
Compute r
Systems

G. Bell, S. H. Fuller, and
D. Siewiorek, Editors

Implications of
Structured
Programming for
Machine Architecture
Andrew S. Tanenbaum
Vrije Universiteit, The Netherlands

Based on an empirical study of more than 10,000
lines of program text written in a GOTO-less
language, a machine architecture specifically designed
for structured programs is proposed. Since
assignment, CALL, RETURN, and IF statements
together account for 93 percent of all executable
statements, special care is given to ensure that these
statements can be implemented efficiently. A highly
compact instruction encoding scheme is presented,
which can reduce program size by a factor of 3. Unlike
a Huffman code, which utilizes variable length fields,
this method uses only fixed length (1-byte) opcode
and address fields. The most frequent instructions
consist of a single 1-byte field. As a consequence,
instruction decoding time is minimized, and the
machine is efficient with respect to both space and
time.

Key Words and Phrases: machine architecture,
computer architecture, computer organization,
instruction set design, program characteristics

CR Categories: 4.12, 4.22, 4.9, 6.21

1. Introduction

Informat ion about the way computers are actually
used is of great importance to computer architects,
programming language designers, and compiler
writers. Whether or not a certain semantic primitive
should be included in a machine 's instruction set, made
a language construct, or carefully optimized depends
primarily upon its projected frequency of usage. This
information can only be obtained empirically, since
there is no way to predict a priori, whether , for
example , R E P E A T . . . U N T I L statements are more
useful than CASE statements .

The ways in which certain programming languages
are used has already been studied: Knuth [6] has
examined Fortran; Salvadori, Gordon, and Capstick
[9] have examined Cobol; Alexander and Wor tman
[1] have examined XPL; Wor tman [15] has examined
student PL.

In recent years unstructured programs have fallen
into disrepute. A growing number of people have
come to recognize the importance of structuring pro-
grams so that they can be easily understood. Although
there is no generally accepted definition of structured
programming yet (see [2] for discussion), most pro-
grammers intuitively realize that breaking programs
up into small, easily understood procedures, and drast-
ically reducing or even eliminating G O T O statements
greatly improves readability. We are even beginning
to see the development of new programming languages
which have been intentionally designed without a
G O T O statement [16].

In order to determine what characteristics struc-
tured programs have, it is necessary to collect and
dissect a number of them. These data can then be used
as a basis for designing computer architectures that
can execute structured programs efficiently. The next
section of this article describes a GOTO-less language
we have developed to encourage good programming
style. The third and fourth section contain an analysis
of a collection of procedures written in this language.
The fifth and sixth sections propose and discuss a
machine architecture based upon our findings.

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.
Author's address: Computer Science Group, Vrije Universteit, Am-
sterdam, The Netherlands.
© 1978 ACM 0001-0782/78/0300-0237 $00.75

237

2. The Experiment

We have developed a typeless GOTO-less language
(SAL) specifically intended for system programming
[10]. It has been implemented [11] on a PDP-11/45,
and used, among other things, to construct a general
purpose time sharing system for that computer . The
language resembles BcPI~ [8]; its control structures are
similar to those of Pascal [5]. A summary of the
executable statements follows.

Assignment
CALL
I F . . . T H E N . . .ELSE . . .FI
RETURN

Communications March 1978
of Volume 21
the ACM Number 3

F O R . . . F R O M . . . T O . . . B Y . . . D O . . . O D

W H I L E . . . D O . . . O D

R E P E A T . . . U N T I L . . . L I T N U

D O F O R E V E R . . . O D

E X I T L O O P

C A S E . . . I N . . . , . . . , . . . , O U T . . . E S A C

P R I N T

Expressions are evaluated strictly left to right, with
no precedence or parentheses. ELSE parts in IF state-
ments are optional. R E T U R N statements exit the
current procedure, and optionally return a value, so
that a procedure may be used as a function. Procedures
not returning an explicit value may terminate by "fall-
ing through", i.e. the END statement implies RE-
TURN.

The W H I L E statement tests at the top of the loop,
whereas the R E P E A T statement tests at the end of
the loop. DO F O R E V E R statements are the same as
W H I L E T R U E DO; they are useful in operating
system modules that endlessly get and carry out service
requests, the "get" primitive blocking the process in
the absence of a message. E X I T L O O P is a forward
jump out of one level of enclosing loop of any kind
(FOR, W H I L E , R E P E A T , or DO F O R E V E R) . Our
experience indicates that this, plus R E T U R N , is suffi-
cient most of the time. The CASE statement contains
an integer expression that selects one of the clauses to
be executed, or the O U T clause if the integer is out of
range (as in Algol 68 [12]). There is no G O T O
statement.

In addition to the above statements, there are a
variety of declarations, debugging facilities and com-
piler directives.

The basic data types are machine words (including
the general registers and the i/o device registers, acces-
sible as the top 4K memory words), one-dimensional
arrays of words and characters, bit fields, and program-
mer defined data structures consisting of a collection
of named fields, each field being a word, character, bit
field, or array. There are two scope levels, local (stack
storage, reserved upon procedure entry, and released
upon procedure exit), and global (static storage). A
program consists of one or more procedures, and zero
or more modules that declare and initialize external
variables.

The programs examined for this research were all
written by the faculty and graduate students of the
Computer Science Group at the Vrije Universiteit. All
the programmers involved made a very deliberate
effort to produce "clean," well structured programs,
knowing full well that succeeding generations of stu-
dents would pore over their code line by line. This is
clearly a different situation than one finds in the
average, garden variety, computer center.

The amount of memory available on our PDP-11/
45 was so small that the initial compiler could not
handle procedures much larger than two pages of
source code. This defect was remedied by. declaring it
to be a virtue, and by continually exhorting the pro-

238

grammers to produce short, well structured proce-
dures. (The mean number of executable statements
per procedure turned out to be 18.2). The combination
of the GOTO-less language, the quality of the pro-
grammers, an environment with a long Algol tradition
and no Fortran tradition, and our deliberate efforts to
produce intelligible programs has resulted in what we
believe to be state-of-the-art structured programs.

3. Characteristics of the Programs

For this study we have used a specially instrumented
compiler to collect information on more than 300
procedures used in various system programs. Most of
these were related to the time sharing system project.
The results presented should be interpreted keeping in
mind that operating system modules may systematically
differ from say, applications programs, in certain ways,
e.g. they have little i/o.

