View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace at VU

EFFICIENT RELIABLE GROUP COMMUNICATION
FOR DISTRIBUTED SYSTEMS

M. Frans Kaashoek

M.I.T. Laboratory for Computer Sciencet
Cambridge, MA

Andrew S. Tanenbaum

Dept. of Math and Comp. Science
Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

Many applications can profit from broadcast communication, but few operating systems provide primi-
tives that make broadcast communication available to user applications. In this paper we introduce primi-
tives for broadcast communication that have been integrated with the Amoeba distributed operating sys-
tem. The semantics of the broadcast primitives are simple, powerful, and easy to understand. Our primi-
tives, for example, guarantee total ordering of broadcast messages. The proposed primitives are also effi-
cient: if a network supports physical multicast, a reliable broadcast can be done in just slightly more than
two messages on the average, so, the performance of a reliable broadcast is roughly comparable to that of
a remote procedure call. In addition, the primitives are flexible: user applications can, for example, trade
performance against fault tolerance.

1. Introduction

Many distributed applications are easier to build if the operating system supports a primitive that al-
lows the application to send a message to n destinations. Like a primitive for point-to-
communication, such a broadcast primitive must be able to recover from lost messages due to com-
munication failures or buffer overflow. Furthermore, such a primitive should provide a way to deal
with the case where some of the n destinations fail due to hardware or software errors. In this paper,
we describe a set of primitives for group communication that provide reliable broadcast communica-
tion in the presence of communication and processor failures. These group communication primitives
have been implemented in the Amoeba distributed operating system [Mullender et al. 1990; Tanen-
baum et al. 1990]. We describe the algorithms and give extensive performance measurements. The

T This work was done as part of the author’s Ph.D. thesis at the Vrije Universiteit [Kaashoek 1992].

https://core.ac.uk/display/15449707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

group communication primitives have been used in running parallel applications [Bal 1990; Tanen-
baum et al. 1992], a fault-tolerant implementation of the Orca programming language [Kaashoek et al.
1992], and a fault-tolerant distributed directory service [Kaashoek et al. 1993a].

In distributed applications, a group of processes cooperates to provide a single service. Most
current operating systems provide only point-to-point communication for distributed applications, but
what often also is needed is 1-to-n communication [Chang 1984; Gehani 1984; Dechter and Kleinrock
1986; Ahamad and Bernstein 1985; Cheriton and Zwaenepoel 1985; Joseph and Birman 1986; Liang
et al. 1990; Cristian 1991; Birman 1993]. Consider, for example, a parallel application. Typically in
a parallel application a number of processes cooperate to compute a single result. If one of the
processes finds a partial result (e.g., a better bound in a parallel branch-and-bound program) it is
desirable that this partial result be communicated immediately to the other processes. By receiving
the partial result as soon as possible, the other processes do not waste cycles on computing something
that is not interesting anymore, given the new partial result.

Now consider a second application: a fault-tolerant storage service. A reliable storage service
can be built by replicating data on multiple processors each with its own disk. If a piece of data needs
to be changed, the service either has to send the new data to all processes or invalidate all other copies
of the changed data. If only point-to-point communication were available, then the process would
have to send n — 1 reliable point-to-point messages. In most systems this will cost at least 2(n — 1)
packets (one packet for the actual message and one packet for the acknowledgement). If the message
sent by the server has to be fragmented into multiple network packets, then the cost will be even
higher. This method is slow, inefficient, and wasteful of network bandwidth.

In addition to being expensive, building distributed applications using only point-to-point com-
munication is often difficult. If, for example, two servers in the reliable storage service receive a re-
quest to update the same data, they need a way to consistently order the updates, otherwise the data
will become inconsistent. The problem is illustrated in Figure 1. The copies of variable X become in-
consistent because the messages from Server 1 and Server 2 are not ordered. What is needed is that
all servers receive all messages in the same order.

Many network designers have realized that 1-to-n communication is an important tool for build-
ing distributed applications; broadcast communication is provided by many networks, including
LANs, geosynchronous satellites, and cellular radio systems [Tanenbaum 1989]. Several commonly
used LANSs, such as Ethernet and some rings, even provide multicast communication. Using multicast
communication, messages can be sent exactly to the group of machines that are interested in receiving
the message. Future networks, like Gigabit LANSs, are also likely to implement broadcasting and/or
multicasting to support high-performance multi-media applications [Kung 1992].

The protocol presented in this paper for group communication uses the hardware multicast ca-
pability of a network, if one exists. Otherwise, it uses broadcast messages or point-to-point messages,
depending on the size of the group and the availability of broadcast communication. Thus, this sys-
tem makes any existing hardware support for group communication available to application programs.

The paper makes the following contributions:

X X
X=2 X=3
X X=2 X
2 X=3 3
X X
Done Done
- 3 2 E——

Fig. 1. Servers 1 and 2 receive update messages for the shared variable X at approximately the
same time. The copies of X become inconsistent because the messages from Server 1 and Server
2 are not ordered

. It identifies and discusses design issues in group communication.

. It introduces an improved algorithm for reliable totally-ordered group communication.

J It provides enough detail of the algorithm that it can be implemented in any distributed
system.

. It gives detailed performance measurements of an implementation in an existing distri-

buted system.

A word on terminology. The terms “broadcasting,”” “multicasting,” and “group communica-
tion”” are often confused. We will refer to the abstraction of a group of processes communicating by
sending messages from 1 to n destinations as ““group communication.”” We consider ““broadcasting”’
and “multicasting” as two hardware mechanisms that can be used to implement the abstraction of
group communication. A broadcast message on a network is received by all processors on that net-
work. A multicast message on a network is only received by the processors on that network that are
interested in receiving it. We will often use the term “broadcasting’’ to refer to any of the three
terms, as this is the term generally used in the literature.

The outline of the paper is as follows. In Section 2 we discuss the design issues in group com-
munication. In Section 3 we present the choices that we have made for each design issue and the rea-
sons why. In Section 4 we present the Amoeba kernel primitives for group communication. In Sec-
tion 5 we give the algorithms for an efficient reliable broadcast protocol that provides total ordering.

In Section 6 we describe the structure of the Amoeba kernel and give detailed performance measure-
ments about the group communication. In Section 7 we compare our protocol with a number of other
protocols and other systems that support group communication. In Section 8 we give our conclusions.

2. Design Issuesin Group Communication

A few existing operating systems provide application programs with support for group com-
munication [Liang et al. 1990]. To understand the differences between these existing systems, six
design criteria are of interest: addressing, reliability, ordering, delivery semantics, response semantics,
and group structure (see Fig.2). We will now discuss each one in turn.

Issue Description

Addressing Addressing method for a group (e.qg., list of members)
Reliability Reliable or unreliable communication?

Ordering Order among messages (e.g., total ordering)

Delivery semantics How many processes must receive the message successfully?

Response semantics | How to respond to a broadcast message?

Group structure Semantics of a group (e.g., dynamic versus static)

Fig. 2. The main design issues for group communication.

At least four methods of addressing messages to a group exist. The simplest one is to require
the sender to explicitly specify all the destinations to which the message should be delivered. A
second method is to use a single address for the whole group. This method saves bandwidth com-
pared to the first one and also allows a process to send a message without knowing which processes
are members of the group [Frank et al. 1985]. Two less common addressing methods are source ad-
dressing [Gueth et al. 1985] and functional addressing [Hughes 1988]. Using source addressing, a
process accepts a message if the source is a member of the group. Using functional addressing a pro-
cess accepts a message if a user-defined function on the message evaluates to true. The disadvantage
of the latter two methods is that they are hard to implement with current network interfaces.

The second design criterion, reliability, deals with recovering from communication failures,
such as buffer overflows and garbled packets. Because reliability is more difficult to implement for
group communication than for point-to-point communication, a number of existing operating systems
provide unreliable group communication [Cheriton and Zwaenepoel 1985; Rozier et al. 1988],
whereas almost all operating systems provide reliable point-to-point communication, for example, in
the form of remote procedure call (RPC) [Birrell and Nelson 1984].

Another important design decision in group communication is the ordering of messages sent to

a group. Roughly speaking, there are 4 possible orderings: no ordering, FIFO ordering, causal order-
ing, and total ordering. Group communication without an order among messages is easy to implement
in the operating system, but unfortunately makes programming for application builders harder, as they
have to code up their own protocols. FIFO ordering guarantees that all messages from a member are
delivered in the order in which they were sent. Causal ordering guarantees that all messages that are
related are ordered [Birman et al. 1991]. More specifically: messages are in FIFO order and if a
member after receiving message A sends a message B, it is guaranteed that all members will receive A
before B. In the total ordering, each member receives all messages in the same order. The last order-
ing is stronger than any of the other orderings and makes programming easier, but it is harder to im-
plement.

To illustrate the difference between causal and total ordering, consider a service that stores
records for client processes. Assume that the service replicates the records on each server to increase
availability and reliability and that it guarantees that all replicas are consistent. If a client may only
update its own records, then it is sufficient that all messages from the same client will be ordered.
Thus, in this case a causal ordering can be used. If a client may update any of the records, then a
causal ordering is not sufficient. A total ordering on the updates, however, is sufficient to ensure con-
sistency among the replicas. To see this, assume that two clients, C; and C,, send an update for
record X at the same time. As these two updates will be totally-ordered, all servers either (1) receive
first the update from C, and then the update from C, or (2) receive first the update from C, and then
the update from C,. In either case, the replicas will stay consistent, because every server applies the
updates in the same order. If in this case causal ordering had been used, it might have happened that
the servers applied the updates in different orders, resulting in inconsistent replicas.

A debate on what the appropriate ordering is for group messages is now raging. For example,
Cheriton and Skeen argue that the communication should not support any ordering at all [Cheriton
and Skeen 1993]. Van Renesse, on the other hand, explicitly argues for ordering of group messages
[Van Renesse 1993]. As an aside, in principle total ordering does not have to imply FIFO ordering,
although most group systems that support total ordering also guarantee FIFO ordering. For a more
theoretical and in depth treatment of the semantics of group communication see Hadzilacos and
Toueg [Hadzilacos and Toueg 1993]

The fourth item in the table, delivery semantics, relates to when a message is considered suc-
cessfully delivered to a group. There are three common choices: k-delivery, quorum delivery, and
atomic delivery. With k-delivery, a broadcast is defined as being successful when k processes have
received the message for some constant k. With quorum delivery, a broadcast is said to be successful
when a majority of the current membership has received it. With atomic delivery either all surviving
processes receive it or none do. Atomic delivery is the ideal semantics, but is harder to implement
since processors can fail.

Item five, response semantics deals with what the sending process expects from the receiving
processes [Hughes 1989]. There are four broad categories of what the sender can expect: no
responses, a single response, many responses, and all responses. Operating systems that integrate

group communication and RPC completely often support all four choices [Cheriton and Zwaenepoel
1985; Birman et al. 1990].

The last design decision specific to group communication is group structure. Groups can be ei-
ther closed or open [Liang et al. 1990]. In a closed group, only members can send messages to the
group. In an open group, nonmembers may also send messages to the group. In addition, groups can
be either static or dynamic. In static groups processes cannot leave or join a group, but remain a
member of the group for the lifetime of the process. Dynamic groups may have a varying number of
members over time; processes can come and go.

If processes can be members of multiple groups, the semantics for overlapping groups must be
defined. Suppose that two processes are members of both groups G; and G, and that each group
guarantees a total ordering. A design decision has to be made about the ordering between the mes-
sages of G, and G,. All choices discussed in this section (none, FIFO, causal, and total ordering) are
possible.

To make these design decisions more concrete, we briefly discuss two systems that support
group communication. Both systems support open dynamic groups, but differ in their semantics for
reliability and ordering. In the V system [Cheriton and Zwaenepoel 1985], groups are identified with
a group identifier. If two processes concurrently broadcast two messages, A and B, respectively, some
of the members may receive A first and others may receive B first. No guarantees about ordering are
given. Group communication in the V system is unreliable. Users can, however, build their own
group communication primitives with the basic primitives. They could, for example, implement the
protocols described in this paper as a library package.

In the Isis system [Birman and Joseph 1987], messages are sent to a group identifier or to a list
of addresses. When sending a message, a user specifies how many replies are expected [Birman et al.
1990]. Messages can be totally-ordered, even for groups that overlap. If, for example, processes P ;
and P, in Figure 3 simultaneously send a message, processes P53 and P4 will receive both messages
in the same order. Reliability in Isis means that either all or no surviving members of a group will re-
ceive a message, even in the face of processor failures. Because these semantics are hard to imple-
ment efficiently, Isis also provides primitives that give weaker semantics, but better performance. It
is up to the programmer to decide which primitive is required.

G, G,

Fig. 3. Total ordering with overlapping groups. P 1 belongs to group G 1. P 5 belongs to group
G . P3and P4 are member of both groups.

3. Design Choices
Now that we have discussed the design issues in general, let us look at the choices we have
made for Amoeba. These are summarized in Figure 4, and will each be discussed below in turn.

Addressing

Groups are addressed by a single address, called a port. A port is a large random number. By
using a single address per group, a process can send a message to the group without requiring to know
which processes (or even how many processes) are members of the group.

Addressing groups with ports fits with Amoeba’s client/server model. All services in Amoeba
are addressed by ports. When a service is started, it generates a new port and registers the port with
the directory service. A client can look up the port using the directory service and asks its own kernel
to send a message to the given port. The kernel maps the port onto a network address. If multiple
servers listen to the same port, only one (arbitrary) server will get the message. Thus, in Amoeba,
processes and groups are addressed in a uniform way.

Issue Choice
Addressing Group identifier (port)
o Reliable communication;
Reliability . .
fault tolerance if specified
Ordering Total ordering per group

Delivery semantics | All or none

Response semantics | None (RPC is available)

Group structure Closed and dynamic

Fig. 4. Important design issues of Fig. 3.1 and the choices made in Amoeba.

