
AN EFFICIENT RELIABLE BROADCAST PROTOCOL

M. Frans Kaashoek
Andrew S. Tanenbaum
Susan Flynn Hummel

Henri E. Bal

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

Email: kaashoek@cs.vu.nl

ABSTRACT

Many distributed and parallel applications can make good use of broad-
cast communication. In this paper we present a (software) protocol that simu-
lates reliable broadcast, even on an unreliable network. Using this protocol,
application programs need not worry about lost messages. Recovery of com-
munication failures is handled automatically and transparently by the proto-
col. In normal operation, our protocol is more efficient than previously pub-
lished reliable broadcast protocols. An initial implementation of the protocol
on 10 MC68020 CPUs connected by a 10 Mbit/sec Ethernet performs a reli-
able broadcast in 1.5 msec.

1. INTRODUCTION

Most current distributed operating systems are based on remote procedure call (RPC) [BirreU
and Nelson 1984]. For many distributed and parallel applications, however, this sender-to-
receiver-and-back communication style is inappropriate. What is frequently needed is broad-
casting, in which an arbitrary one of the n user processes sends a message to the other n - 1
processes. Although broadcasting can always be simulated by sending n - 1 messages and
waiting for the n - 1 acknowledgements, this algorithm is slow, inefficient, and wasteful of
network bandwidth. In this paper we discuss a new protocol that allows 100% reliable
broadcasting to be implemented on unreliable networks in only two messages per broadcast.

Before getting into the protocol, let us first look at two example applications in which
broadcasting is a more suitable paradigm than RPC. First consider the traveling salesman
problem [Lawler and Wood 1966]. In this problem, the computer is given a starting location
and a list of cities to be visited. The idea is to find the shortest path that visits each city
exactly once. When this problem is solved on a distributed system, processes can search dif-
ferent paths in parallel [Bal et al. 1987]. When a process finds a new path that is shorter than

5

any path found so far, it wants to broadcast this path to all other processes, so that they will
not waste time working on partial paths that are longer than the best known complete path.
Here, a reliable broadcast from one process to all the others is a more appropriate model than
RPC.

Another example is a system that replicates data structures (e.g. data base records) at
multiple sites, to enhance fault tolerance and reduce access time. When a process needs to
change a distributed data structure, it must update or invalidate all other copies. Again here,
broadcasting is a better fit than RPC. Many other distributed applications in which some
kind of global state is needed are also candidates for using broadcasting.

Interestingly enough, broadcast communication is provided by many kinds of networks,
including LANs, geosynchronous satellites, and cellular radio systems [Tanenbaum 1989].
Thus, the hardware often supports the broadcasting that the applications need. It is the
operating system that gets in the way. The protocol described in this paper can easily be
integrated into an operating system so that the hardware support for broadcasting can be
made available to application programs.

The rest of the paper is structured as follows. In Section 2, we describe the broadcast
protocol itself. In Section 3, we describe our initial implementation of the protocol and
present some measurements of its performance. In Section 4, we compare our protocol to
several other published protocols. Finally, in Section 5, we give our conclusions.

2. THE BROADCAST PROTOCOL

We are concerned with distributed systems, each of which consists of a group of n processes
that communicate through a broadcast network. For simplicity, we assume that each process
runs on a separate node and that the system runs a single application. The generalization to
multiprogramming and multiple applications is straightforward.

Each node runs a kemel and an application process (see Fig. 1). The kernel handles all
the communication, including the broadcasting. The broadcast protocol to be described
shortly runs inside the kernel. Any of the application processes can, at any instant, decide to
send a broadcast message to the other n - 1 application processes. It is the job of the kernel
and the protocol to achieve reliable broadcasting, even in the face of unreliable communica-
tions, lost packets, and f'mite buffers.

Furthermore, if two application processes, on two different machines, simultaneously
broadcast two messages, A and B respectively, then the kernel must guarantee that either
everybody receives A first and then B or everybody receives B first and then A, but not some
random mixture where some processes get A first and others get B first. By making the
broadcasts both reliable and atomic in this way the user semantics become much simpler and
easier to understand.

Both the kernel and the application processes may be structured internally, for example
in layers, but the internal structure will not concern us further in this paper.

