
From Remote Objects to Physically Distributed Objects

Arno Bakker, Maarten van Steen, Andrew S. Tanenbaum
Vrije Universiteit Amsterdam

Department of Computer Science
Amsterdam, The Netherlands�

arno,steen,ast � @cs.vu.nl

Abstract

Present-day object-oriented middleware provides little
support for the distribution, replication and caching of the
state of a distributed object. This makes these platforms un-
suitable for the development of large-scale distributed ap-
plications. We argue that the model of distributed objects
on which these middleware platforms are based hinders the
addition of comprehensive distribution and replication sup-
port to these platforms. We present an alternative view of
distributed objects, in which objects are not only in control
of the functional aspects of their implementation but also in
control of their nonfunctional aspects, in particular, the dis-
tribution and replication of their state. We claim that a mid-
dleware platform based on this view of distributed objects
is better suited for developing the large-scale applications
of the future.

1. Introduction

In the not-so-distant future the Internet will grow to a
network connecting hundreds of millions of people all over
the world, maybe even a billion. To keep this network from
a permanent state of congestion, network services and ap-
plications will need to make heavy use of replication and
caching techniques [4]. Unfortunately, current middleware
platforms provide little or no support for these techniques,
making them unsuitable for the development of large-scale
distributed applications.

In this paper we argue that the present models of dis-
tributed objects on which these middleware platforms are
based are not fit for dealing with the problems of large-scale
systems. We claim that these models will prevent platforms
from providing comprehensive support for inherently large
systems through distribution, replication and caching. We
present an alternative way of looking at distributed objects
and argue that it is a better basis for supporting replication
and caching of the state of objects.

2. The legacy of RPCs: CORBA and DCOM

Two middleware platforms are currently popular:
CORBA [7] and DCOM [1]. A distributed object as de-
fined in CORBA is an object running on a single machine,
presented to remote clients as a local object by means of
proxies. An Object Request Broker mediates between the
clients and the object and, in particular, takes care of the
transport of requests and replies from the client to the ob-
ject over the network. CORBA currently has little support
for the replication of objects.

The implication of this remote-object view is that distri-
bution and replication of a distributed object are managed
by the Object Request Broker. This implies, in turn, that
the choice of the application programmer with respect to
these nonfunctional aspects is limited by what the Object
Request Broker (or ORB Service) offers. For example, an
ORB might offer only active replication protocols and no
primary-backup solutions.

The CORBA model does not easily allow the introduc-
tion of object-specific replication and distribution protocols.
CORBA Interceptors, small pieces of software that can be
introduced in the invocation (and response) path from client
to object, are an improvement, but they are currently not
properly worked out [6]. We argue that taking a different
view of distributed objects allows object-specific policies
for nonfunctional aspects in a more comprehensive way.

The other popular middleware platform is DCOM [1].
DCOM is the combination of Microsoft’s COM with re-
mote procedure calls following the DCE standard [8], to
allow clients to interact with COM components on other
machines.

The choice for DCE RPCs makes DCOM basically a
client/single server system. The custom marshalling feature
of DCOM allows application programmers to write their
own proxies and server-side skeletons. This feature can be
used to implement object-specific replication and security
protocols. However, implementation is left entirely to the
application programmer.
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3. A different view of distributed objects

The Globe distributed system [10] is a middleware plat-
form specifically designed for developing large-scale dis-
tributed applications. In Globe, processes communicate by
invoking methods on a special kind of distributed object,
called a distributed shared object (DSO). The distributed
shared object is the unifying concept in the system. It pro-
vides a uniform representation of both information and ser-
vices and implementation flexibility by decoupling inter-
face and implementation.

3.1. Physically distributed objects

The fundamental idea behind the design of the dis-
tributed shared object is that it is, what we call, physically
distributed. Instead of viewing a distributed object as an
entity running on a single machine, possibly with copies on
other machines, we view a distributed shared object as a
conceptual object, distributed over multiple machines with
its local representatives (proxies and replicas) cooperating
to provide the single (consistent) image. In other words,
a distributed shared object is a wrapper encompassing all
the object’s proxies and replicas, rather than a remotely ac-
cessible object implementation. This view is illustrated in
Figure 1a.

