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Abstract

We analyze the interdependency between different financial markets by
using multivariate extreme value theory. This permits one to focus on the
occurrence of simultaneous financial market crises, whereas standard co-
variance analysis is less suitable for studying extreme interdependencies.
The analysis builds on the so-called stable tail dependence function which
measures the amount of interdependency between the tail probabilities of
multiple random variables. The empirical implementation of this semipara-
metric approach relies on order statistics. With these estimates one can
calculate conditional spillover probabilities or other VaR-related multivari-
ate risk measures for vectors of asset returns and for chosen crash levels.
An empirical illustration shows relatively low stock market spillovers which
is not in line with the presumption that stock markets are fairly good in-
tegrated and that integration has risen over time.

*I am indebted to Casper de Vries, Huang Xin and Laurens de Haan for the fruitful discus-
sions I had with them on this topic. Corresponding address: Dept. Finance, ECO/BFS,
Vrije Universiteit, De Boelelaan 1105, NL-1081HV Amsterdam, the Netherlands. E-mail:
sstraetmans@econ.vu.nl
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1 Introduction

The scope for stock market and currency crashes to spill over across assets or
markets - so-called systemic risk - has been hotly debated in the wake of recent
speculative attacks and stock market crashes. For example in the aftermath of
the 1992-1993 crisis in the European Monetary System (EMS) financial analysts
argued that the French Franc and the Irish Punt came under attack as a result
of the earlier crises experienced by the British Pound and the Italian Lira. A
similar story seems to hold for stock markets. All major world markets declined
substantially in 1987 which is an exceptional occurrence given the usually modest
correlations of returns across countries: out of 23 markets, 19 declined more than
20 per cent, see e.g. Roll (1988). M ore recently, the Asian crisis and the worldwide
correction in ‘new  economy’ shares - although to a lesser extent in Europe - render
additional casual evidence that ‘domino’ effects are present in financial markets.

Knowledge of this systemic risk may provide economic theorists, central bankers,
regulatory authorities and portfolio risk managers with valuable information.
Macroeconomists are interested in measuring extremal spillovers within currency
markets or stock markets as a first step to pinning down common fundamen-
tals of speculative attacks and stock market crashes. Assessing the degree of
extremal market dependence also has practical implications for macroeconomic
policy makers. Central bankers might use it as a kind of performance measure
because extremal spillovers reveal the degree of credibility of national mone-
tary policies and international monetary policy cooperation. If e.g. the domes-
tic currency comes under speculative pressure following a sharp depreciation in
foreign currency markets, this may signal some common macroeconomic imbal-
ance/ mismanagement. As such the potential for speculative currency attacks to
spread may discipline monetary authorities. Last but not least the modelling of
simultaneous extremal market risks is highly relevant for risk managers and reg-
ulators for the sake of testing stress scenarios like financial market crises abroad.
Indeed, such systemic events may drive domestic portfolios into bankruptcy and
might eventually destabilize the whole financial sector.

The number of authors that have tried to estimate spillover effects is still
limited. Most studies in the area employ correlation analysis in one form or
another, see e.g. King, Sentana and Whadwani (1994),  Longin  and Solnik (1995),
Connolly and Wang (1998) or Bodart and Reding (1999). Most of these studies
use some variant of the multivariate GARCH framework in order to model the
time variation in volatilities and correlations. This framework has also been used
in order to test for volatility spillovers from one market to another. In some of
the papers the correlation structure is conditioned on macrofactors, periods of
high or low volatility or the sign of the returns.
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A variance-covariance approach, like multivariate GARCH analysis, towards
identifying extremal spillovers requires choosing a parametric form for the mul-
tivariate distribution of the asset returns. This, in turn, is used to estimate the
model parameters using Maximum Likelihood optimization. It follows that es-
timated model parameters, like the conditional correlation measure will depend
on the chosen distribution for the asset returns. Moreover, the candidates for
the multivariate distribution to be chosen (multivariate Normal, Student-t etc.)
are all nonnested in the parameter space, i.e., we cannot choose the ‘right’ distri-
bution by statistical testing of the alternatives against each other. Thus, if one
erroneously estimates the GARCH model for the ‘wrong’ multivariate distribu-
tion, the resulting conditional correlation measure gives almost surely a distorted
view of the real extent of extremal spillover. We will therefore renege from choos-
ing a parametric distribution to fit our spillover measure but instead opt for a
semi-parametric approach based upon extreme value theory (see below). For
a more thorough overview of the correlation pitfalls in finance, see Embrechts,
McNeil and Straumann (1999).

Currency attacks or stock market crashes may spread internationally via nu-
merous transmission channels. Extreme linkages may be present due to common
underlying macrofactors like interest rate changes or operating procedures of
governments and regulatory authorities. Financial domino effects may also be
triggered by information revealing events. For example, some suggest that the
Asian crisis started by the abolishment of implicit government guarantees to Thai
banks and the resulting bankruptcy of some of them. This reminded foreign in-
vestors that the same could happen in other - comparably immature - financial
systems in the Far East.

This article does not contain a structural model that explicitly specifies trans-
mission channels; we believe that it is nearly impossible to disentangle empirically
which channels are most important. Moreover, trying to explicitly link systemic
events with potential underlying causes may give rise to misspecification error and
biased estimates of the extreme linkages. We rather limit ourselves to a reduced-
form approach, i.e., we do not care about possible causes of financial crises. To
proceed with the empirical analysis we need an operational definition of market
linkages during times of stress. A natural measure for extremal spillovers would
be the likelihood or probability that several assets or markets crash at the same
point in time. To be more precise, let (X, Y) represent a pair of asset returns.
Asset price fluctuations become crashes if X (or Y) drop beneath critical levels
z and y. These may reflect VaR numbers calculated separately for X and Y,
i.e., without taking into account that extremal returns may co-move. Denote
by K the number of assets/portfolios/market indexes that crash simultaneously

( K:= 0)1)2).



Then the probability that two assets crash simultaneously given a crash of at
least one of them boils down to:

pi K = 2 IK 2 l} := 131  -  + - 1 7
1012

(1)
with

131
.. =P{X>x},

P 2
.. =P(Y>YL

PI2 .. = P { X > x o r Y > y } .

