
AN OVERVIEW OF THE AMOEBA DISTRIBUTED OPERATING SYSTEM

Andrew S. Tanenbaum
Sape J. Mullender

Wiskundig Seminarium
Vrije Universiteit

Amsterdam, The Netherlands

1. INTRODUCTION

As hardware prices continue to drop rapidly, building large computer sys-
tems by interconnecting substantial numbers of microcomputers becomes increas-
ingly attractive. Many techniques for interconnecting the hardware, such as
Ethernet [Metcalfe and Boggs, 1976], ring nets [Farber and Larson, 1972],
packet switching, and shared memory are well understood, but the corresponding
software techniques are poorly understood. The design of general purpose dis-
tributed operating systems is one of the key research issues for the 1980s.

Several different organizations for distributed computer systems have
been proposed [e.g. Newell et al., 1980; Wittie, 1979]. Roughly speaking,
these can be classified as personal computer systems, in which each user has a
dedicated computer, and systems with a large pool of processors that users can
request and return dynamically, as needed. In the former, a six-pass compiler
would run sequentially on the user's private machine, whereas in the latter,
all six passes could run in parallel on six different machines. The pool-of-
processors model is especially attractive because interactive computing is
bursty; assigning resources on demand, rather than statically, provides better
response for a given investment in equipment. This paper describes the design
of a distributed operating system, Amoeba, intended to control a collection of
machines based on the pool-of-processors idea. Amoeba has drawn upon the
UNIX* operating system [Ritchie and Thompson, 1974] for a certain amount of
its inspiration.

2. SERVICES AND PORTS

The basic components of Amoeba are processes, messages, and ports.
Processes are active entities, communicating with one another by exchanging
messages via their ports. Since simplicity of the operating system is a key
goal, the simplest possible interprocess communication mechanism has been
chosen: a pure datagram facility. When a process passes a message to the

*UNIX is a Trademark of Bell Laboratories.

51

operating system for transport, the system makes no guarantee about its
delivery, and provides no acknowledgement to the process. Not only does this
mechanism greatly reduce the size and complexity of the operating system, but
it provides processes with great flexibility in determining their own proto-
cols, flow control schemes, etc. By assuming worst case behavior all the
time, unreliable communication media, crashed or migrated processes, and other
anomalies become easier to deal with.

The paradigm used in Amoeba for modeling interprocess communication is
the service. A service is defined by a set of commands and responses, much in
the style of an abstract data type. The service is implemented by one or more
server processes that accept messages and carry out the requested work. The
number of servers per service is determined by the provider of the service,
and should not be visible to the users of the service.

Services tend to fall into one of two categories, although the system
itself does not make a distinction. On one hand there are public services,
such as disk service (reading and writing raw disk blocks), file service
(reading and writing files), directory service (file naming and directory
management), data base service (relation storage and query processing), time
of day, etc. Servers for public services are typically long lived, accepting
requests for work, sending replies, and then waiting for the next message.
Private services, in contrast, are typically short lived processes started up
to run a specific program for a specific user. For example, in the UNIX pipe-
line a I b I c, b will be started up in such a way as to expect input from a
and generate output for c. We will sometimes use the term "process" for
private services and "server" for public services, although the system makes
no distinction.

Associated with each service are one or more ports used to access the
service. When a process, A, wants to communicate with a service, B, A sends a
message to one of the ports to which B is listening. To accomplish this, A
must know (or be able to find out) the port number If B is a public server, it
will usually make its port numbers widely known, but if it is a private ser-
vice, it will usually keep its port numbers secret.

Knowledge of a port number is taken by the system as prima facie evidence
that the sender has a right to use the port. A service may listen to (i.e.
accept messages from) any of its ports, and may send messages to any port
whose number it knows. All protection in Amoeba is based on port numbers. A
little thought will reveal that this mechanism is essentially the same as pro-
tection in traditional capability systems [Dennis and van Horn, 1966; Wulf et
al., 19Y4.]. Possession (i.e., knowledge) of a port number allows a process
to communicate with the corresponding service, just as possession of a capa-
bility allows a process to perform certain operations on the corresponding
object.

