
Unifying Internet Services Using
Distributed Shared Objects

Philip Homburg
Maarten van Steen

Andrew S. Tanenbaum

Internal report IR-409
October 11, 1996

Abstract

Developing wide area applications such as those for sharing data across the Internet is unnec-
essarily difficult. The main problem is the widespread use of a communication paradigm that is too
low level. We will show how wide area application development can be made easier when using
distributed shared objects instead of a communication-oriented model. An object in our model is
physically distributed, with multiple copies of its state on different machines. All implementation
aspects such as replication, distribution, and migration of state, are hidden from users through an
object’s interface. In this paper, we concentrate on the application of distributed shared objects,
by providing an outline of a middleware solution that permits integration of the Internet services
for e-mail, News, file transfer, and Web documents.

Faculty of Mathematics and Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15449706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Constructing wide area applications, such as those for sharing data across the Internet, often requires a
substantial development effort. This is mainly caused by the lack of proper communication facilities as
offered by the underlying operating systems and middleware solutions. For example, most operating
systems provide only a very simple socket-based network interface. On the other hand, middleware
solutions such as DCE [13] or CORBA [11] offer more advanced communication facilities such as
RPC or remote object invocation, but lack support for related issues such as replication. Also, it is yet
unclear whether these systems can scale to millions of users and billions of objects.

To illustrate the problems for sharing data in wide area networks caused by the lack of proper com-
munication facilities, we focus in this paper on four applications used in the Internet, and their corre-
sponding protocols. These are electronic mail (SMTP [12]), USENET News (NNTP [9]), file transfer
(FTP [3]), and the Web (HTTP [2]). The protocols have the following in common:

Each protocol is designed to support interoperatability between different implementations of that
protocol.

Each protocol handles the transfer of data between sites, but ignores aspects related to, for ex-
ample, data management, replication, and security.

They are all designed as a relatively simple layer directly on top of the TCP/IP protocol stack.

Accompanying a new application with its own transfer protocol has generally been the approach fol-
lowed in the Internet. This approach has two major drawbacks. First, enhancements to a protocol are
hard to realize as it requires worldwide consensus as well as changing many independently written
implementations. Second, although very different implementations of the same protocol can easily in-
teroperate, interoperatability between different protocols has shown to be hard. In order to easily adapt
and integrate service, it is essential that the level of abstraction of network communication facilities of-
fered by current systems is raised. In particular, we advocate that the underlying system should provide
an object-based model in which distributed objects are used as the basis for sharing and exchanging
information. How this approach can integrate applications and simplify software design is the main
topic of this paper.

The paper is organized as follows. In Section 2 we take a closer look at the functionality of the four
Internet services to see what that have in common. In Section 3 we explain our model of distributed
shared objects. Integration of the four services in terms of our object model is discussed in Section 4,
while the integration with existing implementations is presented in Section 5. Our conclusions are
stated in Section 6.

2 The Four Internet Services

We start with taking a closer look at each of the four Internet services. Figure 1 shows how the proto-
cols differ, where we distinguish naming, data distribution, replication of data, grouping of documents,
authentication and secrecy, self-containedness, and data encoding. These differences are discussed be-
low.

2.1 Common functionality

Naming. The Mail system names users at domains. Although a mailbox is globally unique, the inter-
pretation of the user name is left to individual mail transfer agents (MTA). SMTP only defines a map-

1



Mail News FTP WWW
Naming Mailbox

(user@domain)
Newsgroup Host + path URL

Distribution Push Push Pull Pull
Replication None Flooding Caching +

DNS tricks
Caching +
DNS tricks

Containers Mailbox Newsgroup Directories HTML +
Frames

Authentication PEM or PGP None (PGP) Username +
Password

Username +
Password

Secrecy PEM or PGP None None None
Complete No Theory: Yes

Practice: No
Theory: Yes
Practice: No

No

Encoding 7-bit + MIME
+ 8-bit
extensions

7-bit + MIME 7-bit text +
8-bit binary
(user has to
guess)

8-bit +
content type

Figure 1: Features of four Internet protocols.

ping from the domain part of a mailbox to the machine(s) on which the MTA runs that accepts mail for
that domain. The News system names newsgroups. Newsgroup names are valid in a particular domain
(“distribution”). Names for local newsgroups are typically not unique, which causes confusion if an
article is cross-posted in several domains. Articles in a single newsgroup are uniquely distinguished by
the their message identifier. Naming in FTP is done for files, and the host of the file system. The only
naming convention adopted is that of the FTP server, whose name is coupled to the DNS host name on
which the server is running. Finally, the World Wide Web uses Uniform Resource Locators (URLs) for
naming Web pages and other documents. The distinguishing feature is that a protocol identifier makes
part of a URL, allowing documents available under HTTP, FTP, Mail, and News, to be named within
a single naming scheme.

