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Abstract

We analyze the interdependency between different financial markets by
using multivariate extreme value theory. This permits one to focus on the
occurrence of simultaneous financial market crises, whereas standard co-
variance analysis is less suitable for studying extreme interdependencies.
The analysis builds on the so-called stable tail dependence function which
measures the amount of interdependency between the tail probabilities of
multiple random variables. The empirical implementation of this semipara-
metric approach relies on order statistics. With these estimates one can
calculate conditional spillover probabilities or other VaR-related multivari-
ate risk measures for vectors of asset returns and for chosen crash levels.
An empirical illustration shows relatively low stock market spillovers which
is not in line with the presumption that stock markets are fairly good in-
tegrated and that integration has risen over time.

*| am indebted to Casper de Vries, Huang Xin and Laurens de Haan for the fruitful discus-
sions | had with them on this topic. Corresponding address: Dept. Finance, ECO/BFS,
Vrije Universiteit, De Boelelaan 1105, NL-1081HV Amsterdam, the Netherlands. E-mail:
sstraetmans@econ.vu.nl



1 Introduction

The scope for stock market and currency crashes to spill over across assets or
markets - so-cdled systemic risk - has been hotly debated in the wake of recent
speculative attacks and stock market crashes. For example in the aftermath of
the 1992-1993 crigs in the European Mongary Sysem (EMS) financid andysts
argued that the French Franc and the Irish Punt came under attack as a result

of the earlier crises experienced by the British Pound and the Itdian Lira A
amilar sory seems to hold for stock markets. All mgor world markets declined
subgtantialy in 1987 which is an exceptiond occurrence given the usudly modest
correations of returns across countries: out of 23 markets, 19 declined more than
20 per cent, see e.g. Roll (1988). M ore recently, the Asan criss and the worldwide
correction in ‘new economy’ shares - dthough to a lesser extent in Europe - render
additiond casud evidence that ‘domino’ effects are present in financid markets.

Knowledge of this systemic risk may provide economic theorists, central bankers,
regulatory authorities and portfolio risk managers with vauable information.
Macroeconomists are interested in measuring extremd spillovers within currency
markets or stock markets as a fird sep to pinning down common fundamen-
tals of gpeculative attacks and stock market crashes. Assessing the degree of
extrema maket dependence dso has practicd implications for macroeconomic
policy makers. Centrd bankers might use it as a kind of performance measure
because extrema spillovers reved the degree of credibility of nationa mone-
tary policies and internationd monetary policy cooperation. If eg. the domes
tic currency comes under Speculative pressure following a sharp depreciation in
foreign currency markets, this may sgnd some common macroeconomic imbal-
ance mismanagement. As such the potentid for speculative currency attacks to
soread may discipline mongtary authorities. Last but not least the modelling of
amultaneous extrema market risks is highly reevant for risk managers and reg-
ulators for the sake of testing stress scenarios like financid market crises abroad.
Indeed, such systemic events may drive domestic portfolios into bankruptcy and
might eventudly dedtabilize the whole financia sector.

The number of authors that have tried to edimate spillover effects is il
limited. Mogt dudies in the aea employ corrdaion anadyds in one form or
another, see eg. King, Sentana and Whadwani (1994), Longin and Solnik (1995),
Connally and Wang (1998) or Bodart and Reding (1999). Most of these studies
use some variant of the multivariale GARCH framework in order to modd the
time variation in voldilities and corrdations. This framework has dso been used
in order to test for volatlity spillovers from one market to another. In some of
the papers the corrdation sructure is conditioned on macrofactors, periods of
high or low voldility or the Sgn of the returns



A variance-covariance approach, like multivariate GARCH anayss, towards
identifying extremal spillovers requires choosing a parametric form for the mul-
tivariate distribution of the asset returns. This, in turn, is used to estimate the
model parameters using Maximum Likelihood optimization. It follows that es-
timated model parameters, like the conditional correlation measure will  depend
on the chosen distribution for the asset returns. Moreover, the candidates for
the multivariate distribution to be chosen (multivariate Normal, Student-t etc.)
are all nonnested in the parameter space, i.e., we cannot choose the ‘right' distri-
bution by datistical testing of the alternatives against each other. Thus, if one
erroneously estimates the GARCH modd for the ‘wrong’ multivariate distribu-
tion, the resulting conditional correlation measure gives amost surely a distorted
view of the real extent of extremal spillover. We will therefore renege from choos-
ing a parametric distribution to fit our spillover measure but instead opt for a
semi-parametric  approach based upon extreme value theory (see below). For
a more thorough overview of the correlation pitfals in finance, see Embrechts,
McNeill and Straumann (1999).

Currency attacks or stock market crashes may spread internationally via nu-
merous transmission channels. Extreme linkages may be present due to common
underlying macrofactors like interest rate changes or operating procedures of
governments and regulatory authorities. Financial domino effects may aso be
triggered by information revealing events. For example, some suggest that the
Adsian crisis started by the abolishment of implicit government guarantees to Thai
banks and the resulting bankruptcy of some of them. This reminded foreign in-
vestors that the same could happen in other - comparably immature - financia
systems in the Far East.

This article does not contain a structura model that explicitly specifies trans
mission channels, we believe that it is nearly impossible to disentangle empiricaly
which channels are most important. Moreover, trying to explicitly link systemic
events with potential underlying causes may give rise to misspecification error and
biased estimates of the extreme linkages. We rather limit ourselves to a reduced-
form approach, i.e, we do not care about possible causes of financial crises. To
proceed with the empiricadl analysis we need an operational definition of market
linkages during times of stress. A natura measure for extremal spillovers would
be the likelihood or probability that several assets or markets crash a the same
point in time. To be more precise, let (X, Y) represent a pair of asset returns.
Asset price fluctuations become crashes if X (or Y) drop beneath critica levels
z and y. These may reflect VaR numbers caculated separately for X and Y,
i.e, without taking into account that extremal returns may co-move. Denote
by Kk the number of assetg/portfoliossmarket indexes that crash simultaneously
(k=10,1,2).



