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1. INTRODUCTION 
Students learn by doing, not by listening. Physicists and chemists have long under- 

stood this, which is why students in these fields are required to perform experiments in 
the laboratory and write up their findings. Computer scientists also realize this basic 
truth, so many courses require the students to do some programming. For courses like 
Introduction to Pascal and Data Structures 101 it is not hard to dream up suitable exer- 
cises. For courses on operating systems, it is much more difficult to arrange for a suit- 
able programming laboratory. This paper discusses a solution to the problem based on 
using a UNIX clone written by the author and available in source form for classroom 
u s e .  

The essential problem with operating systems is that even the small and simple ones 
are large and complex. The large and complex ones are unspeakable. It is simply not 
feasible to ask the students to write an operating system, no matter how simple, as an 
exercise for a one semester course. No one would pass. 

At the other end of the spectrum, the students can be asked to write a tiny piece of 
an operating system, such as a CPU scheduler, all by itself. This strategy has the advan- 
tage that everybody passes. Unfortunately, nobody learns anything about operating sys- 
tems this way. The books and lecture material for most courses are already heavily 
skewed toward the few topics that can be pulled out of context and isolated, such as 
monitors, schedulers, and deadlock algorithms. Building the laboratory around these 
topics as well just makes things worse. 

The only reasonable approach is to distribute to the students a working, well- 
documented operating system that they can study in detail and then modify. In this way 
they get to see a whole system close up, without having to write all the code. This stra- 
tegy is clearly attractive but it has three basic problems: 

• hardware 
• software 
• documentation 

Let us deal with these one at a time. 
Operating systems generally have to run on the bare machine. For a course in 

which the only computing facility available is a large time-shared computer ~or, heaven 
forbid, a batch system), there are obvious problems. Fortunately, substantial microcom- 
puters have now become so inexpensive that acquiring 20 machines just for the operating 
systems lab is becoming a real possibility at many schools. There are IBM PC and even 
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AT clones available for under  $1000 these days, which makes them only slightly more 
expensive than ordinary terminals,  and a lot more flexible. 

The real catch is the software. About  10 years ago, many universities taught 
courses based on Version 6 of the UNIX-~ operating system, using a little booklet written 
by John Lions of  the University of  New South Wales as the text. Lions '  commentary  
fell into disuse when AT&T changed the licensing agreement  starting with Version 7 to 
prohibit using the UNIX code in courses. 

Faced with this problem for my own students, and seeing no solution in sight, 
several years ago I simply bit the bullet and sat down and wrote a new operating system 
for classroom use from scratch. This system, now finished, is called MINIX and is func- 
tionally compatible with Version 7 of the UNIX system (i .e. ,  has the same system calls). 
Internally it is entirely new with a completely different (and much more modular)  struc- 
ture than UNIX. The file system, for example,  runs outside the kernel as a message 
driven file server. Best of all, neither the operating system kernel,  nor any of the utility 
programs (cat, cp, grep, Is, make, etc.) contain even a single line of  AT&T code. Con- 
sequently, this system can be distributed to students for course use. 

MINIX runs on the IBM PC, XT,  and AT,  and on those clones that are 100% 
hardware compatible. It does not use the IBM BIOS because the BIOS does all I /O, 
even terminal input, by busy waiting rather than using interrupts. Therefore MINIX con- 
tains I/O drivers that directly access the PC's peripheral chips. If a clone has different 
peripheral chips, MINIX will not run. Empirical ly,  it seems to work on about 3/4 of  the 
clones tested. 

Version 7 was chosen as the base because the goal of this exercise was to make a 
system that students could understand. In contrast, x.y (x = [4, 5]; y = [1, 2, 3]) is 
hairy enough to drive a wizard t o  distraction, let alone an unsuspecting undergraduate.  
Besides, MINIX was designed to run on a PC with or without a hard disk, to keep the 
necessary hardware cheap. Putting x.y onto a 256K IBM PC with one 360K floppy disk 
and no hard disk is left as an exercise for the reader.  

