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ABSTRACT

In this paper we will give an up-to-date overview of the Amoeba distri-
buted operating system microkernel. We will examine process management,
memory management, and the communication primitives, emphasizing the
latter since these contains the most new ideas.

1. INTRODUCTION
Amoeba is a distributed operating system designed to connect together a large number of

machines in a transparent way. Its goal is to make the entire system look to the users like a
single computer. The system consists of two parts: a microkernel and server processes. In this
paper we will describe the microkernel. For information about other aspects of Amoeba, see
Mullender et al., 1990 and Tanenbaum et al., 1990.

An Amoeba system consists of several components, including a pool of processors (com-
pute service, where most of the work is done), terminals (e.g., computers running the X win-
dow servers) that handle the user interface, and specialized servers (e.g., directory servers).
All these machines normally run the same (micro)kernel.

The microkernel has four primary functions:

1. Manage processes and threads.

2. Provide low-level memory management support.

3. Support communication.

4. Handle low-level I/O.

Let us consider each of these in turn.
Like most operating systems, Amoeba supports the concept of a process. In addition,

Amoeba also supports multiple threads of control within a single address space. A process
with one thread is essentially the same as a process in UNIX.† Such a process has a single
address space, a set of registers, a program counter, and a stack.

In contrast, although a process with multiple threads still has a single address space
shared by all threads, each thread logically has its own registers, its own program counter, and
���������������
† UNIX is a Registered Trademark of AT&T Bell Laboratories.
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its own stack. In effect, a collection of threads in a process is similar to a collection of
independent processes in UNIX, with the one exception that they all share a single common
address space.

A typical use for multiple threads might be in a file server, in which every incoming
request is assigned to a separate thread to work on. That thread might begin processing the
request, then block waiting for the disk, then continue work. By splitting the server up into
multiple threads, each thread can be purely sequential, even if it has to block waiting for I/O.
Nevertheless, all the threads can, for example, have access to a single shared software cache.
Threads can synchronize using semaphores or mutexes to prevent two threads from accessing
the shared cache simultaneously.

The second task of the kernel is to provide low-level memory management. Threads can
allocate and deallocate blocks of memory, called segments . These segments can be read and
written, and can be mapped into and out of the address space of the process to which the cal-
ling thread belongs. A process must have at least one segment, but it may have many more of
them. Segments can be used for text, data, stack, or any other purpose the process desires.
The operating system does not enforce any particular pattern on segment usage. Normally,
users do not think in terms of segments, but this facility could be used by libraries or language
run-time systems.

The third job of the kernel is to handle interprocess communication. Two forms of com-
munication are provided: point-to-point communication and group communication.

Point-to-point communication is based on the model of a client sending a message to a
server, then blocking until the server has sent a reply back. This request/reply exchange is the
basis on which almost everything else is built. The request/reply is usually packaged in library
routine so the remote call looks like a local procedure call. This mechanism is generally
known as remote procedure call (RPC), and is discussed in Birrell and Nelson (1984).

The other form of communication is group communication. It allows a message to be
sent from one source to multiple destinations. Software protocols provide reliable, fault-
tolerant group communication to user processes even with lost messages and other errors.

Both the point-to-point message system and the group communication make use of a spe-
cialized protocol called FLIP. This protocol is a network layer protocol, and has been specifi-
cally designed to meet the needs of distributed computing. It deals with both unicasting and
multicasting on complex internetworks.

The fourth function of the kernel is to manage low-level I/O. For each I/O device
attached to a machine, there is a device driver in the kernel. The driver manages all I/O for the
device. Drivers are linked with the kernel, and cannot be loaded dynamically.

In the following sections we will discuss process management, memory management,
and communication services and protocols provided by the Amoeba microkernel. However,
since the concept of an object permeates the whole system, we will first briefly describe how
objects fit into Amoeba.

2. OBJECTS
Amoeba is organized as a collection of objects (essentially abstract data types), each with

some number of operations that processes can perform on it. Objects are generally large, like
files, rather than small, like integers, due to the overhead required in accessing an object. Each
object is managed by an object server process. Operations on an object are performed by
sending a message to the object’s server.

When an object is created, the server returns a capability to the process creating it. The
capability is used to address and protect the object. A typical capability is shown in Fig. 1.
The Port field identifies the server. The Object field tells which object is being referred to,
since a server normally will manage thousands of objects. The Rights field specifies which
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operations are allowed (e.g., a capability for a file may be read-only). Since capabilities are
managed in user space the Check field is needed to protect them cryptographically, to prevent
users from tampering with them.

Port Object Rights Check

Bits 48 24 8 48

Fig. 1. A typical capability.

The basic algorithm used to protect objects is as follows (Tanenbaum et al., 1986). When
an object is created, the server picks a random Check field and stores it both in the new capa-
bility and inside its own tables. All the rights bits in a new capability are initially on, and it is
this owner capability that is returned to the client. When the capability is sent back to the
server in a request to perform an operation, the Check field is verified.

To create a restricted capability, a client can pass a capability back to the server, along
with a bit mask for the new rights. The server takes the original Check field from its tables,
EXCLUSIVE ORs it with the new rights (which must be a subset of the rights in the capability),
and then runs the result through a one-way function. Such a function, y = f(x), has the property
that given x it is easy to find y , but given only y , finding x requires an exhaustive search of all
possible x values (Evans et al., 1974).

The server then creates a new capability, with the same value in the Object field, but the
new rights bits in the Rights field and the output of the one-way function in the Check field.
The new capability is then returned to the caller. In this way, processes can give other
processes restricted access to their objects.

3. PROCESS MANAGEMENT IN AMOEBA
A process in Amoeba is basically an address space and a collection of threads that run in

it. In this section we will explain how processes and threads work, and how they are imple-
mented.

3.1. Processes
A process is an object in Amoeba. When a process is created, the parent process is given

a capability for the child process, just as with any other newly created object. Using this capa-
bility, the child can be suspended, restarted, or destroyed.