Then the probability that two assets crash Smultaneoudy given a crash of a
leest one of them boils down to:

Pl =2]k21} i= Bammmer 1, (1)
P12
with
p o =P{X>a},
p2 = P{Y >y},
pi2 . =P{X>xorY>y}.

For sake of convenience the returns and spillover measure are mapped into the
firg quadrant. The datistical theory and estimation procedures to be discussed
furtheron will aso be defined on this area Studying eg. negative extremd
spillovers between stocks and bonds can proceed using the formulas in the paper
by putting the right minus dgns, see eg. Hartmann et a. (2000). A related
bivariste measure of extreme links is E {x |k > 1} | i.e, the expected number
of crashes that may smultaneoudy occur given that at leest one crash happens.
This dternative measure is directly related to the conditionad crash probability in
(1). Indeed, usng dementary probability theory we can write down the following
chan of equdities

P{k= 1} +2P{k =2}
P{xk >1}
__B(Y
P{xk > 1}
_P{k>1}+ P{s=2}
B P{xk >1}
= P{k=2k21}+1. (2)

E{klk>1} : =

As a find extreme linkage measure, one could dso cdculate the likelihood
that one asset crashes given another asset crash. Note that univariate excess
probabilities p; and p, will generdly differ from each other such that the resulting
conditiond probabilities will be unequa too:

P{Y >y|X >z} := PHP;—I—pu, (3)
and o
P{X>z]y >y} =BTR27P2 (4)

P2
One should be aware that the eventua difference between these conditiona prob-
abilities does not point towards causdity in the spillover dynamics because the
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wedge between them is soldy induced by unequa margind didributionspl and
D2

These measures of extrema spillover both have advantages and pitfals. Com-
paed to the earlier defined measures in (1) and (2), spillover indicators that
condition on a specific crash event cannot be defined for more than two assets.
Moreover one needs to report two spillover numbers instead of one if the marginas
in (3) and (4) are unequd. On the other hand, investors might be more interested
in cdculaing the spillover probability or systemic risk of ther portfolio wrt. a
specific sysemic event such as the Adian crisis or a drop in the NASDAQ index
by some percentage amount. We will therefore pay attention to both types of
illover measures in our empirical gpplication.

The reduced-form character of the above probability measures perhaps con-
ditutes their main appea because they make no reference to underlying causes
and theories. On the other hand, this dso condtitutes their Achilles hed because
the absence of a dructurd modd of market behavior implies that the measures
may fdl victim to the Lucaes critique, especidly during inditutiond changes. For
example, ‘fire wals might be in place in order to protect a market crash form
goreading. Think eg. of redrictions such as limited market entry for foreign
investors, limited currency convertibility etc. These legd-inditutiond arange-
ments may bias downward our conditiond probability messures of extreme link-
age. Moreover, policymakers and risk managers might erroneoudy conclude that
market regulation intended to prevent Spillovers is no longer necessary. There
IS evidence that we should not worry too much about the severity of the Lucas
critique for our spillover measures. Indeed it is often argued that financial market
prices exhibit great dmilarity regarding ther extrema behavior across different
policy regimes and time periods. For example, VaR measures condructed using
univariate extreme vaue theory (see further below) typicdly show remarkable
gability over different time periods and asset classes.

How to estimate the proposed extrema spillover measures? We opted for ex-
treme vaue theory in order to estimate p,, p, and py;. This gpproach enables one
to identify the margind tails of X and Y and their bivariate dependence struc-
ture without having to know or specify a parametric modd for the returns. Thus,
extreme vaue theory is a robust technique insofar as we do not have to choose
a paticular parametric digributiond modd for (X, Y) that may be wrong; see
ds the ealier discusson on multivariate GARCH modds and the pitfals of
corrdation andyss. Consequently, the estimators of the univariate tal proba
bilites p;, p, and the bivariate tal probability p12 aso have a sound dSatigtica
interpretation that does not depend on the specification of any parametric prob-
abiligic modd for the tals As will be more thoroughly explained in the theory
section of this article, estimation of egs. (1)-(4) by means of extreme vadue the-
ory proceeds in two steps. Firdt, in order to estimate p, and p, we take into
account the now well recognized fact that asset prices do a times exhibit sharp
fluctuations (heavy tails), see eg. Jansen and de Vries (1991), Campbell, Lo and
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MacKinlay (1997) and Embrechts, Kluppelberg and Mikosch (1997). Univariate
extreme vaue theory learns that such heavy tails can best be gpproximated by
a Pareto-type law, eg. for X :

mRar™® (5)
with a and o unknown parameters and x a large but bounded quantile or VaR
level. The parameter o is cdled the tal index and determines the maximd num-
ber of bounded distributiond moments of X that exist. Note that p, is decreasing
in a, i.e, the lower the tail index the more probability mass in the tails of X. For
digributions with an infinitely large a dl datisicd moments exis and power
tall behavior such as in (5) does not gpply; instead the tail of univariate risks can
be gpproximated by an exponentia (‘thin’) tail like eg. the Normd digtribution.
A procedure based upon Hill’s estimator will be gpplied in order to estimate the
tall behavior of X and Y as parametrized in (5). In order to cdculate the joint
excess likeihood p12 we use a result form multivariate extreme vaue theory. More
specificaly, the bivariate excess probability can be expressed as a function of the
excess likelihoods obtained in the univariate dep, i.e,

p12 ~ 1 (p1,12)

where the ~ aises because we do not want to go infinitdly far into the dis

tributiond tal, i.e, we are intereted in assessng the probability of extrema
but bounded spillovers. This so-céled stable tail dependence function [ (., .) ex-

is under fairly genera conditions and its curvature determines the dependence
structure of the extremes. If the extreme dependence structure expressed by [ (., .)

is found to be linear, the univariate risks X and Y are said to be tal independent.

On the other hand, the stronger the curvature of the tall dependence function
the higher the degree of tail dependence between both assets. A nonparametric
edimator for [ based on order datistics will be introduced and discussed.