The last e lement  needed to make this system suitable for classroom use is documen-  
tation. To deal with this issue, I jotted down some notes. These have now been pub- 
lished as a 719 page book (Tanenbaum,  1987). The book covers both the usual 
" theory"  of operating systems (interprocess communicat ion,  scheduling, memory  
management ,  etc.) and then shows how these topics are actually applied in MINIX. Of  
the 719 pages, 253 are the kernel listing, in C. The rest is in English (sort of). 

To make MINIX useful in those situations where PC's  are not available, I have also 
written a complete IBM PC simulator in C, so that MINIX can be run on the simulator on 
top of UNIX on an ordinary time-sharing machine.  Unfortunately,  the simulator (which 
is basically just an 8088 interpreter) consumes a lot of CPU time and is correspondingly 
slow. Therefore I also wrote a package that allows the MINIX file system to be compiled 
and run on a VAX at normal speed. While having the students only be able to experi- 
ment with the file system is not as good as giving them the whole system, it is better 
than nothing at all. 

UNIX is a registered trademark of AT&T Bell Laboratories. 
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2. THE USER VIEW OF MINIX 
In this section we will briefly sketch what MINIX looks like to the user. In subse- 

quent sections, we will take a closer look at its internal design. To run MINIX, you put 
the boot diskette into the IBM PC, XT, or AT, and turn the machine on. When the 
operating system has been loaded into memory, it asks the user to insert the root file sys- 
tem diskette, which is then copied to the RAM disk. After the RAM disk has been 
loaded, the system comes up and executes the shell script /etc/rc, which typically con- 
tains commands to mount hard or floppy disk file systems, and so on. When /etc/rc is 
finished, a "login:" message appears on the terminal. To the naive user, from this point 
on, the system is virtually indistinguishable from Version 7 of the UNIX system. Sophis- 
ticated users will notice that some V7 programs (e.g., bc, m4, ptx, spline, and yacc) are 
missing. Among the programs that are present (and compatible with their V7 counter- 
parts) are: 

ar basename cat cc chmod chown crop comm cp date dd df  echo g,rep head kill In log, in 
Ipr Is make mkdir mkfs mknod mount my od passwd pr pwd rev rm rmdir roff sh size 
sleep sort split stty su sum sync tail tar tee time touch tr true umount uniq update wc 

There is also a full Kernighan & Ritchie (1978) compatible C compiler derived from the 
Amsterdam Compiler Kit (Tanenbaum, 1983), a version of make, a shell compatible 
with the standard Bourne shell, a full-screen editor loosely inspired by emacs, programs 
to read and write MS-DOS diskettes, and a variety of programs not present in V7. 

The situation at the system call level is similar. All the V7 system calls are avail- 
able, except for a few of the more obscure ones. The following calls are fully imple- 
mented: 

access alarm brk chdir chmod chown chroot close creat dup exec exit fork fstat g,etgid 
g,etpid g,etuid ioctl kill link lseek mknod mount open pause pipe read setg,id setuid signal 
stat stime sync time times umask umount unlink utime wait write 

Note that fork and exec are present, so MINIX, is a full multiprogramming system. The 
command 

cc file.c & 

runs the compilation in the background, just as you would expect. 
In addition to the above utility programs and system calls, MINIX also has over 100 

library procedures. These include the system call library (e.g., pipe and read), standard 
I/O (e.g., fopen and fprintj), string handling (e.g, strcmp and strcpy), and various mis- 
cellaneous procedures (e.g., atoi and malloc). Like the kernel and the utilities, these, 
too, have all been written from scratch without using the AT&T code as a guide or base. 

3. OVERVIEW OF THE MINIX SYSTEM ARCHITECTURE 
In this and the following sections, we will discuss the architecture of the MINIX sys- 

tem in some detail. Unlike UNIX which is organized as a single monolithic program that 
is loaded into memory at system boot time and then run, the MINIX kernel itself is struc- 
tured in a much more modular way, as a collection of processes that communicate with 
each other and with user processes by sending and receiving messages. There are 
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separate processes for the memory manager, the file system, for each device driver, and 
for certain other system functions. This structure enforces a better interface between the 
pieces. The file system cannot, for example, accidentally change the memory manager's 
tables because the file system and memory manager each have their own address space. 