Reliability

By default, the group primitives provide by default reliable communication, even in the pres-
ence of communication failures. If a message is lost due to buffer overflow or hardware error, the
protocols will guarantee that the message is resent.

On the user’s request, the group primitives can also recover from processor failures. After a
processor failure the protocol goes through a recovery phase in which the group is rebuilt from the

processors that are still alive. The protocol guarantees (1) that all the members in the rebuilt group re-
ceive all the messages successfully sent by any member of the original group before the failure and
(2) that surviving members of the rebuilt group will receive all messages successfully sent by any
member of the new group after the failure. If not enough surviving members can be found for re-
building the group, the recovery phase fails and the group will block until a sufficient number of pro-
cessors recover. Processors may fail during the recovery algorithm; in this case the recovery algo-
rithm starts again until it succeeds or fails.

To rebuild a group requires consensus on which processors are alive. However, it is known that
achieving consensus in an asynchronous distributed system with one faulty processor is impossible
[Fischer et al. 1985]. To be able to reach a decision about whether a processor is alive, the algorithm
sends messages asking the recipient to respond. If after a certain number of trials a processor does not
respond, the processor is declared “dead””. Using this method some processors, may be declared dead
although they are functioning fine (e.g., when a processor does not respond fast enough). Achieving
an approximate consensus is the best one can do in today’s distributed systems.

We decided to make the recovery from processor failures an option, because providing these se-
mantics is expensive and many applications do not need to recover from processor failures. We as-
sume that processors fail due to fail-stop failures [Schneider 1984]. Stronger semantics, such as au-
tomatic recovery from Byzantine failures (i.e., processors sending malicious or contradictory mes-
sages) and automatic recovery from network partitions, are not supported by the group primitives.
Applications requiring these semantics have to implement them explicitly. For a more thorough dis-
cussion of the relation between broadcasts semantics and failures, and protocols for different type of
failures see Hazdilacos and Toueg [Hadzilacos and Toueg 1993].

Although Amoeba’s network protocol supports unreliable group communication [Kaashoek et
al. 1993b], we decided to make only reliable group communication available to the programmer. This
has the potential disadvantage that some users pay in performance for semantics that they do not need.
It has the advantage, however, that the kernel only has to support one primitive, which simplifies the
implementation and makes higher level software more uniform. For the same reason Amoeba also
supports only one primitive for point-to-point communication: RPC.

Ordering

The group primitives guarantee a total ordering per group. If two members send messages A
and B concurrently, the protocol guarantees that all members of the group receive either first message
A and then B, or first B and then A. It never happens that A and B are interleaved. Many distributed
applications are easy to implement with a total ordering, as the programmer can think of processes
running in lockstep [Schneider 1990]. Applications using weaker forms of ordering often use a token
scheme to guarantee total ordering [Marzullo and Schmuck 1988; Siegel et al. 1990].

We have a simple and efficient protocol for doing reliable totally-ordered group communica-
tion. The protocol is presented in detail in the coming sections and is based on an earlier protocol we
experimented with [Kaashoek et al. 1989]. There are three key ideas that make our approach feasible.
First, to guarantee a total ordering the protocol uses a central machine per group, called the sequencer.

If the sequencer crashes, the remaining group members elect a new one. Second, the protocol is based
on a negative acknowledgement scheme. In a negative acknowledgement scheme, a process does not
send an acknowledgement as soon as it receives a message. Instead, it sends a negative acknowledge-
ment as soon as it discovers that it has missed a message. Third, acknowledgements are piggybacked
on regular data messages to further reduce the number of protocol messages. These ideas are well
known techniques. Chang and Maxemchuck, for example, discuss a protocol similar to ours that also
combines these three ideas [Chang and Maxemchuk 1984].

Although at first sight it may seem strange to use a centralized sequencer in a distributed sys-
tem, this decision is attractive. First, distributed protocols for total ordering are in general more com-
plex and perform less well. Second, today’s computers are very reliable and it is therefore unlikely
that the sequencer will crash. The major disadvantage of having a sequencer is that the protocol does
not scale to very large groups. In practice, however, this drawback is minor. The sequencer totally
orders messages for a single group, not for the whole system. Furthermore, the sequencer performs a
simple and computationally unintensive task and can therefore process many hundreds of messages
per second. For many applications hundreds of messages per second is sufficient.

There are two reasons for using a negative acknowledgement scheme. First, in a positive ack-
nowledgement scheme, a process sends an acknowledgement back to the sender as soon as it receives
the message. This works fine for point-to-point messages, but not for broadcast messages. If in a
group of 256 processes, a process sends a broadcast message to the group, all 255 acknowledgements
will be received by the sender at approximately the same time. As network interfaces can only buffer
a fixed number of messages, a number of the acknowledgements will be lost, leading to unnecessary
timeouts and retransmissions of the original message. Second, today’s networks are very reliable and
network packets are delivered with a very high probability. Thus not sending acknowledgements at
all, but piggybacking them on regular data messages is feasible. Another alternative would be to use
a positive acknowledgement scheme, but force the receivers to wait some “random” time before
sending an acknowledgement [Danzig 1989]. This approach is attractive in unreliable networks, but it
causes far more acknowledgements to be sent than with a negative acknowledgement scheme.

Delivery Semantics and Response Semantics

Per default, the group communication primitives deliver a message to all destinations, even in
the face of communication failures. On the user’s request, the primitives can also guarantee “all-or-
none” delivery in the face of processor failures. The protocols for providing these semantics are
more expensive, and hence we decided to make it an option. Users can trade performance for fault
tolerance.

When a member receives a broadcast message, there is no group primitive available to send a
reply. For the request/response type of communication, RPC is available.

-10 -

Group Structure

Unlike many other systems, we have chosen to use closed groups. A process that is not a
member and that wishes to communicate with a group can perform an RPC with one of the members
(or it can join the group). One reason for doing so is that a client need not be aware whether a service
consists of multiple servers which perhaps broadcast messages to communicate with one another, or a
single server. Also, a service should not have to know whether the client consists of a single process
or a group of processes. This design decision is in the spirit of the client-server paradigm: a client
knows what operations are allowed, but should not know how these operations are implemented by
the service; the client should not have to know whether it should use RPC or group communication to
communicate with a service.

A second reason for closed groups is that it makes an efficient implementation of totally-
ordered reliable broadcast possible. To implement the protocol, state is maintained for each member.
If all processes can send messages to a group, they all have to keep state information about the groups
that they are communicating with. Furthermore, the members also have to keep state for all the
processes that are communicating with the groups. To make it possible to control the amount of state
needed to implement the protocol, we decided on closed groups.

In Isis, this problem is solved in a different way. Isis presents the user with open groups, but
implements it using closed groups. When a process wants to communicate with a group, the system
either performs a join or an RPC with one of the members. In the latter case, the member broadcasts
the message to the whole group. Thus, although the user has the illusion of open groups, the current
implementation of Isis uses only closed groups.

A third reason for closed groups is that they are as useful as open groups. Just as in Isis, one
can simulate an open group in Amoeba. A process performs an RPC with one of the members of the
group. If a member receives an RPC, it broadcasts the request to the rest of the group. Compared to
real open groups, the cost is that a request goes twice over the network instead of once.

Figure 5 shows a very small Amoeba system, with 12 processes and 3 groups, and how they in-
teract. The parallel application replicates shared data using group communication to reduce access
time. If the application wants to store an object with the directory service, it uses RPC to communi-
cate with it. One of the directory servers will get the request. The directory server uses group com-
munication to achieve fault tolerance and high availability. To store results on disk, a directory server
communicates with the disk service, using RPC. The disk service may again use group communica-
tion internally for availability and fault tolerance (currently not done). Each application or service
may be built out of one process or a group of processes which communicate with other services using
RPC.

-11-

Directory service Disk service

Request

Parallel application

Fig. 5. An example Amoeba system with processes (dots), groups (ellipses), and their interaction
(arrows). A request/response pair makes up one RPC. The request is sent to a port identifying a
service and one of the servers will take the request; the corresponding response is sent back to the
process doing the RPC.

4. Group Primitivesin Amoeba

The primitives to manage groups and to communicate within a group are listed in Figure 6. We
will now discuss each primitive in turn.

A group is created by calling CreateGroup. The creator of the group is automatically a member
of the group. The first parameter is a port identifying the group. The second parameter is the number
of member-crashes the group must be able to survive (0 if no fault tolerance is required). This is
called the resilience degree of a group. The other parameters of CreateGroup specify information
that simplifies the implementation: the maximum number of members, the number of buffers the pro-
tocol can use, and the maximum message size. Using this information, the kernel allocates memory
for buffering messages and for member information. (Although these parameters could easily be re-
placed by default values, we decided against this for the sake of flexibility.) If not enough memory is
available, CreateGroup fails. Otherwise, it succeeds and returns a small integer, called a group
descriptor, gd, which is used to identify the group in subsequent group calls.

Once a group with port p has been created, other processes can become members of it by cal-
ling JoinGroup with the port p. (The port is part of the Amoeba header hdr.) Only processes that
know port p can join the group. When a message is sent to a group, only the group members receive
the message. Like CreateGroup, JoinGroup returns a group descriptor for use in subsequent group
calls. In addition to adding a process to a group, JoinGroup delivers a small message, hdr, to all other
members. In this way, the other members are told that a new member has joined the group.

-12 -

Function(parameters) — result

Description

CreateGroup(port, resilience, max_group,
nr_buf, max_msg) — gd

Create a group. A process speci-
fies how many member failures
must be tolerated without loss of
any message.

JoinGroup(hdr) — gd

Join a specified group.

LeaveGroup(gd, hdr)

Leave a group. The last member
leaving causes the group to vanish.

SendToGroup(gd, hdr, buf, bufsize)

Atomically send a message to all
the members of the group. All
messages are totally ordered.

ReceiveFromGroup(gd, &hdr, &buf, bufsize, &more)
—> size

Block until a message arrives.
More tells if the system has buf-
fered any other messages.

ResetGroup(gd, hdr, nr_members) — group_size

Recover from processor failure. If

the newly reset group has at least
nr_member members, it succeeds.

Return state information about the
group, such as the number of
group members and the caller’s
member id.

Forward a request for the group to
another group member.

GetInfoGroup(gd, &state)

ForwardRequest(gd, member_id)

Fig. 6. Primitives to manage a group and to communicate within a group. A message consists of
a header (a small message) and a buffer (a linear array of bytes). The header contains the port of
a group. An output parameter is marked with “&”.

Once a process is a member of a group, it can leave the group by calling LeaveGroup. Once a
member has left the group, it does not receive subsequent broadcasts. In addition to causing the pro-
cess to leave the group, LeaveGroup delivers hdr to all other members. In this way, the other
members are told that a member has left. The member receives its own message, so that it can check
whether it has processed all messages up to its leave message. The last member calling LeaveGroup
automatically causes the group to vanish.

To broadcast a message, a process calls SendToGroup. This primitive guarantees that hdr and
buf will be delivered to all members, even in the face of unreliable communication and finite buffers.
Furthermore, when the resilience degree of the group is r, the protocol guarantees that even in the
event of simultaneous crashes of up to r members, it will either deliver the message to all remaining
members or to none. Choosing a large value for r provides a high degree of fault tolerance, but this
extracts a cost in terms of performance. SendToGroup blocks until r + 1 members have received the
message. The tradeoff chosen is up to the user.

In addition to reliability, the protocol guarantees that messages are delivered in the same order

-13-

to all members. Thus, if two members (on two different machines), simultaneously broadcast two
messages, A and B, the protocol guarantees that either

1. All members receive A first and then B, or

2. All members receive B first and then A.

Random mixtures, where some members get A first and others get B first are guaranteed not to occur.

To receive a broadcast, a member calls ReceiveFromGroup, which blocks it until the next mes-
sage in the total order arrives. If a broadcast arrives and no such primitive is outstanding, the message
is buffered. When the member finally does a ReceiveFromGroup, it will get the next one in sequence.
How this is implemented will be described below. The more flag is used to indicate to the caller that
one or more broadcasts have been buffered and can be fetched using ReceiveFromGroup. If a
member never calls ReceiveFromGroup, the group may block (no more messages can be sent to the
group), because it may run out of buffers. Messages are never permanently discarded until received
by all members.

ResetGroup allows recovery from member crashes. If one of the members (or its kernel) is un-
reachable, it is deemed to have crashed and the protocol enters a recovery mode. In this mode, it only
accepts messages needed to run the recovery protocol and all outstanding ReceiveFromGroup calls re-
turn an error value that indicates a member crash. Any member can now call ResetGroup to
transform the group into a new group that contains as many surviving members as possible. The
second parameter is the number of members that the new group must contain as a minimum. When
ResetGroup succeeds, it returns the group size of the new group. In addition to recovering from
crashes, ResetGroup delivers hdr to all new members. It may happen that multiple members initiate a
recovery at the same moment. The new group is built only once, however, and consists of all the
members that can communicate with each other. The hdr is also delivered only once.

The way recovery is done is based on the design principle that policy and mechanism should be
separated. In many systems that deal with fault tolerance, recovery from processor crashes is com-
pletely invisible to the user application. We decided not to do this. A parallel application that multi-
plies two matrices, for example, may want to continue even if only one processor is left. A banking
system may require, however, that at least half the group is alive. In our system, the user is able to
decide on the policy. The group primitives provide only the mechanism.

GetInfoGroup allows a group member to obtain information about the group from its kernel.
The call returns information such as the number of members in the group and the caller’s member id.
Each group member has a unique member id.

The final primitive, ForwardRequest, integrates RPC with group communication. When a
client does an RPC to a service, the client has no idea which server will get the request; it goes to one
of the servers, effectively at random. If the server that gets the request is not able to handle the re-
quest (e.g., because it does not have the data requested), it can forward the request to another server in
the group (member_id specifies the server). The forwarding occurs transparently to the client. The
client cannot even tell that the service is provided by multiple servers.