In the empiricd application we estimate extrema spillover probabilities for
our different conditiona spillover measures using a sat of daly stock indices for
the 5 largest indudtridized nations (G-5) and over the lagt 12 years. We argue
tha VaR andyds of stock market portfolios while conditioning on systemic events
like stock market crashes abroad might provide additiond insights for portfolio
sdection. Moreover we investigate whether extrema linkages between stock mar-
kets - and thus the degree of systemic stock market risk - have changed over time.
We ds0 cdculate the conditiond spillover measure (1) under a bivariate Normal
parametrizetion as a warning againg the use of parametric modes for evauating
extreme market spillovers.

The remainder of this article goes as follows. Section 2 provides a short
introduction into univariate and multivariale extreme vdue theory. The ftall
dependence function is introduced as a device to identify the extremd dependence
dructure between multiple risks. Estimation procedures are discussed in section
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3. Edtimated conditional crash probabilities for pairs of stock index returns are
presented in the fourth section. In section 5 we investigate whether it is reasonable
to assume that the dependence dructure of the extremes remained congtant over
the consdered sample period. Section 6 contains a comparison of extreme-vaue
based conditiona probability estimates of systemic risk and estimates based upon
a bivariate normd parametrization. We end with a summary and conclusons.

2 Probability theory

We dat this section by recgpitulating the bascs of univariate extreme vaue
theory; this provides us with a parametric form for the talls of sngle risks (2.1).
In order to capture the dependency between the tals of dngle risks in a portfolio
we introduce the so-cdled dable tall dependence function which conditutes the
key concept in bivariate extreme vaue theory (2.2).

2.1 The distribution of univariate extreme returns

Consgder a gationary sequence Xi, Xy, .. .. X, of iid. random vaiables with a
common digribution function Fx (z). Think of the random vaiable X as a single
time series of daly changes in assat prices as will be the case in our empirica

application. Let X(;) represent the i-th ascending order dtatistic of X with X3y <
.. < Xn)- Suppose one is interested in the probability that the maximum return
Xn) fdls bdow a certain levd z. This probability is given by

P{X@ <z} = F}(x). (6)

Loosely spesking, univariadle extreme vdue theory investigates the proper-
ties of this didribution when the sample sze grows large Suppose there exists
congtants a, > 0, b, such that

lim P{ng}sz(I), (7)

n—+00 a

where Gx (X) is a probability digtribution function; then Gx is cdled an extreme
value distribution and F is sad to be in the Maximum domain of attraction of
Gx, 1.e, Fx € MDA(Gx) . Both Leadbetter et a. (1983) and Embrechts et 4.
(1997) provide comprehensve introductions to univariate extreme vaue theory.



The key result of univariate extreme vaue theory concerns the shape of Gx ()
and is presented in the following theorem:

Theorem 1 (Extremd Types) If (properly scaled) maximum returns converge
to an extreme value distribution, the latter takes one of the following para-
metric families:

Type I: Gx(z)= exp(—e™@) -00 < T < +00;
Type Il:  Gx (X) = 0 x <0,
exp(—z~?) x>0, a>0,

Type lll: Gx X) = exp(—(—x)%) x <0, a>0,
1 x 2 0;

The great goped of these limit laws lies in the fact that, without specifying a
gpecific didribution for the origind returns, we know that the properly scaed
maxima converge to some parameric didributional form under farly generd
conditions. Thus, the limit laws are not podtulated but exact parametrizations
for the talls of digributions exist! For the Type Il limit law it reflects the number
of didributiond moments that are finite (and thus exist). As for the Type Il
limit law dl moments exig irrespective of the vaue o because the distributiona
support is finite. For proofs of the theorem and other clams we refer to the cited
references.

A complication for our anayds of extreme market risks is the fact tha there
ae three limit laws. Fortunately, the quditative characterigics of financia return
data point to the rdevant limit law. Because financid returns are messured
as log differences of origind prices, both negative and podtive returns are in
principle unbounded. Thus, Type Il cannot correctly describe market risks
because of its finite support. Note, however, that it can play a role in credit risk
management because maxima credit risk losses dways stay bounded. Moreover
it can be shown tha the Type Il limit law correctly describes the tail of portfolio
credit losses under fairly generd conditions, see Lucas et d. (2000). As for the
remaning two candidate taill modds for market risk, the Type Il tals decline by
a power which means that they contan reatively more probability mass than
the Type | tals which decline exponentidly. Didributions that lie in the MDA
of the Type Il or Type I limit law are therefore cdled fa-talled or thin-taled,
regpectively. In this atice we assume tha maximum returns follow a type Il
limit law because the fat tal feature best captures the dylized fact that asset
prices do reatively frequently exhibit sharp fluctuations (see ealier).



2.2 Characterizing the asymptotic dependence structure

A joint digribution F (z, y) = P{X < z,Y < y} of asset price changes X and
Y both nests information on the margind didributions of separate asst re-
turns, Fx (z) and Fy (y) , and the dependence structure. In this paper we do
not identify the dependence dructure by a variance-covariance approach, see our
earlier argumentation that corrdations may be mideading indicators of extremd
oillover. The darting point of our dependence andyss conditutes the so-cdled
dependence function or copula

D(u,v)=F (Fx' (u), i7" (v), 0<u<1, 0Sv<, (8)

where
Fx' (W =inf {z|Fx (z) > 2},

is the generd inverse function of Fx ; the generd inverse of Fy is defined in the
same way. By definition

F)?I(FX(:E))ZCR l‘GR,

and for (x, y) € R?,
F(z,y) == D(Fx (z), Fr (y)) .

Through the transformation (8) we have uniformized the margind distributions
of F. This follows from the following chain of equdities

F(z,y) = P{X <F-(U),Y < Fy'(v)}
= P{Fx (X) <u,Fy (Y) <v}
= P{U<uV <v}
= D(u,v),

where (U, V) ae uniform (0,1) varigbles. Copulas represent a way to extract
the dependence dructure from the joint distribution and to distinguish between
dependence and margind behavior. A copula may be thought of in two equivaent
ways as a function (with some technicd redrictions) that maps vaues in the
unit hypercube to vaues in the unit intervd or as a multivariate distribution
with standard uniform margind didributions. In ether case, it makes sense to
interpret D as the dependence structure of F.