These system processes are each full-fledged processes, with their own memory 
allocation, process table entry and state. They can be run, blocked, and send messages, 
just as the user processes. In fact, the memory manager and file system each run in user 
space as ordinary processes. The device drivers are all linked together with the kernel 
into the same binary program, but they communicate with each other and with the other 
processes by message passing. 

When the system is compiled, four binary programs are independently created: the 
kernel (including the driver processes), the memory manager, the file system, and ini t  

(which reads/etc/ttys and forks off the login processes). In other words, compiling the 
system results in four distinct a . o u t  files. When the system is booted, all four of these 
are read into memory from the boot diskette. 

It is possible, and in fact, normal, to modify, recompile, and relink, say, the file 
system, without having to relink the other three pieces. This design provides a high 
degree of modularity by dividing the system up into independent pieces, each with a 
well-defined function and interface to the other pieces. The pieces communicate by 
sending and receiving messages. 

The various processes are structured in four layers: 

4. The user processes (top layer). 
3. The server processes (memory manager and file system). 
2. The device drivers, one process per device. 
1. Process and message handling (bottom layer). 

Let us now briefly summarize the function of each layer. 
Layer 1 is concerned with doing process management including CPU scheduling 

and interprocess communication. When a process does a SEND or RECEIVE, it traps 
to the kernel, which then tries to execute the command. If the command cannot be exe- 
cuted (e.g., a process does a RECEIVE and there are no messages waiting for it), the 
caller is blocked until the command can be executed, at which time the process is reac- 
tivated. When an interrupt occurs, layer 1 converts it into a message to the appropriate 
device driver, which will normally be blocked waiting for it. The decision about which 
process to run when is also made in layer 1. A priority algorithm is used, giving device 
drivers higher priority over ordinary user processes, for example. 

Layer 2 contains the device drivers, one process per major device. These processes 
are part of the kernel's address space because they must run in kernel mode to access 
I/O device registers and execute I/O instructions. Although the IBM PC does not have 
user mode/kernel mode, most other machines do, so this decision has been made with an 
eye toward the future. To distinguish the processes within the kernel from those in user 
space, the kernel processes are called tasks. 

Layer 3 contains only two processes, the memory manager and the file system. 
They are both structured as servers, with the user processes as clients. When a user 
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process ( i .e . ,  a client) wants to execute a system call, it calls, for example,  the library 
procedure read with the file descriptor,  buffer,  and count. The library procedure builds 
a message containing the system call number  and the parameters and sends it to the file 
system. The client then blocks waiting for a reply. When the file system receives the 
message, it carries it out and sends back a reply containing the number  of  bytes read or 
the error code. The library procedure gets the reply and returns the result to the caller 
in the usual way.  The user is completely unaware of what is going on here,  making it 
easy to replace the local file system with a remote one. 

Layer  4 contains the user programs.  When the system comes up, init forks off 
login processes, which then wait for input. On a successful login, the shell is executed.  
Processes can fork, resulting in a tree of processes, with init at the root. When CTRL-D 
is typed to a shell, it exits, and init replaces the shell with another login process. 

4 .  L A Y E R  1 - P R O C E S S E S  A N D  M E S S A G E S  

The two basic concepts on which MINIX is built are processes and messages. A 
process is an independent ly  schedulable entity with its own process table entry.  A mes- 
sage is a structure containing the sender 's  process number ,  a message type field, and a 
variable part (a union) containing the parameters or reply codes of  the message. Mes- 
sage size is fixed, depending on how big the union happens to be on the machine in 
question. On the IBM PC it is 24 bytes. 

Three kernel calls are provided: 

- R E C E I V E ( s o u r c e ,  &message) 
- SEND(dest inat ion,  &message) 
- SENDREC(process ,  &message) 

These are the only true system calls (i .e. ,  traps to the kernel) .  R E C E I V E  announces  the 
willingness of the caller to accept a message from a specified process, or A N Y ,  if the 
R E C E I V E R  will accept any message. (From here on, "process"  also includes the 
tasks.) If no message is available, the receiving process is blocked. SEND attempts to 
transmit a message to the destination process. If the destination process is cur ren t ly  
blocked trying to receive from the sender,  the kernel copies the message from the 
sender 's  buffer to the receiver 's  buffer,  and then marks them both as runnable.  If the 
receiver is not waiting for a message from the sender,  the sender is blocked. 

