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Abstract 

The Amoeba group communication system has two 
unique aspects: (I) it uses a sequencer-based protocol with 
negative acknowledgements for achieving a total order on 
all group messages; and (2) users choose the degree offault 
tolerance they desire. This paper reports on our design de- 
cisions in retrospect, the performance of the Amoeba group 
system, and our experiences using the system. We conclude 
that sequencer-based group protocols achieve high pelfor- 
mance (comparable to Amoeba’s fast remote procedure call 
implementation), that the scalability of our sequencer-based 
protocols is limited by message processing time, and that the 
flexibility and modularity of user-level implementations of 
protocols is likely to outweigh the potential performance 
loss. 

1 Introduction 

Group communication allows applications to send data 
to n destinations using a single message. Applications using 
group communication instead of point-to-point communica- 
tion are potentially easier to write and perform better. This 
paper reports on our design decisions in retrospect, the per- 
formance of the Amoeba group communication system, and 
our experiences using the system. 

The semantics of the Amoeba group primitives are sim- 
ple, powerful, and easy to understand. The primitives, for 
example, guarantee total ordering of group messages. The 
proposed primitives are also efficient: if a network supports 
physical multicast, a reliable group send can be done in just 
slightly more than two messages on the average, so that the 
performance of a reliable group send is roughly comparable 
to that of a remote procedure call (RPC) [6]. In addition, the 
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primitives are flexible: user applications can, for example, 
trade performance against fault tolerance. 

The Amoeba group communication primitives have been 
implemented in the kernel of the Amoeba distributed operat- 
ing system [2 1,3 11. The delay for a null broadcast to a group 
of 30 processes running on 20-MHz MC68030s connected 
by 10 Mbit/s Ethernet is 2.8 msec. The maximum through- 
put per group is 8 15 broadcasts per second per group. With 
multiple groups, the maximum number of broadcasts per 
second has been measured at 3175. In addition, we learned 
that (1) the scalability of our sequencer-based protocols is 
limited by message processing time; and (2) the flexibility 
and modularity of user-level implementations of protocols 
is likely to outweight the potential performance loss. 

The rest of this paper is structures as follows. Sec- 
tion 2 describes the main design decisions. Section 3 briefly 
overviews the implementation. Section 4 provides a detailed 
performance analysis of the group system. Section 5 dis- 
cusses the design decisions and our experience with imple- 
menting and using the system. Section 6 relates the Amoeba 
group system to other systems. Section 7 summarizes our 
main conclusions. 

2 The Amoeba Group System 

A group is a collection of processes that can communicate 
directly with each other using l-to-many messages. Table 1 
summarizes the primitives offered by Amoeba for group 
communication. To send to or to receive from a particular 
group, a process has to join the group. All members of a 
single group see all events concerning this group in the same 
order. Even the events of a new member joining the group, 
a member leaving the group, and recovery from a crashed 
member are totally-ordered. If, for example, one process 
calls JoinGroup and a member calls SendToGroup, either all 
members first receive the join and then the broadcast or all 
members first receive the broadcast and then the join. 

We have chosen to make the primitives blocking to sim- 
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I Primitive 
-,. 

I Desaxiation 

ReceiveFromGroup Receive a message from a group. -., 
ResetGroup Reform group after a processor failure. 
GetInfoGroup Re&n state information about a group. 
ForwardRequest ~ Forward an RPC request to another group member. 

Table 1. Gtwp communication interface. 

plify programming. Parallelism can be obtained Iby multi- 
threading the application. This decision is consiste:nt with 
our RPC interface for point-to-point communicatioln. 

Two aspects are unique to the Amoeba group commu- 
nication system: (1) Amoeba user’s can seleclt ithe de- 
gree of fault tolerance on group messages; (2) Amoeba 
uses an efficient sequencer-based protocol with an ncgative- 
acknowledgement scheme to achieve total ordering. We 
discuss the reasons that led to these design decisions in turn. 

2.1 Reliability 

Amoeba’s group primitives offer reliable communica- 
tion: the group protocol automatically recovers from lost, 
garbled, and duplicate messages. Although Arnoeba’s 
network protocol supports unreliable group communica- 
tion [ 191, we decided to make only reliable group commu- 
nication available to the programmer. This decision1 has the 
potential disadvantage that some users pay in performance 
for semantics that they do not need. It has the advantage, 
however, that the kernel only has to support one primitive, 
which simplifies the implementation and makes higher level 
software more uniform. For the same reason Amoeba also 
supports only one primitive for point-to-point communica- 

At the user’s request, the group primitives can also re- 
cover from processor failures. After a processor failure, the 

tion: RPC. 

protocol goes through a recovery phase in which the group 
is rebuilt from the processors that are still alive. The proto- 
col guarantees (1) that all the members in the rebuilt group 
receive all the messages successfully sent by any member 
of the original group before the failure and (2) that surviv- 
ing members of the rebuilt group will receive all messages 
successfully sent by any member of the new group after the 
failure. If not enough surviving members can be fcmnd for 
rebuilding the group, the recovery phase fails and the group 
will block until a sufficient number of processors recover. 
Processors may fail during the recovery algorithm. In this 
case the recovery algorithm starts again until it succeeds or 
fails. 

