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An Analytic Approach to Credit Risk
of Large Corporate Bond and

Loan Portfolios

Abstract

We consider portfolio credit loss distributions based on a factor
model for individual exposures and establish an analytic characteri-
zation of the credit loss distribution if the number of exposures tends
to infinity. Using this limiting distribution, we explain how skewness
and leptokurtosis of credit loss distributions relate to the underlying
factor model and the portfolio composition. A key role is played by
the R2 of the factor model regression. Based on the limiting distribu-
tion and empirical data, it appears that the Basle 8% rule is not an
unreasonable approximation for high confidence (99.9%) quantiles of
credit losses of a typical portfolio of rated corporate bonds. The prac-
tical relevance of our results for credit risk management is investigated
by checking the applicability of the limiting distribution to portfolios
with a finite number of exposures. It appears that for relatively ho-
mogeneous portfolios a minimum of 300 exposures is enough, while for
relatively heterogeneous portfolios a number of 800 exposures suffices
to obtain an adequate approximation. Thus, our approach can be a
fast and accurate alternative to the standard Monte-Carlo simulation
approach adopted in much of the literature and in practice.

Key words: credit risk; factor model; fat-tailed distributions; skew-
ness; asymptotic analysis.
JEL Codes: G21; G33; G29; C19.

1 Introduction

Increasingly, banks are using portfolio models to quantify the aggregate credit
risk they are exposed to through their loan and trading books. These models
generate the distribution of potential losses due to credit risk, as well as some
summary statistics like standard deviations and percentiles. Loss distribu-
tions are used by banks internally to measure the profitability of (subsets

e of) transactions in relation to the risk they contribute to the portfolio. This
information can result in either laying off certain exposures, for example
through securitization, or taking on additional exposures. Additionally, the
loss distribution can be used to determine the level of capital that the bank
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needs in order to protect itself (with a certain level of confidence) against
unexpected credit risk losses. Similarly, it is possible to use the portfolio
models to analyze portfolios of assets to be securitized.

The increased use of credit risk portfolio models by financial intermedi-
aries potentially has a significant impact on the pricing of credit-risky instru-
ments in financial markets. A parallel may be drawn with the relationship
between equity returns and compensation for systematic risk, as established
by the Modern Portfolio Theory of Markowitz (1952) and Sharpe’s Capital
Asset Pricing Model. One can also envisage far-reaching implications of this
development for the capital adequacy regime to which banks are subjected.
Since the introduction of the Basle Accord in 1988, see Basle Committee on
Bank Supervision (1988),  capital charges are determined for individual as-
sets. These charges are summed to arrive at the capital required for a bank.
The current rules ignore portfolio effects by levying the same capital charge
for corporate debtors of varying creditworthiness. As a result, banks have
become actively engaged in ‘regulatory arbitrage’ transactions. These trans-
actions reduce the regulatory capital charge without decreasing the credit
risk exposure proportionally. This undermines the effectiveness of the cap-
ital adequacy regime. The shortcomings of the current regime also distort
price signals in the market; see ISDA (1998) and IIF  (1998) for an overview
of shortcomings of the current regime.

The general characteristics of the credit risk loss distribution resulting
from portfolio models are badly understood. It is often observed that the loss
distribution exhibits significant skewness and leptokurtosis, but the promi-
nence of these properties very much depends on the composition of the spe-
cific portfolio under consideration. In this paper we derive an efficient ana-
lytic approximation to the loss distribution if the portfolio contains a large
number of exposures. Our approximation enables us to study the sensitivity
of the loss distribution, and in particular the shape of its tails, to specific
portfolio characteristics. These include its overall credit quality, the degree
of systematic risk, and the maturity profile. It is shown for portfolios with
realistic complexity that the approximation is reasonable already for portfo-
lios with 300 to 800 exposures. As compared to using fully-fledged Monte
Carlo simulation to generate the loss distribution, which is commonly done in
practice, our approximation can be evaluated much more efficiently in most
practical instances.