The S E N D R E C  primitive combines the functions of the other two. It sends a mes- 
sage to the indicated process, and then blocks until a reply has been received. The reply 
overwrites the original message. User processes use S E N D R E C  to execute system calls 
by sending messages to the servers and then blocking until the reply arrives. 

There are two ways to enter the kernel.  One way is by the trap resulting from a 
process'  attempt to send or receive a message. The other way is by an interrupt. When 
an interrupt occurs,  the registers and machine state of the currently running process are 
saved in its process table entry. Then a general interrupt handler  is called with the inter- 
rupt number  as parameter .  This procedure builds a message of type I N T E R R U P T ,  
copies it to the buffer  of the waiting task, marks that task as runnable (unblocked) ,  and 
then calls the scheduler to see who to run next. 
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The scheduler maintains three queues,  corresponding to layers 2, 3, and 4, respec- 
tively. The driver queue has the highest priority, the server queue has middle priority, 
and the user queue has lowest priority. The scheduling algorithm is simple: find the 
highest priority queue that has at least one process on it, and run the first process on that 
queue.  In this way, a clock interrupt will cause a process switch if the file system was 
running,  but not if the disk driver was running.  If the disk driver was running,  the 
clock task will be put at the end of  the highest priority queue,  and run when its turn 
comes. 

In addition to this rule, once every 100 msec, the clock task checks to see if the 
current process is a user process that has been running for at least 100 msec. If so, that 
user is removed from the front of  the user queue and put on the back. In effect, com- 
pute bound user processes are run using a round robin scheduler.  Once started, a user 
process runs until either it blocks trying to send or receive a message, or it has had 100 
msec of CPU time. This algorithm is simple, fair, and easy to implement.  

5.  L A Y E R  2 - D E V I C E  D R I V E R S  

Like all versions of UNIX for the IBM PC, MINIX does not use the ROM BIOS for 
input or output because the BIOS does not support interrupts. Suppose a user forks off 
a compilation in the background and then calls the editor. If the editor tried to read 
from the terminal using the BIOS, the compilation (and any other background jobs such 
as printing) would be stopped dead in their tracks waiting for the the next character to 
be typed. Such behavior may be acceptable in the MS-DOS world,  but it certainly is not 
in the UNIX world.  As a result, MINIX contains a complete set of drivers that duplicate 
the functions of  the BIOS. Like the rest of  MINIX, these drivers are written in C, not 
assembly language. 

Each device driver is a separate process in MINIX. At present,  the drivers include 
the clock driver, terminal driver,  various disk drivers (e .g. ,  R A M  disk, floppy disk, 
hard disk),  and printer driver.  Each driver has a main loop consisting of three actions: 

1. Wait  for an incoming message. 
2. Perform the request contained in the message. 
3. Send a reply message. 

Request  messages have a standard format, containing the opcode (e .g. ,  R E A D ,  WRITE,  
or IOCTL) ,  the minor  device number ,  the position (e.g. ,  disk block number) ,  the buffer 
address, the byte count,  and the number  of  the process on whose behalf  the work is 
being done.  

As an example of where device drivers fit in, consider what happens when a user 
wants to read from a file. The user sends a message to the file system. If the file sys- 
tem has the needed data in its buffer cache, they are copied back to the user. Other- 
wise, the file system sends a message to the disk task requesting that the block be read 
into a buffer within the file system's address space (in its cache).  Users may not send 
messages to the tasks directly. Only the servers may do this. 

MINIX suppor t s  a R A M  disk. In fact, the R A M  disk is always used to hold the root 
device.  When the system is booted, after the operating system has been loaded, the user 
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is instructed to insert the root file system diskette. The file system then sees how big it 
is, allocates the necessary memory, and copies the diskette to the RAM disk. Other file 
systems can then be mounted on the root device. 

This organization puts important directories such as /bin and /tmp on the fastest 
device, and also makes it easy to work with either floppy disks or hard disks or a mix- 
ture of the two by mounting them o n / u s r  o r /use r  or elsewhere. In any event, the root 
device is always in the same place. 

