
An Evaluation of the Amoeba Group Communication System

M. Frans Kaashoek Andrew S. Tanenbaum

Laboratory for Computer Science Dept. of Math and Computer Science
M.I.T.- Vrije Universiteit

Cambridge, U.S.A. Amsterdam, The Netherlands

Abstract

The Amoeba group communication system has two
unique aspects: (I) it uses a sequencer-based protocol with
negative acknowledgements for achieving a total order on
all group messages; and (2) users choose the degree offault
tolerance they desire. This paper reports on our design de-
cisions in retrospect, the performance of the Amoeba group
system, and our experiences using the system. We conclude
that sequencer-based group protocols achieve high pelfor-
mance (comparable to Amoeba’s fast remote procedure call
implementation), that the scalability of our sequencer-based
protocols is limited by message processing time, and that the
flexibility and modularity of user-level implementations of
protocols is likely to outweigh the potential performance
loss.

1 Introduction

Group communication allows applications to send data
to n destinations using a single message. Applications using
group communication instead of point-to-point communica-
tion are potentially easier to write and perform better. This
paper reports on our design decisions in retrospect, the per-
formance of the Amoeba group communication system, and
our experiences using the system.

The semantics of the Amoeba group primitives are sim-
ple, powerful, and easy to understand. The primitives, for
example, guarantee total ordering of group messages. The
proposed primitives are also efficient: if a network supports
physical multicast, a reliable group send can be done in just
slightly more than two messages on the average, so that the
performance of a reliable group send is roughly comparable
to that of a remote procedure call (RPC) [6]. In addition, the

This research was performed at the Vrije Universiteit as part of the first
author’s Ph.D. thesis

primitives are flexible: user applications can, for example,
trade performance against fault tolerance.

The Amoeba group communication primitives have been
implemented in the kernel of the Amoeba distributed operat-
ing system [2 1,3 11. The delay for a null broadcast to a group
of 30 processes running on 20-MHz MC68030s connected
by 10 Mbit/s Ethernet is 2.8 msec. The maximum through-
put per group is 8 15 broadcasts per second per group. With
multiple groups, the maximum number of broadcasts per
second has been measured at 3175. In addition, we learned
that (1) the scalability of our sequencer-based protocols is
limited by message processing time; and (2) the flexibility
and modularity of user-level implementations of protocols
is likely to outweight the potential performance loss.

The rest of this paper is structures as follows. Sec-
tion 2 describes the main design decisions. Section 3 briefly
overviews the implementation. Section 4 provides a detailed
performance analysis of the group system. Section 5 dis-
cusses the design decisions and our experience with imple-
menting and using the system. Section 6 relates the Amoeba
group system to other systems. Section 7 summarizes our
main conclusions.

2 The Amoeba Group System

A group is a collection of processes that can communicate
directly with each other using l-to-many messages. Table 1
summarizes the primitives offered by Amoeba for group
communication. To send to or to receive from a particular
group, a process has to join the group. All members of a
single group see all events concerning this group in the same
order. Even the events of a new member joining the group,
a member leaving the group, and recovery from a crashed
member are totally-ordered. If, for example, one process
calls JoinGroup and a member calls SendToGroup, either all
members first receive the join and then the broadcast or all
members first receive the broadcast and then the join.

We have chosen to make the primitives blocking to sim-

1063-6927/96 $5.00 0 1996 IEEE
Proceedings of the 16th ICDCS

436

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15449623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I Primitive
-,.

I Desaxiation

ReceiveFromGroup Receive a message from a group. -.,
ResetGroup Reform group after a processor failure.
GetInfoGroup Re&n state information about a group.
ForwardRequest ~ Forward an RPC request to another group member.

Table 1. Gtwp communication interface.

plify programming. Parallelism can be obtained Iby multi-
threading the application. This decision is consiste:nt with
our RPC interface for point-to-point communicatioln.

Two aspects are unique to the Amoeba group commu-
nication system: (1) Amoeba user’s can seleclt ithe de-
gree of fault tolerance on group messages; (2) Amoeba
uses an efficient sequencer-based protocol with an ncgative-
acknowledgement scheme to achieve total ordering. We
discuss the reasons that led to these design decisions in turn.

2.1 Reliability

Amoeba’s group primitives offer reliable communica-
tion: the group protocol automatically recovers from lost,
garbled, and duplicate messages. Although Arnoeba’s
network protocol supports unreliable group communica-
tion [191, we decided to make only reliable group commu-
nication available to the programmer. This decision1 has the
potential disadvantage that some users pay in performance
for semantics that they do not need. It has the advantage,
however, that the kernel only has to support one primitive,
which simplifies the implementation and makes higher level
software more uniform. For the same reason Amoeba also
supports only one primitive for point-to-point communica-

At the user’s request, the group primitives can also re-
cover from processor failures. After a processor failure, the

tion: RPC.

protocol goes through a recovery phase in which the group
is rebuilt from the processors that are still alive. The proto-
col guarantees (1) that all the members in the rebuilt group
receive all the messages successfully sent by any member
of the original group before the failure and (2) that surviv-
ing members of the rebuilt group will receive all messages
successfully sent by any member of the new group after the
failure. If not enough surviving members can be fcmnd for
rebuilding the group, the recovery phase fails and the group
will block until a sufficient number of processors recover.
Processors may fail during the recovery algorithm. In this
case the recovery algorithm starts again until it succeeds or
fails.