To rebuild a group requires consensus on whickl, proces- 

sors are alive. However, it is known that achieving consen- 
sus in an asynchronous distributed system with one faulty 

We decided to make the recovery from processor fail- 

processor is impossible [lo]. To be able to reach a deci- 

ures an option because providing these semantics is expen- 

sion about whether a process is alive, the algorithm sends 
messages asking the recipient to respond. If after a certain 
number of trials a process does not respond, the process 

sive and rnany applications do not need to recover from 

is declared “dead.” Using this unreliable failure-detection 

processor failures. We assume that processors fail due to 

method some processes may be declared dead although they 
are functioning fine (e.g., when a process does not respond 

crash failures [27]. Stronger semantics, such as automatic 

fast enough). Dead processes are removed from the group 
so that they cannot cause any problems for the remaining 

recovery from Byzantine failures (i.e., processors sending 

living processes. 

malicious or contradictory messages) and automatic recov- 
ery from network partitions, are not supported by the group 
primitives. Applications requiring these semantics have to 
implement them explicitly. For a more thorough discus- 
sion of the relation between broadcast semantics, failures, 
protocols for different types of failures, see Hadzilacos and 
Toueg [ll]. 

2.2 Ordering 

The group primitives guarantee a total ordering (with 
FIFO) per group. If two members send messages A and 
B concurrently, the protocol guarantees that all members 
of the group either receive first message A and then B, or 
first B and then A. It never happens that member 1 sees 
A and then B, and member 2 sees B and then A. Many 
distributed applications are easy to implement with a total 
ordering, as the programmer can think of processes running 
in lockstep [28]. 

In the past, most designers have chosen weaker protocols 
than we have, making application building more difficult. 
There are three key ideas that make our approach feasible. 
First, to guarantee a total ordering the protocol uses a central 
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machine per group, called the sequencer. If the sequencer 
crashes, the remaining group members elect a new one. Sec- 
ond, the protocol is based on a negative acknowledgement 
scheme. In a negative acknowledgement scheme, a process 
does not send an acknowledgement as soon as it receives a 
message. Instead, it sends a negative acknowledgement as 
soon as it discovers that it has missed a message. Third, ac- 
knowledgements are piggybacked on regular data messages 
to further reduce the number of protocol messages. These 
ideas are well known techniques. Chang and Maxemchuck, 
for example, discuss a protocol similar to ours that also 
combines these three ideas [7]. 

Although at first sight it may seem strange to use a cen- 
tralized sequencer in a distributed system, this decision is 
attractive. First, distributed protocols for total ordering are 
more complex, and often perform worse. For example, the 
distributed protocols for total ordering in Isis have been 
replaced by a dynamic-centralized protocol because the dis- 
tributed one was too complex and slow [5]. Second, today’s 
computers are very reliable and it is therefore unlikely that 
the sequencer will crash. 

The major disadvantage of having a sequencer is that the 
protocol does not scale to enormous groups. In practice, 
however, this drawback is minor. The sequencer totally or- 
ders messages for a single group, not for the whole system. 
Furthermore, the sequencer performs a simple and compu- 
tationally unintensive task and can therefore process many 
hundreds of messages per second. From experience we have 
observed that for many applications, hundreds of messages 
per second is sufficient. 

To keep the protocol simple we decided to use a static 
sequencer-based protocol. This decision simplifies the im- 
plementation because the sender of message always knows 
where the sequencer is, but may result in a loss of perfor- 
mance, as a message has to be transmitted first to the se- 
quencer. After publication of our initial results showing that 
a sequencer-based protocol performs well [ 171, a number of 
designers of group systems have chosen to use a sequencer- 
based protocol; most newer systems, such as Horus [33] 
and Transis [l], use a dynamic sequencer-based protocol, 
in which the sequencer migrates to the sender so that the 
next message can be sent without having to go remotely to 
acquire a sequence number. Initial experience with these 
systems indicates that this is an appropriate choice when 
messages come in bursts. 