Data Distribution. Both Mail and News actively push data towards the destination, which is a mail-
box, or a peer news server, respectively. On the other hand, for FTP and Web documents, the user is
expected to explicitly pull the document from a server or a cache to its own location.

Data Replication. The only system for which replication is defined is News. News articles are repli-
cated using a flooding protocol. Mail messages are not replicated. If a message has multiple recipients,
copies are sent to each recipient separately. FTP and HTTP do not support replication, although some
replication is done manually. Using mirror sites, entire FTP and HTTP servers can be replicated, and
registered under a single DNS name using round-robin DNS. Caches can be seen as a weak form of
replication. Copies of the content of Web documents are stored in proxy Web servers. However, note
that standardized cache consistency protocols are lacking entirely.

Document Containers. The four applications differ in how documents are collected and organized.
Mail messages are collected in mailboxes; News articles are collected in newsgroups; FTP supports
the traditional concept of hierarchically organized directories. In contrast to Mail and News, FTP pro-
vides the user with full support for manipulating directories. The World Wide Web does not support

2



document containers at all. It is only possible to have references to other documents contained in a Web
page, but there is no support for collecting groups of pages into something analogous to a directory.

Authentication and Secrecy. Security is primarily supported only in Mail and News. PEM (Privacy-
Enhanced Mail) is a standard protocol for authentication and secrecy of mail messages. In practice,
PGP (Pretty Good Privacy) is commonly used to authenticate both Mail messages and News articles,
and to encrypt Mail messages. Authentication for FTP and HTTP is limited to simple user name/password
combinations. Nonstandard security extensions exist for Web documents, which are specific to Web
browsers, such as SSL for NetscapeTM.

Completeness. None of the four services is really self-contained, with the possible exception of the
News system. NNTP supports both posting and reading News articles. Furthermore, News articles
may contain control fields to create and delete newsgroups. Unfortunately, the usefulness is limited by
the lack of authentication of News articles. There is no standard protocol for introducing a new News
server to neighboring servers. Initially, the Mail system only defined a protocol for sending mail to a
mailbox, but lacked a protocol for reading mail. POP (Post Office Protocol) was introduced to solve
this problem. However, there are no standard protocols for creating or deleting mailboxes. FTP pro-
vides a fairly complete set of commands for maintaining a file system. For various reasons these com-
mands are typically not used, and instead the underlying local file system is modified directly. Finally,
HTTP is also not self-contained. For example, it relies on existing file systems and has only limited
commands for adding new documents to an existing directory.

Data Encoding. Data encoding also differs between the various protocols. Mail and News allow
7-bit ASCII data transfers. MIME extends this by defining standard encodings for binary and 8-bit
text. Extensions to SMTP allow passing 8-bit data directly from an SMTP client to an SMTP server if
they both implement the extension. In practice, almost all Mail and News transport agents allow 8-bit
text encodings such as Latin-1. FTP supports both text files and data files. Unfortunately, the user has
to guess the correct type, and explicitly configure either a binary or ASCII transfer. HTTP supports
8-bit binary data, and provides the recipient with a content type that describes the data.

2.2 Unifying the Different Services

Some differences between the four services are historical, but others are caused by different underlying
communication models. The communication model underlying Mail is that of message exchange be-
tween two parties. The News model of communication is very similar, except that message exchange
takes place within a group of participants. However, file transfer is radically different. It is based on
files organized in a file system at a particular site. Operations mainly deal with manipulating directories
and explicitly copying files between a remote and a local file system. Likewise, the model underlying
the Web is also different. The Web model assumes a world of Web pages, each page located at a par-
ticular site. Each page can refer to other pages through hyperlinks. When a client activates a hyperlink
the associated Web page is copied to the client’s site so that it can be read. However, these models are
only implicit: all four services are described in terms of transfer protocols. And indeed, this makes the
service incomplete and often highly inflexible. For example, data management is lacking and where
applicable, replication strategies are hard-wired into a protocol.