The basic reliable broadcast protocol works as follows. When an application process
wants to broadcast a message, M, it hands the message to its kernel (e.g., using a system

Kernel/~sequencer
~ rdisabled

O O O

O O O

Kernel/~sf t_;qsueblC; r Kernel//~eequblcdr

Broadcast network

Fig. 1. System structure. Each node runs a kernel and an user application. Each

kernel is capable of being sequencer, but, at any instant, only one of them functions

as sequencer. If the sequencer crashes the remaining nodes can elect a new one.

call). The kemel then encapsulates M in an ordinary point-to-point message and sends it to a
special kemel called the sequencer. The sequencer's node contains the same hardware and
kernel as all the others. The only difference is that a flag in the kernel tells it to process mes-
sages differently. If the sequencer should crash, the protocol can easily be extended to pro-
vide for the election of a new sequencer on a different node.

When the sequencer receives the point-to-point message containing M, it allocates the
next sequence number, s and broadcasts a packet containing M and s. Thus all broadcasts
are issued from the same node, by the sequencer. Assuming that no packets are lost, it is
easy to see that if two application processes simultaneously want to broadcast, one of them
will reach the sequencer first and its message will be broadcast to all the other nodes first.
Only when that broadcast has been completed will the other broadcast be started. The
sequencer provides a global ordering in time. In this way, we can easily guarantee the atomi-
city of broadcasting.

Although most modem networks are highly reliable, they are not perfect, so the protocol
must deal with errors. Suppose some node misses a broadcast packet, either due to a com-
munication failure or lack of buffer space when the packet arrived. When the following
broadcast packet eventually arrives, the kernel will immediately notice a gap in the sequence
numbers. It was expecting s next, and it got s + 1, so it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer asking it for
copies of the missing message (or messages, if several have been missed). To be able to
reply to such requests, the sequencer stores old broadcast messages in its history buffer. The
missing messages are sent point-to-point to the process requesting them.

As a practical matter, the sequencer has a finite amount of space in its history buffer, so
it cannot store broadcast messages forever. However, if it could somehow discover that all
machines have received broadcasts up to and including k, it could then purge the first k
broadcast messages from the history buffer.

The protocol has several ways of letting the sequencer discover this information. For
one thing, each point-to-point message to the sequencer (e.g., a broadcast request), contains,
in a header field, the sequence number of the last broadcast received by the sender of the
message. In this way, the sequencer can maintain a table, indexed by node number, showing
that node i has received all broadcast messages 0 up to Ti, and perhaps more. At any
moment, the sequencer can compute the lowest value in this table, and safely discard all
broadcast messages up to and including that value. For example, if the values of this table
are 8, 7, 9, 8, 6, and 8, the sequencer knows that everyone has received broadcasts 0 through
6, so they can be deleted from the history buffer.

If a node does not need to do any broadcasting for a while, the sequencer will not have
an up-to-date idea of which broadcasts it has received. To provide this information, nodes
that have been quiet for a certain interval, At, can just send the sequencer a special packet
acknowledging all received broadcasts. The sequencer can also request this information
when it is out of space, as we shall see.

In short, to do a broadcast, an application process sends the data to the sequencer, which
gives it a sequence number and broadcasts it. There are no separate acknowledgement
packets, but all messages to the sequencer carry piggybacked acknowledgements. When a
node receives an out of sequence broadcast, it buffers the broadcast temporarily, and asks the
sequencer for the missing broadcasts. Since broadcasts are expected to be commorr---many
per second-- the only effect that a missed broadcast has is causing some application process
to get behind by a few tens of milliseconds once in a while, hardly a serious problem.

Before looking at the detailed algorithms used to run the protocol, let us briefly sum-
marize its properties. First, as far as application processes are concerned, broadcasts are reli-
able. When a process tells the kernel to broadcast a message, that process does not have to
worry about what happens if a packet is lost. Like using TCP/IP, OSI transport class 4, or
writing on UNIXt pipes, the sender can just assume that everything works. Making it work is
the system's responsibility, not the user's. This property greatly simplifies distributed pro-
gramming.

Second, broadcasts are atomic. Even if two application processes simultaneously decide
to broadcast, one of them will go first, and then the other. They will not be interleaved. If
some node misses the first one, it will see that it has missed one, when it gets the second one,
and fetch that one immediately. Under no circumstances are broadcast messages given from
the kernel to the application in the wrong order, not even when some messages are lost.

Third, the overhead is extremely low. To send a broadcast, only two packets are needed
(assuming that a message fits in a single packet), one point-to-point packet from the sender to

t UNIX is a Registered Trademark of AT&T in the USA and other countries.

the sequencer and one broadcast packet from the sequencer to everyone. Only n interrupts
are generated, one for the point-to-point packet, and n - 1 for the broadcast packets. This is
an enormous improvement over RPC, in which 3(n - 1) packets (a request, a reply, and an
acknowledgement for the reply per RPC) must be sent and 3 (n - 1) interrupts handled to
achieve reliable broadcasting; to achieve atomicity, even more packets are needed.

