
ORCA: A LANGUAGE FOR PARALLEL

PROGRAMMING OF DISTRIBUTED SYSTEMS†

Henri E. Bal *
M. Frans Kaashoek

Andrew S. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT

Orca is a language for implementing parallel applications on loosely coupled distri-
buted systems. Unlike most languages for distributed programming, it allows processes on
different machines to share data. Such data are encapsulated in data-objects, which are
instances of user-defined abstract data types. The implementation of Orca takes care of the
physical distribution of objects among the local memories of the processors. In particular, an
implementation may replicate and/or migrate objects in order to decrease access times to
objects and increase parallelism.

This paper gives a detailed description of the Orca language design and motivates the
design choices. Orca is intended for applications programmers rather than systems program-
mers. This is reflected in its design goals to provide a simple, easy to use language that is
type-secure and provides clean semantics.

The paper discusses three example parallel applications in Orca, one of which is
described in detail. It also describes one of the existing implementations, which is based on
reliable broadcasting. Performance measurements of this system are given for three parallel
applications. The measurements show that significant speedups can be obtained for all three
applications. Finally, the paper compares Orca with several related languages and systems.

1. INTRODUCTION

As communication in loosely coupled distributed computing systems gets faster, such sys-
tems become more and more attractive for running parallel applications. In the Amoeba sys-
tem, for example, the cost of sending a short message between Sun workstations over an Eth-
ernet is 1.1 milliseconds [1]. Although this is still slower than communication in most multi-
computers (e.g., hypercubes and transputer grids), it is fast enough for many coarse-grained
parallel applications. In return, distributed systems are easy to build from off-the-shelf
������������������
† A preliminary version of this paper appeared in the proceedings of the First Usenix/SERC Workshop on Experiences with
Building Distributed and Multiprocessor Systems, Ft. Lauderdale, Oct. 1989.
* This research was supported in part by the Netherlands organization for scientific research (N.W.O.) under grant 125-30-10.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15449637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

components, by interconnecting multiple workstations or microprocessors through a local
area network (LAN). In addition, such systems can easily be expanded to far larger numbers
of processors than shared-memory multiprocessors.

In our research, we are studying the implementation of parallel applications on distri-
buted systems. We started out by implementing several coarse-grained parallel applications
on top of the Amoeba system, using an existing sequential language extended with message
passing for interprocess communication [2]. We felt that, for parallel applications, both the
use of message passing and a sequential base language have many disadvantages, making
them complicated for applications programmers to use.

Since then, we have developed a new language for distributed programming, called
Orca [3, 4, 5]. Orca is intended for distributed applications programming rather than systems
programming, and is therefore designed to be a simple, expressive, and efficient language
with clean semantics. Below, we will briefly discuss the most important novelties in the
language design.

Processes in Orca can communicate through shared data, even if the processors on
which they run do not have physical shared memory. The main novelty of our approach is
the way access to shared data is expressed. Unlike shared physical memory (or distributed
shared memory [6]), shared data in Orca are accessed through user-defined high-level opera-
tions, which, as we will see, has many important implications.

Supporting shared data on a distributed system imposes some challenging implementa-
tion problems. We have worked on several implementations of Orca, one of which we will
describe in the paper. This system uses a reliable broadcast protocol. Both the protocol and
the integration with the rest of the system are new research results.

Unlike the majority of other languages for distributed programming, Orca is not an
extension to an existing sequential language. Instead, its sequential and distributed constructs
(especially data structures) have been designed together, in such a way that they integrate
well. The language design addresses issues that are dealt with by few other languages. Most
distributed languages simply add primitives for parallelism and communication to a sequen-
tial base language, but ignore problems due to poor integration with sequential constructs. A
typical example is passing a pointer in a message, which is usually not detected and may
cause great havoc. Orca provides a solution to this problem, and keeps the semantics of the
language clean. At the same time, the Orca constructs are designed to have semantics close
to conventional languages, thus making it easy for programmers to learn Orca.

An important goal in the design of Orca was to keep the language as simple as possible.
Many interesting parallel applications exist outside the area of computer science, so the
language must be suitable for general-applications programmers. Orca lacks low-level
features that would only be useful for systems programming. In addition, Orca reduces com-
plexity by avoiding language features aimed solely at increasing efficiency, especially if the
same effect can be achieved through an optimizing compiler. Language designers frequently
have to choose between adding language features or adding compiler optimizations. In gen-
eral, we prefer the latter option. We will discuss several examples of this design principle in
the paper. Finally, the principle of orthogonality [7] is used with care, but it is not a design
goal by itself.

- 3 -

Another issue we have taken into account is that of debugging. As debugging of distri-
buted programs is difficult, one needs all the help one can get, so we have paid considerable
attention to debugging. Most important, Orca is a type-secure language. The language
design allows the implementation to detect many errors during compile-time. In addition, the
language run time system does extensive error checking.

The paper gives an overview of Orca, a distributed implementation of Orca, and its per-
formance. It is structured as follows. In Section 2, we will describe the Orca language and
motivate our design choices. In Section 3, we will present an example application written in
Orca. In Section 4, we will discuss one implementation of Orca, based on reliable broadcast.
We will also describe how to implement this broadcast primitive on top of LANs that only
support unreliable broadcast. We will briefly compare this system with another implementa-
tion of Orca that uses Remote Procedure Call [8] rather than broadcasting. In Section 5, we
will give performance measurements for several applications. In Section 6, we will compare
our approach with those of related languages and systems. Finally, in Section 7 we will
present our conclusions.

2. ORCA

Orca is a procedural, strongly typed language. Its sequential statements and expressions are
fairly conventional and are roughly comparable (although not identical) to those of Modula-
2. The data structuring facilities of Orca, however, are substantially different from those
used in Modula-2. Orca supports records, unions, dynamic arrays, sets, bags, and general
graphs. Pointers have intentionally been omitted to provide security. Also, the language
lacks global variables, although such variables can be simulated by passing them around as
reference parameters.

The rest of this section is structured as follows. We will first motivate our choice for
shared data over message passing. Next, we will look at processes, which are used for
expressing parallelism. Subsequently, we will describe Orca’s communication model, which
is based on shared data-objects. Synchronization of operations on shared objects is discussed
next, followed by a discussion of hierarchically used objects. Finally, we will look at Orca’s
data structures.

2.1. Distributed Shared Memory

Most languages for distributed programming are based on message passing [9]. This choice
seems obvious, since the underlying hardware already supports message passing. Still, there
are many cases in which message passing is not the appropriate programming model. Mes-
sage passing is a form of communication between two parties, which interact explicitly by
sending and receiving messages. Message passing is less suitable, however, if several
processes need to communicate indirectly, by sharing global state information.

There are many examples of such applications. For example, in parallel branch-and-
bound algorithms the current best solution (the bound) is stored in a global variable accessed
by all processes. This is not to say the algorithms actually need physical shared memory:
they merely need logically shared data. Such algorithms are much harder to implement effi-
ciently using message passing than using shared data.

The literature contains numerous other examples of distributed applications and

- 4 -

algorithms that would greatly benefit from support for shared data, even if no physical shared
memory is available. Applications described in the literature include: a distributed speech
recognition system [10]; linear equation solving, three-dimensional partial differential equa-
tions, and split-merge sort [11]; computer chess [12]; distributed system services (e.g., name
service, time service), global scheduling, and replicated files [13].

So, the difficulty in providing (logically) shared data makes message passing a poor
match for many applications. Several researchers have therefore worked on communication
models based on logically shared data rather than message passing. With these models, the
programmer can use shared data, although the underlying hardware does not provide physical
shared memory. A memory model that looks to the user as a shared memory but is imple-
mented on disjoint machines is referred to as Distributed Shared Memory (DSM).

Many different forms of DSM exist. Li’s Shared Virtual Memory (SVM) [6] is perhaps
the best-known example. It simulates physical shared-memory on a distributed system. The
SVM distributes the pages of the memory space over the local memories. Read-only pages
may also be replicated. SVM provides a clean, simple model, but unfortunately there are
many problems in implementing it efficiently.

A few existing programming languages also fall into the DSM class. Linda [14] sup-
ports a globally shared Tuple Space, which processes can access using a form of associative
addressing. On distributed systems, Tuple Space can be replicated or partitioned, much as
pages in SVM are. The operations allowed on Tuple Space are low-level and built-in, which,
as we will argue later, complicates programming and makes an efficient distributed imple-
mentation hard.

The Emerald language [15] is related to the DSM class, in that it provides a shared name
space for objects, together with a location-transparent invocation mechanism. Emerald does
not use any of the replication techniques that are typical of DSM systems, however.

The most important issue addressed by Orca is how data can be shared among distri-
buted processes in an efficient way. In languages for multiprocessors, shared data structures
are stored in the shared memory and accessed in basically the same way as local variables,
namely through simple load and store instructions. If a process is going to change part of a
shared data structure and it does not want other processes to interfere, it locks that part. All
these operations (loads, stores, locks) on shared data structures involve little overhead,
because access to shared memory is hardly more expensive than access to local memory.

In a distributed system, on the other hand, the time needed to access data very much
depends on the location of the data. Accessing data on remote processors is orders of magni-
tude more expensive than accessing local data. It is therefore infeasible to apply the mul-
tiprocessor model of programming to distributed systems. The operations used in this model
are far too low-level and will have tremendous overhead on distributed systems.