There are two reasons for using a negative acknowledge- 
ment scheme. First, it reduces the number of acknowledge- 
ment messages. In a positive acknowledgement scheme, a 
process sends an acknowledgement back to the sender for 
a message. This works fine for point-to-point messages, 
but less well for broadcast messages. If a process sends a 
broadcast message to a group, with say 256 members, 255 
acknowledgements will be sent back to the sender at ap- 

proximately the same time. As network interfaces can only 
buffer a fixed number of messages, a number of the acknowl- 
edgements will be lost, leading to unnecessary timeouts and 
retransmissions of the original message. Second, today’s 
networks are very reliable and network packets are deliv- 
ered with a very high probability. Thus sending a message 
for when a process has not received a message is feasible. 
Another alternative would be to use a positive acknowledge- 
ment scheme, but force the receivers to wait some random 
time before sending an acknowledgement. This approach 
is attractive in unreliable networks, but it causes far more 
acknowledgements to be sent than with a negative acknowl- 
edgement scheme; it just spreads the acknowledgement load 
out over time. 

3 Implementation 

This section gives a brief summary of the implementation 
of the Amoeba group system. A detailed description of the 
implementation can be found elsewhere [14, 161. We give 
enough information to be able to understand the performance 
experiments described in the next section. 

3.1 The broadcast protocols 

In the common case, the Amoeba broadcast protocol uses 
two messages per SendToGroup. One point-to-point mes- 
sage from the sending process to the sequencer and one 
multicast message stamped with a new sequence number 
from the sequencer to the group. We call this method PB 
method. 

There is another two-messages protocol possible, which 
we call the BB method. In the BB method, the sender mul- 
ticasts the message. When the sequencer sees this multicast 
message, it multicasts a special accept message containing 
the newly assigned sequence number. A multicast message 
is only “official” when the accept message has been sent. 

The PB method uses bandwidth to reduce the number 
of interrupts, while the BB methods minimizes bandwidth 
usage at the cost of more interrupts. The PB method sends 
each message twice on the network, consuming 2n bytes of 
network bandwidth, where n is the number of bytes of user 
data. The BB method sends the full message only once over 
the networking, consuming n bytes of network bandwidth. 
On the other hand, every machine is interrupted twice, once 
for the message and once for the short accept message. The 
implementation switches dynamically between the PB and 
BB methods depending on message size. 

To recover from lost and garbled messages the sequencer 
keeps a history buffer of all recently sent messages. The 
sequencer deletes a message from the history buffer when it 
knows all processes in the group have received the message. 
In order to do so, each process piggybacks on each message 
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Group Communication 1 
FLIP Layer 

Network with multicast 1 Network without 

Table 2. Communication layers in the Amoeba 
kernel. 

it sends to the sequencer the sequence number of the last 
message it has received. 

If users desire recovery from group member failures, they 
can specify a resilience degree when calling CreakeGroup. 
A resilience of degree T means that the SendtoCroup prim- 
itive does not return control to the application until its ker- 
nel knows that at least T other kernels have received the 
message. To achieve this, a kernel sends the message to 
the sequencer point-to-point. (For clarity we use the PB 
method, but the protocol works for the BB method too.) 
The sequencer allocates the next sequence number, Ibut does 
not officially accept the message yet. Instead, it buffers the 
message and broadcasts to the group the message alnd se- 
quence number as a tentative broadcast to the group. When 
a member kernel receives this tentative broadcast, it buffers 
the message in its history buffer and if its member identifier 
is lower than r, it sends an acknowledgement message to 
the sequencer. (Any r members besides the sending kernel 
would be fine, but to simplify the implementation we pick 
the T lowest-numbered.) After receiving these r aclicnowl- 
edgements, the sequencer broadcasts the accept message. 
Only after receiving the accept message can members other 
than the sequencer deliver the message to the apphcation. 
That way, no matter which r machines crash, there ‘vi11 be 
at least one surviving member containing the full hismry, so 
everyone else can be brought up-to-date during the recovery, 

3.2 Implementation structure 

The group protocols and the underlying routing protocols 
are implemented in the Amoeba kernel. The communication 
system in the kernel consists of 3 layers (see Table 2). The 
top layer implements the protocols for group communication 
and RPC. The protocols described in the previous section 
are implemented here. 