As an aside, it is interesting to note the fundamentally different para-
digm used in UNIX (files), capability systems such as Hydra [Wulf et al.,
1974] or StarOs [Jones et al., 1979] (objects), and Amoeba (services). In
UNIX all communication is thought of as reading and writing files. In

52

traditional capability systems, the basic notion is performing operations on
objects. In Amoeba, it is sending and receiving messages from protected
ports. We believe the semantics of message passing in an unreliable distri-
buted environment to be more natural than those of files or objects, espe-
cially with regard to handling lost messages, machine crashes, and flow con-
trol. Of course, a service may implement any class of objects it wishes to,
so the Amoeba model is similar to the object model.

Since the entire protection system is based on knowledge of port names,
it is clear that a method must be found to prevent users from constructing
port numbers to which they have no legitimate access. There are two ways to
provide such protection. The traditional method is to have the system main-
tain the port (capability) information on behalf of the users in the form of
capability lists. Since user processes do not manipulate the capability lists
themselves, there is no danger of them forging capabilities.

The other way is to choose port numbers from a sparse address space. If
port numbers are N bits, but only a tiny fraction of the 2 N possible ports are
actually used, the chance of a user being able to forge one is small. ~y
chosing N sufficiently large, the probability of trouble can be made arbi-
trarily small. Of course a very lucky, malicious user might guess an impor-
tant port number on the first try and bring down the system, but in a tradi-
tional operating system the same lucky, malicious user would probably guess
the head system programmer's login password, and do just as much damage. In
both cases the protection lies in the sparseness of the space to be searched.

At first glance it might seem that encryption could be used to protect
capabilities in distributed systems. In fact, encryption is neither necessary
nor sufficient. If the capability space is dense, i.e., every possible bit
pattern is a valid capability for some operation on some object, a malicious
user could simply begin fabricating capabilities at random, with a reasonable
chance that many of them could be used to modify or destroy objects scattered
around the system. Of course, he would have no way of knowing how well he was
doing at wreaking havoc. On the other hand, if capabilities are sparse and
encrypted, it will be difficult for anyone to fabricate one, but the protec-
tion comes from the sparseness, not the encryption. However, if a few bits in
each capability are used to indicate access rights, then encryption will be
needed to prevent users from changing the rights. We will discuss this point
in detail later.

To keep the amount of protected code to a minimum, we have chosen to make
ports sparse, and let user processes manipulate them directly. The format of
a typical port is shown in Fig. I.

Sizes 48 24 8 48

I Service I Object Rights Random

Fig. 1. A Typical port.

53

The Service field is chosen by the owner of the port. It identifies the
specific service being offered, distinguishing between the many services that
may be offered. If a user of the system decides to offer a new service to the
public, he will generate a 48 bit random number, and publish that as the name
of the service. The same applies for private services, although there the
service number will probably not be published. The use of a good 48 bit ran-
dom number generator, and the fact that only a very tiny fraction of the 243
service numbers will be used makes it very unlikely that two users will
accidently choose the same service numbers.

There must of course be different capabilities for receiving messages
intended for a service, and sending messages to that service. Several tech-
niques for implementing this exist, one of the simplest being to divide the
user population of the system into groups, each group having a unique identif-
ication, and to allow reception of messages only on ports with the owners
identification in the leftmost 16 bits of the service field.

Each server may allocate the low-order 80 bits as it sees fit. For pub-
lic services, a common allocation will be 24 bits for an object number, 8 bits
for access rights, and a 48-bit random number. A file server, for example,
might use the 24-bit object number to identify the file being accessed (in
UNIX terms, the disk and inode number). The Rights field can be used to indi-
cate which access rights (e.g., READ, WRITE, RESTRICT, DESTROY) the holder of
the port possessed.

3. OVERVIEW OF THE AMOEBA PROTOCOLS

The Amoeba protocols are structured hierarchically. The following sec-
tions provide brief overviews of each layer. The layering is shown in Fig. 2.

Application layer (written by users)

System call layer (library routines)

Transport layer (user space)

Monitor layer (operating system)

Data link layer (device driver + hardware)

Physical layer (hardware)

Fig. 2. The Amoeba protocol hierarchy

54

3.1. The Physical and Data Link Layers

The physical and data link layers are not part of the Amoeba design
proper. Ring nets, Ethernets, point-to-point lines using HDLC, etc. are all
possible. The only requirement is that they must provide a physical transport
facility for moving frames from one machine to another. Error control is han-
dled explicitly by higher layers, so these layers need not provide a reliable
transmission facility. Typically these layers would be implemented in a com-
bination of hardware (e.g., Ethernet or HDLC chip) and low level device-driver
software.