2.1. Normal operation
In this section, we will describe in detail how the sender, sequencer, and receivers behave
during normal operation. Fig. 2 shows the data structures used by the protocol.

/* Variables maintained on all machines, */
unsigned int LastSeqReceived;
unsigned int Messageld;

/* sequence number of the last broadcast seen */
/* unique id for next broadcast message */

/* Variables maintained by the sequencer */
unsigned int NextSeqToUse;
unsigned int SequenceNr[NUMBER_OF_CPUS];
unsigned int MessageNr[NUMBER_OF_CPUS];

/* next sequence number to use */
/* biggybacked acks from the other kernels */
/* id of last broadcast from each kernel */

/* A message consists of pointers to a header and some data */
struct message *History[HISTORY_SIZE]; /* old broadcasts stored here */

/* Message header, showing the fields used */
struct header {

unsigned int type;
unsigned int SequenceNr;
unsigned int MessageNr;
unsigned int SenderlD;
unsigned int DestlD;

/* DATA, BROADCAST, RETRANS */
/* sequence number */
/* unique message id for detecting duplicates */
/* sender's node number */
/* destination node number */

Fig. 2. Declarations.

When a node wants to broadcast a message, it sends the sequencer a data message con-
mining LastSeqReceived, Messageld and its processor number (see Fig. 3). LastSeqReceived
informs the sequencer which messages have been received by the sender. In essence, Last-
SeqReceived is a piggybacked acknowledgement for all messages up to and including Last-
SeqReceived. Messageld and the node number ensure that each message is unique, and make
it possible to recognize duplicates of a message. After sending the message, Messageld is
incremented and the sending process is blocked and a timer can be started. If the broadcast
fails to arrive, the timer will expire, and the message will be sent to the sequencer again. The
combination of Messageld and the node number uniquely identifies each message. When the
sequencer gets a request to broadcast a message, it checks to see if it has already done the
broadcast. If so, it does not do it a second time.

The two arrays SequenceNr and MessageNr are maintained by the sequencer. The
former is the table of piggybacked acknowledgements that allows it to figure out which his-
tory buffer entries can be safely removed. The latter gives the last Messageld received from
each node and is used for detecting duplicates generated by timeouts. The message structure
is the history buffer, and HISTORY_SIZE determines how big it is. (We assume that there is
an upper bound to the size of a message.)

A message header contains 5 fields (see Fig. 2). The type field tells the kind of a mes-
sage:

Type From To Function
DATA
BROADCAST
RETRANS
PHASE1
PHASE2
ACK_COMMIT

node
sequencer
node
sequencer
sequencer
node

sequencer
Nlnodes
sequencer
ailnodes
ailnodes
sequencer

Data to be broadcast
Broadcast message
Request asking for a missed message
Request to start two-phase commit protocol
Request to start second phase
Inform that a phase has been completed

The SequenceNr field is used by the sequencer to sequence broadcast messages and by
users to acknowledge the last broadcast received so far. The MessageNr field holds the
sender 's Messageld value, and thus identifies the message. It is used for detecting duplicate
messages. The SenderlD and DestlD are used to identify the sender and destination, respec-
tively.

When an application process wants to do a broadcast, it invokes its local kernel and
passes the data to be broadcast. The kernel then executes the algorithm given in Fig. 3.

broadcast(data)
char *data;
{
/* Algorithm executed by the kernel on the machine wanting to broadcast. */

struct header h; /* outgoing header is built here */

h.type = DATA;
h.SequenceNr = LastSeqReceived;
h.MessageNr = Messageld;

/* DATA means request for broadcast */
/* piggybacked acknowledgement */
/* unique message identifier */

send(sequencer, &h, data);
Messageld++;
StartTimer0;
block();

/* point-to-point message to sequencer */
/* use different message id next time */
/* just in case broadcast does not arrive */
/* wait for broadcast */

Fig. 3. Algorithm used by sending kernel to achieve reliable broadcast.

Having looked at what the sender does to transmit a message to the sequencer for broad-
cast, let us now turn to the sequencer to see what it does with the message when it comes in

10

(see Fig. 4). The sequencer fin'st checks if the message is a duplicate, us ing the message
n u m b e r in the header field MessageNr. I f so, it in forms the sender that the message already
h5s been broadcast .

I f the message is new, the sequencer calls the funct ion FullHistory, which tries to
r emove messages f rom the history us ing the p iggybacked a c k n o w l e d g e m e n t s stored in
SequenceNr table w h e n the history is full. I f there is r o o m in the history, the sequencer
assigns the message the sequence n u m b e r NextSeqToUse, stores the message in the history,
and broadcasts the message . It also increments NextSeqToUse for next t ime.

