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Abstract
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1 Introduction

In our information age there is often an abundance of fragmented data and an
overwhelming presence of segmented methodological approaches. There is also an increasing
demand for more integrated scientific insights and perspectives. And clearly, there is a need
for more research synthesis in the empirical sciences. Empirical research is often based on
controlled experimentation, as is witnessed in the research methodology in the natural
sciences. In the social sciences however, it appears to be very difficult to apply this research
methodology, as both contextual (environmental) conditions and behavioural factors are
subject to change. As a consequence, we have witnessed in recent years the emergence of
comparative case study research with a view to the identification of common knowledge
patterns from distinct classes of information [ 11,  [ 111.  There is an increasing recognition of
the added value of empirical research synthesis in the social sciences.

An important new research methodology in social science research is meta-analysis.
Although meta-analysis has originally a limited character, viz. a statistical analysis of
previously undertaken quantitative case studies, it is increasingly recognized that meta-
analysis is essentially a methodological approach focussed on quantitative, statistical research
synthesis. Comparative research on previous research findings is essentially a particular type
of meta-analysis.
Comparative research aims to bring to light both common and contrasting elements
characterizing a set of phenomena under investigation. Such a research activity serves to gain
additional knowledge from syntheses of research findings from previous studies and may lead
to generalizable or transferable results. In this sense, comparative research has also a great
ability for conditional predictions. Such predictions may be continuous in nature, but -given
the uncertainty in many measurement procedures- they often relate to interval data. In many
situations the attributes of a phenomenon are represented in distinct classes, so that then
comparative research boils essentially down to classification analysis. This paper describes
some of the classification techniques that may be useful in a comparative research context.

We will focus here on quantitative, numerically-determined research findings. The
starting point of our analysis is a data set, consisting of n objects, each object being described
by several variables or attributes. Ideally, the attributes of a phenomenon should be measured
on a ratio scale, but also a lower level of measurement can be considered. Attributes having a
finite number of possible qualitative values may be transformed into a numerically
identifiable form using the method of categorizing. For example, if we consider a collection
of cars and we wish to look at the distinguishing attribute ‘colour’,  then possible nominal
characteristics of the colour could be ‘red’, ‘green’ and ‘blue’. These qualitative values can be
transformed into a pseudo-quantitative (nominal) scale by setting e.g. 1 = ‘red’, 2 = ‘green’ and Q
3 = ‘blue’. However, some classification techniques may yield specific results depending on
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the way of categorization; that is, in principle different categorizations may lead to different
classifications. We will return to this subject when discussing each classification technique
considered in the present survey.

In social science research, we often make a distinction between dependent and
independent variables (attributes) so as to allow for explanatory analysis. If such a distinction
is possible, there is usually often only one dependent variable. However, we do not exclude
the presence of multiple dependent variables in our analysis.

Classification is a prominent research activity in many sciences. And hence, it is no
surprise that there is a wide variety of classification methods. The classification techniques
that are considered in this paper are the following:

l rough set theory;

l fixmy  set theory;
l cluster analysis;

l discriminant analysis;
l logit  and Drobit  models;u J.

a neural networks;

l two-way tables;

l Poisson-regression model.

Clearly, this collection of classification techniques does not pretend to be exhaustive.
There exist, of course, other classification techniques which might also be useful in

comparative research in the social sciences.
The aim of this paper is to offer an overview of the various classification methods with a

view to identifying their weak and strong points in comparative research. This paper is
organized as follows. Section 2 discusses rough set theory. In Section 3 we consider fuzzy  set
theory. The focus of Section 4 is on cluster analysis, while in Section 5 discriminant analysis
is discussed. Logit  and probit  models are the main theme of Section 6, while Section 7 is
devoted to neural networks. Section 8 discusses two-way tables, and next Section 9 considers
the Poisson-regression model. In Section 10 the methods are compared and this comparison is
summarized in a survey table. Section 11 discusses - by way of meta-synthesis  - how to find
the appropriate classification technique in a specific situation. Finally, in Section 12 a
summary and some methodological conclusions are offered for further research on
comparative analysis.

2 Rough Set Theory

The first classification technique considered here is fairly recent. Rough set theory
(henceforth RST) has its origins in artificial intelligence, and has proven to be useful in.cb



several sciences such as decision analysis, economics, econometrics and statitistics. RST is
essentially a non-parametric classification technique, having the property that it is not  based
on stochastic data. This section will only provide a short summary of the most important
features of RST. For a more detailed description, we refer to e.g. [I], [ 121,  [ 131  and [ 141.  The
number of publications on RST is rapidly increasing.