Process creation in Amoeba is different from UNIX. The UNIX model of creating a child
process by cloning the parent is inappropriate in a distributed system due to the potential over-
head of first creating a copy somewhere (FORK) and almost immediately afterwards replacing
the copy with a new program (EXEC). Instead, in Amoeba it is possible to create a new pro-
cess on a specific processor with the intended memory image starting right at the beginning.
The children, can, in turn, create their own children, leading to a tree of processes.

Process management is handled by calling kernel threads running on every machine. To
create a process on a given machine, another process does an RPC with that machine’s process
server, providing it with the necessary information.

At a higher level, a user-level server, the run server, can be invoked to choose a machine
and start the process there. The run server keeps track of the load on the various processors
and chooses the most favorable machine based on CPU load and memory usage.

Some of the process management calls use a data structure called a process descriptor to
provide information about a process to be run. It is used both for new processes and those that
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have run for a while and been suspended (e.g., by a debugger). One field in the process
descriptor (see Fig. 2) tells which CPU architecture the process can run on. In heterogeneous
systems, this field is essential to make sure 386 binaries are not run on SPARCs, and so on.

Process descriptor

Architecture = 386

Capability for reporting exit status

Segment descriptors

Thread 1
PC1
SP1

Thread 2
PC2
SP2

Thread 3
PC3
SP3

Text
Shared

data 1 2 3 1 2 3

PC1

PC2

PC3

Program
counters

Private data Stacks

SP1

SP2

SP3

Segments
Stack

pointer

Fig. 2. A process descriptor and the corresponding process. In this example, the process has
one text segment, one data segment shared by all threads, three segments that are each private to
one thread, and three stack segments.

Another field contains a capability for communicating the exit status to the owner. When
the process terminates or is stunned (see below), RPCs will be done using this capability to
report the event. It also contains descriptors for all the process’ segments, which collectively
define its address space.

Finally, the process descriptor also contains a descriptor for each thread in the process.
The content of a thread descriptor is architecture dependent, but as a bare minimum, it contains
the thread’s program counter and stack pointer. It may also contain additional information
necessary to run the thread, including other registers, the thread’s state, and various flags.

The low-level process interface to the process management system consists of several
procedures. Only three of these will concern us here. The first one, exec , is the most impor-
tant. It has two input parameters, the capability for a process server and a process descriptor.
Its function is to do an RPC with the specified process server asking it to run the process. If
the call is successful, a capability for the new process is returned to the caller.

A second important procedure is getload . It returns information about the CPU speed,
current load, and amount of memory free at the moment. It is used by the run server to deter-
mine the best place to execute a new process.

A third major procedure is stun . A process’ parent can suspend it by stunning it. More
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commonly, the parent can give the process’ capability to a debugger, which can stun it and
later restart it for interactive debugging purposes. Two kinds of stuns are supported: normal
and emergency. They differ with respect to what happens if the process is blocked on one or
more RPCs at the time it is stunned. With a normal stun, the process sends a message to the
server it is currently waiting for saying, in effect: ‘‘I have been stunned. Finish your work
instantly and send me a reply.’’ If the server is also blocked, waiting for another server, the
message is propagated further, all the way down the line to the end, where it generates an
interrupt. If the server at the end of the line catches the interrupt, it replies with a special error
message. In this way, all the pending RPCs are terminated quickly in a clean way, with all of
the servers finishing properly. The nesting structure is not violated, and no ‘‘long jumps’’ are
needed. Processes that do not want to be interrupted can have their wish by simply not ena-
bling handlers (the default is to ignore stuns). Then, the client process stays alive until it
receives the reply from the server process.

An emergency stun stops the process instantly. It sends messages to servers that are
currently working for the stunned process, but does not wait for the replies. The computations
being done by the servers become orphans. When the servers finally finish and send replies,
these replies are discarded.

3.2. Threads
Amoeba supports a simple threads model. When a process starts up, it has at least one

thread and possibly more. The number of threads is dynamic. During execution, the process
can create additional threads, and existing threads can terminate. When a new thread is
created, the parameters to the call specify the procedure to run and the size of the initial stack.

Although all threads in a process share the same program text and global data, each
thread has its own stack, its own stack pointer, and its own copy of the machine registers. In
addition, if a thread wants to create and use variables that are global to all its procedures but
invisible to other threads, library procedures are provided for that purpose. These variables are
managed by the thread itself; the kernel does not intervene.

Three methods are provided for thread synchronization: signals, mutexes, and sema-
phores. Signals are asynchronous interrupts sent from one thread to another thread in the same
process. They are conceptually similar to UNIX signals, except that they are between threads
rather than between processes. Signals can be raised, caught, or ignored. Asynchronous inter-
rupts between processes use the stun mechanism.

The second form of interthread communication is the mutex. A mutex is like a binary
semaphore. It can be in one of two states, locked or unlocked. Trying to lock an unlocked
mutex causes it to become locked. The calling thread continues. Trying to lock a mutex that
is already locked causes the calling thread to block until another thread unlocks the mutex. If
more than one thread is waiting on a mutex, when it is unlocked, exactly one thread is
released. In addition to the calls to lock and unlock mutexes, there is also a call that tries to
lock a mutex, but if it is unable to do so within a specified interval, it times out and returns an
error code.

The third way threads can synchronize is by counting semaphores. These are slower than
mutexes, but there are times when they are needed. They work in the usual way, except that
here too an additional call is provided to allow a DOWN operation to time out if it is unable to
succeed within a specified interval.

All threads are managed by the kernel. The advantage of this design is that when a thread
does an RPC, the kernel can block that thread and schedule another one in the same process if
one is ready. Thread scheduling is done using priorities, with kernel threads having higher
priority than user threads. Within a user process, threads do not have priorities, and run
nonpreemptively.
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4. MEMORY MANAGEMENT IN AMOEBA
Amoeba also has a simple memory model. A process can have any number of segments

and they can be located wherever it wants in the process’ virtual address space. Segments are
not swapped or paged, so a process must be entirely memory resident to run. Since the
hardware MMU is used, a segment can be located anywhere within the virtual address space.
Each segment is stored contiguously in physical memory.