To rebuild a group requires consensus on whickl, proces-

sors are alive. However, it is known that achieving consen-
sus in an asynchronous distributed system with one faulty

We decided to make the recovery from processor fail-

processor is impossible [lo]. To be able to reach a deci-

ures an option because providing these semantics is expen-

sion about whether a process is alive, the algorithm sends
messages asking the recipient to respond. If after a certain
number of trials a process does not respond, the process

sive and rnany applications do not need to recover from

is declared “dead.” Using this unreliable failure-detection

processor failures. We assume that processors fail due to

method some processes may be declared dead although they
are functioning fine (e.g., when a process does not respond

crash failures [27]. Stronger semantics, such as automatic

fast enough). Dead processes are removed from the group
so that they cannot cause any problems for the remaining

recovery from Byzantine failures (i.e., processors sending

living processes.

malicious or contradictory messages) and automatic recov-
ery from network partitions, are not supported by the group
primitives. Applications requiring these semantics have to
implement them explicitly. For a more thorough discus-
sion of the relation between broadcast semantics, failures,
protocols for different types of failures, see Hadzilacos and
Toueg [ll].

2.2 Ordering

The group primitives guarantee a total ordering (with
FIFO) per group. If two members send messages A and
B concurrently, the protocol guarantees that all members
of the group either receive first message A and then B, or
first B and then A. It never happens that member 1 sees
A and then B, and member 2 sees B and then A. Many
distributed applications are easy to implement with a total
ordering, as the programmer can think of processes running
in lockstep [28].

In the past, most designers have chosen weaker protocols
than we have, making application building more difficult.
There are three key ideas that make our approach feasible.
First, to guarantee a total ordering the protocol uses a central

437

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

machine per group, called the sequencer. If the sequencer
crashes, the remaining group members elect a new one. Sec-
ond, the protocol is based on a negative acknowledgement
scheme. In a negative acknowledgement scheme, a process
does not send an acknowledgement as soon as it receives a
message. Instead, it sends a negative acknowledgement as
soon as it discovers that it has missed a message. Third, ac-
knowledgements are piggybacked on regular data messages
to further reduce the number of protocol messages. These
ideas are well known techniques. Chang and Maxemchuck,
for example, discuss a protocol similar to ours that also
combines these three ideas [7].

Although at first sight it may seem strange to use a cen-
tralized sequencer in a distributed system, this decision is
attractive. First, distributed protocols for total ordering are
more complex, and often perform worse. For example, the
distributed protocols for total ordering in Isis have been
replaced by a dynamic-centralized protocol because the dis-
tributed one was too complex and slow [5]. Second, today’s
computers are very reliable and it is therefore unlikely that
the sequencer will crash.

The major disadvantage of having a sequencer is that the
protocol does not scale to enormous groups. In practice,
however, this drawback is minor. The sequencer totally or-
ders messages for a single group, not for the whole system.
Furthermore, the sequencer performs a simple and compu-
tationally unintensive task and can therefore process many
hundreds of messages per second. From experience we have
observed that for many applications, hundreds of messages
per second is sufficient.

To keep the protocol simple we decided to use a static
sequencer-based protocol. This decision simplifies the im-
plementation because the sender of message always knows
where the sequencer is, but may result in a loss of perfor-
mance, as a message has to be transmitted first to the se-
quencer. After publication of our initial results showing that
a sequencer-based protocol performs well [171, a number of
designers of group systems have chosen to use a sequencer-
based protocol; most newer systems, such as Horus [33]
and Transis [l], use a dynamic sequencer-based protocol,
in which the sequencer migrates to the sender so that the
next message can be sent without having to go remotely to
acquire a sequence number. Initial experience with these
systems indicates that this is an appropriate choice when
messages come in bursts.

There are two reasons for using a negative acknowledge-
ment scheme. First, it reduces the number of acknowledge-
ment messages. In a positive acknowledgement scheme, a
process sends an acknowledgement back to the sender for
a message. This works fine for point-to-point messages,
but less well for broadcast messages. If a process sends a
broadcast message to a group, with say 256 members, 255
acknowledgements will be sent back to the sender at ap-

proximately the same time. As network interfaces can only
buffer a fixed number of messages, a number of the acknowl-
edgements will be lost, leading to unnecessary timeouts and
retransmissions of the original message. Second, today’s
networks are very reliable and network packets are deliv-
ered with a very high probability. Thus sending a message
for when a process has not received a message is feasible.
Another alternative would be to use a positive acknowledge-
ment scheme, but force the receivers to wait some random
time before sending an acknowledgement. This approach
is attractive in unreliable networks, but it causes far more
acknowledgements to be sent than with a negative acknowl-
edgement scheme; it just spreads the acknowledgement load
out over time.

3 Implementation

This section gives a brief summary of the implementation
of the Amoeba group system. A detailed description of the
implementation can be found elsewhere [14, 161. We give
enough information to be able to understand the performance
experiments described in the next section.

3.1 The broadcast protocols

In the common case, the Amoeba broadcast protocol uses
two messages per SendToGroup. One point-to-point mes-
sage from the sending process to the sequencer and one
multicast message stamped with a new sequence number
from the sequencer to the group. We call this method PB
method.

There is another two-messages protocol possible, which
we call the BB method. In the BB method, the sender mul-
ticasts the message. When the sequencer sees this multicast
message, it multicasts a special accept message containing
the newly assigned sequence number. A multicast message
is only “official” when the accept message has been sent.