Where relevant, both static and dynamic measure-
ments are given. Static measurements were obtained
by having the compiler count the number of occur-
rences of the item in the source text. Dynamic meas-
urements were obtained by having the compiler insert
code into the object program to increment counters
during program execution. The results are given in
Tables I -VIII .

4. Discussion of the Results

According to our data, a typical procedure consists
of 8 or 9 assignment statements, 4 calls to other
procedures, 3 IF statements, 1 loop, and 1 escape
(R E T U R N or E X I T L O O P) . Two of the assignment
statements simply assign a constant to a scalar variable,
one assigns one scalar variable to another, and 3 or 4
more involve only one operand on the right hand size.
The entire procedure probably contains only 2 arith-
metic operators. Two of the three conditions in the IF
statements involve only a single relational operator ,
probably -- or :P.

The general conclusion that can be drawn from this
data is the same as Knuth drew from his Fortran
study: programs tend to be very simple. Combining
this conclusion with the Bauer principle (If you do not
use a feature, you should not have to pay for it), we
suggest that most present day machine architectures
could be considerably improved by catering more to
the commonly occurring special cases. This will be
discussed in detail in the next section. First we have a
few more comments about the measurements.

In some cases there are significant differences be-
tween the static and dynamic measurements. Some of
these differences are genuine, e.g. the operating system
is constantly looking for internal inconsistencies in its
tables. If an error is detected, an error handling

C o m m u n i c a t i o n s M a r c h 1 9 7 8

o f V o l u m e 2 1

t h e A C M N u m b e r 3

Table I. Percent Distribution of Executable Statements.

Statement Type Static Dynamic

Assignment 46.5 41.9
CALL 24.6 12.4
IF 17.2 36.0
RETURN 4.2 2.6
FOR 3.4 2.1
EXITLOOP 1.4 1.6
WHILE 1.1 1.5
REPEAT 0.5 0.1
DO FOREVER 0.5 0.8
CASE 0.3 1.2
PRINT 0.3 <0.05

Table II. Percent Distribution of Assignment Statement Types.

Type Static Dynamic

variable = constant 21.7 19.2
variable =variable 9.5 9.1
variable=function call 4.4 1.9
variable=array element 4.3 3.3
array element=constant 4.1 2.8
array element=variable 4.1 2.9
array element=array element 0.9 1.8
array element=function call 0.5 0.1
other forms with 1 rhs term 30.5 25.2
forms with 2 rhs terms 15.2 20.4
forms with 3 rhs terms 3.0 6.9
forms with 4 rhs terms 1.5 5.9
forms with ->5 rhs terms 0.3 0.3

Table III. Percent Distribution of Operand Types

Type Static Dynamic

constant 40.0 32.8
simple variable 35.6 41.9
array element 9.3 9.2
field of structure 7.1 11.1
function call 4.8 1.6
bit field 3.2 3.3

Table V. Percent Distribution of Relational Operators.

Operator Static Dynamic

= 48.3 50.6
4: 22.1 18.6
> 11.8 10.2
< 9.5 9.0
-> 4.5 8.4
< 3.8 3.3

Table VI. Percent of all Procedures with N Formal Parameters.

N Static Dynamic

0 41.0 21.2
1 19.0 27.6
2 15.0 23.3
3 9.3 10.8
4 7.3 8.8
5 5.3 6.6
6 2.3 0.6
7 0.3 0.2
8 0.3 <0.05

->9 <0.05 1.0

Table VII. Percent of all Procedures with N Local Scalar Variables.

N Static Dynamic

0 21.5 30.7
1 17.2 26.5
2 19.8 15.4
3 13.5 4.2
4 8.3 4.9
5 5.3 10.0
6 4.6 1.6
7 3.6 1.0
8 1 .3 1 . 6

9 1.0 0.8
10 0.7 <0.05

->11 3.3 3.0

Table IV. Percent Distribution of Arithmetic Operators.

Operator Static Dynamic

+ 50.0 57.4
- 2 8 . 3 2 5 . 5

x 14.6 13.2
/ 7.0 3.8

p r o c e d u r e is cal led. Dur ing normal ope ra t i on there

are no inconsis tencies , so these e r ro r handlers are not

cal led. These C A L L s ta tements increase the static
n u m b e r of C A L L ' s but not the dynamic n u m b e r .

F u r t h e r m o r e , an IF s t a t emen t conta in ing a single

C A L L s t a t emen t in its T H E N part and a single C A L L

s t a t emen t in its E L S E par t will be coun ted as one IF
and two C A L L ' s in the static statistics, but one IF and

one C A L L in the dynamic statistics, since only one

b ranch is actually t aken per execu t ion . This effect
increases the p ropo r t i on of IF s ta tements re la t ive to

o the r s t a tements in the dynamic statistics.

On the o ther hand , a single loop execu ted 10,000
t imes gives grossly d i sp ropor t iona te weight to the state-

men t s in the loop in (only) the dynamic statistics. Thus

the dynamic statistics may in fact be based on a very

2 3 9

Table VIII. Percent Distribution of Number of Statements in
"THEN" Part of IF Statements.

Statements Static

1 47.4
2 20.5
3 9.9
4 5.8
5 2.3
6 3.4
7 1.2
8 1.1
9 2.0

-->10 6.1

much smal ler sample than the m o r e than 10,000 lines

of source text used to der ive the static statistics. Fo r

this reason the static statistics are p robab ly m o r e

mean ingfu l . In the r e m a i n d e r of this pape r we will use

the static statistics.

F r o m the fact that 5.5 pe rcen t of the s t a t ements

are loops , and 1.4 pe rcen t are E X I T L O O P ' s , we
es t imate that at least 25 percen t of the loops are
" a b n o r m a l l y " t e r m i n a t e d . (In addi t ion , an u n k n o w n

n u m b e r of loops are t e r m i n a t e d by R E T U R N) . The

Communications March 1978
of Volume 21
the ACM Number 3

Table IX. Comparison of Static Executable Statement Distribution
(percent).

Statement type SAL XPL Fortran

Assignment 47 55 51
CALL 25 17 5
IF 17 17 10
Loops 6 5 9
RETURN 4 4 4
GOTO 0 1 9

Our data gives an average of 0.45 arithmetic oper-
ators per expression, which agrees well with Alex-
ander's and Wortman 's figure of 0.41. Likewise, our
measurement of 1.22 operators per conditional expres-
sion agrees with their value of 1.19 logical plus rela-
tional operators. Such good agreement enhances one's
confidence in the universality of the results.