-14-

To summarize, the group primitives provide an abstraction that enables programmers to design
applications consisting of one or more processes running on different machines. It is a simple, but
powerful, abstraction. All members of a single group see all events concerning this group in the same
order. Even the events of a new member joining the group, a member leaving the group, and recovery
from a crashed member are totally-ordered. If, for example, one process calls JoinGroup and a
member calls SendToGroup, either all members first receive the join and then the broadcast or all
members first receive the broadcast and then the join. In the first case the process that called Join-
Group will also receive the broadcast message. In the second case, it will not receive the broadcast
message. A mixture of these two orderings is guaranteed not to happen. This property makes reason-
ing about a distributed application much easier. Furthermore, the group interface gives support for
building fault-tolerant applications by choosing an appropriate resilience degree.

5. The Broadcast Protocol

The protocol to be described runs inside the kernel and is accessible through the primitives described
in the previous section. It assumes that unreliable message passing between entities is possible; frag-
mentation, reassembly, and routing of messages are done at lower layers in the kernel [Kaashoek et al.
1993b]. The protocol performs best on a network that supports hardware multicast. Lower layers,
however, treat multicast as an optimization of sending point-to-point messages. If multicast is not
available, then point-to-point communication will be used. Even if only point-to-point communica-
tion is available, the protocol is in most cases still more efficient than performing n RPCs. In a mesh
interconnection network, for example, the routing protocol will ensure that the delay of sending n
messages is only on the order of log, n.

Each kernel running a group member maintains information about the group (or groups) to
which the member belongs. It stores, for example, the size of the group and information about the
other members in the group. Any group member can, at any instant, decide to broadcast a message to
its group. It is the job of the kernel and the protocol to achieve reliable broadcasting, even in the face
of unreliable communication, lost packets, finite buffers, and node failures.

Without loss of generality, we assume for the rest of this section that the system contains one
group, with each member running on a separate processor (see Fig. 7). When the application starts up,
the machine on which the group is created is made the sequencer. If the sequencer machine subse-
quently crashes, the remaining members elect a new one (this procedure is described in Section 5.3).
The sequencer machine is in no way special—it has the same hardware and runs the same kernel as all
the other machines. The only difference is that it is currently performing the sequencer function in
addition to its normal tasks.

5.1. Basic Protocol

A brief description of the basic protocol is as follows (a complete description is given in the
next section). When a group member calls SendToGroup to send a message, M, it hands the message
to its kernel and blocks. The kernel encapsulates M in an ordinary point-to-point message and sends
it to the sequencer. When the sequencer receives M, it allocates the next sequence number, s, and

-15-

Application oo Application Application

Kernel i Sequencer Kernel | sequencer | Kernel i Sequencer
T disabled T disabled T enabled

Broadcast network

Fig. 7. System structure. Each node runs a kernel and a user application. Each kernel is capable
of being sequencer, but, at any instant, only one of them functions as sequencer. If the sequencer
crashes, the remaining nodes can elect a new one.

broadcasts a message containing M and s. Thus all broadcasts are issued from the same node, the
sequencer. Assuming that no messages are lost, it is easy to see that if two members concurrently
want to broadcast, one of them will reach the sequencer first and its message will be broadcast first.
Only when that broadcast has been completed will the other broadcast be started. Thus, the sequencer
provides a total ordering.

When the kernel that sent M receives the message from the network, it knows that its broadcast
has been successful. It unblocks the member that called SendToGroup.

Although most modern networks are highly reliable, they are not perfect, so the protocol must
deal with errors. Suppose some node misses a broadcast packet, either due to a communication
failure or lack of buffer space when the packet arrived. When the following broadcast message even-
tually arrives, the kernel will immediately notice a gap in the sequence numbers. If it was expecting s
next, and it receives s + 1 instead, it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer asking it for a copy of
the missing message (or messages, if several have been missed). To be able to reply to such requests,
the sequencer stores broadcast messages in the history buffer. The sequencer sends the missing mes-
sages to the process requesting them as point-to-point messages. The other kernels also keep a history
buffer, to be able to recover from sequencer failures and to buffer messages when there is no out-
standing ReceiveFromGroup call.

As a practical matter, a kernel has only a finite amount of space in its history buffer, so it can-
not store broadcast messages indefinitely. However, if it could somehow discover that all members
have received broadcasts up to and including m, it could then purge the broadcast messages up to m
from the history buffer.

The protocol has several ways of letting a kernel discover this information. For one thing, each
point-to-point message to the sequencer (e.g., a broadcast request), contains, in a header field, the se-

-16 -

quence number of the last broadcast received by the sender of the message (i.e., a piggybacked ack-
nowledgement). This information is also included in the message from the sequencer to the other ker-
nels. In this way, a kernel can maintain a table, indexed by member number, showing that member i
has received all broadcast messages up to T; (and perhaps more). At any instant, a kernel can com-
pute the lowest value in this table, and safely discard all broadcast messages up to and including that
value. For example, if the values of this table are 8, 7, 9, 8, 6, and 8, the kernel knows that everyone
has received broadcasts 0 through 6, so they can be safely deleted from the history buffer.

If a node does not do any broadcasting for a while, the sequencer will not have an up-to-date
idea of which broadcasts it has received. To provide this information, nodes that have been quiet for a
certain interval send the sequencer a special message acknowledging all received broadcasts. The
sequencer can also request this information when it runs out of space in its history buffer.

PB Method and BB Method

There is a subtle design point in the protocol; there are actually two ways to do a broadcast. In
the method we have just described, the sender sends a point-to-point message to the sequencer, which
then broadcasts it. We call this the PB method (Point-to-point followed by a Broadcast). In the BB
method, the sender broadcasts the message. When the sequencer sees the broadcast, it broadcasts a
special accept message containing the newly assigned sequence number. A broadcast message is only
“official’” when the accept message has been sent.

These methods are logically equivalent, but they have different performance characteristics. In
the PB method, each message appears on the network twice: once to the sequencer and once from the
sequencer. Thus a message of length n bytes consumes 2n bytes of network bandwidth. However,
only the second message is broadcast, so each user machine is interrupted only once (for the second
message).

In the BB method, the full message appears only once on the network, plus a very short accept
message from the sequencer. Thus, only about n bytes of bandwidth are consumed. On the other
hand, every machine is interrupted twice, once for the message and once for the accept. Thus the PB
method wastes bandwidth to reduce the number of interrupts and the BB method minimizes
bandwidth usage at the cost of more interrupts. For messages up to n bytes, where n is chosen by the
user, the protocol uses the PB method and for messages larger than n bytes the protocol uses the BB
method.

Processor Failures

The protocol described so far recovers from communication failures, but does not guarantee
that all surviving members receive all messages that were sent before a member crashed. For exam-
ple, suppose a member sends a message to the sequencer, which then broadcasts it. The sender re-
ceives the broadcast and delivers it to the application, which interacts with the external world. Now
assume all other processes miss the broadcast, and the sender and sequencer both crash. The effects
of the message are visible but none of the other members will ever receive it. This is a dangerous si-
tuation that can lead to all kinds of disasters because the “all-or-none’” semantics have been violated.

.17 -

To avoid this situation, CreateGroup has a parameter, r, the resilience degree, which specifies
the resiliency. This means that the SendToGroup primitive does not return control to the application
until the kernel knows that at least r other kernels have received the message. To achieve this, a ker-
nel sends the message to the sequencer point-to-point (PB method) or broadcasts the message to the
group (BB method). The sequencer allocates the next sequence number, but does not officially accept
the message yet. Instead, it buffers the message and broadcasts the message and sequence number as
a request for broadcasting to the group. When a member kernel receives this message, it buffers the
message in its history and if its member identifier is lower than r, it sends an acknowledgement mes-
sage to the sequencer. Any r members besides the sending kernel would be fine, but to simplify the
implementation we pick the r lowest-numbered. After receiving these acknowledgements, the
sequencer broadcasts the accept message. Only after receiving the accept message can members oth-
er than the sequencer deliver the message to the application. That way, no matter which r machines
crash, there will be at least one surviving member containing the full history, so everyone else can be
brought up-to-date during the recovery. Thus, an increase in fault tolerance is paid for by a decrease
in performance. The tradeoff chosen is up to the user.

(M, S) ack S accept S
GRONONNOSORC @:4 OROR0
@ (b) (©) (d)

Fig. 8. PB protocol for r = 2.

The PB and BB method for r =2 are illustrated in Figure 8 and in Figure 9 respectively. In
Figure 8(a), machine A sends a message, M, to the sequencer, where it is assigned sequence number s.
The message (containing the sequence number s) is now broadcast to all members and buffered
(Fig. 8(b)). The r lowest-numbered kernels (say, machines B and C in Figure 8(c)) send an ack-
nowledgement back to the sequencer to confirm that they have received and buffered the message
with sequence number s. After receiving the r acknowledgements, the message with sequence
number s is officially accepted and the sequencer broadcasts a short accept message with sequence
number s (Fig. 8(d)). When a machine receives the accept message, it can deliver the message to the
application.

The BB method for r =2 is very similar to the PB method (see Fig.9); only the events in (a)
and (b) differ. Instead of sending a point-to-point message to the sequencer, machine A broadcasts the
message to the whole group (Fig.9(a)). When the sequencer receives this message, it allocates the
next sequence number and broadcasts it (Fig. 9(b)). From then on the BB method is identical to the
PB method. Thus, the important difference between the PB and BB method is that in the PB method

-18 -

® ® : ®
M S ack s accept s
A~ © G&-6-© ® 66-© G&-6~©
(@) (b) (© (d)

Fig. 9. BB method for r = 2.

the message M goes over the network twice, while in the BB method it goes only over the network
once.

At first sight, it may seem that a more efficient protocol can be used for r > 0. Namely, a ker-
nel broadcasts the message to the group. On receiving a broadcast, r lowest-numbered kernels im-
mediately buffer the message in their history and send acknowledgement messages to the sequencer,
instead of waiting until the sequencer announces a sequence number for the broadcast request. After
receiving the acknowledgements, the sequencer broadcasts the accept message. This protocol would
save one broadcast message (the message from the sequencer announcing the sequence number for
the broadcast request).

This protocol is, however, incorrect. Assume that r kernels have buffered a number of mes-
sages and have sent an acknowledgement for each of them and that all accept messages from the
sequencer are lost. The following could now happen. The sequencer delivers the message to its ap-
plication, and then the sequencer (and application) crashes. During recovery, the remaining members
would have no way of deciding how the buffered messages should be ordered, violating the rule that
all messages should be delivered in the same order. Even if they decide among themselves on some
order, they could potentially deliver the messages in a different order than the sequencer did and still
violate the rule. To avoid this situation, the sequencer announces the sequence number for a message
before r kernels send an acknowledgement.

It is interesting to see how Isis deals with this situation. In Isis it may happen that after a pro-
cessor failure, messages on the remaining processors are delivered in a different order than was done
on the failed processor. If an application requires stronger semantics, it is up to the programmer to
call a primitive that blocks the application until it is known that all other kernels will deliver the mes-
sage in the same order [Birman et al. 1990].

In summary, there are two methods of sending a reliable totally-ordered broadcast, PB and BB.
The PB method and the BB method are logically equivalent but have different performance charac-
teristics. (In Section 6.2 we will give a detailed comparison between the PB method and the BB
method.) For r > 0, additional messages are needed to guarantee that broadcasts are delivered in the
same order, even in the face of processor failures.

-19-

5.2. Protocol during Normal Operation
In this section, we will describe in detail how the sender, sequencer, and receivers behave dur-
ing normal operation (no member failures).

Data Structures

Figure 10 shows the data structures used by the protocol. Each kernel keeps state information
for each of its members. The information stored for each member consists of general information,
membership information, and history information. The general information includes the port of the
group to which the member belongs, the network address for the group, on what message size to
switch from the PB method to the BB method, the current state of the protocol (e.g., receiving, send-
ing, etc.), the resilience degree (r), and the current incarnation number of the group. The resilience
degree, g_resilience, specifies how many concurrent failures the group must tolerate without losing
any messages. It is specified when the group is created. The incarnation number of a group,
g_incarnation, is incremented after recovery from a member failure. Each message sent is stamped
with the current incarnation number and is only processed if it is equal to g_incarnation; otherwise it
is discarded. If no member failures happen, then g_incarnation stays at 0.

The membership information consists of the list of members, the total number of members, the
identity of the current sequencer, and the identity of the current coordinator (only used during
recovery from member failures). Furthermore, the kernel stores the member identifier, g_index, for
this member and its rank, g_memrank. The member id does not change during the time the applica-
tion is member of a group. The rank is used to decide if a kernel should send an acknowledgement
back when a broadcast request arrives and the resilience degree is higher than 0. The rank of a
member can change during its lifetime. If, for example, a group consists of three members, numbered
0, 1, and 2 respectively, the ranks for these members are initially equal to the member ids. If now, for
example, member 1 leaves, then the rank of member 2 changes to 1. In this way, it is easy for each
member to decide whether it belongs to the r lowest members. Since every member is guaranteed to
receive all join and leave events in the same order, this information will always be consistent.

Each kernel maintains an array of structs (member). The array is indexed by member identifier,
m. The struct contains the sequence number expected by m, m_expect, the last message number used
by m, m_messid, and m’s network address. The sequencer uses the m_expect fields to determine
which messages can be safely removed from the history buffer. The message number, m_messid,
gives the last message number received from a member and is used to detect duplicates generated by
timeouts. The retry counter, m_retrial, is used to determine when a member has failed. If a kernel is
waiting for a reply from another kernel and it does not receive the message within a certain time
frame, the counter is decremented. If it reaches zero, the kernel is considered to be down. The other
fields are used only during recovery (see Section 5.3).