Numerical results in this paper indicate that the shape of the loss distri-
. bution  is particularly sensitive to the initial credit quality of the portfolio and

the extent to which credit events occur simultaneously for different debtors.
The credit quality of a portfolio is often measured by assigning ratings to
each of the debtors for which exposures are present in the portfolio. These

3

I. ,..-. .“. -  __-



ratings can come from external rating agencies such as Standard & Poor’s
and Moody’s, as is the case in CreditMetrics  of J.P. Morgan (1999). Alterna-
tively, the ratings can be assigned by banks internally. Each debtor’s rating is
associated with a certain probability of default. A different route to estimate
the default probabilities is based on the option-theoretic approach pioneered
by Merton (1974)) and later extended by Black and Cox (1976) and Longstaff
and Schwartz (1995). In this approach, the equity of a company is viewed as
an option on its assets with the strike price equal to the level of liabilities.
The portfolio model of KMV combines this approach with historical default
statistics to assign a default probability to each debtor individually, provided
it has equity listed on a stock exchange, Kealhofer (1995).

Correlation between credit events of different debtors is induced by the
fact that their well-being is influenced by the same (economic) factors. A
positive correlation is induced by the fact that default rates are significantly
higher in economic recessions than in periods of economic growth, see also
Jonsson  and Fridson (1996) and Fons (1991). The more a portfolio of ex-
posures is diversified over different countries and industries, the smaller the
‘average’ correlation will be in the portfolio. We show that this decreases
the likelihood of extremal portfolio credit losses. The correlation effect on
the shape of the loss distribution also depends on the initial credit quality
of the portfolio. As Zhou (1997) shows, for a given correlation between the
asset values of two companies, the correlation between default events of both
companies is higher when the creditworthiness of both is lower. Hence, cor-
relation has a larger impact on the tails of the distribution when the credit
quality of the portfolio is lower. This is confirmed by our numerical results,
and in line with the analysis of Carey (1998).

To our knowledge, only Carey (1998) has thus far performed a systematic
study of the tails of the credit loss distribution. In his study, he uses histori-
cal data on exposures and credit losses stemming from private placements by
US life insurers. Carey samples exposures from this large database to obtain
portfolios with certain characteristics in terms of initial credit quality. He
then analyzes the actual loss experience from these sampled portfolios. His
study yields insights into the effect of credit quality, the size of the portfolio,
and the state of the economy on the tails of the loss distribution. His con-
clusions, however, are only valid as far as the exposures in the database, and
their aggregation into portfolios, are representative of actual portfolios.

We describe our analysis from the perspective of portfolios with corpo-
rate bonds and loans. This is also the perspective taken in the credit risk
portfolio models that are available in the market, such as CreditMetrics of
J.P. Morgan (1999), CreditRisk+  of Credit Suisse (1999),  PortfoZioMunager
of KMV (Kealhofer (1995)), and CreditPortfolio  View of McKinsey  (Wilson
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(1997a,b)).  Although the approach in each of these models appears quite
different at first sight, Koyluoglu and Hickman (1998) have outlined the un-
derlying unifying framework. We follow their framework in the set-up of our
model.

This set-up is described in Section 2. In Section 3 we derive the asymp-
totic loss distribution, and point out the salient features of the obtained
expression. Section 4 investigates the properties of the tails of the distribu-
tion.

In Sections 5 and 6 we study the properties of the asymptotic loss distribu-
tion for a large number of portfolios with different characteristics. Section 5
considers stylized portfolios that differ in initial credit quality, the degree
of inherent systematic risk, and the maturity of the exposures. The anal-
ysis in this section shows the sensitivity of the loss distribution to each of
its parameters. The composition of the portfolios in Section 6 more closely
approximates actual corporate bond and loan portfolios in two respects: (i)
the distribution of exposures over initial credit ratings, and (ii) the level and
variability in systematic risk across exposures. For a typical corporate bond
portfolio we find that the standard 8% capital charge from the Basle 1988
Accord roughly corresponds to a confidence level of about 99.9%.

Section 7 investigates how large the number of exposures in a portfolio
needs to be to render the asymptotic loss distribution derived in the pa-
per a good approximation to the actual loss distribution. In studying the
convergence properties, we especially pay attention to the tail behaviour of
the distribution. For relatively homogeneous exposures it is shown that the
approximation is already quite accurate for portfolios with a few hundred
exposures. If a portfolio contains relatively heterogeneous exposures, we find
that approximately 800 exposures suffice to get a close fit with the actual loss
distribution. Section 8 concludes, while the Appendix gathers the proofs.