This different view of what a distributed object is gives
us flexibility with respect to replication, caching and dis-
tribution of the object’s state. In this view, a distributed
shared object encapsulates its own replication and distribu-
tion strategy. The local representatives of an object take
care of the replication and distribution of the DSO’s state
and all necessary communication. Only minimal (protocol
independent) support is required from the run-time system.

The way the state of the object is replicated can now be
governed completely by object- and application-specific re-
quirements with respect to consistency and nonfunctional
aspects, such as security, and is under no restriction from the
supporting middleware platform. However, we do not leave
everything to the application programmer. The structure of
local representatives, described below, separates replication
and communication code. This means that a programmer
can write his or her own replication protocol based on ex-
isting communication protocols. Furthermore, we provide
the application programmer with implementations of fre-
quently used replication protocols.

3.2. Implementation of the Globe object model

A local representative resides in a single address space
and communicates with local representatives in other ad-
dress spaces. Each local representative is composed of sev-
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Figure 1. (a) A distributed shared object (DSO) dis-
tributed over four address spaces (A1-A4). In each
address space the DSO is represented by a local
representative. Address space A5 does not cur-
rently contribute to the distributed shared object.
(b) A local representative is composed of a number
of subobjects. The exact composition depends on
the role the local representative plays in the dis-
tributed shared object.



eral subobjects as shown in Figure 1b. A typical composi-
tion consists of the following four subobjects.

Semantics subobject: This is a local object that im-
plements (part of) the actual semantics of the distributed
object. As such, it encapsulates the functionality of the
distributed object. The semantics object consists of user-
defined primitive objects written in programming languages
such as Java, C or C++. These primitive objects can be de-
veloped independent of any distribution or replication is-
sues.

Communication subobject: This is generally a system-
provided subobject (i.e., taken from a library). It is respon-
sible for handling communication between parts of the dis-
tributed object that reside in different address spaces, usu-
ally on different machines. Depending on what is needed
from the other components, a communication subobject
may offer primitives for point–to–point communication,
multicast facilities, or both.

Replication subobject: The global state of the dis-
tributed object is made up of the state of semantics sub-
objects in its local representatives. A DSO may have se-
mantics subobjects in multiple local representatives for rea-
sons of fault tolerance or performance. In particular, the
replication subobject is responsible for keeping the state of
these replicas consistent according to some (per-object) co-
herence strategy. Different distributed objects may have dif-
ferent replication subobjects, using different replication al-
gorithms. An important observation is that the replication
subobject has standard interfaces.

Control subobject: The control subobject takes care of
invocations from client processes, and controls the interac-
tion between the semantics subobject and the replication
subobject. This subobject is needed to bridge the gap be-
tween the user-defined interfaces of the semantics subob-
ject, and the standard interfaces of the replication subobject.

A key role, of course, is reserved for the replication sub-
object. Replication (and communication) subobjects are un-
aware of the methods and state of the semantics subobject.
Instead, both the replication subobject and the communica-
tion subobject operate only on opaque invocation messages
in which method identifiers and parameters have been en-
coded. This independence allows us to define standard in-
terfaces for all replication and communication subobjects.
This approach is comparable to techniques applied in re-
flective object-oriented programming [2].

3.3. Binding to a distributed shared object

To access a distributed shared object, a client first needs
to install a local representative of the object in its address
space. The process of installing a local representative in an
address space is called binding. An important property of
Globe is that each DSO is identified by a worldwide unique,

location-independent object identifier (OID). During bind-
ing, this OID is mapped to one or more contact addresses,
describing where (network address, port number) and how
(which replication and communication protocol) the dis-
tributed shared object can be contacted. This information
is then used by the local run-time system to create a new lo-
cal representative in the client’s address space and integrate
the new representative into the DSO.