Although this design is perhaps somewhat unusual these days, it was done for three rea-
sons: performance, simplicity, and economics. Having a process entirely in memory all the
time makes RPC go faster. When a large block of data must be sent, the system knows that all
of the data is contiguous not only in virtual memory, but also in physical memory. This
knowledge saves having to check if all the pages containing the buffer happen to be around at
the moment, and eliminates having to wait for them if they are not. Similarly, on input, the
buffer is always in memory, so the incoming data can be placed there simply and without page
faults. This design was one of the factors that allowed Amoeba to achieve high transfer rates
for large RPCs (Tanenbaum et al., 1990).

The second reason for the design is simplicity. Not having paging or swapping makes the
system considerably simpler and makes the kernel smaller and more manageable. However, it
is the third reason that makes the first two feasible. Memory is becoming so cheap that within
a few years, all Amoeba machines will probably have tens of megabytes of it. Such large
memories will reduce the need for paging and swapping, namely, to fit large programs into
small machines. Programs that do not fit in physical memory cannot be run on Amoeba.

Processes have several calls available to them for managing segments. Most important
among these is the ability to create, destroy, read, and write segments. When a segment is
created, the caller gets back a capability for it. This capability is used for all the other calls
involving the segment.

Because segments can be read and written, it is possible to use them to construct a main
memory file server. To start, the server creates a segment as large as it can, determining the
maximum size by asking the kernel. This segment will be used as a simulated disk. The
server then formats the segment as a file system, putting in whatever data structures it needs to
keep track of files. After that, it is open for business, accepting and processing requests from
clients.

Virtual address spaces in Amoeba are constructed by mapping segments into them.
When a process is started, it must have at least one segment. Once it is running, a process can
create additional segments and map them into its address space at any unused virtual address.
Figure 3 shows a process with three memory segments currently mapped in.

A process can also unmap segments. Furthermore, a process can specify a range of vir-
tual addresses and request that the range be unmapped, after which those addresses are no
longer legal. When a segment or a range of addresses is unmapped, a capability is returned, so
the segment may still be accessed, or even mapped back in again later, possibly at a different
virtual address (on the same processor).

A segment may be mapped into the address space of two or more processes at the same
time. This allows processes to operate on shared memory. For example, two processes can
map the screen buffer or other hardware devices into their respective address spaces. Also,
cooperating processes can share a buffer. Segments cannot be shared over a network.

5. COMMUNICATION IN AMOEBA
Amoeba supports two forms of communication: RPC, which is based on point-to-point

message passing, and group communication. At the lowest level, an RPC consists of a request
message sent by a client to a server followed by a reply message from the server back to the
client. Group communication uses hardware broadcasting or multicasting if it is available;
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Fig. 3. A process with three segments mapped into its virtual address space.

otherwise it transparently simulates it with individual messages. In this section we will
describe both RPC and group communication, and then discuss the underlying FLIP protocol
that is used to support them.

5.1. Remote Procedure Call
All point-to-point communication in Amoeba consists of a client sending a message to a

server followed by the server sending a reply back to the client. It is not possible for a client to
just send a message and then go do something else. The primitive that sends the request
automatically blocks the caller until the reply comes back, thus forcing a certain amount of
structure on programs. Separate send and receive primitives can be thought of as the distri-
buted system’s answer to the goto statement: parallel spaghetti programming.

Each standard server defines a procedural interface that clients can call. These library
routines are stubs that pack the parameters into messages and invoke the kernel primitives to
actually send the message. During message transmission, the stub, and hence the calling
thread, is blocked. When the reply comes back, the stub returns the status and results to the
client. Although the kernel-level primitives are closely related to the message passing, the use
of stubs makes this mechanism look like RPC to the programmer, so we will refer to the basic
communication primitives as RPC, rather than the slightly more precise ‘‘request/reply mes-
sage exchange.’’ Stubs can either be hand written or generated by a stub compiler.

In order for a client thread to do an RPC with a server thread, the client must know the
server’s address. Addressing is done by allowing any thread to choose a random 48-bit
number, called a port , to be used as the address for messages sent to it. Different threads in a
process may use different ports if they so desire. All messages are addressed from a sender to
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a destination port. A port is nothing more than a kind of logical thread address. There is no
data structure and no storage associated with a port. It is similar to an IP address or an Ether-
net address in that respect, except that it is not tied to any particular physical location. The
first field in each capability gives the port of the server that manages the object.

RPC Primitives
The RPC mechanism makes use of three principal kernel primitives, as listed below. Pro-

grams (or more often, library procedures) can make these calls to send and receive messages.

1. get�request - indicates a server’s willingness to listen on a port

2. put�reply - done by a server when it has a reply to send

3. trans - send a message from client to server and wait for the reply

The first two are used by servers. The third is used by clients to transmit a message and wait
for a reply. All three are true system calls, that is, they do not work by sending a message to a
communication server thread. Users access the calls through library procedures, as usual,
however.

When a server wants to go to sleep waiting for an incoming request, it calls get�request .
This procedure has three parameters, as follows:

get�request(&header, buffer, bytes)

The first parameter points to a message header, the second points to a data buffer, and the third
tells how big the data buffer is. This call is analogous to

read(fd, buffer, bytes)

in UNIX in that the first parameter identifies what is being read, the second provides a buffer to
put the data, and the third tells how big the buffer is. The analogy is not strict because the
header contains multiple fields, some of which are filled in when the call returns.

When a request message is transmitted over the network, it contains a header and (option-
ally) a data buffer. The header is a fixed 32-byte structure and is shown in Fig. 4. The first
parameter of the get�request calls tells the kernel where to put the incoming header. In addi-
tion, prior to making the get�request call, the server must initialize the header’s Port field to
contain the port it is listening to. This is how the kernel knows which server is listening to
which port. The incoming header overwrites the one initialized by the server.

