
Faculteit der Economische Wetenschappen en Econometrie

SERIE RESEARCH MEMORANDA

Accounting for Dependence  among Study Results in Meta-Analysis:

Methodology and Applications to the Valuation and Use of Natura1  Resources

Raymond J.C.M. Florax

Research Memorandum 2002 - 5

vrge Universiteit amsterdam

February 2002



Accounting for Dependence  among Study Results in Meta-Analysis:
Methodology and Applications to the

Valuation and Use of Natura1 Resources

Raymond J.G.M. Florax

Dept. of Spatial Economics, Free University,
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Phone + 3120 4446092, Fax  +3120  4446004
E-mail rflorax@feweb.vu.nl

Website www.feweb.vlr.nl/re/master-point

Abstract
Meta-analysis refers to the statistical analysis of empirical estimates obtained in previous
studies, and is increasingly used in environmental and natura1 resource economics as a
complement to a state-of-the-art  literature review. The occurrence of dependence or auto-
correlation among study results, for multiple estimates from the same study or for estimates
from different studies, is a compelling problem that is usually ignored. This paper suggests
that autocorrelation tests and estimators developed for other types of data constitute an
appropriate solution to measuring and remedying dependence in meta-analysis. Moreover,
visualization by means of a scatterplot provides a useful tool for the interpretation of
dependence, and helps to detect outliers. The paper provides illustrations of the techniques
through meta-analyses on the valuation of wetlands and the price elasticity of residential
water demand.  The applications show that between-study dependence is usually sufficiently
modeled by means of variability in study characteristics. Ignoring within-study dependence,
however, can result  in biased estimators and makes inferences from meta-analyses imprecise
in size and significante.
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1. Introduction

Meta-analysis is by now a well-accepted tool in environmental and natura1 resource

economics. It complements  the conventional state-of-the-art  review of the literature

by providing a statistical analysis of empirical results obtained in previous studies.

Nelson (1980) was the first to use the technique, assessing the average  Noise

Depreciation Index over studies, in addition to presenting a qualitative survey of

property value studies estimating the impact of airport noise. Subsequently, between

1980 and 2001 approximately 40 meta-analyses appeared in environmental and

natura1 resource economics, half of them addressing the valuation of pollution and

recreation, and one-third being concemed with the nexus of agriculture,  land use, and

the use of natura1 resources (Florax 2002b). Some of the more prominent valuation

studies are Katzman (1987),  Smith and Huang (1993, 1995),  Schwartz (1994),

Loomis  and White (1996),  Espey and Kaufman (2000),  and Woodward and Wui

(2001). The demand  for derivates of natura1 resources, such as gasoline and water, is

covered in Espey (1996, 1998),  Espey et al. (1997),  and Dalhuisen et al. (2001),

among others. Methodologically oriented issues, such as differences arising from the

use of hypothetical or revealed preferences, are addressed in, for instance, Carson et

al. (1996),  and List and Gallet  (2001).

Meta-analysis was developed in the experimental context of agronomy and

medicine. The traditional experimental set-up features two large sample groups, one

of which receives  treatment (the “experimental” group) and the other does not (the

“control” group). The treatment effect can then be straightforwardly isolated as a

standardized mean differente  between groups. An advantage of this approach is that

the experimental set-up is rather homogeneous over different experiments, and effect

size  indicators do not depend on the unit of measurement.’ An extensive literature on

meta-analysis techniques in an experimental setting has been developed (see, Hedges

and Olkin 1985; Cooper and Hedges 1994). In the largely non-experimental set-up in

economics, the effect size  indicator is typically an elasticity or a nomina1 value, such

as consumer  surplus or willingness to pay. Elasticities are often derived as point

’ The effect size  can  be measured as a standardized mean  differente,  a correlation coefficient, a
differente  in proportions, an index of proportion of variante accounted for, or a similar statistical
summary indicator. Most effect size  indicators can  be derived from each  other. There is a highly
specialized, voluminous literature on this topic (see, for instance, Rosenthal 1984).

Dependence  among Study Results  in Meta-Analysis 2



estimates of log-linear demand  models, est imated by means  of econometrie

techniques. The advantage of using point elasticities is that the effect size  does not

depend  on the unit of measurement, and its distribution is known to  be asymptotically

normal.

Meta-analysis is plagued by three methodological problems (see also Glass et

al. 1981; Stanley 2001): selection and publication bias, heterogeneity among studies,

and dependence of study results. Selection effects occur when the process of

literature retrieval is such that the likelihood of sampling a study is correlated with the

effect size  measure. This may be due to restrictive  sampling over time,  within a

country or language zone, or alternatively because of a focus on a specific  theoretical

or modeling approach. A special case of selection effects is caused by researchers

self-censoring the publication of ‘negative’ or statistically insignificant effects, a

practice  that may be invigorated by editorial selection processes. Combining and

explaining published effects that constitute  a biased sample of the population’s “truc”

effect, is detrimental to the validity of meta-analysis as a summarizing technique

(Card and Krueger 1995; Ashenfelter et al. 1999).

Heterogeneity among studies has many  dimensions. Studies may differ

according to, for instance, quality of the research design and data, type of data,

estimator, functional form and specification  of the model, and underlying theory.

These differences can be included in the meta-model, either as fixed observable

effects or as a random unobservable variate. In addition to this substantive

heterogeneity, the distribution of effect sizes  is inherently heteroscedastic, because

estimated effect sizes  are based on studies with different sample sizes. Heterogeneity

is in most meta-analyses treated adequately by specifying a fixed or random effects

model (see Schwartz 1994; Jeppesen et al. 2001),  and the application of either a

weighted regression approach (Cavlovic et al. 2000) or a heteroskedasticity robust

variante  estimator (Woodward and Wui 2001).*

The problem of lacking independente  has not been addressed sufficiently in

economie  meta-analyses. Few studies refer to the potentially disturbing influence of

correlated effect sizes, although the occurrence of dependence is much more likely in

* An interesting alternative is the use of hierarchical multilevel modeling (Brouwer et al. 1997).
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economics - as compared to, for instance, medicine - because of multiple sampling of

estimates per study. Statistical testing for autocorrelation is non-existent. Espey