We make the assumption that an OID never changes, but
that an object’s contact addresses may change regularly. For
this reason, we cannot make use of traditional naming ser-
vices such as DNS, to look up a contact address. Although
we have developed an efficient location service for track-
ing distributed shared objects [9], binding to an object will
always require looking up a contact address, making it a
relatively expensive operation.

We stress that the performance of binding would not be
a problem if contact addresses would never change. This is
the reason why look-up operations in the World Wide Web
perform reasonably well. However, even the Web demon-
strates that contact addresses (i.e., URLs), do change. In
Globe, we do not make simplifying assumptions about the
mobility of objects, as we believe that such assumptions
have no place in the next generation of distributed systems.

4. Granularity of distributed shared objects

A distributed application in which caching and replica-
tion play an important role is the World Wide Web. This
makes it an important area of research for us.

Consider, for example, a moderate-size Web site consist-
ing of hundreds of Web pages, along with the images, ani-
mations, etc. that go with these pages. Like most Web sites,
some Web pages will be popular while others are hardly
ever accessed. Likewise, this site will contain pages that are
hardly ever changed, and pages that are changed every day.
There are several ways that such a Web site can be modeled
in Globe.

One approach is to take each page, along with its images
and such, and turn it into a Globe distributed shared object.
This offers a fine-grained approach to distribution, as we are
able to associate a separate distribution strategy with each
page. For example, pages that enjoy large popularity could
be replicated using a copy-invalidate scheme, reducing the
average download time because their contents are closer to
the viewer. Less popular pages could possibly do without
replication. Although in theory this approach works fine,
it would also mean that a client (i.e., a Globe-enabled Web
browser) would have to go through the entire binding pro-
cess for each page, since each page would be a distributed
shared object. Given the current cost of contact address look
ups, we deem this approach as yet to be too expensive.

An alternative is to model the entire site as a single Globe



distributed shared object. However, it is clear that this ap-
proach can work only for small sites consisting of a few
Web pages. The main problem is that having a single dis-
tribution strategy for all pages of the site is not a good
idea. For example, if 90% of all accesses involve only a
few pages, then it does not make sense to use a master-slave
replication strategy for all pages. On the other hand, the ad-
vantage of the approach is that only a single binding step is
needed to access the site and all its pages. Getting access to
the Web site object is thus cheap.

The solution, of course, lies in the middle: a large site
consisting of hundreds of pages should be split into smaller
units, where each unit has its own distribution strategy. In
principle, each unit could be represented by a distributed
shared object. The problem with this approach is that we
are grouping pages into objects based on distribution strat-
egy. As a consequence, the objects we create may not be
meaningful at the functional level, because the only thing
that relates the pages in those objects, is that they should be
distributed in the same way.

It is possible that the objects we create correspond to
logical relationships (e.g., a group of pages that should be
replicated the same way might turn out to be the group of
pages describing a certain product line). However, in gen-
eral, this will not be the case and therefore this approach
violates the basic principles of good (object-oriented) soft-
ware engineering, notably separation of functional and non-
functional aspects.

The fundamental problem to be solved here is that we
want to differentiate between data elements according to
nonfunctional requirements (i.e., apply different distribu-
tion strategies to different data elements) at low cost, with-
out creating relationships between those elements at the
functional level (i.e., group logically unrelated data ele-
ments into the same object). To illustrate this point, con-
sider the example of a company’s Web site where the most
popular pages are the product and support pages. For per-
formance reasons it would make sense to put the product
and support pages in a single DSO with an optimized repli-
cation strategy. However, logically products and support are
different entities and should be kept separate.

We describe how this problem can be solved using the
distributed shared object concept in the next section. The
approach in which logically related pages are grouped into
distributed shared objects, that is, where the DSOs are log-
ical units, is currently being investigated for feasibility by
our project team [11].

5. Containers and clusters

Our solution is to use a clustering mechanism. Clus-
tering has traditionally been applied to object-oriented
databases to physically group related objects close together

so that they may be efficiently retrieved [3]. In our case,
we use clusters to group elements according to a common
distribution strategy. An important aspect of our solution
is that elements are no longer only pieces of data, but are
turned into objects encapsulating their own implementation.
This both facilitates the implementation of our clustering
mechanism and adds expressiveness to the system. In our
Web example, an element would be a Web page with all its
HTML text, images, etc., modeled as an object containing a
set of files with methods to add, retrieve, update and remove
these files.