When a server is blocked on a get�request waiting for a message and one arrives, the
server is unblocked. It normally first inspects the header to find out what the client wants.
The Signature field is currently not in use, but is reserved for authentication purposes.

The remaining fields are not specified by the RPC protocol, so a server and client can
agree to use them any way they want. The normal conventions are as follows. Most requests
to servers contain a capability, to specify the object being operated on. Many replies also have
a capability as a return value. The Private part is normally used to hold the rightmost three
fields of the capability.

Most servers support multiple operations on their objects, such as reading, writing, and
destroying. The Command field is conventionally used on requests to indicate which opera-
tion is needed. On replies it tells whether the operation was successful or not, and if not, it
gives the reason for failure.

The last three fields hold parameters, if any. For example, when reading a segment or
file, they can be used to indicate the offset within the object to begin reading at, and the
number of bytes to read.
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Port (6 bytes)

Signature (6 bytes)

Private part (10 bytes)

Command (2 bytes)

Offset (4 bytes)

Size (2 bytes)

Extra (2 bytes)

Fig. 4. The header used on all Amoeba request and reply messages. The numbers in
parentheses give the field sizes in bytes.

Note that for many operations, no buffer is needed or used. In the case of reading again,
the object capability, the offset, and the size all fit in the header. When writing, the buffer
contains the data to be written. On the other hand, the reply to a READ contains a buffer,
whereas the reply to a WRITE does not.

After the server has completed its work, it makes a call

put�reply(&header, buffer, bytes)

to send back the reply. The first parameter provides the header and the second provides the
buffer. The third parameter tells how big the buffer is. If a server thread does a put�reply
without having previously done an unmatched get�request , the put�reply fails with an error.
Similarly, two consecutive get�request calls fail. The two calls must be paired in the correct
way.

Now let us turn from the server to the client. To do an RPC, the client calls a stub which
makes the following call:

trans(&header�in, buffer�in, bytes�in, &header�out, buffer�out, bytes�out)

The first three parameters provide information about the header and buffer of the outgoing
request. The last three provide the same information for the incoming reply. The trans call
sends the request and blocks the client until the reply has come in. This design forces
processes to stick closely to the client-server RPC communication paradigm, analogous to the
way structured programming techniques prevent programmers from doing things that gen-
erally lead to poorly structured programs (such as using unconstrained GOTO statements).

If Amoeba actually worked as described above, it would be possible for an intruder to
impersonate a server just by doing a get�request on the server’s port. These ports are public
after all, since clients must know them to contact the servers. Amoeba solves this problem
cryptographically. Each port is actually a pair of ports: the get-port , which is private, only
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known to the server, and the put-port , which is known to the whole world. The two are related
through a one-way function, F , according to the relation:

put-port = F(get-port)

When a server does a get�request , the corresponding put-port is computed by the kernel
and stored in a table of ports being listened to. All trans requests use put-ports, so when a
packet arrives at a machine, the kernel compares the put-port in the header to the put-ports in
its table to see if any match. Since get-ports never appear on the network and cannot be
derived from the publicly known put-ports, the scheme is secure. It is illustrated in Fig. 5 and
described in more detail in (Tanenbaum et al., 1986).

Kernel

Client Server

trans(put-port) get�request(get-port)

Table of
ports being
listened to

F(get-port)

Network

Packets contain put-ports

Fig. 5. Relationship between get-ports and put-ports.

Amoeba RPC supports at-most-once semantics. In other words, when an RPC is done,
the system guarantees that an RPC will never be carried out more than one time, even in the
face of server crashes and rapid reboots.

5.2. Group Communication in Amoeba
RPC is not the only form of communication supported by Amoeba. It also supports

group communication. A group in Amoeba consists of one or more processes that are
cooperating to carry out some task or provide some service. Processes can be members of
several groups at the same time. Groups are closed. The usual way for a client to access a ser-
vice provided by a group is to do an RPC with one of its members. That member then uses
group communication within the group, if necessary, to determine who will do what.

Group Communication Primitives
The operations available for group communication in Amoeba are listed in Fig. 6.

CreateGroup creates a new group and returns a group identifier used in the other calls to iden-
tify which group is meant. The parameters specify various sizes and how much fault tolerance
is required (how many failed members the group must be able to withstand and continue to
function correctly).

JoinGroup and LeaveGroup allow processes to enter and exit from existing groups. One
of the parameters of JoinGroup is a small message that is sent to all group members to
announce the presence of a newcomer. Similarly, one of the parameters of LeaveGroup is
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Fig. 6. Amoeba group communication primitives.

another small message sent to all members to say goodbye and wish them good luck in their
future activities. The point of the little messages is to make it possible for all members to
know who their comrades are, in case they are interested. When the last member of a group
calls LeaveGroup , the group is destroyed.

SendToGroup atomically broadcasts a message to all members of a specified group, in
spite of lost messages, finite buffers, and processor crashes. If two processes call SendTo-
Group nearly simultaneously, the system ensures that all group members will receive the mes-
sages in the same order. This is guaranteed; programmers can count on it.

ReceiveFromGroup tries to get a message from a specified group. If no message is avail-
able (buffered by the kernel) the caller blocks until one is available. If a message has already
arrived, the caller gets the message with no delay. The protocol insures that under no condi-
tions are messages irretrievably lost.

The final call, ResetGroup is used to recover from crashes. It specifies how many
members the new group must have as a minimum. If the kernel is able to establish contact
with the requisite number of processes and rebuild the group, it returns the size of the new
group. Otherwise, it fails.

The Amoeba Reliable Broadcast Protocol
Let us now look at how Amoeba implements group communication. Amoeba works best

on LANs that support either multicasting or broadcasting (or like Ethernet, both). For simpli-
city, we will just refer to broadcasting, although in fact the implementation uses multicasting
when it can to avoid disturbing machines that are not interested in the message being sent. It is
assumed that the hardware broadcast is good, but not perfect. In practice, lost packets are rare,
but receiver overruns do happen occasionally. Since these errors can occur, the protocol has
been designed to deal with them.