(1996) and Espey and Thilmany (2000) hint at the use of a dependence test by

computing cross-correlation coefficients among residuals of the same study to attain

an indication of within-study dependence.3 Smith and Kaoru  (1990a,b),  Smith and

Huang (1993, 1995),  Boyle et al. (1994),  and Smith and Osborne (1996) do not test

for dependence, but they use estimators that allow for cross-correlation within

studies.4

In this paper we present an approach to test for correlation within and between

studies in meta-analysis, and subsequently estimate meta-regression models taking

into account the dependence when it occurs. Section 2 presents the typical set-up for

meta-analysis in (environmental) economics, and concisely covers pivotal

assumptions concerning heterogeneity and dependence. In Section 3, the

specification  and interpretation of within- and between-study dependence is

discussed.  Section 4 introduces  statistical tests and estimators for autocorrelated data

in a meta-analysis context. In Section 5, the tests for dependence within and between

study results are linked to a visual inspection  tool that is of considerable  practica1

relevante  for the meta-analyst. In Section 6, the use of tests, visualization tools  and

estimators is illustrated by reanalyzing two recent applications. One is concemed

with the valuation of wetlands and the other with price elasticities of residential water

demand.  Section 7 of the paper provides  conclusions.

2. The set-up of meta-analysis in (environmental) economics

The starting-point for meta-analysis in economics is usually  a series of observations

qj on the population effect size  Bij,  with associated standard error gii, for estimates j

(= 1, 2, . . . . Ji)  sampled from studies i (= 1, 2, . . . , Z).  This set-up shows that multiple

3 Jeppesen et al. (2001) mention  that there is no dependence among the residuals, but it remains unclear
how  this  s ta tement  i s  substant ia ted.

4 Smith and Osborne  (1996) apply weights detïned  by the number of sampled estimates from a study in
order to give each  study equal weight and mitigate the influence of dependence. This procedure,
however,  only reduces potential problems with heteroskedasticity, but does not affect the impact of
dependence. There is also  some confusion as to how  the cross-correlation is implemented, as Greene
(1993, p. 453) seems to imply that the data should form a balanced panel in order to avoid
computational problems.
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sampling from the same study, which is common practice  in (environmental)

economics, results in a sample with pooled data. It is important to note that the  data

do not, however,  form a panel. The ordering  of estimates within studies is arbitrary,

so j is an indicator without substantive meaning. Sampling can also be such that

single estimates of studies (i.e., J; = 1) are combined  with multiple estimates from

other studies (i.e., Jj > 1).

Several models can be distinguished depending on the heterogeneity that is

allowed for in the meta-analysis. The simplest model assumes that the underlying

population effect size  is the same for al1  studies and estimates, oii = 6 Vi, j .

Allowing the population effect size  to differ among studies (maintaining homogeneity

within each study) introduces  somewhat more heterogeneity, 0,.  z 8,.  f ... f 8,.  . In

addition it is customary to hypothesize that part of the variation among effect sizes

can be attributed to various identifiable study characteristics. These characteristics

can be modeled by means  of dummy variables (‘fixed effects’),  but also as interval

(for instance, a time  trend) or ratio scale  variables (for instance, GDP per capita).

Somewhat confusingly al1  the above models are referred to asfixed efsects  models in

the meta-analysis literature.

There has been considerable  debate on whether it is appropriate to assume that

the heterogeneity can be fully explained by means  of ‘fixed effects’  (see Sutton et al.

2000, pp. 83-84). It is often argued that it is preferable to assume that the underlying

population effect sizes  differ between studies, and that the studies’ population effect

sizes  can be seen as random draws from a normal distribution. In the meta-analysis

literature this model is referred to as the rundom effects  model. If, in addition, some

of the variation is modeled through additional exogenous variables (as above), the

meta-analysis literature uses the term mixed effects  model.

In environmental economics virtually al1  meta-analyses are based on the fixed

effects  modeling approach. Exceptions are Schwartz (1994),  who employs a random

effects  model, and Brouwer et al. (1997) and Jeppesen et al. (2001),  who use a mixed

effects  model among other models.

A typical assumption of al1  meta-analyses in environmental economics,

usually left implicit,  is the assumption that Cov[ql ,Tk,]  = 0, for i f  k or j f 1.

Hence, despite multiple sampling and pooling of data, the effect size  estimates are
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taken to be independently distributed or not autocorrelated.5 This is likely to be an

unwarranted assumption because within a study the estimates are derived (largely) by

employing the same data and similar models, and between studies there are

overlapping similarities in, for instance, space-time  coverage, research design, type of

data, and specification  and estimation procedures, that may not be accounted for

through exogenous variables.

The structure of the autocorrelation or dependence in meta-analysis is not

identical to what we know from the time  series domain, where an a priori structure

exists. Autocorrelation in time  series implies a unidirectional causation pattem going

from past to present. Familiar autocorrelation tests, such as the Durbin-Watson test,

and time  series estimators for autoregressive and moving average  models (or more

complicated forms) are therefore inappropriate for meta-analysis. Even a cautious use

of the familiar Durbin-Watson test should be avoided, because inferences are likely to

be misleading owing to the one-sided comparison.

3. Autocorrelation in meta-analysis

Autocorrelation in meta-analysis is much more akin to network correlation in social

networks, spatial correlation among regions or countries, or clustered  diffusion

pattems of contagious diseases as studied in epidemiology. In those cases the

autocorrelation is multidimensional. Multidimensionality implies that an observation

can be influenced by multiple other observations in the sample (which in time  series is

equivalent to a distributed lag), but also that the influence is two-sided. Instead of the

unidimensional lag operator L in time  series that shifts back an observation y over k

periods in time,  yIek  = L’ y, , a multidimensional lag operator is needed in the context

of meta-analysis. Following an analogous concept developed in spatial statistics,  such

a multidimensional lag operator can be formalized as Lk’T,  = xk  c,  w,f,,T,,  Vk, 1 E S ,

where Lk’  is the lag operator associated with similarity class S that identifies the set of

effect sizes  potentially linked to estimatej of study i. The elements w,;,~,  specify a set

of weights, for instance  through a binary zero-one indicator (Cliff and Ord 1981;

5 The terms ‘autocorrelation’ and ‘dependence’ are used interchangeably in this paper, although auto-
correlation is somewhat stricter  in that it also  presupposes that the variable considered is normally
dis t r ibuted .
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Cressie 1991),  so that potentially dependent estimates Z of studies k are compared to

estimate j of study i.