A solution towards integration adopted in the Web community, is to provide an single Web browser
that supports each protocol. However, providing an integration at the level of the user interface solves

3



only a very small part of the problem. In particular, the distinction between how the shared data is
accessed and manipulated remains: there is no integration of underlying communication models. New
programs that need to access multiple kinds of data (e.g., Mail messages and Web pages) must still deal
with each one separately.

Rather than integrating the services directly, or choosing ad-hoc solutions such as adopted in browsers,
we advocate that the underlying systems on which data sharing services in large-scale internets are to
be based, should be adapted first. In this paper, we show that an approach based on the concept of dis-
tributed shared objects can alleviate many of the problems encountered with integrating such services.

3 Distributed Shared Objects

In this section we briefly describe our model of distributed shared objects. We first describe what a
distributed shared object is, and then focus on the support for replication.

3.1 Object Organization

In our model, processes interact and communicate through distributed shared objects [7, 17, 8]. Each
object offers one or more interfaces, each consisting of a set of methods. Objects are passive, but mul-
tiple processes may access the same object simultaneously, allowing them to communicate by reading
and changing the object’s state through method invocations. Changes to the object’s state made by
one process are visible to the others. A major distinction with other object-based models is that ob-
jects are physically distributed, meaning that active copies of an object’s state can and do reside on
multiple machines at the same time. However, processes are not aware of this: state and operations
on that state are completely encapsulated by the object. This means that all implementation aspects,
including communication protocols, replication strategies, and distribution and migration of state, are
part of the object but are hidden behind its interface. This model is illustrated in Figure 2.

Figure 2: Example of a distributed object spanning multiple address spaces.

Distributed objects are built from local objects. A local object is confined to a single address space.
It can contain both code and data, although code is typically stored in a class object. This is a local
object which contains the method implementations for objects belonging to the same class. An ob-
ject interface, of which there may be several per object, is implemented as a separate table that stores
pointers to the state and methods of the object. There are standard interfaces for objects as well as

4



class objects that always have to be provided. Local objects can be combined into composite objects.
A composite object exports interfaces that can contain methods from the various constituent objects.
Our model allows for dynamically loading class objects by a running program. Distributed objects
consist of local objects, generally placed in different address spaces. The local objects are responsi-
ble for establishing communication between the different address spaces in such a way that a user of
the distributed object is provided with a consistent view on the object’s state. Local objects are thus
responsible for hiding distribution, replication, and migration of the object’s state from the user.

Before a process can invoke an object’s method, it has to bind to the object. Binding involves
installing and initializing one or more local objects in the process’ address space. These local objects
offer an implementation of the interface used by the process. In contrast to many other object models
which essentially follow the client/server approach, we support a symmetric model of computation:
once a process is bound to an object, it forms part of the object’s overall implementation. We therefore
say that a process participates in the implementation of a distributed object. There is no client and no
server.

Figure 3: Implementation of a distributed object.

Each local object forming part of a distributed object is a self-contained composite object. This
is shown in Figure 3. A communication object encapsulates the implementation of communication
channels connecting the address space to remote parts of the distributed object. It offers a relatively
simple communication interface to a replication object which is responsible for keeping the possible
replicas of local state consistent. The local states jointly constitute the distributed object’s state. The
semantics object contains the implementation of the actual functionality of the distributed object, and
thus determines the type of the object. The control object, finally, coordinates access to the semantics
object. It regulates method invocations from the process that is bound to the object, as well as invoca-
tions from pop-up threads activated on account of communication between different address spaces.
We expect to automatically generate control objects, similar to stub generation in RPC systems.

The composite object exports two interfaces to the user of the distributed object: the user-defined
interface provided by the control object and a distributed object interface. Internal to the composition
are the communication, replication, control, and receive interfaces.

5



3.2 Replication

To be able to use different replication and communication objects with a single semantics object and
derived control object, we need standard interfaces between the control object and replication object,
and between the replication object and the communication object. The interface to the communica-
tion object is straightforward. There are methods to set up a connection, to join and to leave multicast
groups, and to send data. Incoming data and connect indications are handled by pop-up threads, which
invoke methods on callback interfaces exported by the replication object.