If the history buffer is still full the sequencer enters the synchroniza t ion phase to br ing
all nodes up-to-date and to empty its history, as will be d iscussed below.

DataMessage(h, data)
struct header *h;
char *data;
{
/* Algorithm used by the sequencer when a request-to-broadcast arrives. */

struct message *m, *GetFromHistory0;

if (h->MessageNr == MessageNr[h->SenderlD]) {
/* This is a duplicate. Sender must have timed out. */
m = GetFromHistory(h->MessageNr, h->SenderlD); /* Fetch sequence number from buffer */
send(h->SenderlD, m->header, NULLDATA); /* Tell sender */

} else {
/* This is a new message that has not yet been broadcast. */
SequenceNr[h->SenderlD] = h->SequenceNr; /* Accept piggybacked ack. */
if (!FullHistory0) { /* is history full? */

/* No, there is room. */
MessageNr[h->SenderlD] = h->MessageNr;
h->SequenceNr = NextSeqToUse;
StorelnHistory(h, data);
PassToApplication(data);
NextSeqToUse++;
h->type = BROADCAST;
broadcast(h, data);

} else
EnterSyncPhase0;

}

/* Save unique message id. */
/* assign sequence number. */
/* save message */
/* Upcall to application to process data */
/* for next time */

/* do the broadcast */

/* history is full, flush it. */

Fig. 4. Code executed by the sequencer when it receives a request-to-broadcast.

The protocol requires three a lgor i thms to be executed. First, the sender mus t bui ld a
message and t ransmit it to the sequencer . Second, the sequencer m u s t process the i ncoming
message and broadcast it. Thi rd and last, the user nodes mus t handle arr iving broadcast mes-
sages. We have already descr ibed the first two steps; now let us look at the last one.

11

When a broadcast message arrives, the receiving kernel executes the procedure
AcceptBroadcast (see Fig. 5). It first checks to see if the sequence number is the one it is
expecting. If so, it increases LastSeqReceived. If the sequence number is not the expected
one, the node has missed one or more broadcasts and asks the sequencer for a retransmission
of the missing message(s). Out-of-sequence broadcast messages may be buffered in the ker-
nel, but the kernel is required to pass messages to the application in the correct order. If the
kernel does not receive a missing message within a certain number of retries, it assumes that
the sequencer has failed and a subprotocol to elect a new sequencer is started.

AcceptBroadcast(h, data)
struct header *h;
char *data;
{

struct header rh;

/* Algorithm executed by the kernel when a broadcast message arrives. */
if (h->SequenceNr == LastSeqReceived) {

/* This broadcast message contains the sequence number expected. */
LastSeqReceived++; /* one more broadcast received */
PassToApplication(data); /* pass to application */

} else {
/* Wrong sequence number. We have missed some broadcasts. */
rh.type = RETRANSMIT; /* ask sequencer for the missing ones */
rh.SequenceNr = LastSeqReceived; /* tell where we are */
send(SequencerlD, &rh, NULLDATA); /* send to sequencer */
SetTimer0; /* make sure that we get a reply */

Fig. 5. Algorithm for processing an incoming broadcast.

If a node misses a broadcast from the sequencer, this failure will eventually be detected
while handling subsequent messages. The assumption is that there will be subsequent mes-
sages. This assumption need not be true, depending on the communicat ion patterns of the
applications. For example, a node may send a message that triggers another process to send
messages. If this process misses the message, the system may very well become deadlocked.
To prevent this from happening, each node sends a d u m m y message after receiving a certain
number of messages without sending any. This is effectively a primitive timer; a real one
could also be used, but this would be less efficient. This d u m m y message contains Last-
SeqReceived to inform the sequencer which messages it has received.

12

2.2. Synchronization phase
The sequencer keeps a fixed-size history of messages it has broadcast. It may happen that the
buffer gets full, because it has not received any messages from one of the nodes for a period
of time and the dummy messages sent by the quiet node have gotten lost. If, despite all pre-
cautions, this happens, the sequencer enters the synchronization phase to empty its history.
The synchronization phase runs a two-phase commit protocol to guarantee that all partici-
pants received all messages [Eswaran et al. 1976]. During the synchronization phase, the
sequencer does not accept any data messages and all nodes stop sending data messages.

