
Paramecium: An extensible object-based kernel

Leendert van Doorn
Philip Homburg

Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

In this paper we describe the design of an extensible kernel, called Paramecium. This
kernel uses an object-based software architecture which together with instance naming, late
binding and explicit overrides enables easy reconfiguration. Determining which components
reside in the kernel protection domain is up to the user. An certification authority or one of
its delegates certifies which components are trustworthy and therefore permitted to run in the
kernel protection domain. These delegates may include validation programs, correctness
provers, and system administrators. The main advantage of certifications is that it can handle
trust and sharing in a non-cooperative environment.

1. Introduction

Traditional kernel design tends to get in the
way of contemporary application demands. For
example, diverse application areas like multi-media,
wide area communication, and parallel computa-
tions have very different operating system require-
ments. Providing a single virtual machine to sup-
port all these demands, either results in very large
and complex systems that provide the necessary
support but at a high cost in added complexity and
loss of efficiency, or in application specific and usu-
ally very rigid systems.

In this position paper we propose a design for
a highly dynamic kernel, which enables us to build
application specific operating systems without the
loss of generality. Central in this design is a com-
mon software architecture for operating system and
application components. We use this architecture to
construct a toolbox of components. These com-
ponents can, with some minimal kernel support, be
configured dynamically to reside either in the kernel
or in the application’s address space. The system
uses late binding and dynamic loading to instantiate
components at run time.

Determining which components reside in user
and kernel space is up to the user. An authority cer-
tifies which components are trustworthy and are
therefore permitted to run in the kernel address
space. Each component contains a certificate that is
validated by the kernel by means of a simple secu-
rity architecture.

The certification authority will usually
delegate its authority to subordinates. These include
system administrators, experimenters who need
complete control over a particular machine, and pro-
grams. Multiple delegates can also be used to form
an escape hatch: if one subordinate fails to certify a
component another can be tried. This is especially
useful when programs are used for certification, as
these may have a limited application domain.

This approach generalizes the direction taken
by two other projects, the Exo-kernel [2] and SPIN
[1]. These projects allow any application to insert
user code into the kernel’s protection domain and
provide elaborate software technology, such as res-
tricted, type safe languages† and sandboxing‡ [11],
to prevent it from causing harm.

Although this software approach is certainly
useful and might be sufficient for many application,
it does not suffice for components that manipulate
trust or sharing in non-cooperative environments.
For example, inserting application components for
fast protocol processing into a shared network dev-
ice driver is close to impossible. Software verifica-
tion of the component cannot easily reveal packet
snooping, hence it is hard to detect a breach in ker-
nel security. Certifying the component by a trusted
authority and verifying this at load time solves the
trust problem and is more efficient because of the
absence of run time checks.

Because we use the same software architec-
ture for building application programs, program-
mers can use the same mechanisms to control which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15449626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 2 -

version of a component is used. Constructing inter-
posing agents [3] is trivial, enabling the construction
of powerful monitoring tools.

To validate this software architecture and cer-
tification technique we are building a prototype ker-
nel, called Paramecium , which is intended to pro-
vide support for parallel programming. We have
chosen this area because an associated group,
involved in parallel programming research, needs
better and finer grained control over the machine’s
hardware. They are also able to provide us with
many applications, which we can use to test our
design.

The remainder of this paper is divided into
five sections. Section 2 discusses the necessary
software architecture for building components,
which is followed by Section 3 describing a set of
standard abstractions provided by the Paramecium
kernel. Section 4 describes the certification con-
cepts, followed by section 5 describing related
work.

2. Software Architecture

In order to support the toolbox approach we
have designed a simple, programming language
independent architecture that provides object
instances and interfaces as its main abstractions.
Both operating system and application components
are written according to this architecture. This
allows their components to be interchanged.

In our architecture an object is conceptually a
collection of methods and instance data. Each
object exports one or more named interfaces. This
provides support for evolving and generic inter-
faces. For example, adding a measurement inter-
face to an RPC object does not require recompila-
tion of its users, since the RPC interface itself does
not change.

An interface is a set of methods, state pointers
and type information. Objects can be operated on
only through the methods in the interfaces they
export. Objects are relatively coarse grained. They
can contain operating system components such as a
scheduler, IP layer, or a device driver, or application
components such as memory allocators or matrices.
To support code sharing the architecture supports
method delegation.

Besides objects and interfaces the architecture
also supports a third concept: composition. A com-
position is an ordinary object composed of other
object instances. Composition is to objects what
objects are to data: an encapsulation technique. For
example, the Paramecium kernel is a composition,
composed of objects that manage interrupts, user
contexts, etc. Note that composition can be applied
recursively.

Objects are usually loaded dynamically on

demand. Objects in a composition, however, can be
loaded statically or dynamically. That is, the com-
position is either created at link time or run time.
The latter is the most common form of object com-
position since it allows for the composing objects to
be replaced by new instances. Static composition is
currently only used for building the resident part of
the kernel.

Each object has its own instance name and is
registered in a hierarchical name space together
with its object handle. This name is used by other
objects to bind to it. Standard operations exist to
bind to an existing object, load one from a reposi-
tory, and to obtain an interface from a given object
handle.