The PB method uses bandwidth to reduce the number
of interrupts, while the BB methods minimizes bandwidth
usage at the cost of more interrupts. The PB method sends
each message twice on the network, consuming 2n bytes of
network bandwidth, where n is the number of bytes of user
data. The BB method sends the full message only once over
the networking, consuming n bytes of network bandwidth.
On the other hand, every machine is interrupted twice, once
for the message and once for the short accept message. The
implementation switches dynamically between the PB and
BB methods depending on message size.

To recover from lost and garbled messages the sequencer
keeps a history buffer of all recently sent messages. The
sequencer deletes a message from the history buffer when it
knows all processes in the group have received the message.
In order to do so, each process piggybacks on each message

438

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

Group Communication 1
FLIP Layer

Network with multicast 1 Network without

Table 2. Communication layers in the Amoeba
kernel.

it sends to the sequencer the sequence number of the last
message it has received.

If users desire recovery from group member failures, they
can specify a resilience degree when calling CreakeGroup.
A resilience of degree T means that the SendtoCroup prim-
itive does not return control to the application until its ker-
nel knows that at least T other kernels have received the
message. To achieve this, a kernel sends the message to
the sequencer point-to-point. (For clarity we use the PB
method, but the protocol works for the BB method too.)
The sequencer allocates the next sequence number, Ibut does
not officially accept the message yet. Instead, it buffers the
message and broadcasts to the group the message alnd se-
quence number as a tentative broadcast to the group. When
a member kernel receives this tentative broadcast, it buffers
the message in its history buffer and if its member identifier
is lower than r, it sends an acknowledgement message to
the sequencer. (Any r members besides the sending kernel
would be fine, but to simplify the implementation we pick
the T lowest-numbered.) After receiving these r aclicnowl-
edgements, the sequencer broadcasts the accept message.
Only after receiving the accept message can members other
than the sequencer deliver the message to the apphcation.
That way, no matter which r machines crash, there ‘vi11 be
at least one surviving member containing the full hismry, so
everyone else can be brought up-to-date during the recovery,

3.2 Implementation structure

The group protocols and the underlying routing protocols
are implemented in the Amoeba kernel. The communication
system in the kernel consists of 3 layers (see Table 2). The
top layer implements the protocols for group communication
and RPC. The protocols described in the previous section
are implemented here.

Both the RPC and group communication modules use the
Fast Local Internet Protocol (FLIP) [141 to send messages.
FLIP is a connectionless (datagram) protocol, rough1 y anal-
ogous to IP [25], but with increased functionality. For the
experiments performed in this section we could have used
multicast-IP [9] instead of FLIP, but FLIP has other proper-
ties that makes it attractive for distributed computiqg. One
of the major differences between IP and FLIP is :that IP

addresses idlentify a host while FLIP addresses identify a
process or a group of processes. This simplifies, for exam-
ple, the implementation of process migration and of group
communication. FLIP is specifically designed to support a
high-performance group communication and BPC protocol
rather than support byte-stream protocols like TCP or OS1
TP4. FLIP treats the ability of a network to send multi-
cast messages as an optimization over sending n separate
point-to-point messages.

4 Performance

The measurements were taken on a collection of 30
MC68030s (20 Mhz) connected by a 10 Mbit/s Ethernet. All
processors were on the same Ethernet and were connected
to the network by Lance chip interfaces (manufactured by
Advanced Micro Devices). The protocols also work for
network configurations in which members are located on
different networks; FLIP will ensure that the messages are
routed appropriately. We measured the case in which the
members are located on the same network, as most traffic
is within a single network and the results reported in the
literature on comparable experiments are also fo’r this setup.
Thus, in the experiments all the members can be reached by
sending one multicast packet. The machines used in the ex-
periments were able to buffer 32 Ethernet packets before the
Lance overflowed and dropped packets. Each mleasurement
was done 10,000 times on an almost quiet network. The size
of the history buffer was 128 messages. The experiments
measured failure-free performance.

Most experiments were executed with messiages of size
0 bytes, 1 Kbyte, 4 Kbyte, and 8,000 bytes. The last size
was chosen to reflect a limitation in our implementation.
In principle, the group communication protocols can handle
messages larger than 8,000 bytes, but lower layelrs in the ker-
nel make it impossible to measure the communication costs
for these sizes in a meaningful way. Messages, larger than
a network packet size have to be fragmented into multiple
packets. To prevent a sender from overrunning a receiver,
flow control has to be performed on messages consisting of
multiple packets. For point-to-point communication many
flow control algorithms exists [29], but it is not immediately
clear how these should be extended to multicast communi-
cation. Some recent progress has been made in this area [11,
but the results are not widely applicable yet. The measure-
ments in this section therefore do not include the time for
flow control and we have used an arbitrary, but reasonable
upper bound to the message size.

The first experiment measures the delay for the PB
method with T = 0. In this experiment one process con-
tinuously broadcasts messages of size 0 bytes,, 1 Kbyte, 4
Kbyte, and 8,000 bytes to a group of processes; (the size of

439

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

8000 bytes

=; :

7.0 -

4096 bytes

p-~- -
2 2048 bytes
a to-)
P

1024 bytes
- *

5- 0 bytes

I I I I I I I
0 5 10 15 20 25 30

Number of members
Figure 1. Delay for 1 sender using PB method
(T = 0).

the message excludes the 116’ bytes of protocol headers).
All members continuously call ReceiveFromGroup.