Potentially, al1 observations can belong to one and the same similarity class.

As a result,  however,  everything depends on everything else, and the system is not

identifiable unless an exogenously provided decay pattern (such as by distance, in the

spatial case) can be provided. Such a ‘natura1 structure’ does, however,  not exist for

meta-analysis, and as a consequente,  exogenous structure has to be imposed. A new

approach to impose such an exogenous structure is to distinguish “within” from

“between” study effects. Within-study effects can be defined by means  of the

similarity class that includes al1  observations sampled from the same study. The

definition of this class is in most cases exogenous. We can then define  weights for

within-study autocorrelation as:

í0 i=k,j=l

(1) 1-
J; -1

i=k,j#l.

0 i#k

These weights are zero except when two different estimates, j and Z, are sampled from

the same study (i = k ). The specification  of non-zero weights is such that an effect

size  from a specific  study is compared to the average  of the other effect sizes  from the

same study.

Between-study effects can be determined using diverse similarity classes, for

instance  referring to similarity in theoretical or modeling perspective, type of data,

type of estimator, or space-time  coverage. The main  problem with such an approach

is that the weights are not exogenous. We therefore suggest a specification  of weights

defined in terms of the number of sampled studies Z,  and the number of estimates

sampled from each study, Jj  . In effect this secures that the weights are exogenously

defined. We define  the weights for between-study effects as:

(2) 1
Ji (Z  - 1)

i#k,jzl’
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The between-study weights are different from zero except when two estimates, j and 2,

are sampled from the same study (i = k ).  The specification  of the non-zero weights is

such that an effect size  from a specific  study is compared to the weighted average  of

the (estimated) means  of the other studies.6

Because the notation is rather  cumbersome, owing to the pooled nature  of the

data, we provide  a simple numerical  example. Consider a series of six effect sizes

qj = {0.1,0.3,0.2,0.5,0.3,0.15>  taken from three studies. Three estimates are taken

from study 1, two estimates from study 2, and one estimate from study 3. Matrices

representing the within- and between-study structure  are straightforward to derive

using the above definitions, as:

(3) ww=

0 0.5 0.510 010’
0.5 0 0.510 010

!,so~0~~!~0
0 0 0 10 110
0 0 0 11  010---------&--+-
0 0 0 !O  010,

and WB  =

0 0 0 10.25  0.2510.5
0 0 0 j0.25 0.2530.5
0 0 0 JO.25  g~!IIg- - - - - - - - - - - - - -  - -

0.167 0.167 0.167; 0 0 10.5
0 167 0 167 0 1671  0 0 105-=----l----L--~--------~~-
0.167 0.167 0.16710.25  0.251  0

The matrices are standardized by definition, implying that the row sums equal one,

except for zero-rows in the within-study weight matrix. The latter  refer to studies

with one sampled estimate, for which there is obviously no within-study correlation.

By means  of the above matrices we construct (n x 1) vectors of the relevant

within- and between-study averages, based on the original (nxl) column vector t

comprising the effect sizes  qj (n is the total number of observations). We define:

(4) tw =wwt=

0.25’
0.15
0 . 2 0---.
0 . 3 0
0 . 5 0- - - -

0

and tB  = WBt =

0.275’
0.275
0.275----.
0.175
0.175----.
0 . 3 0 0

where t =

0.10
0 . 3 0
0 . 2 0---_
0 . 5 0
0 . 3 0---_
0.15

’ Note that this provides  an approximation to between-study correlation, because each  effect size
estimate of a particular study is compared to the weighted average  of the means  of the effect sizes  of
the other studies. This is strictly speaking not exactly identical to comparing mean  effect sizes  between
studies. In Section  5 we return to this issue.
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It is apparent from comparison of the vectors that each element of t has the average

of the other estimates within the same study as corresponding elements in tW  , and the

weighted average  of the means  of the other studies in t B . The last element of t w is

zero, showing again the absente  of within-study correlation for studies with one

sampled estimate only.

4. Testing for autocorrelation and estimation of autoregressive models

In his seminal work on statistical maps Moran (1948, 1950) suggests to measure the

degree of dependence,  for interval and ratio scale  data, through the statistic Z.  In

matrix notation and adapted to the meta-analysis context, the statistic reads as:

where i is the vector of observed effect sizes  measured in deviations from the grand

sample mean of T,ï  , Ws the weight matrix applying to a specific similarity class, and

S, the sum of the elements of the weight matrix. For a between-study weight matrix

the staling factor nlS, equals one. For a within-study weight matrix nlS, scales

the statistic for the ‘missing’ covariances of single estimate studies included in the

meta-sample.

Moran’s Z is a special case of the genera1 cross-product statistic derived by

Hubert et al. (198 1; see also Getis 1991 for an overview). The statistic compares the

covariance among an exogenously defined set of effect sizes  to the variante  of al1

observed effect sizes. It can conveniently be interpreted as a correlation coefficient,

although it is not necessarily bounded to the [-l,+l] interval, and it is centered about -

ll(n-1)  instead of zero. Values greater than the theoretical mean signal the occurrence

of similar effect sizes  within or between studies (either high or low values). Values

smaller than the mean indicate  the joint occurrence of high and low effect sizes  within

or between studies. A value not significantly different from the mean can be taken as

evidente  of a random distribution of effect sizes within or between studies. In that

case, the value of a specific estimated effect size could have been observed for any

study i and estimate j.
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It can be shown that Moran’s Z is normally distributed, 1 - N@,a)  , so a

forma1 test of the nul1  hypothesis that the effect sizes  are independently distributed

can be based on z,, the standardized value of Z,  which follows a standard normal

distribution. Cliff and Ord (1981) theoretically derived the moments of Moran’s Z

under the assumption that T is normally distributed. If the distribution of T is

unknown or does not correspond to the normal,  the distribution can be approximated

in a nonparametric framework using a randomization approach or empirically

generated using a permutation approach (Cliff and Ord 1981, pp. 42-46 and 63-65).