3.2. The Monitor layer

The monitor layer deals with port addressing. It receives commands from
the next highest layer, the transport layer, to send messages to specific
ports. It is up to the monitor layer to map the ports onto machine addresses
wrap up each message in a packet, and send each packet as a separate entity
(datagram). Once a packet has been sent, the monitor layer forgets that it
ever existed. The monitor layer has no concept of a connection or any other
relation between datagrams. Each one is independent of all the other ones,
past and future. Thus our monitor layer is similar to the pups in the Xerox
PARC architecture [Boggs et al., 1980] and the internet protocol in the
ARPANET [Postel, 1980] except that addressing is done using logical addresses
(ports), not physical addresses (machine numbers). To illustrate the differ-
ence, if a process migrates, it takes its logical addresses (ports) with it,
but not its physical address.

In addition to its role in packet communication, the monitor layer is
also involved in low-level process management. Each monitor has a small set
of ports used for initiating and migrating processes. A process can only be
initiated by sending a process descriptor to a monitor willing and able to run
the process. Process migration is a special case of downloading a process
initially, with the "core image" coming from another monitor, instead of a
disk. If a machine is multiprogrammed, the process and memory mangement asso-
ciated with the multiprogramming are also part of the monitor layer.

The physical, data link, and monitor layers are part of the operating
system kernel, and cannot be modified by the user. If special kernel
mode/user mode hardware is available, the monitor should run in kernel mode,
whereas the transport layer and higher software would normally run in user
mode. If such hardware is not available, other techniques can be used; these
will be discussed in a subsequent paper.

3.3. The Transport Layer

The function of the transport layer is to offer a simple and reliable
transport service to the higher layers. In order to allow any process to com-
municate reliably with any other process, its protocol, the transport proto-
col, should be a system wide convention. Consequently, the code implementing
the transport layer, the transport station, could be put into read only memory
or EPROM. Technically, any pair of processes are free to use a nonstandard

55

transport protocol at will, but doing so will normally only be done by people
experimenting with transport protocols, not ordinary users.

Without getting into all the details here, the transport layer has been
designed with two goals in mind:

I. providing reliable communication to higher layers.
2. making possible a transaction-oriented communication style.

The former is sufficiently well-understood that we will not belabor it here.
The intention of the latter is to make it possible for a user to read a file
by sending a series of read requests to a file server, but not to require that
all requests are processed by the same file server. Such a restriction
implies that each request must be self-contained, and that furthermore flow
control and error control be handled in such a way as to make switching
servers in midstream possible. To achieve these goals, the basic transport
service primitives are for users to send a request, and receive a reply;
corresponding primitives exist for servers to accept a request, and send a
reply.

3.4. The System Call Layer

The System Call Layer provides the user program with a traditional
operatlng system interface. It provides a number of routines that users can
call to get the kinQs of service provided by most timesharing systems. Typi-
cal commands are open file, read file, write file, seek on file, return status
of file, close file, create file, remove file, change directory, create pro-
cess, etc. In most implementations, this layer will be a library package
designed to emulate some set of operating system calls. For example, one
package might emulate all the UNIX system calls, another package might emulate
all the RSX-11 system calls, etc.

These routines carry out their job by sending requests and getting
replies from appropriate services in the network. For example, the OPEN sys-
tem call would typically send a request to a directory server to see if the
named file exists and has the correct permissions, with the directory server
returning a port through whics hsa ptba orqbl ca iooaffalM Hsa fzfhaj oall
layer would normally store the port within itself, for use in carrying out
subsequent READ, WRITE, SEEK, STAT, etc. calls on the open file.

3 . 5 . The User Layer

As the name suggests, the user layer is where user programs run. Most
user programs will make use of the system call layer to provide a simple and
familiar environment in which to run, but since the transport station is
within the user's address space, user programs can also use datagrams directly
if they choose.

In addition to application programs, a substantial amount of the operat-
ing system runs in the user layer. In particular, all of the directory and
file system operations, and most of the disk handling, terminal handling,

56

process management and even accounting are also in the user layer. It is
det~nltely possible for users who have special requirements to implement their
own file systems down to the disk block level. Although such private file
systems may be incompatible with the standard one(s), they may all coexist on
the same disks. How this is accomplished is described in detail later. As a
very rough analogy, note that in UNIX, each user may have his own private
shell without the system complaining or even caring.