For sake of convenience the returns and spillover measure are mapped into the
first quadrant. The statistical theory and estimation procedures to be discussed
furtheron will also be defined on this area. Studying e.g. negative extremal
spillovers between stocks and bonds can proceed using the formulas in the paper
by putting the right minus signs, see e.g. Hartmann  et al. (2000). A related
bivariate measure of extreme links is E {K  1~  > 1) , i.e., the expected number
of crashes that may simultaneously occur given that at least one crash happens.
This alternative measure is directly related to the conditional crash probability in
(1). Indeed, using elementary probability theory we can write down the following
chain of equalities:

E{,+2l) : = ‘b= 1)+2p{K=
P{K 2 l}

E {d. -. - P{K  2 l}
P{K~l}+P{K=2}. -. -

P{K  2 l}
. -. - PI K=2pl}+l.- (2)

As a final extreme linkage measure, one could also calculate the likelihood
that one asset crashes given another asset crash. Note that univariate excess
probabilities p1  and p2  will generally differ from each other such that the resulting
conditional probabilities will be unequal too:

and

P{Y>ylX>x}:=
Pl + P2 - 1312

9
Pl

P{x>x~Y>y}:=p+m-p12*
P 2

(3)

(4)
One should be aware that the eventual difference between these conditional prob-
abilities does not point towards causality in the spillover dynamics because the
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wedge between them is solely induced by unequal marginal distributionspl and
132 .

These measures of extremal spillover both have advantages and pitfalls. Com-
pared to the earlier defined measures in (1) and (2))  spillover indicators that
condition on a specific crash event cannot be defined for more than two assets.
Moreover one needs to report two spillover numbers instead of one if the marginals
in (3) and (4) are unequal. On the other hand, investors might be more interested
in calculating the spillover probability or systemic risk of their portfolio w.r.t. a
specific systemic event such as the Asian crisis or a drop in the NASDAQ index
by some percentage amount. We will therefore pay attention to both types of
spillover measures in our empirical application.

The reduced-form character of the above probability measures perhaps con-
stitutes their main appeal because they make no reference to underlying causes
and theories. On the other hand, this also constitutes their Achilles heel because
the absence of a structural model of market behavior implies that the measures
may fall victim to the Lucas critique, especially during institutional changes. For
example, ‘fire walls’ might be in place in order to protect a market crash form
spreading. Think e.g. of restrictions such as limited market entry for foreign
investors, limited currency convertibility etc. These legal-institutional arrange-
ments may bias downward our conditional probability measures of extreme link-
age. Moreover, policymakers and risk managers might erroneously conclude that
market regulation intended to prevent spillovers is no longer necessary. There
is evidence that we should not worry too much about the severity of the Lucas
critique for our spillover measures. Indeed it is often argued that financial market
prices exhibit great similarity regarding their extremal behavior across different
policy regimes and time periods. For example, VaR measures constructed using
univariate extreme value theory (see further below) typically show remarkable
stability over different time periods and asset classes.

How to estimate the proposed extremal spillover measures? We opted for ex-
treme value theory in order to estimate pl,  p2 and ~~2.  This approach enables one
to identify the marginal tails of X and Y and their bivariate dependence struc-
ture without having to know or specify a parametric model for the returns. Thus,
extreme value theory is a robust technique insofar as we do not have to choose
a particular parametric distributional model for (X, Y) that may be wrong; see
also the earlier discussion on multivariate GARCH models and the pitfalls of
correlation analysis. Consequently, the estimators of the univariate tail proba-
bilities ~1, p2 and the bivariate tail probability 1312  also have a sound statistical
interpretation that does not depend on the specification of any parametric prob-
abilistic model for the tails. As will be more thoroughly explained in the theory
section of this article, estimation of eqs. (l)-(4)  by means of extreme value the-
ory proceeds in two steps. First, in order to estimate p1 and p2 we take into
account the now well recognized fact that asset prices do at times exhibit sharp
fluctuations (heavy tails), see e.g. Jansen and de Vries (1991),  Campbell, Lo and
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MacKinlay  (1997) and Embrechts, Kluppelberg and Mikosch (1997). Univariate
extreme value theory learns that such heavy tails can best be approximated by
a Pareto-type law, e.g. for X :

--a!
P+aJ:  , (5)

with a and Q unknown parameters and x a large but bounded quantile or VaR
level. The parameter Q is called the tail index and determines the maximal num-
ber of bounded distributional moments of X that exist. Note that p1 is decreasing
in a, i.e., the lower the tail index the more probability mass in the tails of X. For
distributions with an infinitely large a, all statistical moments exist and power
tail behavior such as in (5) does not apply; instead the tail of univariate risks can
be approximated by an exponential (‘thin’) tail like e.g. the Normal distribution.
A procedure based upon Hill’s estimator will be applied in order to estimate the
tail behavior of X and Y as parametrized in (5). In order to calculate the joint
excess likelihood pi2 we use a result form multivariate extreme value theory. More
specifically, the bivariate excess probability can be expressed as a function of the
excess likelihoods obtained in the univariate step, i.e.,

p12 = 1 (Pod 7

where the z arises because we do not want to go infinitely far into the dis-
tributional tail, i.e., we are interested in assessing the probability of extremal
but bounded spillovers. This so-called stable tail dependence function Z (.,  .)  ex-
ists under fairly general conditions and its curvature determines the dependence
structure of the extremes. If the extreme dependence structure expressed by I (.,  .)
is found to be linear, the univariate risks X and Y are said to be tail independent.
On the other hand, the stronger the curvature of the tail dependence function
the higher the degree of tail dependence between both assets. A nonparametric
estimator for L based on order statistics will be introduced and discussed.

In the empirical application we estimate extremal spillover probabilities for
our different conditional spillover measures using a set of daily stock indices for
the 5 largest industrialized nations (G-5) and over the last 12 years. We argue
that VaR analysis of stock market portfolios while conditioning on systemic events
like stock market crashes abroad might provide additional insights for portfolio
selection. Moreover we investigate whether extremal linkages between stock mar-
kets - and thus the degree of systemic stock market risk - have changed over time.
We also calculate the conditional spillover measure (1) under a bivariate Normal
parametrization as a warning against the use of parametric models for evaluating
extreme market spillovers.

The remainder of this article goes as follows. Section 2 provides a short
introduction into univariate and multivariate extreme value theory. The tail
dependence function is introduced as a device to identify the extremal dependence
structure between multiple risks. Estimation procedures are discussed in section
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3. Estimated conditional crash probabilities for pairs of stock index returns are
presented in the fourth section. In section 5 we investigate whether it is reasonable
to assume that the dependence structure of the extremes remained constant over
the considered sample period. Section 6 contains a comparison of extreme-value
based conditional probability estimates of systemic risk and estimates based upon
a bivariate normal parametrization. We end with a summary and conclusions.

2 Probability theory

We start this section by recapitulating the basics of univariate extreme value
theory; this provides us with a parametric form for the tails of single risks (2.1).
In order to capture the dependency between the tails of single risks in a portfolio
we introduce the so-called stable tail dependence function which constitutes the
key concept in bivariate extreme value theory (2.2).