In the first phase, the sequencer broadcasts an intention message (PHASE1) to all nodes,
containing NextSeqToUse - 1. This is the number of the last message broadcast. When a
node receives an intention message, it enters the synchronization phase and checks if it has
missed any messages, using the sequence number stored in the intention message. If it has
missed anything, it sends a request to the sequencer to retransmit the missing message(s). If,
on the other hand, the node is up-to-date, it informs the sequencer. Either way, it sends the
sequencer a message acknowledging the broadcasts it has received.

The messages from all the nodes are used to update the sequencer's SequenceNr table.
In this way the sequencer is brought up to date on the status of all the nodes, and all the nodes
receive all messages that have been broadcast. The sequencer goes to the second phase as
soon as it has received a reply from all nodes that all messages have been received.

In the second phase, the sequencer empties its history and informs all other nodes that
every node is up-to-date. When a node receives a commit message (PHASE2), it sends an
ACK-COMMIT, and goes back to normal operation. When the sequencer has received an
ACK-COMMIT from all nodes, it leaves the synchronization phase and goes back to normal
operation.

3. IMPLEMENTATION

We have built a prototype kernel running the protocol described above. The prototype runs
on the bare hardware, rather than on top of an operating system. It has been used for running
parallel applications written in the programming language Orca [Bal and Tanenbaum 1988;
Bal et al. 1989a; Bal et al. 1989b]. It uses the Amoeba protocols [Van Renesse et al. 1989] to
communicate with our local UNIX and Amoeba systems.

The prototype runs on two different systems. One system is a multiprocessor with 10
16 Mhz MC68020 CPUs. The system contains 8Mb of shared memory, which is accessible
through a VME bus. This implementation uses the shared memory to simulate unreliable
messages. The reliability of the network (i.e., the percentage of broadcast messages
delivered at a destination) is an adjustable parameter of the system. In this way, we are able
to test our protocol with different degrees of reliability. The second implementation runs on
a real distributed system, containing 10 16 Mhz MC68020 CPUs connected to each other
through an 10 Mbit/s Ethernet [Metcalfe and Boggs 1976]. This implementation uses Ether-
net multicast communication to broadcast a message to a group of processors. All processors
are on one Ethernet and are connected to the network by Lance chip interfaces (manufactured
by Advanced Micro Devices). We will give performance numbers for this implementation.

13

We have done several experiments to measure the performance of the protocol. In the
first experiment, one node continuously broadcasts null-messages to a group of nodes. This
experiment measures the delay seen from the sending user process, between calling and
returning from the broadcast primitive. The sending process runs on a different processor
than the sequencer. Note that this is the worst possible case for our protocol, since only one 1
processor sends messages to the sequencer (i.e., no acknowledgements can be biggybacked
by other processors). The second property that the first experiment tests is the scalability of
the protocol.

Group size 2 3 4 5 6 7 8 9 10
Delay (msec) 1.32 1.35 1.38 1.40 1.43 1.45 1.48 1.50 1.53

Fig. 6. Performance per message for one site broadcasting continuously.
HISTORY_SIZE is 20.

The results of the first experiment are depicted in Fig. 6. For a group of two nodes, the
measured delay is 1.3 msec. Compared to the Amoeba RPC [Van Renesse et al. 1989],
which claims to be the world's fastest distributed operating system, our broadcast message
costs 0.1 msec less than Amoeba 's RPC. Amoeba RPC uses three packets, whereas the
broadcast protocol uses on average 2.5 packets in this experiment (2 for the broadcast and
once in a while a packet from every node to tell the sequencer that it is up-to-date). For a
group of 10 nodes, the measured delay is 1.5 msec. Although the protocol does not scale per-
fectly, a reliable broadcast to a group of 10 processors is still less expensive than most RPC
implementations. From the other numbers in the table, one can conclude that each node adds
25 l.tsec to the delay for a broadcast to a group of 2 nodes. Extrapolating, the delay for a
broadcast to a group of 100 nodes should be 3.8 msec.

We have also measured the performance of the protocol on a heavily-loaded system. In
this experiment, a number of senders broadcast null-messages to a group of 10 nodes. This
experiment measures how the performance of the protocol degrades with the number of send-
ing processes. This should be no worse than just dividing the maximum performance over
the senders. That is, if one sender can do 667 broadcasts per second, then two senders
together should be able to do a total of at least 667 broadcasts per second as well. We also
want to know how fairly the broadcasts are distributed over the senders. If, with two senders,
one could execute only 5 broadcasts and the other sender 662 the sequencer would be unfair.