2.1 A description
RST is essentially based on a deterministic interval classification. The starting point for

RST is a finite set U of objects and a finite set A of attributes. Qualitative or nominal
attributes should be transformed into quantitative ones as described in the previous section.
Such a transformation does not influence the classification results. Moreover, it is also
required that the values of continuous-valued attributes are transformed into a finite number
of distinct classes. For example, consider the attribute ‘yearly income’ of a person. In
principle, this attribute can take any non-negative value. The values of this attribute can be
categorized e.g. in the following way:

l l=$O-$10.000;

0 2 = $10.000 -  $ 100.000;

l 3 = $ 1.000.000 or more.

At the outset, it should be emphasized that any transformation does influence the
classification. A sensitivity analysis may be helpful to investigate the robustness of the
classification. However, for the time being this problem will be left aside for the sake of
simplicity. For more information on this topic we refer to [ 141.

In the RST terminology, attributes are usually split up into so-called condition and
decision attributes. Condition attributes fulfil the same role as independent variables and
decision variables have the role of dependent variables. We will now concisely describe the
essence of RST.

The main principle of RST is the indiscernibility equivalence relation. Let P be a subset
of the set of attributes A. Then we call two objects P-indiscernible, if and only they have the
same values for all attributes in P. This equivalence relation generates a partition of the set of
objects U into equivalence classes of P-indiscernible objects, to which we refer as P-
elementary sets.

With respect to each subset X c U we define the P-lower approximation of AI,  denoted by
px, as the collection of P-elementary sets which are contained in X,  and the P-upper

approximation, denoted by PX  as the collection of P-elementary sets which have at least one

element in common with X We note that CX  c X < FX, and hence, objects in EX belong

with certainty to X, while objects in FX  might belong to x1



Now the idea of RST is to approximate each subset X of U by means of the pair (EX,

FX  ), with respect to some subset P  of A. In case P” = FX, the set X is the union of P--
elementary sets. In such a case, one can state with certainty whether an object belongs to Xor
not, by considering only the set of attributes P. Moreover, with respect to any subset P  of A,
we can determine the accuracy of the approximation of X as the share of elements of PX in-

?!X . If U is partioned into U = ( Uj,  . . . , Un}  the quality of this classification can be given as the
sum of these shares of all sets of this partition.

Taking for granted now the classification of U partitioning the set U into U = { Ul,  . . . . Un}
and the quality of this classification with respect to P, the goal of RST is to find a minimal set
of attributes R c P that gives the same quality of classification as P. This concept is known in
RST as attribute reduction. Attribute reduction results in so-called reducts of P. The
intersection of all reducts of P  is known as the core of P. Finally, the total set of the objects
may be classified without losing any information, by using only the attributes of R. On the
other hand, leaving out one of the core attributes will clearly affect the quality of the
classification. Based on these reducts of P, RST derives ultimately decision rules which are a
statement of the form ‘if the attributes of the reduct have these values then the decision
attributes have a given value’. Decision rules can in principle also be generalized to new
objects and are thus suitable for transferability and prediction.

2.2 Conclusion
In this brief survey, we have discussed RST which is essentially a non-parametric

technique that uses only the deterministic interval information incorporated in the data itself.
No a priori assumptions are made about the underlying distribution of the data. The key
feature of RST is the indiscernibility relation. RST has various applications to classification
problems. By computing reducts of the condition attributes, the relevance of each condition
attribute can be evaluated. Attributes not belonging to any reduct may be considered as
irrelevant and can thus be left out. Clearly, the reliability of this operation is critically
dependent on the representativeness of the findings in the various case studies considered.
Leaving out all irrelevant variables leads to a minimal set of attributes with the same quality
of description as the original set of attributes. The intersection of all reducts yields a core of
attributes from which no variable can be eliminated without deteriorating the quality of the
classification. The core variables can be seen as the most important variables. Finally,
relationships between objects can be described by means of rules having the form of ‘if.. .then’
statements. Thus, RST has quite some features that make it interesting as a tool for
classification analysis, and hence also for comparative research on case studies with interval
results.



3 Fuzzy Set Theory

Another important and popular classification method is based on fuzzy sets. In this section
fuzzy set theory (abbreviated as FST) will be concisely discussed. Similar to RST, FST has its
roots in artificial intelligence, but it has also applications in other sciences such as
psychology, decision analysis, economics, econometrics and statistics. For a detailed
overview of fuzzy set theory and its applications, we refer to [lo],  [ 151.  Of course, there are
numerous publications on FST.

3.1 A description
In ordinary set theory an element x may or may not belong to a set A; that is, there are

exactly two mutually excluding possibilities

XEA o r  xgA

In fuzzy set theory, the relation ‘belonging to a set’ is extended towards linguistic
information of an imprecise nature. This extension is based on real-life situations, where
often it is unclear whether an object belongs to a set or not. For example, if one considers an
aged person, one may wonder whether he or she belongs to the class of people being older

than 80. If one had to give a number 0 < a < 1,  indicating the possibility that the person

belongs to that class, one might perhaps give a = 0.6. This is exactly the aim of FST.