This experiment measures the delay seen from the send-
ing process, between calling and returning from Send-
ToGroup. The sending process runs on a different processor
than the sequencer. Note that this is not the best possible
case for our protocol, since only one processor sends mes-
sages to the sequencer (i.e., no acknowledgements can be
piggybacked by other processors).

The results of the first experiment are depicted in Fig-
ure 1. For a group of two processes, the measured delay
for a O-byte message is 2.7 msec. Compared to the Amoeba
RPC on the same architecture, the group communication is
0.1 msec faster than the WC. For a group of 30 processes,
the measured delay for a O-byte message is 2.8 msec. From
these numbers, one can estimate that each node adds 4 mi-
croseconds to the delay for a broadcast to a group of 2 nodes.
Extrapolating, the delay for a broadcast to a group of 100
nodes should be 3.2 msec. Sending an 8,000-byte message
instead of a O-byte message adds roughly 20 msec. Because
the PB method is used in this experiment, this large increase
can be attributed to the fact that the complete message goes
over the network twice.

Figure 2 and Table 3 break down the cost for a single O-
byte SendToGroup to a group of size 2, using the PB method.
Both members call ReceiveFromGroup to receive messages.
To reflect the typical usage of the group primitives, Receive-
FrwmGroup is called by another thread than SendToGroup.

’ 116 is the number of header bytes: 14 bytes for the Ethernet header,
2 bytes Bow control, 40 bytes for the FLIP header, 28 bytes for the group
header, and 32 bytes for the Amoeba user header.

User
Group
FLIP
Ethernet

Sender

Ul
Gl
Fl
El

Sequencer

E2a
F2a
G2

F2b
E2b

Ethernet
FLIP
Group
FLIP
Ethernet
Group
User
Group

Ethernet
FLIP
Group
User

E3
F3
G3
u3

Group
User
Group

Figure 2. A break down of the events in a sin-
gle SendToGroup - ReceiveFromGroup pair. The
group size is 2 and the PB method is used

Most of the time spent in user space is the context switch
between the receiving and sending thread. The cost for the
group protocol itself is 740 microseconds.

The results of the same experiment but now using the BB
method are depicted in Figure 3. The result for sending a
O-byte message is, as can be expected, similar. For larger
messages the results are dramatically better, since in the BB
method the complete message only goes over the network
once. At first sight, it may look as if the BB method is always
as good as or better than the PB protocol. However, this is
not true. From the point of view of a single sender there is no

Total 1 2740
I

Table 3. The time spent in the critical path
of each layer. The Ethernet time is the time
spend on the wire plus the time spend in the
driver and taking the interrupt.

440

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

4096 bytes

$ii@S bytes

Number of members
Figure 3. Delay for 1 sender using BB method
(r = 0).

difference in performance, but for the receivers other than the
sequencer there is. In the PB protocol they are interrupted
once, while in the BB protocol they are interrupted twice.

The next experiment measures the throughput of the
group communication. In this experiment, all members of
a given group continuously call SendToGmup. We measure
both for the PB method and the BB method how mangy mes-
sages per second the group can deal with. The results are
depicted in Figure 4 and Figure 5. The maximum throlllghput
is 815 O-byte messages per second. The number is llimited
by the time that the sequencer needs to process a message.
This time is equal to the time spent taking the interrupt plus
the time spent in the driver, FLIP protocol, and broadcast
protocol. On the 20-MHz 68030, this is almost 800 mi-
croseconds, which gives an upper bound of 1250 messages
per second. This number is not achieved because the: mem-
ber running on the sequencer must also be schedulied and
allowed to process the messages.

The throughput decreases as the message size grows be-
cause more data have to be copied. A receiver mm!;t copy
each message twice: once from the Lance interface to the
history buffer and once from the history buffer to user space.
In the PB method, the sequencer must copy the message
three times: one additional copy from the history buffer
to the Lance interface to broadcast the message. (If our
Lance interface could send directly from main memory, this
last copy could have been avoided.) If Amoeba had sup-
port for sophisticated memory management primitives like
Mach [36], the second copy from the history buffer ito user
space could also have been avoided; in this case one: could
map the page containing the history buffer into the user’s ad-
dress space, although manipulating the memory ma:ps also

21D48 bytes

h-6 bytes

0 B&IO bytes
I I I

0 5 10 IS
Number of senders

Figure 4. Throughput for the PB Method. The
group size is equal to the number of slenders.

8cnl

1
1

~ wo /%/-AJ-\obYteS

i,

:

1024 bytes

f
L

Gi8 bytes

o 1 TF f%::
0 5 IO 15

Number of senders
Figure 5. Throughput for the BB Methlod. The
group size is equal to the number of senders.

441

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

+ 2 members
- 4 members
- 8 members

0 '
I I I I I I I

0 I 2 3 4 5 6 7

Number of groups
Figure 6. Throughput for groups of 2,4, and 8
members running in parallel and using the
PB method. We did not have enough ma-
chines available to measure the throughput
with more groups with 8 members.

takes some time.
For messages of size 4 Kbyte and larger, the throughput

drops more. For some configurations we are not able to
make meaningful measurements at all. This problem arises
because our Lance configuration can buffer only 32 Ether-
net packets, each with a maximum size of 15 14 bytes. This
means that the sequencer starts dropping packets when re-
ceiving 11 complete 4 Kbyte messages simultaneously. (If
our system had been able to buffer more packets, the same
problem would have appeared at some later point. The
sequencer will need more time to process all the buffered
packets, which will at some point result in timeouts at the
sending kernel and in retransmissions.) The protocol con-
tinues working, but the performance drops, because the pro-
tocol waits until timers expire to send retransmissions. The
same phenomenon also appears with groups larger than 16
members and 2-Kbyte messages.