Replication Interface
Init Provide the replication object with the control interface
Start Start execution of a method invocation
Send Send method arguments to a remote address space
Blocked Method invocation blocked
Finish Method invocation is completed
Request done Previously blocked operation is completed

Control Interface
Handle request Invoke an incoming operation on the semantics object
Cancel request Cancel a blocked operation
Retry Retry blocked operation

Figure 4: Replication and control interface.

Figure 4 lists the methods of the replication interface exported by the replication object and the
callback interface of the control object. During initialization, the control object invokes the init method
of the replication object to pass a reference to its (callback) control interface. Execution of a method
consists of three steps. This is shown in Figure 5. First, the control object invokes the start method
on the replication object. This gives the replication object the opportunity to synchronize with other
replicas, acquire locks, etc. The second step is split into three different variants: remote execution,
local execution and active replication. The start method returns a value specifying which of the three
variants is required.

Figure 5: A method invocation.

For remote execution, the control object marshals the arguments of the method invocation, and
invokes the send method. The replication object forwards the arguments to one or more remote address
spaces, waits for marshaled results, and returns those results to the control object. For local execution,
the control object simply invokes the appropriate method on the semantics object.

6



Active replication combines both remote execution and local execution. First the control object
marshals the arguments and invokes the send method. The arguments are sent to all address spaces
with a replica of the object’s state. The replication objects in different address spaces order the method
invocations to maintain proper state consistency. When the moment has come to actually execute the
method, the replication object returns from the send method and the control object invokes the opera-
tion on the semantics object.

Finally, the control object invokes the finish method to give the replication object the opportunity
to release locks and distribute the new state of the object.

For incoming calls, the replication object invokes the handle request method on the control ob-
ject. The blocked, request done, cancel request, and retry methods deal with guarded operations. When a
method invocation of the semantics object blocks, the control object invokes the blocked method on the
replication object. The control object creates continuations for blocked invocations and puts them on
a list. The replication object can call cancel request to abort blocked operations. The retry method tells
the control object to retry blocked method invocations. And when a blocked invocation has completed,
the control object invokes request done to pass the marshaled results to the replication object.

3.3 Naming Distributed Objects

Distributed objects are generally registered with a directory service. This service maps one or more
user chosen names for an object to a set of contact addresses. These contact addresses allow a newly
created local object to setup a communication channel to the distributed object. When the communi-
cation channel is established, the new local object is said to participate in the distributed object.

We implement the directory service as two independent services: the name service and the loca-
tion service. The name service provides a worldwide name space that maps object names to object
handles. An object handle uniquely identifies an object and is mapped by the location service to a set
of contact addresses (see [16] for further details). This two-layer approach allows an object to change
its set of contact addresses without affecting the mapping at the name service. An object’s set of con-
tact addresses changes when, for example, the object migrates, or when it wants to provide access to
additional replicas of the state of the object.

The distributed object interface is a standard interface that is used during binding to inform the new
local object about the distributed object’s set of contact addresses as returned by the location service.

3.4 Security

A detailed explanation of our security model is beyond the scope of this paper. In our model, authen-
tication and access checks are done when a new local object tries to connect to a contact point of a
distributed object. Distributed objects contain access control lists that specify which principals are al-
lowed to invoke methods on the object. Principals can represent individual users, users in a certain
role, or groups of principals. The communication channels set up during binding are secure, that is
data sent over the communication channel are encrypted and signed.

4 Mail, News, FTP, and WWW as Distributed Shared Objects

In this section we show how distributed shared objects can be used to unify the four Internet services
from Section 1. The interfaces we describe below are based on a prototype system we are currently
developing.

7



4.1 Main Interfaces to Documents and Containers

Distributed shared objects provide us with the means to properly integrate the four services we con-
sider in this paper. The integration itself is based on an approach in which we distinguish the concept
of a document, and that of a container. We describe a uniform document object which is suitable for
containing information that is now encoded into separate documents for Mail, News, FTP, and WWW,
respectively. Document objects are collected into container objects. A container object contains refer-
ences to document objects, but also to other container objects allowing for a graph-based organization.