Table X. Summary of EM-1 Instructions and Number of Opcodes
Allocated to Each.

Instruction description Format 1 2 3A

push constant onto stack 3 2
push local onto stack 12 1
push external onto stack 8 1
pop local from stack 12 1
pop external from stack 8 1
zero address ADD, SUB, MUL, DIV 4
increment local 12 1
zero local 12 1
increment top word on stack 1
push array element onto stack 2
pop array element from stack 2
call 1
load address 1
load indirect 1
mark 3 1
advance stack pointer 1
return 1
for instruction
branch forward unconditionally 34 1
branch backward unconditionally 1
branch if operand 1 =operand 2 12 1
branch if operand 1 :~operand 2 20 1
branch if operand 1-<operand 2 8 1
branch if operand 1->operand 2 8 1
branch if operand 1< operand 2 4 1
branch if operand l>operand 2 4 1
branch if operand = 0 12 1
branch if operandi0 20 1
branch if operand~ 0 8 1
branch if operandi-0 8 1
branch if operand< 0 4 1
branch if operand> 0 4 1
opcode 255 (i.e. use formats 3B, 4) 1

discussion currently raging in the literature [7] about
how premature loop termination should be incorpo-
rated into language syntax is not irrelevant.

Since measurements of the type presented in this
paper are obviously very sensitive to idiosyncracies of
one's programming style, it is interesting to compare
our results to previously published work. Table IX
compares executable statement distribution for 3 stud-
ies cited in Section 1. One difference between Fortran
and the other languages stands out immediately: For-
tran programs have relatively few procedure calls. This
suggests that they are not well modularized. From
Knuth's data (his Table I) we compute that the average
Fortran subroutine has 86.3 executable statements, vs.
28.6 for XPL and 18.2 for SAL, which agrees with
this hypothesis.

240

5. A Proposal for a Machine Architecture

Most present day computers have an architecture
designed in the early 1960's. They have remained
substantially unchanged for a decade in the name of
compatibility in spite of their obstacles to generating
efficient code from high level languages. A machine
architecture based on the characteristics of the pro-
grams described in the previous sections is sketched
below. The architecture is specifically intended for
block structured languages that permit recursion, i.e.
Algol-like languages.

Our architecture has two explicit goals: 1. minimiz-
ing program size, and 2. providing a target language to
which compilation is straightforward. We choose to
minimize program size rather than maximize execution
speed for several reasons. First, execution speed de-
pends not only on the raw clock rate, but also on the
characteristics of the underlying microinstruction set.
Given a high level language benchmark program and
two proposed instruction sets, it is possible to deter-
mine unambiguously which object program is smaller,
but not which is faster. (By hypothesizing a faster clock
or better microarchitecture either machine can be
speeded up). In other words, minimizing size is a more
clearly defined goal than maximizing speed.

Second, size and speed are highly intertwined. All
other factors being equal, a shorter program will exe-
cute faster than a longer one since fewer bits need be
processed. If the memory bandwidth is N bits/see and
the mean instruction size is L bits, the maximum
instruction execution rate will be N/L instructions/see.
The smaller L is, the faster the machine can be.
Furthermore, on a machine with virtual memory, re-
ducing program size reduces the number of page faults,
which, in turn, reduces the time required to process
the page faults, thereby speeding up execution.

Third, on large computers with sophisticated multi-
programming systems, a decrease in program size
means an increase in the degree of multiprogramming,
hence a higher CPU utilization, as well as less swap-
ping.

Fourth, the small amount of memory available on
minicomputers is often a serious limitation. Making
the program fit into the memory may take precedence
over all other considerations.

Fifth, on mini and micro computer systems, the
cost of memory frequently is much larger than the
CPU cost. Reducing memory requirements has a much

Communications March 1978
of Volume 21
the ACM Number 3

greater effect on total system cost than reducing exe- Fig. I.
cution time. sP__~

The fact that few compilers for third generation
computers can produce code that even comes close to
what a skilled assembly language programmer can
generate argues strongly for redesigning machine archi-
tectures so that compilers can do their job better. (See
[11] for some statistics). It is for this reason that we
consider a stack machine, since generating efficient
reverse Polish is simpler than generating efficient code
for a register oriented machine. We assume the pres-
ence of a cache to eliminate the need for memory
cycles when referencing the stack.

The design described below is intended for imple-
menting modern programming languages such as Algol
60, Algol 68, Pascal, XPL, BCPL, SAL, and others of
this genre, since they tend to facilitate rather than
hinder the writing of well structured programs.

The proposed machine, which we shall call EM-1
(Experimental Machine- l) has a paged, segmented
virtual memory. The program and data reside in differ- LB---~
ent address spaces (like the PDP-11/45), so that in-
struction space segment 0 is distinct from data segment
0. An instruction space segment is a sequence of 8-bit
bytes, each with a unique address. A data space
segment is a sequence of words of N bits each (N is
left unspecified here). The word length for data space
segments may be different from that of instruction
space segments. (See Table X.)

One data space segment is special: the stack. The
stack has associated with it a stack pointer register
(SP) that points to the top word on it. Whenever a
procedure is entered, a new frame is allocated on the
stack for the administration, actual parameters, and
locals. The frame is released upon procedure exit.
Figure 1 depicts the stack for the following Algol 60
program.

begin integer e 1, e 2, e 3; integer array e 4 [1: 3];
proc p 1 ;
begin integer k l , k2; p 2 (k l , k2)
end;
proc p 2(formall, formal2);
begin integer k 1, k2;p2(kl, k2)

integer array n 5 [1:4], n 6 [0:1];
comment snapshot of Figure 1 taken here;

end;
pl

end

When p2 returns, SP will be reset to point to k2, thus
removing that part of the stack marked "current stack
f rame" in Figure 1.

The stack frame for a procedure consists of 4 areas:
(1) the administration information; (2) the actual pa-
rameters; (3) the local scalar variables and array de-
scriptors; and (4) the elements of local arrays. The
sizes of areas (1-3) are always known at compile time;
the size of area (4) may not be known until run time.