Another interesting question is how many disjoint groups
can run in parallel on the same Ethernet without influencing
each other. To answer this question we ran an experiment
in which a number of groups of the same size operated in
parallel and each member of each group continuously called
SendToGroup. We ran this experiment for group sizes of 2,4,
and 8 and measured the total number of O-byte broadcasts per
second (using the PB method). The experiment measures,
for example, for two groups with 2 members the total number
of messages per second that 4 members together succeeded
in sending, with each member being member of one group
and running on a separate processor. The results are depicted

0 ’ I I I
0 5 10 15

Number of members
Figure 7. Delay for 1 sender with different rs
using the PB method. Group size is equal to
r + 1.

in Figure 6. The maximum throughput is 3175 broadcasts
per second when 5 groups of size 2 are broadcasting at
maximum O-byte message throughput (this corresponds to
at least 736,600 bytes per second; 3175*2* 116 = 736,600).
When another group is added the throughput starts dropping
due to the number of collisions on the Ethernet. This is also
the cause for the poor performance of groups of size 8. Note
that the Ethernet utilization at this data rate is 61%, which is
as much as can be expected from an Ethernet with multiple
uncoordinated senders. With a faster network, performance
will be higher.

The final experiment measures the delay of sending a
message with r > 0. Figure 7 and Figure 8 depict the delay
for sending a message with resilience degrees from one to
15. As can be expected, sending a message with a higher r
scales less well than sending with a degree of 0. In this case,
the number of FLIP messages per reliable broadcast sent is
equal to 3 + T (assuming no packet loss). Also, when using
large messages and a high resilience degree, our hardware
starts to miss packets. For these settings we are not able to
make meaningful measurements.

The delay for sending a O-byte message to a group of
size two with a resilience degree of one is 4.2 msec. For
a group of size 16 with a resilience degree of 15, the mea-
sured delay is 12.9 msec. This difference is due to the 14
additional acknowledgements that have to be sent. Each
acknowledgement adds approximately 600 microseconds.

442

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

0 I 1 I
0 5 IO IS

Number of members
Figure 8. Throughput for the PB Method. The
group size is equal to the number of senders.

5 Discussion

In December 1991 the Amoeba 5.0 kernel, which con-
tains the group protocols presented in the paper, rep:laced
the previous generations of Amoeba kernels and has been in
day-to-day use at the Vrije Universiteit since then. Currently
over 100 computers with different CPUs (Intel 3861’486,
SPARCs, and MC680xO) are running this kernel. Since
late 1992 this version of the Amoeba system has been pub-
licly and commercially available; over 150 sites have picked
the system up. In 1993 the core of the group communi-
cation protocols was incorporated in the Panda systent [2],
a portable platform for parallel computing, which runs on
cluster of UNIX workstations and supercomputers, suleh as
a 5 12-node Parsytec and a 128-node CM-5 [12, 131. Both
the supercomputers provide reliable communication, so the
protocols on these machines are less complex. The group
communication primitives have been used in running paral-
lel applications [15, 18, 30,351. This section reviews some
of the design decision given our experience with using and
implementing the group communication protocols. We: will
focus on the lessons learned.

The sequencer-based protocol has proven to be an effi-
cient, simple, and robust protocol to implement and to use.
Except for synthetic benchmarks, the limit imposed by the
sequencer on the maximum throughput has seldom been a
problem in applications. In most applications the dehiy of
sending a message is more important. In application:,; that
have performed badly, the performance was not limited by
the number of messages the sequencer could process, but
by the time that the individual processors needed to process
each message. Therefore, we have concluded that it i;s more

important to reduce the software overhead of message pro-
cessing than to make the protocol more distributed. We are
currently experimenting with a new approach, called opti-
mistic active messages, which reduces this software over-
head for message processing [34].

In some applications one process sends multiple mes-
sages before the next process sends a message. The per-
formance of these applications could have benefited from a
migrating sequencer, as used in more recent systems such
as Horus [33] and Transis [11. Instead, we foundi ourselves
placing the process that is sending most messages on the ker-
nel that runs the sequencer. In retrospect, the performance
gained by migrating the sequencer may be worth the addi-
tional complexity in the protocol for distributing lthe history
buffer.

Amoeba applications using group communilcation fall
into two broa.d categories: (1) parallel computations and (2)
replicated servers. Although we have developed and im-
plemented a consistent checkpointing scheme for parallel
applications [151, most of the parallel applications are just
restarted if a processor failures happens. All of them run
with a resilience degree of zero. The replicated servers tend
to run in small groups (about 3 members) and the overhead
for the acknowledgements for a higher resilience degree is
acceptable. Making the resilience degree a user-settable pa-
rameter has allowed the group communication protocols to
be used both for parallel and fault-tolerant applications and
has made the performance of the group system comparable
to the RPC system that Amoeba supports for point-to-point
communication.

The support for applications that need to be fault-tolerant
was initially inadequate. We expected that building fault-
tolerant programs with the group primitives was going to be
relatively straightforward. However, we underestimated two
important aspects of building a fault-tolerant applications.
First, the system did not provide any support for the atomic
creation of a group. In a system with unreliable commu-
nication and failures, atomic group creation is theoretically
impossible to achieve, but a heuristic library procfedure that
does an “best efforts” attempt as good as possible would
have simplified building some of the early fault-tolerant pro-
grams. Second, the system did not have good support for a
process (re)joining a given group. A library for atomic state
transfer as provided in Isis [3] would have again simpli-
fied building these fault-tolerant programs. Wood discusses
building faull-tolerant applications for Amoeba in more de-
tail [35].