The key idea that forms the basis of the implementation of group communication is reli-
able broadcasting . By this we mean that when a user process broadcasts a message (e.g., with
SendToGroup) the user-supplied message is correctly delivered to all members of the group,
even though the hardware may lose packets. For simplicity, we will assume that each message
fits into a single packet. For the moment, we will assume that processors do not crash. We
will consider the case of unreliable processors afterwards. The description given below is just
an outline. For more details, see (Kaashoek and Tanenbaum, 1991; and Kaashoek et al.,
1989). Other reliable broadcast protocols are discussed in (Birman and Joseph, 1987a; Chang
and Maxemchuk, 1984; Garcia-Molina and Tseung, 1989).

The hardware/software configuration required for reliable broadcasting in Amoeba is
shown in Fig. 7. The hardware of all the machines is normally identical, and they all run
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exactly the same kernel. However, when the application starts up, one of the machines is
elected as sequencer (like a committee electing a chairman). If the sequencer machine subse-
quently crashes, the remaining members elect a new one. Many election algorithms are
known, such as choosing the process with the highest network address.

Kernel Kernel Kernel

User prog User prog User prog

Network

s

Sequencer

Enabled

Sequencer

Disabled

Fig. 7. System structure for group communication in Amoeba.

One sequence of events that can be used to achieve reliable broadcasting can be summar-
ized as follows.

1. The thread traps to the kernel.

2. The thread, now in kernel mode, adds a protocol header and sends the message to
the sequencer using a point-to-point message.

3. When the sequencer gets the message, it allocates the next available sequence
number, puts the sequence number in the protocol header, and broadcasts the mes-
sage (and sequence number).

4. When the sending kernel sees the broadcast message, it unblocks the calling pro-
cess to let it continue execution.

Let us now consider these steps in more detail. When an application process executes a
broadcast primitive, such as SendToGroup , a trap to its kernel occurs. The calling thread
switches to kernel mode and builds a message containing a kernel-supplied header and the
application-supplied data. The header contains the message type (Request for Broadcast in
this case), a unique message identifier (used to detect duplicates), the number of the next
broadcast expected by the kernel and some other information.

The kernel sends the message to the sequencer using a normal point-to-point message,
and simultaneously starts a timer. If the broadcast comes back before the timer runs out (nor-
mal case), the sending kernel stops the timer and returns control to the caller. In practice, this
case happens well over 99% of the time, because LANs are highly reliable.

On the other hand, if the broadcast has not come back before the timer expires, the kernel
assumes that either the message or the broadcast has been lost. Either way, it retransmits the
message. If the original message was lost, no harm has been done, and the second (or subse-
quent) attempt will trigger the broadcast in the usual way. If the message got to the sequencer
and was broadcast, but the sender missed the broadcast, the sequencer will detect the
retransmission as a duplicate (from the message identifier) and just tell the sender that every-
thing is all right. The message is not broadcast a second time.

A third possibility is that a broadcast comes back before the timer runs out, but it is the
wrong broadcast. This situation arises when two processes attempt to broadcast simultane-
ously. One of them, A, gets to the sequencer first, and its message is broadcast. A sees the
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broadcast and unblocks its application program. However its competitor, B, sees A’s broadcast
and realizes that it has failed to go first. Nevertheless, B knows that its message probably got
to the sequencer (since lost messages are rare) where it will be queued, and broadcast next.
Thus B accepts A’s broadcast and continues to wait for its own broadcast to come back or its
timer to expire.

Now consider what happens at the sequencer when a Request for Broadcast arrives there.
First a check is made to see if the message is a retransmission, and if so, the sender is informed
that the broadcast has already been done, as mentioned above. If the message is new (normal
case), the next sequence number is assigned to it, and the sequencer counter is incremented by
one. The message and its identifier are then stored in a history buffer , and the message is then
broadcast. The message is also passed to the application running on the sequencer’s machine
(because the broadcast does not interrupt itself).

Finally, let us consider what happens when a kernel receives a broadcast. First, the
sequence number is compared to the sequence number of the most recently received broadcast.
If the new one is 1 higher (normal case), no broadcasts have been missed so the message is
passed up to the application program, assuming that it is waiting. If it is not waiting, it is buf-
fered until the program calls ReceiveFromGroup .

Suppose that the newly received broadcast has sequence number 25, while the previous
one had number 23. The kernel is alerted to the fact that it has missed number 24, so it sends
a point-to-point message to the sequencer asking for a private retransmission of the missing
message. The sequencer fetches the missing message from its history buffer and sends it.
When it arrives, the receiving kernel processes 24 and 25, passing them to the application pro-
gram in numerical order. Thus the only effect of a lost message is a minor time delay. All
application programs see all broadcasts in the same order, even if some messages are lost.

The reliable broadcast protocol is illustrated in Fig. 8. Here the application program run-
ning on machine A passes a message, M, to its kernel for broadcasting. The kernel sends the
message to the sequencer, where it is assigned sequence number 25. The message (containing
the sequence number 25) is now broadcast to all machines and is also passed to the application
running on the sequencer itself. This broadcast message is denoted by M25 in the figure.

Last = 24

A

Application program

MA

Last = 24 S

A

M25

History
M

M25
Sequencer
machine

Last = 24

A

M25 B

M25

Last = 23

A

M25 C

M25

M25

M25

Request
for 24

M25 buffered for
future use

Fig. 8. The application of machine A sends a message to the sequencer, which then adds a se-
quence number (25) and broadcasts it. At B it is accepted, but at C it is buffered until 24, which
was missed, can be retrieved from the sequencer.



- 14 -

The M25 message arrives at machines B and C. At machine B the kernel sees that it has
already processed all broadcasts up to and including 24, so it immediately passes M25 up to
the application program. At C, however, the last message to arrive was 23 (24 must have been
lost), so M25 is buffered in the kernel, and a point-to-point message requesting 24 is sent to the
sequencer. Only after the reply has come back and been given to the application program will
M25 be passed upwards as well.