The key idea in Orca is to access shared data structures through higher level operations.
Instead of using low-level instructions for reading, writing, and locking shared data, we let
programmers define composite operations for manipulating shared data structures. Shared
data structures in our model are encapsulated in so-called data-objects1 that are manipulated
through a set of user-defined operations. Data-objects are best thought of as instances
���������������
1 We will sometimes use the term “object” as a shorthand notation. Note, however, that this term is
used in many other languages and systems, with various different meanings.

- 5 -

(variables) of abstract data types. The programmer specifies an abstract data type by defin-
ing operations that can be applied to instances (data-objects) of that type. The actual data
contained in the object and the executable code for the operations are hidden in the imple-
mentation of the abstract data type.

2.2. Processes

Parallelism in Orca is explicit, because compilers currently are not effective at generating
parallelism automatically. Implicit parallelism may be suitable for vector machines, but,
with the current state-of-the-art in compiler technology, it is not effective for distributed sys-
tems.

Parallelism is expressed in Orca through explicit creation of sequential processes.
Processes are conceptually similar to procedures, except that procedure invocations are serial
and process invocations are parallel.

Initially, an Orca program consists of a single process, but new processes can be created
explicitly through the fork statement:

fork name(actual-parameters) [on (cpu-number)];

This statement creates a new, anonymous, child process. Optionally, the new process can be
assigned to a given processor. Processors are numbered sequentially; the fork statement may
contain an on-part with an expression that specifies the processor on which to run the child
process. If the on-part is absent, the child process is created on the same processor as its
parent. The system does not move processes around on its own initiative, since this is
undesirable for many parallel applications.

A process can take parameters, as specified in its definition. Two kinds are allowed:
input and shared. A process may take any kind of data structure as value (input) parameter.
In this case, the process gets a copy of the actual parameter. The parent can also pass any of
its data-objects as a shared parameter to the child. In this case, the data-object will be shared
between the parent and the child. The parent and child can communicate through this shared
object, by executing the operations defined by the object’s type, as will be explained later.
For example, if a process child is declared as

process child(Id: integer; X: shared AnObjectType); begin ... end;

a new child process can be created as follows

MyObj: AnObjectType; # declare an object
....
create a new child process, passing the constant 12 as
value parameter and the object MyObj as shared parameter.

fork child(12, MyObj);

The children can pass shared objects to their children, and so on. In this way, the
objects get distributed among some of the descendants of the process that created them. If
any of these processes performs an operation on the object, they all observe the same effect
as if the object were in shared memory, protected by a lock variable.

- 6 -

2.3. Shared data-objects and abstract data types

A shared data-object is a variable of an abstract data type (object type). An abstract data type
definition in Orca consists of two parts: a specification part and an implementation part. The
specification part defines the operations applicable to objects of the given type. As a simple
example, the specification part of an object type encapsulating an integer is shown in Figure
1.

object specification IntObject;
operation Value(): integer; # return current value
operation Assign(val: integer); # assign new value
operation Add(val: integer); # add val to current value
operation Min(val: integer); # set value to minimum of current value and val

end;��
�
�
�
�
�

��
��
�
�
�
�
�

Fig. 1. Specification part of an object type IntObject.

The implementation part contains the data used to represent objects of this type, the
code to initialize the data of new instances of the type, and the code implementing the opera-
tions. Part of the implementation of type IntObject is shown in Figure 2.

object specification IntObject;
x: integer; # internal data

operation Value(): integer;
begin

return x; # return the current value
end;

operation Assign(v: integer);
begin

x := v; # assign a new value
end;
...

begin
x := 0; # initialize objects to zero

end;���
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 2. Implementation part of an object type IntObject.

An operation implementation is similar to a procedure. An operation can only access its
own local variables and parameters and the local (internal) data of the object it is applied to.

Once an object type has been defined, instances (objects) of the type can be created by
declaring variables of the type. When an object is created, memory for the local variables of
the object is allocated and the initialization code is executed. From then on, operations can
be applied to the object. The Orca syntax to declare an object and apply an operation to it is
illustrated below:

- 7 -

X: IntObject;
tmp: integer;

X$Assign(3); # assign 3 to X
X$Add(1); # increment X
tmp := X$Value(); # read current value of X

Orca supports a single abstract data type mechanism, which can be used for encapsulat-
ing shared and non-shared data. In other words, the mechanism can also be used for regular
(sequential) abstract data types. Even stronger, the same abstract type can be used for creat-
ing shared as well as local objects. Neither object declarations nor object-type declarations
specify whether objects will be shared. This information is derived from the usage of
objects: only objects that are ever passed as shared parameter in a fork statement are shared.
All other objects are local and are treated as normal variables of an abstract data type.

Most other languages use different mechanisms for these two purposes. Argus [16], for
example, uses clusters for local data and guardians for shared data; clusters and guardians are
completely different. SR [17] provides a single mechanism (resources), but the overhead of
operations on resources is far too high to be useful for sequential abstract data types [18].

The fact that shared data are accessed through user-defined operations is an important
distinction between our model and other models. Shared virtual memory, for example, simu-
lates physical shared memory, so shared data are accessed through low-level read and write
operations. Linda’s Tuple Space model also uses a fixed number of built-in operations to
add, read, and delete shared tuples. Having users define their own operations has many
advantages, both for the ease of programming and for the implementation, as we will discuss
shortly.

Although data-objects logically are shared among processes, their implementation does
not need physical shared memory. In worst case, an operation on a remote object can be
implemented using message passing. The general idea, however, is for the implementation to
take care of the physical distribution of data-objects among processors. As we will see in
Section 4, one way to achieve this goal is to replicate shared data-objects. By replicating
objects, access control to shared objects is decentralized, which decreases access costs and
increases parallelism. This is a major difference with, say, monitors [19], which centralize
control to shared data.

2.4. Synchronization

An abstract data type in Orca can be used for creating shared as well as local objects. For
objects that are shared among multiple processes, the issue of synchronization arises. Two
types of synchronization exist: mutual exclusion synchronization and condition synchroniza-
tion [20]. We will look at them in turn.

Mutual exclusion synchronization

Mutual exclusion in our model is done implicitly, by executing all operations on objects indi-
visibly. Conceptually, each operation locks the entire object it is applied to, does the work,
and releases the lock only when it is finished. To be more precise, the model guarantees seri-
alizability [21] of operation invocations: if two operations are applied simultaneously to the
same data-object, then the result is as if one of them is executed before the other; the order of

- 8 -

invocation, however, is nondeterministic.

An implementation of the model need not actually execute all operations one by one.
To increase the degree of parallelism, it may execute multiple operations on the same object
simultaneously, as long as the effect is the same as for serialized execution. For example,
operations that only read (but do not change) the data stored in an object can easily be exe-
cuted in parallel.

Since users can define their own operations on objects, it is up to the user to decide
which pieces of code should be executed indivisibly. For example, an abstract data type
encapsulating an integer variable may have an operation to increment the integer. This
operation will be done indivisibly. If, on the other hand, the integer is incremented through
separate read and write operations (i.e., first read the current value, then write the incre-
mented value back), the increment will be done as two separate actions, and will thus not be
indivisible. This rule for defining which actions are indivisible and which are not is both
easy to understand and flexible: single operations are indivisible; sequences of operations are
not. The model does not provide mutual exclusion at a granularity lower than the object
level. Other languages (e.g., Sloop [22]) give programmers more accurate control over
mutual exclusion synchronization.

Our model does not support indivisible operations on a collection of objects. Operations
on multiple objects require a distributed locking protocol, which is complicated to implement
efficiently. Moreover, this generality is seldom needed by parallel applications. We prefer
to keep our basic model simple and implement more complicated actions on top of it. Opera-
tions in our model therefore apply to single objects and are always executed indivisibly.
However, the model is sufficiently powerful to allow users to construct locks for multi-
operation sequences on different objects, so arbitrary actions can be performed indivisibly.

Condition synchronization

The second form of synchronization is condition synchronization, which allows processes to
wait (block) until a certain condition becomes true. In our model, condition synchronization
is integrated with operation invocations by allowing operations to block. Processes syn-
chronize implicitly through operations on shared objects. A blocking operation consists of
one or more guarded commands:

operation op(formal-parameters): ResultType;
begin

guard condition1 do statements1 od;
...
guard conditionn do statementsn od;

end;

The conditions are Boolean expressions, called guards. To simplify the presentation, we will
initially assume that guards are side-effect free. The problem of side effects will be con-
sidered later, when discussing hierarchically used objects.

The operation initially blocks until at least one of the guards evaluates to “true.” Next,
one true guard is selected nondeterministically, and its sequence of statements is executed.

The Boolean expressions may depend on the parameters and local data of the operation
and on the data of the object. If a guard fails, it can later become true, after the state of the

- 9 -

object has been changed. It may thus be necessary to evaluate the guards several times.

We have chosen this form of condition synchronization because it is highly simple and
fits well into the model. An alternative approach that we considered and rejected is to use a
separate synchronization primitive, independent of the mechanism for shared objects. To
illustrate the difference between these two alternatives, we will first look at a specific exam-
ple.