A special hardware register, LB (Local Base) points

241

O ~

e l e m e n t s of n 6

e l emen ts of n 5

d e s c r i p t o r f o r n6

d e s c r i p t o r f o r n5

n 4

n 3

n 2

n l

ac tua l p a r a m e t e r 2

ac tua l p a r a m e t e r 1

a d m i n i s t r a t i o n
i n f o r m a t i o n
f o r call to p2

k 2

k l

a d m i n i s t r a t i o n
i n f o r m a t i o n
f o r cell to p 1

e lements of e4

d e s c r i p t o r fo r e4

e 3

e 2

e l

current
stack
f r a m e

previous
stack
f r a m e

e x t e r n a l
v a r i a b l e s
and a r r a y s

to the beginning of the local variables. Local variables
are specified by giving their positions relative to LB.

The administration area contains the calling proce-
dure's return address, the previous value of LB, and
other (language dependent) information. It is assumed
that the microprogram knows the size and organization
of the administration area; a special instruction could
be executed at the beginning of each program to tell
it. Actual parameters can be addressed by giving their
distance from LB, just as locals. Note that the admin-
istration area is not counted in order to reduce the size
of the constants needed.

A procedure call takes place in the following steps:

1. A M A R K instruction is executed to deposit the
static and dynamic links on the stack. The M A R K
instruction has one operand which tells how much
the static depth of nesting is increased or decreased.

Communications March 1978
of Volume 21
the ACM Number 3

This is needed to update the static chain. The
MAR K instruction also reserves space for the re-
turn address to be deposited subsequently.

2. The calling procedure pushes the actual parameters
onto the stack.

3. A call instruction is executed, transferring control
to the called procedure. The call instruction has as
operand the index of a procedure descriptor, dis-
cussed later. This instruction must deposit the re-
turn address in the place reserved for it by the
M A R K instruction, update LB and transfer control.

4. The called procedure executes a single instruction
that increments SP to reserve as much local storage
as is initially needed; this instruction could also
initialize the local variables to 0 or a special "unde-
f ined" value such as 1000 . . . 000 (two's comple-
ment - 0) . If more local storage is needed during
execution of the procedure, e.g. for an Algol 68
local generator, SP can simply be advanced again.

We propose an addressing mechanism with distinct
instructions for the 2 most important cases: local and
external variables. Each instruction must provide an
integer offset telling which variable is intended. Locals
are offset above LB, and externals are offset from
address 0 of the stack segment. For the purposes of
addressing, procedure parameters are the same as
locals.

Two other addressing forms are needed but are
much less important. One is for full virtual addresses
consisting of a segment and word within the segment.
The other is for accessing intermediate lexicographical
levels in block structured languages by means of a
(relative lexicographical level, offset) pair. Rather than
using a display, which must be frequently updated at
considerable cost, we propose that at some position
within the administration area known to the micropro-
gram is the LB value of the most recent incarnation of
the procedure in which the current procedure is nested
(i.e. the static link). Given a (relative lexicographical
level, offset) pair, the microprogram can follow the
chain and locate variables at any outer static level.
Note that the penalty for accessing intermediate levels
is only a few microinstructions and one memory refer-
ence for each level of nesting followed. The combina-
tion of infrequent usage and a small penalty per use
makes this method attractive since it reduces procedure
call overhead, which is far more crucial.

The stack is also used for all arithmetic and logical
operations, shifting, etc. An assignment is performed
by first pushing the value to be assigned onto the stack
(or perhaps its descriptor, if provision is made for
assigning entire arrays in one instruction), and then
popping it to its destination, a total of 2 instructions.
The statement A = B x C is handled by 4 instructions:
PUS H B; PUSH C; MULTIPLY; POP A.

The advantage of a stack type architecture for
arithmetic is clear: compilers can translate expressions
to reverse Polish very simply, with no complicated

2 4 2

register optimization needed. High execution speed
can be attained by a hardware cache memory that
retains the most recently referenced words (i.e. the
top of the stack) in high speed storage, or by having
the microprogram keep them in its scratchpad memory.
If the arithmetic expressions evaluated are simple,
little cache or scratchpad storage will be needed. Our
data indicate that 80 percent of all expressions consist
of a single term, 95 percent consists of 1 or 2 terms
and 99.7 percent consists of 4 or fewer terms, meaning
that rarely will more than 4 operands be on the stack
simultaneously.

Most of the instructions require an opcode and a
small constant, which we call the "offset ." The offset
is generally used to select one of the local variables,
one of the external variables, the number of bytes to
skip (branch instructions), etc. The following five in-
struction formats are used by EM-1.

Format Bytes Description

1 1 byte 1 = opcode + offset (arithmetic sum)
2 2 byte 1 = opcode, byte 2 = offset
3A 3 byte 1 = opcode, bytes 2,3 = offset
3B 3 byte 1 = 255, byte 2 = opcode, byte 3 = offset
4 4 byte 1 = 255, byte 2 = opcode, bytes 3,4 = offset

The choice of machine instructions, and their as-
signment to formats, should be carefully arranged to
minimize program size (based on the data of Section
3). In particular, an effort should be made to insure
that the most common statements can be translated
into 1 byte instructions most of the time. The scheme
described below is constrained by the fact that the
total number of format 1 instructions plus format 2
instructions plus format 3A instructions must not ex-
ceed 255. Some instructions, may occur several times
in the order code, e.g. push constant onto the stack
occurs in formats 1, 2, and 4, with a different range of
constants provided in each form.

The idea of using shorter bit patterns for common
instructions and longer bit patterns for infrequent
instructions is not new. Huffman [4] gives a method
for encoding items whose probabilities of occurrence
are known, in the minimum number of bits. An ap-
proximation of this technique has been used in the
design of the Burroughs B1700 S-machines (Wilner,
[13, 14]). In the SDL S-machine, opcodes can be 4, 6,
or 10 bits, and addresses 8, 11, 13, or 16 bits. A
single address instruction can have a length of 12, 14,
15, 17, 18, 19, 20, 21, 22, 23, or 26 bits. Since the
B1700 microarchitecture is extremely flexible (among
other things being able to read an arbitrary length bit
s t r i n g - u p to 24 b i t s - o u t of memory beginning at an
arbitrary bit, in a single microinstruction) the use of
peculiar length instructions does not slow down inter-
pretation.