Now let us look at the management of the history buffer. Unless something is done to
prevent it, the history buffer will quickly fill up. However, if the sequencer knows that all
machines have correctly received broadcasts, say, 0 through 23, it can delete these from its his-
tory buffer.

Several mechanisms are provided to allow the sequencer to discover this information.
The basic one is that each Request for Broadcast message sent to the sequencer carries a pig-
gybacked acknowledgement, k, meaning that all broadcasts up to and including k−1 have been
correctly received and that it expects k next. This way, the sequencer can maintain a piggy-
back table, indexed by machine number, telling for each machine which broadcast was the last
one received. Whenever the history buffer begins to fill up, the sequencer can make a pass
through this table to find the smallest value. It can then safely discard all messages up to and
including this value.

If a machine happens to be silent for a long period of time, the sequencer will not know
what its status is. To inform the sequencer, it is required to send a short acknowledgement
message when it has sent no broadcast messages for a certain period of time. Furthermore, the
sequencer can broadcast a Request for Status message, which asks all other machines to send it
a message giving the number of the highest broadcast received in sequence. In this way, the
sequencer can update its piggyback table and then truncate its history buffer.

Although in practice Request for Status messages are rare, they do occur, and thus raise
the mean number of messages required for a reliable broadcast slightly above 2, even when
there are no lost messages. The effect increases slightly as the number of machines grows.

There is a subtle design point concerning this protocol that should be clarified. There are
two ways to do the broadcast. In method 1 (described above), the user sends a point-to-point
message to the sequencer, which then broadcasts it. In method 2, the user broadcasts the mes-
sage, including a unique identifier. When the sequencer sees this, it broadcasts a special
Accept message containing the unique identifier and its newly assigned sequence number. A
broadcast is only ‘‘official’’ when the Accept message has been sent. The two methods are
compared in Fig. 9.

A S B A S B

Method 1 Method 2

1. Message to sequencer

2. Sequencer broadcasts

1. Message broadcast

2. Sequencer accepts

Fig. 9. Two methods for doing reliable broadcasting.

These protocols are logically equivalent, but they have different performance characteris-
tics. In method 1, each message appears in full on the network twice: once to the sequencer
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and once from the sequencer. Thus a message of length m bytes consumes 2m bytes worth of
network bandwidth. However, only the second of these is broadcast, so each user machine is
only interrupted once (for the second message).

In method 2, the full message only appears once on the network, plus a very short Accept
message from the sequencer, so only half the bandwidth is consumed. On the other hand,
every machine is interrupted twice, once for the message and once for the Accept. Thus
method 1 wastes bandwidth to reduce interrupts compared to method 2. Depending on the
average message size, one may be preferable to the other.

In summary, this protocol allows reliable broadcasting to be done on an unreliable net-
work in just over two messages per reliable broadcast. Each broadcast is indivisible, and all
applications receive all messages in the same order, no matter how many are lost. The worst
that can happen is that a short delay is introduced when a message is lost, which rarely hap-
pens. If two processes attempt to broadcast at the same time, one of them will get to the
sequencer first and win. The other will see a broadcast from its competitor coming back from
the sequencer, and will realize that its request has been queued and will appear shortly, so it
simply waits.

5.3. The Fast Local Internet Protocol (FLIP)
Amoeba uses a custom protocol called FLIP (Fast Local Internet Protocol) for actual

message transmission (Kaashoek et al., 1991). This protocol supports both RPC and group
communication and is below them in the protocol hierarchy. In OSI terms, FLIP is a network
layer protocol, whereas RPC is more of a connectionless transport or session protocol (the
exact location is arguable, since OSI was designed for connection-oriented networks). Con-
ceptually, FLIP can be replaced by another network layer protocol, such as IP, although doing
so would cause some of Amoeba’s transparency to be lost. Although FLIP was designed in
the context of Amoeba, it is intended to be useful in other operating systems as well. In this
section we will describe its design and implementation.

Protocol Requirements for Distributed Systems
Before getting into the details of FLIP, it is useful to understand something about why it

was designed. After all, there are plenty of existing protocols, so the invention of a new one
clearly has to be justified. In Fig. 10 we list the principal requirements that a protocol for a
distributed system should meet. First, the protocol must support both RPC and group com-
munication efficiently. If the underlying network has hardware multicast or broadcast, as Eth-
ernet does, for example, the protocol should use it for group communication. On the other
hand, if the network does not have either of these features, group communication must still
work exactly the same way, even though the implementation will have to be different.

A characteristic that is increasingly important is support for process migration. A process
should be able to move from one machine to another, even to one in a different network, with
nobody noticing. Protocols such as OSI, X.25, and TCP/IP that use machine addresses to iden-
tify processes make migration difficult, because a process cannot take its address with it when
it moves.

Security is also an issue. Although the get-ports and put-ports provide security for
Amoeba, a security mechanism should also be present in the packet protocol so it can be used
with operating systems that do not have Amoeba-type cryptographically secure addresses.

Another point on which most existing protocols score badly is network management. It
should not be necessary to have elaborate configuration tables telling which network is con-
nected to which other network. Furthermore, if the configuration changes, due to routers
(gateways) going down or coming back up, the protocol should adapt to the new configuration
automatically.
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RPC The protocol should support RPC������������������������������������������������������������������������
Group communication The protocol should support group communication������������������������������������������������������������������������
Process migration Processes should be able to take their addresses with them������������������������������������������������������������������������
Security Processes should not be able to impersonate other processes������������������������������������������������������������������������
Network management Support should be provided for automatic reconfiguration������������������������������������������������������������������������
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Fig. 10. Desirable characteristics for a distributed system protocol.

Finally, the protocol should work on both local and wide-area networks. In particular, the
same protocol should be usable on both.

The FLIP Interface
The FLIP protocol and its associated architecture was designed to meet all these require-

ments, although when used on wide-area networks, it is best suited to a modest number of
sites. A typical FLIP configuration is shown in Fig. 11. Here we see five machines, two on an
Ethernet and four on a token ring. Each machine has one user process, A through E . One of
the machines is connected to both networks, and as such automatically functions as a router.
Routers may also run clients and servers, just like other nodes.