Consider a shared Queue object with operations to add elements to the tail and retrieve
elements from the head:

operation Add(x: item); # add to tail
operation Get(): item; # get from head

A process trying to fetch an element from an empty queue should not be allowed to continue.
In other words, the number of Get operations applied to a queue should not exceed the
number of Add operations. This is an example of a synchronization constraint on the order in
which operations are executed. There are at least two conceivable ways for expressing such
constraints in our model:

1. Processes trying to execute Get should first check the status of the queue and
block while the queue is empty. Doing a Get on an empty queue results in an
error.

2. The Get operation itself blocks while the queue is empty. Processes execut-
ing a Get on an empty queue therefore block automatically.

In both cases, a new primitive is needed for blocking processes. In the first case this primi-
tive is to be used directly by user processes; in the second case only operations on objects use
it. Also, the first approach calls for an extra operation on queues that checks if a given queue
is empty. (For both approaches, unblocking the process and removing the head element from
the queue should be done in one indivisible action, to avoid race conditions.)

The first approach has one major drawback: the users of an object are responsible for
satisfying synchronization constraints. This is in contrast with the general idea of abstract
data types to hide implementation details of objects from users. The second approach is
much cleaner, as the implementer of the object takes care of synchronization and hides it
from the users. We therefore use the second approach and do condition synchronization
inside the operations. The model allows operations to block; processes can only block by
executing operations that block.

An important issue in the design of the synchronization mechanism is how to provide
blocking operations while still guaranteeing the indivisibility of operation invocations. If an
operation may block at any point during its execution, operations can no longer be serialized.
Our solution is to allow operations only to block initially, before modifying the object. An
operation may wait until a certain condition becomes true, but once it has started executing, it
cannot block again.

- 10 -

2.5. Hierarchical objects

Abstract data types are useful for extending a language with new types. This method for
building new types is hierarchical: existing abstract data types can be used to build new ones.
The internal data of an object can therefore themselves be objects. Note that hierarchical
objects are not derived from the constituent objects by extending them (as can be done in
object-oriented languages). The old and new objects have a “use” relation, not an “inheri-
tance” relation.

This nesting of objects causes a difficult design problem, as we will explain below.
Suppose we have an existing object type OldType, specified as follows:

object specification OldType;
operation OldOperation1(): boolean;
operation OldOperation2();

end;

We may use this object type in the implementation of another type (we omit the specification
of this type):

object implementation NewType;
NestedObject: OldType; # a nested object
operation NewOperation();
begin

guard NestedObject$OldOperation1() do
...
NestedObject$OldOperation2();

od;
end;

end;

Objects of the new type contain an object, NestedObject, of type OldType. The latter object
is called a nested object, because it is part of another object. Note that instances of NewType
are still single objects whose operations are executed indivisibly. The nested object is invisi-
ble outside its enclosing object, just like any other internal data.

The implementer of NewType can be seen as a user of OldType. So, the implementer of
NewType does not know how OldType is implemented. This lack of information about the
implementation of the operations on OldType causes two problems.

The first problem is illustrated by the use of OldOperation1 in the guard of NewOpera-
tion. We need to know whether the guard expressions have side effects, as they may have to
be evaluated several times. Unfortunately, we do not know whether the invocation of OldO-
peration1 has any side effects. If the operation modifies NestedObject, it does have side
effects. We can only tell so, however, by looking at the implementation of this operation,
which goes against the idea of abstract data types.

The second problem is more subtle. Suppose a process declares an object NewObject of
type NewType and shares it with some of its child processes. If one of the processes invokes
NewOperation on NewObject, the implementation of this object will invoke OldOperation2
on the nested object. The problem is that the latter operation may very well block. If so, we
violate the rule that operations are only allowed to block initially. In this situation, there are
two equally unattractive options:

1. Suspend the process invoking NewOperation, but allow other processes to

- 11 -

access the object. This means, however, that the operation will no longer be
indivisible.

2. Block the calling process, but do not allow any other processes to access the
object. This implies that the process will be suspended forever, because no
other process will be able to modify NestedObject.

One could solve this problem by disallowing blocking operations on nested objects, but again
this requires looking at the implementation of an operation to see how it may be used.

Cooper and Hamilton have observed similar conflicts between parallel programming
and data abstraction in the context of monitors [23]. They propose extending operation
specifications with information about their implementation, such as whether or not the opera-
tion suspends or has any side effects. We feel it is not very elegant to make such conces-
sions, however. The specification of an abstract data type should not reveal information
about the implementation.

We solve these two problems by refining the execution model of operations. Conceptu-
ally, an operation is executed as follows. The operation repeatedly tries to evaluate its guards
and then tries to execute the statements of a successful guard. Before evaluating a guard,
however, the operation (conceptually) creates a copy of the entire object, including any
nested (or deeply nested) objects. This copy is used during the evaluation of the guard and
execution of the statements. The operation commits to a certain alternative, as soon as both

1. The guard succeeds (evaluates to true), and

2. The corresponding statements can be executed without invoking any block-
ing operations on nested objects.

As soon as a guard fails or the statements invoke a blocking operation, the copy of the entire
object is thrown away and another alternative is tried. So, an operation does not commit until
it has finished executing a successful guard and its corresponding statements, without invok-
ing any blocking operations on nested objects. If all alternatives of an operation fail, the
operation (and the process invoking it) blocks until the object is modified by another process.
If an operation commits to a certain alternative, the object is assigned the current value of the
copy (i.e., the value after evaluating the selected guard and statements).

This scheme solves both of the above problems. An operation on a nested object used
inside a guard (e.g., OldOperation1 in the code above) may have side effects; these side
effects will not be made permanent until the guard is actually committed to. An operation on
a nested object may also block. As long as all guards of that operation fail, however, the
alternative containing the invocation will never be committed to. The operation has no
effects until it commits to a certain alternative. Before commitment, it may try some alterna-
tives, but their effects are thrown away. If the operation commits to an alternative, both the
guards and statements of the alternative are executed without blocking. Therefore, operation
invocations are still executed indivisibly.

The key issue is how to implement this execution model efficiently. It is quite expen-
sive to copy objects before trying each alternative. In nearly all cases, however, the compiler
will be able to optimize away the need for copying objects. Many object types will not have
any nested objects, so they do not suffer from the problems described above. Also, an optim-
izing compiler can check if an operation used in a guard or body is side-effect free and

- 12 -

nonblocking. To do so, it needs to access the implementation code of nested objects. This is
not any different from other global optimizations (e.g., inline substitution), which basically
need to access the entire source program. Also, the same mechanism can be used to test for
circularities in nested object definitions.

Our solution therefore preserves abstraction from the programmer’s point of view, but
sometimes requires global optimizations to be efficient. The current Orca compiler performs
these optimizations. This approach keeps the language simple and relies on optimization
techniques for achieving efficiency.

2.6. Data structures

In most procedural languages, data structures like graphs, trees, and lists are built out of
dynamically allocated and deallocated blocks of memory, linked together through pointers.
For distributed programming, this approach has many disadvantages. The main difficulty is
how to transmit a complex data structure containing pointers to a remote machine. Pointers,
if implemented as addresses, are only meaningful within a single machine, so they need spe-
cial treatment before being transmitted. Even more important, most languages do not con-
sider such graphs to be first-class objects, so it is hard to determine what has to be transmit-
ted.

In addition to these problems, giving the programmer explicit control over allocation
and deallocation of memory usually violates type security. A programmer can deallocate
memory and then use it again, leading to obscure bugs.

In Orca, these problems are solved through the introduction of a graph data type. A
graph in Orca consists of zero or more nodes, each having a number of fields, similar to the
fields of a record. Also, the graph itself may contain global fields, which are used to store
information about the entire graph (e.g., the root of a tree or the head and tail of a list). Indi-
vidual nodes within a graph are identified by values of a nodename type. A variable or field
of a nodename type is initialized to NIL, which indicates it does not name any node yet. As
an example, a binary-tree type may be defined as follows:

type node = nodename of BinTree;
type BinTree =

graph # global field:
root: node; # name of the root of the tree

nodes # fields of each node:
data: integer;
LeftSon,
RightSon: node; # names of left and right sons

end;

This program fragment declares a graph type BinTree. Each node of such a graph contains a
data field and fields identifying the left and right sons of the node. Furthermore, the graph
has one global field, identifying the root node of the tree.

A tree data structure is created by declaring a variable of this type. Initially, the tree is
empty, but nodes can be added and deleted dynamically as follows:

- 13 -

t: BinTree;
n: node;

n := addnode(t); # add a node to t, store its name in n
deletenode(t, n); # delete the node with given name from t

The construct addnode adds a new node to a graph and returns a unique name for it,
chosen by the run time system. The run time system also automatically allocates memory for
the new node. In this sense, addnode is similar to the standard procedure new in Pascal [24].
As a crucial difference between the two primitives, however, the addnode construct specifies
the data structure for which the new block of memory is intended. Unlike in Pascal, the run
time system of Orca can keep track of the nodes that belong to a certain graph. This informa-
tion is used whenever a copy of the graph has to be created, for example when it is passed as
a value parameter to a procedure or remote process. Also, the information is used to delete
the entire graph at the end of the procedure in which it is declared.