In the standard distribution, the RAM disk is about 240K, most of which is full of 
parts of the C compiler. In the 256K system, a much smaller RAM disk has to be used, 
which explains why this version has no C compiler: there is no place to put it. (The 
/usr diskette is completely full with the other utility programs and one of the design 
goals was to make the system run on a 256K PC with 1 floppy disk.) Users with an 
unusual configuration such as 256K and three hard disks are free to juggle things around 
as they see fit. 

The terminal driver is compatible with the standard V7 terminal driver. It supports 
cooked mode, raw mode, and cbreak mode. It also supports several escape sequences, 
such as cursor positioning and reverse scrolling because the screen editor needs them. 

The printer driver copies its input to the printer character for character without 
modification. It does not even convert line feed to carriage return + line feed. This 
makes it possible to send escape sequences to graphics printers without the driver mess- 
ing things up. MINIX does not spool output because floppy disk systems rarely have 
enough spare disk space for the spooling directory. Instead one normally would print a 
file f by saying 

lpr < f  & 

to do the printing in the background. The lpr program insert carriage returns, expands 
tabs, and so on, so it should only be used for straight ASCII files. On hard disk sys- 
tems, a spooler would not be difficult to write. 

6 .  L A Y E R  3 - S E R V E R S  

Layer 3 contains two server processes: the memory manager and the file system. 
They are both structured in the same way as the device drivers, that is a main loop that 
accepts requests, performs them, and then replies. We will now look at each of these. 

The memory manager's job is to handle those system calls that affect memory allo- 
cation, as well as a few others. These include FORK, EXEC, WAIT, KILL, and BRK. 
The memory model used by MINIX is exceptionally simple in order to accommodate 
computers without any memory management hardware. When the shell forks off a pro- 
cess, a copy of the shell is made in memory. When the child does an EXEC, the new 
core image is placed in memory. Thereafter it is never moved. MINIX does not swap or 
page. 

The amount of memory allocated to the process is determined by a field in the 
header of the executable file. A program, chmem, has been provided to manipulate this 
field. When a process is started, the text segment is set at the very bottom of the allo- 
cated memory area, followed by the data and bss. The stack starts at the top of the 
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allocated memory and grows downward. The space between the bottom of the stack and 
the top of the data segment is available for both segments to grow into as needed. If the 
two segments meet, the process is killed. 

In the past, before paging was invented, all memory allocation schemes worked like 
this. In the future, when even small microcomputers will use 32-bit CPUs and 1M x 1 
bit memory chips, the minimum feasible memory will be 4 megabytes and this allocation 
scheme will probably become popular again due to its inherent simplicity. Thus the 
MINIX scheme can be regarded as either hopelessly outdated or amazingly futuristic, as 
you prefer. 

The memory manager keeps track of memory using a list of holes. When new 
memory is needed, either for FORK or for EXEC, it searches the hole list and takes the 
first hole that is big enough (first fit). When a process terminates, if it is adjacent to a 
hole on either side, the process' memory and the hole are merged into a bigger hole. 

The file system is really a remote file server that happens to be running on the 
user's machine. However it is straightforward to convert it into a true network file 
server. All that needs to be done is change the message interface and provide some way 
of authenticating requests. (In MINIX, the source field in the incoming message is 
trustworthy because it is filled in by the kernel.) When running remote, the MINIX file 
server maintains state information, like RFS and unlike NFS. 

The MINIX file system is similar to that of V7 UNIX. The i-node is slightly dif- 
ferent, containing only 9 disk addresses instead of 13, and only 1 time instead of 3. 
These changes reduce the i-node from 64 bytes to 32 bytes, to store more i-nodes per 
disk block and reduce the size of the in-core i-node table. 

Free disk blocks and free inodes are kept track of using bit maps rather than free 
lists. The bit maps for the root device and all mounted file systems are kept in memory. 
When a file grows, the system makes a definite effort to allocate the new block as close 
as possible to the old ones, to minimize arm motion. Disk storage is not necessarily 
allocated one block at a time. A minor device can be configured to allocate 2, 4 (or 
more) contiguous blocks whenever a block is allocated. Although this wastes disk 
space, these multiblock zones improve disk performance by keeping file blocks close 
together. The standard parameters for MINIX as distributed are 1K blocks and 1K zones 
(i.e., just 1 block per zone). 