To measure the performance and the fairness of the protocol, we have measured the
total number of broadcasts, the average delay for one broadcast, and the deviation from the
average delay for one broadcast, as a function of the number of senders. In this experiment,
one of the senders is running on the same node as the sequencer. As can been seen in Fig. 7,
the number of broadcast per second for a number of senders is even better than for one
sender. For a large number of senders the performance decreases slightly due to the large

14

Senders 2 3 4 5 6 7
Broadcast/see
Delay (msec)

1333
1.5±0.0

1428 1538
2.1±0.0 2.6±0.01

1562
3.2±0.01

1500
4.0 ± 0.02

1521
4.6±0.02

Fig. 7. Performance under heavy load for a group of 10 nodes. HISTORY.SIZE is
20.

number of collisions. The second number in the second row gives the average deviation from
the delay. The fairness is almost ideal.

Our measurements put an extreme load on the network. Measurements under these con-
ditions for larger messages make no sense, because the hardware cannot keep up. For exam-
ple, three senders that broadcast 1000 bytes messages use almost 80% of the bandwidth of
the Ethernet. In practice, however, our applications that are based on the broadcast protocol
have used at most 2% of the capacity of the Ethemet.

4. DISCUSSION AND COMPARISON

A number of broadcast protocols have been published in the literature. Most of them are not
concerned with a broadcast medium, but with a network with point-to-point communication
links. We will compare our protocol with two well-known protocols for reliable broadcast
and with three that have been published recently. For other papers on broadcast protocols we
refer the reader to the list of references [Amano 1987; Amahad and Bernstein 1985; Burr
1984; Crowcroft and Paliwoda 1988; Even and Awerbuch 1984; Garcia-Molina and Kogan
1988; Ho and Johnson 1986; Mockapetris 1983; Plata and Zapata 1986; Schneider et al.
1984; Segall and Awerbuch 1983; Topkis 1985; Wong and Gopal 1983].

Chang and Maxemchuk (CM) describe a family of protocols [Chang and Maxemchuk
1984]. The protocols differ mainly in the degree of fault-tolerance that they provide. Our
protocol as described in this paper resembles the protocol that is not fault-tolerant (i.e., it can-
not recover from processor crashes), but ours is optimized for the common case of no com-
munication failures. Like our protocol, the CM protocol depends also on a central node, the
token site, for ordering messages. However, on each acknowledgement another node takes
over the role of token site. Depending on the system utilization, the transfer of the token site
on each acknowledgement can cost one extra control message. Thus their protocol requires 2
to 3 messages per broadcast, whereas ours requires only 2 in the normal case. In addition, the
CM protocol uses more memory space, because all data messages are saved on all nodes until
the acknowledgement arrives. Finally, in the CM protocol all messages are broadcast,
whereas our protocol uses point-to-point messages whenever possible, reducing interrupts
and context switches at each node. This is important, because the efficiency of the protocol
is not determined by the transmission time, but mainly by the processing time at the nodes.
In their scheme, each broadcast causes at least 2 (n - l) interrupts, ours only n.

15

Birman and Joseph (B J) describe a protocol that uses a distributed two-phase protocol to
order all messages [Birman and Joseph 1987]. As this protocol uses a large number of mes-
sages, they propose other protocols that relax the ordering semantics. Our protocols could
also be used to relax the ordering semantics by using, for example, one sequencer per broad-
cast group. The protocols are hard to compare, as the BJ protocols are concerned with
achieving fault-tolerance.

Navaratnam, Chanson, and Neufeld (NCN) have described a protocol very similar to the
CM protocols [Navaratnam et al. 1988]. The NCN protocol uses also a centralized scheme,
but instead of transferring the token site on each acknowledgement, their central site waits
until it has received acknowledgements from all receivers before sending the next broadcast.
In an implementation of the NCN protocol on the V-system, a reliable broadcast message
costs 24.8 msec for a group of 4 nodes. Ours is thus an order of magnitude faster.

A totally different approach to reliable broadcast is described by Melliar-Smith and
Moser (MM) [Melliar-Smith and Moser 1989]. They describe a protocol that achieves reli-
able broadcast with a certain probability. They claim that the probability is high enough to
assume that all messages are ordered globally, but nevertheless there is a certain chance that
messages are not globally ordered. Although the MM protocol is uses few messages, mes-
sages cannot be delivered to an application until several other broadcast messages have been
received. For a group of 10 nodes, a message can be delivered on average after receiving
another 7.5 messages.

The last different approach we discuss is by Garcia-Molina and Spauster [Garcia-
Molina and Spauster 1989], which is mainly concerned with the problem of overlapping
groups. For a given set of multicast groups, a graph is generated, called the propagation
graph. The graph indicates the paths messages should follow to get to all destinations. While
messages propagate along these paths, they are ordered globally by merging messages des-
tined for different groups. Although this method cannot fully profit from a broadcast
medium, it costs one broadcast message for all destinations in the group and a number of
messages to propagate along the paths. In addition, a message can only be delivered to an
application after is has traversed the paths in the propagation graph.