Both the RPC and group communication modules use the 
Fast Local Internet Protocol (FLIP) [ 141 to send messages. 
FLIP is a connectionless (datagram) protocol, rough1 y anal- 
ogous to IP [25], but with increased functionality. For the 
experiments performed in this section we could have used 
multicast-IP [9] instead of FLIP, but FLIP has other proper- 
ties that makes it attractive for distributed computiqg. One 
of the major differences between IP and FLIP is :that IP 

addresses idlentify a host while FLIP addresses identify a 
process or a group of processes. This simplifies, for exam- 
ple, the implementation of process migration and of group 
communication. FLIP is specifically designed to support a 
high-performance group communication and BPC protocol 
rather than support byte-stream protocols like TCP or OS1 
TP4. FLIP treats the ability of a network to send multi- 
cast messages as an optimization over sending n separate 
point-to-point messages. 

4 Performance 

The measurements were taken on a collection of 30 
MC68030s (20 Mhz) connected by a 10 Mbit/s Ethernet. All 
processors were on the same Ethernet and were connected 
to the network by Lance chip interfaces (manufactured by 
Advanced Micro Devices). The protocols also work for 
network configurations in which members are located on 
different networks; FLIP will ensure that the messages are 
routed appropriately. We measured the case in which the 
members are located on the same network, as most traffic 
is within a single network and the results reported in the 
literature on comparable experiments are also fo’r this setup. 
Thus, in the experiments all the members can be reached by 
sending one multicast packet. The machines used in the ex- 
periments were able to buffer 32 Ethernet packets before the 
Lance overflowed and dropped packets. Each mleasurement 
was done 10,000 times on an almost quiet network. The size 
of the history buffer was 128 messages. The experiments 
measured failure-free performance. 

Most experiments were executed with messiages of size 
0 bytes, 1 Kbyte, 4 Kbyte, and 8,000 bytes. The last size 
was chosen to reflect a limitation in our implementation. 
In principle, the group communication protocols can handle 
messages larger than 8,000 bytes, but lower layelrs in the ker- 
nel make it impossible to measure the communication costs 
for these sizes in a meaningful way. Messages, larger than 
a network packet size have to be fragmented into multiple 
packets. To prevent a sender from overrunning a receiver, 
flow control has to be performed on messages consisting of 
multiple packets. For point-to-point communication many 
flow control algorithms exists [29], but it is not immediately 
clear how these should be extended to multicast communi- 
cation. Some recent progress has been made in this area [ 11, 
but the results are not widely applicable yet. The measure- 
ments in this section therefore do not include the time for 
flow control and we have used an arbitrary, but reasonable 
upper bound to the message size. 

The first experiment measures the delay for the PB 
method with T = 0. In this experiment one process con- 
tinuously broadcasts messages of size 0 bytes,, 1 Kbyte, 4 
Kbyte, and 8,000 bytes to a group of processes; (the size of 
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Figure 1. Delay for 1 sender using PB method 
(T = 0). 

the message excludes the 116’ bytes of protocol headers). 
All members continuously call ReceiveFromGroup. 

This experiment measures the delay seen from the send- 
ing process, between calling and returning from Send- 
ToGroup. The sending process runs on a different processor 
than the sequencer. Note that this is not the best possible 
case for our protocol, since only one processor sends mes- 
sages to the sequencer (i.e., no acknowledgements can be 
piggybacked by other processors). 

The results of the first experiment are depicted in Fig- 
ure 1. For a group of two processes, the measured delay 
for a O-byte message is 2.7 msec. Compared to the Amoeba 
RPC on the same architecture, the group communication is 
0.1 msec faster than the WC. For a group of 30 processes, 
the measured delay for a O-byte message is 2.8 msec. From 
these numbers, one can estimate that each node adds 4 mi- 
croseconds to the delay for a broadcast to a group of 2 nodes. 
Extrapolating, the delay for a broadcast to a group of 100 
nodes should be 3.2 msec. Sending an 8,000-byte message 
instead of a O-byte message adds roughly 20 msec. Because 
the PB method is used in this experiment, this large increase 
can be attributed to the fact that the complete message goes 
over the network twice. 

Figure 2 and Table 3 break down the cost for a single O- 
byte SendToGroup to a group of size 2, using the PB method. 
Both members call ReceiveFromGroup to receive messages. 
To reflect the typical usage of the group primitives, Receive- 
FrwmGroup is called by another thread than SendToGroup. 

’ 116 is the number of header bytes: 14 bytes for the Ethernet header, 
2 bytes Bow control, 40 bytes for the FLIP header, 28 bytes for the group 
header, and 32 bytes for the Amoeba user header. 