The main advantage of using a name space
for object instances is its ability to be reconfigured.
For example, building an interposing agent [3] for a
network device, /shared/network, consists of
building an interposing object (i.e., one that exports
a superset of the original object’s interfaces, reim-
plements those methods it sees fit and forwards the
others to the original object) and replace the object
handle in the name space. All further lookups for
/shared/network will result in a reference to
the interposing agent.

The name space is usually inherited from a
parent, i.e., the object that created it. Each object,
however, can provide a set of overrides which
allows it to locally reconfigure its name space: that
is, control the child objects it will import. This
mechanism allows the programmer to control and
specify the components its application will use.
Apart from being useful for debugging, together
with interposing objects it enables the construction
of powerful monitoring tools.

A potential drawback of an object based
software architecture, like ours, is performance.
This is mainly caused by the method invocation
overhead costs and the introduction of additional
software layers. Even though a method invocation
is usually just a procedure call, these tend to be
expensive on our target hardware (SPARC [5]).
Still, we expect the overhead to be relatively low
because our objects have a relatively large grain
size. We are, however, contemplating run time
inline techniques in case this might turn out to be a
bottleneck.

3. System Architecture

The Paramecium system architecture consists
of a nucleus and a repository of system components.
The nucleus is a protected and trusted component
which implements only those services that cannot be
moved into the application without jeopardizing the
system’s integrity. All other system components,
like thread packages, device drivers, and virtual



- 3 -

memory implementations reside outside this
nucleus. Depending on the configuration they can
be loaded in the kernel, or in the application’s pro-
tection domain.

The nucleus provides four services, which all
use a protection domain or context as their unit of
granularity. The four services are:

� Processor event management

All processor events (traps and interrupts) are
handled by this service. Components can register
call-backs which are called every time a specified
processor event occurs. A call-back consists of a
context, and the address of a call-back function.

Processor events are usually redirected to the
thread system to turn them into pop-up threads.
Once interrupts are pop-up threads, they can block,
and be scheduled just like any other ordinary thread.
For efficiency reasons, we delay the actual creation
of the pop-up thread by creating a proto-thread.
Only when the proto-thread is about to block or be
rescheduled do we turn it into a real thread. This
allows us to provide fast interrupt processing of user
code with proper thread semantics [10].

� Memory management

The management of virtual and physical
pages, and MMU contexts, is done by the memory
management service. Pages can be allocated
exclusively or shared among different protection
domains. Individual virtual pages can have fault
call-backs associated with them. Cross-domain
calls are implemented using per page fault-handlers
and resembles the one described in [6].

Objects can be placed in separate MMU con-
texts. This is useful for isolating faults when debug-
ging or when implementing active message like
invocations.

The memory management service also pro-
vides I/O space allocation. Device drivers use this
service to allocate I/O space and map in the device
registers into their protection domain. I/O spaces
can be allocated exclusively or shared, allowing
device registers to be mapped privately and on-
device buffers to be shared by other contexts.

� Directory service

The directory service implements the name
space as described in the previous section. It pro-
vides functions for registering, unregistering, and
binding of objects.

Cross-domain invocations are implemented
using proxies. Importing an object from another
protection domain, by means of the directory ser-
vice, causes a proxy to appear. This proxy provides
exactly the same set of interfaces as the original
object, but each interface entry will cause a page
fault when referenced. Control is then transferred to

a per page fault handler which will map in argu-
ments into the object’s protection domain, switch
context, and invoke the actual method. Return
values are handled similarly.

� Certification service

Objects can be associated with a certificate
that is validated by the certification service before
mapping it into a protection domain. The certifica-
tion service uses a message digest function, public
key cryptography, and a trusted certification agent
to validate credentials.

4. Certification

One of the most important functions of a ker-
nel in a non-cooperating environment is to preserve
the integrity of the system it runs on. Giving appli-
cations the ability to down-load arbitrary code into
the kernel potentially violates this assumption. To
overcome this dilemma we introduce a certification
authority which determines whether or not a com-
ponent is trustworthy enough to run in the kernel’s
protection domain.

The certification authority can choose to
delegate its certification powers to subordinates.
These may include programs, like type-safe
language compilers or automated correctness
provers, software test teams, system administrators,
and even graduate students. These subordinates
may be ordered in preference and provide an escape
hatch if one of the subordinates fails to certify. For
example, when the automatic program correctness
prover decides that it cannot complete the proof, it
might turn the problem over to the system adminis-
trator.

A certifier may take an arbitrary amount of
time to validate a given component. It will usually
be done off-line. This allows experimental object
code provers like [13] that usually tend to take more
time than, for example, sandboxing. This does not
exclude on-line certification by the kernel.

The certification and delegation mechanisms
are similar to those found in the Taos operating sys-
tem where they are used for secure communication
[4, 12]. In our system certificates include a message
digest of the component so that it is impossible to
modify the component after it has been certified.

The main advantages of certification are: It
allows for a wide range of certification techniques
and it is efficient. After a component’s certificate is
validated by the kernel it does not require any
further software checks, unless these checks are
required by the certification process. This is espe-
cially true when the certifier is a person who hand-
checked the component, all run time checks can
then be omitted.



