
Safe and Private Data Sharing with Turtle:
Friends Team-Up and Beat the System

Bogdan C. Popescu
Vrije Universiteit

Amsterdam, The Netherlands
bpopescu@cs.vu.nl

Bruno Crispo
Vrije Universiteit

Amsterdam, The Netherlands
crispo@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit

Amsterdam, The Netherlands
ast@cs.vu.nl

Abstract

In this paper we describe Turtle, a peer-to-peer ar-
chitecture for safe sharing of sensitive data. The truly
revolutionary aspect of Turtle rests in its novel way of
dealing with trust issues: while existing peer-to-peer ar-
chitectures with similar aims attempt to build trust re-
lationships on top of the basic, trust-agnostic, peer-to-
peer overlay, Turtle takes the opposite approach, and
builds its overlay on top of pre-existent trust relation-
ships among its users. This allows both data sender and
receiver anonymity, while also protecting each and ev-
ery intermediate relay in the data query path. Further-
more, its unique trust model allows Turtle to withstand
most of the denial of service attacks that plague other
peer-to-peer data sharing networks.

1 Introduction

Freedom to exchange information derives from the
freedom of speech; unfortunately, there are many coun-
tries where this basic human right is not guaranteed.
Turtle is a peer-to-peer data sharing architecture that
makes very hard to restrict the freedom to exchange in-
formation by either technical or legal means.

When designing Turtle, we were inspired by the way
people living under oppressive regimes 1 share infor-
mation deemed “hostile” by their government (this can
be books, newsletters, video and audio recordings, or
even political jokes). Because of the potentially very
serious consequences raising from being caught pos-
sessing/distributing such material, no single individual

1One of the authors was born in a country where the govern-
ment’s track record on civil liberties used to be less than stellar.

is willing to share it, except with close friends. Expe-
rience has repeatedly shown that, even in the most re-
pressive environments, this “friends-to-friends” delivery
network is remarkably effective in disseminating infor-
mation, with relatively little risks for the participating
parties; if one chooses his friends carefully, the chance
of being caught doing the forbidden exchanges becomes
very small.

The idea behind the Turtle is to take this “friend-to-
friend” exchange to the digital world, and come up with
a peer-to-peer architecture allowing private and secure
sharing of sensitive information between a large number
of users, over an untrusted network, in the absence of a
central trust infrastructure.

The rest of this paper is organized as follows: in Sec-
tion 2, we give a high level description of the Turtle ar-
chitecture, including the protocols for query propaga-
tion and result retrieval. In Section 3 we look at tech-
nical, security and ethical implications of our design
choices. In Section 4, we review related work, and in
Section 5 we present our conclusions.

2 The Turtle Architecture

To bring the discussion to a more formal level, we
will introduce a system model. For the Turtle architec-
ture, this consists of a large set of nodes N , and a large
set of data items D. We assume that behind each Turtle
node i there is a human user (the node’s owner) who has
a subset Di of all items in D, and is interested in obtain-
ing more. However, a user owning a node i is willing to
share his data items only with nodes owned by people
he trusts - we denote this as i′s friends subset - Fi. We
assume the friendship relation is commutative, for any
two nodes i and j, if i is in Fj , then j is in Fi. However,
friendship is not transitive (the friend of a friend is not

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15449615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


automatically a friend).
Each data item d has an attribute set Ad associated

with it. The attribute set consists of a number of at-
tribute=value pairs describing certain properties of the
data item, and are used when evaluating user queries.
These are logical expressions consisting of a number of
attribute=value pairs, connected using the AND, OR and
NOT logical operators. A data item matches the query
if the attribute=value pairs in its attribute set satisfy the
logical condition in the query expression.

Each user establishes a cryptographically secure con-
nection between its Turtle node and all the nodes in its
friends subset. Since there is no central trust infras-
tructure, the shared secrets needed to establish these
secure connections have to be agreed-upon by out-of-
band means (this can be done using common knowledge
based on common past experiences - after all owners of
friend Turtle nodes are assumed to be friends in the real-
life!). Once established, the inter-friends secure com-
munication links are used for exchanging data items and
propagating user queries.

Users search for new data items by sending queries
to the Turtle network. The user starts by introducing a
query expression and a query depth through the query
interface of its Turtle node. The node then creates a
128 bit query ID, by generating a 64 bit random num-
ber and appending it to the most significant 64 bits of
the SHA-1 hash of the query expression (treated as an
ASCII string). In this way, the probability that two dis-
tinct queries will have the same query ID is extremely
small. Once it has the query ID, the node constructs a
query packet containing the query expression, the query
ID, and a hop count, initially set to the query depth.
The query packet is then broadcast over the “friendship”
links up to the desired query depth. Upon receiving a
query packet, a Turtle node first evaluates the query ex-
pression against the attribute sets of all the data items in
its data subset. If matches are found, the node reports
them back to node that has forwarded (possibly origi-
nated) the query. Furthermore, the node decrements the
hop count in the query packet, and if the count is still
positive, the packet is further forwarded to all the node’s
friends (except the one from which the packet came).