We use three interfaces to access document and container objects. The main interface of a doc-
ument object is like a simple file interface with read and write methods. Container objects provide a
standard naming interface with list, lookup, add and delete methods. Finally, we have a meta-data in-
terface which provides access to (attribute,value) pairs. Figure 6 lists the methods of the naming and
meta-data interface.

Naming Interface
List Return a list of directory entries
Lookup Lookup a directory entry, return the object handle
Add Add a directory entry
Delete Delete a directory entry

Meta-data Interface
Setattr Set a (name, value) pair
Getattr Lookup a name
Listattrs Return a list of attributed

Figure 6: Main interfaces to document and container objects

It is important to note that in order to construct applications using our object model, a developer
should first concentrate on the design of object interfaces. The next step is to develop a semantics
object that implements the functionality of the interface. However, different implementations of the
same interface may co-exist. When it is known to a process which interface it requires, it can select an
appropriate implementation and dynamically load that implementation into its address space. In our
example, both the naming and the meta-data interface can be implemented as an associative array. The
file interface can be simply implemented as an array of bytes.

Document and container objects can be used to implement our four example Internet services as
follows. Mail messages and News articles are implemented as document objects, with the meta-data in-
terface being used to manage header information (such as date, subject, sender, MIME-version, content-
type, etc.). Mapping mailboxes and newsgroups to container objects is somewhat harder, as messages
and articles are typically not named. There are two solutions to this problem: (1) messages and arti-
cles are entered under an arbitrary name, for example their ID, or (2) the implementation of a container
object can ignore the name argument altogether.

Files and directories on an FTP server map quite easily to document objects with a file interface,
and container objects with a directory interface, respectively.

The World Wide Web consists of pages that are linked together through hyperlinks, and there is no
concept of a directory. There are two ways to map Web pages. The first one is to store a Web page in a
document object, use a container object to structure the name space, and treat hyperlinks as symbolic
links. This means that the name of the file containing the Web page is used as a link. This corresponds
with current practice. A disadvantage of symbolic links is that the target of the link can be deleted

8



or renamed without updating the link. The alternative is to implement a Web page as an object with
both a file and a directory interface. The directory can contain “hard” links to related documents, and
the document itself contains references to its directory entries. In our model, object handles are the
equivalent to hard links, and we use them to refer to objects. An object handle does not change when
its associated object is renamed.

4.2 Replication

To implement directory and document objects for the four services we need a collection of replication
objects. Replication objects are kept in libraries. When an object is constructed, the replication strategy
is determined by the choice of replication object selected.

Client/Server Replication. The simplest replication object occurs in client/server computing where
the entire state is in a single server and no replication is provided. Note that in some cases, implemen-
tations in terms of distributed shared objects of existing applications like search engines and database
frontends, can only be done through client/server replication. This is also the case, for example, with
functionality implemented through CGI scripts.

Primary-Backup Replication. A simple extension to the client/server replication object is primary-
backup replication [4]. The state of the distributed object is replicated and one copy is designated (or
elected) as the primary copy. All operations on the distributed object are forwarded to the primary. The
primary executes the method and updates all other backup copies before sending a reply to the request-
ing address space. This scheme provides increased fault-tolerance and availability over client/server
replication.

Replication of Immutable Objects. In the Mail and News systems, documents (messages and arti-
cles) are immutable: they do not change after they are sent or posted. Replication of immutable objects
is trivial: each address space that needs to access the object gets a copy of its state. Since the object
cannot be changed, there is no need for a data consistency protocol.

Active Replication. To be able to support mutable objects with a large number of replicas, we can
use active replication where changes to the object are either flooded, or multicast using a spanning tree.
In this scheme, each replication object maintains a network connection to a few neighboring replication
objects. Local changes to the object’s state are then also forwarded to its neighbors.

Push/Pull Replication. To improve the performance of accessing WWW and FTP documents, we
introduce push/pull replication. Push/pull replication combines a replication scheme for a small num-
ber of copies (such as primary-backup replication) with caches. Changes to the state of the object are
actively pushed to a relatively small number of replicas. Processes that use the distributed object fetch
a copy of the state of the object through cache servers. Read-only caches maintain their copy of the
state up-to-date by discarding copies after some time, and by polling authoritative replicas of the ob-
ject.

4.3 Example

To illustrate our approach, consider the following example in which a distributed object uses primary-
backup replication. Figure 7 shows the flow of control when invoking one of the object’s methods.