2.1 The distribution of univariate extreme returns

Consider a stationary sequence Xi, X2,  . . . . Xn  of i.i.d. random variables with a
common distribution function Fx (5).  Think of the random variable X as a single
time series of daily changes in asset prices as will be the case in our empirical
application. Let X(i)  represent the i-th ascending order statistic of X with X(i)  <-
. . . < X(n)*- Suppose one is interested in the probability that the maximum return
X,,J falls below a certain level z This probability is given by

Loosely speaking, univariate extreme value theory investigates the proper-
ties of this distribution when the sample size grows large Suppose there exists
constants a, > 0, b,  such that

lim P
X

(n’  -
b

n---,+00 an

where Gx (x) is a probability distribution function; then Gx is called an extreme
value distribution and F is said to be in the Maximum domain of attraction of
Gx,  i.e., FX  f MDA(Gx)  . Both Leadbetter et al. (1983) and Embrechts et al.
(1997) provide comprehensive introductions to univariate extreme value theory.



The key result of univariate extreme value theory concerns the shape ofGx  (z>
and is presented in the following theorem:

Theorem 1 (Extremal Types) If (properly scaled) maximum returns converge
to an extreme value distribution, the latter takes one of the following pam-
metric families:

Type I: Gx (z> = exp (-e-‘) -oo<x<+oo;

Type II: GX (x) = 0 x < 0,-
exp (-x-*) x > 0, a > 0;

Type III: Gx (x) = exP(-(-xY) x < 0, a! > 0,
1 x > 0;-

The great appeal of these limit laws lies in the fact that, without specifying a
specific distribution for the original returns, we know that the properly scaled
maxima converge to some parametric distributional form under fairly general
conditions. Thus, the limit laws are not postulated but exact parametrizations
for the tails of distributions exist! For the Type II limit law it reflects the number
of distributional moments that are finite (and thus exist). As for the Type III
limit law all moments exist irrespective of the value OJ  because the distributional
support is finite. For proofs of the theorem and other claims we refer to the cited
references.

A complication for our analysis of extreme market risks is the fact that there
are three limit laws. Fortunately, the qualitative characteristics of financial return
data point to the relevant limit law. Because financial returns are measured
as log differences of original prices, both negative and positive returns are in
principle unbounded. Thus, Type III cannot correctly describe market risks
because of its finite support. Note, however, that it can play a role in credit risk
management because maximal credit risk losses always stay bounded. Moreover
it can be shown that the Type III limit law correctly describes the tail of portfolio
credit losses under fairly general conditions, see Lucas et al. (2000). As for the
remaining two candidate tail models for market risk, the Type II tails decline by
a power which means that they contain relatively more probability mass than
the Type I tails which decline exponentially. Distributions that lie in the MDA
of the Type II or Type I limit law are therefore called fat-tailed or thin-tailed,
respectively. In this article we assume that maximum returns follow a type II
limit law because the fat tail feature best captures the stylized fact that asset
prices do relatively frequently exhibit sharp fluctuations (see earlier).
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2 . 2 Characterizing the asymptotic dependence structure

A joint distribution F  (z, y) = P  {X < ~3,  Y < y}  of asset price changes X and
Y both nests information on the marginal distributions of separate asset re-
turns, F” (z)  and Fv (y) , and the dependence structure. In this paper we do
not identify the dependence structure by a variance-covariance approach, see our
earlier argumentation that correlations may be misleading indicators of extremal
spillover. The starting point of our dependence analysis constitutes the so-called
dependence function or copula:

D(u,v)=F(F,-‘(u),F,-l(v)),  O+zLll,  opug, (8)

where
F”  (u) = inf {z IFx (z) > x},

is the general inverse function of Fx ; the general inverse of FY is defined in the
same way. By definition

F”(Fx(x))=x,  XER,

and for (x, y) f R2,

Through the transformation (8) we have uniforrnized  the marginal distributions
of F. This follows from the following chain of equalities:

F (x7 Y> = P{X < F,-‘(u) ,Y < Fcl (v)}

= P{Fx(X) Lu,Fy(Y) 5~)
= P{uQl,v<v}
= D(u,v), -

where (U, V) are uniform (0,l) variables. Copulas represent a way to extract
the dependence structure from the joint distribution and to distinguish between
dependence and marginal behavior. A copula may be thought of in two equivalent
ways: as a function (with some technical restrictions) that maps values in the
unit hypercube to values in the unit interval or as a multivariate distribution
with standard uniform marginal distributions. In either case, it makes sense to
interpret D as the dependence structure of F.



In order to make inferences about the dependence of extremal events, however,
we define the following tail version of the dependence function D :

Definition 1 (Huang (1992)) Suppose F is the d.f. of (X,Y)  with QX  :=
(1 -  Fx)-’  and &u  := (1 -  Fy) - 1 representing the marginal quantile functions
for X and Y,  respectively. Assume there exists a function 1 : R: *R+,  such that
for all u,u  > 0,

1 (u,v) : = lim t-l  [l -  D (1 - tu, 1 - tv)]t--+0 (9)

.. = tliTot-‘P{X  > QX  (tu) or Y > Qy (tv)}, (10)+

then 1 is called the stable tail dependence function (STDF) of F.

Multivariate extreme value theory deals with existence conditions, properties and
estimators for the tail dependence function. For elementary introductions into
multivariate extreme value theory, see e.g. Johnson and Kotz (1972),  de Haan
and Resnick (1977),  Tawn (1988, 1990),  Huang (1992) and Sinha  (1997). In
contrast to correlation analysis, the curvature of D (u, V) and 1 (u, v) completely
determines the dependence structure of joint risks over the whole distributional
support and in their tails, respectively. The tail dependence expression above
greatly resembles the expression for the bivariate excess probability p12  in our
spillover definitions (l), (3) and (4). However, the tail dependence function is
defined for infinitely large quantile values QX  and QY  whereas investors may be
more interested in the values taken by our spillover indicators for extremal but
bounded spillovers. Nonetheless, we argue in the empirical section that estimates
of the asymptotic probability in (10) provide a fairly good approximation of 1312.