Our decision to make the group primitives blocking and
to achieve parallelism through running multiple tlhreads per
process has forced us to write cleanly-structured applica-
tions. Per thread it is easy to reason how the application will
behave and activities that can be performed concurrently
can be easily expressed by starting a thread for ,them. We

443

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

believe that many applications would have been more diffi-
cult to write if the group primitives had been nonblocking
and parallelism was achieved by overlapping communica-
tion and synchronization using a single thread. In some
cases the overhead of starting a thread was too high and the
performance could have benefited from nonblocking prim-
itives, but we believe that the problem is better solved by
optimizing the performance of the thread package than by
reducing the ease of programming. Similar observations
have been made for RPC systems [6].

Unfortunately the decision to have multiple threads per
process and nonblocking group primitives sometimes made
it hard to port the group system to other existing systems
based on a different model. For example, many UNIX
systems do not have kernel threads and therefore a blocking
operation results in the whole process being blocked. These
problems can be circumvented on most UNIX systems by
using the ioctl and select system calls, but these are hard to
program and sometimes do not perform well.

We decided to implement the group protocols in the ker-
nel, because we believed that the implementation should
perform well in order to attract applications. It is unclear
whether this was the right decision. Recently Oey et al.
reported on running the protocols in user space [23]. They
measured a 32% performance decrease in communication
performance for synthetic benchmarks, but for most applica-
tions the performance decrease was very small. In addition,
recent work by Thekkath et al. [32], and Maeda and Ber-
shad [20] shows how good performance can be obtained by
carefully dividing the communication functionality between
a user server and application library. It should be noted that
at the time we implemented the Amoeba protocols these
results were unknown.

By moving the code out of the kernel into servers and ap-
plication libraries, we could have separated out the commu-
nication functionality more cleanly in modules. For exam-
ple, the failure detection in the current system is intertwined
with the protocol code for sending and receiving messages.
In addition, the RPC module performs its own failure de-
tection. We should have put this functionality in a separate
module so that we could have reasoned about it indepen-
dently of the rest of the system. The failure detection and
group rebuilding code turned out to be the hardest parts of
the system to get correct. Newer versions of Isis [26] and
more recent systems such systems such Transis [l] separate
these pieces of functionality cleanly.

6 Related Work

In this section we will compare Amoeba with other com-
plete group communication packages and their protocols; a
detailed comparison of our reliable broadcast protocol with
other protocols can be found in [141.

The first system supporting group communication, de-
scribed in [8], is the V system. It integrates RPC communi-
cation with broadcast communication in a flexible way. If a
client sends a request message to a process group, V tries to
deliver the message at all members in the group. If any one
of the members of the group sends a reply back, the RPC
returns successfully. Additional replies from other members
can be collected by the client by calling GetReply. Thus, the
V system does not provide reliable, ordered broadcasting.
However, this can be implemented by a client and a server
(e.g., the protocol described by Navaratnam, Chanson, and
Neufeld [22] runs on top of V).

The protocols in our systems were influenced by Chang
and Maxemchuck (CM), who describe a family of broadcast
protocols 171. These protocols differ mainly in the degree
of fault tolerance that they provide. Our protocol for T = 0
resembles their protocol that is not fault tolerant (i.e., it may
lose messages if processors fail), but ours is optimized for
the common case of no communication failures. Like our
protocol, the CM protocol also depends on a central node,
the token site, for ordering messages. However, on each
acknowledgement another node takes over the role of token
site. Depending on the system utilization, the transfer of the
token site on each acknowledgement can take one extra con-
trol message. Thus their protocol requires 2 to 3 messages
per broadcast, whereas ours requires only 2 in the best case
and only a fraction larger than 2 in the normal case. Finally,
in the CM protocol all messages are broadcast, whereas
our protocol uses point-to-point messages whenever possi-
ble, reducing interrupts and context switches at each node.
This is important, because the efficiency of the protocol is
not only determined by the transmission time, but also (and
mainly) by the processing time at the nodes. In their scheme,
each broadcast causes at least 2(” - 1) interrupts; in ours
only n. The actual implementation of their protocol uses,
unlike ours, physical broadcast instead of multicast for all
messages and is restricted to a single LAN.

The protocols that are used in the first complete system
supporting ordered group communication, described in [4],
are implemented in the Isis system. The Isis system is
primarily intended for doing fault-tolerant computing. Thus,
Isis tries to make broadcast as fast as possible in the context
of possible processor failures. Our system is intended to do
reliable ordered broadcast as fast as possible in the normal
(no failure) case. If processor failures occur, Some messages
may be lost in the r = 0 case. If, however, an application
requires fault tolerance, our system can trade performance
against fault tolerance. The primary difference is that Isis
emphasizes fault tolerance where as our work emphasizes
high performance.