9



Figure 7: A method invocation on a distributed object using primary-backup replication.

The method invocation starts at the control object in an address space without a local replica (1). The
control object passes the marshaled arguments to the replication object (2), which in turn calls the com-
munication object to send a request to the primary copy and wait for a reply (3 and 4). When the request
arrives at the communication object of the primary copy, the communication object creates a pop-up
thread and passes the contents of the request to the replication object (5). The replication object passes
the marshaled arguments to the control object (6), which invokes the semantics object (7). The se-
mantics object returns the results of the method invocation to the control object and the control object
marshals the results and returns them to the replication object.

There are three ways to propagate the changes to the other replicas: the primary can either (1) send
a new copy of the state, (2) send the changes in the marshaled version of the state, or (3) send the mar-
shaled arguments and expect the other replicas to execute the method themselves. The last alternative
is close to active replication. Figure 7 shows the first alternative, where the replication object calls the
control object to get a marshaled copy of the new state of the semantics object (8), the control object
in turn calls the semantics object (9), then marshals the result and returns it to the replication object.

Next, the replication object calls the communication object (10) to send the new state to the other
replicas (11). The communication objects for the other replicas create pop-up threads and invoke their
replication objects (12), which then pass the marshaled state to the control objects (13). The control
objects install the state in the semantics objects (14). After the new state is successfully shipped, the
replication object of the primary copy returns the marshaled results to the communication object, which
sends them back to the address space that started the method invocation (15).

Finally, the communication object in the originating address spaces returns the reply packet, which

10



is decoded by the control object, and the results of the method invocation are returned to the caller (16).
The scheme described above can be enhanced by allowing requests to be sent to a backup copy

in addition to the primary copy. If the request modifies the state of the object, the backup has to for-
ward the request to the primary copy. However, if the request is a read operation, it can be executed
locally. This increases the throughput and decreases the latency for read operations. The other repli-
cation strategies work in an analogous way.

4.4 Replication in the example services

The replication objects described above can be used to match the replication strategies embedded in
the four example Internet transfer protocols. In most cases, only client/server replication is needed
to describe the present situation. For example, mailboxes and Web documents hardly make use of
replication, and only relatively few FTP sites are mirrored. Newsgroups, on the other hand, use active
replication through flooding.

Each service can be improved by using more advanced replication objects. As Mail messages can
be expected to immutable, mailboxes are obvious candidates for primary-backup replication to provide
increased fault-tolerance. FTP and Web applications can profit from replication objects implementing
push/pull replication. However, other combinations are also possible. Highly popular Web pages, for
example popular manual pages for a particular software product, might be flooded to all sites using
that product. Similarly, small, popular newsgroups might use push/pull replication as well. Finally, it
is also possible to mail or post documents that are not immutable, but use active replication or push/pull
replication instead.

It is important to note that improving each service does not affect the functionality of that service,
nor is it necessary to adapt the communication protocol on which the service depends. Instead, each
improvement can be made simply by replacing the replication strategy through a different replication
object.

5 Evolution path

In this section we describe how to integrate the current protocols with our solution based on distributed
shared objects. Most of the interaction in the current protocols are client/server-oriented, therefore we
have to deal with two situations per protocol: an existing client using a distributed object, and a new
client using an existing server. Figure 8 shows a standard way to solve this problem using proxies [14].

Figure 8: Existing clients/servers and distributed objects.

Figure 8(a) shows an existing client connected to a proxy server that has bound to a distributed
object. Figure 8(b) shows a client using a distributed object implemented in such a way that opera-
tions on the object are forwarded by the proxy to an existing server. A proxy has to implement two

11



functions. First, it has to convert requests arriving over a TCP/IP connection to method invocations
on a distributed object and vice versa. A proxy also has to provide a mapping between the different
naming systems. Note that in the second configuration, when a new client uses an existing server, it is
possible to omit the proxy replica and let the client process communicate with the server directly. This
is possible because object implementations are loaded dynamically, and because objects completely
encapsulate all aspects of communication. Below we discuss proxies for the four services.

Mail. A proxy server for e-mail has to implement SMTP to accept new mail and POP to allow reading
of mail. The proxy server creates a document object from an incoming mail message and stores the
object in a mailbox container object. The fields in the header of a mail message are stored as meta
data in the document object. Similarly, the proxy returns directory listings of a mailbox object and the
contents of document objects in response to POP requests.