User 
Group 
FLIP 
Ethernet 

Sender 

Ul 
Gl 
Fl 
El 

Sequencer 

E2a 
F2a 
G2 

F2b 
E2b 

Ethernet 
FLIP 
Group 
FLIP 
Ethernet 
Group 
User 
Group 

Ethernet 
FLIP 
Group 
User 

E3 
F3 
G3 
u3 

Group 
User 
Group 

Figure 2. A break down of the events in a sin- 
gle SendToGroup - ReceiveFromGroup pair. The 
group size is 2 and the PB method is used 

Most of the time spent in user space is the context switch 
between the receiving and sending thread. The cost for the 
group protocol itself is 740 microseconds. 

The results of the same experiment but now using the BB 
method are depicted in Figure 3. The result for sending a 
O-byte message is, as can be expected, similar. For larger 
messages the results are dramatically better, since in the BB 
method the complete message only goes over the network 
once. At first sight, it may look as if the BB method is always 
as good as or better than the PB protocol. However, this is 
not true. From the point of view of a single sender there is no 

Total 1 2740 
I 

Table 3. The time spent in the critical path 
of each layer. The Ethernet time is the time 
spend on the wire plus the time spend in the 
driver and taking the interrupt. 
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4096 bytes 

$ii@S bytes 

Number of members 
Figure 3. Delay for 1 sender using BB method 
(r = 0). 

difference in performance, but for the receivers other than the 
sequencer there is. In the PB protocol they are interrupted 
once, while in the BB protocol they are interrupted twice. 

The next experiment measures the throughput of the 
group communication. In this experiment, all members of 
a given group continuously call SendToGmup. We measure 
both for the PB method and the BB method how mangy mes- 
sages per second the group can deal with. The results are 
depicted in Figure 4 and Figure 5. The maximum throlllghput 
is 815 O-byte messages per second. The number is llimited 
by the time that the sequencer needs to process a message. 
This time is equal to the time spent taking the interrupt plus 
the time spent in the driver, FLIP protocol, and broadcast 
protocol. On the 20-MHz 68030, this is almost 800 mi- 
croseconds, which gives an upper bound of 1250 messages 
per second. This number is not achieved because the: mem- 
ber running on the sequencer must also be schedulied and 
allowed to process the messages. 

The throughput decreases as the message size grows be- 
cause more data have to be copied. A receiver mm!;t copy 
each message twice: once from the Lance interface to the 
history buffer and once from the history buffer to user space. 
In the PB method, the sequencer must copy the message 
three times: one additional copy from the history buffer 
to the Lance interface to broadcast the message. (If our 
Lance interface could send directly from main memory, this 
last copy could have been avoided.) If Amoeba had sup- 
port for sophisticated memory management primitives like 
Mach [36], the second copy from the history buffer ito user 
space could also have been avoided; in this case one: could 
map the page containing the history buffer into the user’s ad- 
dress space, although manipulating the memory ma:ps also 

21D48 bytes 

h-6 bytes 

0 B&IO bytes 
I I I 

0 5 10 IS 
Number of senders 

Figure 4. Throughput for the PB Method. The 
group size is equal to the number of slenders. 
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1 
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i, 

: 

1024 bytes 
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L 
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o 1 TF f%:: 
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Figure 5. Throughput for the BB Methlod. The 
group size is equal to the number of senders. 
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+ 2 members 
- 4 members 
- 8 members 

0 ' 
I I I I I I I 

0 I 2 3 4 5 6 7 

Number of groups 
Figure 6. Throughput for groups of 2,4, and 8 
members running in parallel and using the 
PB method. We did not have enough ma- 
chines available to measure the throughput 
with more groups with 8 members. 

takes some time. 
For messages of size 4 Kbyte and larger, the throughput 

drops more. For some configurations we are not able to 
make meaningful measurements at all. This problem arises 
because our Lance configuration can buffer only 32 Ether- 
net packets, each with a maximum size of 15 14 bytes. This 
means that the sequencer starts dropping packets when re- 
ceiving 11 complete 4 Kbyte messages simultaneously. (If 
our system had been able to buffer more packets, the same 
problem would have appeared at some later point. The 
sequencer will need more time to process all the buffered 
packets, which will at some point result in timeouts at the 
sending kernel and in retransmissions.) The protocol con- 
tinues working, but the performance drops, because the pro- 
tocol waits until timers expire to send retransmissions. The 
same phenomenon also appears with groups larger than 16 
members and 2-Kbyte messages. 