Howeyer , nearly all other computers are based
upon a memory organization using fixed length words.
For a microprogram with internal registers, bus widths
etc. of 8, 16, or 32 bits interpreting a "machine"

Communications March 1978
of Volume 21
the ACM Number 3

language whose instructions came in units of 12, 14,
15, 17, 18, 19, 20, 21, 22, 23, or 26 bits would be
unbearably slow, since nearly every instruction would
straddle word or byte boundaries, necessitating time
consuming shifting and masking operations to extract
the opcode and address fields. The scheme described
by Wilner is only feasible if every single bit in memory
has a unique address, a situation which is rarely the
case.

The instruction set of EM-1, in contrast, also pro-
vides a very efficient method for encoding instructions,
but is based on a memory in which every 8-bit byte
has a unique address, rather than every bit having a
unique address. This makes the principles of the EM-1
design applicable to a much larger number of com-
puters than one utilizing arbitrary length bit fields.

From Table I we see that the assignment, IF,
CALL, R E T U R N and FOR statements together ac-
count for 96 percent of the source statements. There-
fore we will design an instruction set to handle the
object code from these statements efficiently. To push
local variables (including parameters) onto the stack,
we propose 12 distinct 1-byte (format 1) opcodes, one
each for offsets 0-11. Twelve instructions allow access
to all the locals (and parameters) in 94.6 percent of
the procedures, and to more than 50 percent of the
locals in the remaining procedures. For example, op-
codes 114-125 might be used for PUSH L O C A L 0,
PUSH L O C A L 1 PUSH L O C A L 11. There is
no need to have distinct "opcode" and "address" bits.

Eight opcodes will be allocated to stacking the 8
external variables at the base of the stack segment.
Since 81.4 percent of the constants in our data were
either 0, 1, or 2, we allocate 3 opcodes for pushing
these constants onto the stack.

At this point 23 of the 255 available 1 byte instruc-
tions have been used. Another 20 are needed for
popping values from the stack. To handle programs
with up to 256 locals, or externals, 4 format 2 instruc-
tions are needed: 2 push and 2 pop. Two more opcodes
(format 2) are needed to push positive and negative
constants up to 256 onto the stack. Format 4 (16 bit
offset) can contain instructions with larger offsets for
truly pathological programs. By including zero address
(stack) instructions for add, subtract, multiply, and
divide, we have sufficient instructions to evaluate most
scalar expressions, using 53 of the opcodes.

Setting local variables to zero, and incrementing
them by 1, are so common that we allocate 24 format
1 and two format 2 opcodes for this purpose. Incre-
menting the top of the stack is also worth an opcode.

Array accesses are accomplished using descriptors
on the stack. Each descriptor (which may be 1 or
more words, depending on N, the word length) con-
tains the bounds and strides, Si, for the array. For
example, the address o f A [i, j, k] can be found from

address =So + $1 × i + $2 × j + $3 × k

243

where the strides can be computed once and for all as
soon as the bounds are known, at compile time in
many cases, and at run time in the others. The descrip-
tor must also contain the number of dimensions and
the element size (and the segment number, for nonlocal
arrays).

Array elements are accessed as follows. First the
subscripts are stacked, requiring at least one instruction
per subscript. Then a PUSH E L E M E N T instruction is
executed, specifying the offset of the descriptor from
LB. This instruction removes all the subscripts from
the stack, and replaces them with the selected element.
The instruction also performs all bounds checking
(unless disabled) and traps upon detecting a subscript
error. A second opcode is needed for a POP ELE-
MEN T instruction that first pops the subscripts and
then the value. With these two instructions, the state-
ment A [I] := B [J] can usually be compiled into only 6
bytes of object code, including all bounds checking
(PUSH J; PUSH ELEM; PUSH I; POP ELEM). This
is a substantial improvement over most conventional
designs. Four format 2 instructions are needed for
pushing and popping local and external array elements.

Note that this addressing scheme is not affected by
the size of the arrays. Assuming that a descriptor can
fit in a single machine word, a procedure with < 2 5 6
large arrays could nevertheless perform all array ac-
cesses using exclusively format 2 instructions.

For calling procedures, we envision one format 2
instruction whose offset is an index into a table held in
a special data segment. Each table entry could contain
the segment and address of the object code, possibly a
"not yet l inked" bit, to implement dynamic linking as
in MULTICS, and possibly some protection machinery
to keep less privileged procedures from calling more
privileged ones. The symbolic name might also be
present for debugging purposes and a counter to be
incremented by the microprogram upon each call might
be provided for performance monitoring.

To allow the instruction to locate the administration
area in order to deposit the return address there, and
to update LB, the number of words of parameters is
also needed. For programs with up to 256 procedures,
the call instruction will be 2 bytes, although a method
to reduce this to 1 byte in most cases will be described
below.

No additional instructions are needed for call-by-
value. For call-by-reference an additional format 2
instruction to push an address onto the stack would be
useful, along with one to fetch a parameter passed by
reference (i.e. load indirect). The three most common
types of procedure calls are to increase the depth of
static nesting by 1, leave it unchanged, and decrease it
by 1. Three opcodes are devoted to the three corre-
sponding MA RK instructions.

After a M A R K instruction the distribution of the
next few instructions is radically more different than

Communica t ions March 1978
of Volume 21
the A C M Number 3

the normal one. This fact can be exploited to reduce
the procedure call instruction to 1 byte in many cases,
using a generalization of the idea of Foster and Gonter
[3]. The only instructions than can follow a M A R K
instruction are those needed to pass the parameters, if
any, and the C ALL itself. Most parameters are con-
stants, variables, or simple expressions, which can
usually be passed using only a limited number of
different instructions, mostly load type instructions.
About 200 opcodes could be reserved for CALL's ,
each corresponding to a specific procedure descriptor.
These C ALL instructions would each require only 1
byte.

The simplest way to implement this would be to
have the microprogram maintain the microaddress of
the start of the instruction fetch loop in one of its
registers. At the end of the execution phase of each
interpreted instruction the microprogram would jump
indirectly to this register. The M A R K instruction
would reload this register with the address of an
alternative fetch loop, which would merely use a differ-
ent branch table, in effect temporarily remapping the
opcodes. The C A L L instruction could restore the
normal opcodes by resetting just one internal register.
The use of opcode remapping can also be used in any
other context with explicit first and last instructions.

An instruction with a 1-byte offset is needed by the
called program to advance SP. The return instruction,
which needs no offset, restores the stacked program
counter and previous LB value (which are at known
positions below the current LB) and resets SP.