We end this section by mentioning the homogeneity property of I (u, v). More
specifically it can be shown that the tail dependence function is homogeneous of
degree one, i.e.,

1 (Xu,  Xv) = Xl  (u/v)  ) x > 0. (11)

This property will proof to be very useful for estimation purposes (see next sec-
tion). Moreover, using this property one can easily show that the bivariate excess
probability p12  and the marginal probabilities pl and 132,  as defined in (1))  are
related via the tail dependence function. In order to see this, suppose that the
tail dependence function is still fairly good approximated by the right hand side
probability if one does not go infinitely far into the bivariate tail, i.e.,

1 (u, v) = t-lP{X  > QX  (tu) or Y > Qy  (tv)},

for t > 0 but small. Without loss of generality we can now set tu = p1  and
tv = 132  in the above expression in order to get:

1 (t-lpi  1 t-lpz) = t-(X > Qx (PI) or  Y > QY (n)} l (12)
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Because of the homogeneity property, the factor t-l can be divided away in the
above expression. Rename IX: = &x (tu>  and y = Qy  (tv) in order to obtain:

P{X>xorY>y}=l(P{X>x},P{Y>y}).

Stated otherwise, the joint probability p12  only depends on the marginal proba-
bilities ~1  and ~2  once L is known.

3 ESTIMATION PROCEDURES

The conditional spillover measures in (1))  (2))  (3) and (4) reveal that they should
be estimated in a two-step estimation procedure. Estimators of ipi and 132  based
upon extreme value theory are considered in the first subsection (3.1). An esti-
mator of the tail dependence function based upon bivariate extreme value theory
is discussed in the next subsection (3.2). We close this section by a note on
estimating systemic risk for different time horizons (3.3).

3.1 Univariate step

In order to identify likelihoods of extremal events in a univariate context, we
exploit the earlier mentioned stylized fact of heavy-tailed time series in financial
markets, i.e., returns lie in the maximum domain of attraction of the heavy-
tailed Type II limit law. Equivalently, this implies that the excess probability is
approximately evolving as a power function of the quantile provided the quantile
is ‘large enough’ , i.e., at the boundary or outside the historical sample. For e.g.
the univariate risk X this would imply:

with a and a unknown parameters and large x. From this property it directly
follows that such distributions have only bounded moments up to QI,  where a is
known as the tail index. In contrast, exponential decaying tails, or distributions
with finite endpoints, have all moments bounded. Univariate excess probabilities
like p1 can be estimated by either the peaks-over-threshold (POT) method, the
method of block maxima or the method we propose here. A nice description of
the former two methods can be found in Embrechts et al. (1997). We employ
the estimator of De Haan et al. (1994) which hinges upon the fat tail feature:

a
h
Pl

772 q-M-L)- --
( 1

7
n X (14)

where X+,1 is the (m + 1) -th descending order statistic from a sample of
size n, and (p^l,  x) is the probability-quantile combination that we are interested
in. The idea behind this estimator is that it extends the empirical distribution
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function outside the domain of the sample by means of the Pareto tail in (13)
which it must approach eventually. A more thorough discussion of this estimator
is provided in Danielsson and de Vries (1995).

The estimator (14) is conditional upon knowledge of the tail index a and the
choice of the higher order statistic X+,). We estimate the tail index by means
of the popular Hill (1975) estimator:

where m equals the number of highest order statistics used in estimation.
In order to select the number of highest order statisticsm, one can exploit the

asymptotic normality of the Hill estimator in combination with the fact that the
estimator is biased at the m-values that minimize the asymptotic mean-squared
error, see Goldie and Smith (1987). The idea is to select m in such a way that
the bias-squared and variance vanish at the same rate when the sample size
n increases. Consequently, minimizing the sample Mean Squared Error (MSE)
is an appropriate selection criterion for m. A heuristic procedure for this is to
make a so-called Hill plot by computing 6 at different m levels and to select the
threshold in the region over which 6 is more or less constant. There exists such
a region, because when one uses too few order statistics, then 6 will vary heavily
due to inefficiency. In the opposite case when one goes too deep into the center
of the distribution, the first order Pareto approximation to the tail is no longer
appropriate and the bias from the second order parameters kicks in. Figure 1
plots Hill estimates against m for a market index of US stocks. Because the
magnitude of the Hill estimates varies only slightly across the international stock
market we only present the US results as a representative example.

Figure 1 shows that a horizontal range for the estimated tail index exists; it
suggests an optimal threshold value that lies approximately in between 50 and
130. We decided to be quite conservative and to condition our tail index estimates
on m = 55 given the sample size of 3319 daily returns. See also Jansen and de
Vries (1991),  Hols and de Vries (1991) and Koedijk et al. (1990) for applications
of the same methodology.
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Figure 1: Hill estimates for varying threshold m

Daily US stock index (MSCI)

2 0 4 0 6 0 80 100 120 1 4 0 1 6 0 180 200

Threshold m

3.2 Bivariate step

Roughly two approaches are available in order to estimate the bivariate excess
probability ~12  in the spillover indicators (1)) (3) and (4). Some authors specify
a bivariate parametric model of the tail dependence function of (X, Y) , see e.g.
Tawn (1988) or Longin  and Solnik (1998). However, and in contrast to the
univariate limit laws for extremes, bivariate extreme value theory does not provide
an explicit parametric form for the tail dependence function. Because the chosen
parametrization might be too restrictive or simply wrong we do not opt for this
approach but instead propose a nonparametric method based on order statistics.
We now give a short, intuitive derivation of the relevant estimator.

As a starting point recall the definition (10) of the tail dependence function,
and replace (u, v) by (p^l&)  , estimated in the univariate step:

1 (p^l,%)  = --)
1

tliyotP(X  2 Qx (@I)  or Y L QY (@2)). (16)

Clearly, an estimator based upon this limit expression should necessarily be based
upon the ‘larger’ observations, as only these can tell us something about the
asymptotic dependence structure. So only a small number, say k, of the original
n observations will be used for estimation. The number k must tend to infinity
with 72 in order to enable us to apply the law of large numbers to get consistency
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of the estimator. But it should also be small relative to n, since we are only
interested in the tail. Hence we require

k( >n
k = k (n) -+  oo  and - -0 asn+00.

n

Replacing t by k/n in (16) renders

In order to turn (17) into an estimator we replace the bivariate excess probability
in (17) by its empirical counterpart. This is simply the number of points in the
area

divided by the size of the sample n.
According to our assumptions, however, QX  and QY  are so large that there may
be few observations left in this area. Note, however, that the tail dependence
function’s homogeneity property allows one to scale up its arguments in order to
increase the number of observations in the area (18). The estimator should then
be premultiplied by the inverse of this scaling factor in order to leave T invariant.
A handy candidate for this operation is the polar transformation:

Exploiting the approximate homogeneity off,  one obtains:

Conditional upon knowledge of j?i and j&,  the angle 0 and corresponding radius
p can be consistently estimated by:

8 = arctan  (&/p^r)  and ph = @  + j?$. (21)

The pair (co& sing)  now lies on the unit circle which leaves more room for
excesses in order to estimate L.  The function L (co& sing) can be estimated by
the number of points in the area

divided by n.
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Note that Qx and QY  in the above expression are unknown. Estimators of the
unknown quantile functions can be found by observing that the expected number
of points above Qx (5  cos 8)  and Qy  (i sin 8) equals:

and

,,iX > Qx  ($osij-)}  = kcos8,

nP{Y  > Qy  ($in”))  = ksin8.