MINIX maintains a buffer cache of recently used blocks. A hashing algorithm is 
used to look up blocks in the cache. When an i-node block, directory block, or other 
critical block is modified, it is written back to disk immediately. Data blocks are only 
written back at the next SYNC or when the buffer is needed for something else. 

The MINIX directory system and format is identical to that of V7 UNIX. File names 
are strings of up to 14 characters, and directories can be arbitrarily long. 

7. L A Y E R  4 - U S E R  P R O C E S S E S  

This layer contains init, the shell, the editor, the compiler, the utilities, and all the 
user processes. These processes may only send messages to the memory manager and 
the file system, and these servers only accept valid system call requests. Thus the user 
processes do not perceive MINIX to be a general-purpose message passing system. 
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However, removing the one line of code that checks if the message destination is valid 
would convert it into a much more general system (but less UNIX-like). 

8. MINIX DOCUMENTATION 
For a system one of whose purposes is teaching about operating systems, ample 

documentation is essential. For this reason I have written an ample textbook (719 
pages) treating both the theory and the practice of operating system design (Tanenbaum, 
1987). The table of contents is as follows: 

CHAPTERS 
1. Introduction 
2. Processes 
3. Input/Output 
4. Memory Management 
5. File Systems 
6. Bibliography and Suggested Readings 

APPENDICES 
A. Introduction to C 
B. Introduction to the IBM PC 
C. MINIX Users Guide 
D. MINIX Implementers Guide 
E. MINIX Source Code Listing 
F. MINIX Cross Reference Map 

The heart of the book is chapters 2-5. Each chapter deals with the indicated topic in the 
following way. First comes a thorough treatment of the relevant principles (thorough 
enough to be usable as a university textbook on operating systems). Next comes a gen- 
eral discussion of how the principles have been applied in MINIX. Finally there is a pro- 
cedure by procedure description of how the relevant part of MINIX works in detail. The 
source code listing of appendix E contains line numbers, and these line numbers are 
used throughout the book to pinpoint the code under discussion. The source code itself 
contains more than 3000 comments, some more than a page long. Studying the princi- 
ples and seeing how they are applied in a real system gives the student a better under- 
standing of the subject than either the principles or the code alone would. 

Appendices A and B are introductions to C and the IBM PC for readers not fami- 
liar with these subjects. Appendix C tells how to boot MINIX, how to use it, and how to 
shut it down. It also contains all the manual pages for the utility programs. Most 
important of all, it gives the super-user password. 

Appendix D is for people who wish to modify and recompile MINIX. It contains a 
wealth of nutsy-boltsy information about everything from how to use MS-DOS as a 
development system, to what to do when your newly made system refuses to boot. 

Appendix E is a full listing of the operating system. The utilities (mercifully) are 
not listed. 
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9.  D I S T R I B U T I O N  O F  T H E  S O F T W A R E  

The software distribution is being done by Prentice-Hall. The book contains a busi- 
ness reply card for ordering the software. Four packages are available. All four contain 
the full source code; they differ only in the configuration of the binary supplied. All 
cost $79.95. The four packages are: 

- 640K IBM PC version 
- 256K IBM PC (no C compiler) 
- IBM PC-AT (512K minimum) 
- Industry standard 9-track tape 

The 640K version will also run on 512K systems, but it may be necessary to chmem 
parts of the C compiler to make it fit. The tape version also contains the IBM PC simu- 
lator and other software needed for classroom use on a VAX or other time sharing 
machine. The software packages do not include the book. 

A few words about the legal status of the software are in order. The software has 
been copyright by Prentice-Hall. It is not public domain. However, Prentice-Hall is 
permitting copies of both the binaries and sources to be made for educational use 
without requiring a license or payment. Thus professors can legally make copies of the 
software for their students. For commercial use of the software (e.g., porting it to 
CPUs other than the Intel family and then reselling it), written permission from 
Prentice-Hall is required. 

If there is sufficient interest, a USENET newsgroup comp.os.minix will be set up. 
This channel can be used by people wishing to contribute new programs, point out and 
correct bugs, discuss the problems of porting MINIX to new systems, etc. 
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