The history information consists of a circular buffer with a number of indices telling how big
the buffer is and which part of the buffer is filled. Each buffer in the history contains a complete mes-

-20 -

/* On each machine, a struct for each group is maintained. */

struct group {
port g_port;
adr_t g_addr;
int g_large;
long g_flags;
int g_resilience;
short g_incarnation;

/* Member information */
int g_total;

struct member *g_member;
struct member *g_me;
struct member *g_seq;
struct member *g_coord;
int g_index;

int g_memrank;

[* History information in circular buffer */
hist_p g_history;

int g_nhist;

int g_nextseqno;

int g_minhistory;

int g_nexthistory;

¥

[* general info */

/* a port identifies a group */

/* group network address */

/* dividing line between PB and BB */
/* protocol state: FL_RECOVER, ... */
[* resilience degree */

/* incarnation number */

/* group size */

/* list of members */

/* pointer to my member struct */
[* pointer to sequencer struct */
/* pointer to coordinator struct */
/* my index */

/* member rank */

/* history of bcast messages */
[* size of history */

/* next sequence number */

/* lowest entry used */

/* next entry to store message */

/* On each machine, a struct for each member is maintained */

struct member {
adr_t m_member;
int m_expect;
int m_messid,;
int m_retrial;
int m_vote;
int m_replied,;

¥

/* Broadcast protocol header */
struct bc_hdr {

short b_type;

short b_incarnation;

int b_seqgno;

int b_messnr;

int b_expect;

int b_cpu;

/* member network address */

/* sequence number expected by member */
/* next message id to use */

/* retry counter */

/* vote for this member (recovery) */

/* has the member replied? */

/* type: BC_BCASTREQ, ... */
/* incarnation number */

/* global sequence number */
/* message identifier */

/* sequence number expected by application */

/* member identifier */

Fig. 10. Declarations used by the protocol.

sage including the user-supplied data (the upper bound on the size of a message is passed as an argu-
ment when the group is created). The history buffer consists of three parts (see Fig. 11). The circular
part between g_nexthistory and g_minhistory consists of free buffers. The circular part between

-21-

g_minhistory and g_nextseqno contains messages that have been sequenced, but are buffered to be
delivered to the user application or so that the kernel can respond to retransmission requests. The cir-
cular part between g_nextseqno and g_nexthistory is used by the sequencer to buffer messages for
which it does not know yet if all members have room to store them in their history buffers. After syn-
chronizing with the other history buffers, the sequencer will take the buffered requests and process
them (broadcast an official accept). The ordinary kernels use the third part to buffer messages that are
received out-of-sequence until the missing messages are received. Buffering messages in the third
part of the history buffer avoids unnecessary retransmission of those messages later on.

171 172 173 174 175 176 177

g_minhistory g_nextsegno g _nexthistory

Fig. 11. The history buffer has three parts: (1) free buffers; (2) messages that have been se-
quenced but are buffered until they can be delivered to the user or are buffered for retransmis-
sions; (3) messages that are buffered because the sequencer does not know if the other kernels
have room in their history to store the message. Ordinary members use the third part to buffer
messages that arrive out-of-sequence.

Each message sent by the protocol contains a fixed size protocol header, consisting of six fields.
The b_type field indicates the kind of a message (see Fig.12). The b_incarnation gives the incarna-
tion of the member that is sending the message. The b_seqno field is used by the sequencer to se-
quence broadcasts. The b_messnr and b_cpu together uniquely identify a message. They are used to
detect duplicates. The b_expect field is used to piggyback the acknowledgement for the last broadcast
delivered so far. When receiving a message, a kernel updates m_expect with b_expect. If the
sequencer knows that m_expect for each member is larger than g_minhistory, it can increase
g_minhistory and thereby free history buffers.

Receiving a M essage

Let us now look at the protocols for receiving and sending messages reliably. When a member
wants to receive a broadcast, it invokes its local kernel by calling ReceiveFromGroup and passes it
pointers to a header and a buffer (see Fig. 13). (For simplicity we left out the code that checks the
parameters as well as the code dealing with the transition from user space to kernel space, and back.)
The kernel checks the history to see if there are any messages buffered that can be delivered. If there
are none, the thread calling ReceiveFromGroup is blocked until a message can be delivered. If a
deliverable message is present, it is copied from the history buffer into the buffer supplied by the ap-
plication. The number of bytes actually received is returned to the application process.

Each time a broadcast comes in from the sequencer, the kernel checks to see if there is a thread
waiting to receive a message. If so, it unblocks the thread and gives it the message.

Type From To Description

BC_JOINREQ Member Sequencer Request to join the group

BC_JOIN Sequencer Group Accept join message
BC_LEAVEREQ Member Sequencer Request to leave the group
BC_LEAVE Sequencer Group Accept leave message
BC_BCASTREQ Member Sequencer or group | Request to broadcast

BC_BCAST Sequencer Group Accept broadcast message
BC_ACK Member Sequencer Message is received (if r > 0)
BC_RETRANS Member Sequencer Request asking for missed message
BC_SYNC Sequencer Group Synchronize histories

BC_STATE Member Sequencer Tell next expected sequence number
BC_ALIVEREQ Member Member Check if destination is alive
BC_ALIVE Member Member Acknowledgement of BC_ALIVEREQ
BC_REFORMREQ | Coordinator | Group Request for entering recovery mode
BC_VOTE Member Coordinator Vote for new sequencer
BC_RESULT Coordinator | Group Result of the voting phase
BC_RESULTACK | Member Coordinator Ack for receiving the final vote

Fig. 12. Possible values for b_type and their function.

Sending a M essage

When a member wants to do a broadcast, it invokes its local kernel by calling SendToGroup,
passing as parameters a header and data. The kernel then executes the algorithm given in Figure 14.
It builds a message consisting of the protocol header, and the user-supplied header and data. The ker-
nel sets b_type to BC_LBCASTREQ, b_cpu to the member’s id, b_incarno to the current incarnation, and
b_expect to the value of the member’s m_expect. Depending on the size of the data and g_large, the
kernel sends the message point-to-point to the sequencer (PB method) or broadcasts the message to
the group (BB method). The default value for g_large is equal to the maximum size of a network
packet. Thus, small messages that fit in one network packet are sent using the PB method and larger
messages are sent using the BB method. The programmer may override this default value. Once the
message is sent, the kernel blocks the sending member until the message comes back from the

-23-

long ReceiveFromGroup(gd, hdr, buf, cnt, more)

int gd; [* group descriptor */
struct header *hdr; /* pointer to Amoeba header buffer */
char *buf; /* pointer to empty data buffer */
long cnt; I* size of data buffer */
int *more; [* pointer to more flag */
{
struct group *g; I* pointer to group structure */
struct hist *h; /* pointer into the history */
long rs; I* size of the message to be received */
g = groupindex[gd]; [* set group pointer */
g—>g_flags |= FL_RECEIVING,; [* start receiving */
while('HST_IN(g, g—>g_me—>m_expect)) { I* is there a buffered message? */
if (9—>g_flags & FL_RESET) { /* don’t block during recovery */
g—>g_flags &= ~FL_RECEIVING; /* switch flag off */
return(BC_ABORT); I* return failure */
}
block(g); /* no, wait until one comes in */
g—>g_flags &= ~FL_RECEIVING,; I* switch flag off */
h = &g—>g_history[HST_MOD(g, g—>g_me—>m_expect)];/* get it */
bcopy(h—>h_data, hdr, sizeof(struct header)); [* copy to user space */

rs = MIN(cnt, h—>h_size — sizeof(struct header)); /* MIN(a,b) =(a<b?a:b)*/
bcopy(h—>h_data + sizeof(struct header), buf, rs); /* copy to buf */

g—>g_me—>m_expect++; /* message is now delivered */

more = g—>g_nextseqno — g—>g_me—>m_expect; / number of buffered messages */

return(rs); /* return number of bytes received */
}

Fig. 13. Algorithm used by kernel to receive a reliable broadcast.

sequencer or until it receives a timeout. If, after n retries, no message is received from the sequencer,
the member assumes that the sequencer has crashed and enters recovery mode (see Section 5.3). Dur-
ing recovery it is determined if the send failed or succeeded.

Protocol

Having looked at what the sender does to transmit a message to the sequencer for broadcast, let
us now consider what a kernel does when the BC_BCASTREQ message comes in (see Fig.15). If the
message is sent using the BB method, then all members will receive the broadcast request (absent a
network failure). If b_seqno =0, the broadcast request is sent using the BB method and the ordinary
members will buffer the request until the sequencer broadcasts an accept message. If b_segno > 0,
the sequencer has sequenced the message, but did not accept the message yet, because it is waiting for
r acknowledgements. In this case, the members store the message in the third part of the history and
send an acknowledgement (BC_ACK) if their rank is less than or equal to r. This informs the sequenc-
er that the message sent by b_cpu with message number b_messnr has been received. Once the

-24 -

int SendToGroup(gd, hdr, data, size)

int gd; [* group descriptor */
struct header *hdr; I* pointer to header to be sent */
char *data; [* pointer to data to be sent */
long size; I* size of data */
{

struct group *g; /* pointer to group structure */
long messid,; /* messid for the message to be sent */
struct pkt *msg; /* the message to be sent */
g = groupindex[gd]; [* set pointer */
if (;—>g_flags & FL_RESET) return(BC_ABORT);/* don’t send during recovery */
g—>g_seq—>m_retrial = g—>g_maxretrial; /* set maximum number of retries */
messid = g—>g_me—>m_messid+1; [* set message identifier */
g—>g_flags |= FL_SENDING; [* start sending message */
do {

setmsg(&msg, BC_BCASTREQ, -1, messid, g—>g_index, g—>g_me—>m_expect,

g—>g_incarnation, hdr, (long) data, size); /* build message */

set_timer(g, msg, settimer); [* set timer */

if (9—>g_seq == g—>g_me) sendlocal(g, msg);/* am | the sequencer? */

else if (size >= g—>g_large) multicast(&g—>g_addr, msg);/* use BB method? */

else unicast(&g—>g_seq—>m_addr, msg); [* use PB method */

/* Block until broadcast succeeds, fails, or times out. */

block(g); /* suspend calling thread */

if (g—>g_flags & FL_SENDING) { [* timeout? */

g—>g_seq—>m_retrial——; [* decrease retry counter */
if (9—>g_seq—>m_retrial <= 0) recover(g);/* did the sequencer crash? */

}
} while(g—>g_flags & FL_SENDING); [* done? */
return(g—>g_me—>messid > messid ? BC_OK : BC_FAIL);/* return success or failure */

}

Fig. 14. Algorithm used by sending kernel to achieve reliable broadcast.

sequencer has received r of these acknowledgements, it will accept the message officially and broad-
cast a short accept message (BC_BCAST without data).

When the sequencer receives the broadcast request, it updates its table with member informa-
tion and it tries to free some buffers in its history using the piggybacked acknowledgements. Then, it
checks if the message is a duplicate by examining b_cpu and b_messnr. If so, it informs the sender
that the message already has been sent.

If the message is new and r =0, the sequencer stores the message in its history and officially
accepts the message (i.e., the sequencer changes the type of the message from BC_BCASTREQ to
BC_BCAST). If r > 0, the sequencer stores the message in its history buffer, but it does not accept the
message officially. Instead, it forwards the request with sequence number to the group and waits for r
acknowledgements.

The history is processed each time a broadcast request is received, r acknowledgements for a

-25-

void bcastreq(g, bc, data, n)

group_p g; /* pointer to group structure */
struct bc_hdr *bc; /* pointer to protocol header */
char *data; /* pointer do data in message */
intn; /* number of bytes in data */

{
struct hist *hist; /* pointer in history */
struct member *src = g—>g_member + bc—>b_cpu; /* pointer to the sender */
struct pkt *msg; /* reply message */
if (g—>g_me 1= g—>g_seq) { /* am | the sequencer? If no: */

if(bc—>b_seqno == 0) {
/* A request without seqno has been received. This must be the BB method. */
mem_buffer(g, src, bc, data, n); [* buffer it */

}else {
/* A request with segno; this must be for resilience > 0. Store the message
* in the right place in the history and send an ack if my rank <= resilience. */
store_in_history_and_send_ack(g, bc, data, n);

}
return; /* done */
}
I* Yes, the sequencer. This must be the PB protocol. */
if (src—>m_expect < bc—>b_expect) /* update member info? */
src—>m_expect = bc—>b_expect;
if (hst_free(g)) g—>g_flags &= ~FL_SYNC,; /* is synchronization needed? */
if (bc—>b_messnr <= src—>m_messid) { /* old request? */

/* Send sequence number back as an ack to the sender. */
retrial(g, bc—>b_cpu);

}else if (HST_FULL(Q)) { /* history full? */
g—>g_flags |= FL_SYNC; /* synchronize */
synchronize(Q); /* multicast a BC_SYNC messages */
Yelse{ /* append message to history */
src—>m_messid = bc—>b_messnr; /* remember messid */
bc—>b_seqno = g—>g_nexthistory; /* assign sequence number */

if (g—>g_resilience == 0) bc—>b_type = BC_BCAST;/* accept request */
/* Append to history and increase g_nexthistory. */
hist = hst_append(g, bc, data, n);

if (g—>g_resilience > 0) { [* resilience degree > 0? */
forward_msg_to_members(g, hist); /* forward request with seqno */
} else hist—>h_accept = 1, /* message is accepted */
processhist(g); [* accept the new broadcast */
}
}

Fig. 15. Algorithm executed by all kernels (including sequencer) when a BC_BCASTREQ mes-
sage arrives.

buffered broadcast message have been received, or when the sequencer learns from a piggybacked
acknowledgement that it can free buffers to accept a buffered request (a message stored in the third

-26 -

part of the history). Processhist accepts broadcast messages buffered in the history as long as the his-
tory does not fill up (see Fig. 16). It takes the next unprocessed message from the history buffer,
broadcasts the message (PB method) or broadcasts an accept message (BB method) and increases
g_nextsegno. At this point the message has officially been accepted.