(23)

(24)

Consequently, the order statistic X,n-,  C0sa is a consistent estimator for Qx and
Y172-k  sin Fj is a consistent estimator for Qy.’  The vertical brackets imply that the
ranks are rounded upwards. Let I( .) stand for the indicator function defined on
the area in (22))  it then follows from (20))  (21)‘)  (23) and (24) that

which is Huang’s (1992) estimator.
The estimator in (25) hinges on case  and sin&  obtained from the univariate

step via (21),  and the threshold number k. As for the Hill estimator we rely
on a heuristic plot method for selecting k. This method requires no parametric
prior information and exploits the asymptotic normality of the estimator in (25),
see Huang (1992). The method implies calculating the deviation of T(k)  from
homogeneity by h

rCk>
cos iT,2 sin e^)- l c2 --

- cos 8, sin e>l(
2 7 (26)

and selecting k in the region for which r is small and more or less constant. Note
that the angle 8 is predetermined by the univariate estimation results. When one
uses a too low number of higher order statistics, then Twill vary heavily due to
inefficiency. In the opposite case, r becomes more and more downward biased,
since it will start to deviate more and more from homogeneity. For additional
intuition and examples on the bias-variance trade off when selecting k, see e.g.
Straetmans (1998a,b)  and Hartmann  et al. (2000).

Let us now return to implementing the plot method on our dataset.  Figure 2
contains the homogeneity ratio for the pair of US-UK stock market indices. We
limit ourselves to presenting only one homogeneity ratio because we found that
the ratio does not vary much across different pairs of stock indices. This suggests
that one can choose more or less the same threshold for all stock index pairs. On
the basis of Figure 2 we decided to condition all our estimates of extreme stock
market dependence on k = 100.

Early applications of this nonparametric approach to extreme dependence
include Huang (1992) and de Haan and de Ronde (1998). Very few papers have

1 5



Figure 2: Homogeneity ratio for varying threshold k
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implemented this multivariate approach into finance, see e.g. Starica (1998) and
Straetmans ( 1998a,b).

3.3 Time horizon and systemic risk

Before turning to the empirical results we want to make a note concerning the
desired time horizon for the spillover measure. Recall that risk managers typi-
cally calculate VaR numbers for internal purposes on a daily basis; because of
e.g. probable market illiquidity during stress periods regulatory authorities also
demand the reporting of weekly or biweekly VaR numbers. These values can dif-
fer quite dramatically for different risk horizons. Does it make sense to undertake
the same exercise with our extremal spillover indicators, i.e., to report estimates
of systemic risk measures over different time horizons ? The answer is no !

Using daily yields, estimates of e.g. the conditional probability (3) reflect the
likelihood that an asset loses y % of its value today given another asset crash by
II: % on that same trading day. Suppose, however, that we are interested in the
likelihood of a daily conditional spillover within the time span of, say, EC  days.
In other words, data frequency and time span do not have to coincide.

How should the estimation of (1), (3) or (4) then proceed? Let j?i and jZ&
again represent univariate exceedance probabilities estimated with daily data.
The multiperiod  univariate exceedance probabilities & and & follow easily from
the i.i.d. assumption for X and Y :
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(1 - ig) = (1 - j# ) i = 1,2.

Taking logarithms of (27)) we obtain (for small PI and p^2)  :

4-+=KjTi  ,i=1,2.2

Moreover, approximate homogeneity of r implies that

(27)

(28)

The combined eqs. (28) and (29) leave all our spillover measures invariant for
changes in the time span. Thus, in contrast to univariate exceedance probabilities,
the time horizon for conditional crash probabilities does not matter.

4 EMPIRICAL RESULTS

4.1 Data description

The data set comprises stock indexes for the G-5 countries (United States, United
Kingdom, Germany, France and Japan, abbreviated as US, UK, GE, FR and JP,
respectively). The series are daily and run from February 1987 until November
1999, which implies 3319 observations per series. All data were downloaded
from Datastream inc. The indices are calculated by Morgan Stanley and exclude
dividends. Moreover they are all expressed in local currency. The daily returns
are calculated in the usual way, i.e., by taking log first differences of the equity
price index.

4.2 Univariate results

Table 1 contains univariate exceedance probabilities for our dataset  of daily
changes in G-5 stock market indexes. The first column of each Table reports
tail index estimates using he Hill estimator (15). This estimator is conditioned
upon the portion m/n of the sample used for calculating &.  As justified before,
we condition the Hill estimator for all returns on m = 55, which is less than
2% of the data. While knowledge of the tail index is interesting in itself, the
question of economic interest is how likely extreme returns are; or conversely,
how high the loss (Value-at-Risk) will be for a given low probability level. The
highest extremal  in-sample return for each asset is reported in column 2 of the
Tables. These values provide us with a benchmark for choosing values for the
out-of-sample quantiles for the bivariate step. The remaining columns in the
Tables report probabilities of daily exceedances over a yearly time horizon. We
achieve this by calculating daily tail probabilities with the estimator (14) and by
subsequently multiplying these values by the number of trading days K in a year,
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which we take E( = 260. As noted earlier this is a correct procedure provided the
return series are serially independent. Thus the entry 0.00649 for Japan in Table
1 in the column for the probabilities at the 20% loss level implies that on average
onceper  l/O.00649 z 154 years there is a year with a day on which the Japanese
stock market drops by more than 20%.

Table 1: Left tail probabilities for stock index returns (local currency)
countries &! mm(%)  - 1 0 %  - 2 0 %  - 3 0 %
us 2.82 -22.32 0.05656 0.00798 0.00254
U K 3.25 -11.95 0.03017 0.00318 0.00085
FR 2.78 -9.410 0.09573 0.01395 0.00452
JP 3.40 -16.67 0.06844 0.00649 0.00164
GE 2.33 -14.07 0.20958 0.04162 0.01616

From a macropoint of view, the Table gives some perspective to the frequency
of asset market crashes in isolation. Note that an event like the 1987 crash is
very rare. But observe also that stock market drops in the order of 20% over a
number of days quickly become more likely as the number of days is increased.
Moreover, it can be shown that exceedance probabilities for the same tail points
are much smaller under a normal parametrization of financial asset returns. Given
the persisting popularity of the normality assumption, it should not surprise
that agents tend to underestimate the probability of a financial crisis, see e.g.
Friedman and Laibson (1989).