Simulation experiments by Cliff and Ord (1981) show the test performs reasonably

well, even in smal1 samples.

Moran’s I for regression residuals is identical to the formulation in (S),

replacing the vector of effect sizes  with the vector of OLS residuals.  A disadvantage

of Moran’s test for regression residuals is the very genera1 alternative hypothesis

simply specifying correlated residuals due to any cause. Lagrange  Multiplier (LM)

tests, developed in a maximum likelihood framework, are more attractive  because

they are explicitly linked to specific  alternative models. In the spatial econometrie

literature, two major altemative models  are distinguished (Anselin and Bera 1998; see

Anselin 200 1, for more complicated models).

One model, referred to as the error model, recognizes that (erroneously)

omitted variables can be autocorrelated. This model does not have a substantive

interpretation and reads, in the context of meta-analysis, as:

(6) t=xp+&,andE=AWSE+p,

where R is the autoregressive parameter indicating the magnitude of the unspecified

dependence  within or between studies, and II  is a well-behaved error term. The

appropriate LM test is identical to a scaled Moran coefficient  (Burridge 1980),  and

takes on the form:

’ Because least squares residuals are correlated by definition,  the moments of Moran’s 1 implied by (5)
are not appropriate for a test whether the error term is correlated. The appropriate moments in a
regression framework, assuming a normal independent distribution for the errors, are derived in Cliff
and Ord (1972).
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(7)

where s2  is the maximum likelihood variante  e’e/n,  and c = tr( Ws’ Ws + Ws2) , with

tr as the matrix trace operator. The test asymptotically follows a 2 distribution with

one degree of freedom. Anselin (1988a) shows that ignoring the correlated error

structure does not result  in biased estimates, but the estimates are inefficient.

The other model, referred to as the Zag model, includes a lagged dependent

variable among the regressors, because the observations on the dependent variable can

be realized simultaneously. The model reads as:

(8) t=pw%+xp+p,

where p is the autoregressive parameter indicating the magnitude of the dependence

of effect sizes  within or between studies. The appropriate LM test has the same

asymptotic distribution as the error test, and looks similar (Anselin 1988b):

(9)
e’Wst

( 1
2

1IJ/+- -
nJpp  s’ ’

where  J,,, = [(WSXb)‘M(WSXb)+cs2]/ns2 is part of the estimated information

matrix, M the projection matrix (1 - X(X’X)-lx’),  and b the OLS parameter vector.

Ignoring the endogeneity issue implied by the lag model is more serious than ignoring

a correlated error term, because the OLS estimator is biased as wel1  as inconsistent.

The lag model in (8) can be rewritten as t = (1- PW’)-‘(XP  + p),  showing

that both the error and the lag model have a correlated error structure. This explains

why Moran’s Z has substantial power against both alternatives, and is therefore not

very  useful as a misspecification test for regression models. Anselin and Florax

(1995) and Anselin et al. (1996) show that the LM tests have considerable  power to

detect the right model specification,  even in smal1 samples. Appropriate maximum

likelihood estimators for the error and the lag model, and extensions incorporating

(groupwise) heteroskedasticity are given in Anselin (1988a,  1992).
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5. Visualization of dependence

In meta-analyses outside the realm of economics visualization tools are frequently

used to investigate the heterogeneity of effect size  estimates, in addition to statistical

testing. The so-called Q test, where Q is defined as a (conditional) variante  weighted

deviation of the average  effect size, is graphically depicted in a Galbraith diagram

(Cochran 1954; Galbraith 1988). The Q statistic is ‘global’ or ‘overall’ in the sense

that it applies to al1  observations. Hedges and Olkin (1985) show that each study’s (or

observation’s) contribution to the overall statistic can be formalized by means  of a

‘local’ statistic 4. The Q test should be used cautiously, among other things because

its power is low (Sutton 2000). Further discussion of the test is beyond the scope of

this paper, but it is interesting to note that in spatial statistics  and geostatistics a ‘local’

version  of Moran’s Z with a concurrent scatterplot have been developed (Anselin

1995; Cressie 1991). In this section we wil1  demonstrate how the local statistic and

the scatterplot can be fruitfully applied in economie  meta-analyses.

Following Anselin (1995) the local Moran for an individual estimate j of study

i can be expressed as:

where the bar indicates  that variables are measured in deviations from the overall

sample mean,  Wij  is the row of the weight matrix pertaining to estimate j of study i,

and Si refers to the sum of the weights in Wij, Anselin (1995, p. 99) derives the

moments of the local Moran under the nul1  hypothesis of independente,  but points out

that statistical inference is safest when taking a randomization approach, because the

exact distribution of the statistic is stil1 unknown. The global Moran coefficient  is

equal to the sum of the local Moran coefficients, up to a proportionality factor defined

in terms of S, (Anselin 1995 provides  details).

Similar to the use of the local q statistic, the local Moran can  be used to

identify influential estimates and clusters of similar values.  This can also be achieved

through the use of a scatterplot. As with any statistic expressed as a ratio of a

quadratic form and its sum of squares, Moran’s Z is equivalent to a bivariate
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regression coefficient of a regression of Wt on t, and can be visualized in a scatterplot

(Anselin 1996).

The Moran scatterplot has standardized effect size  values on the horizontal

axes, and standardized values of Wt on the vertical  axes. The slape of a linear  trend

line in a plot of al1  observations corresponds to the global Moran coefficient, given

the abovementioned equivalente.  Because of the standardization one can easily judge

clustering of (dis)similar values from the scatterplot. The upper-right  and lower-left

quadrants show observations with above and below average  values that contribute

positively to the overall autocorrelation because their local Moran is positive. The

upper-left and lower-right quadrants show dissimilar values that contribute negatively

to the overall autocorrelation because their local Moran is negative. Finally, one can

use the scatterplot to identify outliers, for instance, those observations that are further

than two standard deviations away from the overall sample mean (represented by the

origin) .