Recently the protocols for Isis have been redesigned [5].
The system is now completely based on a broadcast prim-
itive that provides causal ordering. The implementation

444

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

of this primitive uses reliable point-to-point comm.unica-
tion. The protocol for totally-ordered broadcast is based on
causal broadcast. As in our protocol, a sequencer (a. token
holder in Isis terminology) is used to totally order the causal
messages. Unlike our protocol, the token holder can mi-
grate. Depending on whether the sender holds the token,
this scheme requires either one message or two messages,
but each message possibly contains a sequence number for
each member, while in our protocol the number of bytes for
the protocol header is independent of the number of rnem-
bers. Thus in Isis, for a group of 1024 members, 4K bytes of
data are possibly added to each message. Depending on the
communication patterns, this data can be compressed, but
in the worst case, 4K is still needed. A reimplementation
of Isis, called Horus, achieves very high performance by
packing multiple messages in a single network packet, by
avoiding major bottlenecks in the communication path, and
by using multicast-IP [33].

Amir et al. describe a recently-built system, called Tran-
sis, that supports a number of protocols with varying proper-
ties [11. It offers membership protocols, basic multicast (re-
liable group communication without order), causal-ordered
multicast, totally-ordered multicast, and safe multicast (i.e.,
it delivers a message after all active processors have ac-
knowledged it). The approach used is similar to the one used
in Psync (see below); the communication system builds a
graph, in which the nodes are messages and the edges con-
nect two messages that are directly dependent in the causal
order. The services differ in the criteria that determine when
to deliver a message to the application. In addition tco the
layering of broadcast services, Transis has two other dlistinc-
tive properties. It provides support for groups to remerge
after a partition and it implements multicast flow control.
Preliminary performance results using broadcast (instead of
multicast) show that the system performs well.

In 1241 a communication mechanism is described called
Psync. In Psync a group consists of a fixed numbler of
processes and is closed. Messages are causally 0rdere.d. A
library routine provides a primitive for total ordering. This
primitive is implemented using a single causal message,
but members cannot deliver a message immediately when it
arrives. Instead, a number of messages from other members
(i.e., at most one from each member) must be received before
the total order can be established.

7 Conclusion

We reported on the performance and the experience with
the Amoeba group communication system and its protocols.
An in-kernel implementation of these protocols achieves
high performance. The delay for a null broadcast to ai group
of 30 processes running on 20-MHz MC6803Os connected
by 10 Mbit/s Ethernet is 2.8 msec. The maximum through-

put per group is 815 broadcasts per group. With multiple
groups, the maximum number of broadcasts per second has
been measured at 3 175.

Based on our experience with implementing these proto-
cols and their usage in various applications we hxve learned
that: (1) the scalability of our sequencer-based protocols
is limited by message processing time. Promiising tech-
niques for overcoming this problem are (optimistic) active
messages and dynamic sequencer-based protocols; (2) the
flexibility and modularity of user-level implementations of
protocols is likely to outweigh the potential performance
loss.

Acknowledgments

We would like to thank Henri Bal, Susan Flynn, and
Wiebren de Jonge for their contributions to the broadcast
protocol. In addition we would like to thank the anonymous
referees, Ken Birman, Mootaz Elnozahy, Barbara Liskov,
Robbert van Kenesse, Kees Verstoep, Mark Wood, and Willy
Zwaenepoel for providing comments on earlier versions of
this paper.

References

[l] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis:
A communication sub-system for high availability. In
Proc. 22nd Int’l Symp. on Fault-Tolerant Computing,
pages 76-84, Boston, MA, June 1992.

[2] R. Bhoedjang, T. Ruhl, R. Hofman, K. Langendoen,
H. Bal, and F. Kaashoek. Panda: A portable platform
to support parallel programming languages. In Proc.
of Third Symp. on Experiences with Distributed and
Multiprocessor S, pages 2 13-226, San Diego, CA, Sept

[31

[41

[51

[61

1993.

K.P. Birman, R. Cooper, T.A. Joseph, K.P. Kane,
E Schmuck, and M. Wood. Isis - a distributed program-
ming environment. Technical Report User’s Guide
and Reference Manual, Cornell University, Ithaca, NY,
June 1990.

K.P. Birman and T.A. Joseph. Reliable communication
in the presence of failures. ACM Trans. Comp. Syst.,
5(1):4’7--76, Feb. 1987.

K.P. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group multicast. ACM
Trans. Comp. Syst., 9(3):272-314, Aug. 1991.

A.D. Birrell and B.J. Nelson. Implementing remote
procedure calls. ACM Trans. Comp. Syst., 2(1):39-59,
Feb. 1984.

445

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

[7] J. Chang and N.F. Maxemchuk. Reliable broadcast
protocols. ACM Trans. Comp. Syst., 2(3):251-273,
August 1984.

[8] D.R. Cheriton and W. Zwaenepoel. Distributed pro-
cess groups in the v kernel. ACM Trans. Camp. Syst.,
3(2):77-107, May 1985.

[9] S.E. Deering and D.R. Cheriton. Multicast routing
in datagram internetworks and extended lans. ACM
Trans. Camp. Syst., 8(2):85-l 10, May 1990.

[lo] M.J. Fischer, N.A. Lynch, andM.S. Paterson. Impossi-
bility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382, April 1985.

[1 l] V. Hadzilacos and S. Toueg. Distributed Systems 2nd
ed., chapter Fault-Tolerant Broadcasts and Related
Problems. Addison-Wesley, Reading, MA, 1993.

[12] H-P Heinzle, H.E. Bal, and K.G. Langendoen. Im-
plementing object-based distributed shared memory
on transputers. In World Transputer Congress 1994,
pages 390-405, Lake Como, Italy, Sept. 1994.