2 Theoretical framework

We consider a portfolio containing n exposures. Each exposure j is charac-
terized by a four-dimensional stochastic vector

The first element of this vector triggers the mechanism for defaults and rating
. migrations. A prime candidate for Sj is the company’s surplus, i.e., the

difference between the market values of liabilities and assets. If this surplus
falls below a certain threshold, default occurs. We assume that the portfolio
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exposures are driven by a vector of common factors:

Sj = /-Lj  + /3:f + Ej, (2)

where pj E R is a constant term, /3j  E llZm is a vector of factor loadings,
f E Iw” is the vector of common factors, and Ej E lR is a scalar representing
idiosyncratic risk. This set-up follows the model structure of, e.g., J.P. Mor-
gan (1999). For expositional purposes, we set pj = 0 for all j. All results
remain valid, however, for non-zero intercept terms, see also further below.
Furthermore, we assume that

(3)
and

Ej - N(O7  uj>7 (4

with E(Ejf) = 0 for all j, flf positive definite and E(EiEj)  = 0 for all i #
j. The normality assumption for the factors and the idiosyncratic shocks
considerably simplifies the proof of our main theorem in Section 3. The proof
can, however, easily be generalized to the case of heavy tails and volatility
clustering in the companies’ surplus variables Sj.

If the factor structure in (2) holds, the surplus variables of different firms
are correlated. Because the Sj’s also trigger the default mechanism, corre-
lation between the Sj’s results in correlated default probabilities. It turns
out that this correlation causes the portfolio credit loss distribution to ex-
hibit heavy tails when the number of exposures becomes large, see Sections 3
and 4. It is important to stress that the mere correlation between the credit
exposures suffices to induce heavy tails of the credit loss distribution, even if
the underlying stochastic variables f and &i are thin-tailed, e.g., normal.

The second and third element in (1))  5 and ljj, represent the exposure’s
initial and its end-of-period rating category, respectively. We assume T rating
categories, such that 5, ej E (1,.  . . , T}. In this paper we work within a
static, one-period framework. We can therefore assume that the migrations
are driven by a Markovian transition matrix P,

(5)

where pke  denotes the probability that a firm with initial rating k switches
to rating e over the period considered. Note that PL,  = L,, where L, is
an r-dimensional vector with ones. By setting pTl = . . . = P,,,-~ = 0 and
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Table 1: Rating Migration Probability Matrix and Credit Spreads
k L 1Y 5Y 1OY

A A A  A A A BBB BB B  C C C D
A A A 9082 826 74 6 11 0 0 0 58 77 125

A A 65 9088 769 58 5 13 2 0 62 87 145
A 8 242 9130 523 68 23 1 5 74 102 160

BBB 3 31 587 8746 496 108 12 17 87 116 180
BB 2 12 64 771 8116 840 98 98 175 210 350

B 0 10 24 45 686 8350 392 492 278 475 630
c c c 21 0 41 124 267 1170 6448 1929 435 585 980

D 0 0 0 0 0 0 0 10000 - - -
Base yield 429 409 429

The table contains the probability (in basis points) of a credit rating migration
from category k to e over a l-year period. The category D stands for default.
The last three columns of the table contain the credit spreads (in basis points)
for firms with initial rating k corresponding to a bond with a maturity of 1, 5,
or 10 years. The base yields are also in basis points and imply a U-shaped yield
curve. Source: CreditMetrics’  web site, October 1998.

P TT  = 1, we can identify the rth rating category as the state of default.
J.P. Morgan (1999) presents a transition matrix of the form (5) on its Web
site. This transition matrix is based on S&P or Moody’s rating categories
and an example is presented in Table 1.

For given values of pke, one can select constants eke,  k = 1, . . . , r and
c=o,... , T,  such that cka  = -oo  and c,+r = +oo for all k, and

qcke)  - @(Ck,e-1)  = Pke, (6)
for all k and e = l,..., r, where a(.)  is the standard normal cumulative
distribution function (c.d.f.). The end-of-period rating of exposure j (with
initial rating 5) is set equal to Q,  where ej is such that

cj,kj,ej-1  E ckj,ej-1 * Jm < Sj 5 ckj,ej  * Jm' z cj,kj,ej
(7)

This is illustrated in Figure 1. The support of the normal distribution of Sj
is partitioned by means of the constants eke  and the standard deviation of
Sj. Each bin corresponds to a specific end-of-period rating. Note that the
locations of the bins depend on the exposure’s initial rating, as for example
highly rated exposures are less likely to default than low-graded ones.