From a microeconomic point of view, the Table can be used as a device for
portfolio selection. Suppose that investors are interested in selecting the stock
which minimizes the probability of extreme losses (i.e. the minimax  strategy).
Fixing the extreme loss at 30% or lower, they select the UK stock index. Of
course, this selection criterion is very myopic because the investor both ignores
the co-movements of asset price changes in portfolio and the limiting dependency
of the included assets with large asset fluctuations in the outside world (systemic
events). In the next sections we measure these relationships by means of the
earlier discussed conditional crash probability measures of systemic market risk.
We argue that these may be more relevant and informative to portfolio investors
than the univariate excess probabilities form Table 1.

4.3 Reduced form estimates of systemic stock market risk

Table 2 contains systemic risk estimates for pairs of G-5 stock index returns.
The first column contains estimates of the systemic risk measure (1). The other
two columns report estimates for alternative spillover measures (3) and (4). In
contrast to the first column measure the latter measures are conditioned on a
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specified crash abroad. All extremal  spillover estimates in the Table are con-
ditioned on a common extreme quantile (or VaR  level) of +20 %.  The Table
reveals that the degree of systemic stock market risk is quite sensitive to the
chosen spillover measure. Thus one should be careful if one draws conclusions
on the basis of one single spillover definition. Regardless of the spillover defini-
tion considered, however, note that all probabilities in the Table are much higher
than their univariate counterparts in Table 1. This is because one takes into
account information on the extreme dependence structure between the markets;
this makes crashes in domestic markets more likely if crashes happen abroad. Let
us now investigate the results somewhat more carefully. The lrst column esti-
mates are all smaller than the probabilities in the remaining columns. However,
this has no economic interpretation because the conditional crash probabilities
in the first column are always smaller by construction. Divide e.g. (1) by (3) in
order to obtain

P{Y > ylx  > 2)  = P{K=  21K  2  l}E.
131

Because p12  < pl, the left hand side probability in (30) should be higher than
PI K  = 21r;  > 1).

Table 2: Estimated conditional crash probabilities across stock markets
M A R K E T S  P{K  =  _21K > l}l P{Y > ylx  > x}’ P{X  > XlY  > y}’
W-X)

U S - U K 0.192 0.565 0.225
US-FR 0.208 0.270 0.472
US- JP 0.125 0.248 0.202
US-GE 0.125 0.133 0.693
UK-FR 0.162 0.171 0.752
UK-JP 0.134 0.176 0.359
UK-GE 0.072 0.073 0.962
FR-JP 0.136 0.376 0.175
FR-GE 0.266 0.280 0.837
JP-GE 0.077 0.083 0.533
‘Quantiles  equal x = y = 20%

As for the 2nd and 3rd column differences, these can be explained by differing
probability masses in the tails (pr  #  ~2) g More specifically, the definitions (3)-
(4) show that the conditional spillover probabilities will be high (low) if the
probability of the conditioning event is low (high). For example the univariate
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results in Table 1 show that a crash of comparable magnitude is much more likely
to happen in Germany than in the UK. Consequently conditioning on a German
stock market crash will render a spillover to the UK stock market less likely than
the reverse scenario.

Table 2 provides interesting information for policymakers and regulatory au-
thorities in order to assess the vulnerability of the financial system as a whole.
Systemic risk estimates can also be informative for portfolio investors for the sake
of testing stress scenarios. More specifically, they would like to assess to what
extent a certain drop in portfolio value becomes more likely if one conditions on a
systemic event abroad. Stated otherwise, they may be interested in conditioning
their portfolio VaR on systemic events and compare it with the unconditional
portfolio VaR for a common significance level. Note that all returns used for the
systemic risk estimates in the Table were expressed in local currency. However,
portfolio investors assessing their portfolio systemic risk would like to condition
on systemic events abroad expressed in the home currency. This exercise is un-
dertaken in Table 3. Each row corresponds with a representative domestic G-5
investor. We assume that their initial equity holdings only comprise the domes-
tic equity index. We then calculate systemic risk for each of these G-5 domestic
portfolios w.r.t. systemic events in the other G-5 stock markets (left panel of
Table 3). The estimates are again conditioned on a common extreme quantile
(or VaR level) of +20 %.

Table 3: Bilateral and diversified systemic portfolio risk
INVESTOR BILATERAL INTERNATIONAL

4
P{Y>ylX>x} C$l$>ylX>x

i=l

u s FR GE JP U K
us 0.287 0.240 0.321* 0.309 0.249
FR 0.388 - 0.313 0.200 0.753* 0.612
GE 0.610 0.716 - 0.259 0.949* 0.553
JP 0.097 0.158* 0.122 - 0.151 0.377
U K 0.122 0.324* 0.084 0.232 - 0.465

(*) Nonselected indices for diversified portfolio

Just as in the previous Table the systemic risk estimates are all much higher
than their univariate counterparts in Table 1. Thus, univariate VaR numbers will
highly understate VaR values conditioned upon systemic events and calculated for
the same significance level as their unconditional counterpart. Suppose now that
domestic investors want to diversify their systemic portfolio risks by investing
abroad. More specifically assume that they form an equally weighed portfolio
containing the domestic index and 3 out of 4 foreign stock indices; the index that
induced the highest systemic risk w.r.t. the domestic portfolio is not selected.
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The right column in Table 3 contains the systemic risk of this ‘international’
portfolio
systemic

w.r. t. the index
risk beneath the

not included. Investors would ideally like to reduce
minimum value from the left panel but neither of the

investors in the Table achieves this goal. However, three investors (US, France and
Germany) manage to reduce systemic portfolio risk beneath the maximum level
in the left panel. As for the other two investors (Japan and the UK) the simple
diversification strategy does not pay. Summarizing, this stylized example shows
that it is quite difficult to diversify portfolio risk if one conditions risk measures
upon systemic events. The intuition is that it is not easy to find assets abroad
that are weakly dependent in the extremes w.r.t. both the current portfolio and
the system ic event.

A general problem of interpretation of Tables 2 and 3 is that stock markets
that trade at different places evidently exhibit different trading hours. Thus
spillovers may be dampened because a crash in one market occurs when other
markets are nearly closing. This enables the latter market to absorb the spillover
effect in more than one trading day. Consequently daily stock returns can be less
extreme in the latter market and the conditional crash probability will probably
be downward biased. Hence, more attention should be paid in the future to the
precise timing of the stock index return series and the extent of trading overlap
when estimating conditional crash probabilities.