Another interesting question is how many disjoint groups 
can run in parallel on the same Ethernet without influencing 
each other. To answer this question we ran an experiment 
in which a number of groups of the same size operated in 
parallel and each member of each group continuously called 
SendToGroup. We ran this experiment for group sizes of 2,4, 
and 8 and measured the total number of O-byte broadcasts per 
second (using the PB method). The experiment measures, 
for example, for two groups with 2 members the total number 
of messages per second that 4 members together succeeded 
in sending, with each member being member of one group 
and running on a separate processor. The results are depicted 

0 ’ I I I 
0 5 10 15 

Number of members 
Figure 7. Delay for 1 sender with different rs 
using the PB method. Group size is equal to 
r + 1. 

in Figure 6. The maximum throughput is 3175 broadcasts 
per second when 5 groups of size 2 are broadcasting at 
maximum O-byte message throughput (this corresponds to 
at least 736,600 bytes per second; 3175*2* 116 = 736,600). 
When another group is added the throughput starts dropping 
due to the number of collisions on the Ethernet. This is also 
the cause for the poor performance of groups of size 8. Note 
that the Ethernet utilization at this data rate is 61%, which is 
as much as can be expected from an Ethernet with multiple 
uncoordinated senders. With a faster network, performance 
will be higher. 

The final experiment measures the delay of sending a 
message with r > 0. Figure 7 and Figure 8 depict the delay 
for sending a message with resilience degrees from one to 
15. As can be expected, sending a message with a higher r 
scales less well than sending with a degree of 0. In this case, 
the number of FLIP messages per reliable broadcast sent is 
equal to 3 + T (assuming no packet loss). Also, when using 
large messages and a high resilience degree, our hardware 
starts to miss packets. For these settings we are not able to 
make meaningful measurements. 

The delay for sending a O-byte message to a group of 
size two with a resilience degree of one is 4.2 msec. For 
a group of size 16 with a resilience degree of 15, the mea- 
sured delay is 12.9 msec. This difference is due to the 14 
additional acknowledgements that have to be sent. Each 
acknowledgement adds approximately 600 microseconds. 
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0 I 1 I 
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Number of members 
Figure 8. Throughput for the PB Method. The 
group size is equal to the number of senders. 

5 Discussion 

In December 1991 the Amoeba 5.0 kernel, which con- 
tains the group protocols presented in the paper, rep:laced 
the previous generations of Amoeba kernels and has been in 
day-to-day use at the Vrije Universiteit since then. Currently 
over 100 computers with different CPUs (Intel 3861’486, 
SPARCs, and MC680xO) are running this kernel. Since 
late 1992 this version of the Amoeba system has been pub- 
licly and commercially available; over 150 sites have picked 
the system up. In 1993 the core of the group communi- 
cation protocols was incorporated in the Panda systent [2], 
a portable platform for parallel computing, which runs on 
cluster of UNIX workstations and supercomputers, suleh as 
a 5 12-node Parsytec and a 128-node CM-5 [ 12, 131. Both 
the supercomputers provide reliable communication, so the 
protocols on these machines are less complex. The group 
communication primitives have been used in running paral- 
lel applications [15, 18, 30,351. This section reviews some 
of the design decision given our experience with using and 
implementing the group communication protocols. We: will 
focus on the lessons learned. 

The sequencer-based protocol has proven to be an effi- 
cient, simple, and robust protocol to implement and to use. 
Except for synthetic benchmarks, the limit imposed by the 
sequencer on the maximum throughput has seldom been a 
problem in applications. In most applications the dehiy of 
sending a message is more important. In application:,; that 
have performed badly, the performance was not limited by 
the number of messages the sequencer could process, but 
by the time that the individual processors needed to process 
each message. Therefore, we have concluded that it i;s more 

important to reduce the software overhead of message pro- 
cessing than to make the protocol more distributed. We are 
currently experimenting with a new approach, called opti- 
mistic active messages, which reduces this software over- 
head for message processing [34]. 

In some applications one process sends multiple mes- 
sages before the next process sends a message. The per- 
formance of these applications could have benefited from a 
migrating sequencer, as used in more recent systems such 
as Horus [33] and Transis [ 11. Instead, we foundi ourselves 
placing the process that is sending most messages on the ker- 
nel that runs the sequencer. In retrospect, the performance 
gained by migrating the sequencer may be worth the addi- 
tional complexity in the protocol for distributing lthe history 
buffer. 

Amoeba applications using group communilcation fall 
into two broa.d categories: (1) parallel computations and (2) 
replicated servers. Although we have developed and im- 
plemented a consistent checkpointing scheme for parallel 
applications [ 151, most of the parallel applications are just 
restarted if a processor failures happens. All of them run 
with a resilience degree of zero. The replicated servers tend 
to run in small groups (about 3 members) and the overhead 
for the acknowledgements for a higher resilience degree is 
acceptable. Making the resilience degree a user-settable pa- 
rameter has allowed the group communication protocols to 
be used both for parallel and fault-tolerant applications and 
has made the performance of the group system comparable 
to the RPC system that Amoeba supports for point-to-point 
communication. 