If the message just accepted was sent by a member running on the sequencer’s kernel, the
member can be unblocked and the SendToGroup returns successfully.

void processhist(g)

struct group *g; /* pointer to group structure */
{

struct hist *hist; [* pointer into the history */

struct member *src; [* pointer to the sender */

struct *msg; I* reply message */

for(hist = &g—>g_history[HST_MOD(g, g—>g_nextseqno)];/* get first msg */
g—>g_nextseqno < g—>g_nexthistory && hist->h_accept;/* process msg? */
hist = &g—>g_history[HST_MOD(g, g—>g_nextseqno)]) {/* get next msg */

if 'HST_SYNCHRONIZE(qg)) { I* synchronize first? */
src = &g—>g_member[hist—>h_bc.b_cpu]; /* set the sender */
g—>g_nextseqno++; /* accept broadcast officially */

if (src != g—>g_seq && hist—>h_size >= g—>g_large) {/* BB method? */
/* Build accept message and multicast. */
buildmsg(&msg, 0, &hist->h_bc, 0, 0);
multicast(msg, &g—>g_addr);

}else { /* PB method */
/* Build complete message and multicast it. */
buildmsg(&msg, 0, &hist—>h_bc, hist—>h_data, hist—>h_size);
multicast(msg, &g—>g_addr);

}

if ((g—>g_flags & FL_SENDING) && hist->h_bc.b_cpu == g—>g_index) {
/* Message was sent by a member running on the sequencer kernel. */
g—>g_flags &= ~FL_SENDING; /* switch flag off */

unblock(g); /* unblock application */
}
Yelse {
g—>g_flags |= FL_SYNC; [* synchronize */
synchronize(Q); /* multicast BC_SYNC message */
break; [* stop processing */

Fig. 16. Algorithm executed by the sequencer to process the history.

The protocol requires three algorithms to be executed. First, the sender must build a message
and transmit it to the sequencer (PB) or broadcast it (BB). Second, the sequencer and members must
process incoming BC_BCASTREQ messages. The sequencer broadcasts the messages with sequence
number (PB) or broadcasts a short accept message (BB); the members buffer them until an official ac-
cept from the sequencer arrives (BB). Third and last, the members must handle arriving BC_BCAST

-27-

messages from the sequencer. We have already described the first two steps. Now let us look at the

last one.

void broadcastreceive(g, bc, data, n)

{

struct group *g;
struct bc_hdr *bc;
char *data;

long n;

int received = 1;
struct member *src;
struct hist *hist;

src = g—>g_member + bc—>b_cpu;

[* pointer to group state */

/* pointer to protocol header */
/* pointer to data */

/* number of bytes in data */

[* are data received? */
/* pointer to original sender */
/* pointer into the history */

/* set source */

[* If the PB method is used, the message contains the original data; otherwise
* the message is only a short accept msg and the data should have been received

*and is buffered. */
if(n==0){

/* short accept msg? */

/* Yes, the BB method or resilience degree > 0. */

hist = &g—>g_history[HST_MOD(g, bc—>b_seqno)];

if (g—>g_resilience > 0 && hist—>h_bc.m_messid == bc—>b_messnr) {
/* The message is stored as BC_BCASTREQ in the history. */

hist—>h_accept = 1;
return;

}

if (messbuffered(src, bc—>b_messnr))
data = getmsg(src);

else received = 0;

}

[* accept */
/* done */

[* is message buffered? */
I* yes, get it */
/* not received the data yet */

if (g—>g_nextsegno == bc—>b_seqno && received) { /* accept it? */

hist = hst_store(g, bc, data, n);
hist->h_accept = 1;
processrec(g);

/* store new msg in history */
[* accept it */
[* process history */

} else if (g—>g_nextseqno < bc—>b_seqno ||
(g—>g_nextseqno == bc—>b_seqno && !received)) {/* out of order? */
if (received) hst_store(g, bc, data, n); I* yes, buffer it */
ask_for_retransmission(g, g—>g_nextsegno); /* ask for the missing msgs */
} /* old message; discard */

Fig. 17. Algorithm for processing an incoming broadcast.

When a BC_BCAST arrives, the receiving kernel executes the procedure broadcastreceive (see
Fig. 17). The kernel checks if the incoming message has user-supplied header and data. A BC_BCAST
message with user-supplied header and data is a message sent following the PB method; otherwise the
message is a short accept broadcast and the user-supplied header and data (received on a previous
message) are buffered. If the sequence number is the one it expected, the message is stored in the his-
tory and processed by processrec. If the sequence number is not the expected one, the member has
missed one or more broadcasts and asks the sequencer for retransmissions (BC_RETRANS). Out-of-

-28 -

sequence broadcasts are buffered in the history, but the message is not processed, because the kernel
is required to pass messages to the application in the correct order.

void processrec(g)

struct group *g; [* pointer to group state */

{
struct member *src; I* pointer to original sender */
struct hist *hist; [* pointer into the history */

for(hist = &g—>g_history[HST_MOD(g, g—>g_nextseqno)];/* set pointer into history */

hist—>h_accept; /* is the message accepted? */

hist = &g—>g_history[HST_MOD(g, g—>g_nextseqno)]) {/* set pointer to next entry */
src = g—>g_member + hist—>h_bc.b_cpu; [* set source */
g—>g_nhextseqno++; [* accept it */
g—>g_nexthistory++; [* increase next history */
src—>m_messid = hist—>h_bc.b_messnr; /* remember last used message id */
if (src 1= g—>g_me) [* did | send the message? */

src—>m_expect = MAX(src—>m_expect, hist—>h_bc.b_expect);
if ((g—>g_flags & FL_SENDING) && hist->h_bc.b_cpu == g—>g_index) {
/* 1 sent this message; unblock sending thread. */

g—>g_flags &= ~FL_SENDING; * switch flag off */
unblock(g); /* unblock sending thread */
}
if IAMSILENT(g)) sendstate(g); [* silent for a long time? */

Fig. 18. Function processrec used in Fig. 17.

Processrec inspects the history buffer to see if the next expected message has been stored (see
Fig. 18). If so, it increases g_nextseqno and updates its member information of the sender. If the
sender of the message is a member at the receiving kernel, then the sending member is unblocked and
the SendToGroup returns successfully.

The sequencer uses the piggybacked acknowledgements contained in the messages from the
members to determine which history buffers to free. The assumption is that a member will always
send a message before the history fills up. This assumption need not be true, depending on the com-
munication patterns of the applications. For example, a member may send a message that triggers
another member to send messages. If this member misses the message, the system may very well be-
come deadlocked. To prevent this from happening, each member kernel sends a BC_STATE message
after receiving a certain number of messages without sending any. This is effectively a logical timer;
a real timer could also be used, but this would be less efficient. The b_expect field in the BC_STATE
message informs the sequencer which messages have been delivered by the sender of the message.

If the sequencer runs out of history buffers and has not received enough BC_STATE messages to
make the decision to free history buffers, it can explicitly ask members which messages they have re-
ceived. It does so by sending a BC_SYNC message. Members respond to this message with a
BC_STATE message.

-29-

5.3. Protocol for Recovery

In the previous section, we assumed that none of the members ever failed. Now we will discuss
the algorithms that are executed when a member or the sequencer fails.

Failures are detected by sending a BC_ALIVEREQ message to a kernel that has not been heard
from in some time, and waiting for a reply. If, after a number of retries no BC_ALIVE message comes
back, the enquiring kernel assumes that the destination has failed and initiates recovery. Picking the
right number of retries is tricky. If the number is too low, a kernel may decide that another member
has failed while in reality the other group member was just busy doing other things. If the number is
too high, it can take a long time before a failure is detected.

Once a kernel has decided that another kernel has failed, it enters a recovery mode that causes
subsequent calls to ReceiveFromGroup from local members to return an error status. Any surviving
member may call ResetGroup to recover from a member failure. ResetGroup tries to re-form the
group into a group that contains all the surviving members that can communicate with each other. If
needed, it also elects a new sequencer. The second parameter of ResetGroup is the minimum number
of members of the old group that are required for the new group to be valid. If ResetGroup succeeds,
it returns the actual number of members in the new group. ResetGroup fails if it cannot form a group
with the required number of members.

The protocol to recover from member crashes is based on the invitation protocol described by
Garcia-Molina [Garcia-Molina 1982]. We will briefly describe the protocol for recovery and the ex-
tensions to support total ordering, but for the exact details and the correctness proof see [Garcia-
Molina 1982]. The invitation protocol runs in two phases. In the first phase, the protocol establishes
which members are alive and chooses one member as coordinator to handle the second phase. Every
member that calls ResetGroup becomes a coordinator and invites other members to join the new
group by sending a BC_.REFORMREQ message. If a member is alive and it is not a coordinator, it
responds with a BC_VOTE message containing the highest sequence number that it has seen (each
member already keeps this number for running the protocol for communication failures as described
above). If one coordinator invites another coordinator, the one with the highest sequence number be-
comes coordinator of both (if their sequence numbers are equal, the one with the lowest member id is
chosen). When all members of the old group have been invited, there is one coordinator left. It
knows which members are alive and which member has the highest sequence number.

In the second phase of the recovery, the group is restarted. If the coordinator has missed some
messages, it asks the member with the highest sequence number for retransmissions (this is unlikely
to happen, because the initiator of the recovery with the highest sequence number becomes coordina-
tor). Once the coordinator is up-to-date, it checks to see if the complete history is replicated on all
remaining members. If one of the members does not have the complete history, the coordinator sends
it the missing messages. Once the new group is up-to-date, it builds a BC_RESULT message containing
information about the new group: the size of the new group, the members in the new group, the new
sequencer (itself), a new network address for the group, and the new incarnation number of the group.

-30-

The network address and incarnation number are included to make sure that messages directed to the
old group will not be accepted by the new group. It stores the BC_RESULT message in its history and
broadcasts it to all members. When a member receives the BC_RESULT message, it updates the group
information, sends an acknowledgement (BC_RESULTACK) to the coordinator, and enters normal
operation. The coordinator enters normal operation after it has received a BC_RESULTACK message
from all members.

When back in normal operation, members never accept messages from a previous incarnation
of the group. Thus, members that have been quiet for a long time, for example, due to a network par-
tition, and did not take part in the recovery will still use an old incarnation number when sending a
message to the new group. These messages will be ignored by the new group, treating the ex-member
effectively as a dead member. The incarnation numbers make sure that no conflicts will arise when a
member suddenly comes back to life after being quiet for a period of time.

If the coordinator (or one of the members) crashes during the recovery, the protocol starts again
with phase 1. This continues until the recovery is successful or until there are not enough living
members left to recover successfully.

In Figure 19 the recovery protocol is illustrated for a simple case where the resilience degree is
zero. In Figure 19(a) a possible start of phase 1 is depicted. Members 0, 1, and 2 simultaneously start
the recovery and are coordinators. Member 3 has received more messages (it has seen the highest se-
quence number), but it did not call ResetGroup. Member 4, the sequencer, has crashed. In
Figure 19(b), the end of phase 1 has been reached. Member 0 is the coordinator and the other
members are waiting for the result message (they check periodically if member O is still alive). In
Figure 19(c), the end of phase 2 has been reached. Member 0 is the new sequencer. It has collected
message 34 from member 3 and has stored the result message (number 35) in its history. The other
members are also back in normal operation. They have collected missing messages from member 0
and have also received the BC_RESULT message.

The interaction between ordering, recovery, and reliability is complex. The key to understand-
ing the correctness of the protocol is (1) that only the sequencer orders messages and (2) that a new
sequencer starts only after all the members in its group have received all the messages that were sent
successfully before a failure happened.

Consider a group with r =2 (r is the resilience degree). Now the protocol has to guarantee that
even if 2 members fail the remaining members will receive in the same order all message sent suc-
cessfully (i.e., SendToGroup returned successfully) before the failure. With r =2 the protocol for
sending a message guarantees that the sequencer, processors P 1, and P, have a copy of the messages
before any SendToGroup returns successfully. With r = 2 a message is only accepted in the total ord-
er if two other processors besides the sequencer have received the message (including its sequence
number). In addition, the processors P, and P, may have a number of messages (including sequence
number) for which they have sent the acknowledgements but for which they have missed the BCAST;
other members (e.g., the sequencer) may have received the BCAST and may have delivered the mes-
sages.

Now suppose the worst case happens: the sequencer fails. As soon as a member detects this

-31-

C C C s

33 . ’ 30 ’ 33 34 . ’dead

0 1 2 3 4
@)

C s

33 . ’ 30 ’ 33 34 . ’dead

0 1 2 3 4
(b)

s

35 . ’ 35 ’ 35 E‘

0 1 2 3

(©)

Fig. 19. A possible recovery for a group of size 5 after a crash of member 4. S is a sequencer. C
is a coordinator. The number in the box is the sequence number of the last message received. The
number below the box is the member id. (a) Shows a possible start of phase 1. (b) Shows the start
of phase 2. In (c) the recovery has been completed.

failure, the recovery protocol is started and all members will stop trying to send application messages.
P, or P, will be elected as coordinator, as they have the lowest rank and they have received all mes-
sages successfully sent (they have sent the acknowledgements allowing the sequencer to accept the
message). After the coordinator has determined which processors are alive, it feeds all the surviving
members the messages that it received before the failure was detected. Now the group is restarted and
the coordinator sends every surviving member a message saying that it can start sending. The coordi-
nator does not order any new messages until it has received an acknowledgement from all the
members in the rebuilt group. Once the coordinator has received an acknowledgement from every
member, it becomes the new sequencer and starts ordering messages. At this point every member has
received all the messages that have been sent before the failure and also has received them in the
same total order.

If another processor fails during recovery, the recovery starts from scratch. One processor of
the sequencer, P 1, and P, has a copy of the messages that have been successfully sent before the first
failure and it can bring the remaining members up-to-date. Other complex interactions of failures are
possible, but the key observation is that the protocol proceeds in lockstep after a failure; before
proceeding after a failure, all the remaining members are brought up-to-date.