4 . THE BASIC FILE SYSTEM

We will now describe in detail one possible way of organizing a file sys-
tem for Amoeba. As mentioned above, this is by no means the only way. Multi-
ple, incompatible, file systems may coexist peacefully on a single disk during
normal operation.

4.1. The Directory Server

The Basic Directory Server (BDS) provides its users with a method for
mapping ASCII names onto ports. Each user of the BDS has a home directory
which may contain both named ports and named subdirectories. Subdirectories
may contain ports for other directories, leading to a general naming graph.
Naming conventions are modeled on those of the UNIX operating system, e.g.,
the path dirl/dir2/file relative to the current directory means the current
directory contains a subdirectory "dir1," which in turn contains a subdirec-
tory "dir2," which contains the name "file." Although the BDS may actually
maintain a root directory, this directory is not visible to the users, as can
be seen from the commands available (below). Put in other words, all paths
are relative; absolute paths are not permitted.

BDS has no interest in the meaning of ports, except for directory ports.
It simply provides a mapping function from path names to ports. A single
directory may hold ports for a mixture of files "owned" by different (possibly
incompatible) file servers as well as other types of objects. The ports in a
single directory may correspond to files or other objects scattered around a
number of machines, in contrast with naming schemes of the form
/MachineName/path. The only services provided by the BDS are port storage and
UNIX-style naming.

The BDS maintains each directory as a separate file. To do so, it must
deal with a file server, of course, but the user need not be aware of these
details. The format of a directory is shown in Fig. 3. Note the analogy with
UNIX directories, where the port is analogous to an inode number in UNIX.

When a user logs into Amoeba, his shell (command processor) is given the
port for the user's home directory. The user may obtain any port reachable
from this directory. Privacy is enforced by the lack of absolute path names,
i.e., the only ports the user can obtain are those he has made himself and put
in one of his subdirectories, or those explicitly given to him by another
user. Since one user can pass a port for a directory to another user, multi-
ple links to a single directory may exist, making sharing of a collection of

57

ASCII name
(14 bytes)

Name-1

Name-2

Name-3

Reserved
(2 bytes)

//

//

//

Po rt
(16 bytes)

Port-1

Port-2

Po rt-3

Fig. 3. The Basic Directory Server's directory format.

objects simple. A user may also publish the port for a directory, making its
ports known to the general public. Note that a port may only allow a res-
tricted set of operations on its object (e.g., read but not write), so dif-
ferent users may have different access rights to the same object. Which
operations are allowed on which ports is determined by the server owning the
ports, not by the directory system.

The commands provided by the BDS are listed below. Note that the parame-
ters given correspond to the semantics as seen from the server. In most cases
the DirPort parameter will not be explicit, rather it will be the port to
which the command is directed. Seen from the user's side, the DirPort will be
specitled as the port to which the message is sent. For simplicity, we have
here assumed that the user makes direct calls on the transport layer. In
practice, this "user" will usually be the system call layer.

1. LOOKUP(DirPort, path): port
2. READALL(DirPort): contents
3. ENTER(DirPort, string, port)
4. REMOVE(DirPort, string)
5. MAKEDIR(DirPort, string) :port
6. RESTRICT(Di rPort, NewRi ghts) :NewPort
7. RETRACT(DirPort, NewRights):NewPort
8. RECOVER (AccountPort) :data

where
"DirPort" is a port for the directory used by the command
"path" is a path (e.g., subdir/file) relative to DirPort
"string" is a 1-14 character ASCII string not containing "/"
"port" is another port

LOOKUP looks up the path and returns the port. READALL returns the con-
tents of an entire directory. ENTER and REMOVE create and delete directory
entries, respectively. Note that the BDS only manages names, not objects.
REMOVE, for example, does not destroy the object itself. It is up to the user
to destroy unwanted objects, but object creation and destruction is distinct

58

J

from naming. In practice, users will typically remove files and other objects
by executing the "rm" program, which handles both destroying the object and
removing it from the directory system. MAKEDIR creates a new subdirectory.
RESTRICT, RETRACT, and RECOVER are discussed below.

The BDS does not provide for garbage collection since it has no way of
knowing whether or not a port for a disconnected directory is stored within
some executing process or file. The system does provide for disk accounting,
so no user can fill up an unlimited amount of disk space with garbage.