To clarify FST more precisely, let X be a set of objects and let A c X The membership
function fA : X-+  [OJ] associates with each x E Xa number in the interval [OJ]. This number
indicates the grade (or  degree) of membership of x in A. The set A, with a corresponding
membership function fA , is called a fuzzy set. A fuzzy set is empty if and only if its
membership fkction is identically zero on X. Two fuzzy sets A and B are equal, written as A

= B, if and only if fA (x)  = fB (x) for a11 x E X The complement of a fuzzy set A is denoted by
A’ and its membership function is defined as

fA’(X)  = 1 - fA (x).

A is a subset of B (A  c B) if and only if fA (x)  < fB (x)  for all x E X. The union of two

fuzzy sets A and B is again a fuzzy set C = A u B with a corresponding membership function:

The intersection of two fuzzy sets A and B is a fuzzy set C = A n B with a membership
function: ‘I.



Other operations on fuzzy sets can be defined in a similar way, but we will confine
ourselves to the above operations. FST is often used in decision analysis with imprecise
information. Its major advantage is its ability to incorporate linguistic statements which do not
have an unambiguous numerical meaning.

3.2 Conclusion
FST provides an extension of the set-theoretical relationship of an object ‘belonging to a

set’. In FST it is possible that an object belongs to different classes with various degrees of
memberships. This feature makes ST appropriate for classification problems with vague
classes. Given a collection of fuzzy  classes and corresponding membership functions, the
degree of membership of each membership of each object can be obtained, yielding a fuzzy
classification. The problem of fuzzy classification then reduces to the problem of finding the
fuzzy classes and the corresponding membership functions; for further information we refer to
[ 151.  Especially in exploratory classification analysis FST may play an important role.

4 Cluster Analysis

A standard tool in classification analysis is clustering. The main feature of cluster analysis
is that a certain type of structure is imposed on the data. This can be useful, if there is not
sufficient information about the underlying patterns in the available data. In such cases cluster
analysis can serve as a first exploration of the structure in the data. This section will discuss
some important standard clustering methods. However, it should be noted that the class of
clustering methods is quite broad. For a good overview of existing clustering algorithms, see
e.g. [6]  and [8].  Contributions to cluster analysis can be found in almost all disciplines.

4.1 A description
The starting point in cluster analysis is a data set consisting of n objects or points,

described by several quantitative variables. There are no problems in transforming qualitative
variables into quantitative ones. There are -broadly speaking- three types
methods:

of clustering

l Partitioning methods. In these methods, the aim is to partition the set of n objects into a
specified number of disjoint groups, say m, so that each object belongs to one and only
one group. For each value of m, one seeks a partition which is optimal in terms of the a
priori stated clustering criterion.

l Hierarchical methods. One is often interested in investigating the structure in the data at
different levels; in particular, one may be interested in how the groups in a partition are .<I.



related to each other. Hierarchical cluster analysis aims to address this question.
Hierarchical methods are a special case of partitioning methods.

l Clumping methods. The groups or classes produced by partitioning methods are
normally supposed to have no members in common with each other. Sometimes, this
condition is unnecessarily restrictive. In clumping methods the groups are allowed to
over&.  Such overlapping groups will be called clumps, while a division of the set of nC‘ es.-
objects into clumps such that each object belongs to at least one clump, is called a
covering of the data set.

In order to illustrate the above distinction, an example of both a hierarchical clustering
method and a partitioning method is given below.

l Single linkage method (hierarchical method). Suppose we have a data set consisting of
n objects, where object i is described by k numerical variables. Let dq  denote the
dissimilarity between two objects i andj’  :

d,=$( xii -xp)2.

Two objects i andj are defined to belong to the same single link cluster at level h if there
exists a chain of m - 1 intermediate objects, il, i2,.  . .,i,,,,  linking them such that

d$’ $+l  -‘h,  k=O,  l,...,  m - l (1 Sm  92 -lJ,

where io = i and i, = j. The value of h controls the scale of the investigation The single
link clusters have the important property of being invariant under any monotone
transformation of the dissimilarities.

l Sum of squares method (partitioning method). This method can be used for the
classification of objects which can be presented as points in Euclidean space. Let Xik (i =
1 ,...,  n; k= l,..., p) denote the tih coordinate of the ith  point, Pi. The aim is to partition the
set of n points into g groups so as to minimize the total within-group sum of squares about
the g centroids. In other words, if the centroid of the mth  group, which contains the nn?

points (Pmi}yml has coordinates=

1 nln
2 =-

mk c
x (k = l,...,  p)

‘m  i=l



and if the within group sum of squares of the mth  group is

then the aim is to find a partition which minimizes

To find this partition, two algorithms can be applied: the agglomerative or the iterative
algorithm. For more details we refer to [6].
These are just two illustrative application possibilities. The literature on clustering algorithms
is rich and it is virtually impossible to give here a representative survey.