In our new model, elements are held in a container. Each
element has a worldwide unique identifier. An element can
be held in only one container. Within the container, ele-
ments are grouped into clusters, where each cluster supports
a single distribution strategy. As an initial approach, we do
not allow an element to be moved from one cluster to an-
other without changing its (object) identifier. As before, a
client is first required to bind to an element, resulting in the
installation of a special local representative supporting the
element’s methods in the client’s address space, analogous
to binding in our original object model.

Binding to an element object is not as expensive as bind-
ing to a distributed shared object, however. To bind to an
element we only need to look up a contact address of the
cluster it belongs to in the worldwide location service. Con-
sequently, when a client binds to an element in a cluster � ,
it need only look up a contact address if it is not yet bound
to another element in � . In this way, we avoid many expen-
sive look-up operations, while allowing multiple distribu-
tion strategies within a large distributed shared object (i.e.,
a container).

The underlying assumption is, of course, that a cluster
contains more than one element. If each cluster contains ex-
actly one element (i.e., each element has its own replication
strategy), this approach is as expensive, in terms of number
of look-up operations on the worldwide location service, as
turning each element object into a distributed shared object.
In all other cases there will be less load on the location ser-
vice.

However, we are not required to use the worldwide lo-
cation service for finding a cluster’s contact addresses. The
fundamental idea of Globe is that a distributed object has
complete control over all aspects of its implementation,
over its functional aspects and, in particular, over its non-
functional aspects. This idea enables us employ object-
specific solutions for each part of a distributed shared ob-
ject’s implementation. This applies to finding the contact
addresses of clusters as follows.

Clusters can be viewed as part of the implementation of
a container DSO. As a consequence, the problem of find-
ing the contact addresses of a cluster that is part of a certain
container object is an aspect of the implementation of that



container DSO. We should therefore be free to use object-
specific solutions for this problem if this results in a more
efficient implementation. In other words, it should be pos-
sible to put the container DSO in charge of keeping track
of where its clusters can be contacted, if the container DSO
can do this more efficiently than the (external) location ser-
vice.

For example, if the contact addresses of a container’s
clusters hardly ever change (i.e., each cluster is always
replicated on the same set of machines), these addresses
could just as well be replicated at each of the container’s lo-
cal representatives, avoiding expensive look-up operations
all together. This idea and how it can be actually im-
plemented in Globe is currently under investigation. At
present, we choose to use the worldwide location service
for discovering a cluster’s contact addresses.

An important property of our clustering mechanism is
that clusters are visible only to the people and services man-
aging the nonfunctional aspects of the container object and
its elements. A developer can model his distributed appli-
cation in terms of container objects containing element ob-
jects. The partitioning of elements into clusters does not
play a part at this stage, and can be dealt with at the appro-
priate time.

The concept of clusters is new to the Globe distributed
system. Until now, a distributed shared object was not only
the unit of functionality but also the unit by which nonfunc-
tional aspects could be changed. The clustering mechanism
now allows large distributed shared objects to replicate parts
of their state according to different strategies. Or, taking a
different viewpoint, this clustering mechanism introduces a
form of composite distributed objects where the component
objects (i.e., the element objects) are more lightweight than
regular distributed shared objects, because they are repli-
cated in clusters, but are almost equally powerful.

6. Implementing clusters

We describe the implementation of our clustering mech-
anism in Globe by looking at the internal structure of a lo-
cal representative for a cluster of elements. We also discuss
how elements and clusters are added to and removed from
a container DSO.