As an aside, it is interesting to note that a UNIX directory server is
very similar to the one discussed above. A UNIX directory server might have
commands

I. LOOKUP(IdPort, FullPath):port
2. READALL(IdPort, FullPath):contents
3. ENTER(IdPort, FulIPath, port)
4. REMOVE(IdPort, FullPath)
5. MAKEDIR(IdPort, FulIPath)
6. CHMOD(IdPort, FulIPath, mode)

where
IdPort is a port used to identify the user
FulIPath is an absolute path from the root directory
port is another port
mode is a UNIX protection mode

This server maintains a rooted tree the same as UNIX, with protection based on
user and group ids (uid, gid). From "IdPort" the server can determine the
user's uid and gid and hence tell whether a requested access is allowed.

4.2. The Flat File Server

Once a user has obtained the port for a file (or other object) from a
directory server, it can use the port to perform operations on the file. The
directory server is no longer needed, and in fact, it does not matter which
directory server provided the port.

As an example of a file server, we consider one whose concept of a file
is a linear sequence of bytes, numbered from 0 to the length of the file - I,
with operations to read or write arbitrary bytes, as in UNIX. Other models
are certainly possible, for example, a file is a tree of variable length
records, with operations to insert and delete records at arbitrary places in
the tree. Be sure to note that any user not liking the basic (flat) file sys-
tem is quite free to provide his own, since the file server, like the direc-
tory server, is an ordinary user process.

Associated with each file is a small amount of extra data, not part of
the file itself. Directory servers, for example, may use this information to
store information needed to recover from lost or garbled directories. Special
commands are provided to access the extra information.

59

The Flat File Server's primitive operations are as follows:

I. READ(FilePort, offset, bytes) :data
2. WRITE(FilePort, offset, bytes)
3. READEXTRADATA(Fi lePort) :data
4. WRITEEXTRADATA(FilePort, data)
5. DESTROY(Fi lePort)
6. STATUS(Fi lePort) :data
7. LOCK(FilePort, key, mode):SuccessFlag
8. UNLOCK(FilePort, key)
9. RESTRICT(FilePort, NewRights):NewPort

10. RETRACT(Fi lePort) :NewPort
11. CREATE(AccountPort) : Fi lePort
"12. RECOVER (AccountPort) :data

The first five calls are self explanatory. As above, FilePort is typically
not present as a parameter but is the local port on the server's side. The
sixth call returns the file length, creation date, owner, and other such
information. The LOCK and UNLOCK call provide a simple mutual exclusion
mechanism. A user can try to exclude other readers or writers or both. Once
locked, a file does not respond to commands from ports other than the one that
locked it. Numbers 9 and 10 are related to the protection mechanism, as fol-
lows.

The flat file server distinguishes four kinds of rights: read, write,
lock, and owner. Each of the above commands requires the presence of one or
more rights (e.g., DESTROY requires owner+write). The port layout used by the
Flat File Server is that of Fig. I, with the Service field being the same for
all files, but the Object field being unique for each file. The object field
is an index into a table containing information about the structure and loca-
tion of each file. (In UNIX terms, it is the inode number.) The Rights field
is a bit map containing the rights described above. Since ports are manipu-
lated directly by user code, a mechanism is needed to prevent users from
changing their rights.

This mechanism is encryption. When a file is created, the file server
builds a 56-bit number with the rights in the first 8 bits and a known con-
stant (e.g., 0) in the low-order 48 bits. The file server then generates a
48-bit random key, stores it in the inode, and finally encrypts the 56-bit
number using the 48-bit key. The resulting (56-bit) number forms the right-
most 56 bits of the port. The rest of the port is not encrypted.

When a message is received by the file server, it uses the Object field
to locate an inode, and then decrypts the low-order 56 bits of the port to
which the message was addressed using the 4B-bit key found in the inode. If
the decrypted text contains the known constant in the low-order 48 bits, the
port is assumed valid, and the rights bits are trusted. If, however, the user
has tampered with the port, the chance that the decryption will work is 2 -48 .
Clearly, any encryption algorithm that mixes the bits thoroughly and is immune
to a known-plaintext attack will do.

60

RESTRICT asks the file server to create and return a new port with a sub-
set of the rights in the original port. Thus the owner of a file can give a
colleague read but not write access to it.