- 4 -

Another advantage is that certification han-
dles trust and sharing. Certified kernel components
can include protocol stack implementations that are
shared between multiple non-cooperating users,
security modules, shared caches, etc. Trust and
sharing are important notions in an operating system
kernel that are hard to formalize and even harder to
check automatically. The main disadvantage of cer-
tification is that it requires public key cryptography
and key management.

5. Related work

Our work is similar to the Exo-Kernel [2] in
that both systems allow applications to manage sys-
tem resources and are intended to be flexible. The
main difference is that Paramecium allows dynamic
configuration of its operating system and applica-
tion software components. The Exo-kernel provides
this support in just one direction, from user to kernel
protection domain. Down-loading application com-
ponents is supported by the Exo-kernel by means of
software protection techniques, like type safe
languages and sandboxing, while Paramecium
depends on certification. We believe that certifica-
tion is more general. It encompasses the techniques
used by the Exo-kernel, and, in addition, is able to
deal with trust and sharing. Verifying a certificate
at load-time obviates the need for run time fault
checks thus allowing components to be more effi-
cient.

The SPIN [1] project is aimed at providing
extensible operating system support. Its main
mechanism is the ability to down-load application
code, written in a special type-safe language, into
the kernel protection domain. It is straightforward
to incorporate this technique in our certification sys-
tem by delegating the certification authority to a
trusted compiler for that language. Everything com-
piled by that compiler would then be automatically
certified and safe to run in the kernel protection
domain.

The name space concepts are somewhat simi-
lar to those found in the Spring operating system
[7], although they are actually based on ideas from
an early version of Amoeba [9]. Spring uses inheri-
tance for interface evolution which allows exten-
sions to an interface but not adaptations. Our
method is more flexible.

Chorus [8] experimented with migrating
user-level server code back into their microkernel to
increase the efficiency. Our approach, however, is
much more general. Many of the certification and
delegation ideas are based on the authentication
work by [4, 12]. that was used to secure network
communication and identities in the Taos operating
system.

References

1. B. Bershad, C. Chambers, S. Eggers, C. Maeda, D.
McNamee, P. Pardyak, S. Savage and E. G. Sirer,
SPIN - An Extensible Microkernel for
Application-specific Operating System Services,
Proc. of the 6th SIGOPS European Workshop,
ACM SIGOPS, Wadern, Germany, Sep. 1994, 68-
71.

2. D. Engler, M. F. Kaashoek and J. O’Toole, The
Operating Systems Kernel as a Secure
Programmable Machine, Proc. of the 6th SIGOPS
European Workshop, ACM SIGOPS, Wadern,
Germany, Sep. 1994, 62-67.

3. M. B. Jones, Interposing Agents: Transparently
Interposing User Code at the System Interface,
Proc. of the 14th Symp. on Operating System
Principles, ACM SIGOPS 27, 5 (Dec. 1993), 80-93.

4. B. Lampson, M. Abadi, M. Burrows and E.
Wobber, Authentication in Distributed Systems:
Theory and Practice, ACM Transactions on
Computer Systems 10, 4 (Nov. 1992), 265-310.

5. The SPARC Architecture Manual, Prentice Hall,
Englewood Cliffs, NJ, 1992.

6. D. Probert, J. T. Bruno and M. Karaorman,
SPACE: A New Approach to Operating System
Abstraction, Proc. of the International Workshop
on Object Orientation in Operating Systems, IEEE
CS, Palo Alto, CA., Oct. 1991.

7. S. Radia, M. N. Nelson and M. L. Powell, The
Spring Name Service, SMLI Tech. Rep.-93-16, Sun
Microsystems Laboratories Inc., Mountain View,
CA, Nov. 1993.

8. M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
P. Leonard, S. Langlois and W. Neuhauser, Chorus
Distribted Operating System, USENIX Computing
Systems 1 (Oct. 1988), 305-379.

9. A. S. Tanenbaum, R. van Renesse, H.
van Staveren, G. Sharp, S. Mullender, J. Jansen and
G. van Rossum, Experiences with the Amoeba
distributed operating system, Communications of
the ACM 33, 12 (Dec. 1990), 46-63.

10. L. van Doorn and A. S. Tanenbaum, Using Active
Messages to Support Shared Objects, Proc. of the
6th SIGOPS European Workshop, ACM SIGOPS,
Wadern, Germany, Sep. 1994, 112-116.

11. R. Wahbe, S. Lucco, T. E. Anderson and S. L.
Graham, Efficient Software-based Fault Isolation,
Proc. of the 14th Symp. on Operating System
Principles, ACM SIGOPS 27, 5 (Dec. 1993), 203-
216.

12. E. Wobber, M. Abadi, M. Burrows and B.
Lampson, Authentication in the Taos Operating
System, Proc. of the 14th Symp. on Operating
System Principles, ACM SIGOPS 27, 5 (Dec.
1993).

13. Y. Yu, Automated Proofs of Object Code for a
Widely Used Microprocessor, SRC 114, Digital
Equipment Corporation, Oct. 1993.