The global fields of a graph and the fields of its nodes are accessed through designators
that are similar to those for records and arrays:

t.root := n; # access the global field of t
t[n].data := 12; # access data field of node n
t[n].LeftSon := addnode(t); # create left son of n
n := t[n].LeftSon # store name of left son in n

Note that the designator for the field of a node specifies the name of the node as well as the
graph itself. This notation differs from the one in Pascal, where nodes are identified by
pointers only. The notation of Orca may be somewhat more cumbersome, but it has the
advantage that it is always clear which data structure is accessed. Also, it makes it possible
to represent a nodename as an index into a graph, rather than as a machine address.
Nodenames can therefore be transmitted to remote machines without losing their meaning.

Graphs in Orca are type-secure. If a certain node is deleted from a graph and one of its
fields is subsequently accessed, a run-time error occurs, as illustrated by the following piece
of code:

n := addnode(t);
deletenode(t, n);
t[n].data := 12; # causes a run-time error

The run time system checks whether the graph t contains a node with the given name. Furth-
ermore, each invocation of addnode(t) returns a different name, so the same nodename will
not be re-used for denoting a different node. Whenever a node has been deleted from a
graph, any future references to the node will cause a run-time error.

The data structuring mechanism of Orca has some properties of arrays and some proper-
ties of pointer-based data structures. The mechanism supports dynamic allocation of memory
through the addnode primitive. Graphs, like arrays, are first-class entities in Orca. This
design has several advantages: they can easily be passed to remote processes; assignment is
defined for graph variables; functions may return a value of a graph type; and graphs are
automatically deallocated at the end of their enclosing procedure. The latter feature reduces
the need for automatic garbage collection of nodes. Nodenames in Orca have the safety
advantages of both pointers and array indices. Like pointers, they cannot be manipulated
through arithmetic operations; like array indices, any illegal usage of a nodename will be

- 14 -

detected at run time.

The graph type of Orca also has some disadvantages, compared to pointers. With
pointers, for example, any two data structures can be hooked together through a single
assignment statement. With graphs, this is more difficult. If the programmer anticipates the
join, the data structures can be built using a single graph. If separate graphs are used, one
will have to be copied into the other.

Another disadvantage is the run-time overhead of graphs. A graph is represented as a
table with pointers to the actual nodes, so the nodes are accessed indirectly through this
table [3]. Also, there is a cost in making graphs type-secure, since each node access has to be
validated. We are currently working on decreasing these costs through global optimizations.

3. AN EXAMPLE OBJECT TYPE AND APPLICATION

In this section, we will give an example of an object type definition in Orca and of a parallel
application that uses this object type. The object defines a generic job queue type, with
operations to add and delete jobs. It is used in several parallel programs based on the repli-
cated workers paradigm. With this paradigm, a master process repeatedly generates jobs to
be executed by workers. Communication between the master and workers takes place
through the job queue. One such application, parallel branch-and-bound, will be discussed.

3.1. An example object type

The specification of the object type GenericJobQueue is shown in Figure 3. The formal
parameter T represents the type of the elements (jobs) of the queue.

generic (type T)
object specification GenericJobQueue;

operation AddJob(job: T); # add a job to the tail of the queue
operation NoMoreJobs(); # invoked when no more jobs will be added
operation GetJob(job: out T): boolean;

Fetch a job from the head of the queue. This operation
fails if the queue is empty and NoMoreJobs has been invoked.

end generic;���
�
�
�
�
�
�
�

���
��
�
�
�
�
�
�
�

Fig. 3. Specification part of the object type definition GenericJobQueue.

Three different operations are defined on job queues. AddJob adds a new job to the tail
of the queue. The operation NoMoreJobs is to be called when no more jobs will be added to
the queue (i.e., when the master has generated all the jobs). Finally, the operation GetJob
tries to fetch a job from the head of the queue. If the queue is not empty, GetJob removes the
first job from the queue and returns it through the out parameter job; the operation itself
returns “true” in this case. If the queue is empty and the operation NoMoreJobs has been
applied to the queue, the operation fails and returns “false”. If none of these two
conditions—queue not empty or NoMoreJobs invoked—holds, the operation blocks until one
of them becomes true.

The implementation part is shown in Figure 4. Objects of this type contain two vari-
ables: a Boolean variable done and a variable Q of type queue. The latter type is defined as a

- 15 -

graph with two global fields, identifying the first and last element of the queue. Each ele-
ment contains the nodename of the next element in the queue and data of formal type T.

The implementation of AddJob uses straightforward list manipulation. The GetJob
operation is more interesting. It contains two guards, reflecting the two conditions described
above.

3.2. An example parallel application in Orca

We will now look at one example application in Orca: the traveling salesman problem (TSP).
A salesman is given an initial city in which to start, and a list of cities to visit. Each city
must be visited once and only once. The objective is to find the shortest path that visits all
the cities. The problem is solved using a parallel branch-and-bound algorithm.

The algorithm we have implemented in Orca uses one manager process to generate ini-
tial paths for the salesman, starting at the initial city but visiting only part of the other cities.
A number of worker processes further expand these initial paths, using the “nearest-city-
first” heuristic. A worker systematically generates all paths starting with a given initial path
and checks if they are better than the current shortest full path. The length of the current best
path is stored in a data-object of type IntObject (see Figure 1). This object is shared among
all worker processes. The manager and worker processes communicate through a shared job
queue, as shown in Figure 5.

The Orca code for the master and worker processes is shown in Figure 6. The master
process creates and initializes the shared object minimum, and forks one worker process on
each processor except its own one. Subsequently, it generates the jobs by calling a function
GenerateJobs (not shown here) and then forks a worker process on its own processor. In this
way, job generation executes in parallel with most of the worker processes. The final worker
process is not created until all jobs have been generated, so job generation will not be slowed
down by a competing process on the same processor.

Each worker process repeatedly fetches a job from the job queue and executes it by cal-
ling the function tsp. The tsp function generates all routes that start with a given initial route.
If the initial route passed as parameter is longer than the current best route, tsp returns
immediately, because such a partial route cannot lead to an optimal solution. If the route
passed as parameter is a full route (visiting all cities), a new best route has been found, so the
value of minimum should be updated. It is possible, however, that two or more worker
processes simultaneously detect a route that is better than the current best route. Therefore,
the value of minimum is updated through the indivisible operation Min, which checks if the
new value presented is actually less than the current value of the object.

If the job queue is empty and no more jobs will be generated, the operation GetJob will
return “false” and the workers will terminate.

4. A DISTRIBUTED IMPLEMENTATION OF ORCA

Although Orca is a language for programming distributed systems, its communication model
is based on shared data. The implementation of the language therefore should hide the physi-
cal distribution of the hardware and simulate shared data in an efficient way. We have
several implementations of the language [3]. The implementation described in this paper is

- 16 -

generic
object implementation GenericJobQueue;

type ItemName = nodename of queue;
type queue =

graph # a queue is represented as a linear list
first, last: ItemName; # first/last element of queue

nodes
next: ItemName; # next element in queue
data: T; # data contained by this element

end;

done: boolean; # set to true if NoMoreJobs has been invoked.
Q: queue; # the queue itself

operation AddJob(job: T);
p: ItemName;

begin # add a job to the tail of the queue
p := addnode(Q); # add a new node to Q, return its name in p
Q[p].data := job; # fill in data field of the new node; next field is NIL
if Q.first = NIL then # Is it the first node?

Q.first := p; # yes; assign it to global data field
else

Q[Q.last].next := p; # no; set predecessor’s next field
fi;
Q.last := p; # Assign to "last" global data field

end;

operation NoMoreJobs();
begin # Invoked to indicate that no more jobs will be added

done := true;
end;

operation GetJob(job: out T): boolean;
p: ItemName;

begin # Try to fetch a job from the queue
guard Q.first /= NIL do # A job is available

p := Q.first; # Remove it from the queue
Q.first := Q[p].next;
if Q.first = NIL then Q.last := NIL; fi;
job := Q[p].data; # assign to output parameter
deletenode(Q,p); # delete the node from the queue
return true; # succeeded in fetching a job

od;

guard done and (Q.first = NIL) do
return false; # All jobs have been done

od;
end;

begin # Initialization code for JobQueues ; executed on object creation.
done := false; # initialize done to false

end generic;��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 4. Implementation part of the object type definition GenericJobQueue.

- 17 -

Manager Worker

Worker

Worker

job job...

JobQueue Minimum

Fig. 5. Structure of the Orca implementation of TSP. The Manager and Workers

are processes. The JobQueue is a data-object shared among all these processes.

Minimum is a data-object of type IntObject; it is read and written by all workers.

based on replication and reliable broadcasting. We will briefly discuss a second implemen-
tation in Section 4.4.

Replication of data is used in several fault-tolerant systems (e.g., ISIS [25]) to increase
the availability of data in the presence of processor failures. Orca, in contrast, is not intended
for fault-tolerant applications. In our implementation, replication is used to decrease the
access costs to shared data.

Briefly stated, each processor keeps a local copy of each shared data-object. This copy
can be accessed by all processes running on that processor (see Figure 7). Operations that do
not change the object (called read operations) use this copy directly, without any messages
being sent. Operations that do change the object (called write operations) broadcast the new
values (or the operations) to all the other processors, so they are updated simultaneously.