RETRACT (which requires the owner right) causes a new random number to be
put in the inode The corresponding port is returned. It thereby invalidates
all existlng ports for the file. In most capability systems it is difficult,
if not impossible, for the owner of an object to take back capabilities that
have previously given away. In Amoeba it is trivial. RECOVER is discussed
below.

4.3. The Simple Disk Server

Physical storage of data is completely separate from the file system.
The simple disk server has a command to write a (new) disk block and return a
port for it. Using this disk address, the file server can read or rewrite the
block later. The simple disk server knows nothing at all about file struc-
ture.

Disk servers' major customers will normally be file servers. When a user
wants to create and write a new file, he will issue a CREATE command to (for
example) the flat file server, which will create a new inode and return to the
user a port corresponding to it. When the user subsequently writes some data
to the flat file server on this port, the flat file server will accumulate a
disk block's worth, and then send it to the appropriate disk server. The disk
server will then return to the file server the port of the newly written
block, so it can be recorded in the inode. Inodes themselves are also stored
in disk blocks, although not necessarily with the disk server storing the
blocks. For example, inodes might be kept in highly reliable "stable storage"
and data in ordinary storage.

In order to store data with a certain disk server, a user needs an
account port. Use of the port is prima facie evidence that the user is enti-
tled to disk storage. The object number in the port allows the disk server to
locate an entry containing the disk quota, current usage, etc. Each disk
block written contains the owner's port, so it is possible to verify if a read
or overwrite request for a particular disk block is permitted. File servers
normally would reserve the first few bytes of each disk block for information
used to recover from lost inodes, for example, the number of the file to which
each block belongs, and its position within the file. When a user does a
read, the file server gets the entire block from the disk server, but only
returns the "real data" part to the user.

The primitive operations provided by the simple disk server are:

I. ASSIGNBLOCK(AccountPort, data):BlockPort
2. READBLOCK(BlockPort):data
3. WRITEBLOCK(BIockPort, data)
4. FREEBLOCK(AccountPort, BlockList)
5. RECOVER(AccountPort):data

61

ASSIGNBLOCK acquires a new disk block, writes data onto it, and returns a port
for it. READBLOCK finds and sends the requested block to the user. WRI-
TEBLOCK overwrites a previously assigned block. FREEBLOCK releases one or
more disk blocks no longer needed. RECOVER finds all the blocks belonging to
AccountPort and sends the list of block numbers back to the user. It is a
very expensive operation, implying a search of a large part of the disk, and
is provided to allow file servers to recover from damaged directories. The
file and directory servers have analogous recovery operations.

Accounting for disk blocks, and all other resource usage is done by a
bank server. When a new user is added to the system by the computer center
management, he is given an account with the bank server containing a certain
amount of "money." When the user wants disk blocks, he must "buy" them by
instructing the bank server to transfer some money from his account to the
disk server's. If disk servers refuse to extend credit, a strict disk quota
can be enforced.

Although this mechanism can be used for all resources in the system, a
number of economic issues arise. For example, is there a single universal
currency? In other words, are disk blocks and phototypesetter pages paid for
with the same kind of currency, or does one use dinars for disk blocks and
zlotys for phototypesetter pages, with no conversion possible? If only one
currency exists, there is a danger that some people may use their photo-
typesetter "budget" for disk blocks, or vice versa, causing some resources to
be oversubscribed. If multiple incompatible currencies exist, introducing new
resources may imply introducing new currencies as well, which is complicated
and inflexible. Another economic issue is what happens ~hen new users are
added to the system. Since they must be given some money in order to buy CPU
time, disk blocks, etc., the amount of currency in the world tends to increase
in time. Should disk servers periodically increase their rates to compensate
for this effect (inflation) and if not, how can they prevent scarce resources
from being oversubscribed? Perhaps by auctioning them to the highest bidder?
These issues are still under investigation.

5. PROCESS MANAGEMENT

There are two situations in which processes are manipulated: when a pro-
cess is started off from scratch, and when a process moves from one machine to
another. Below we discuss the issues involved with both cases.