Our proposed FOR statement instructions are
based upon our measurement that 95 percent of the
loops have a BY part of + 1 or - 1 . Before the loop,
the controlled variable is initialized, and the TO part
is evaluated and pushed onto the stack. The EM-1
FOR instruction reads the TO part and the controlled
variable. If the termination condition is met, a forward
branch out of the loop occurs. Otherwise the controlled
variable is updated and the next instruction is executed.
The TO part is only removed from the stack when the
loop is terminated. To allow both tests for both upward
and downward counting, two opcodes are needed.
(For languages in which the TO and BY parts may
change during execution of the loop, variants of these
instructions will be needed). Both instructions use
format 3A. The offset of the controlled variable is in
the second byte of the instruction, and the forward
branch distance is specified in the third byte. The body
of the loop is terminated by an unconditional branch
backward to the FOR instruction.

At this point we must devise instructions to handle
IF statements. A number of third generation machines
perform conditional branching by first setting condition
code bits, and then testing them in a subsequent
instruction. EM-1, in contrast, combines these func-
tions, and eliminates the need for condition codes.

There are three types of branch instructions, distin-

244

guished by the number of operands they remove from
the stack. The unconditional branch forward and back-
ward instructions do not remove any operands from
the stack. The second group removes one operand and
compares it to zero, branching forward if the condition
specified by the opcode (= , ~ , < , > , - , or ->) is met.
This group is useful for statements such as IF N = 0
T H E N . . . If Boolean variables represent FALSE by
0 and T R U E by 1, this group can also be used for
statements such as IF F L A G T H E N

The third group of branch instructions removes
two operands from the stack, compares them, and
branches forward if the specified condition is met.
Backward conditional branches are not needed for
translating IF statements (or W H I L E statements
either).

Each branch instruction specifies an offset which is
the branch distance in bytes relative to the instruction
itself. (Offset = k means skip k + 1 bytes.) Interseg-
ment branches are prohibited, so that the procedure
call mechanism can be used to limit access to privileged
procedures. The size of the offsets required can be
estimated from the data of Table VIII. Based upon
the design proposed above, we estimate that the aver-
age source statement will require not more than 4
bytes of object code. This means that an offset with a
range of 0-3 (i.e. 4 instructions) is sufficient for nearly
half the IF statements, and a range of 0-15 (i.e. 16
instructions) is sufficient for more than 4/s of the cases.
We need 14 opcodes to provide format 2 instructions
for the unconditional branch, 1 operand conditional
branch, and 2 operand conditional branch instructions.

This leaves 141 opcodes over for the format 1
opcodes. A possible allocation covering most of the
frequently occurring cases is given in the summary of
opcode usage below. If the average statement needs 4
bytes of object code, the division proposed below will
handle 77 percent of the IF tests in a single byte. Note
that " IF A = B " compiles into a branch N OT equal
instruction to skip over the T H E N part.

We will not discuss the instruction set further here.
Suffice to say that all the instructions that could not be
included in format 1 or format 2 for lack of encoding
room, are included in format 3B. Also versions of all
the above instructions should be provided as format 4
instructions (16-bit offset). Instructions needed, but
not discussed above, e.g. accessing intermediate lexi-
cographical levels of block structured languages should
also be provided as format 3B and 4 instructions.
There should also be instructions for multiple precision
arithmetic, floating point, shifting, rotating, Boolean
operations, etc.

It should be obvious that our design is not optimal
in the information theory sense. More data and de-
tailed simulation are needed to fine tune the choice of
format 1 opcodes. On a user microprogrammable
computer , one can envision tuning the format 1 instruc-
tion set to match the measured characteristics of impor-

Communicat ions March 1978
of Volume 21
the ACM Number 3

tant production programs, and loading a special highly
optimized microprogram before beginning program
execution. Alternately, a whole collection of single
chip microprocessors could be kept in house, each
with a read only microprogram tuned to a different
application.

6. Discussion of the Machine Architecture

Our major point in this whole discussion is to
illustrate that 1 byte instructions in this design can
often do the work of 4 byte or longer instructions in
conventional machines. To illustrate the savings of
EM- 1, Table XI gives some examples of the size of the
EM-1 code compared to DEC PDP-11 code and CDC
Cyber code, as examples of mini and mainframe com-
puters. The PDP-11 and Cyber code sequences used
for comparison are those a good compiler might rea-
sonably expect to generate in order to minimize object
program size. It is assumed that these are fragments
from a block structured language that permits recursion
and requires subscript checking. All local variables are
assumed to be on the stack, not in registers (except
loop indices) and EM-1 is assumed to be able to use
the shortest instruction format. Both the PDP-11 and
Cyber make use of calls to run-time subroutines whose
size is not counted here.

As a second test, 4 programs were carefully coded
in assembly language for EM-1, the PDP-11 and the
Cyber. In contrast to the above examples, these were
complete programs, and the ground rules permitted
the use of registers. There was no run time system
(i.e. everything was coded in-line) and subscripts were
not checked. The results are given in Table XII. It
should be noted that the PDP-11 and Cyber test
programs were carefully hand coded by an experienced
assembly language programmer. Few compilers could
ever generate object code this compact, whereas it
would be easy to have a compiler generate the EM-1
code used in the examples due to the close match
between the EM-1 instruction set and reverse Polish.
This means that EM-1 is actually much better than the
above data might at first indicate.

It is important to realize that in an environment
consisting of many short procedures, the register sets
provided by a third generation machine are of little
value. They can be used for temporary results during
expression evaluation, but from our data, that of
Alexander and Wortman, and also Knuth's, one regis-
ter is usually enough. The registers cannot be used
effectively to hold local variables, because they must
be constantly saved and restored upon procedure calls.
This save-restore overhead will be very severe if, as
our data shows, one out of every four statements is a
procedure call.

Although we have not emphasized execution speed,
a microprogrammed EM-1 machine is potentially very

245

Table XI. A Compar ison of EM-1, PDP-11, and Cyber Object
Code Size (in Bits).