In order to make inferences about the dependence of extremal events, however,
we define the following tall verson of the dependence function D :

Definition 1 (Huang (1992) Suppose F is the d.f. of (X,Y) with Qx =
a - Fx)—1 and Qy == (1 —Fy)'1 representing the marginal quantile functions
for X and Y, respectively. Assume there exists a function l:Ri —R,, such that
for all u,v >0,

| (w,v) : =lim¢ ' 1-D @ ~tu, 1 - t)] (9)
t—+0
= tl_i}r}(l() t71P{X > Qx (tu) or Y > Qy (tv)}, (10)

then [ is called the stable tail dependence function (STDF) of F.

Multivariate extreme vaue theory deds with exisence conditions, properties and
esimators for the tail dependence function. For eementary introductions into
multivariate extreme vaue theory, see eg. Johnson and Kotz (1972), de Haan
and Resnick (1977), Tawn (1988, 1990), Huang (1992) and Sinha (1997). In
contrast to corrdation andyss, the curvature of D (u, v) and [ (u, v) completely
determines the dependence structure of joint risks over the whole digtributiond
support and in their tals, respectively. The tall dependence expresson above
gregtly resembles the expresson for the bivariate excess probability p;, in our
illover definitions (1), (3) and (4). However, the tall dependence function is
defined for infinitdly large quantile vaues Qx and Qy wheress investors may be
more interested in the vaues taken by our spillover indicators for extremd but
bounded spillovers. Nonetheless, we argue in the empirical section that estimates
of the asymptotic probability in (10) provide a farly good approximation of pi,.
We end this section by mentioning the homogeneity property of | (u, v). More
goecificdly it can be shown tha the tall dependence function is homogeneous of

degree one, i.e,
I (Au, Xv) = Al (u,v), A>0. (11)

This property will proof to be very useful for estimation purposes (see next sec-
tion). Moreover, using this property one can eadly show that the bivariate excess
probability p;; and the margind probabilities p; and p,, as defined in (1), are
related via the tall dependence function. In order to see this, suppose that the
tal dependence function is ill farly good approximated by the right hand sde
probability if one does not go infinitdly far into the bivariate tall, i.e,

[ (u,v) ® t71P{X > Qx (tu) or Y > Qy (tv)},

for t > O but smdl. Without loss of generdity we can now s&t tu = p, ad
tv = py in the above expresson in order to get:

L(t'p,t7'pa)  t7'P{X > Qx ey or ¥ > v (p)} . (12)
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Because of the homogeneity property, the factor ¢t~! can be divided away in the
above expression. Rename z = Qx (tu) andy = Qy (tv) in order to obtain:

P{X>zorY >y} =Il(P{X>z},P{Y >y}).

Stated otherwise, the joint probability pi2 only depends on the margina proba
bilities p; and p, once [ is known.

3 ESTIMATION PROCEDURES

The conditiond spillover measures in (1), (2), (3) and (4) reved tha they should
be edimated in a two-step estimation procedure. Estimators of p, and p, based
upon extreme vaue theory are conddered in the firsd subsection (3.1). An edti-
mator of the tall dependence function based upon bivariate extreme vaue theory
is discussed in the next subsection (3.2). We close this section by a note on
edimating systemic risk for different time horizons (3.3).

3.1 Univariate step

In order to identify likdihoods of extremd events in a univariate context, we
exploit the earlier mentioned ylized fact of heavy-taled time series in financid
markets, i.e, returns lie in the maximum doman of atraction of the heavy-
taled Type Il limit lav. Equivdently, this implies that the excess probability is
aoproximately evolving as a power function of the quantile provided the quantile
is ‘large enough’ ,i.e, a the boundary or outsde the historicd sample. For eg.
the univariate risk X this would imply:

p1~az”%, (13)

with a and « unknown parameters and large x. From this property it directly
follows that such digtributions have only bounded moments up to «, where a is
known as the tal index. In contrast, exponentia decaying tals or digributions
with finite endpoints, have dl moments bounded. Univariate excess probabilities
like p; can be estimated by ether the pesks-over-threshold (POT) method, the
method of block maxima or the method we propose here. A nice description of
the former two methods can be found in Embrechts et d. (1997). We employ
the estimator of De Haan e d. (1994) which hinges upon the fat tal festure

o om( Xaem)\®
o (Fem) (14

where X(,_m is the (m + 1) -th descending order setistic from a sample of
sze n, and (p,, X) is the probability-quantile combination that we are interested
in. The idea behind this edimator is that it extends the empiricd didtribution
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function outsde the domain of the sample by means of the Pareto tal in (13)
which it must gpproach eventudly. A more thorough discusson of this estimator
IS provided in Danielsson and de Vries (1995).

The edimator (14) is conditional upon knowledge of the tal index a and the
choice of the higher order dtatistic X(,_,). We estimate the tail index by means
of the popular Hill (1975) estimator:

m—1 .
1y (ﬁﬂ> , (15)
a m

where m equas the number of highest order datistics used in estimation.

In order to sdlect the number of highest order statistics m, one can exploit the
asymptatic normdity of the Hill estimator in combination with the fact that the
edimator is biased a the m-vdues that minimize the asymptotic mean-squared
error, see Goldie and Smith (1987). The idea is to sdect m in such a way tha
the biassquared and variance vanish a the same rae when the sample sze
n incresses. Consequently, minimizing the sample Mean Squared Error (MSE)
is an gppropriate sdection criterion for m. A heurigic procedure for this is to
make a so-cdled Hill plot by computing & a different m levels and to sdlect the
threshold in the region over which & is more or less constant. There exists such
a region, because when one uses too few order datistics, then a will vary heavily
due to inefficiency. In the opposite case when one goes too deep into the center
of the didribution, the firs order Pareto approximation to the tail is no longer
gppropriate and the bias from the second order parameters kicks in. Figure 1
plots Hill estimaes agang m for a market index of US stocks. Because the
megnitude of the Hill estimates varies only dightly across the international stock
market we only present the US results as a representative example.