Conversely, when a distributed object provides access to an existing mailbox, the proxy has to fake
one container object and multiple document objects per mailbox. Requests to add new documents to
the directory are forwarded over SMTP to the real server. Lookup request for contents of the container
and the contents of documents are implemented using POP.

Name translation is the most interesting aspect of the proxies. The server proxy has to create old-
style (i.e. “user@domain”) e-mail addresses that correspond uniquely to object names. The domain
part is typically fixed for a particular proxy, there are however several alternatives for the user part.
One approach is to use the object name for the user part. For example, a mailbox known as a dis-
tributed object named /org/foo/bar/mailbox might be renamed to /org/foo/bar/mailbox@proxy.com. Another
alternative is to export all mailboxes that are listed in one directory. In this case /org/foo/mailboxes/bar

might be converted to bar@proxy.com. Yet another alternative is to store an explicit mapping in the
proxy server.

Providing object names for existing mailboxes can be done automatically. All that is needed are
some proxy directory objects that fake other directory objects based on DNS domains and on informa-
tion returned by SMTP servers. For example, an e-mail address like philip@cs.vu.nl might get the object
name /dns/nl/vu/cs/philip. The proxy directory objects would create nl/vu/cs based on information stored
in DNS, and the proxy container object creates philip after querying the appropriate SMTP server for
cs.vu.nl.

News. Posting and reading news is similar to e-mail. There are two major differences. First, the
NNTP protocol has a command for listing available newsgroups. This requires the proxy server to
maintain a list of all newsgroup container objects. This is possible due to the second difference: there
are only a limited number of newsgroups so it is quite possible to explicitly store the mapping between
newsgroup names and object names. In addition to posting and reading news, NNTP also implements a
replication protocol: the exchange of news articles between neighboring servers. The NNTP command
to support replication returns a list of articles recently added to a newsgroup.

FTP and HTTP. FTP and HTTP proxies can be written using the same techniques as e-mail proxies,
with one important extension. Most WWW browsers support proxy HTTP daemons. These daemons
are often used to provide site-wide caching for firewall security, but also for performance reasons [5]. A
caching HTTP proxy is a good way to provide existing browsers with access to all distributed objects.
This in contrast to the approaches described so far, which use a proxy for a collection of objects on a
single server.

12



6 Discussion

The main (technical) advantage of the four protocols compared to other protocols for e-mail, news and
file transfer is their simplicity. All four are implemented as a small layer on top of a TCP/IP connection.
Naming is typically left to DNS. Each protocol allows for straightforward implementations that have
a good chance of being interoperatable with other implementations of that same protocol.

In contrast, our system is more complex. A single object implementation is composed of four sub-
objects, with multiple implementations for each of those sub-objects. The naming system names indi-
vidual objects instead of machines, so that name spaces will be much larger. The main advantage of our
scheme is that all aspects of communication can be hidden in distributed objects. This leads to much
simpler implementations of applications and servers. So far, this approach has only be followed with
Fragmented Objects [10], although that model has not been targeted towards wide area systems. To
our knowledge, nearly all other object-based models assume that an object’s state is not distributed, but
instead is placed entirely in a single address space. This makes it much harder to adopt object-specific
schemes for state replication, distribution, and migration. With our model, object-specific schemes are
straightforward.

Important in our system is its support for dynamic loading of code. This allows us to deal with the
diverse environments that exist in a wide area network, and to separate applications from the imple-
mentation of objects. This provides the flexibility to deploy new communication protocols and repli-
cation algorithms without affecting existing executables. However, for our approach to be fully usable,
some problems still need to be addressed.

The main problem is the security risks associated with loading new code in a running executable.
Experience with Java [1] shows that downloading code over the Internet is not without risk [6]. How-
ever, in our case we expect fewer risks as class implementations will generally be locally available,
and maintained by the user or by the local system administrator. Unlike Java, we require conformance
at the level of interfaces, not on the level of implementations. Furthermore, the most obvious candi-
date for downloading from a remote site is the semantics object. This object interacts with the outside
world only through a control object, so it is much easier to define and implement a security policy (see
also [15]).