5 Testing for increased stock market integration

Casual observers suggest that markets have become more related over time. In
this section we test whether this presumption is true if one measures market
linkages in terms of extremal dependencies. If the extreme dependence structure
is nonconstant over the considered sample period it could be that the systemic
risk estimates in Table 2 are distorted towards some rough average measure of
market linkage over time.

In order to test whether the linkages during stress period have remained con-
stant, we exploit the property that the tail dependence estimator f( .,  .)  is asymp-
totically normal, see Huang (1992):

dx (T(l,  1) - z (1,l))  + N (0’  D2) . (31)

For sake of convenience we limit ourselves to evaluating and testing the tail
dependence function and its estimator in (1,1) because this renders a fairly simple
expression for the asymptotic variance. Estimation procedures for the asymptotic
variance are discussed in Peng (1999). Note also that the limiting distribution
of I^in  (31) becomes degenerate if asset returns are asymptotically independent
( CT2 = 0). Thus the asymptotic normality property cannot be exploited in order
to test for asym ptotic independence.
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If one selects the degree of tail dependence L (1,1) as a measure of stock
market integration the relevant null hypothesis boils down to & : li = /2,  where
the subscripts refer to nonoverlapping subsamples. From the theory sections we
know that higher L- values imply a lower asymptotic dependence and vice versa.
Hence, the relevant alternative for the international stock market boils down to
HI : II  > /2 . Testing for structural breaks can most easily be done by splitting
the sample into two parts of equal length n/2 = 1659 and by setting the bivariate
threshold at half its full sample value of k, i.e., k/2 = 50. Estimating I (1, 1) and
a2 across the subsamples and exploiting (31) we substitute these numbers into
the bivariate test statistic

which is asymptotically standard normal distributed under Ho.  Table 4 contains
values of the test statistic for the stock market pairs of our dataset.  In order to
reject Ho  at the 5 %  significance level against the one-sided alternative hypothesis
HI  , the values in (32) should be larger than 1.65 which is clearly never the case.
Some values are even negative which is rather indicative of a decrease in stock
market integration over the considered sample period!

Table 4: Stability testing results on extreme stock market dependence
u s U K FR J P  G E

us 1
U K -0.932 1
FR -0.505 0.482 1
JP 0.210 0.203 1.56 1
GE -0.625 1.218 0.467 0 1

Our testing results confirm the robustness of extreme value theory over a
fairly long sample period. This observation is in line with earlier findings on the
stability of tail index cum VaR  estimates when applying univariate extreme value
theory over fairly long samples see e.g. Jansen and de Vries (1989) or Danielsson
and de Vries (1997). Some earlier studies come to similar conclusions concerning
the evolvement of stock market integration over time by conditioning on different
sample periods and different dependence concepts. The Brady commission (1988)
already pointed out that there had been no trend increase in the (rolling) corre-
lations between markets. Estimating conditional correlations by means of a more
sophisticated factor ARCH model, King, Sentana and Wadhwani (1994) were also
unable to find strong evidence in favor of a trend increase in correlations.
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6 Extremal spillovers and the normal distribu-
tion

Wide consensus exists among financial economists that fluctuations in asset prices
exhibit heavy tails. Moreover, the previous empirical sections revealed a signif-
icant degree of dependence between extreme events across stock markets. We
also argued that extreme value theory is better-suited for capturing these data
properties than a parametric analysis as the latter may be prone to misspeci-
fication.  In this section we illustrate this point by calculating the conditional
crash probabilities under the assumption that market risks follow a multivariate
Normal distribution.

Because most statistical packages generate exceedance probabilities for the
univariate and bivariate standard normal distribution, it is useful to rewrite (I)
as:

PIr;=21/Ql}= p{zl > ax-,zz >Y}

l-P{& < axzf%J2<2uaL  ’
GY >

(33)

where 21  and 22  stand for the standardized returns. Note that the correlation
coefficient between X and Y is invariant under standardization. The means PX
and py and the variancecovariance matrix C are estimated by means of the
Maximum Likelihood method.

Table 5 presents ‘normal’ conditional probability estimates for our set of stock
index return data. We were unable to condition (1) on one of the crash levels
from Table 1 because of numerical instabilities. Once we condition the systemic
risk measure on quantiles larger than 7 % the numerator and denominator of (33)
become so small that the systemic risk measure can no longer be calculated with
satisfactory accuracy. The conditioning quantile is therefore set at +6 %.

Table 5: Conditional crash probabilities under the bivariate normal distribution
us

*
U K FR JP GE

us 1
U K  1.883*10-7 1
F R  1.141*10-5  6.964*10-’ 1
J P  4.529*10-’  1.797*10-l’ 1.186*10-5 1
G E  1.157*10-6  7.399*10-l’ 102*lo-6 3144*10-6  1
Conditioning quantiles: z  = y = 6 %

The estimated probabilities in Table 5 are all extremely small compared to
their semi-parametric counterparts in Table 2 although the quantiles 1x3  and y on
which we condition are chosen less far in the tail!

These results illustrate that the tails of a Normal distribution do not correcly
capture the fat tails and extremal dependence observed in the stock market. The
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exponentially declining thin tails of a normal distribution severely underestimate
the tails of univariate risks X and Y.  Moreover, it can be shown that the univariate
tails of a multivariate normal distribution exhibit asymptotic independence even
when the risks are highly correlated over the full range of the distribution (see
e.g. Sibuya (1960) or De Haan and Resnick (1977)). The tail independence of
normal risks boils down to a linear dependence function L (u, v) = u + v which
renders a zero conditional crash probability upon substitution in our systemic
risk measures. Concluding, the Normal distribution both highly underestimates
the likelihood of single stock market events as well as the probability that these
events occur simultaneously.

7 Conclusions

In this article we proposed a bivariate extreme value framework in order to mea-
sure the probability of extremal spillovers (systemic risk) between stock markets.
We argued that the approach does not depend on the choice of a particular prob-
abilistic model for the market risks. Moreover, investors might be more interested
in knowing this likelihood than in dependence measures that are defined over the
whole sample period. Assessing the probability of simultaneous extreme returns
may be crucial for the success or failure of portfolio investors or policy makers
such as central

In order to
bankers.
measure extreme linkages, we introduced the concept of the sta-

ble tail dependence function. The conditional probabilities that we proposed as
measures of systemic risk summarize the amount of dependence between extremes
as well as information on the amount of probability mass in the univariate risk
tails. We calculated spillover probabilities between stock markets and found that
these are lower than expected. Investors could use our conditional probability
framework as a device for testing stress scenarios. More specifically, they can
investigate the sensitivity of their portfolio VaR  to foreign extreme events such
as stock market crashes. They can also employ the systemic risk measure as a
criterion for international risk diversification and asset allocation.