The implementation is best thought of as a three layer software system, as shown below:
����������������������������
compiled application programs����������������������������

run time system����������������������������
reliable broadcasting�����������������������������

�
�
�
�

�
�
�
�
�

The top layer is concerned with applications, which are written in Orca and compiled to
machine code by the Orca compiler. The executable code contains calls to the Orca run time
system; for example, to create and manipulate processes and objects.

The middle layer is the run time system (RTS). It implements the primitives called by
the upper layer. For example, if an application performs an operation on a shared data-
object, it is up to the RTS to ensure that the system behaves as if the object was placed in
shared memory. To achieve this, the RTS of each processor maintains copies of shared
objects, which are updated using reliable broadcasting.

The bottom layer is concerned with implementing the reliable broadcasting, so that the

- 18 -

type PathType = array[integer] of integer;
type JobType =

record
len: integer; # length of partial route
path: PathType;# the partial route itself

end;
type DistTab = ...; # distances table
object TspQueue = new GenericJobQueue(JobType);

Instantiation of the GenericJobQueue type

process master();
minimum: IntObject; # length of current best path (shared object)
q: TspQueue; # the job queue (shared object)
i: integer;
distance: DistTab; # table with distances between cities

begin
minimum$assign(MAX(integer)); # initialize minimum to infinity
for i in 1.. NCPUS() - 1 do

fork one worker per processor, except current processor
fork worker(minimum, q, distance) on(i);

od;
GenerateJobs(q, distance); # main thread generates the jobs
q$NoMoreJobs(); # all jobs have been generated now
fork worker(minimum, q, distance) on(0);

jobs have been generated; fork a worker on this cpu too
end;

process worker(
minimum: shared IntObject; # length of current best path
q: shared TspQueue; # job queue
distance: DistTab) # distances between cities

job: JobType;
begin

while q$GetJob(job) do # while there are jobs to do:
tsp(job.len, job.path, minimum, distance);
do sequential tsp

od;
end;���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6. Orca code for the master and worker processes of TSP.

RTS does not have to worry about what happens if a broadcast message is lost. As far as the
RTS is concerned, broadcast is error free. It is the job of the bottom layer to make it work.

Below, we will describe the protocols and algorithms in each layer. This section is
structured top down: we first discuss the applications layer, then the RTS layer, and finally
the reliable broadcast layer.

- 19 -

process-1

process-n

copy
of
X

CPU 1

process-1

process-n

copy
of
X

CPU 2

n e t w o r k

Fig. 7. Replication of data-objects in a distributed system

4.1. Top layer: Orca application programs

Application programs are translated by the Orca compiler into executable code for the target
system.2 The code produced by the compiler contains calls to RTS routines that manage
processes, shared data-objects, and complex data structures (e.g., dynamic arrays, sets, and
graphs). In this paper, we will only discuss how operation invocations are compiled.

As described above, it is very important to distinguish between read and write opera-
tions on objects. The compiler therefore analyses the implementation code of each operation
and checks whether the operation modifies the object to which it is applied.3 In most
languages, this optimization would be difficult to implement. Consider, for example, a Pas-
cal statement containing an indirect assignment through a pointer variable:

pˆ.f := 0;

It is hard to determine which data structure is affected by this statement. Orca does not have
this problem, since the name of the data structure is given by the programmer. The Orca
equivalent of the Pascal code given above would look like:

G[n].f := 0;

which explicitly specifies the name of the data structure that will be modified. So, in Orca
the compiler can determine which operations modify the object’s data structures and which
do not.

The compiler stores its information in an operation descriptor. This descriptor also
specifies the sizes and modes (input or output) of the parameters of the operation. If an Orca
program applies an operation on a given object, the compiler generates a call to the RTS
primitive INVOKE. This routine is called as follows:

INVOKE(object, operation-descriptor, parameters ...);

The first argument identifies the object to which the operation is applied. (It is a network-
���������������
2 We assume the target system does not contain multiple types of CPUs. Although a heterogeneous
implementation of Orca is conceivable, we do not address this issue here.
3 The actual implementation is somewhat more complicated, since an operation may have multiple
guards (alternatives), some of which may be read-only.

- 20 -

wide name for the object.) The second argument is the operation descriptor. The remaining
arguments of INVOKE are the parameters of the operation. The implementation of this prim-
itive is discussed below.

4.2. Middle layer: The Orca run time system

The middle layer implements the Orca run time system. As mentioned above, its primary job
is to manage shared data-objects. In particular, it implements the INVOKE primitive
described above. For efficiency, the RTS replicates objects so it can apply operations to local
copies of objects whenever possible.

There are many different design choices to be made related to replication, such as where
to replicate objects, how to synchronize write operations to replicated objects, and whether to
update or invalidate copies after a write operation. We have looked at many alternative stra-
tegies [26]. The RTS described in this paper uses full replication of objects, updates replicas
by applying write operations to all replicas, and implements mutual exclusion synchroniza-
tion through a distributed update protocol.

The full replication scheme was chosen for its simplicity and good performance for
many applications. An alternative is to let the RTS decide dynamically where to store repli-
cas. This strategy is employed in another implementation of Orca [26].

We have chosen to use an update scheme rather than an invalidation scheme for two
reasons. First, in many applications objects contain large amounts of data (e.g., a 100K bit
vector). Invalidating a copy of such an object is wasteful, since the next time the object is
replicated its entire value must be transmitted. Second, in many cases updating a copy will
take no more CPU time and network bandwidth than sending invalidation messages.

The presence of multiple copies of the same logical data introduces the so-called incon-
sistency problem. If the data are modified, all copies must be modified. If this updating is
not done as one indivisible action, different processors will temporarily have different values
for the same logical data, which is unacceptable.

The semantics of shared data-objects in our model define that simultaneous operations
on the same object must conceptually be serialized. The exact order in which they are to be
executed is not defined, however. If, for example, a read operation and a write operation are
applied to the same object simultaneously, the read operation may observe either the value
before or after the write, but not an intermediate value. However, all processes having access
to the object must see the events happen in the same order.

The RTS described here solves the inconsistency problem by using a distributed update
protocol that guarantees that all processes observe changes to shared objects in the same
order. One way to achieve this would be to lock all copies of an object prior to changing the
object. Unfortunately, distributed locking is quite expensive and complicated. Our update
protocol does not use locking. The key to avoid locking is the use of an indivisible, reliable
broadcast primitive, which has the following properties:

d Each message is sent reliably from one source to all destinations.

d If two processors simultaneously broadcast two messages (say m1 and m2), then either
all destinations first receive m1, or they all receive m2 first. Mixed forms (some get m1
first, some get m2 first) are excluded by the software protocols.

- 21 -

This primitive is implemented by the bottom layer of our system, as will be described in Sec-
tion 4.3, Here, we simply assume the indivisible, reliable broadcast exists.

The RTS uses an object-manager for each processor. The object-manager is a light-
weight process (thread) that takes care of updating the local copies of all objects stored on its
processor. Objects (and replicas) are stored in an address space shared by the object-
manager and user processes. User processes can read local copies directly, without interven-
tion by the object-managers. Write operations on shared objects, on the other hand, are
marshalled and then broadcast to all the object-managers in the system. A user process that
broadcasts a write operation suspends until the message has been handled by its local object-
manager. This is illustrated in Figure 8.

INVOKE(obj, op, parameters)
if op.ReadOnly then # check if it’s a read operation

set read-lock on local copy of obj;
call op.code(obj, parameters); # do operation locally
unlock local copy of obj

else
broadcast GlobalOperation(obj, op, parameters) to all managers;
block current process;

fi;

Fig. 8. Implementation of the INVOKE run time system primitive. This routine is

called by user processes.

Each object-manager maintains a queue of messages that have arrived but that have not
yet been handled. As all processors receive all messages in the same order, the queues of all
managers are the same, except that some managers may be ahead of others in handling the
messages at the head of the queue.

The object-manager of each processor handles the messages of its queue in strict FIFO
order. A message may be handled as soon as it appears at the head of the queue. To handle a
message GlobalOperation(obj, op, parameters) the message is removed from the queue,
unmarshalled, the local copy of the object is locked, the operation is applied to the local
copy, and finally the copy is unlocked. If the message was sent by a process on the same pro-
cessor, the manager unblocks that process (see Figure 9).

receive GlobalOperation(obj, op, parameters) from W →
set write-lock on local copy of obj;
call op.code(obj, parameters); # apply operation to local copy
unlock local copy of obj
if W is a local process then

unblock(W);
fi;

Fig. 9. The code to be executed by the object-managers for handling GlobalOpera-

tion messages.

Write operations are executed by all object-managers in the same order. If a read

- 22 -

operation is executed concurrently with a write operation, the read may either be executed
before or after the write, but not during it. Note that this is in agreement with the serializa-
tion principle described above.

4.3. Bottom layer: Reliable broadcast

In this section we describe a simple protocol that allows a group of nodes on an unreliable
broadcast network to broadcast messages reliably. The protocol guarantees that all of the
receivers in the group receive all broadcast messages and that all receivers accept the mes-
sages in the same order. The main purpose of this section is to show that a protocol with the
required semantics is feasible, without going into too much detail about the protocol itself.

With current microprocessors and LANs, lost or damaged packets and processor crashes
occur infrequently. Nevertheless, the probability of an error is not zero, so they must be dealt
with. For this reason, our approach to achieving reliable broadcast is to make the normal
case highly efficient, even at the expense of making error-recovery more complex, since
error recovery will not be done often.