Figure 1 shows that a horizonta range for the edimated tal index exids, it
suggests an optimd threshold vadue that lies goproximately in between 50 and
130. We decided to be quite conservative and to condition our tail index estimates
on m = 55 given the sample sze of 3319 daly returns. See dso Jansen and de
Vries (1991), Hols and de Vries (1991) and Koedijk et a. (1990) for applications
of the same methodology.

12



Fgure 1: Hill edimaes for varying threshold m

Daily US stock index (MSCI)
3.0

25

2.0

Hill estimate

1.5

10 a0 40 L0 o0 100 1930 A 40 100 100 ....9
V- rmrmirfrrrrdrGrrmGrm B @ GO R i i3t 0

Threshold m

3.2 Bivariate step

Roughly two approaches are available in order to edtimate the bivariate excess
probability py, in the spillover indicators (1), (3) and (4). Some authors specify
a bivariate parametric modd of the tall dependence function of (X, Y) , see eg.
Tawn (1988) or Longin and Solnik (1998). However, and in contrast to the
univariate limit laws for extremes, bivariate extreme vaue theory does not provide
an explicit paametric form for the tall dependence function. Because the chosen
parametrization might be too redrictive or smply wrong we do not opt for this
gpproach but instead propose a nonparametric method based on order datistics.
We now give a short, intuitive derivation of the rdevant estimator.

As a dating point recadl the definition (10) of the tal dependence function,
and replace (u, V) by (p1,p2) , edimated in the univariate step:

1
| (P, P2) :tl_iglO;P{X >Qx (th)orY > Qv (tp2)}. (16)

Clearly, an edtimator based upon this limit expresson should necessarily be based
upon the ‘larger’ observations, as only these can tel us something about the
asymptotic dependence dructure. So only a smdl number, say k, of the origind
n observations will be used for edimation. The number k mus tend to infinity
with n in order to enable us to apply the law of large numbers to get consstency
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of the estimator. But it should dso be smdl rddive to n, Snce we are only
interested in the tall. Hence we require

k(n)

k =k () - 00aNd e=—= — 0 asn — o0.
n

Replacing t by k/n in (16) renders

kp _ kp.

L(py, 52) = lim 2P{X > Qx <-fi> orY > Qy (—ﬂ)} .an
n—oo k n n

In order to turn (17) into an estimator we replace the bivariate excess probability

in (17) by its empiricd counterpart. This is Smply the number of points in the

area k% kp
{(Xivyi)izl,...,n X; > Qx (—%) orY; > Qy (—5‘2') } ; (18)

divided by the sze of the sample n.

According to our assumptions, however, Qx and Qy are 0 large that there may
be few observations left in this area. Note, however, that the tail dependence
function’s homogeneity property dlows one to scae up its arguments in order to
increase the number of observations in the area (18). The edtimator should then
be premultiplied by the inverse of this scaling factor in order to leave [ invaian.

A handy candidate for this operation is the polar transformation:

P, = pcosf and p, = psinb. (19)

Exploiting the approximate homogeneity of I, one obtains:
1(p1,72) ~ ﬁf(cos 8, sin 5) . (20)

Conditiond upon knowledge of p; and ps, the angle § and corresponding radius
p can be consdently estimated by:

0 = arctan (p/p1) and p = \/B} + B3 (21)

The par (cosd, sinf) now lies on the unit cirde which leaves more room for

excesses in order to estimate [. The function | (cos@, sina) can be estimated by
the number of points in the area

~

koo
X; > Qx (7—12 cos@) and, or Y; > Qy <— sinﬂ) } , (22)

{(Xi,m,.ﬂ,...,n .

divided by n.
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Note that @x and Qy in the above expresson are unknown. Egtimators of the
unknown quantile functions can be found by obsarving that the expected number
of points above Qy (f cos 6) and Qy (;’j— sn 9) equals

nP{X > Qx (E cos 5) } = kcos b, (23)
n
k.~ g
nP {Y > Qy <— s1n9) } = ksin®. (24)
n
Consequently, the order detistic Xiek coshl is a condgent edtimator for Qx and
Y., _isng IS @ consstent esimator for Qy. The vertical brackets imply that the

ranks are rounded upwards. Let I( .) sand for the indicator function defined on
the area in (22), it then follows from (20), (21), (23) and (24) that

~

IO P
L(p1,12) = EPZ 1 (Xi > X[n—kcos@\} and, or Y > }/[n—kSina) ’ (25)
i=1

which is Huang's (1992) edtimator.

The estimator in (25) hinges on cosf and sind, obtained from the univariate
step via (21), and the threshold number k. As for the Hill esimator we rely
on a heurigic plot method for sdecting k. This method requires no parametric
prior information and exploits the asymptotic normality of the egtimator in (25),
se Huang (1992). The method implies cdculding the deviation of I(k) from
homogeneity by ~ R

|T(2 cos 6,2 sin 0)

| f(:os g,sn (3)
and sdecting k in the region for which 7 is smal and more or less constant. Note
that the angle @ is predetermined by the univariate estimation results. When one
uses a too low number of higher order datigtics, then Twill vary heavily due to
inefficiency. In the opposite case, | becomes more and more downward biased,
sance it will sart to deviate more and more from homogenety. For additiond
intuition and examples on the biasvariance trade off when sdecting k, see e.g.
Stragtmans (1998a,b) and Hartmann et a. (2000).

Let us now return to implementing the plot method on our dataset. Figure 2
contains the homogeneity ratio for the pair of USUK sock market indices. We
limit oursdlves to presenting only one homogeneity raio because we found thet
the ratio does not vary much across different pairs of stock indices. This suggests
that one can choose more or less the same threshold for dl stock index pairs. On
the basis of Figure 2 we decided to condition al our estimates of extreme stock
market dependence on k = 100.

Ealy applications of this nonparametric agpproach to extreme dependence
include Huang (1992) and de Haan and de Ronde (1998). Very few papers have

7(k) -2, (26)

15



Fgure 2. Homogeneity ratio for varying threshold k

US-UK spillover
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implemented this multivariate gpproach into finance, see eg. Sarica (1998) and
Straetmans ( 1998a,b).