The support for applications that need to be fault-tolerant 
was initially inadequate. We expected that building fault- 
tolerant programs with the group primitives was going to be 
relatively straightforward. However, we underestimated two 
important aspects of building a fault-tolerant applications. 
First, the system did not provide any support for the atomic 
creation of a group. In a system with unreliable commu- 
nication and failures, atomic group creation is theoretically 
impossible to achieve, but a heuristic library procfedure that 
does an “best efforts” attempt as good as possible would 
have simplified building some of the early fault-tolerant pro- 
grams. Second, the system did not have good support for a 
process (re)joining a given group. A library for atomic state 
transfer as provided in Isis [3] would have again simpli- 
fied building these fault-tolerant programs. Wood discusses 
building faull-tolerant applications for Amoeba in more de- 
tail [35]. 

Our decision to make the group primitives blocking and 
to achieve parallelism through running multiple tlhreads per 
process has forced us to write cleanly-structured applica- 
tions. Per thread it is easy to reason how the application will 
behave and activities that can be performed concurrently 
can be easily expressed by starting a thread for ,them. We 
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believe that many applications would have been more diffi- 
cult to write if the group primitives had been nonblocking 
and parallelism was achieved by overlapping communica- 
tion and synchronization using a single thread. In some 
cases the overhead of starting a thread was too high and the 
performance could have benefited from nonblocking prim- 
itives, but we believe that the problem is better solved by 
optimizing the performance of the thread package than by 
reducing the ease of programming. Similar observations 
have been made for RPC systems [6]. 

Unfortunately the decision to have multiple threads per 
process and nonblocking group primitives sometimes made 
it hard to port the group system to other existing systems 
based on a different model. For example, many UNIX 
systems do not have kernel threads and therefore a blocking 
operation results in the whole process being blocked. These 
problems can be circumvented on most UNIX systems by 
using the ioctl and select system calls, but these are hard to 
program and sometimes do not perform well. 

We decided to implement the group protocols in the ker- 
nel, because we believed that the implementation should 
perform well in order to attract applications. It is unclear 
whether this was the right decision. Recently Oey et al. 
reported on running the protocols in user space [23]. They 
measured a 32% performance decrease in communication 
performance for synthetic benchmarks, but for most applica- 
tions the performance decrease was very small. In addition, 
recent work by Thekkath et al. [32], and Maeda and Ber- 
shad [20] shows how good performance can be obtained by 
carefully dividing the communication functionality between 
a user server and application library. It should be noted that 
at the time we implemented the Amoeba protocols these 
results were unknown. 

By moving the code out of the kernel into servers and ap- 
plication libraries, we could have separated out the commu- 
nication functionality more cleanly in modules. For exam- 
ple, the failure detection in the current system is intertwined 
with the protocol code for sending and receiving messages. 
In addition, the RPC module performs its own failure de- 
tection. We should have put this functionality in a separate 
module so that we could have reasoned about it indepen- 
dently of the rest of the system. The failure detection and 
group rebuilding code turned out to be the hardest parts of 
the system to get correct. Newer versions of Isis [26] and 
more recent systems such systems such Transis [l] separate 
these pieces of functionality cleanly. 

6 Related Work 

In this section we will compare Amoeba with other com- 
plete group communication packages and their protocols; a 
detailed comparison of our reliable broadcast protocol with 
other protocols can be found in [ 141. 

The first system supporting group communication, de- 
scribed in [8], is the V system. It integrates RPC communi- 
cation with broadcast communication in a flexible way. If a 
client sends a request message to a process group, V tries to 
deliver the message at all members in the group. If any one 
of the members of the group sends a reply back, the RPC 
returns successfully. Additional replies from other members 
can be collected by the client by calling GetReply. Thus, the 
V system does not provide reliable, ordered broadcasting. 
However, this can be implemented by a client and a server 
(e.g., the protocol described by Navaratnam, Chanson, and 
Neufeld [22] runs on top of V). 