The basic reliable broadcast protocol works as follows. When the RTS wants to broad-
cast a message, M , it hands the message to its kernel. The kernel then encapsulates M in an
ordinary point-to-point message and sends it to a special kernel called the sequencer . The
sequencer’s node contains the same hardware and kernel as all the others. The only differ-
ence is that a flag in the kernel tells it to process messages differently. If the sequencer
should crash, the protocol provides for the election of a new sequencer on a different node.

The sequencer determines the ordering of all broadcast messages by assigning a
sequence number to each message. When the sequencer receives the point-to-point message
containing M , it allocates the next sequence number, s and broadcasts a packet containing M
and s . Thus all broadcasts are issued from the same node, by the sequencer. Assuming that
no packets are lost, it is easy to see that if two RTSs simultaneously want to broadcast, one of
them will reach the sequencer first and its message will be broadcast to all the other nodes
first. Only when that broadcast has been completed will the other broadcast be started. The
sequencer provides a global ordering in time. In this way, we can easily guarantee the atomi-
city of broadcasting.

Although most modern networks are highly reliable, they are not perfect, so the protocol
must deal with errors. Suppose some node misses a broadcast packet, either due to a com-
munication failure or lack of buffer space when the packet arrived. When the following
broadcast packet eventually arrives, the kernel will immediately notice a gap in the sequence
numbers. It was expecting s next, and it got s + 1, so it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer asking it for
copies of the missing message (or messages, if several have been missed). To be able to
reply to such requests, the sequencer stores old broadcast messages in its history buffer . The
missing messages are sent directly to the process requesting them.

As a practical matter, the sequencer has a finite amount of space in its history buffer, so
it cannot store broadcast messages forever. However, if it could somehow discover that all
machines have received broadcasts up to and including k , it could then purge the first k
broadcast messages from the history buffer.

- 23 -

The protocol has several ways of letting the sequencer discover this information. For
one thing, each point-to-point message to the sequencer (e.g., a broadcast request), contains,
in a header field, the sequence number of the last broadcast received by the sender of the
message. In this way, the sequencer can maintain a table, indexed by node number, showing
that node i has received all broadcast messages 0 up to Ti , and perhaps more. At any
moment, the sequencer can compute the lowest value in this table, and safely discard all
broadcast messages up to and including that value. For example, if the values of this table
are 8, 7, 9, 8, 6, and 8, the sequencer knows that everyone has received broadcasts 0 through
6, so they can be deleted from the history buffer.

If a node does not need to do any broadcasting for a while, the sequencer will not have
an up-to-date idea of which broadcasts it has received. To provide this information, nodes
that have been quiet for a certain interval, ∆t, can just send the sequencer a special packet
acknowledging all received broadcasts. The sequencer can explicitly ask for this information
if it runs out of history space,

Besides the protocol described above (Method 1), we have designed and implemented
another protocol (Method 2) that does not send messages to the sequencer first. Instead, the
kernel of the sender immediately broadcasts the message. Each receiving kernel stores the
message and the sequencer broadcasts a short acknowledgement message for it. These ack-
nowledgements again carry sequence numbers, which define the ordering of the original mes-
sages. If a kernel receives an acknowledgement with the right (i.e., next in line) sequence
number, it delivers the original message to the application.

Both protocols guarantee the same semantics, but have different performances under
different circumstances. With Method 1, each message is sent over the network twice (once
to the sequencer and once from the sequencer to the other kernels). Method 2 uses less
bandwidth than Method 1 (the message appears only once on the network), but generates
more interrupts, because it uses two broadcast messages (one from the sender to the other
kernels and one short message from the sequencer to all kernels). For the implementation of
the Orca run time system we use Method 1, because the messages generated by the run time
system are short and because Method 1 steals less computing cycles from the Orca applica-
tion to handle interrupts.

In philosophy, the protocol described above somewhat resembles the one described by
Chang and Maxemchuk [27], but they differ in some major aspects. With our protocol, mes-
sages can be delivered to the user as soon as one (special) node has acknowledged the mes-
sage. In addition, fewer control messages are needed in the normal case (no lost messages).
Our protocol therefore is highly efficient, since, during normal operation, only two packets
are needed (assuming that a message fits in a single packet), one point-to-point packet from
the sender to the sequencer and one broadcast packet from the sequencer to everyone. A
comparison between our protocol and other well known protocols (e.g., those of Birman and
Joseph [28], Garcia-Molina and Spauster [29], and several others) is given in [30].

- 24 -

4.4. Comparison with an RPC-based Protocol

Above, we have described one implementation of Orca, based on full replication of objects
and on a distributed update protocol using indivisible broadcasting. Below, we will compare
this implementation with another one based on partial replication and Remote Procedure Call
(RPC).

Updating replicas with RPC is more complicated than with indivisible broadcast. The
problem is that all replicas must be updated in a consistent way. To assure consistency, the
RPC system uses a two-phase update protocol. During the first phase, all copies are updated
and locked. After all updates have been acknowledged, the second phase begins, during
which all copies are unlocked.

This protocol is much more expensive than the one based on broadcasting. The time for
an update to complete depends on the number of copies. It therefore makes sense to use a
partial replication strategy, and only replicate objects where they are needed. The RPC sys-
tem maintains statistics about the number of read and write operations issued by each proces-
sor for each object. Based on this information, it decides dynamically where to store the
object and where to keep copies. The system can dynamically migrate the object or create
and delete copies.

The statistics impose some overhead on the operations, but in general the savings in
communication time are well worth this overhead. Still, in most cases, the RPC system has
more communication costs than the broadcast system. For the TSP program, for example, it
is far more efficient to update the global bound variable through a single broadcast message
than through multiple RPCs.

The RPC system is more efficient if the read/write ratio of an object is low. In this case,
the broadcast system will needlessly replicate the object, but the RPC system will observe
this behavior and decide dynamically not to replicate the object.

5. PERFORMANCE OF EXAMPLE APPLICATIONS

In this section we will take a brief look at the performance of some example Orca programs.
The main goal of this section is to show that, at least for some realistic applications, good
speedups can be obtained with our approach.

The prototype distributed implementation we use is based on the layered approach
described in the previous section. The prototype runs on top of the Amoeba system, which
has been extended with the broadcast protocol described earlier.

The implementation runs on a distributed system, containing 16 MC68030 CPUs (run-
ning at 16 Mhz) connected to each other through an 10 Mbit/s Ethernet [31]. The implemen-
tation uses Ethernet multicast communication to broadcast a message to a group of proces-
sors. All processors are on one Ethernet and are connected to it by Lance chip interfaces.

The performance of the broadcast protocol on the Ethernet system is described in [30].
The time needed for multicasting a short message reliably to two processors is 2.6 msec.
With 16 receivers, a multicast takes 2.7 msec.4 This high performance is due to the fact that
���������������
4 In an earlier implementation of the protocol [32] the delay was 1.4 msec. The difference is entirely
due to a new routing protocol on which the group communication protocol is implemented. (The
Amoeba kernel can now deal with different kinds of networks and route messages dynamically over
multiple networks).

- 25 -

our protocol is optimized for the common case (i.e., no lost messages). During the experi-
ments described below, the number of lost messages was found to be zero.

We have used the implementation for developing several parallel applications written in
Orca. Some of these are small, but others are larger. The largest application we currently
have is a parallel chess program, consisting of about 2500 lines of code. In addition to TSP,
smaller applications include matrix multiplication, prime number generation, and sorting.
Below, we will give performance measurements of three sample programs running on the
Ethernet implementation.

5.1. Parallel Traveling Salesman Problem

The first application, the Traveling Salesman Problem (TSP), was described in Section 3.2.
The program uses two shared objects: a job queue and an IntObject containing the length of
the current best path (see Figure 5). It should be clear that reading of the current best path
length will be done very often, but since this is a local operation, there is no communication
overhead. Updating the best path happens much less often, but still only requires one broad-
cast message.

Although updates of the best path happen infrequently, it is important to broadcast any
improvements immediately. If a worker uses an old (i.e., inferior) value of the best path, it
will investigate paths that could have been pruned if the new value had been known. In other
words, the worker will search more nodes than necessary. This search overhead may easily
become a dominating factor and cause a severe performance degradation.

The performance of the traveling salesman program (for a randomly generated graph
with 12 cities) is given in Figure 10. The implementation achieves a speedup close to linear.
With 16 CPUs it is 14.44 times faster than with 1 CPU.

5.2. Parallel all-pairs shortest paths problem

The second application we describe here is the All-pairs Shortest Paths problem (ASP). In
this problem it is desired to find the length of the shortest path from any node i to any other
node j in a given graph. The parallel algorithm we use is similar to the one given in [33],
which is a parallel version of Floyd’s algorithm. The distances between the nodes are
represented in a matrix. Each processor computes part of the result matrix. The algorithm
requires a nontrivial amount of communication and synchronization among the processors.

The performance of the program (for a graph with 300 nodes) is given in Figure 11.
The parallel algorithm performs 300 iterations; after each iteration, an array of 300 integers is
sent from one processor to all other processors. In spite of this high communication over-
head, the implementation still has a good performance. With 16 CPUs, it achieves a speedup
of 15.88. One of the main reasons for this good performance is the use of broadcast mes-
sages for transferring the array to all processors.