3.3 Time horizon and systemic risk

Before turning to the empiricd results we want to make a note concerning the
desred time horizon for the spillover measure. Recdl that risk managers typi-
cdly cdculate VaR numbers for interna purposes on a daly basis because of
eg. probable market illiquidity during stress periods regulatory authorities dso
demand the reporting of weekly or biweekly VaR numbers. These vaues can dif-
fer quite dramaticdly for different risk horizons. Does it make sense to underteke
the same exercise with our extremd spillover indicators, i.e, to report estimates
of sysemic risk measures over different time horizons ? The answer is no !

Usng daily yieds, estimates of eg. the conditiond probability (3) reflect the
likelihood that an asset loses y % of its vaue today given another asset crash by
z % on that same trading day. Suppose, however, that we are interested in the
likelihood of a daly conditiond spillover within the time span of, say, K days.
In other words, data frequency and time span do not have to coincide.

How should the edimation of (1), (3) or (4) then proceed? Let p; and p,
agan represent univariate exceedance probabilities estimated with daly daa
The multiperiod univariate exceedance probabilities g, and g, follow eesly from
the i.i.d. assumption for X and Y :
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@-g)=a-p"i=12 (27)
Taking logarithms of (27), we obtain (for smdl 5, and p2) :

g~ Kp; ,i=1,2 (28)
Moreover, approximate homogeneity of | implies that
(@, &) = KI (51, p).- (29)

The combined egs. (28) and (29) leave dl our spillover measures invariant for
changes in the time span. Thus, in contrast to univariate exceedance probabilities,
the time horizon for conditional crash probabilities does not maiter.

4 EMPIRICAL RESULTS

4.1 Data description

The data set comprises stock indexes for the G-5 countries (United States, United
Kingdom, Germany, France and Japan, abbreviated as US, UK, GE, FR and JP,
regpectively). The series are daily and run from February 1987 until November
1999, which implies 3319 observations per series All data were downloaded
from Datastream inc. The indices are caculated by Morgan Stanley and exclude
dividends. Moreover they are dl expressed in locd currency. The daly returns
ae cdculated in the usuad way, i.e, by taking log firg differences of the equity
price index.

4.2 Univariate results

Table 1 contains univariate exceedance probabilities for our dataset of daly
changes in G-5 stock market indexes. The firg column of each Table reports
tal index edimaes usng he Hill edimaor (15). This edimator is conditioned
upon the portion m/n of the sample used for cdculating a. As judtified before,
we condition the Hill edimator for dl returns on m = 55, which is less than
2% of the daa While knowledge of the tal index is interesing in itsdf, the
question of economic interest is how likey extreme returns are; or conversdy,
how high the loss (Vdue-a-Risk) will be for a given low probability leved. The
highest extremal in-sample return for each asst is reported in column 2 of the
Tables These vaues provide us with a benchmark for choosing vaues for the
out-of-sample quantiles for the bivariatle dep. The remaning columns in the
Tables report probabilities of dally exceedances over a yearly time horizon. We
achieve this by caculating dally tal probabilities with the estimator (14) and by
subsequently multiplying these vadues by the number of trading days K in a yesar,
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which we take K = 260. As noted earlier this is a correct procedure provided the
return series are seridly independent. Thus the entry 0.00649 for Jgpan in Table
1 in the column for the probabilities & the 20% loss levd implies that on average
once per 1/0.00649 ~ 154 years there is a year with a day on which the Japanese
stock market drops by more than 20%.

Table 1: Left tal probabilities for stock index returns (local currency)
countries ¢ min (%) -10% -20% -30%

US 2.82 -22.32 0.05656 0.00798 0.00254
UK 3.25 -11.95 0.03017 0.00318 0.00085
FR 2.78  -9.410 0.09573 0.01395 0.00452
JP 3.40  -16.67 0.06844 0.00649 0.00164
GE 2.33  -14.07 0.20958 0.04162 0.01616

From a macropoint of view, the Table gives some perspective to the frequency
of assat market crashes in isolation. Note that an event like the 1987 crash is
very rare. But observe dso that stock market drops in the order of 20% over a
number of days quickly become more likely as the number of days is increased.
Moreover, it can be shown that exceedance probabilities for the same tail points
ae much smdler under a norma parametrization of financid asst returns. Given
the persging popularity of the normdity assumption, it should not surprise
that agents tend to underestimate the probability of a financid criss, see eg.
Friedman and Laibson (1989).

From a microeconomic point of view, the Table can be used as a device for
portfolio sdection. Suppose that investors are interested in sdlecting the stock
which minimizes the probability of extreme loses (i.e the minimax Strategy).
Fixing the extreme loss a 30% or lower, they sdect the UK stock index. Of
course, this sdection criterion is very myopic because the investor both ignores
the co-movements of assat price changes in portfolio and the limiting dependency
of the included assats with large assat fluctuations in the outsde world (systemic
events). In the next sections we measure these reationships by means of the
earlier discussed conditional crash probability measures of systemic market risk.
We ague that these may be more rdevant and informative to portfolio investors
than the univariate excess probabilities form Table 1.

4.3 Reduced form estimates of systemic stock market risk

Table 2 contains systemic risk estimates for pairs of G-5 stock index returns.
The fird column contains egimates of the systemic risk measure (1). The other
two columns report estimates for dternative spillover measures (3) and (4). In
contrast to the firg column messure the latter measures are conditioned on a

18



specified crash abroad. All extremal spillover estimates in the Table are con-
ditioned on a common extreme quantile (or VaR leve) of +20 %. The Table
reveds that the degree of systemic stock market risk is quite sendtive to the
chosen spillover measure. Thus one should be careful if one draws conclusons
on the bass of one sngle spillover definition. Regardiess of the spillover defini-
tion consdered, however, note that al probabilities in the Table are much higher
than ther univariate counterparts in Table 1. This is because one tekes into
account information on the extreme dependence dtructure between the markets,
this makes crashes in domestic markets more likely if crashes happen abroad. Let
us now invesigate the results somewhat more carefully. The Ird column edi-
mates are dl smdler than the probabilities in the remaining columns. However,
this has no economic interpretation because the conditional crash probabilities
in the firg column are dways smdler by condruction. Divide eg. (1) by (3) in
order to obtain

P{Y > y|X >z}:P{n=2|le}%. (30)
1

Because p;; < py, the left hand Sde probability in (30) should be higher than
P{k= 2k >1}.