A

RPC Group

FLIP layer

B

RPC Group

FLIP layer

C

RPC Group

FLIP layer

D

RPC Group

FLIP layer

E

RPC Group

FLIP layer

Ethernet

Token ring

Fig. 11. A FLIP system with five machines and two networks.

The software is structured as shown in Fig. 11. The kernel contains two layers. The top
layer handles calls from user processes for RPC or group communication services. The
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bottom layer handles the FLIP protocol. For example, when a client calls trans , it traps to the
kernel. The RPC layer examines the header and buffer, builds a message from them, and
passes the message down to the FLIP layer for transmission.

All low-level communication in Amoeba is based on FLIP addresses . Each process has
one or more FLIP addresses: 64-bit random numbers chosen by the system when the process is
created. If the process ever migrates, it takes its FLIP address with it. If the network is ever
reconfigured, so that all machines are assigned new (hardware) network numbers or network
addresses, the FLIP addresses still remain unchanged. It is the fact that a FLIP address
uniquely identifies a process (or a group of processes), not a machine, that makes communica-
tion in Amoeba insensitive to changes in network topology and network addressing.

A FLIP address is really two addresses, a public-address and a private-address, related by

Public-address = DES(private-address)

where DES is the Data Encryption Standard. To compute the public-address from the private
one, the private-address is used as a DES key to encrypt a 64-bit block of 0s. Given a public-
address, finding the corresponding private address is computationally infeasible. Servers listen
to private-addresses, but clients send to public-addresses, analogous to the way put-ports and
get-ports work, but at a lower level.

FLIP has been designed to work not only with Amoeba, but also with other operating sys-
tems. A version for UNIX also exists, although for technical reasons it differs slightly from the
Amoeba version. The security provided by the private-address, public-address scheme also
works for UNIX to UNIX communication using FLIP, independent of Amoeba.

Furthermore, FLIP has been designed so that it can be built in hardware, for example, as
part of the network interface chip. For this reason, a precise interface with the layer above it
has been specified. The interface between the FLIP layer and the layer above it (which we
will call the RPC layer) has nine primitives, seven for outgoing traffic and two for incoming
traffic. Each one has a library procedure that invokes it. The nine calls are listed in Fig. 12.
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Call Description Direction���������������������������������������������������
Init Allocate a table slot Down���������������������������������������������������
End Return a table slot Down���������������������������������������������������
Register Listen to a FLIP address Down���������������������������������������������������
Unregister Stop listening to a FLIP address Down���������������������������������������������������
Unicast Send a point-to-point message Down���������������������������������������������������
Multicast Send a multicast message Down���������������������������������������������������
Broadcast Send a broadcast message Down���������������������������������������������������
Receive Packet received Up���������������������������������������������������
Notdeliver Undeliverable packet received Up�����������������������������������������������������
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Fig. 12. The calls supported by the FLIP layer.

The first one, init , allows the RPC layer to allocate a table slot and initialize it with
pointers to two procedures (or in a hardware implementation, two interrupt vectors). These
procedures are the ones called when normal and undeliverable packets arrive, respectively.
End deallocates the slot when the process is being shut down.

Register is invoked to register a process’ FLIP address (or a group address) with the FLIP
layer. It is called when the process starts up (or at least, on the first attempt at getting or
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sending a message). The FLIP layer immediately runs the private-address offered to it through
the DES function, and stores the public-address in its tables. If an incoming packet is
addressed to the public FLIP address, it will be passed to the RPC layer for delivery. The
unregister call removes an entry from the FLIP layer’s tables. The difference between end
and unregister is that a process may use multiple FLIP addresses. Unregister removes one of
these from the table, but leaves the others. When no more communication is needed, end is
called to free the interface slot.

The next three calls are for sending point-to-point messages, multicast messages, and
broadcast messages, respectively. None of these guarantee delivery. To make RPC reliable,
acknowledgements are used. To make group communication reliable, even in the fact of lost
packets, the sequencer protocol discussed above is used.

The last two calls are for incoming traffic. The first is for messages originating else-
where and directed to this machine. The second is for messages sent by this machine but sent
back as undeliverable.

Operation of the FLIP Layer
Packets passed by the RPC layer or group communication layer (see Fig. 11) to the FLIP

layer are addressed by FLIP addresses, so the FLIP layer must be able to convert these
addresses to network addresses for actual transmission. In order to perform this function, the
FLIP layer maintains the routing table shown in Fig. 13. Currently this table is maintained in
software, but future chip designers could implement it in hardware.

FLIP address
Network
address

Hop
count

Trusted
bit Age

Fig. 13. The FLIP routing table.

Whenever an incoming packet arrives at any machine, it is first handled by the FLIP
layer, which extracts from it the FLIP address and network address of the sender. The number
of hops the packet has made is also recorded. Since the hop count is only incremented when a
packet is forwarded by a router, the hop count tells how many routers the packet has passed
through. The hop count is therefore a crude measure of how far away the source is. (Actually,
things are slightly better than this, as slow networks count for multiple hops, with the weight a
function of the network speed.) If the FLIP address is not presently in the routing table, it is
entered. This entry can later be used to send packets to that FLIP address, since its network
number and address are now known.

An additional bit present in each packet tells whether the path the packet has followed so
far is entirely over trusted networks. It is managed by the routers. If the packet has gone
through one or more untrusted networks, packets to the source address should be encrypted if
absolute security is desired. With trusted networks, encryption is not needed.

The last field of each routing table entry gives the age of the routing table entry. It is
reset to 0 whenever a packet is received from the corresponding FLIP address. Periodically,
all the ages are incremented. This field allows the FLIP layer to find a suitable table entry to
purge if the table fills up (large numbers indicate that there has been no traffic for a long time).
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Locating Put-Ports
To see how FLIP works in the context of Amoeba, let us consider a simple example using

the configuration of Fig. 11. A is a client and B is a server. With FLIP, any machine having
connections to two or more networks is automatically a router, so the fact that B happens to be
running on a router machine is irrelevant.