5.3. Successive Overrelaxation

Both TSP and ASP benefit from the use of broadcasting. We will now consider an applica-
tion that only needs point-to-point message passing. The application is successive overrelax-
ation (SOR), which is an iterative method for solving discretized Laplace equations on a grid.

- 26 -

Speedup

Number of processors

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. Perfect speedup
� � � Speedup for Orca

Fig. 10. Measured speedup for the Orca implementation of the Traveling Salesman

Problem.

Speedup

Number of processors

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. Perfect speedup
� � � Speedup for Orca

Fig. 11. Measured speedup for the Orca implementation of the All-pairs Shortest

Paths problem.

- 27 -

During each iteration, the algorithm considers all non-boundary points of the grid. For each
point, SOR first computes the average value of its four neighbors and then updates the point
using this value.

We have parallelized SOR by partitioning the grid into regions and assigning these
regions to different processors. The partitioning of the grid is such that, at the beginning of
an iteration, each processor needs to exchange values with only two other processors. The
parallel algorithm therefore only needs point-to-point message passing. With our current
prototype implementation of Orca, however, all communication is based on broadcasting.
The message passing is simulated in Orca by having the sender and receiver share a buffer
object. Since shared objects are updated through broadcasting, all processors will receive the
update message. So, SOR is a worst-case example for our system.

Speedup

Number of processors

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�
�

�
�

�
�

�
�

�
�

�
� � �

� �

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. Perfect speedup
� � � Speedup for Orca

Fig. 12. Measured speedup for the Orca implementation of Successive Overrelaxa-

tion.

The measured speedup for SOR is shown in Figure 12. Despite the high communication
overhead, the program still achieves a reasonable speedup. The speedup on 16 CPUs is 11.4.

6. RELATED WORK

In this section, we will compare our language with several related languages and systems. In
particular, we will look at objects (as used in parallel object-based languages), Linda’s Tuple
Space, and Shared Virtual Memory.

- 28 -

Objects

Objects are used in many object-based languages for parallel or distributed programming,
such as Emerald [15], Amber [34], and ALPS [35]. Objects in such languages typically have
two parts:

1. Encapsulated data.

2. A manager process that controls access to the data.

The data are accessed by sending a message to the manager process, asking it to perform a
certain operation on the data. As such objects contain a process as well as data, they are said
to be active.

Although, in some sense, parallel object-based languages allow processes (objects) to
share data (also objects), their semantics are closer to message passing than to shared vari-
ables. Access to the shared data is under full control of the manager process. In ALPS, for
example, all operations on an object go through its manager process, which determines the
order in which the operations are to be executed. Therefore, the only way to implement the
model is to store an object on one specific processor, together with its manager process, and
to translate all operations on the object into remote procedure calls to the manager process.

Our model does not have such centralized control. Objects in Orca are purely passive:
they contain data, but no manager process. Access control to shared data-objects is distri-
buted; it is basically determined by only two rules:

1. Operations must be executed indivisibly.

2. Operations are blocked while their guards are false.

Therefore, the model can be implemented by replicating data-objects on multiple processors,
as we discussed in Section 4. Read operations can be applied to the local copy, without any
message passing being involved. Moreover, processes located on different processors can
apply read operations simultaneously, without losing any parallelism.

Linda’s Tuple Space

Linda [14] is one of the first languages to recognize the disadvantages of central manager
processes for guarding shared data. Linda supports so-called distributed data structures,
which can be accessed simultaneously by multiple processes. In contrast, object-based
languages typically serialize access to shared data structures. Linda uses the Tuple Space
model for implementing distributed data structures.

In general, distributed data structures in Linda are built out of multiple tuples. Different
tuples can be accessed independently from each other, so processes can manipulate different
tuples of the same data structure simultaneously. In principle, multiple read operations of
the same tuple can also be executed simultaneously. Tuples are (conceptually) modified by
taking them out of Tuple Space first, so modifications of a given tuple are executed strictly
sequentially.

Although the idea of distributed data structures is appealing, we think the support given
by the Tuple Space for implementing such data structures has important disadvantages. For
distributed data structures built out of single tuples, mutual exclusion synchronization is done
automatically. Operations on complex data structures (built out of multiple tuples), however,

- 29 -

have to be synchronized explicitly by the programmer. In essence, Tuple Space supports a
fixed number of built-in operations that are executed indivisibly, but its support for building
more complex indivisible operations is too low-level [36].

In Orca, on the other hand, programmers can define operations of arbitrary complexity
on shared data structures; all these operations are executed indivisibly, so mutual exclusion
synchronization is always done automatically by the run time system. This means it is the
job of the implementation (the compiler and run time system) to see which operations can be
executed in parallel and which have to be executed sequentially. As discussed above, one
way of doing this is by distinguishing between read and write operations and executing reads
in parallel on local copies; more advanced implementations are also feasible.

Shared Virtual Memory

Shared Virtual Memory (SVM) [6] simulates physical shared memory on a distributed sys-
tem. It partitions the global address space into fixed-sized pages, just as with virtual
memory. Each processor contains some portion of the pages. If a process tries to access a
page that it does not have, it gets a page-fault, and the operating system will then fetch the
page from wherever it is located. Read-only pages may be shared among multiple proces-
sors. Writable pages must reside on a single machine. They cannot be shared. If a processor
needs to modify a page, it will first have to invalidate all copies of the page on other proces-
sors.

There are many important differences between the implementation of our model and
SVM. SVM is (at least partly) implemented inside the operating system, so it can use the
MMU registers. In Orca, everything except for the broadcast protocol is implemented in
software outside the operating system. This difference gives SVM a potential performance
advantage.

Still, our model has important advantages over SVM. First, shared data-objects are
accessed through well-defined, high-level operations, whereas SVM is accessed through
low-level read and write instructions. Consequently, we have a choice between invalidating
objects after a write operation or updating them by applying the operation to all copies (or,
alternatively, sending the new value). With SVM, there is no such choice; only invalidating
pages is viable [6]. In many cases, however, invalidating copies will be far less efficient than
updating them.

Several researchers have tried to solve this performance problem by relaxing the con-
sistency constraints of the memory (e.g., [37, 38]). Although these weakly consistent
memory models may have better performance, we fear that they also ruin the ease of pro-
gramming for which DSM was designed in the first place. Since Orca is intended to simplify
applications programming, Orca programmers should not have to worry about consistency.
(In the future, we may investigate whether a compiler is able to relax the consistency trans-
parently, much as is done in the Munin system [39].)

A second important difference between Orca and SVM is the granularity of the shared
data. In SVM, the granularity is the page-size, which is fixed (e.g. 4K). In Orca, the granu-
larity is the object, which is determined by the user. So, with SVM, if only a single bit of a
page is modified, the whole page has to be invalidated. This property leads to the well-
known problem of ‘‘false sharing.’’ Suppose a process P repeatedly writes a variable X and

- 30 -

process Q repeatedly writes Y. If X and Y happen to be on the same page, this page will con-
tinuously be moved between P and Q, resulting in thrashing. If X and Y are on different
pages, thrashing will not occur. Since SVM is transparent, however, the programmer has no
control over the allocation of variables to pages. In Orca, this problem does not occur, since
X and Y would be separate objects and would be treated independently.

A more detailed comparison between our work and Shared Virtual Memory is given
in [40].

7. CONCLUSION

We have described a new model and language for parallel programming of distributed sys-
tems. In contrast with most other models for distributed programming, our model allows
processes on different machines to share data. The key idea in our model is to encapsulate
shared data in data-objects and to access these objects through user-defined operations. The
advantages of this approach for the programmer and the implementer are summarized below.

Since operations on objects are always executed indivisibly, mutual exclusion synchron-
ization is done automatically, which simplifies programming. Condition synchronization is
integrated into the model by allowing operations to suspend. The mechanism for suspending
operations is easy to use and is only visible to the implementer of the operations and not to
their users.

The implementation of our model takes care of the physical distribution of shared data
among processors. In particular, the implementation replicates shared data, so each process
can directly read the local copy on its own processor. After a write operation, all replicas are
updated by broadcasting the operation. This update strategy is only possible because shared
data are accessed through user-defined operations. SVM, for example, cannot efficiently
update replicas after a write operation, since a logical write operation may require many
machine instructions, each modifying memory. Updating the memory by broadcasting the
machine instructions would be highly inefficient, as the communication overhead per instruc-
tion would be enormous.

We have also defined a language, Orca, based on shared data-objects. The design of
Orca avoids problems found in many other distributed languages, such as pointers and global
variables. A major goal in the design was to keep the language simple. In particular, we
have given several examples of simplifying the language design by having the compiler do
certain optimizations.

We have studied one distributed implementation of Orca. This implementation runs on
a collection of processors connected through a broadcast network. We have not looked at
implementations of Orca on other systems, such as hypercubes. Such an implementation
would be feasible, however, since the Orca language itself does not depend on the network
topology. To port Orca to other architectures, a new run time system (probably with a new
replication strategy) would be needed, but the language and its application programs would
not have to be changed.