Table 2. Edimated conditional crash probabilities across stock markets
MARKETS P{k2x 1} P{Y > yX > x} P{X > z|Y >y}

(Y - X)
US-UK 0.192 0.565 0.225
US-FR 0.208 0.270 0.472
us JrP 0.125 0.248 0.202
US-GE 0.125 0.133 0.693
UK-FR 0.162 0.171 0.752
UK-JP 0.134 0.176 0.359
UK-GE 0.072 0.073 0.962
FR-JP 0.136 0.376 0.175
FR-GE 0.266 0.280 0.837
JP-GE 0.077 0.083 0.533

1Qua.ntiles equal x =Y = 20%

As for the 2nd and 3rd column differences, these can be explained by differing
probability masses in the tals (p1 # p2) . More spedificdly, the definitions (3)-
(4) show that the conditiond spillover probabilities will be high (low) if the
probability of the conditioning event is low (high). For example the univariae
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results in Table 1 show tha a crash of comparable magnitude is much more likely
to happen in Germany than in the UK. Consequently conditioning on a German
stock market crash will render a spillover to the UK stock market less likely than
the reverse scenario.

Table 2 provides interesting information for policymakers and regulatory au-
thorities in order to assess the vulnerability of the financid sysem as a whole.
Systemic risk estimates can dso be informative for portfolio investors for the sake
of testing stress scenarios. More specificdly, they would like to assess to what
extent a certain drop in portfolio vaue becomes more likely if one conditions on a
sysemic event abroad. Stated otherwise, they may be interested in conditioning
their portfolio VaR on sysemic events and compare it with the unconditiond
portfolio VaR for a common dgnificance level. Note that al returns used for the
gystemic risk esimates in the Table were expressed in loca currency. However,
portfolio investors assessng their portfolio systemic risk would like to condition
on systemic events abroad expressed in the home currency. This exercise is un-
dertaken in Table 3. Each row corresponds with a representative domestic G-5
investor. We assume that ther initid equity holdings only comprise the domes
tic equity index. We then cdculate systemic risk for each of these G-5 domestic
portfolios w.rt. systemic events in the other G-5 stock markets (left pand of
Table 3). The edimaes are again conditioned on a common extreme quantile
(or VaR levd) of +20 %.

Table 3. Bilaterd and diversfied sysemic portfolio risk

INVESTOR BILATERAL | N;I'ERNATI ONAL
P{Y >y|X > 1) P{Z-};Yi>y|X>x}
=1
T FR GE JP UK 1
us 0.287  0.240 (.321* 0.309 0.249
FR 0.388 - 0.313 0.200 0.753* 0.612
GE 0.610 0.716 . 0.259  (.949* 0.553
JP 0.097 0.158* 0.122 - 0.151 0.377
UK 0.122 (0.324* 0.084 0.232 - 0.465

(*) Nonselected indices for diversified portfolio

Jug as in the previous Table the systemic rik estimates are dl much higher
than their univariate counterparts in Table 1. Thus, univariate VaR numbers will
highly undersate VaR vaues conditioned upon systemic events and calculated for
the same dgnificance level as their unconditiona counterpart. Suppose now that
domestic investors want to diversfy ther sysemic portfolio risks by investing
abroad. More specificaly assume that they form an equdly weighed portfolio
containing the domegtic index and 3 out of 4 foreign stock indices, the index that
induced the highest sysemic risk w.r.t. the domegtic portfolio is not sdected.
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The right column in Table 3 contans the sysemic risk of this ‘internaiond’
portfolio w.r. t. the index not included. Investors would idedly like to reduce
sysemic risk beneath the minimum vdue from the left pand but neither of the
investors in the Table achieves this god. However, three investors (US, France and
Germany) manage to reduce systemic portfolio risk benesth the maximum leve
in the left pand. As for the other two investors (Jgpan and the UK) the smple
diversfication draiegy does not pay. Summarizing, this stylized example shows
that it is quite difficult to diversfy portfolio risk if one conditions risk measures
upon sydemic events The intuition is that it is not easy to find assets abroad
that are weskly dependent in the extremes w.rt. both the current portfolio and
the systemic event.

A generd problem of interpretation of Tables 2 and 3 is that stock markets
that trade a different places evidently exhibit different trading hours. Thus
spillovers may be dampened because a crash in one market occurs when other
markets are nearly cloang. This enables the latter market to absorb the spillover
effect in more than one trading day. Consequently dally stock returns can be less
extreme in the latter market and the conditionad crash probability will probably
be downward biased. Hence, more attention should be pad in the future to the
precise timing of the stock index return series and the extent of trading overlap
when esimating conditiond crash probabilities.

5 Testing for increased stock market integration

Casud observers suggest that markets have become more related over time. In
this section we test whether this presumption is true if one measures market
linkeges in terms of extrema dependencies. If the extreme dependence dructure
is noncongtant over the consdered sample period it could be that the systemic
risk estimates in Table 2 are distorted towards some rough average measure of
market linkage over time.