[13] W.C. Hsieh, K.L. Johnson,M.F. Kaashoek,D.A. Wal-
lath, and W.E. Weihl. Efficient implementation of
high-level languages on user-level communication.
Technical Report MIT/LCSiTR-6 16, Cambridge, MA,
May 1994.

[141 M.F. Kaashoek. Group Communication in Distributed
ComputerSystems. PhD thesis, Vrije Universiteit, Am-
sterdam, 1992.

[1.51 M.F. Kaashoek, R. Michiels, H.E. Bal, and AS. Tanen-
baum. Transparent fault-tolerance in parallel Orca pro-
grams. In Proc. Symp. on Experiences with Distributed
and Multiprocessor Systems ZZ, pages 297-3 12, New-
port Beach, CA, March 1992.

[161 M.F. Kaashoek and AS. Tanenbaum. Group commu-
nication in the amoeba distributed operating system. In
Proc. Eleventh Znt’l Con5 on Distributed Computing
Systems, pages 222-230, Arlington, TX, May 1991.

[17] M.F. Kaashoek, A.S. Tanenbaum, S. Flynn Hummel,
and H.E. Bal. An efficient reliable broadcast protocol.
Operating Systems Review, 23(4):5-20, Oct. 1989.

[18] M.F. Kaashoek, A.S. Tanenbaum, and K. Verstoep.
Using group communication to implement a fault-
tolerant directory service. In Proc. 13th Znt’l Co@
on Distributed Computing Systems, pages 130-l 39,
Pittsburgh, PA, May 1993.

u91

PO1

r211

PA

~231

~241

~251

WI

1271

WI

~291

[301

1311

M.F. Kaashoek, R. van Renesse, H. van Staveren, and
AS. Tanenbaum. Flip: an internetwork protocol for
supporting distributed systems. ACM Trans. Comp.
Syst., 11(1):73-106, Feb. 1993.

C. Maeda and B. Bershad. Protocol service decom-
position for high performance networking. 14th ACM
Symp. on Operating Systems Principles, pages 244-
255, Dec. 1993.

S.J. Mullender, G. van Rossum, A.S. Tanenbaum,
R. van Renesse, and H. van Staveren. Amoeba: a
distributed operating system for the 1990s. IEEE Com-
puter, 23(5):44-53, May 1990.

S. Navaratnam, S. Chanson, and G. Neufeld. Reliable
group communication in distributed systems. In Proc.
Eighth Znt’l Con$ on Distributed Computing Systems,
pages 439-446, San Jose, CA, June 1988.

M. Oey, K. Langendoen, and H.E. Bal. Comparing
kernel-space and user-space communication protocols
on Amoeba. In Proc. of 15th Int’l Con$ on Dis-
tributed Computing Systems, pages 238-246, Vancou-
ver, Canada, May 1995.

L.L. Peterson, N.C. Buchholtz, and R.D. Schlichting.
Preserving and using context information in IPC. ACM
Trans. Comp. Syst., 7(3):217-246, Aug. 1989.

J. Postel. Internet protocol. Technical Report RFC
79 1, SRI Network Information Center, Sept. 198 1.

A.M. Ricciardi and K.P. Birman. Using process groups
to implement failure detection in asynchronous envi-
ronme. In Proc. of the Tenth ACM Symp. on Principles
of Distributed Computing, pages 341-351, Quebec,
Canada, 199 1.

EB. Schneider. Byzantine generals in action: Imple-
menting fail-stop processes. ACM Trans. Comp. Syst.,
2(2):145-154, May 1984.

F.B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299-319, Dec. 1990.

AS. Tanenbaum. Computer Networks 2nd ed.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal. Paral-
lel programming using shared objects and broadcast-
ing. ZEEE Computer, 25(8):10-19, Aug. 1992.

AS. Tanenbaum, R. van Renesse, H. van Staveren,
G. Sharp, S.J. Mullender, A. Jansen, and G. van
Rossum. Experiences with the amoeba distributed op-
erating system. Commun. ACM, 33(12):46-63, Dec.
1990.

446

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

[32] C.A. Thekkath, T.D. Nguyen, E. Moy, and E. La-
zowska. Implementing network protocols at user level.
In Proc. of Int’l Con. on Communications Architec-
tures, Protocols and Applicatio, pages 64-73, San
Francisco, CA, 13-17, 1993.

[33] R. van Renesse, K.P. Birman, R. Cooper, B. Glade, and
P. Stephenson. A RISC approach to process groups.
In Proc. Usenix Workshop on Micro-kernels and Other
Kernel Architectures, Seattle, WA, April 1992.

[34] Deborah A. Wallach, Wilson C. Hsieh, Kirk L. John-
son, M. Frans Kaashoek, and William E. Weihl. Op-
timistic active messages: A mechanism for schedul-
ing communication with computation. In Proc. of 5th
Symp. on Principles and Practice of Parallel Program-
ming, pages 217-226, Santa Barbara, California,, July
1995.

1351 M.D. Wood. Replicated RPC using amoeba closed
group communication. In Proc. of the 13th Int’l c=bnfi
on Distributed Computing Systems, pages 499.-507,
Pittsburgh, PA, May 1993.

[36] M. Young, A. Tevenian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. l&at-on.
Duality of memory and communication in the irnple-
mentation of a multiprocessor. In Proc. Eleventh Symp.
on Operating Systems Principles, pages 63-67, Aastin,
TX, Nov. 1987.

447

Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS '96)
1063-6927/96 $10.00 © 1996 IEEE