4.2 Conclusion
Many classification methods use clustering techniques. It has been shown in this section

that cluster analysis can explore the nature of the data by identifying a certain structure from
the data.. Using one of the various clustering methods, a data set can be subdivided into
specific classes consisting of elements that ‘resemble’ each other according to some common,
given criterion. Hence, cluster analysis might be useful to classify relatively ‘raw’ data in an
exploratory comparative analysis.

5 Discriminant Analysis

Discriminant analysis is another technique for comparative research. In this section we
will discuss some classification algorithms from discriminant analysis. Loosely speaking,
discriminant analysis seeks to find a discriminant function that serves as a rule for finding the
class an object belongs to. As a condition for applying discriminant analysis the classes have
to be known in advance. Discriminant analysis serves as a tool for determining the class an
object belongs to, not for determining the different classes. In this section we will briefly
discuss two discriminant algorithms: the Bayesian minimum error rule and the minimax  rule.
Other discriminant algorithms can be found in [5],  [6]  and [8].  Discriminant analysis is
certainly a standard technique in comparative social science research.

5.1 A description
Similar to the situation considered in the previous sections, the starting point in this

section is a data set consisting of n objects, which are described by a set of attributes. It is
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assumed that all attributes are real-valued. Qualitative attributes can in principle be
transformed into qualitative ones, but this seriously affects the results of the classification. In
case of qualitative attributes, another type of discriminant analysis should preferably be used,
namely discrete discriminant analysis; see e.g. [S].

51.1 Bayesian minimum error rule
Suppose we have a data set consisting of rz  objects. Each object belongs to one and

only one of the (disjoint) classes Wk,  k = 1,. . ., N . Each object x is characterized by means of a

k-dimensional vector of attribute values, x. These attributes assume values in a set C2  c Rk.

The set Q  can be partitioned into N subsets C&,  k = 1,. . . ,N.  We define a decision rule as a
statement of the form:

Suppose we know the probability that an object belongs to wk.  We denote this
probability by P(wk).  We call these probabilities the a priori probabilities, as they do not
depend on x and are known before we make any observation. Having a vector x of
information on the attribute values of each object x, we can use the following rule to classify
each object:

This rule is known as Bayes minimum error rule. The related probabilities P(wk  1 x) (k =
1,. . .,N)  are known as the posteriori probabilities, as they can only be calculated if the values
of x are known. We can compute them by means of the Bayes theorem:

P(WiIX)= P(+y  MY  1 .
PM

The decision rule then simplifies to

p(X  /Wd  P(Wk)  > p(x /WI) P(wj), j #k  *x  E a.

Unfortunately, the probabilities p(x 1 WJ and P(wi)  are not always known. In that case,

they need to be estimated from the data.



5.1.2 Minimax rule
Although the Bayes minimum error rule minimizes the overall error, in fact we might

be interested in some other relevant assignment criterion. So far we have assumed that

misclassifying  an wi-object as an wk-object  for i + k is the same for all i and k. Clearly, this is
not always the case. This concept has been formalized in terms of a cost tinction, Cg,  which

is the cost of misclassifying an object from class wi as belonging to class wj. If Jc E wi, then the
expected cost equals

Thus the overall expected cost r equals

This will be minimized if we define &. such that x E &, whenever

V’j + k

This is the Bayes minimum risk rule. It sometimes happens that we do not know the a
priori probabilities. Since each of the three decision rules above uses these probabilities, this
may pose a problem, especially when the sample sizes for each class are not proportional to
the class probabilities. The minimax  rule is designed to minimize the maximum possible risk.
The risk r equals

r = cp<w,)C h C,p(xlWj)dx.
i i i

For the sake of simplicity, we assume that we only have two classes. Then r is a linear
function of P(wl)  and therefore the maximum occurs when P(wl)  = 0 or 1. Thus the maximum
is either

‘I
.
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If we assume the cost function to be such that Cl r = C22  = 0, then the maximum
becomes either

And thus

takes it minimum value if

This formula can easily be generalized to the case of k classes, for k = 1,. . .,iV.  We can
write the above rules more generally as

We call the function q a discriminant function, which explains the name discriminant
analysis. This approach has gained a high popularity in many fields of social science research.