The protocols in our systems were influenced by Chang 
and Maxemchuck (CM), who describe a family of broadcast 
protocols 171. These protocols differ mainly in the degree 
of fault tolerance that they provide. Our protocol for T = 0 
resembles their protocol that is not fault tolerant (i.e., it may 
lose messages if processors fail), but ours is optimized for 
the common case of no communication failures. Like our 
protocol, the CM protocol also depends on a central node, 
the token site, for ordering messages. However, on each 
acknowledgement another node takes over the role of token 
site. Depending on the system utilization, the transfer of the 
token site on each acknowledgement can take one extra con- 
trol message. Thus their protocol requires 2 to 3 messages 
per broadcast, whereas ours requires only 2 in the best case 
and only a fraction larger than 2 in the normal case. Finally, 
in the CM protocol all messages are broadcast, whereas 
our protocol uses point-to-point messages whenever possi- 
ble, reducing interrupts and context switches at each node. 
This is important, because the efficiency of the protocol is 
not only determined by the transmission time, but also (and 
mainly) by the processing time at the nodes. In their scheme, 
each broadcast causes at least 2(” - 1) interrupts; in ours 
only n. The actual implementation of their protocol uses, 
unlike ours, physical broadcast instead of multicast for all 
messages and is restricted to a single LAN. 

The protocols that are used in the first complete system 
supporting ordered group communication, described in [4], 
are implemented in the Isis system. The Isis system is 
primarily intended for doing fault-tolerant computing. Thus, 
Isis tries to make broadcast as fast as possible in the context 
of possible processor failures. Our system is intended to do 
reliable ordered broadcast as fast as possible in the normal 
(no failure) case. If processor failures occur, Some messages 
may be lost in the r = 0 case. If, however, an application 
requires fault tolerance, our system can trade performance 
against fault tolerance. The primary difference is that Isis 
emphasizes fault tolerance where as our work emphasizes 
high performance. 

Recently the protocols for Isis have been redesigned [5]. 
The system is now completely based on a broadcast prim- 
itive that provides causal ordering. The implementation 
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of this primitive uses reliable point-to-point comm.unica- 
tion. The protocol for totally-ordered broadcast is based on 
causal broadcast. As in our protocol, a sequencer (a. token 
holder in Isis terminology) is used to totally order the causal 
messages. Unlike our protocol, the token holder can mi- 
grate. Depending on whether the sender holds the token, 
this scheme requires either one message or two messages, 
but each message possibly contains a sequence number for 
each member, while in our protocol the number of bytes for 
the protocol header is independent of the number of rnem- 
bers. Thus in Isis, for a group of 1024 members, 4K bytes of 
data are possibly added to each message. Depending on the 
communication patterns, this data can be compressed, but 
in the worst case, 4K is still needed. A reimplementation 
of Isis, called Horus, achieves very high performance by 
packing multiple messages in a single network packet, by 
avoiding major bottlenecks in the communication path, and 
by using multicast-IP [33]. 

Amir et al. describe a recently-built system, called Tran- 
sis, that supports a number of protocols with varying proper- 
ties [ 11. It offers membership protocols, basic multicast (re- 
liable group communication without order), causal-ordered 
multicast, totally-ordered multicast, and safe multicast (i.e., 
it delivers a message after all active processors have ac- 
knowledged it). The approach used is similar to the one used 
in Psync (see below); the communication system builds a 
graph, in which the nodes are messages and the edges con- 
nect two messages that are directly dependent in the causal 
order. The services differ in the criteria that determine when 
to deliver a message to the application. In addition tco the 
layering of broadcast services, Transis has two other dlistinc- 
tive properties. It provides support for groups to remerge 
after a partition and it implements multicast flow control. 
Preliminary performance results using broadcast (instead of 
multicast) show that the system performs well. 

In 1241 a communication mechanism is described called 
Psync. In Psync a group consists of a fixed numbler of 
processes and is closed. Messages are causally 0rdere.d. A 
library routine provides a primitive for total ordering. This 
primitive is implemented using a single causal message, 
but members cannot deliver a message immediately when it 
arrives. Instead, a number of messages from other members 
(i.e., at most one from each member) must be received before 
the total order can be established. 

7 Conclusion 

We reported on the performance and the experience with 
the Amoeba group communication system and its protocols. 
An in-kernel implementation of these protocols achieves 
high performance. The delay for a null broadcast to ai group 
of 30 processes running on 20-MHz MC6803Os connected 
by 10 Mbit/s Ethernet is 2.8 msec. The maximum through- 

put per group is 815 broadcasts per group. With multiple 
groups, the maximum number of broadcasts per second has 
been measured at 3 175. 

Based on our experience with implementing these proto- 
cols and their usage in various applications we hxve learned 
that: (1) the scalability of our sequencer-based protocols 
is limited by message processing time. Promiising tech- 
niques for overcoming this problem are (optimistic) active 
messages and dynamic sequencer-based protocols; (2) the 
flexibility and modularity of user-level implementations of 
protocols is likely to outweigh the potential performance 
loss. 
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