We also investigated whethe
periods have changed over our
beliefs, we found that stock m
the considered sample period.

References

r the linkages between stock markets during stress
particular sample of 12 years. Contrary to prior
arket integr ation  has not risen significantly over

[l] Bodart, V. and P. Reding (1999),  ‘Exchange Rate Regime, Volatility and
Internactional  Correlations on Bond and Stock Markets’, Journal of Inter-
national Money and Finance, 18, 133-51.

2 4



[2] Brady, N.F. (1988),  ‘Report of the Presidential Task Force on Market Mech-
anisms’, U.S. Government Printing Office, Washington DC.

[3] Campbell, J.Y., A.W. Lo and A.C. MacKinlay  (1997),  The Econometrics of
Financial Markets, Princeton University Press, New Jersey.

Connolly, R.A. and A. Wang (1998),  ‘Economic News and Stock Market
Linkages: Evidence from the U.S., U.K. and Japan,’ in Risk Measurement
and Systemic Risk, Proceedings of the Second. Joint Central Bank Research
Conference, Bank of Japan

Danielsson, J. and C.G. de Vries (1995))  ‘Tail Index and Quantile Estimation
With Very High Frequency Data’, Journal of Empirical Finance, 4, 241-57.

[6] Danielsson, J. and C.G. de Vries (1997))  ‘Extreme Returns, Tail Estimation,
and Value-at-Risk’, mimeo, Tinbergen Institute.

[7] Embrechts, P., C. Kluppelberg, and T. Mikosch (1997))  Modelling Extremal
Events for Insurance and Finance, Springer, Berlin.

] Embrechts, P., McNeil, A. and D. Straumann (1999))  Correlation and Depen-
dence in Risk Management: Properties and Pitfalls, preprint, ETH Zurich.

] Friedman, B.M. and D.I. Laibson (1989))  ‘Economic Implications of Ex-
traordinary Movements in Stock Returns’, Brookings Papares on Economic
Activity, 2,137-172.

[lo]  Goldie, CM. and R.L. Smith (1987))  ‘Slow variation with Remainder: The-
ory and Applications’, Quarterly Journal of Mathematics, Oxford 2nd Series,
38, 45-71.

[ll] Haan,  L. de, Jansen, D.W., Koedijk K. and C.G. de Vries (1994))  ‘Safety
First Portfolio Selection, Extreme Value Theory and Long Run Asset Risks’,
in J. Galambos ed., Proceedings from a Conference on Extreme Value Theory
and Applications, Kluwer Press, 471-487.

[12]  Haan,  L. de and S. I. Resnick (1977))  ‘L imit Theory for Multivariate Sample
Extremes’, 2.  Wahrscheinlichkeitstheorie verw.  Gebiete, 40, 317-337.

[13] Haan,  L. de and J. de Ronde (1998))  Sea and Wind: Multivariate Extremes
at Work’, Extremes, 1, 7-45.

[14]  Hartmann, P, Straetmans, S.T.M. and C.G. De Vries (2000)) Market Link-
ages in Crisis Periods, mimeo Tinbergen Institute.

[15]  Hill, B.M. (1975))  ‘A Simple General Approach to Inference about the Tail
of a Distribution’, The Annals of Statistics, 3,1163-1173.

25



Hols, M.C.A.B. and C.G. de Vries (1991),  ‘The Limiting Distribution of
Extremal Exchange Rate Returns’, Journal of Applied Econometrics, 6, 287-
302 .

Huang, Xin (1992),  Statistics of Bivariate Extreme Values’, Tinbergen In-
stitute Research Series nr. 22, Thesis Publishers, Amsterdam.

Jansen, D.W. and C.G. de Vries (1991),  ‘On the Frequency of Large Stock
Returns: Putting Booms and Busts into Perspective’, Review of Economics
and Statistics,  73,19-24.

Johnson, N.L. and S. Kotz (1972),  Distributions in statistics: Continuous
Multivariate Distributions, New York (Wiley).

King, M., Sentana, E. and S. Wadhwani (1994))  Volatility and Links be-
tween National Stock Markets’, Econometrica, 62, 901-933.

Koedijk, K.G., M.M.A. Schafgans and C.G. de Vries (1990),  ‘The Tail Index
of Exchange Rate Returns’, Journal of International Economics, 29, 93-108.

Leadbetter, M.R., Lindgren, G. and H. Rootze’n  (1983),  Extremes and related
properties of random sequences and processes, Berlin (Springer-Verlag).

Longin,  F. and B. Solnik (1995),  ‘Is the Correlation in International Eq-
uity Returns Constant: 1960-1990?‘,  Journal of International Money and
Finance, 14, 3-26.

Longin,  F. and B. Solnik (1998), ‘Correlation Structure of International
Equity Markets during Extremely Volatile Periods’, mimeo.

Lucas, A., Klaassen P., Spreij, P. and S. Straetmans (1999),  ‘An Analytic
Approach to Credit Risk of Large Corporate Bond and Loan Portfolios’, VU
Research Memorandum nr. 18.

Peng, L. (1999),  ‘Estimation of the Coefficient of Tail Dependence in Bivari-
ate Extremes’, Statistics and Probability Letters, 43, 399-409.

Roll, R. (1988),  ‘The International Crash of October 1987’, Financial Analyst
Journal, September-October, 19-35.

Sibuya, M. (1960), ‘B ivariate extreme statistics’, Annals of the Institute of
Statistical Mathematics Tokyo, 11, 195-210.

Sinha, A.K. (1997),  ‘Estimating Failure Probability when failure is rare:
multidimensional case’, Tinbergen Institute Research Series nr. 165, Thesis
Publishers Amsterdam.

26



Starica (1998),  ‘Estimation of the Extreme Value Distribution for Constant
Conditional Correlation Models’, Conference Proceedings of the HFDF-II
conference, Zurich.

Straetmans, S.T.M. (1998a),  ‘Spillovers in Financial Markets’, Conference
Proceedings of the HFDF-II conference, Zurich.

Straetmans, S.T.M. (1998b),  Extreme Financial Returns and Their Comove-
ments, Tinbergen Institute Research Series nr. 181, Thesis Publishers Ams-
terdam.

Tawn , J.A. (1988), ‘Bivariate Extreme Value Theory: Models and Estima-
tion’, Biometrika, 75, 397-415.

Tawn , J.A. (1990),  ‘Modelling Multivariate Extreme Value Distributions’,
Biometrika, 77, 245-253.

2 7