It is hard to compare precisely the described protocols with ours, because most proto-
cols are tailored for fault-tolerance. If one omits the reliability of the network, three factors
determine the efficiency of the described protocols. One is the number of messages, second
is the delay before the message can be delivered to the application, and third is the number of
interrupts. In our protocol, the number of messages used is determined by the size of the his-
tory and the communication pattern of the application. In the normal case, 2 messages, a
point-to-point message to the sequencer and a broadcast message, are used. In the worst
case, when one node is continuously broadcasting, (#nodes ~HISTORY_SIZE) + 2 are needed.
For example, if the number of buffers in the history is equal to the number of processors, 3
messages per reliable broadcast are needed. In practice, with say 1Mb history buffers and
1Kb messages, there is room for 1024 messages. This means that the history buffer will
rarely fill up and the protocol will actually average 2 messages per reliable broadcast.

16

The delay before a message can be delivered to the application is optimal; as soon as a
broadcast arrives, it can be delivered. Also, our protocol causes a low number of interrupts.
Each node gets one interrupt for each reliable broadcast message. The storage requirement
for our protocol at the sequencer node is equal to the number of buffers needed for the his-
tory. All other nodes, however, do not have any special storage requirements. If one ignores
messages and delays that are needed to achieve fault-tolerance, our protocol is more efficient
than any of the described protocols.

5. CONCLUSIONS

We have presented a simple protocol that achieves reliable broadcast and guarantees that all
messages will be received by every live node in the same order. In addition, we have imple-
mented our protocol and given performance measurements for a reliable broadcast on a 10
Mbit/s Ethernet with 16 Mhz MC68020 CPUs. The protocol performs a reliable broadcast to
10 nodes in 1.5 msec.

The protocol uses a centralized node (the sequencer) to determine the order of the mes-
sages. Although this centralized node does not do anything computationally intensive (it
receives a message, adds the sequencer number, and broadcasts it), it could become a
bottleneck in the system. In practice, however, this has never happened. The most commun-
ication intensive application that we have run performed 27 broadcasts/sec. This is less than
2% of the maximum broadcast/sec that the protocol can generate before the network inter-
faces saturate. Nevertheless, the sequencer could become a bottleneck and prevent the sys-
tem from scaling to a very large number of nodes. We therefore are looking into special
hardware support that would reduce the possibility of such a bottleneck.

If the sequencer fails, the whole system will come to a grinding halt. However, it is
easy to extend our protocol to recover from sequencer failures. One idea is to replicate the
history and to elect the node with the highest sequence number as the new sequencer. When
the histories are replicated, the newly elected sequencer can bring the other nodes up-to-date
if they have missed messages. The only messages that are completely lost are those that were
sent by an application running on the same processor as the sequencer kernel and that were
missed by all processors. As long as at least one of the surviving processor receives each
broadcast, the entire history can be reconstructed.

ACKNOWLEDGEMENTS

We would like to thank Hans van Staveren for his help with implementing the protocol and
Erik Baalbergen, Mathilde van Es, and Robbert van Renesse for their critical reading and
useful comments.

REFERENCES

Amahad, M. and Bernstein, A.J., "Multicast Communication in Unix 4.2BSD," Proc. 5th
Int. Conf. on Distr. Comp. Syst., pp. 80-87, Denver, CO (May 1985).

17

Amano, H., "RSM (Receiver Selectable Multicast)," Proc. Int. Conf. on Computers and
Applications, pp. 149-156, Peking, China (June 1987).

Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., "A Distributed Implementation of the
Shared Data-Object Model," Workshop on Experiences with Building Distributed
and Multiprocessor Systems, Ft. Lauderdale, FL (Oct. 1989a).

Bal, H.E., Renesse, R. van, and Tanenbaum, A.S, "Implementing Distributed Algorithm
using Remote Procedure Call," Proc. National Computer Conference, AFIPS, pp.
499-505, Chigaco, IL. (1987).

Bal, H.E., Steiner, J.G., and Tanenbaum, A.S., "Programming Languages for Distributed
Computing Systems," ACM Comp. Surv., Vol. 21, No. 3 (Sept. 1989b).

Bal, H.E. and Tanenbaum, A.S., "Distributed Programming with Shared Data," Proc. IEEE
CS 1988 Int. Conf. on Computer Languages, pp. 82-91, Miami, FL (Oct. 1988).