5.2 Conclusion
In this section two discriminant methods have been discussed: the Bayesian minimum

error rule and the minimax  rule. In general, discriminant analysis seeks to find a discriminant
function that serves as a rule for deciding on the class an object belongs to. To apply

discriminant analysis, the classes should be known in advance. Discriminant analysis then
serves as a tool for deciding which class an object belongs to. Seen from this perspective,
discriminant analysis is a powerful tool in comparative research.

6 Neural Networks

A more recently developed research methodology is neural networks. Neural network
analyses originates also from artificial intelligence. As in the case of RST, they have proven
to be successful in other sciences, such as economics, econometrics and statistics. In this
section a short description of the main features of neural networks will be given; for further
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details the reader is is referred to [3],  [4],  [9].  There is a rising tide of publications on neural
networks.

The starting point in this section is again a data set consisting of n objects, described by a
set of characterizing attributes. The attributes should be transformed into a quantitative form,
while real-valued attributes are allowed in neural networks.

6.1 A description
Generally speaking, a neural network consists of a set of computational units, often called

cells, and a set of one-way data connections. At certain times a unit examines its inputs and
computes a signed number, called an activation, as its output. The new activation is then
passed along those connections leading to other units. Each connection has a signed number,
called a weight, that determines whether an activation that travels along it influences the

receiving cell to produce a similar or a different activation according to the sign (+ or -) of
the weight. The size of the weight detemines  the magnitude of the influence of a sending
cell’s activation upon the receiving cell; thus a large positive or negative weight gives the
sender’s activation a more significant effect on the receiving cell than a smaller weight.

Neural networks are built as a parallel of the functioning of the human brains. The cells
correspond to our neurons, an activation corresponds to neural firing rates, connections
correspond to synapses and connection weights correspond to synaptic strength.

There are many types of neural networks, e.g. backpropagation networks, radial bias
networks and Hopfield  networks. In global terms, they can be subdivided into two classes:
networks that need supervised learning and networks that need unsupervised learning.
Supervised learning consists in showing the network both the input and the desired output,
whereas unsupervised learning only needs the input. In the sequel, we suppose that we have to
do with a supervised learning network.

The main question we want to answer is how to use a neural network for classification
purposes. Suppose we have a data set consisting of n objects, characterized by m independent
variables (and their values) and k dependent variables (usually k = 1). Firstly, we need to train
our neural network. That means that we show a specific part of our data set (e.g. 75% of it),
randomly chosen to the network (both independent and dependent variables). In this way we
can train the network in such a way that it ‘predicts’ the value of the dependent variables as
good as possible. Then we show the test set to the network, but this test set only consists of
the values of the independent variables. The network then predicts the values of the dependent
variables and it is to the user to compare those values to the real values of the dependent
variables. If the network classifies most elements (e.g. 95%) of the test set correctly, then the
network will probably work satisfactorily on other test sets as well.

Neural networks have been applied in many choice and management situations, especially
in case of large data sets. They have proven to be a powerful tool in exploratory research, and a.
may be helpful for classification analysis.
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6.2 Conclusion
In this section neural networks were discussed. Neural networks are built according to the

human brains and consist mainly of interconnected cells. Neural networks allow for the
prediction of the dependent variables if the values of the independent variables are given.
Thanks to their computational power, neural network can effectively deal with large datasets.

7 Logit and Probit Models

The next class of methods dealing with categorical variables is the class of logit  and
probit  models. Logit  and probit  models belong to the family of discrete choice models. In
these cases, the independent variables are allowed to be real-valued, while the dependent
variables must be binary - or at least categorically - valued. Although the binary restriction on
the dependent variables may seem quite restrictive, this is certainly not the case, as also nested
approaches are allowed. The collection of binary and categorically valued variables
incorporates not only the broad class of all variables reflecting a ‘yes or no’ answer, but also
qualitative multi-state responses (e.g., in data bases for survey questionnaires). A survey of
these methods is contained in [2].

This section will first consider the one-dimensional logit  and probit  model. Then the one-
dimensional case will be generalized to the multi-dimensional case. These methods have
become very popular in the modern statistical and econometric literature.

7.1 A description
Suppose we have observation yi, . . .,yn of a dependent variable y that can only take values

in {O,l  >. Furthermore, suppose this variable y is determined by a response variable y* in the
following way. The response variable y* linearly depends on a vector of independent
variables x called regressors, i.e.

y*=px+u

Let now y be determined by x according to the condition:

Y 1
1 ,  ify*>o--
0, else.