When B is created, the RPC layer picks a new random FLIP address for it and registers it
with the FLIP layer. After starting, B initializes itself and then does a get�request on its get-
port, which causes a trap to the kernel. The RPC layer computes the put-port from the get-port
and makes a note that a process is listening to that port. It then blocks until a request comes in.

Later, A does a trans on the put-port. Its RPC layer looks in its tables to see if it knows
the FLIP address of the server process that listens to the put-port. Since it does not, the RPC
layer sends a special broadcast packet to find it. This packet has a maximum hop count of 1 to
make sure that the broadcast is confined to its own network. (When a router sees a packet
whose current hop count is already equal to its maximum hop count, the packet is discarded
instead of being forwarded.) If the broadcast fails, the sending RPC layer times out and tries
again with a maximum hop count of 2, and so on, until it locates the server.

When the broadcast packet arrives at B’s machine, the RPC layer there sends back a reply
announcing its get-port. This packet, like all incoming packets, causes A’s FLIP layer to make
an entry for that FLIP address before passing the reply packet up to the RPC layer. The RPC
layer now makes an entry in its own tables mapping the put-port onto the FLIP address. Then
it sends the request to the server. Since the FLIP layer now has an entry for the server’s FLIP
address, it can build a packet containing the proper network address and send it without further
ado. Subsequent requests to the server’s put-port use the RPC layer’s cache to find the FLIP
address and the FLIP layer’s routing table to find the network address. Thus broadcasting is
only used the very first time a server is contacted. After that, the kernel tables provide the
necessary information.

To summarize, locating a put-port requires two mappings:

1. From the put-port to the FLIP address (done by the RPC layer).

2. From the FLIP address to the network address (done by the FLIP layer).

The reason for this two-stage process is twofold. First, FLIP has been designed as a general-
purpose protocol for use in distributed systems, including non-Amoeba systems. Since these
systems generally do not use Amoeba-style ports, the mapping of put-ports to FLIP addresses
has not been built into the FLIP layer. Other users of FLIP may just use FLIP addresses
directly.

Second, a put-port really identifies a service rather than a server . A service may be pro-
vided by multiple servers to enhance performance and reliability. Although all the servers
listen to the same put-port, each one has its own private FLIP address. When a client’s RPC
layer issues a broadcast to find the FLIP address corresponding to a put-port, any or all of the
servers may respond. Since each server has a different FLIP address, each response creates a
different entry in the put-port table of Fig. 5.

The advantage of this scheme over having just a single (port, network address) cache is
that it permits servers to migrate to new machines or have their machines be wheeled over to
new networks and plugged in without requiring any manual reconfiguration, as say, TCP/IP
does. There is a strong analogy here with a person moving and being assigned the same tele-
phone number at the new residence as he had at the old one. (For the record, Amoeba does not
currently support process migration, but it could be added later.)

The advantage over having clients and servers use FLIP addresses directly is that FLIP
addresses are temporary, whereas ports may be valid for a long time. If a server crashes, it



- 20 -

will pick a new FLIP address when it reboots. Attempts to use the old FLIP address will time
out, allowing the RPC layer to indicate failure to the client. This mechanism is how at-most-
once semantics are guaranteed. The client, however, can just try again with the same put-port
if it wishes, since that is not necessarily invalidated by server crashes.

FLIP over Wide-Area Networks
FLIP also works transparently over wide-area networks. In Fig. 14 we have three local-

area networks connected by a wide-area network. Suppose the client A wants to do an RPC
with the server E . A’s RPC layer first tries to locate the put-port using a maximum hop count
of 1. When that fails, it tries again with a maximum hop count of 2. This time, C forwards the
broadcast packet to all the routers that are connected to the wide-area network, namely, D and
G . Effectively, C simulates broadcast over the wide-area network by sending individual mes-
sages to all the other routers. When this broadcast fails to turn up the server, a third broadcast
is sent, this time with a maximum hop count of 3. This one succeeds. The reply contains E’s
network address and FLIP address, which are then entered into A’s routing table. From this
point on, communication between A and E happens using normal point-to-point communica-
tion. No more broadcasts are needed.

A B C

LAN

D E F

LAN

G H I

LAN

WAN

Fig. 14. Three LANs connected by a WAN.

Communication over the wide-area network is encapsulated in whatever protocol the
wide-area network requires. For example, on a TCP/IP network, C might have open connec-
tions to D and G all the time. Alternatively, the implementation might decide to close any
connection not used for a certain length of time.

Although this method does not scale to large networks, we expect that for modest
numbers it may be usable, based on our initial experiments with an internetwork of five net-
works on two continents. In practice, few servers move between sites, so that once a server
has been located by broadcasting, subsequent requests will use the cached entries. Using this
method, a modest number of machines all over the world can work together in a totally tran-
sparent way. An RPC to a thread in the caller’s address space and an RPC to a thread half-
way around the world are done in exactly the same way.

Group communication also uses FLIP. When a message is sent to multiple destinations,
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FLIP uses the hardware multicast or broadcast on those networks where it is available. On
those that do not have it, broadcast is simulated by sending individual messages, just as we
saw on the wide-area network. The choice of mechanism is done by the FLIP layer, with the
same user semantics in all cases.

6. SUMMARY
The Amoeba microkernel manages process and memory, and handles communication. At

the lowest level, processes are started by generating a process descriptor and doing an RPC
with the kernel thread responsible for starting new processes on the target machine. Higher
level services help with locating a suitable machine to run on.

Memory is based on the concept of segments, which can be mapped into and out of
processes address spaces at arbitrary addresses.

Communication comes in two forms: RPC and group communication. The former is for
sending point-to-point messages, and the latter is for sending many-to-one messages reliable,
in the face of various errors. Both use the FLIP protocol for actual data transport.

Amoeba has been operational for several years. It is now available for use. Interested
parties should contact the first author by electronic mail.
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