Rat ios

PDP-
11/ Cyber/

Sta tements EM-1 PDP-11 Cyber EM-1 EM-1

I := 0 8 32 45 4.0 5.6
I := 3 16 48 60 3.0 3.8
I := J 16 48 75 3.0 4.7
I := I + 1 8 16 60 2.0 7.5
I := I + J 32 48 90 1.5 2.8
I := J + K 32 96 105 3.0 3.3
I := J + 1 24 80 75 3.3 3.1
I := A[J] 32 128 120 4.0 3.8
A[I] := 0 32 112 105 3.5 3.3
A[I] := B[J] 48 192 180 4.0 3.8
A[I] := B[J] + C[K] 80 304 285 3.8 3.6
A[I , J, K] := 0 48 176 165 3.7 3.4
IF I = J T H E N . . . 24 64 105 2.7 4.4
IF I = 0 T H E N . . . 16 48 60 3.0 3.8
I F I = J + K T H E N . . . 40 112 150 2.8 3.8
IF F L A G T H E N . . . 16 48 60 3.0 3.8
C A L L P 16 64 60 4.0 3.8
C A L L PI(I) (by value) 24 96 90 4.0 3.8
C A L L P2(I, J) (by value) 32 128 120 4.0 3.8
C A L L P3(I) (by reference) 32 112 90 3.5 2.8
F O R I F R O M 1 TO N D O

A [I] := 0 0 D 88 176 225 2.0 2.6

fast. The microprogram would fetch the opcode and
then execute a 256-way branch. Since each of the
format 1 instructions is relatively simple, each instruc-
tion could be handled by a small number of microin-
structions. In contrast microprograms for machines
like the PDP-11 and IBM 370 must do considerable
extraction and manipulation of short fields within the
target instruction. This is avoided in EM-1. By having
a distinct microroutine for each of the twelve instruc-
tions that push a local variable onto the stack, none of
these microroutines would have to do any decoding or
bit extraction, providing for very fast execution. The
other format 1 instructions would also be fast for the
same reason. Alternately, to reduce the size of the
microprogram at the expense of execution speed, all
the target instructions of a given type could share one
microroutine.

At first it may appear that producing code for EM-
1 would give compiler writers nightmares, due to the
multiple instruction formats. This problem can be
easily solved by first writing an optimizing assembler
that has a single mnemonic for "load local variable
onto the stack" (e.g. LODLOC SYM), etc. The assem-
bler, and not the compilers, chooses the shortest feasi-
ble instruction format. The assembler should also rec-
ognize sequences such as PUSH 0; POP X and PUSH
X; PUSH 1, ADD, POP X and replace them by
ZERO X and INCR X respectively. Compilers might
also leave the task of sorting the local variables on
number of occurrences, and assigning the most heavily
used ones lower offsets to the assembler. Once such
an assembler was written, it could be used as the last

Communica t ions March 1978
of Volume 21
the A C M N u m b e r 3

Table XII. A Comparison of EM-1, PDP-11 and Cyber Object
Code Size (in Bits)

Ratios

man coding. This leads to object programs that require
little memory and are capable of being executed very
easily (i.e. fast).

PDP-11/ Cyber/

Program EM/1 PDP-11 Cyber EM-1 EM-1

Towers of Hanoi 352 992 2205 2.8 6.3
sort integer array 562 1248 1260 2.2 2.2

dot product 552 832 1140 1.5 2.0
find primes 306 704 1020 2.3 3.3

pass of all compilers, allowing them to produce
straightforward reverse Polish, and still get locally
optimal code.

7. Summary

There is a certain analogy between a Huffman
code used to encode text in a minimal number of bits,
and our proposal for a machine language with a com-
pact instruction set. In both cases it is necessary to
determine the frequencies of occurrence of the data to
be encoded (letters and instructions, respectively) by
empirical measurements. We have done this and re-
ported the results in Section 3. Then an encoding
scheme must be devised in which the most commonly
occurring cases are assigned the shortest bit patterns,
and the least commonly occurring cases are assigned
the longest bit patterns. This is in contrast to a scheme
in which all cases are assigned the same length bit
pattern. In EM-1 the most frequently occurring instruc-
tions are encoded in a single byte, which is both
efficient in storage and avoids the problems associated
with variable length bit strings produced by true Huff-

Received February 1976; revised January 1977

R e f e r e n c e s
1. Alexander , W.G. , and Wortman, D.B. Static and dynamic
characteristics of XPL programs. Computer 8 (1975), 41-46 .
2. Denning, P.J. Is it not t ime to define 's tructured programming '?
Operating Syst. Rev. 8 (Jan. 1974), 6-7.
3. Foster, C.C., and Gonter , R.H. Condit ional in terpreta t ion of
operat ion codes. IEEE Trans. Comptrs. C-20, 1 (1971), 108-111.
4. Huffman, D. A method for the construction of min imum
redundancy codes. Proc. IRE 40 (1952), 1098-1101.
5. Jensen, K., and Wirth, N. P A S C A L User Manual and Report.
Springer-Verlag, New York, 1974.
6. Knuth, D.E. An empirical study of F O R T R A N programs.
Software-Practice and Experience l (1971), 105-133.
7. Knuth, D.E . Structured programming with go to s ta tements ,
Computing Surveys 6 (1974), 261-301.
8. Richards, M. BCPL: A tool for compiler writing and system
programming. Proc. AFIPS SJCC, Vol. 34, AFIPS Press,
Montvale , N.J. , 1969, pp. 557-566.
9. Salvadori, A. , Gordon, J., and Capstick, C. Static profile of
C O B O L programs. Sigplan Notices (ACM) 10 (1975), 20-33.
10. Tanenbaum, A.S. A programming language for writing
operat ing systems. Rep. IR-3, Wiskundig Seminarium, Vrije U.,
Amste rdam, 1974.
11. Tanenbaum, A.S. A general purpose macro processor as a poor
man 's compiler. IEEE Trans. Software Eng. SE-2 (1976), 121-125.
1 2 . van Wijngaarden, A. , Mail loux, B., Peck, J .E .L. , and Koster,
C .H.A. Repor t on the algori thmic language A L G O L 68, Num.
Math. 14 (1969), 79-218.
13. Wilner , W.T. Design of the Burroughs B1700. Proc. AFIPS
FJCC, Vol. 4 1 , 4 9 7 , AFIPS Press, Montvale, N.J., 1972, pp. 489-
497.
14. Wilner , W.T. Burroughs B1700 Memory Util ization. Proc.
AFIPS FJCC, Vol. 41, AFIPS Press, Montvale, N.J. , 1972, 579-
586.
15. Wor tman, D.B. A study of language directed computer design.
CSRG-20, U. of Toronto, Toronto, Ont. (1972).
16. Wulf, W.A. , Russell, D.B. , and Habermann, A.N. BLISS: A
language for systems programming: Comm. A C M 14 (1971), 780-
790.