We point out some significant details of the Moran scatterplot for the

numerical example given in Section 3. Figure la provides  the scatterplots of within-

study correlation for the numerical example. The top graph shows the estimated

effect sizes  connected by a trend line for estimates from the same study. Study 3 is a

single estimate study. Given the definition of weights (in effect evoking a comparison

of averages) the trend lines per study are typically downward sloped. The bottom

graph shows the estimates of al1  studies, with a trend line added. It is important to

note that for within-correlation the slope of the trend line is not necessarily equal to

the global Moran’s Z.  In this example the Moran coefficient for within-dependence is

0.24 and the slope of the trend line is 0.20. This deviation is caused by the inclusion

of single study estimates. Figure la also shows that overall there is positive

autocorrelation within studies. Relatively high effect sizes as wel1  as relatively low

effect sizes  are clustered  within studies (in this case in study 2 and 1,  respectively).

Figure lb presents scatterplots for between-study dependence. The graphs

show that between studies the effect sizes  are dissimilar, given the concentration of

points in the upper-left and lower-right quadrant. The overall dependence is -0.30,

which corresponds exactly to the slope of the trend line in the middle graph. For

between-study correlation the correspondence of the slope of the trend line to Moran’s
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Z holds,  because the weights matrix does by definition not contain rows with  only

zeros and al1 rows sum to one.

The third graph of Figure lb (bottom) presents study means  only in order to

demonstrate that the procedure we suggest to measure between-study dependence is

an approximation (see footnote 6). The exact measurement, using only study means,

is -0.5 whereas ‘our’ Moran coefficient  is -0.3. The differente  is due to the

assignment of the weighted average  of the means  of the other studies to each  estimate

of a specific study. This is easily verified in the top graph where the between-

averages  for each estimate of a specific study are located on a horizontal line. Three

arguments are of paramount importante  for the justification of the approximate

procedure. First, it is not possible to judge the significante when using study means

only,  unless one assumes that the study means  are independent (in which case the

usual t-statistic  applies). Second,  accurate modeling of between-study dependence is

only feasible in a hierarchical modeling set-up where potentially the error terms for

estimates as wel1  as for studies are autocorrelated. This constitutes  a fairly

complicated hierarchical model, for which to date no estimators are available.

Finally, the accuracy of the variant we suggest depends on the proportion of single

study estimates in the sample, and is likely to have a reasonable asymptotic accuracy

(with increasing sample size).

6. Applications

We demonstrate the relevante  of taking into account dependence within and between

effect size  estimates of a series of studies by re-analyzing two recent meta-analyses.

The applications reflect two different types of analysis typical for environmental and

natura1 resource economics. One study uses values in constant prices as effect size

estimator, and the other uses price elasticities.

The meta-analysis by Woodward and Wui (2001) analyzes per acre  values of

wetland  (in constant 1990 US dollars). The effect size  is measured as a per acre  value

in constant prices, but due to the research design of (some of the) original studies, no

information is available on the estimated standard errors of the effect sizes. The

* The authors provide  the complete data set, including a description of each  study and an explanation of
the interpretations of the data, online at http:l/ageco.tamu.edu/faculty/woodward/.

Dependence  among Study Results  in Meta-Analysis 14



other study is a meta-analysis of price and income  elasticities of residential water

demand  by Dalhuisen et al. (2001). For the subset of point-elasticities estimated by

means  of double-log specifications the estimated standard errors of the effect sizes  are

known. We use a subset of the price elasticities of the dataset that have been selected

using the criterion of availability of information about the tariff structure,  in particular

decreasing, flat or increasing black  rate pricing.’

In the wetlands meta-analysis 65 observations are available and in the water

demand  analysis 123. Figure 2 presents the distribution of effect sizes  and the

sampling distribution according to studies. For the wetlands analysis we follow

Woodward and Wui’s choice of using the natura1 logarithm of the estimated effect

size  as the variable of interest. The assumption of a log-linear relation is not

uncommon in economie  meta-analyses, and reflects nonlinearity in addition to

contributing to remedying potential heteroscedasticity and non-normality. The mean

of the natura1 log of the per acre  value of wetland  is 4.95 (corresponding to

approximately 140 US$ of 1990),  with a standard deviation of 2.28. For the water

demand  application Figure 2 shows strong evidente  of water demand  being inelastic

and negative in response to price changes.  The mean price elasticity is -0.52, with a

standard deviation of 0.49. A slight indication for heteroskedasticity is associated

with the increasing standard errors for relatively large effect sizes.” This may also be

indicative  of publication bias, because estimates with relatively large standard errors

wil1  only be significant if the effect size  is large in magnitude (see Florax 2002a,  for

details). The bottom of Figure 2 shows that the effect sizes  for wetlands are sampled

from 33 studies, and those for water demand  from 27 studies, with the wetland  sample

having  substantially more single study estimates and on average  a lower number of

sampled estimates per study (two as compared to almost  five for the water

application).

9 The complete, annotated database for the residential water demand  study is available at
http://www.feweb.vu.nl/re/master-point. Modified  databases for both applications presented in this
paper, including weight matrices, numerical examples and estimation output, are available from the
same location.

”  Estimated standard errors are available for approximately one-third of the effect sizes.  The graph for
price elasticities in Figure 2 contains one elasticity with an associated standard error that is extreme and
goes  beyond the boundaries of the graph. The elasticity is -1.2 with a standard error of 5.11.
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The hypothesis that the effect size  variable is normally distributed cannot be

rejected for the wetlands application as opposed to the water demand  case. The Wald

tests are 1.689 and 856.355, with corresponding p-values of 0.43 and 0.00. In testing

for overall dependence we therefore apply the asymptotic normal distribution

assumption for the wetlands case and the randomization assumption for the water

demand  application.

We assess both within- and between-study dependence. There is strong

evidente  for significant positive within-study dependence. Moran’s 1 for the wetland

data is 0.49 (z = 3.50),  and for the water use data 0.28 (z = 4.53),  indicating that

within studies similar values, either high or low, are found together. The test results

for between-study dependence indicate  that significant negative autocorrelation is

present, although it is rather  smal1 in magnitude. For the wetland  application we find

- 0 . 0 2  (z = -3.25) and for the water application -0.02 (z = -2.70),  for the Moran Z

test.” The direction and significante of these results are likely indicative  of most

meta-analyses in economics, because the characteristics of the research design have

only limited sampling variation - if any (see also Hedges 1997). We also assess the

accuracy of our approximation of between-study dependence by calculating the

correlation between studies strictly for study means  (see Section 5). In the wetlands

and water demand  cases we find -0.0242 and -0.0160 for our approximation versus -

0.0268 and -0.01492 for the exact approach, respectively. So we can conclude that

the approximation is sufficiently accurate in medium-sized samples. It is obvious that

the higher  the proportion of single study estimates the better the approximation wil1

be. Hence, for smal1 meta-sample sizes with a high proportion of single study

estimates the accuracy of the approximation is probably sufficient  as well.