. As we assumed E(f) = 0 and pj = 0 in (2),  the unconditional distribution
of Sj plotted in Figure 1 is centered around 0. Nothing material changes if
we relax either of these assumptions. In our present static, one-period set-
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Sj

Figure 1: Relation of the random variable Sj and the end-of-period rating .f?j in an 8
category rating system. The initial rating of the exposure is kj =BBB. D denotes default,
while Cjke  equals cke(wj  + /3TClffij)1’2.  Data are as presented in Table 1.

up the default probabilities are always non-stochastic. By an appropriate
choice of the matrix P the default and rating migration mechanisms are
dictated by the factor model (2) and the bins (7). If we extend our model to
a dynamic setting, the default (and rating migration) probabilities become
stochastic. For example, assume that the vector of common factors follows
an autoregressive process of order 1,

f t = W&-l  + rlt,

with qt  independent of ss for all s, t. The bins are again given by (7). By the
dependence of ft on its own past, the default probabilities vary over different
stages of the business cycle. For example, defaults can become more likely
in case of recessions, while upgrades prevail in expansionary periods. These
effects can be captured by an appropriate choice of f and $ (see further
below). A more extensive discussion on stochastic migration rates can be
found in, e.g., Credit Suisse (1999) and Belkin, Suchower, and Forest (199813).
See also Koyluoglu and Hickman (1998) for a synthesis. In the present paper,
we fully concentrate on the one-period framework. Detailed extensions to
multi-period models are left for further research, see also Wilson (1997a,b).a

The final characteristic in (1) of exposure j is its credit loss r(a).  We
assume that the amount of credit loss depends on the exposure’s initial (Icj)
and final (Q) rating category, as well as on the state of the economy ($).
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This is expressed by specifying

A credit loss not only occurs if a firm defaults, but also if the firm’s rating
deteriorates. The latter is due to differing credit risk spreads across rating
categories, maturities, and industries. This explains the dependence of r(.)
on j, Icj,  and -Q.  The height of the credit spreads can also be affected by other
economic variables. This is captured by the presence of the variable $J.  Note
that the elements of 1c,  and the common factors f may either overlap partially,
completely, or not at all. The presence of + in the credit loss function also
allows for a straightforward link between credit risk and market risk. Up
to now, these types of risks have been treated separately, at least from a
supervisory point of view, see Basle (1988, 1996). This separation appears
artificial. For example, Duffee (1996) argues that in recessions interest rates
are typically lower, while defaults are more likely. This implies for example
that the credit risk of the receive-fixed end of a swap transaction between two
equally rated companies will be higher than the pay-fixed end: the pay-fixed
party of the transaction is more likely to default in the recession, while the
value of the receive-fixed end of the swap transaction is more valuable for
lower interest rates.

Given all above definitions, the credit loss of a portfolio comprising n
exposures is simply the sum of the individual credit losses:

3 The limiting distribution of portfolio credit
losses

In this section we establish the distribution of the portfolio credit loss C,
when the number of exposures becomes large. Before we proceed with the
main theorem, it proves useful to make some assumptions regarding the
boundedness of factor loadings and potential losses.

Assumption 1

. l n-l Cyzl  /3jWT’pT converges to a finite, positive definite matrix.

l P☺Pn/(nwn)  + 0.
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. supnn-l C,“=l Xi=1 x(j~  IGj, Ed $1 2 is bounded almost surely (a.s.).

The first requirement in Assumption 1 is satisfied if the factor loadings
and the idiosyncratic variances are bounded from above and below, respec-
tively. In economic terms, this means that every exposure in the portfolio
should exhibit non-negligible idiosyncratic risk. Moreover, the requirement of
a positive definite limiting matrix implies that there are no redundant factors
in the exposure’s factor model (2). The second boundedness requirement im-
plies that the factor loadings divided by the idiosyncratic variances grow less
than linearly in the portfolio size n. Though this requirement differs techni-
cally from the first condition in Assumption 1, the economic interpretation
is similar: the idiosyncratic risk should be non-negligible for all firms in the
portfolio. The third part of Assumption 1 requires that potential squared
portfolio losses are bounded on average for sufficiently large portfolios. This
assumption is typically satisfied for most financial instruments. In particular
for bonds we see that the assumption is trivially satisfied, as the maximum
loss is the value of the bond, which is finite. For more complicated instru-
ments like derivatives, note that the average squared loss mentioned in this
part of Assumption 1 lies close to the expected squared loss for sufficiently
large n under standard regularity conditions. Part 3 of the assumption is
thus very much linked to the requirement that the expected squared losses
are bounded (uniformly) for all exposures. This can be the case even though
the loss itself may not be bounded, e.g., ~(j,  5, C,  $J)  = max(O, $J  -  K) with
$ log-normally distributed.’