We can see that propagating a query in the Turtle net-
work generates a query broadcast tree rooted in the node
originating the query, tree that follows the trust relation-
ships among the Turtle users. The query broadcast tree
is also used for delivering query answers, which travel
hop by hop up the tree until they reach the root. In order

to match queries with answers, each node maintains a
query table with queries it has forwarded but for which
the query answer process has not yet completed. Each
query table entry corresponds to a query broadcast tree
the node is part of; table entries are indexed by query ID,
and store the address of the node’s parent in the tree, the
time the query has been received, and a result section,
storing all the response packets the node has received
from its children nodes in the tree.

A query response packet consists of the address of
the responder, the Final bit, the query ID, a response
hop count, and possibly a response payload consisting
of number of data attribute sets. The Final bit is used
for differentiating between partial and final answers. A
node receiving a positive answer (query hit) from one
of its children in the query broadcast tree, will imme-
diately report it to the parent. A node indicates it has
no more answers to forward by sending his parent a re-
sponse packet with the Final bit set. This can happen in
the following circumstances:

• The node receives a query packet with a query ID
that matches one already present in the query table
(we call this a collision). Since it is very unlikely
two different nodes will generate the same query
ID, the most likely cause for the collision is a cycle
in the friendship graph which has routed the same
packet back.

• A node receives a query packet with a zero hop
count (no more forwarding necessary). The node
responds with a final packet which also includes
the attribute sets of the local data items matching
the query (if there are any).

• The node has received final answers from all its
children in the tree, and has finished processing
them.

A response packet with the Final bit set to zero is
a partial answer. The following rules apply to partial
answers:

• A node receiving a query matching some of the el-
ements in its data set creates a partial answer with
the response hop set to zero, and a payload consist-
ing of the attribute sets of all data items that match
the query.

• A node receiving a partial answer from one of its
children in the tree changes the responder’s ad-
dress in the packet to its own address, increments



the response hop count, and forwards it to its parent
node. The node also keeps a copy of the original
response packet (as received from its child) in the
response section of the query table (this is needed
for the data retrieval phase, as we will see shortly).

The query completes after the originating node has
received final answers from all its friends. At this point,
the originating node has also accumulated all partial an-
swer packets. The node then sorts through all these par-
tial answers to identify all distinct data attribute sets;
these are then presented to the user, much in the same
way as the results of a Web search engine query (they
can be ranked based on frequency, or hop distance).
Once the user selects the result she is interested in, the
node can start the data retrieval phase.

The retrieval phase consists of selecting a retrieval
path and propagating the query result along that path.
For a given data element d (identified by its attribute set
Ad), the retrieval path is the shortest path in the query
tree between the root and a node that has d. This path
is determined hop by hop, starting with the root node
which searches through all response packets and selects
the one that has Ad in the payload, and the smallest re-
sponse hop count. The root then asks the friend from
which the selected response packet has been received to
retrieve the Ad data item. The friend follows a similar
procedure to find the next hop in the retrieval path, and
so on until the retrieval request reaches the node that has
the actual data item. The data item is then sent to the re-
quester, following (hop by hop) the the retrieval path in
reverse order 2.

3 Discussion

There are two basic assumptions we make when
proposing the Turtle architecture. First, we assume that
continuous, high-speed Internet connections will be-
come ubiquitous in the near future. Looking at current
trends, which show increasing DSL/cable modem pene-
tration in the consumer market, not to mention the ever-
increasing wireless “umbrellas” that cover large parts
of big cities, this first assumption seems very reason-
able. The second assumption is that for sufficiently large
social communities (a college campus, a country, the
world), “friendship” relationships form fully connected
graphs. Validating this assumption would obviously in-
volve large-scale sociological experiments, which are

2this is slow but safe, hence the name “Turtle”

beyond the scope of this paper. However, based on the
famous “six degree of separation” experiment [15], the
moderate success of the PGP infrastructure, and, more
recently, the explosive popularity of the “Friendster”
service [1], we have reasons to believe that for rela-
tionships involving moderate amount of trust, it is very
likely to achieve full “friendship” graph connectivity.