Figure 3 presents Moran scatterplots for both applications and within- and

between-study dependence. The graphs for the wetland  application show that al1

observations are within two standard deviations of the sample mean and that the width

of the ‘cloud’ does not change along the trend-line. Hence, there are no outliers and

the variante  is constant (homoskedasticity).

” Similar  results are found using empirically generated distribution functions based on 10,000
permutations, although the signifícance levels  are slightly lower in most cases.
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The slopes of the trend-lines for both applications correspond exactly to

Moran’s Z for the between-study dependence. For within-study dependence they are

not accurate, due to single study estimate sampling. One should note that for the

water example the slope of the trend-line is much closer  to  the Moran coefficient  (Z  =

0.278, slope = 0.269) than for the wetland  case (Z = 0.49, slope = 0.33),  owing to  the

much  higher  proportion of single study estimates in the wetland  example (0.64 versus

0.15).

The graphs for the water demand  application show the same clustering pattern

of high-low/low-high values, with a corresponding negative Moran coefficient for

between-study dependence, and a low-low/high-high pattem, with a corresponding

positive Moran,  for within-study dependence. In the water case, however,  the graphs

show clear  signs of negative outliers and heteroskedasticity (non-constant variante

along the trend-line). l2 There has been much debate in the meta-analysis literature

about the proper treatment of extreme observations (of either sign or size). Although

some authors maintain that extreme heterogeneity precludes  combining study results

because it amounts to ‘combining apples and oranges and the occasional lemon’

(Furberg and Morgan cited  in Sutton 2000, p. 53),  others maintain that removing

outliers and extreme results at an early stage of the meta-analysis should be avoided

because it can introduce (substantial) bias into the meta-results. The influence of

removing extreme results should instead be explored in a sensitivity analysis (Sutton

2000; Stanley 2001).

Woodward and Wui (2001) regress the natura1 log of the value per acre

wetland  converted to 1990 US dollars on the year of the study (Year, 1960 = 0), the

natura1 log of the size  of the wetland  (In  Acres), whether the wetland  is a coastal

wetland  (Coastal), the services of the wetland,  and study characteristics. Wetland

services are defined as: reduced damage due to flooding and severe storms (Flood),

increased water quantity (Quantity), reduced costs of water purification (Quality),

improvements in downstream recreational (Rec. Fish) and/or commercial fisheries

(Com. Fish), hunting (Birdhunt) and observation (Birdwatch) of wildlife, amenity

‘*  Compared to the initially available samples Dalhuisen et al. (2001) excluded one outlier and
seventeen positive price elasticities a priori, and Woodward and Wui (2001) excluded one outlier, one
other value estimated using energy analysis, and five values estimated using the market value of the
outpu t .
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value provided by proximity to the environment (Amenity), nonuse appreciation of

species (Habitat), and erosion reduction (Storm). Study characteristics include

whether the results are published (Publish), whether it is an estimate of producer

surplus (PS), and whether it is estimated by means  of hedonic pricing (HP), net factor

income  (NFI), replacement tost  (RC), or the travel tost  (TC) method. The quality of

the primary studies is incorporated through (subjective)  identification of studies of

questionable quality in terms of data (Data), theory (Theory), and econometrics

(Metric).

Table 1 presents the results for three different specifications presented in

Woodward and Wui (2001). The first three columns are an exact replication of their

results, except that standard errors are not White-adjusted because heteroskedasticity

is not present according to the Breusch-Pagan test. The results of the misspecification

tests indicate  that the extended model provides  a reasonably good fit, and there are no

apparent difficulties with multicollinearity, normality or the error term, and

heteroskedasticity.

The between-studies dependence tests reveal that heterogeneity between

studies is adequately modeled, so that there is no apparent dependence  that is left

unmodeled. Within studies the estimates are, however, autocorrelated. The positive

sign of Moran’s Z demonstrates that within studies high values, or alternatively low

values, are clustered.  The LM tests clearly point in the direction of a lag model as the

appropriate altemative.

The second set of three columns in Table 1 gives the results of the lag model,

with the autoregressive term being significantly different from zero. The Breusch--

Pagan test points to homoskedasticity as the correct alternative, and the Likelihoods

indicate  that the lag models taking into account autocorrelation within studies are

preferable to the initial OLS results. Most important is the considerable  bias of the

estimates of the initial specifications. It should be noted, however,  that the

coefficients of the lag model do not represent marginal effects,  because instead of

3y / ûx = p for a model without lagged variables, ûy / 3x  = [(1 - PW)-’ ]‘p  for the lag

model. The latter  is equivalent to [(1 - PW)‘]-’  /?, which amounts to p multiplied by

the column sums of the transformation matrix (1 - PW)-‘.  As a result,  the marginal

effect is no longer  uniform between studies. Woodward and Wui’s estimate of a 2.9%
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fa11  in value (see their Model C) for a ten-acre wetland  due to a 1% increase  in size,

varies between 1.8% for studies with one estimate and 2.6% for studies with  multiple

estimates, and is on average  2.1% for the extended lag model.

Table 2 presents the results for one of the Dalhuisen et al. (2001) meta-mo&ls

for price  elasticities. Price elasticities of residential water demand  are regressed on

characteristics of the theoretical and modeling approach of the original studies (use of

average/fixed prices, Shin prices, conditioning on income,  inclusion of a differente

variable, and simultaneous modeling of discrete and continuous choices) as wel1  as

notable features of the elasticity (long-run, segment, and increasing or decreasing

black  rate pricing). In addition the analysis catches variation over space  and time

(Western US and time-trend), and is conditioned on the per capita GDP leve1 as wel1

as on characteristics of the specification  (accounting for household size  and season)

and the data (monthly data, panel data, and summer data) of the original studies.