Our approach is best suited for moderate-grained parallel applications in which
processes share data that are read frequently and modified infrequently. A good example is
the TSP program, which uses a shared object that is read very frequently and is changed only

- 31 -

a few times. This program shows an excellent performance. The applications also benefit
from the efficient broadcast protocol used in our implementation. The usefulness of broad-
casting was demonstrated by the ASP program.

In conclusion, we think that Orca is a useful language for writing parallel programs for
distributed systems. Also, we have shown that the language is efficient for a range of appli-
cations.

ACKNOWLEDGEMENTS

We would like to thank Wim van Leersum for implementing the Orca compiler and Erik
Baalbergen, Fred Douglis, Arnold Geels, and the anonymous referees for giving useful com-
ments on the paper.

REFERENCES

1. A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J. Jan-
sen, and G. van Rossum, ‘‘Experiences with the Amoeba Distributed Operating Sys-
tem,’’ Comm. ACM 33(2), pp. 46-63 (Dec. 1990).

2. H.E. Bal, R. van Renesse, and A.S. Tanenbaum, ‘‘Implementing Distributed Algorithms
Using Remote Procedure Calls,’’ Proc. AFIPS Nat. Computer Conf., Chicago, Ill. 56,
pp. 499-506, AFIPS Press (June 1987).

3. H.E. Bal, Programming Distributed Systems, Silicon Press, Summit, NJ (1990).

4. H.E. Bal and A.S. Tanenbaum, ‘‘Distributed Programming with Shared Data,’’ Proc.
IEEE CS 1988 Int. Conf. on Computer Languages, Miami, Fl., pp. 82-91 (Oct. 1988).

5. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, ‘‘Experience with Distributed Pro-
gramming in Orca,’’ Proceedings IEEE CS 1990 International Conference on Computer
Languages, New Orleans, LA, pp. 79-89 (March 1990).

6. K. Li and P. Hudak, ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ Proc.
5th Ann. ACM Symp. on Princ. of Distr. Computing, Calgary, Canada, pp. 229-239
(Aug. 1986).

7. C. Ghezzi and M. Jazayeri, Programming Language Concepts, John Wiley, New York,
NY (1982).

8. A.D. Birrell and B.J. Nelson, ‘‘Implementing Remote Procedure Calls,’’ ACM Trans.
Comp. Syst. 2(1), pp. 39-59 (Feb. 1984).

9. H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, ‘‘Programming Languages for Distributed
Computing Systems,’’ ACM Computing Surveys 21(3) (Sept. 1989).

10. R. Bisiani and A. Forin, ‘‘Architectural Support for Multilanguage Parallel Program-
ming on Heterogenous Systems,’’ Proc. 2nd Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, Calif., pp. 21-30 (Oct.
1987).

11. K. Li, ‘‘IVY: A Shared Virtual Memory System for Parallel Computing,’’ Proc. 1988
Int. Conf. Parallel Processing (Vol. II), St. Charles, Ill., pp. 94-101 (Aug. 1988).

12. E.W. Felten and S.W. Otto, ‘‘A Highly Parallel Chess Program,’’ Proc. of the Int. Conf.

- 32 -

on Fifth Generation Computer Systems 1988, Tokyo, pp. 1001-1009 (Nov. 1988).

13. D.R. Cheriton, ‘‘Preliminary Thoughts on Problem-oriented Shared Memory: A Decen-
tralized Approach to Distributed Systems,’’ ACM Operating Systems Review 19(4),
pp. 26-33 (Oct. 1985).

14. S. Ahuja, N. Carriero, and D. Gelernter, ‘‘Linda and Friends,’’ IEEE Computer 19(8),
pp. 26-34 (Aug. 1986).

15. E. Jul, H. Levy, N. Hutchinson, and A. Black, ‘‘Fine-Grained Mobility in the Emerald
System,’’ ACM Trans. Comp. Syst. 6(1), pp. 109-133 (Feb. 1988).

16. B. Liskov, ‘‘Distributed Programming in Argus,’’ Commun. ACM 31(3), pp. 300-312
(March 1988).

17. G.R. Andrews, R.A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and G. Town-
send, ‘‘An Overview of the SR Language and Implementation,’’ ACM Trans. Program.
Lang. Syst. 10(1), pp. 51-86 (Jan. 1988).

18. H.E. Bal, ‘‘An Evaluation of the SR Language Design,’’ report IR-219, Vrije Universi-
teit, Amsterdam (August 1990).

19. C.A.R. Hoare, ‘‘Monitors: An Operating System Structuring Concept,’’ Commun. ACM
17(10), pp. 549-557 (Oct. 1974).

20. G.R. Andrews and F.B. Schneider, ‘‘Concepts and Notations for Concurrent Program-
ming,’’ ACM Computing Surveys 15(1), pp. 3-43 (March 1983).

21. K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, ‘‘The Notions of Consistency
and Predicate Locks in a Database System,’’ Commun. ACM 19(11), pp. 624-633 (Nov.
1976).

22. S.E. Lucco, ‘‘Parallel Programming in a Virtual Object Space,’’ SIGPLAN Notices
(Proc. Object-Oriented Programming Systems, Languages and Applications 1987),
Orlando, FL 22(12), pp. 26-34 (Dec. 1987).

23. R.C.B. Cooper and K.G. Hamilton, ‘‘Preserving Abstraction in Concurrent Program-
ming,’’ IEEE Trans. Softw. Eng. SE-14(2), pp. 258-263 (Feb. 1988).

24. N. Wirth, ‘‘The Programming Language Pascal,’’ Acta Informatica 1(1), pp. 35-63
(1971).

25. T.A. Joseph and K.P. Birman, ‘‘Low Cost Management of Replicated Data in Fault-
Tolerant Distributed Systems,’’ ACM Trans. Comp. Syst. 4(1) (Feb. 1987).

26. H.E. Bal, M.F. Kaashoek, A.S. Tanenbaum, and J. Jansen, ‘‘Replication Techniques for
Speeding up Parallel Applications on Distributed Systems,’’ Report IR-202, Vrije
Universiteit, Amsterdam, The Netherlands (Oct. 1989).

27. J. Chang and N.F. Maxemchuk, ‘‘Reliable Broadcast Protocols,’’ ACM Trans. Comp.
Syst. 2(3), pp. 251-273 (Aug. 1984).

28. K.P. Birman and T.A. Joseph, ‘‘Reliable Communication in the Presence of Failures,’’
ACM Trans. Comp. Syst. 5(1), pp. 47-76 (Feb. 1987).

29. H. Garcia-Molina and A. Spauster, ‘‘Message Ordering in a Multicast Environment,’’
Proc. 9th Int. Conf. on Distr. Comp. Syst., Newport Beach, CA, pp. 354-361 (June
1989).

- 33 -

30. M.F. Kaashoek and A.S. Tanenbaum, ‘‘Group Communication in the Amoeba Distri-
buted Operating System,’’ 11th Int’l Conf. on Distributed Computing Systems, Arling-
ton, Texas, pp. 222-230 (20-24 May 1991).

31. R.M. Metcalfe and D.R. Boggs, ‘‘Ethernet: Distributed Packet Switching for Local
Computer Networks,’’ Commun. ACM 19(7), pp. 395-404 (July 1976).

32. M.F. Kaashoek, A.S. Tanenbaum, S. Flynn Hummel, and H.E. Bal, ‘‘An Efficient Reli-
able Broadcast Protocol,’’ ACM Operating Systems Review 23(4), pp. 5-20 (Oct. 1989).

33. J.-F. Jenq and S. Sahni, ‘‘All Pairs Shortest Paths on a Hypercube Multiprocessor,’’
Proc. of the 1987 Int. Conf. on Parallel Processing, St. Charles, Ill., pp. 713-716 (Aug.
1987).

34. J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield, ‘‘The Amber
System: Parallel Programming on a Network of Multiprocessors,’’ Proc. of the 12th
ACM Symp. on Operating System Principles, Litchfield Park, AZ, pp. 147-158 (Dec.
1989).

35. P. Vishnubhotia, ‘‘Synchronization and Scheduling in ALPS Objects,’’ Proc. 8th Int.
Conf. on Distributed Computing Systems, San Jose, CA, pp. 256-264 (June 1988).

36. M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum, ‘‘Experience with the Distributed Data
Structure Paradigm in Linda,’’ Workshop on Experiences with Building Distributed and
Multiprocessor Systems, Ft. Lauderdale, FL. (Oct. 1989a).

37. R.G. Minnich and D.J. Farber, ‘‘Reducing Host Load, Network Load, and Latency in a
Distributed Shared Memory,’’ Proc. 10th Int. Conf. on Distributed Computing Systems,
Paris, pp. 468-475 (May 1990).

38. P.W. Hutto and M. Ahamad, ‘‘Slow Memory: Weakening Consistency to Enhance Con-
currency in Distributed Shared Memories,’’ Proceedings 10th International Conference
on Distributed Computing Systems, Paris, pp. 302-309 (May 1990).

39. J.K. Bennet, J.B. Carter, and W. Zwaenepoel, ‘‘Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence,’’ Proceedings 2nd Symposium on Princi-
ples and Practice of Parallel Programming, Seattle, WA (March 1990).

40. W.G. Levelt, M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum, ‘‘A Comparison of Two
Paradigms for Distributed Shared Memory,’’ IR-221, Vrije Universiteit, Amsterdam,
The Netherlands (August 1990).