3.1 Technical Considerations

We expect that our main application scenario (dissi-
dents exchanging sensitive information) would mostly
involve small data items. For this reason, we have de-
signed Turtle as a packet routing overlay. However
it should be straightforward to re-design it as a cir-
cuit switching network, so it could accommodate large
data transfers. The only significant change in the pro-
tocol would concern the retrieval path, where nodes
would have to establish a “virtual tunnel” connecting
the source and the destination. This would also require
dealing with issues such as flow control, buffering and
quality of service.

Second, overall system performance can be greatly
improved if data items are cached. This can be comple-
mented by “gossip-like” mechanisms that allow nodes
to quickly disseminate information about which data
items are popular, in order to implement smarter cache
expulsion algorithms.

Finally, because the unique trust properties of the
overlay (only nodes that trust each other directly inter-
act), it is very easy to enhance Turtle with an economic
model that would encourage cooperation and sharing.
For example, when sending back a response packet, a
node can also include a price tag for supplying the given
item, with each node in the broadcast tree adding his
“relay fee” to the price tags received from its children.
The query initiator can then use the final price tag as an
additional selection criteria when deciding which data
item to request. These payments can be aggregated over
longer intervals, by having Turtle nodes keeping track of
the amount owed to/owed by friend nodes. A node can
then periodically report the “balance sheet” to its owner,
who can settle the matter with his friends by out of band
means (e.g. cash exchange).

3.2 Security Implications

From a security point of view, the Turtle architecture
raises a number of interesting points:



First of all, Turtle offers good query initiatior and
query result anonymity: both initiator and responder are
known only by their respective friends subsets (trusted
nodes). With small modifications in the query/result
routing protocol - namely removing the hop counts -
it is also possible to achieve complete sender/receiver
anonymity. Because all information exchange is done
over encrypted channels, the only way for an adversary
to link a query initiator to a responder is through traf-
fic analysis. However, there are well known techniques
for protecting against traffic analysis [12, 7], which can
be easily incorporated in our basic query/result routing
protocol.

Second, the Turtle network is immune to the “Sybil”
attack [6]. Even if a powerful adversary is able to cre-
ate a large number of malicious Turtle nodes, the effect
these nodes have on the correct functioning of the sys-
tem is minimal, unless the attacker is also able to infil-
trate his nodes in the friends sets of correct nodes (but
this would require a lot of social engineering!).

Third, Turtle exhibits a very desirable fail-mode
property - “confined damage” - meaning that a secu-
rity break in one correct Turtle node only affects a small
subset of all correct nodes in the system (in this case the
node itself plus its friends subset).

Finally, due to the way the Turtle overlay is orga-
nized, denial of service attacks typical for a peer-to-peer
network - such as malicious routing [2], content mas-
querading (content that does not match its description),
bogus query hits (a node answering positive to a query
even when it does not have any matching content), and
aborted transfers - are much less likely to happen. Be-
cause all direct interactions take place between nodes
controlled by people who trust and respect each other
(“friends”), we expect incentives for random malicious
behavior to be very much reduced.

3.3 Ethical Implications

Turtle allows private sharing of data, and protects
data providers, data consumers as well as intermedi-
aries from the potential negative consequences stem-
ming from being identified as participants in this data
exchange. The main motivation for our work is pro-
viding citizens living under oppressive regimes with a
safe, private information sharing network. However, it
is clear that this same technology can be used for activ-
ities of dubious ethical value - such as illegal sharing of
copyrighted digital products.

There is a lot of debate regarding the legality/morality
of sharing copyrighted information over peer-to-peer
networks. It has already been pointed out [5] that the
benefits copyright laws have brought to society in the
printing press age no longer apply in the case of digital
content. It remains to be seen how copyright laws will
be changed to adapt to digital technology; nevertheless,
it is our opinion that widespread use of fast and efficient
file sharing networks such as Kazaa and Gnutella (where
almost 100% of the traffic deals with illegal sharing of
copyrighted material), if left unchecked, will eventually
drastically reduce the incentives for artistic creativity.
However, using a Turtle-like network for such activi-
ties, will have a less drastic impact. Because of the way
Turtle is designed, the speed of the data retrieval is dic-
tated by the bandwidth capacity of the slowest link in the
retrieval path. Thus, using Turtle to share large items
will be most likely considerably slower than in Kazaa
and Gnutella. This “un-ease of use”, combined with the
fact that at any moment data is only exchanged between
friends (thus, the only way to legally pursue copyright
infringers would involve morally despicable strategies,
such as forcing people to “rat” on their friends), may
actually help in defining a new legal framework on what
constitutes “acceptable sharing” and “fair use.”

4 Related Work

What makes Turtle unique is the bottom-up way it
builds its overlay starting from pre-existing trust rela-
tionships among users. To the best of our knowledge,
there are no other peer-to-peer systems that employ this
technique.