6. Implementation and Perfor mance
Group communication is implemented as part of the Amoeba kernel. We will now describe how
group communication is integrated with the Amoeba kernel and give detailed performance figures.

-32-

6.1. Implementation

The communication system in the kernel consists of 3 layers (see Fig. 20). The top layer implements
the protocols for group communication and RPC. The protocols described in the previous section are
implemented here.

Group RPC
communication
FLIP layer
Network with multicast Network without multicast

Fig. 20. Communication layers in the Amoeba kernel.

Both the RPC and group communication modules use the Fast Local Internet Protocol (FLIP) to
send messages [Kaashoek et al. 1993b]. FLIP is a connectionless (datagram) protocol, roughly analo-
gous to IP [Postel 1981], but with increased functionality. For the experiments performed in this sec-
tion we could have used multicast-1P [Deering 1988; Deering and Cheriton 1990] instead of FLIP, but
FLIP has other properties that makes it attractive for distributed computing. One of the major differ-
ences between IP and FLIP is that IP addresses identify a host while FLIP addresses identify a process
or a group of processes. This simplifies, for example, the implementation of process migration and of
group communication. FLIP is specifically designed to support a high-performance group communi-
cation and RPC protocol rather than support byte-stream protocols like TCP or OSI TP4. FLIP treats
the ability of a network to send multicast messages as an optimization over sending n separate point-
to-point messages.

6.2. Performance

The measurements were taken on a collection of 30 MC68030s (20 Mhz) connected by a 10
Mbit/s Ethernet. All processors were on the same Ethernet and were connected to the network by
Lance chip interfaces (manufactured by Advanced Micro Devices). The protocols also work for net-
work configurations in which members are located on different networks; FLIP will ensure that the
messages are routed appropriately. We measured the case in which the members are located on the
same network, as most network traffic is local and the results reported in the literature on comparable
experiments are also for this setup. Thus, in the experiments all the members can be reached by send-
ing one multicast packet. The machines used in the experiments were able to buffer 32 Ethernet

-33-

packets before the Lance overflowed and dropped packets. Each measurement was done 10,000 times
on an almost quiet network. The size of the history buffer was 128 messages. The experiments meas-
ured failure-free performance.

Most experiments were executed with messages of size 0 bytes, 1 Kbyte, 4 Kbyte, and 8,000
byte. The last size was chosen to reflect a fundamental problem in the implementation. In principle,
the group communication protocols can handle messages of size 8,000 or larger, but lower layers in
the kernel prohibit measuring the communication costs for these sizes. Messages larger than a net-
work packet size have to be fragmented into multiple packets. To prevent a sender from overrunning
a receiver, flow control has to be performed on messages consisting of multiple packets. For point-
to-point communication many flow control algorithms exists [Tanenbaum 1989], but it is not immedi-
ately clear how these should be extended to multicast communication. Some recent progress has been
made in this area [Amir et al. 1992], but the results are not widely applicable yet. The measurements
in this section therefore do not include the time for flow control and we have used a reasonable, but
arbitrary, upper bound to the message size.

The first experiment measures the delay for the PB method with r = 0. In this experiment one
process continuously broadcasts messages of size 0 byte, 1 Kbyte, 4 Kbyte, and 8,000 byte to a group
of processes (the size of the message excludes the 1161 bytes of protocol headers). All members con-
tinuously call ReceiveFromGroup. This experiment measures the delay seen from the sending pro-
cess, between calling and returning from SendToGroup. The sending process runs on a different pro-
cessor than the sequencer. Note that this is not the best possible case for our protocol, since only one
processor sends messages to the sequencer (i.e., no acknowledgements can be piggybacked by other
processors).

The results of the first experiment are depicted in Figure 21. For a group of two processes, the
measured delay for a 0-byte message is 2.7 msec. Compared to the Amoeba RPC on the same archi-
tecture, the group communication is only 0.1 msec slower than the RPC. For a group of 30 processes,
the measured delay for a 0-byte message is 2.8 msec. From these numbers, one can estimate that each
node adds 4 usec to the delay for a broadcast to a group of 2 nodes. Extrapolating, the delay for a
broadcast to a group of 100 nodes should be 3.2 msec. Sending an 8,000-byte message instead of a
0-byte message adds roughly 20 msec. Because the PB method is used in this experiment, this large
increase can be attributed to the fact that the complete message goes over the network twice.

Figure 22 breaks down the cost for a single 0-byte SendToGroup to a group of size 2, using the
PB method. Both members call ReceiveFromGroup to receive messages. To reflect the typical usage
of the group primitives, ReceiveFromGroup is called by another thread than SendToGroup. Most of

T 116 is the number of header bytes: 14 bytes for the Ethernet header, 2 bytes flow control, 40 bytes for the FLIP header,
28 bytes for the group header, and 32 bytes for the Amoeba user header. The Amoeba user header is only sent once.

-34-

20 —

15 W 4096 bytes
Delay

(msec)

10 e e 2048 bytes

———— e~ 1024 bytes

— — " ~———~—— (0 bytes

0 5 10 15 20 25 30
Number of members in the group

Fig. 21. Delay for 1 sender using PB method.

the time spent in user space is the context switch between the receiving and sending thread. The cost

for the group protocol itself is 740 psec.

The results of the same experiment but now using the BB method are depicted in Figure 23.
The result for sending a 0-byte message is, as can be expected, similar. For larger messages the
results are dramatically better, since in the BB method the complete message only goes over the net-
work once. At first sight, it may look as if the BB method is always as good as or better than the PB
protocol. However, this is not true. From the point of view of a single sender there is no difference in
performance, but for the receivers other than the sequencer there is. In the PB protocol they are inter-
rupted once, while in the BB protocol they are interrupted twice.

The next experiment measures the throughput of the group communication. In this experiment
all members of a given group continuously call SendToGroup. We measure both for the PB method
and the BB method how many messages per second the group can deal with. The results are depicted
in Figure 24 and Figure25. The maximum throughput is 815 0-byte messages per second. The
number is limited by the time that the sequencer needs to process a message. This time is equal to the
time spent taking the interrupt plus the time spent in the driver, FLIP protocol, and broadcast protocol.
On the 20-MHz 68030, this is almost 800 usec, which gives an upper bound of 1250 messages per
second. This number is not achieved, because the member running on the sequencer must also be
scheduled and allowed to process the messages.

The throughput decreases as the message size grows, because more data have to be copied. A

-35-

Member Sequencer
User |
Group |
FLIP |
Ethernet|
BC_BCASTREQ
| Ethernet
| FLIP
| Group
| FLIP
| Ethernet
Group
User
Group
Ethernet |
FLIP |
Group |
User |
Group |
User |
Group |
(@)
L ayer Time (usec)
User 514
Group 740
FLIP 570
Ethernet 916
(b)

Fig. 22. (a) A break down of the cost in usec of a single SendToGroup - ReceiveFromGroup pair.
The group size is 2 and the PB method is used.

(b) The time spent in the critical path of each layer. The Ethernet time is the time spend on the
wire plus the time spent in the driver and taking the interrupt.

receiver must copy each message twice: once from the Lance interface to the history buffer and once
from the history buffer to user space. In the PB method, the sequencer must copy the message three
times: one additional copy from the history buffer to the Lance interface to broadcast the message. (If
our Lance interface could have sent directly from main memory, this last copy could have been avoid-

-36-

20 —
7 W s000bytes
Delay
(msec) T e 4096 bytes
————— N~ . e T~ 2048 Dytes
———————————— . .~ .~ Obytes
0 | | | | | |

0 5 10 15 20 25 30
Number of members in the group

Fig. 23. Delay for 1 sender using the BB method.

ed.) If Amoeba had support for sophisticated memory management primitives like Mach [Young et
al. 1987] the second copy from the history buffer to user space could also have been avoided; in this
case one could map the page containing the history buffer into the user’s address space.

For messages of size 4 Kbyte and larger, the throughput drops more. (For some configurations
we are not able to make meaningful measurements at all.) This comes from the fact that our Lance
configuration can buffer only 32 Ethernet packets, each with a maximum size of 1514 bytes. This
means that the sequencer starts dropping packets when receiving 11 complete 4 Kbyte messages
simultaneously. (If our system had been able to buffer more packets, the same problem would have
appeared at some later point. The sequencer will need more time to process all the buffered packets,
which will at some point result in timeouts at the sending kernel and in retransmissions.) The proto-
col continues working, but the performance drops, because the protocol waits until timers expire to
send retransmissions. The same phenomenon also appears with groups larger than 16 members and
2-Kbyte messages.

Another interesting question is how many disjoint groups can run in parallel on the same Ether-
net without influencing each other. To answer this question we ran an experiment in which a number
of groups of the same size operated in parallel and each member of each group continuously called
SendToGroup. We ran this experiment for group sizes of 2, 4, and 8 and measured the total number
of 0-byte broadcasts per second (using the PB method). The experiment measures, for example, for
two groups with 2 members the total number of messages per second that 4 members together suc-
ceeded in sending, with each member being member of one group and running on a separate proces-

-37-

800 —
700 —
600 _ 0 bytes
500 —

Throughput
gnp 400 —

(msgs/s)
300 1024 bytes

200 — /\\/————\\\
100 —'/\/_—(————,\\ 2048 bytes
T \/\ 4096 bytes

8000 bytes

0 2 4 6 8 10 12 14 16
Number of senders in the group

Fig. 24. Throughput for the PB Method. The group size is equal to the number of senders.

800 —
700
0 bytes
500 —
Throughput
(msgs/sec) 400 — 1024 bytes
300 —
200 — m 2048 bytes
M 4096 bytes
100 - - T —_— T 8000 bytes
0 | | | | | | | |
0 2 4 6 8 10 12 14 16

Number of senders in the group

Fig. 25. Throughput for the BB Method. The group size is equal to the number of senders.

-38-

3500 —
3000 —
2500 —
Throughput 2000+
(msgs/sec) 1500 _
1000
2 members
500 — o o 0 4 members
+ + + 8 members
0 | | | | | | |
1 2 3 4 5 6 7

Number of groups

Fig. 26. Throughput for groups of 2, 4, and 8 members running in parallel and using the PB
method. We did not have enough machines available to measure the throughput with more groups
with 8 members.

sor. The results are depicted in Figure 26. The maximum throughput is 3175 broadcasts per second
when 5 groups of size 2 are broadcasting at maximum 0-byte message throughput (this corresponds to
at least 736,600 bytes per second; 3175 * 2 * 116 = 736,600). When another group is added the
throughput starts dropping due to the number of collisions on the Ethernet. This is also the case for
the poor performance of groups of size 8.

The final experiment measures the delay of sending a message with r > 0. Figure 27 and Fig-
ure 28 depict the delay for sending a message with resilience degrees from one to 15. As can be ex-
pected, sending a message with a higher r scales less well than sending with a degree of 0. In this
case, the number of FLIP messages per reliable broadcast sent is equal to 3 + r (assuming no packet
loss). Also, when using large messages and a high resilience degree, our hardware starts to miss
packets. For these settings we are not able to make meaningful measurements.

The delay for sending a 0-byte message to a group of size two with a resilience degree of one is
4.2 msec. For a group of size 16 with a resilience degree of 15, the measured delay is 12.9 msec.
This difference is due to the 14 additional acknowledgements that have to be sent. Each ack-
nowledgement adds approximately 600 usec.

-39-

8000 bytes
30 —

25
4096 bytes

20 —
2048 bytes

Delay

15 1024 bytes
(msec)
0 bytes

10

r-1Tr 1117 17T 17T T T T T T T Tl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resilience degree (r)

Fig. 27. Delay for 1 sender with different I's using PB method. Group size is equal to I + 1.

7. Comparison with Related Work

In this section, we will compare our reliable broadcast protocol with other protocols and our
system with other systems that provide broadcast communication. Figure 29 summarizes the results.
In comparing protocols, several points are of interest. The first is the performance of the protocol.
This has two aspects: the time before a message can be delivered to the application and the number of
protocol messages needed to broadcast the message. The second is the semantics of sending a broad-
cast message. There are three aspects: reliability, ordering, and fault tolerance. Although fault toler-
ance is an aspect of reliability, we list it as a separate aspect. The third is the hardware cost. The key
aspect here is whether the protocol requires members to be equipped with additional hardware (e.g., a
disk). Although more research has been done in broadcast communication than is listed in the table,
this other research focuses on different aspects (e.g., multicast routing in a network consisting of
point-to-point communication links) or requires synchronized clocks. For a bibliography of these pa-
pers we refer the reader to [Chanson et al. 1989].

Let us look at each protocol in turn. Amir et al. (ADKM) describe a recently built system,
called Transis, that supports a number of protocols with varying properties [Amir et al. 1992]. It
offers membership protocols, basic multicast (reliable group communication without order), causal-
ordered multicast, totally-ordered multicast, and safe multicast (i.e., it delivers a message after all ac-

- 40 -

30 —

25—

8000 bytes
20 —

5— 2048 bytes
(msec) Y2 1024 bytes

0 bytes
10

r-1Tr 1117 17T 17T T T T T T T Tl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resilience degree (r)

Fig. 28. Delay for 1 sender with different I's using BB method. Group size is equal to I + 1.

tive processors have acknowledged it). The approach used is similar to the one used in Psync (see
below); the communication system builds a graph, in which the nodes are messages and the edges
connect two messages that are directly dependent in the causal order. The services differ in the cri-
teria that determine when to deliver a message to the application. In addition to the layering of broad-
cast services, Transis has two other distinctive properties. It provides support for groups to remerge
after a partition and it implements multicast flow control. Preliminary performance results using
broadcast (instead of multicast) show that the system performs well.