Dalhuisen et al. (2001) report the White-adjusted OLS results. The condition

number (CN) for multicollinearity is relatively high, and the Jarque-Bera test (JB) on

normality of the errors is very significant. We do not treat these two aspects any

further here, but instead concentrate  on heteroskedasticity and dependence.

Heteroskedasticity is clearly present, and for comparative  purposes we therefore

provide  the results of the weighted least squares (WLS) estimator. For the WLS

estimator we take the square root of the sample size  with which the effect size  has

been derived as weight.13 For both the OLS and WLS results Moran’s Z is not

significant, neither for between-study autocorrelation nor for within-study correlation.

The LM tests, however,  point in the direction of erroneously omitted variables that are

correlated within studies. This conforms  to expectation in as far considerable  effort is

often put into specifying differing characteristics of studies, but differences in

attributes of estimates of the same study are often neglected, or discarded to save

degrees of freedom.

The last two columns of Table 2 reveal the importante  of taking into account

dependence  and weighting to account for the heteroskedasticity inherent in meta-

l3  Preferably one would like to use the estimated standard error of the estimated effect size, but that is
unfortunately only available for approximately one-third of the observations. As the variante  is
inversely proportional to sample size, we use the latter  instead.
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analysis. Comparison of Tables  1 and 2 makes clear  that, as expected, ignoring an

autoregressive error structure  is much less serious than ignoring the simultaneity with

which estimates of the same study have been derived. Uniformly, however,  a meta-

model that accounts  for dependence within studies achieves a better fit than the

traditional model ignoring within-study correlation.

7. Conclusions

Meta-analysis is rapidly becoming a well-accepted collection of statistical tools  to

analyze empirical results of previous studies. It contributes  to synthesizing the

available knowledge stock, and constitutes  a rigorous  complement to the traditional

state-of-the-art  review of the literature. In environmental and natura1 resource

economics approximately forty  meta-analyses have been conducted over the last two

decades.

The validity of meta-analysis crucially depends on finding  appropriate ways of

dealing with its methodological weaknesses. In environmental economics

heterogeneity and to a certain extent selection and publication bias have been dealt

with adequately. Between and within-study dependence of estimated effect sizes

have, however,  largely been ignored, among other things because easy-to-use

techniques are lacking. We propose to adapt tools used in disciplines where

multidimensional dependenties  are frequent, to meta-analysis in economics. The

multidimensionality is a pivotal feature of most meta-analyses in (environmental)

economics, owing to multiple sampling from the same studies.

In this paper we conceptualize the autocorrelation or dependence problem in

meta-analysis, and introduce cross-product statistics  as a way of measuring them. We

also lay out a framework for testing and visualizing between- and within-study

dependence, and incorporate  dependence in the meta-regression framework. We

illustrate the use of the techniques through a numerical example and two applications.

Several conclusions arise from the above analysis. First, dependence (or

autocorrelation) is the rule rather than the exception. Although between-study

dependence is usually sufficiently accounted for by means  of specifying heterogeneity

between studies, within-study dependence typically is not. Second,  the implications

of ignoring within-study dependence are serious. In particular the consequences of
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erroneously omitting the simultaneity present among estimates of the same study

leads to biased estimators. In general,  ignoring dependence wil1  cause inferences

about the size  and significante of the causes for variation in estimated effect sizes  to

be inaccurate. Third, hierarchical leve1 models (HLM) constitute  an interesting

alternative to the models proposed in this paper. Further efforts should be put into

modeling dependence in the HLM framework. Finally, this paper provides  an

example and applications of the proposed framework, but further work in an

experimental simulation context (Monte Carlo experiments) is needed to compare  the

estimators proposed in this paper to estimators allowing for cross-correlation within

studies, and estimators based on averaging estimates from the same study.

We emphasize in closing the importante  of visualization, and the ease with

which it can signal dependence problems. Even the meta-analyst who does not want

to engage  in extensive misspecification testing should provide  Moran scatterplots with

trend-lines. A simple correction for studies with only one estimate guarantees that the

slope of the trend-line is equal to a correlation-like measure revealing the importante

of dependence within and between studies.
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Table 1 Estimated models of wetland  valuation functions using OLS and maximum likelihood
estimation of a lag model including within-study dependence.a

OLS MLLAG
A B c
0.348*** 0.278*** 0.303***P

Constant

Year

Ln Acres

Coastal

Flood

Qualiv

Quantity

Rec. jÏsh

Com.  jìsh

Birdhunt

Birdwatch

Amenity

Habitat

storm

Publish

Data

Theory

Metric

PS

HP

NFI

RC

T C

7.945***
(1.38)
-0.052
t0.w
-0.168
(0.11)
-0.523
(0.88)
-0.358
(0.94)

1.494
(0.90)
0.514

(1.79)
0.395

(0.78)
0.669

(0.89)
-1.311*
(0.73)

1.704**
(0.75)
-3.352***
(0.95)
0.577

(0.78)
0.310

(1.63)

-2.416**
(1.02)

(0.07)
6.641*** * 6.004***

(1.4) (1.19)
-0.004 -0.0006
(0.W t0.w

7.872**
(1.87)
0.016

(0.05)
-0.286**
(0.12)
-0.117
(1.02)
0.678

(0.97)
0.737

t1.w
-0.452
(1.92)
0.582

(0.82)
1.360

(1.06)
- 1.055
(0.80)

1.804**
(0.80)
-4.303**
(1.18)
0.427

(0.76)
0.173

(1.55)
-0.154
(0.85)
0.0002

(0.85)
-1.045
(0.91)

-3.186**
(1.27)
-3.140***
(1.03)
5.043**

(2.09)
0.273

(1.34)
2.232**

(1.02)
-0.341

(0.08)
4.920***

(1.30)
-0.042
(0.03)
-0.065
(0.09)
0.113

(0.70)
0.329

(0.74)
1.627**

(0.69)
0.860

(1.39)
0.172

(0.60)
1.403**

(0.69)
-0.807
(0.57)
0.956

(0.59)
-3.096***
(0.74)
1.245**

(0.61)
0.994

(1.26)
-0.669
(0.77)
0.302

(0.76)
- 1.020
(0.82)

-4.030***
(1.10)
-2.034**
(0.85)
0.441

(1.72)
-0.724
(1.019)

