare the performance of the models
and to provide a range of values predicted.
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Table 5. Summary of the predictions of the experiments carried out

Predicted rail mode flows

Before the HST Neural net model Logit model
after the HST after the HST

Origin Destination rail flows Case A Case B Case A Case B

Torino Bologna 385 491 499 358 362
Torino Roma 411 690 654 619 616
Torino Napoli 103 213 213 195 191
Milano Bologna 1585 3099 3296 2056 2190
Milano Roma 659 1547 1325 1274 1292
Milano Napoli 325 756 723 694 690
Venezia Roma 158 359 318 288 291
Venezia Napoli 99 113 113 103 101
Genova Bologna 291 364 358 269 273
Genova Venezia 110 189 183 147 144
Genova Napoli 49 141 140 128 126
Bologna Roma 259 1089 985 735 768
Bologna Napoli 125 284 248 238 241
Roma Napoli 3141 8837 9299 5893 6209



First of all, the best configuration of the models investigated and their
results showed that the ‘distance’ attributes may lead to a distorsion in both
models, probably because it is correlated with other attributes in our analy-
sis.

Next, the introduction of the HST has been investigated; from an eco-
nomic viewpoint, both models have shown the benefits of the new HST, in
particular in regard to the rise in the probabilities of choosing the rail trans-
port mode on most links in Italy.

From a methodological viewpoint, some discrepancies were observed by
using the logit model; the feedforward NN model seems to provide accept-
able predictions, although it is important to well define the NN architecture
and to well train the network during the learning phase (see Nijkamp et al.
1996a). In this framework, a comparative analysis among different architec-
tures/algorithms as well as different software packages could be certainly
useful, while also the development of a better data base with a view on
monitoring new developments seems to be a sine qua non.

Clearly, NN models take sometimes much training time and this may
limit their application for quick large scale problems, while also their sensi-
tivity to the preprocessing of data may be a cause for concern, as this may
lead to fluctuating results. A fascinating methodological issue is still the
question on the behavioural contents of NN models. It seem to be possible
to use the weights inside a NN to derive coefficients of a discrete choice
model (see Schintler and Olurotimi 1997) by designing a specific NN for-
mulation and architecture. It is also worth mentioning that the sigmoid
function used in an NN analysis for training the network is essentially a
logistic function related to a binary choice model. This may lead to another
correspondence between NN models and discrete choice models. It is clear
that the application of NN analysis in transportation behaviour still de-
serves more careful methodological attention.
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