The protocols that are used in one of the first systems supporting ordered group communication
are described by [Birman and Joseph 1987] are implemented in the Isis system. The Isis system is
primarily intended for doing fault-tolerant computing. Thus, Isis tries to make broadcast as fast as
possible in the context of possible processor failures. Our system is intended to do reliable ordered
broadcast as fast as possible. If processor failures occur, some messages may be lost, in the r=0
case. If, however, an application requires fault tolerance, our system can trade performance against
fault tolerance. As reliable ordered broadcast in the event of processor failures is quite expensive, Isis
includes primitives that provide a weaker ordering (e.g., a causal ordering).

Recently the protocols for Isis have been redesigned [Birman et al. 1991]. The system is now
completely based on a broadcast primitive that provides causal ordering. The implementation of this
primitive uses reliable point-to-point communication. The protocol for totally-ordered broadcast is
based on causal broadcast. As in our protocol, a sequencer (a token holder in Isis terminology) is
used to totally order the causal messages. Unlike our protocol, the token holder can migrate.

-41 -

Depending if the sender holds the token, this scheme requires either one message or two messages,
but each message possibly contains a sequence number for each member, while in our protocol the
number of bytes for the protocol header is independent of the number of members. Thus in Isis, for a
group of 1024 members, 4K bytes of data are possibly added to each message. Depending on the
communication patterns, this data can be compressed, but in the worst case 4K is still needed. As an
aside, the new version of Isis no longer supports a total ordering for overlapping groups. A reimple-
mentation of Isis, called Horus, achieves very high performance by packing multiple messages in a
single network packet, by avoiding major bottlenecks in the communication path, and by using
multicast-IP [Van Renesse et al. 1992].

Chang and Maxemchuk describe a family of broadcast protocols [Chang and Maxemchuk
1984]. These protocols differ mainly in the degree of fault tolerance that they provide. Our protocol
for r =0 resembles their protocol that is not fault tolerant (i.e., it may lose messages if processors
fail), but ours is optimized for the common case of no communication failures. Like our protocol, the
CM protocol also depends on a central node, the token site, for ordering messages. However, on each
acknowledgement another node takes over the role of token site. Depending on the system utilization,
the transfer of the token site on each acknowledgement can take one extra control message. Thus
their protocol requires 2 to 3 messages per broadcast, whereas ours requires only 2 in the best case
and only a fraction bigger than 2 in the normal case.

Fault tolerance is achieved in the CM protocol by transferring the token. If a message is
delivered after the token has been transferred L times, then L processor failures can be tolerated. This
scheme introduces a very long delay before a message can be delivered, but uses fewer messages than
ours. Finally, in the CM protocol all messages are broadcast, whereas our protocol uses point-to-point
messages whenever possible, reducing interrupts and context switches at each node. This is impor-
tant, because the efficiency of the protocol is not only determined by the transmission time, but also
(and mainly) by the processing time at the nodes. In their scheme, each broadcast causes at least
2(n — 1) interrupts; in ours only n. The actual implementation of their protocol uses physical broad-
cast for all messages and is restricted to a single LAN.

The group communication for the V system, described in [Cheriton and Zwaenepoel 1985], in-
tegrates RPC communication with broadcast communication in a flexible way. If a client sends a re-
quest message to a process group, V tries to deliver the message at all members in the group. If any
one of the members of the group sends a reply back, the RPC returns successfully. Additional replies
from other members can be collected by the client by calling GetReply. Thus, the V system does not
provide reliable, ordered broadcasting. However, this can be implemented by a client and a server
(e.q., the protocol described by Navaratnam, Chanson, and Neufeld runs on top of V). In this case, a
client needs to know how the service is implemented. We do not think this is a good approach. If an
unreplicated file service, for example, is re-implemented as a replicated file service to improve per-
formance and to increase availability, it would mean that all client programs have to be changed.
With our primitives, no change is needed in the client code.

Elnozahy and Zwaenepoel describe a broadcast protocol (EZ in Fig. 29) especially designed for
replicated process groups [Elnozahy and Zwaenepoel 1992]. Like the CM protocols and like ours, it

-42 -

Performance Semantics o
Additional
Protocol
)) Fault- Hardware
Delay #Pkts Reliable | Ordering
tolerance

ADKM >1 1 Yes No...Yes | 0..n-1 No

BJ 2 Rounds 2n Yes Yes n-1 No
BSS 2 2n Yes Yes n-1 No
CM 2..2+n-1 2+¢ Yes Yes 0..n-1 No

cz 2 2...Nn No...Yes No No No
EzZ 2 2 Yes Yes n-1 No

LG 3 Phases 1...4n Yes Yes Yes Yes
MMA >1 1 Yes Yes n/2 No

M 2 2+¢ Yes Yes Yes Yes
NCN 2 n+1 Yes No...Yes | 0..n-1 No
PBS >1 1 Yes Yes 0..n-1 No...Yes
TY 2 3 Yes Yes No...Yes Yes
VRB 2 Rounds 2n Yes Yes n-1 Yes
ours 2 2..3+h-1 Yes Yes 0..n-1 No

Fig. 29. Comparison of different broadcast protocols. A protocol is identified by the first letters
of the names of the authors. The group size is N. In a round each member sends a message. A
phase is the time necessary to complete a state transition (sending messages, receiving messages,
and local computation). For each protocol, we list the best performance. In some cases, the per-
formance may be worse, for example, for higher degrees of fault tolerance.

is based on a centralized site and negative acknowledgements. Unlike ours, it especially designed to
provide a low delay in delivery of messages, while at the same time providing a high resilience de-
gree. This goal is achieved by keeping an antecedence graph and adding to each message the incre-
mental changes to this graph. By maintaining the antecedence graph this protocol does not need to
send acknowledgements to confirm that the message is stored at r members. On the other hand, the
application must potentially be rolled back when a processor fails.

The protocol described in [Luan and Gligor 1990] is one of the protocols that require additional
hardware. In the LG protocol each member must be equipped with a disk. Using these disks the pro-

-43-

tocol can provide fault-tolerant ordered broadcasting, even if the network partitions. It uses a
majority-consensus decision to agree on a unique ordering of broadcast messages that have been re-
ceived and stored on disk. Under normal operation, the protocol requires 4n messages. However,
under heavy load the number of messages goes down to 1. The delay before a message can be
delivered is constant: the protocol needs three protocol phases before it can be delivered. In a system
like Amoeba that consists of a large number of processors, equipping each machine with a disk would
be far too expensive. Furthermore, the performance of the protocol is also much too low to be con-
sidered as a general protocol for reliable broadcasting.

A totally different approach to reliable broadcasting is described in [Melliar-Smith et al. 1990].
They describe a protocol that achieves reliable broadcast with a certain probability. If processor
failures occur, it may happen that the protocol cannot decide on the order in which messages must be
delivered. They claim that the probability is high enough to assume that all messages are ordered to-
tally, but nevertheless there is a certain chance that messages are not totally-ordered. The MMA pro-
tocol uses only one message, but a message cannot be delivered at an application until several other
broadcast messages have been received. For a group of 10 nodes, a message can be delivered on aver-
age after receiving another 7.5 messages. With large groups, the delay is unacceptably large.

Montgomery [Montgomery 1978] coined the term atomic broadcast in an unpublished disserta-
tion. The thesis describes the problem of reliable, totally-ordered multicast and proposes two solu-
tions: one based on point-to-point communication and one based on broadcast. Both solutions are
based on a centralized component that orders messages. To provide for fault tolerance the messages
are always stored on stable storage. Another important difference between these two protocols and
ours is that acknowledgements are not piggybacked. Instead, each node broadcasts once in a while a
message saying which messages it has received, so that the central site can purge messages from its
stable storage. No indication is given that the protocol was ever implemented, and no measurements
are presented.

Navaratnam, Chanson, and Neufeld provide two primitives for reliable broadcasting [Navarat-
nam et al. 1988]. One orders messages; the other does not. Their protocol also uses a centralized
scheme, but instead of transferring the token site on each acknowledgement, their central site waits
until it has received acknowledgements from each node that runs a member before sending the next
broadcast. In an implementation of the NCN protocol on the V-system, a reliable broadcast message
costs 24.8 msec for a group of 4 nodes on comparable hardware. Our current implementation does
this in less than 4.8 msec (r = 3).

In [Peterson et al. 1989] a communication mechanism is described called Psync. In Psync a
group consists of a fixed number of processes and is closed. Messages are causally ordered. A li-
brary routine provides a primitive for a total ordering. This primitive is implemented using a single
causal message, but members cannot deliver a message immediately when it arrives. Instead, a
number of messages from other members (i.e., at most one from each member) must be received be-
fore the total order can be established.

Another protocol that requires hardware support for reliable broadcasting is described in
[Tseung and Yu 1990]. The TY protocol requires that at least three components be added to the net-

- 44 -

work: a Retransmission Computer, a Designated Recorder Computer, and one or more Playback
Recorder Computers. The Playback Recorder Computers should be equipped with a disk (typically
one Playback Recorder Computer is used per group). If fault tolerance is required, hot backup sys-
tems can be provided for the Retransmission Computer and the Designated Recorder Computer. The
protocol works as follows. A user computer sends a point-to-point message to the Retransmission
Computer. The Retransmission Computer plays a similar role as our sequencer. It adds some infor-
mation to the message, such as a sequence number, and broadcasts it. In the TY protocol, the Re-
transmission Computer is ready to broadcast the next message after the Designated Recorder Comput-
er has sent an acknowledgement. The Designated Recorder stores messages for a short period, in case
one of the Playback Recorder Computers has missed a message. The Playback Computers store the
messages on disk for a long period of time to be able to send retransmissions to user computers if they
have missed a message. This protocol requires more messages than our protocol (the acknowledge-
ment from the Designated Recorder to the Retransmission Recorder is not needed in our protocol) and
requires additional hardware. Furthermore, one computer (the Retransmission Computer) serves as
the sequencer for all groups. If the sequencer becomes a bottleneck in one group, all other groups will
suffer from this. Also, if the Retransmission Computer or the Designated Recorder crashes, no group
communication can take place in the whole system. For these reasons and the fact that groups are
mostly unrelated, we order messages on a per group basis by having a separate sequencer for each
group.

The last protocol that we consider which provides reliable broadcasting is described in [Verissi-
mo et al. 1989]. The VRB protocol runs directly on top of the Medium Access Layer (MAC). Thus,
the protocol is restricted to a single LAN, but on the other hand it allows for an efficient implementa-
tion. The protocol itself is based on the two phase commit protocol [Eswaran et al. 1976]. In the first
phase, the message is broadcast. All receivers are required to send an acknowledgement indicating if
they will accept the message. After the sender has received all acknowledgements, it broadcasts a
message telling if the message can be delivered to the user application or not. The protocol assumes
that the network orders packets and that there is a bounded transmission delay.

A somewhat related approach is Cooper’s replicated RPC [Cooper 1985]. Although replicated
RPC provides communication facilities for 1-to-n communication, it does not use group communica-
tion. Instead, it performs n —1 RPCs. As it is not based on group communication, nor does it use
multicast, we did not include it in the table. Replicated RPC, however, can be implemented using
group communication [Wood 1993].

Another related approach is MultiRPC [Satyanarayanan and Siegel 1990]. From the program-
ming point of view, MultiRPC behaves exactly the same as an ordinary RPC. However, instead of in-
voking one server stub, MultiRPC invokes multiple server stubs on different machines in parallel.
Compared to performing n — 1 regular RPCs, MultiRPC is more efficient as the server stubs are exe-
cuted in parallel. The authors also discuss preliminary results for sending the request message in a
multicast packet to avoid the overhead of sending the requests n times in point-to-point packets. The
replies on an RPC are sent using point-to-point communication and are processed sequentially by the

- 45 -

client machine. There is no ordering between two MultiRPCs and MultiRPC does not provide reli-
able communication in case one of the servers crashes.

If messages are sent regularly and if messages may be lost when processor failures occur, our
protocol is more efficient than any of the protocols listed in the table. In our protocol, the number of
messages used is determined by the size of the history buffer and the communication pattern of the
application. In the normal case, two messages are used: a point-to-point message to the sequencer and
a broadcast message. In the worst case, when one of the nodes is continuously broadcasting,
(n/HISTORY _SIZE) + 2 messages are needed. For example, if the number of buffers in the history is
equal to the number of processors, three messages per reliable broadcast are needed. In practice, with
say 1 Mbyte of history buffers and 1 Kbyte-messages, there is room for 1024 messages. This means
that the history buffer will rarely fill up and the protocol will actually average two messages per reli-
able broadcast. The delay for sending a message is equal to the time to send and receive a message
from the sequencer. The delay before a message can be delivered to the application is optimal; as
soon as a broadcast arrives, it can be delivered. Also, our protocol causes a low number of interrupts.
Each node gets one interrupt for each reliable broadcast message (PB method).

If messages must be delivered in order and without error despite member crashes, the cost of
the protocol increases. For resilience degree r > 0, each reliable broadcast takes 3 + r messages: one
message for the point-to-point message to the sequencer, one broadcast message from the sequencer
to all kernels announcing the sequence number, r short acknowledgements that are sent point-to-point
to the sequencer, and one short accept message from the sequencer to all members. The delay in-
creases. A message can only be accepted by the sequencer after receiving the message, broadcasting
the message, and receiving r acknowledgements. However, the r acknowledgements will be received
almost simultaneously. Thus, an increase in fault tolerance costs the application a decrease in perfor-
mance. It is up to the application programmer to make the tradeoff.

Like some of the other protocols, our protocol uses a centralized node (the sequencer) to deter-
mine the order of the messages. Although in our protocol this centralized node does not do anything
computationally intensive (it receives a message, adds the sequence number, and broadcasts it), it
could conceivably become a bottleneck in a very large group. If r >0, it is likely that the sequencer
will become a bottleneck sooner due to the r acknowledgements that it has to process. Under heavy
load, one could try to piggyback these acknowledgements onto other messages, to make the protocol
scale better.