1.376
(0.94)
-1.196
(0.90) (1.13)

*

-2.796***
(0.79)

-1.175*
t0.w
-0.391
(0.65)
-0.467
(0.70)

-3.707***
(0.90)
-1.853***
(0.69)
-0.768
(1.43)
-0.579
(0.84)

1.286*
(0.77)
-1.414*

(0.08)
5.929***

(1.43)
0.006

(0.03)
-0.178*
t0.w
0.532

(0.75)
1.057

(0.71)
0.683

(0.72)
0.234

(1.39)
0.244

(0.60)
1.790

(0.58)
-0.701
(0.58)

1.009*
(0.59)
-3.835***
(0.86)
0.903

(0.56)
0.698

(1.12)
-0.394
(0.62)
-0.321
(0.61)
-0.769
(0.66)

-2.699***
(0.92)
-3.394***
(0.74)
3.210**

(1.55)
-0.258
(0.97)

1.943***
(0.73)
-0.583

(0.74) (0.81)
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Table 1 continued.

2

F (adi.)
Likelihood
CN
JB
BPb
Between studies
Moran’s I
LMERR
LMUG
Within studies
Moran  ‘s  1
LMERR

0.20 0.25

OLS
A

O.i6
2.128**

R

3.084***

r

2.659***
-130.001 -130.510 -116.840

17.40 14.74 26.85
2.409 0.184 1.717
0.909 0.030 0.463

-0.022 -0.021 -0.020
0.832 0.721 0.685
0.982 0.795 0.733

0.328*** 0.132* 0.079**
5.001** 0.813 0.289

MLLAG
A B c

0.47 0.45 0.64

-123.008 -124.529 -110.613

0.518 0.074 1.676

LMLAG 12.642*** 11.629*** 11.504***  1
a Al1 results are obtained using SpaceStat  (see http://www.spacestat.com  and Anselin 1992). Standard
errors based on OLS and ML are reported in parentheses. Significante  is indicated with ***,  ** and *
for the 1,5  and 10 percent level, respectively.
b  Breusch-Pagan heteroskedasticity test for random coefficient variation. We also  experimented with
other forms of heteroskedasticity.
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Table 2 Estimated models of price elasticities of residential water demand  using OLS, WLS, and
lg within-study dependence  and weighting formaximum likelihood estimation of an error model includir

heteroskedasticity on the basis of the sample size  of the o r
OLS OLS, White

na1  studies8
WLS MLERROR

0.515

MLERROR,
weighted

0.354
(0.27)
-0.185**
(0.09)
-0.084
(0.10)
-0.153
(0.10)
-0.060
(0.07)
0.041

(0.16)
-0.059
(0.06)
-1.021***
(0.08)
-0.119**
(0.05)
-1.246***
(0.21)
-0.038***
(0.01)
0.245***

(0.06)
0.006

(0.004)
-0.172**
(0.07)
-0.297***
(0.09)
-0.547***
(0.10)
0.532***

(0.12)
-0.423***
(0.07)
-0.591***

constant

Increasing tariffs

Decreasing tariffs

Average/fured price

Shin price

Conditioned on income

Dtrerence  variable incl.

Discrete-continuous appr.

Long-run elasticity

Segment elasticity

GDP per capita (x 1,000)

Western US

Time-trend

Cond. household size

Cond. seasonal dummy

Monthly data

Panel data

Summer data

1

0 . 3 9 5 0.245
(0.63) (0.27) (0.38) (0.W
-0.143 -0.143 -0.217* -0.09 1
(0.20) (0.09) (0.12) (0.15)
-0.073 -0.073 -0.125 -0.015
(0.20) (0.09) (0.12) (0.16)
-0.193 -0.193*** -0.175* -0.174
(0.18) (0.06) (0.10) (0.17)
-0.127 -0.127 -0.098 -0.121
(0.18) (0.W (0.08) (0.15)
-0.033 -0.033 0.142 -0.133
(0.38) (0.20) (0.24) (0.26)
-0.082 -0.082 -0.079 -0.073
(0.17) (0.08) (0.08) (0.12)
-1.042*** -1.042*** -0.968*** -1.114***
(0.22) (0.10) (0.10) (0.16)
-0.104 -0.104 -0.139** -0.114
(0.12) (0.08) (0.07) WE9
-1.281*** -1.281*** -1.205*** -1.340***
(0.32) (0.41) (0.34) (0.22)
-0.041 -0.041*** -0.033* -0.047**
(0.03) (0.01) (0.02) (0.02)
0.235 0.235*** 0.208** 0.265**

(0.15) (0.07) (0.09) (0.10)
0.009 0.009** 0.005 0.010*

(0.01) (0.004) (0.006) (0.006)
-0.187 -0.187** -0.123 -0.246*
(0.18) (0.07) (0.W (0.13)
-0.290 -0.290*** -0.298** -0.307
(0.33) (0.07) (0.14) (0.21)
-0.569 -0.569*** -0.473*** -0.637***
(0.26) (0.15) (0.15) (0.18)
0.576** 0.576*** 0.437*** 0.671***

(0.28) (0.16) (0.16) (0.20)
-0.410** -0.410*** -0.347*** -0.478***
(0.19) (0.07) (0.08) (0.15)

-0.438***
(0.13) (0.11)

RZ (adj.) 0.32 0.43 0.42 0.44
F 4.330***
Likelihood -54.784 -15.547 -5 1.680 -8.548
C N 68.36
JB 1222.679***
BP 37.114***  b 5.364**’
Between studies
Moran  ‘s  I -0.001
LMERR 0.007 0.018
LMLAG 0.009 0.030
Within studies
Moran  ‘s  1 -0.119
LMERR 3.096” 7.744***
LMLAG 1.981 3J351**
a Al1 results are obtained using SpaceStat  (see http://www.spacestat.com  and Anselin 1992). Standard
errors based on OLS, the White adjustment, WLS and ML are reported in parentheses. Significante  is
indicated with ***,  ** and * for the 1, 5 and 10 percent level, respectively.
b  Koenker-Bassett variant of the Breusch-Pagan heteroskedasticity test for random coefficient variation.
’ Koenker-Bassett variant of the Breusch-Pagan heteroskedasticity test for the variable ‘number of
observations.’
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