Combining (1) and the above expression yields

P(yi=  I) = P (Ui > -pi)

1 3



where P  (.)  is a probability distribution function. In the above expression F(e) represents the
distribution tinction belonging to ui. If we assume the Q’S  to be independent identically
distributed (henceforth i.i.d.) random variables with the logistic distribution function given by

qz) = exp(z)
1 + exp(2) ’

then

F(-P~~~) = ex~(-PW  = ’
1+ eXp(-pXj) 1+ exp(&)  l

This model is called the Zogit  model. If we assume the z$s  to be i.i.d. random variables
with a N(0, distribution, we obtain the probit  model. If F(w)  represents the distribution
function of the tii’s,  then

where CD(*)  is the distribution function of the standard normal distribution given by

m(x)  = 100 ----&-exp
Jo

Suppose that we want to estimate the parameter pin either the logit  or the probit  model
by means of ordinary least squares (OLS). Then it appears that we have to deal with

heteroscedasticity. Since ~j  either equals -p  xj or 1 - ,&j  with probabilities Fc-,&i)  and 1 - F

c,&i)  respectively, the conditional variable of uj, given .xj,  is given by

var (Ui I Xj) =pXj  (l+Xj).

The above expression for var (uj  1 xj) indicates the presence of heteroscedasticity. In
practice, the usual estimator, the OLS estimator, may be inconsistent. Thus we have to rely on

another estimator, e.g., the maximum likelihood estimator of ,6
(I.
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The multidimensional probit  model is obtained by assuming that the z$s  are i.i.d. random
variables, having a multivariate normal distribution with mean 0 and positive definite

covariance matrix C.
Both models have extensivelv been used in auantitative social science research, mainly as

input makes them alsoexplanatory
4 I

tools in a behaviourial context. But their categorical
,lassification  methods, with even a clear predictive capabisuitable as c

7.2 Conclusion
In this section we have discussed the logit  and probit  model as typical examples of

discrete regression models. In case of the logit  and probit  model, the dependent variable
should be binary valued, whereas the independent variables are allowed to be real-valued.
Both the logit  and probit  model can be used in binary classification problems. The

observations y1 ,.  . . ,yn and regressors xl,.  . . J,., can be used to estimate the parameters ,6  Given a
new observation xn+l,  the value of the corresponding yn+l can be predicted. In this context,

these models are also useful for classification purposes.

8 Two-way Tables

There are also various multidimensional analytical tools. In this section we will consider
two-way tables. This classification technique differs substantially from the other methods in
this paper, since it does not yield a classification. The starting point of the two-way tables is
an existing classification. However, the method may provide some information about the
underlying statistical pattern of the attributes of phenomena.

8.1 A description
In this subsection we will offer a simplified description of two-way tables. Consider a

collection of yt  objects that can be classified according to two attributes al and a2. Attributes
aI and a2  have k and r values, respectively. The classification can be summarized in a matrix
Xn, called a k x r contingency table. In this matrix the entry Xn g denotes the number of objects
having attribute al with value i and attribute a2  with value j. The i-th row of the matrix Xn is

denoted by X&  and its j-th column is denoted by &. Let a;: denote the probability that the

first attribute has a value i and fi the probability that the second attribute has a valuej. Let Pg
denote the probability that attribute al assumes value i and that attribute a2  assumes valuej. It
is now interesting to know whether the two categories are independent, i.e. whether

1 5



Thus, We want to test the null hypothesis Of independence

Since we do not know the probabilities ai and 4 we can estimate them by pi = X, i./n,

and ~j = X, * ,j / yt. The null hypothesis is rejected for large values of

D2n --
k r

c c
i=l  j=l

From statistics it is known that Df has a &&)(,.+ -distribution, i.e. a chi-square

distribution with (k-  l)(r-1)  degrees of freedom. Therefore, the null hypothesis is rejected if

O,’ ’ &tk l)(r-1)  0  9 5- , - ’

2
where &k-1)(  r-1),0.95 denotes the 95%-quantile  of the chi-square distribution with (k-l)(r-1)

degrees of freedom. Such a two-way (or, in general, multi-way) table analysis -often coined
contingency table analysis- is also often used in the context of log-linear statistical analysis.

. 8.2 Conclusion
In this section we have discussed some basic principles of two-way tables. Although this

method does not yield a classification, it may provide some interesting information about
independencies in an existing classification. The method can reject or accept the hypothesis of
independence. In this first case, the method makes clear that two attributes are not related to
each other, while the acceptance of the null hypothesis indicates a dependence between the
attributes. This technique is essentially an exploratory method in the framework  of
comparative analysis.