However, the idea of indirect routing of requests and
results in order to achieve sender/receiver anonymity
has been around for some time. Chaum [3] has first
suggested it for building a mix network for anonymous
e-mail delivery. Crowds [12] builds a peer-to-peer mix
network for anonymous Web browsing. The same idea
is more recently employed in [11] and [7] for building
general-purpose anonymizing network layers.

In the context of peer-to-peer data sharing networks,
indirect routing for queries and results is being em-
ployed by Freenet [4] with the aim of creating an “un-
censorable and secure global information storage sys-
tem”. However, a Freenet node acting as a relay in a
“forbidden exchange” can only achieve a limited degree
of plausible deniability. This relay node exposure, com-
bined with the lack of a-priori trust relationships among



interacting nodes, makes Freenet a hard sell for a “dissi-
dents network.” The same considerations apply to other
anonymizing, censorship-resistant peer-to-peer systems
[13, 8, 10, 14, 9]: none of them manages to offer an ac-
ceptable level of protection to each and every entity in
the request/retrieval path.

5 Conclusion

In this paper we have described Turtle, a peer-to-peer
architecture for safe sharing of sensitive information. In
order to achieve strong privacy guarantees, Turtle orga-
nizes the data sharing overlay on top of pre-existing user
trust relationships. This protects the privacy of both data
senders and receivers, as well as the intermediate relay
nodes that facilitate the data exchange. Furthermore,
Turtle is resistant to most of the denial of service attacks
that plague existing peer-to-peer data sharing networks.

As for directions for future work, we have already
mentioned possible extensions of the basic query pro-
tocol to support retrieval of large data items (through
hop-by-hop virtual circuits) and economic models that
would encourage cooperation and sharing. It would also
be interesting to look at ways to associate sensitivity lev-
els to data items and different trust levels to different
friends, which would allow node owners to specify more
complex security and privacy policies regarding the data
items they share.

References

[1] Friendster Web Site. http://www.friendster.com.

[2] M. Castro, P. Druschel, A. Ganesh, A. Row-
stron, and D. Wallach. Secure Routing for Struc-
tured Peer-to-Peer Overlay Networks. In Proc.
OSDI’02, Dec. 2002.

[3] D. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Comm. of the
ACM, 24(2), 1981.

[4] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. In Proc. Int. Work-
shop on Design Issues in Anonymity and Unob-
servability, volume 2009 of LNCS, pages 46–66,
2001.

[5] James A. Dewar. The Information Age and the
Printing Press: Looking Backward to See Ahead.
http://www.rand.org/publications/P/P8014/P8014.pdf.

[6] J. Douceur. The Sybil Attack. In Proc. of the
IPTPS ’02 Workshop, Mar. 2002.

[7] Michael J. Freedman and Robert Morris. Tarzan:
A peer-to-peer anonymizing network layer. In
Proc. of the 9th ACM Conf. on Computer and
Communications Security, November 2002.

[8] S. Hazel and B. Wiley. Achord: A Variant of the
Chord Lookup Service for Use in Censorship Re-
sistant Peer-to-Peer Publishing Systems. In Proc.
of the IPTPS ’02 Workshop, Mar. 2002.

[9] A.D. Rubin M. Waldman and L.F. Cranor. Publius:
A robust, tamper-evident, censorship-resistant,
web publishing system . In Proc. 9th USENIX Se-
curity Symposium, pages 59–72, August 2000.

[10] R. Dingledine, M.J. Freedman, D. Molnar. The
Free Haven Project: Distributed anonymous stor-
age service. In Proc. Int. Workshop on Design
Issues in Anonymity and Unobservability, volume
2009 of LNCS, pages 67–95, 2001.

[11] Michael G. Reed, Paul F. Syverson, and David M.
Goldschlag. Anonymous connections and onion
routing. IEEE J. on Selected Areas in Communi-
cations, 16(4), 1998.

[12] Michael K. Reiter and Aviel D. Rubin. Crowds:
anonymity for Web transactions. ACM Trans-
actions on Information and System Security,
1(1):66–92, 1998.

[13] A. Serjantov. Anonymizing Censorship Resistant
Systems. In Proc. of the IPTPS ’02 Workshop,
Mar. 2002.

[14] M. Waldman and D. Mazieres. Tangler: a
censorship-resistant publishing system based on
document entanglements. In Proc 8th ACM Conf.
on Computer and Communications Security, pages
126–135, 2001.

[15] Duncan J. Watts. Small Worlds, The Dynam-
ics of Networks between Order and Randomness.
Princeton University Press, Princeton, NJ, 1999.