5.1. Process Creation

In a variety of situations it is necessary for a process to create a new
process. For example, the shell needs to create processes to execute com-
mands. Unlike in most operating systems, in Amoeba process creation is not
carried out by a system call. Instead, a process wanting to create a child
process builds a data structure called a process descriptor, and sends it to a
port belonging to a process server. It is up to the process server to carry
out the process creation. The Amoeba architecture leaves the question of how
process servers are implemented open. They may be application layer
processes, or implemented in the monitors.

62

A process descriptor consists of the following fields:

I. CPU type(s) and options required by the process
2. The port from which the binary file can be fetched
3. The command string
4. The argument strings
5. The environment strings
6. The umbilical port for sending the exit status to the parent
7. The inherited ports

In general, a process will have access to its ports, so it can pass them
explicitly to its children. A common situation in which it is important to
set up ports is in the shell, when creating pipelines, such as

a <int~le I b I c >outfile

The normal way the shell is expected to create the pipeline is to build three
process descriptors, one each for a, b, and c. First, the shell must locate
ports corresponding to the object files for a, b, and c. These ports may have
a protocol involving some negotiation, since the machine that eventually runs
the processes will have to specify which CPU type it is. It is up to the
shell to determine in advance which CPU types are available, and put that
information into the process descriptor.

The shell then obtains a port corresponding to infile, and inserts that
port into the process descriptor for a. It also creates a private port for
a's output, and puts that into b, as well as a private port for b's input, and
puts that port into a. Finally, two ports are needed for b I c and one for
outfile. When all the process descriptors have been built, they are sent to
the process server's port for startup.

Notice that ports are used here like UNIX file descriptors. They can be
inherited and passed around the same way as in UNIX. Earlier we saw how ports
were stored in directories just like inode numbers. The two concepts of inode
number and file descriptor have been merged in Amoeba in a clean and simple
way: files (or other objects) are always represented by a port which can ser-
vice them, both in directories and in programs.

5.2. Process Migration

In Amoeba, processes may migrate, to do dynamic load balancing. For
example, a process may start out running on a machine that has floating point
microcode rather than floating point hardware, because the machine with the
floating point hardware was saturated when the process started. Subsequently,
the process may migrate to the more appropriate machine (providing the two
machines have the same CPU architecture).

Amoeba has been designed to make process migration very similar to start-
ing up a new process. When a monitor wants to get rid of a process, it
creates a port from which the binary image can be fetched, and sends the

63

process descriptor out into the world in search of a new home. When some
machine wants to fetch the program, the monitor simply sends it, deletes the
~ort, and discards the process.

6. REFERENCES

Dennis, J.B., and van Horn, E.C.: "Programming Semantics for Multiprogrammed
Computations," CACM, vol. 9, pp. 143-155, March 1966.

Boggs, D.R., Shoch, J.F., Taft, E.A., and Metcalfe, R.M.: "Pup: An Internet-
work Architecture," IEEE Trans. Commun., vol. COM-28, pp. 624-631, April
198U.

Farber, D.J., and Larson, K.C.: "The System Architecture of the Distributed
Computer System - The Communications System," Symp. on Comp. Networks,
Polytechnic of Brooklyn, April 1972.

Jones, A., Chansler, R. J., Durham, I., Schwans, K., and Vegdahl, S.R.:
"StarOS: A Multiprocessor Operating System for the Support of Task
Forces," Proc. Seventh Symp. Operating Sys. Prin. ACM, pp. 117-127, 1979.

Melcalfe, R.M., and Boggs, D.R.: "Ethernet: Distrlbuted Packet Switching for
Local Computer Networks," CACM, vol. 19, pp. 395-404, July 1976.

Newell, A., Fahlman, S.E., Sproull, R.F., and Wactlar, H.D.: "CMU Proposal for
Personal Scientific Computing," Compcon, pp. ~30-483, Spring 1980.

Postel, J.B.: "Internetwork Protocol Approaches," IEEE Trans. Commun., vol.
COM-28, pp. 604-611, April 1980.

Ritchie, D.M., and Thompson, K.: "The UNIX Operating System," CACM, vol. 17,
pp. 365-375, July 1974.

Wulf, W.A., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and Pol-
lack, F.: "HYDRA: The Kernel of a Multiprocessor Operating System," CACM,
vol. 17, pp. 337-345, June 1974.

Wittie, L.D.: "A Distributed Operating System for a Reconfigurable Network,
Computer," Proc. First Int. Conf. on Distrib. Comp. Sys, IEEE, pp. 669-
61f, 1979.

64