Birman, K.P. and Joseph, T.A., "Reliable Communication in the Presence of Failures,"
ACM Trans. on Comp. Syst., Vol. 5, No. 1, pp. 47-76 (Feb. 1987).

Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure Calls," ACM Trans. on
Comp. Syst., Vol. 2, No, 1, pp. 39-59 (Feb. 1984).

Burr, W.E., "A Fault-Tolerant Hierarchical Broadcast Network," Proc. Computer Network-
ing Syrup., pp. 11-17, Garthersburg, MD (Dec. 1984).

Chang, J. and Maxemchuk, N.F., "Reliable Broadcast Protocols," ACM Trans. on Comp.
Syst., Vol. 2, No. 3, pp. 251-273 (Aug. 1984).

Crowcroft, J. and Paliwoda, K., "A Multicast Transport Protocol," ACM Comput. Commun.
Rev., Vol. 18, No. 4, pp. 247-256 (1988).

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L., "The Notions of Consistency and
Predicate Locks in a Database System," Commun. ACM, Vol. 19, pp. 626-633 (Nov.
1976).

Even, S. and Awerbuch, B., "Efficient and Reliable Broadcast is Achievable in a Eventually
Connected Network," Proc. of the 3rd Annual Symp. on Princ. of Distr. Comp.,
Miami/Ft. Lauderdale, FL (Aug. 1984).

Garcia-Molina, H. and Kogan, B., "Reliable Broadcast In Networks with Nonprogrammable
Servers," Proc. 8th Int. Conf. on Distr. Comp. Syst., pp. 428-437, San Jose, CA (June
1988).

Garcia-Molina, H. and Spauster, A., "Message Ordering in a Multicast Environment," Proc.
9th Int. Conf. on Distr. Comp. Syst., pp. 354-361, Newport Beach, CA (June 1989).

Ho, C-T. and Johnson, S.L., "Distributed Routing Algorithms for Broadcasting and Person-
alized Communication in Hypercubes," Proc. of the 1986 Int. Conf. on Parallel Pro-
cessing, pp. 640-648, St. Charles, IL. (Aug. 1986).

Lawler, E.L. and Wood, D.E., "Branch and Bound Methods: A Survey," Operations
Research, Vol. 14, pp. 699-719 (July 1966).

18

Melliar-Smith, P.M. and Moser, L.E., "Fault-Tolerant Distributed Systems Based on Broad-
cast Communication," Proc. 9th Int. Conf. on Distr. Comp. Syst., pp. 129-134,
Newport Beach, CA (June 1989).

Metcalfe, R.M. and Boggs, D.R., "Ethemet: Distributed Packet Switching for Local Com-
puter Networks," Commun. ACM, Vol. 19, No. 7, pp. 395-404 (July 1976).

Mockapetris, P.V., "Analysis of Reliable Multicast Algorithms for Local Networks," Proc.
8th Data Commun. Symp., pp. 150-157, Silver Spring, MD (Oct. 1983).

Navaratnam, S., Chanson, S., and Neufeld, G., "Reliable Group Communication in Distri-
buted Systems," Proc. 8th Int. Conf. on Distr. Comp. Syst., pp. 439-446, San Jose,
CA (June 1988).

Plata, O. and Zapata, E.L., "Optimal Broadcasting Figure in Computer Networks: An Algo-
rithmic Solution," Proc. Computer Network Symp., Washington, DC. (Nov. 1986).

Renesse, R. van, Staveren, J.M. van, and Tanenbaum, A.S., "The Performance of the
Amoeba Distributed Operating System," Software---Practice and Experience, Vol.
19, No. 3, pp. 223-234 (March 1989).

Schneider, F.B., Gries, D., and Schlichting, R.D., "Fault-Tolerant Broadcasts," Science of
Computer Programming, Vol. 4, pp. 1 - 15 (1984).

Segall, A. and Awerbuch, B., "A Reliable Broadcast Protocol," IEEE Trans. on Comm.,
Vol. 31, No. 7, pp. 896-901 (July 1983).

Tanenbaum, A.S., "Computer Networks 2nd ed.," Prentice/Hall, Englewood Cliffs, NJ
(1989).

Topkis, D.M., "Concurrent Broadcast for Information Dissemination," IEEE Trans. on Soft.
Eng., Vol. 11, No. 10, pp. 1107-1112 (Oct. 1985).

Wong, J.W. and Gopal, G., "Analysis of Reliable Broadcast in Local-Area Networks,"
Proc. 8th Data Commun. Symp., pp. 158-163, Silver Spring, MD. (Oct. 1983).

19