The following limit law constitutes the heart of the paper and is proved
in the Appendix.

Theorem 1 Define

as the R2  of the factor regression model (2), i.e., the correlation between Sj
and its ‘fit pj’  f. Moreover, let

IThis  corresponds for example to being on the long side of an OTC transaction involving
a call option on a stock index with strike price K, where the counterparty can default.

a

1 0
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such that v:vj = 1, and let Y be an m-dimensional standard normal random
variate defined by Y = 0T1’2f. Let

denote the conditional (on f) probability of migrating from rating kj to rating
l, and define

n r
(13)

j=l e=l

Then given Assumption 1 and the framework of Section 2, we have

nTICn  - n-‘B,  % 0, (14

with C, the portfolio credit loss as defined in (9) and “* denoting almost sure
convergence.

The expression B,/n  in Theorem 1 no longer depends on the idiosyn-
cratic risk factors Ej,  but only on the systematic risk factors f and $.  This
considerably facilitates simulation from the credit loss distribution. A simi-
lar result is well known in linear portfolio theory. Indeed, within the CAPM
model, only the systematic risk matters because it cannot be diversified away
by increasing the number of exposures. Theorem 1 generalizes this result to
the nonlinear setting of credit losses while simultaneously allowing for richer
dynamics in terms of correlated defaults mechanisms and rating migrations.

To see how the simulations from the credit loss distribution can be sim-
plified or even avoided, consider a one-factor model m = 1 where vj 3 1,
a n d  Rj”  -  p2. Consider a set of loss functions r(s)  corresponding to a
portfolio corporate bonds or loans, see also the example further below in
this section. Given an increasing credit spread for lower rating categories,
it can be seen that B, is a monotonically increasing function of Y. Take
J(Y) = limn+co BJn,  then using the usual transformation of variables tech-
nique the distribution of credit losses c is given by

.

1 1
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with 3-i(.)  and Q’(e)  denoting the inverse and the first derivative of j(v),
respectively. One can now use the trapezoid rule for numerical integration

N

c ~(Yi>V(Yi>  * (Yi - Yi-1) (16)
i=l

for K  = 1,2 to obtain an easy approximation of the expected credit loss and
its variance, respectively, where -K = ~0  < y1 < . . . < YN  = K denotes
an appropriate partitioning of the interval [-K, K] for a sufficiently large
constant K > 0. Computing the quantiles of the credit loss in this case is
even easier than calculating the moments. Note that

P(C  2 c) = 6 9 c = i@-‘(b)), (17)

where C = limn+,Cn/n, such that the 6-quantile  can be obtained by a sim-
ple evaluation of a( .) in one point. The present methodology is applicable
whenever the credit risk mapping j(e)  is a monotonic function of the stochas-
tic variable Y in (12). As long as this is the case, the approach sketched above
may be used, even if the notional amounts of the bonds and the R2’s  of the
factor model regressions differ across firms. This provides a large compu-
tational advantage of our method over simulation based methods such as
CreditMetrics,  as long as one sticks to one-factor models and long corporate
bond portfolios.

A second feature of the expression B,/n  is that the factor loadings and
idiosyncratic variances do not enter directly. Only the RF of the factor model
regression and the unit-length vector vj matter. The Ri determines the
magnitude of the impact of systematic risk fluctuations on the jth credit
loss. The larger the value of R;,  the higher the influence of the systematic
risk factors f on the jth credit loss. In particular, if RT 4 0, the stochastic
vector Y does not enter at all into the jth term of B, in (13). In particular,
if Rj  s 0, B,  becomes non-stochastic. The second exposure specific element
entering (12) is the vector vj. As already noted, this vector has unit length.
Therefore, it can be interpreted as a directional vector, indicating which
factors matter for a specific exposure. For example, if m = 1 such that
(2) is a one-factor model, we have vj = fl. The directional vector vj now
indicates whether the systematic risk factor f has a positive or negative
impact on Sj. A similar interpretation holds for multi-factor models. Note
that the number of elements in (,Bj,uj)  is the same as in (vj, RT).  However,
vj has the restriction that v:vj = 1, such that one cannot recover (&,wj)
from (uj, Rf).