P r o f e s s i o n a l A c t i v i t i e s
Calendar of Events

ACM's calendar policy is to list open com-
puter science meetings that are held on a not-for-
profit basis. Not included in the calendar are edu-
cational seminars, institutes, and courses. Sub-
mittals should be substantiated with name of the
sponsoring organization, fee schedule, and chair-
man's name and full address.

One telephone number contact for those in-
terested in attending a meeting will be given when
a number is specified for this purpose.

All requests for ACM sponsorship or coop-
eration should be addressed to Chairman, Con-
ferences and Symposia Committee, Seymour J.
Wolfson. 643 MacKenzie Hall. Wayne State Uni-
versity, Detroit, MI 48202, with a copy to Louis
Fiora, Conference Coordinator, ACM Head-
quarters, 1133 Avenue of the Americas, New York,
NY 10036; 212 265-6300. For European events, a
copy of the request should also be sent to the
European Representative. Technical Meeting Re-
quest Forms for this purpose can be obtained
from ACM Headquarters or from the European
Regional Representative. Lead time should include
2 months (3 months if for Europe) for processing
of the request, plus the necessary months (mini-
mum 2) for any publicity to appear in Communi-
cations.

Events for which ACM or a subunit of ACM
is a sponsor or collaborator are indicated by 1.
Dates precede titles.
In this issue the calendar is given in its entirety.
New Listings are shown first; they will appear
next month as Previous Listings.

NEW LISTINGS
15 April 1978

• East Central SIGCSE Regional Conference,
Granville, Ohio. Sponsor: ACM SIGCSE. Conf.

clam: James S. Cameron, Dept. of Mathematical
Sciences, Denison University, Granville, OH
43023; 614 587-0810.

20-21 April 1978
1978 Computer Users Conference, East Texas

State University, Commerce, Tex. Sponsor: East
Texas State University. Contact: Donna Hutche-
son, Dept. of Computer Science, East Texas State
University, Commerce, TX 75428; 214 468-2954.

30 April-3 May 1978
Computers in A c t i v a t i o n A n a l y s i s and

Gamma-Ray Spectroscopy, Mayaguez, Puerto
Rico. Sponsor: American Nuclear Society. Gen.
chm: B. Stephen Carpenter, NBS, Activation
Analysis, Bl18-Bldg. 235, Washington, DC 20234.

17-19 May 1978
Workshop on Petrl-Nets, Erlangen, Ger-

many. Sponsor: Gesellschaft fiir Informatik in
cooperation with Institut fiir Mathematische Ma-
schinen und Datenverarbeitung. Contact: Work-
shop uber Petrinetze, c/o Institut ftir Mathema-
tische Maschinen und Datenverarbeitung, Uni-
versit~it Erlangen-Niirenberg, Martensstrasse 3,
8520 Erlangen, Germany.

19-21 July 1978
• Conference of Canadian Society for Compu-
tational Studies of Intelligence, Toronto, Canada.
Sponsor: Canadian Society for Computational
Studies of Intelligence in cooperation with ACM
SIGART, Conf. chm: C. Raymond Perrault,
Dept. of Computer Science, University of To-
ronto, Toronto, Ont., Canada M5S 1A1.

23-28 July 1978
International Users Conference on Com-

puter Mapping Software and Data Bases, Harvard
University, Cambridge, Mass. Sponsor: Harvard
University Laboratory for Computer Graphics
and Spatial Analysis. Conf. chm: Allan Schmidt,
520 Gund Hall, Harvard University, Cambridge,
MA 02138; 617 495-2526.

14-15 August 1978
• ACM SIGCSE 9th Technical Symposium on
Computer Science Education, Pittsburgh, Pa.

Sponsor: ACM SIGCSE in cooperation with
IEEE-CS. Conf. chm: Alfs T. Berztiss. Dept. of
Computer Science, University of Pittsburgh, Pitts-
burgh, PA 15260; 412 624-6458.

29 October-1 November 1978
N e w Orleans '78 International Data Process-

ing Conference and Business Exposition, New
Orleans Hilton Hotel, New Orleans, La. Sponsor:
DPMA. Contact: Conference Coordinator, DPMA
International Headquarters, 505 Busse Highway,
Park Ridge, IL 60068; 312 825-8124.

5-8 November 1978
Second Annual Symposium on Computer

Applications in Medical Care, Washington, D.C.
Sponsor: George Washington University. Contact:
F. Helmuth Orthner, Dept. of Clinical Engineer-
ing, School of Medicine and Health Sciences,
2300 K St., NW, The George Washington Uni-
versity, Washington, DC 20037.

15-17 November 1978
• S o f t w a r e Qual i ty A s s u r a n c e W o r k s h o p :
Functional and Performance Issues, San Diego,
Calif. Sponsors: ACM SIGMETRICS, SIGSOFT,
and Los Angeles Chapter. Gen. chm: A.C. (Toni)
Shetler, Xerox Corp., A3-49, 701 South Aviation
Blvd., E1 Segundo, CA 90245; 213 679-4511 x1968.

4-6 December 1978
Winter Simulation Conference, Miami Beach,

Fla. Sponsors: NBS, AIIE, IEEE Systems, Man,
and Cybernetics Society, ORSA, TIMS, SCS.
Prog. chin: Norman R. Nielsen, Information
Science Laboratory, (J-1041). SRI International,
333 Ravenswood Ave., Menlo Park, CA 94025;
415 326-6200 x 2859.

20-22 February 1979
• ACM Computer Science Conference, Day-
ton, Ohio. Sponsor: ACM. Conf. chm: Lawrence
A. Jehn, Computer Science Dept.. University of
Dayton, Dayton, OH 45467; 513 229-3831.

14-16 March 1979
• T w e l f t h A n n u a l S i m u l a t i o n S y m p o s i u m ,
Tampa, Fla. Sponsors: ACM SIGSIM, IEEE-CS,

(Calendar continued on p. 249)

2 4 6 C o m m u n i c a t i o n s
of
the A C M

M a r c h 1978
V o l u m e 21
N u m b e r 3