8. Conclusion

We have identified 6 criteria that are important design issues for group communication: ad-
dressing, reliability, ordering, delivery semantics, response semantics, and group structure. We have
discussed each of these criteria and the choices that have been made for the Amoeba distributed sys-
tem. The Amoeba interface for group communication is simple, powerful, and easy to understand. Its
main properties are:

° Reliable communication.

- 46 -

. Messages are totally-ordered per group.

J Programmers can trade performance against fault tolerance.

Based on our experience with distributed programming we believe that these properties are essential
in building efficient distributed applications.

We have described in detail the group communication interface and its implementation. In ad-
dition, we have provided extensive performance measurements on 30 processors. The delay for a null
broadcast to a group of 30 processes running on 20-MHz MC68030s connected by 10 Mbit/s Ethernet
is 2.8 msec. The maximum throughput per group is 815 broadcasts per group. With multiple groups,
the maximum number of broadcasts per second has been measured at 3175.

ACKNOWLEDGEMENTS

We would like to thank Henri Bal, Susan Flynn, and Wiebren de Jonge for their contributions to the
broadcast protocol. In addition we would like to thank the anonymous referees, Mootaz Elnozahy,
Robbert van Renesse, Kees Verstoep, Mark Wood, and Willy Zwaenepoel for providing comments on
several drafts of this paper.

REFERENCES

Ahamad, M. and Bernstein, A. J., “An Application of Name Based Addressing to Low Level Distri-
buted Algorithms,” IEEE Trans. on Soft. Eng., Vol. 11, No. 1, pp. 59-67, Jan. 1985.

Amir, Y., Dolev, D., Kramer, S., and Malki, D., “Transis: A Communication Sub-System for High
Availability,” Proc. 22nd International Symposium on Fault-Tolerant Computing, pp. 76-84,
Boston, MA, June 1992.

Bal, H. E., “Programming Distributed Systems,” Silicon Press, Summit, NJ, 1990.

Birman, K. P., “The Process Group Approach to Reliable Distributed Computing,” Comm. ACM, Vol.
36, No. 12, pp. 36-53, Dec. 1993.

Birman, K. P., Cooper, R., Jospeh, T. A., Kane, K. P., Schmuck, F., and Wood, M., “Isis - A Distri-
buted Programming Environment,” User’s Guide and Reference Manual, Cornell University,
Ithaca, N, June 1990.

Birman, K. P. and Joseph, T. A., “Reliable Communication in the Presence of Failures,” ACM Trans.
Comp. Syst., Vol. 5, No. 1, pp. 47-76, Feb. 1987.

Birman, K. P., Schiper, A., and Stephenson, P., “Lightweight Causal and Atomic Group Multicast,
ACM Trans. Comp. Syst., Vol. 9, No. 3, pp. 272-314, Aug. 1991.

Birrell, A. D. and Nelson, B. J., “Implementing Remote Procedure Calls,” ACM Trans. Comp. Syst.,
Vol. 2, No. 1, pp. 39-59, Feb. 1984.

- 47 -

Chang, J., “Simplifying Distributed Database Design by Using a Broadcast Network,” Proc. ACM
SIGMOD 1984 Annual Conference, pp. 223-233, Boston, MA, June 1984,

Chang, J. and Maxemchuk, N. F., “Reliable Broadcast Protocols,” ACM Trans. Comp. Syst., Vol. 2,
No. 3, pp. 251-273, Aug. 1984.

Chanson, S. T., Neufeld, G. W., and Liang, L., “A Bibliography on Multicast and Group Communica-
tion,” Operating Systems Review, Vol. 23, No. 4, pp. 20-25, Oct. 1989.

Cheriton, D. R. and Skeen, D., “Understanding the Limitations of Causally and Totally Ordered Com-
munication,” Proc. Fourteenth Symposium on Operating System Principles, pp. 44-57, Ashe-
ville, NC, Dec. 1993.

Cheriton, D. R. and Zwaenepoel, W., “Distributed Process Groups in the V kernel,” ACM Trans.
Comp. Syst., Vol. 3, No. 2, pp. 77-107, May 1985.

Cooper, E. C., “Replicated Distributed Programs,” Proc. Tenth Symposium on Operating Systems
Principles, pp. 63-78, Orcas Islands, WA, Dec. 1985.

Cristian, F., “Understanding Fault-Tolerant Distributed Systems,” Commun. ACM, Vol. 34, No. 2, pp.
56-78, Feb. 1991.

Danzig, P. B., “Finite Buffers and Fast Multicast,” Perf. Eval. Rev., Vol. 17, No. 1, pp. 79-88, May
1989.

Dechter, R. and Kleinrock, L., “Broadcast Communication and Distributed Algorithms,” IEEE Trans.
on Computers, Vol. 35, No. 3, pp. 210-219, Mar. 1986.

Deering, S. E., “Host Extensions for IP Multicasting,” RFC 1112, SRI Network Information Center,
Aug. 1988.

Deering, S. E. and Cheriton, D. R., “Multicast Routing in Datagram Internetworks and Extended
LANs,” ACM Trans. Comp. Syst., Vol. 8, No. 2, pp. 85-110, May 1990.

Elnozahy, E. N. and Zwaenepoel, W., “Replicated Distributed Processes in Manetho,” Proc. 22nd
International Symposium on Fault-Tolerant Computing, pp. 18-27, Boston, MA, June 1992.

Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., “The Notion of Consistency and Predicate
Locks in a Database System,” Commun. ACM, Vol. 19, No. 11, pp. 624-633, Nov. 1976.

Fischer, M. J., Lynch, N. A,, and Paterson, M. S., “Impossibility of Distributed Consensus with One
Faulty Process,” Journal of the ACM, Vol. 32, No. 2, pp. 374-382, Apr. 1985.

Frank, A. J., Wittie, L. D., and Bernstein, A. J., “Multicast Communication on Network Computers,”
IEEE Software, Vol. 2, No. 3, pp. 49-61, May 1985.

Garcia-Molina, H., “Elections in a Distributed Computing System,” IEEE Trans. on Computers, Vol.
31, No. 1, pp. 48-59, Jan. 1982.

-48 -

Gehani, N. H., “Broadcasting Sequential Processes,” IEEE Trans. on Soft. Eng., Vol. 10, No. 4, pp.
343-351, July 1984.

Gueth, R., Kriz, J., and Zueger, S., “Broadcasting Source-Addressed Messages,” Proc. Fifth Interna-
tional Conference on Distributed Computing Systems, pp. 108-115, Denver, CO, 1985.

Hadzilacos, V. and Toueg, S., “Fault-Tolerant Broadcasts and Related Problems,” in Distributed Sys-
tems 2nd ed., ed. S. Mullender, Addison-Wesley, Reading, MA, 1993.

Hughes, L., “A Multicast Interface for UNIX 4.3,” Software—Practice and Experience, Vol. 18, No.
1, pp. 15-27, Jan. 1988.

Hughes, L., “Multicast Response Handling Taxonomy,” Computer Communications, Vol. 12, No. 1,
pp. 39-46, Feb. 1989.

Joseph, T. A. and Birman, K. P., “Low Cost Management of Replicated Data in Fault-Tolerant Sys-
tems,” ACM Trans. Comp. Syst., Vol. 4, No. 1, pp. 54-70, Feb. 1986.

Kaashoek, M. F., “Group Communication in Distributed Computer Systems,” Ph.D. Thesis, Vrije
Universiteit, Amsterdam, 1992.

Kaashoek, M. F., Michiels, R., Bal, H. E., and Tanenbaum, A. S., “Transparent Fault-Tolerance in
Parallel Orca Programs,” Proc. Symposium on Experiences with Distributed and Multiproces-
sor Systems 111, pp. 297-312, Newport Beach, CA, Mar. 1992,

Kaashoek, M. F., Tanenbaum, A. S., Flynn Hummel, S., and Bal, H. E., “An Efficient Reliable Broad-
cast Protocol,” Operating Systems Review, Vol. 23, No. 4, pp. 5-20, Oct. 1989.

Kaashoek, M. F., Tanenbaum, A. S., and Verstoep, K., “Using Group Communication to Implement a
Fault-Tolerant Directory Service,” Proc. 13th International Conference on Distributed Comput-
ing Systems, pp. 130-139, Pittsburgh, PA, May 1993a.

Kaashoek, M. F., Van Renesse, R., Van Staveren, H., and Tanenbaum, A. S., “FLIP: an Internetwork
Protocol for Supporting Distributed Systems,” ACM Trans. Comp. Syst., Vol. 11, No. 1, pp.
73-106, Feb. 1993b.

Kung, H. T., “Gigabit Local Area Networks: a Systems Perspective,” IEEE Communications Maga-
zine, Vol. 30, No. 4, pp. 79-89, Apr. 1992.

Liang, L., Chanson, S. T., and Neufeld, G. W., “Process Groups and Group Communication: Classifi-
cation and Requirements,” IEEE Computer, Vol. 23, No. 2, pp. 56-68, Feb. 1990.

Luan, S. W. and Gligor, V. D., “A Fault-Tolerant Protocol for Atomic Broadcast,” IEEE Trans.
Parallel and Distributed Systems, Vol. 1, No. 3, pp. 271-285, July 1990.

=49 -

Marzullo, K. and Schmuck, F., “Supplying High Availability with a Standard Network File System,”
Proc. Eighth International Conference on Distributed Computing Systems, pp. 447-453, San
Jose, CA, June 1988.

Melliar-Smith, P. M., Moser, L. E., and Agrawala, V., “Broadcast Protocols for Distributed Systems,”
IEEE Trans. Parallel and Distributed Systems, Vol. 1, No. 1, pp. 17-25, Jan. 1990.

Montgomery, W. A., “Robust Concurrency Control for a Distributed Information System,”
MIT/LCS/TR-207 (Ph.D. thesis), M.1.T., Cambridge, MA, Dec. 1978.

Mullender, S. J., Van Rossum, G., Tanenbaum, A. S., Van Renesse, R., and Van Staveren, H.,
“Amoeba: a Distributed Operating System for the 1990s,” IEEE Computer, Vol. 23, No. 5, pp.
44-53, May 1990.

Navaratnam, S., Chanson, S., and Neufeld, G., “Reliable Group Communication in Distributed Sys-
tems,” Proc. Eighth International Conference on Distributed Computing Systems, pp. 439-446,
San Jose, CA, June 1988.

Peterson, L. L., Buchholtz, N. C., and Schlichting, R. D., “Preserving and Using Context Information
in IPC,” ACM Trans. Comp. Syst., Vol. 7, No. 3, pp. 217-246, Aug. 1989.

Postel, J., “Internet Protocol,” RFC 791, SRI Network Information Center, Sep. 1981.

Rozier, M., Abrossimov, V., Armand, F., Boule, 1., Gien, M., Guillemont, M., Herrmann, F., Kaiser,
C., Langlois, S., Leonard, P., and Neuhauser, W., “Chorus Distributed Operating System,”
Computing Systems, Vol. 1, No. 4, pp. 305-370, 1988.

Satyanarayanan, M. and Siegel, E. H., “Parallel Communication in a Large Distributed Environment,”
IEEE Trans. on Computers, Vol. 39, No. 3, pp. 328-348, Mar. 1990.

Schneider, F. B., “Byzantine Generals in Action: Implementing Fail-Stop Processes,” ACM Trans.
Comp. Syst., Vol. 2, No. 2, pp. 145-154, May 1984.

Schneider, F. B., “Implementing Fault-tolerant Services Using the State Machine Approach: A Tu-
torial,” ACM Computing Surveys, Vol. 22, No. 4, pp. 299-319, Dec. 1990.

Siegel, A., Birman, K., and Marzullo, K., “Deceit: a Flexible Distributed File System,” Proc. Usenix
Summer Conference, pp. 51-61, Anaheim, CA, June 1990.

Tanenbaum, A. S., “Computer Networks 2nd ed.,” Prentice-Hall, Englewood Cliffs, NJ, 1989.

Tanenbaum, A. S., Kaashoek, M. F., and Bal, H. E., “Parallel Programming Using Shared Objects and
Broadcasting,” IEEE Computer, Vol. 25, No. 8, pp. 10-19, Aug. 1992.

Tanenbaum, A. S., Van Renesse, R., Van Staveren, H., Sharp, G., Mullender, S. J., Jansen, A., and
Van Rossum, G., “Experiences with the Amoeba Distributed Operating System,” Commun.
ACM, Vol. 33, No. 12, pp. 46-63, Dec. 1990.

-50 -

Tseung, L. C. N. and Yu, K-C., “The implementation of Guaranteed, Reliable, Secure Broadcast Net-
works,” 1990 ACM Eighteenth Annual Computer Science Conference, pp. 259-266,
Washington D.C., Feb. 1990.

Van Renesse, R., “Causal Controversy at Le Mont St. Michel,” Operating Systems Review, Vol. 27,
No. 2, pp. 44-53, Apr. 1993.

Van Renesse, R., Birman, K. P., Cooper, R., Glade, B., and Stephenson, P., “Reliable Multicast
between Microkernels,” Proc. of the USENIX workshop on Micro-Kernels and Other Kernel
Architectures, Seattle, WA, Apr. 1992,

Verissimo, P., Rodrigues, L., and Baptista, M., “AMp: a Highly Parallel Atomic Multicast Protocol,”
Proc. SIGCOMM 89, pp. 83-93, Austin, TX, Sep. 1989.

Wood, M. D., “Replicated RPC Using Amoeba Closed Group Communication,” Proc. of the 13th
Conference on Distributed Computing Systems, pp. 499-507, Pittsburgh, PA, May 1993.

Young, M., Tevenian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W., Black, D., and
Baron, R., “Duality of Memory and Communication in the Implementation of a Multiprocessor
Operating System,” Proc. Eleventh Symposium on Operating Systems Principles, pp. 63-67,
Austin, TX, Nov. 1987.

-51-