A local representative for a cluster consisting of two el-
ements is shown in Figure 2. It can be divided into two
parts: the cluster-specific part and the element-specific part.
The element-specific part consists of a set of control sub-
objects, one for each element, supporting the methods of
the elements and possibly semantics subobjects. Semantics
subobjects are loaded only when the local representative is
acting as a replica for the cluster of elements. Whether or
not a local representative should act as a replica is deter-
mined by the replication strategy of the cluster. If it should
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Figure 2. A local representative for a cluster of el-
ement objects, Element 1 and Element 2. There is
no single replication subobject for the cluster, in-
stead each element has its own replication subob-
ject. The replication subobjects access the com-
munication subobject for the cluster through a new
subobject, called the multiplexer/demultiplexer
subobject (abbreviated MuxDemux), which mul-
tiplexes and demultiplexes the communication
streams to the replication subobjects.

act as a replica there are semantics subobjects for all ele-
ments, as is the case in Figure 2. Otherwise, there are no
semantics subobjects in the local representative.

Furthermore, there is a replication subobject for each ele-
ment in the cluster. The replication protocol (implementing
the replication strategy) is, of course, the same for all ele-
ments in the cluster, suggesting that there should be a single
replication subobject. However, we choose to give each el-
ement a separate replication subobject. The most important
reason for this implementation decision is that we want to
maintain some independence between the elements with re-
spect to replication. For example, in a copy-invalidate repli-
cation protocol we want to be able to invalidate state on a
per-element basis, not per cluster. Furthermore, we want to
reuse replication subobjects written for distributed shared
objects as much as possible. Rewriting a replication sub-
object to handle a cluster of objects requires considerable
modifications, which can be avoided by letting each element
object have its own replication subobject.

The cluster-specific part of the local representative con-
sists of a communication subobject and a new subob-
ject, called the multiplexer/demultiplexer subobject. The



communication subobject is a regular communication sub-
object, providing the communication facilities required
by the replication protocol of the cluster. The multi-
plexer/demultiplexer subobject is introduced to deal with
the fact that we have multiple replication subobjects instead
of one.

The mechanisms that Globe uses to construct and in-
stall local representatives of distributed shared objects in a
client’s address space can also be used to construct these
cluster representatives. Only minor additions to the run-
time system are necessary. We do, of course, need to record
some additional information, such as the mapping from el-
ement identifier to cluster identifier. We use the container
DSO for this. A container DSO is a regular distributed
shared object that has a set of special methods, in addition
to its application-defined methods. This set of special meth-
ods is used to retrieve and maintain the additional infor-
mation regarding elements and clusters (the mapping from
cluster identifier to contact addresses is, of course, main-
tained by the location service). The implementation of this
set of methods is provided by the system in the form of
a semantics subobject and is automatically combined with
the implementation of the container’s application-specific
methods.

Each cluster has one or more associated element man-
agers. Element managers are used to add element objects
to the cluster, that is, create new element objects that follow
the cluster’s replication strategy. Their most important task
is to add control and semantics subobjects to all the clus-
ter’s local representatives that should function as replicas
according the cluster’s replication strategy, and to initialize
these replicas with the element object’s initial state. The
exact implementation of element managers is outside the
scope of this paper, but basically they are special element
objects that are aware of the replication strategy of the clus-
ter they are associated with. Creating a new cluster consists
primarily of creating element managers and registering the
new cluster and its associated element managers with the
container DSO.

Removing elements from a container means destroying
the element, because in our model elements cannot exist
without a container. Destroying an element is similar to
destroying a distributed shared object, and requires no addi-
tional mechanisms. Once all elements that follow the clus-
ter’s replication strategy have been logically removed for a
container, and none are expected to be added, a cluster can
be destroyed. This basically consists of deregistering the
cluster and its element managers at the container and de-
stroying the element managers.

7. Conclusions

Current middleware platforms are based on the remote-
object view of distributed objects. Replication and caching
support, necessarily for developing large-scale distributed
applications, can and is being added to these platforms [5].
However, we argue that adopting a different view of dis-
tributed objects, notably viewing them as physically dis-
tributed entities, results in more comprehensive support.
The distributed shared object model as implemented in the
Globe system makes replication and caching support not
only more comprehensive, but also results in a more flex-
ible middleware platform. In particular, we can add new
forms of replication support through distributed containers,
without changing the architecture of Globe.
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