9 The Poisson-regression Model

Finally, the Poisson-regression model will be discussed. This model is typically
appropriate to model count data, i.e., the number of events in a certain period. Suppose the
variable Y represents the number of events in a specific period, where the number of events
depends on a vector of regressors denoted by X. The relation between Y and x could be
modelled  by a direct linear or non-linear regression. However, the log-linear model yields
much better results in case the dependent variables are discrete in nature and the values of Y
tend to be close to zero. For example, the Poisson-regression model may be used to model the
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number of car accidents at a specific location for each hour; see, for example, [7].  The vector
of regressors might then contain e.g. the average velocity of the passing cars and the number
of passed cars. This is a rather well established method.

9.1 A description
Let Y be a stochastic variable representing the number of events in a certain period.

Suppose Y is drawn from a Poisson distribution with parameter h > 0 related to a set of
independent variables X. The primary equation of the model is

Moreover, it is assumed that h is defined by

logh=)KX.

The above relation for h is called the log-linear model. It follows that the expected

number of events per period is now given by

E [Ylx]  =var[YIx]  =A=exp,@A.

Given a sample ye, . . .,y, and regressors xl,.  . . ,.x~~,  the coefficient ,6 can be estimated by

means of the maximum likelihood estimator. Clearly, this method is also suitable for
predictive purposes on the basis of comparative data analysis.

9.2 Conclusion
In this section the Poisson-regression model has been discussed. This model is typically

appropriate for the modelling of count data, where the number of events is likely to depend on
a vector of regressors. In general, this model yields better results than a classical linear or
non-linear regression model, especially if the count data take small values and the regressors
are discrete in nature. It is a valuable method for quantitative comparative methods.

10 A Comparison of Methods

In the previous sections we have concisely reviewed a wide variety of classification
methods. Despite commonalities they also appeared to have specific features. In this section
we will now compare -by way of meta-experiment-  the classification  techniques considered
in this paper. For a concise summary, the reader is referred to Table 1. . *

1 7



Table 1. A comparison of different classification techniques

Incomplete and Yes yes no
imprecise data
Appropriate for no no Yes
large data sets
Appropriate for Yes Yes Yes
large small sets
Prediction (p) or c c c
classification (c)
Classification of
unseen objects

n o n o Yes n o

Yes Yes Yes Yes

n o n o Yes n o

P P P

Poisson
regressionYYes

~ yes

-In o
/
~ yes

10.1 A comparison of classification techniques
From a first inspection of the various classification methods, it should be observed that

discriminant analysis, the logit  (probit) model and the Poisson-regression model are based on
a stochastic interpretation of the data concerned. In case of discriminant analyis, such an

- assumption is necessary to compute the probabilities mentioned in Section 5. Often a normal
distribution is assumed, since this assumption simplifies computations. In the logit  (probit)
model, usually logistic (normal) errors are assumed. The other techniques do not make any
assumptions about the underlying distribution of the data.

In the discussion of the classification techniques we have seen that it is sometimes
necessary to transform qualitative variables into quantitative ones. For cluster analysis and
RST, such a transformation does not influence the results of the classification. However, such
a transformation does influence the results of discriminant analysis. In this case discrete
discriminant analysis yields better results. For RST it is also required that real-valued
attributes are transformed into discrete value variables by means of some way of categorizing.
This kind of categorization strongly influences the results of RST. Furthermore, logit  and
probit  models can only deal with dependent variables that are binary valued. It has been made
clear that this is not a very strong restriction, since the class of binary valued variables
incorporates all ‘yes or no’ variables. In case of the Poisson-regression model, the dependent
variables are assumed to be discrete valued, whereas the regressors are allowed to be real-
valued.
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The neural network approach does not aim to identify classes or clusters in the data; it
can do something stronger. It can predict the values of the dependent variable. The same holds
for the logit  and probit  model and the Poisson-regression model.

Cluster and discriminant analysis have in common that they split up the data set in
different classes. For discriminant analysis the different classes have to be known a priori,
whereas cluster analysis aims to identify these classes.

RST, FST and discriminant analysis, neural networks, logit  and probit  models and the
Poisson-regression model can classify a new object on the basis of known information on the
attributes. This cannot be done by means of cluster analysis.

RST, FST as well as neural networks have the property that they can deal with
incomplete, imprecise and missing data. This is of course an important advantage in social
science research.

FST is somewhat different from the other classification techniques, since it involves
fuzzy classes and yields a fuzzy classification, that is, a classification with vague or imprecise
classes. It is possible that an object belongs to different classes with various degrees of
membership.

The two-way tables have the property that they can tell something about a possible
dependence between two attributes. However, this technique does not find a classification
itself, it merely says something about an existing classification.

RST yields rules that reflect patterns observed in the data. These rules can be either exact
or inexact, where inexact rules refer to inconsistencies in the data. Rules can be very useful
for relatively small data sets. For large data sets, a large quantity of rules will likely be
generated. In that case, the rules will be difficult to interpret and will therefore not contribute
to a better understanding of regularities in the data.