In order to test whether the linkages during stress period have remaned con-
dant, we exploit the property that the taill dependence estimator Z( . +) IS asymp-
toticaly norma, see Huang (1992):

vE (1,1 -1(1,1) =N (0,6%). (31)

For sske of convenience we limit oursdves to evduaing and teging the tal
dependence function and its estimator in (1,1) because this renders a fairly smple
expresson for the asymptotic variance. Estimation procedures for the asymptotic
vaiance are discussed in Peng (1999). Note dso that the limiting distribution
of [in (31) becomes degenerate if asset returns are asymptotically independent
(g2 = 0). Thus the asymptotic normdity property cannot be exploited in order
to test for asymptotic independence.
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If one sdects the degree of tail dependence [ (1,1) as a measure of stock
market integration the relevant null hypothesis boils down to Hy : L1 = Iy, where
the subscripts refer to nonoverlapping subsamples. From the theory sections we
know that higher |- values imply a lower asymptotic dependence and vice versa
Hence, the rdevant dternative for the international stock market boils down to
H, : ;> 1. Teding for dructura bregks can mogt eesily be done by splitting
the sample into two parts of equa length n/2 = 1659 and by setting the bivariate
threshold a hdf its full sample vaue of k, i.e, k/2 = 50. Esimating ! (1, 1) and
o? across the subsamples and exploiting (31) we subdtitute these numbers into
the bivariae tet dHatidic

g Y2 h)

which is asymptoticdly standard normd didributed under H,. Table 4 contains
vaues of the test datigtic for the stock market pairs of our dataset. In order to
reject Hy a the 5 % dgnificance level agang the one-sided dternative hypothesis
H; , the vaues in (32) should be larger than 1.65 which is clearly never the case.
Some vdues are even negative which is rather indicative of a decrease in stock
market integration over the consdered sample period!

(32)

Table 4. Stability testing results on extreme stock market dependence
us UK FR JP GE
US 1
UK -0.932 1
FR -0.505 0.482 !
JP 0210 0203 156 1
GE -0.625 1218 0.467 0 |

Our teding results confirm the robustness of extreme vaue theory over a
farly long sample period. This observation is in line with earlier findings on the
dability of tal index cum VaR edimates when gpplying univariate extreme vdue
theory over fairly long samples see eg. Jansen and de Vries (1989) or Danielsson
and de Vries (1997). Some earlier studies come to smilar conclusons concerning
the evolvement of stock market integration over time by conditioning on different

sample periods and different dependence concepts. The Brady commission (1988)
dready pointed out that there had been no trend increase in the (rolling) corre-

lations between markets. Estimating conditiond corrdations by means of a more
sophigticated factor ARCH modd, King, Sentana and Wadhwani (1994) were also
unable to find strong evidence in favor of a trend increase in correlations.
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6 Extremal spillovers and the normal distribu-
tion

Wide consensus exists among financid economids that fluctuations in assat prices
exhibit heavy tals Moreover, the previous empirica sections reveded a sgnif-
icant degree of dependence between extreme events across stock markets. We
dso agued that extreme vaue theory is better-suited for capturing these data
properties than a parametric andyss as the latter may be prone to misspeci-
fication. In this section we illudrate this point by cdculating the conditiond
crash probabilities under the assumption that market risks follow a multivariate
Normd  distribution.

Because most datidtical packages generate exceedance probabilities for the
univariste and bivariate standard normd didtribution, it is useful to rewrite (1)
as.

P{zy >zkx 7, > ex)
1-P{2, <zx 7, <utx}
where Z; and Z; dand for the standardized returns. Note that the correlation
coefficient between X and Y is invariant under standardizetion. The means ux
and py and the variancecovariance matrix ¥ are edimated by means of the
Maximum Likeihood method.

Table 5 presents ‘normd’ conditiona probability estimates for our set of stock
index return data. We were unable to condition (1) on one of the crash leves
from Table 1 because of numericd indabilities. Once we condition the systemic
risk measure on quantiles larger than 7 % the numerator and denominator of (33)
become so smdl that the systemic risk measure can no longer be caculated with
satisfactory accuracy. The conditioning quantile is therefore st a +6 %.

P{r=2|k>1} = (33)

Table 5. Conditional crash . probabilities under the bivariate norma distribution

US UK FR JP GE

US l

U K 1.883%1077 1

F R 1.141*107° 6.964*107° 1

J P 4.529%107% 1.797*1071° 1.186*1075 !

G E  1.157%107° 7.399*1071°102*107% 3144*10°% 1

Conditioning quantiles: T =y = 6 %

The edimated probabilities in Table 5 ae dl extremdy smdl compared to
their semi-parametric counterparts in Table 2 dthough the quantiles £ and y on
which we condition are chosen less far in the tal!

These reaults illudrate that the tals of a Norma digribution do not correcly
capture the fat tails and extrema dependence observed in the stock market. The
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exponentidly declining thin tals of a norma didribution severdy underesimate
the tails of univariae risks X and Y. Moreover, it can be shown that the univariate
tals of a multivariate norma digribution exhibit asymptotic independence even
when the risks are highly corrdlated over the full range of the didribution (see
eg. Shuya (1960) or De Haan and Resnick (1977)). The tal independence of
norma risks boils down to a linear dependence function | (u, v) = u + v which
renders a zero conditiond crash probability upon subgtitution in our systemic
rsk messures. Conduding, the Norma digribution both highly underestimates
the likdihood of gngle sock market events as wel as the probability that these
events occur  Smultaneoudly.

7 Conclusions

In this article we proposed a bivariate extreme vaue framework in order to mea
sure the probability of extremd spillovers (systemic risk) between stock markets.
We argued that the approach does not depend on the choice of a particular prob-

abilistic model for the market risks. Moreover, investors might be more interested
in knowing this likelihood than in dependence measures that are defined over the
whole sample period. Assessing the probability of smultaneous extreme returns
may be crucid for the success or falure of portfolio investors or policy makers
such as central bankers.

In order to measure extreme linkages, we introduced the concept of the sta
ble tail dependence function. The conditiona probabilities that we proposed as
measures of systemic risk summarize the amount of dependence between extremes
as wdl as information on the amount of probability mass in the univariate risk
talls. We cdculated spillover probabilities between stock markets and found that
these are lower than expected. Investors could use our conditiond probability
framework as a device for tesing dress scenarios. More specificdly, they can
investigate the sengtivity of their portfolio VaR to foreign extreme events such
as stock market crashes. They can dso employ the systemic risk measure as a
criterion for internationd risk diversfication and asset dlocation.

We dso investigated whether the linkages between stock markets during stress
periods have changed over our paticular sample of 12 years. Contrary to prior
beliefs, we found that stock market integr ation has not risen dgnificantly  over
the consdered sample period.
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