Two other drawbacks of dynamic loading are the impact on reliability and performance. Programs
that dynamically load code are typically harder to debug due to lack of debugger support, and may
experience unexpected failures when new object implementations are deployed. Dynamic linking may
also preclude certain optimizations like integrated layer processing.

An advantage of a system based on dynamic loading is that the flexibility provided can be used for
more than just communication and replication protocols. For example, a specific implementation of a
document object might send pictures over communication channels compressed with JPEG compres-
sion, but present them to an application in GIF format. All that is required is a new semantics object,
or an object that encapsulates the implementation of a distributed object and implements only the data
conversion routines.

The research described in this paper is partly based on a prototype system we are currently devel-
oping. Our prototype is initially aimed at devising the proper interfaces, which have been reported
here. We are not aware of any related work that tries to unify the four internet protocols discussed in
this paper.

13



References

[1] The Java Language Environment – A White Paper. Sun Microsystems, Mountain View, CA, Oct. 1995.
[2] T. Berners-Lee, R. Fielding, and H. Frystyk. “Hypertext Transfer Protocol – HTTP/1.0.” Internet-Draft,

Feb. 1996.
[3] A. Bhushan, R. Braden, W. Crowther, E. Harslem, and J. Heafner. “File Transfer Protocol.” RFC 172,

June 1971.
[4] N. Budhijara, K. Marzullo, F.B. Schneider, and S. Toueg. “The Primary-Backup Approach.” In S. Mul-

lender, (ed.), Distributed Systems, pp. 199–216. Addison-Wesley, Wokingham, 2nd edition, 1993.
[5] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, and K.J. Worrell. “A Hierarchical Internet

Object Cache.” Technical Report CU-CS-766-95, Department of Computer Science, University of Col-
orado – Boulder, Mar. 1995.

[6] D. Dean and D.S. Wallach. “Security Flaws in the HotJava Web Browser.” Department of Computer
Science, Princeton University, Nov. 1995.

[7] P. Homburg, L. van Doorn, M. van Steen, A. Tanenbaum, and W. de Jonge. “An Object Model for Flexible
Distributed Systems.” In Proc. First ASCI Annual Conf. , pp. 69–78, Heijen, The Netherlands, May 1995.

[8] P. Homburg, M. van Steen, and A.S. Tanenbaum. “An Architecture for A Scalable Wide Area Distributed
System.” In Proc. Seventh SIGOPS European Workshop, Connemara, Ireland, Sept. 1996. ACM. To
appear.

[9] B. Kantor and P. Lapsley. “Network News Transfer Protocol: A Proposed Standard for the Stream-Based
Transmission of News.” RFC 977, Feb. 1986.

[10] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. “Fragmented Objects for Distributed Ab-
stractions.” In T.L. Casavant and M. Singhal, (eds.), Readings in Distributed Computing Systems, pp.
170–186. IEEE Computer Society Press, Los Alamitos, CA., 1994.

[11] Object Management Group. “The Common Object Request Broker: Architecture and Specification, ver-
sion 1.2.” Technical Report 93.12.43, OMG, Dec. 1993.

[12] J. Postel. “Simple Mail Transfer Protocol.” RFC 821, Aug. 1982.
[13] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly, Sebastopol, Calif., 1992.
[14] M. Shapiro. “Structure and Encapsulation in Distributed Systems: The Proxy Principle.” In Proc. Sixth

Int’l Conf. on Distributed Computing Systems, Boston, MA, May 1986. IEEE.
[15] L. van Doorn, P. Homburg, and A.S. Tanenbaum. “Paramecium: An Extensible Object-based Kernel.” In

Proc. Hot Topics on Operating Systems V, Orca’s Island, Washington, May 1995. IEEE.
[16] M. van Steen, F.J. Hauck, and A.S. Tanenbaum. “A Model for Worldwide Tracking of Distributed Ob-

jects.” In Proc. TINA ’96, Heidelberg, Germany, Sept. 1996. Eurescom. To appear.
[17] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum, and W. de Jonge. “Towards Object-based

Wide Area Distributed Systems.” In L.-F. Cabrera and M. Theimer, (eds.), Proc. Fourth Int’l Workshop
on Object Orientation in Operating Systems, pp. 224–227, Lund, Sweden, Aug. 1995. IEEE.

14