Neural networks can deal very well with large data sets and yield results in a relatively
short computation time, whereas cluster analysis and discriminant analysis usually take more
time. Nevertheless, with modern computers most computations can be done in a very short
time span.

Finally, RST, discriminant analysis, the logit  (probit)  model and the Poisson-regression
model can indicate the relative importance of each attribute. RST even yields additional
information in the form of reducts and a core. A reduct is a group of variables that can fully
explain the dependent variables. The core consists of those variables that as a minimum
requirement must be taken into account in explaining completely the dependent variables.

10.2 Conclusion
On the basis of various qualitative judgement criteria, we have compared

classification techniques that were introduced in the previous sections. We have seen
there are various important differences between the techniques employed. This will 1

the
that
lave -*,
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serious implications for the choice of classification techniques in an actual research situation,
as will be shown in the next section.

11 The Choice of Classification Techniques

After the review of a multiplicity of classification methods, we will in this section
discuss the question how to find the most appropriate classification technique in a specific
situation. The key factors in this decision process are, of course, the aim of the classification
and the nature of the data set. In the sequel this will be dealt with more precisely.

11.1 Which classification technique to use
As mentioned before, the choice of classification technique depends on the kind of

classification that is needed. For example, if one wants to know the relative importance of
each attribute, then RST, discriminant analysis, the logit  (probit)  model or the Poisson-
regression model is likely to be a good choice.

The size of the data set should also be taken into account when choosing an appropriate
classification technique. Although RST has some very special features, it is not very
appropriate for large data sets, since it gives the information about the data set in a rather
unstructured form, namely in the form of rules. If a small data set of 10 objects yields 5 rules,
these can easily be interpreted. However, a large data set of 1000 objects yielding 400 rules
will cause a problem, since it is not clear what to do with 400 rules. Conversely, discriminant
analysis only works well for large data sets. This has to do with the stochastic assumptions
about the underlying distribution of the data. The same holds for the logit  and probit  model. In

these two models the maximum likelihood estimator of p has to be computed. This estimator
has some nice asymptotic properties that are only achieved for large samples.

If the aim of the classification is an exploration of the structure in the data, without any a
priori knowledge of this structure, then cluster analysis is a good option. This technique is
both appropriate for small and large data sets, although the computation time increases with
the number of objects. Since cluster analysis gives an indication about the structures in the
data, it can serve as a preparatory step preceding e.g. a discriminant analysis.

Neural networks are especially appropriate for large data sets, with possibly missing or
incomplete values. Since neural networks work relatively fast, they can effectively handle
large data sets. Experiments also point out that neural networks yield relatively good results
for extremely small data sets. Usually, discriminant analysis fails in such situations (see e.g.

Neural networks and RST are techniques that have their origins in artificial intelligence
and are especially appropriate for incomplete and imprecise data, like many other techniques
from that part of cognitive science. FST is an appropriate tool in case a fuzzy classification is ‘I
required. FST, also originating from artificial intelligence, can effectively deal with
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incomplete and imprecise data. If the dependent variables are binary, the logit  (probit) model
might be appropriate. Of course, assumptions about the underlying distributions of the data
should be tested statistically. If these tests fail, other methods should be tried. Such alternative
methods, e.g. RST and neural networks, can also deal with binary classifications. The
Poisson-regression model resembles the logit  and probit  model, but can handle a non-binary
dependent variable. However, the Poisson-regression model is typically appropriate for count
data, representing the occurrence of certain events in time. If something has to be said about
the dependence between different attributes in an existing classification, then two-way tables
might be useful.

11.2 Conclusion
Based on the previous considerations, it seems wise to try -whenever possible- different

classification techniques and to compare the results, while taking into account the structure of
the data and the aim of the classification. A sensitivity analysis might be usefbl in this context
as well.

13 Retrospect

The number of classification methods for comparative research is vast. In this paper we
have selectively considered a collection of classification techniques: RST, FST, cluster
analysis, discriminant analysis, logit  and probit  models, neural networks, two-way tables and
the Poisson-regression model. These classification techniques have in common that they can
be used in quantitative comparative research.

A comparison of these classification techniques shows that there are various fundamental
differences between the techniques. Therefore, one has to choose carefully a certain
classification technique, taking into account the structure of the data, the size of the data set
and the aim of the classification.

In this paper we have discussed the properties of various classification techniques and the
differences between those techniques. As mentioned in the introduction, classification
techniques may be very useful in comparative research. This holds for the broad field of
social science research, but certainly also for those disciplines which have an explicit spatial
connotation, such as geography, regional science and transportation science. This paper aims
to stimulate further research in the application of classification techniques in comparative
research in all these fields.
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