1 2



A third feature of (12) through (14) is that by replacing C,  by B,,  we are
effectively replacing the actual credit loss due to a rating migration from Icj
to ej by the conditional expectation of the jth credit loss. The conditioning
set is given by f. This is essentially the same as in the case of linear portfolio
theory.

Finally, it is important to stress that normality of f and the transformed
variable Y is not necessary for (14) to hold. Indeed, if the factors f have a
clear-cut economic interpretation, the credit risk manager might have some
ideas about the future development of f in terms of its forecasting distribu-
tion. This distribution can then be used in (14) to obtain simulations from
the credit loss distribution that are more relevant from an economic per-
spective. Alternatively, the credit risk manager might be interested in the
effect of specific distributional assumptions for f, e.g., stress scenarios, in
which case f places discrete (or unit) mass on certain scenarios. Also in that
case, such distributional assumptions can readily be incorporated to obtain
simulations for credit losses that are relevant for the purpose at hand.

To get a better feeling for the derived limit law, consider a one-factor
version of our model with m = 1, Rj  s p2,  ,D  2  0, and vj z 1. So all
exposures exhibit the same systematic risk. A similar model is studied in
Belkin, Suchower, and Forest (1998a). There are only two rating categories
T = 1,2. The second rating category corresponds to a state of default. We
also assume that the exposures in our portfolio are ordinary loans that either
fully default or not, irrespective of the state of the economy $J.  This is
captured by setting r(j,Icj, l,$) E 0 and r(j, kj,  2,$)  E r(j),  where r(j)
is the size of the jth loan. Given these assumptions, B, as defined in (13)
simplifies to

such that

Gdn-  [l-Q  (;!L)] .?i, X . 0 , (1%

where ??n  is the average size of a loan, ?i,  = n-l C,“=, r(j), while c is a
constant determining the default probability.

Figure 2 plots the c.d.f. of the limiting credit loss C for various values
of p and c given an average loan size of ?i  = 1. This means that credit

. losses are expressed as a fraction of the notional amount. The two values of
c considered give rise to a default probability of 5% and l%,  respectively.

It is clear from the figure that large credit losses occur much more often if
one allows for positive correlations between the underlying ‘surplus’ variables

1 3



5% default prob.

- - ._....  . . ...” _ _ _ _

I .

1% default prob.

o.oK’
i

0.00 0.05 0.10
C

Figure 2: Asymptotic default loss (C) distributions for constant R; E p2 and vj E 1 in
a one-factor model (m = l),  see Theorem 1. There are only two rating categories, one of
which corresponds to a state of default. The constant c is chosen such that there is either
a 5% (left-hand panel) or a 1% (right-hand panel) probability of default.

Sj. The result holds irrespective of the probability of default, as specified
through c. We also note that for smaller values of p the credit loss distribution
becomes more concentrated. For p = 0, the c.d.f. collapses to a step function,
taking the value 0 before, and 1 after the expected credit loss, respectively.
In that case, the limiting distribution in Theorem 1 is of no use for credit
risk management. A second order limiting result would be needed instead of
the presented first order result.

4 Tail behavior of average credit losses

Figure 2 suggests that a higher correlation between default risks increases the
likelihood of extreme portfolio credit losses. The increase in probability mass
in the tails may partly be due to an increased variance of the credit portfolio.
However, we find that the properly resealed  C still exhibits more probability
mass in the tails than the normal distribution. Stated otherwise, the tails
of the derived limit law seem to decline at a lower than exponential rate.
In this section we show that the tail probabilities are polynomially declining
functions of the credit loss quantile, i.e., the average credit loss exhibits ‘fat
tails’. Moreover we establish the relation between the tail index and the asset
correlations through the factor model fit B: and the directional dependence
vj. A correct assessment of the tail index is important for a proper credit
risk assessment, especially if one is interested in the credit loss associated

a with very small significance levels, i.e., very far into the loss distribution’s
tail. In particular, if the credit loss distribution is fat-tailed, common rules of
thumb for computing loss quantiles no longer apply. For example, the 99.9%
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percentile may lie much more than 3 standard deviations above the expected
loss, which is the number one would expect for the normal distribution. In
other words, extreme credit losses are much more likely to happen than under
the normal distribution.

In order to characterize the tail behavior of credit losses, we first intro-
duce the statistical definition of tail fatness. Let F(m)  denote a distribution
function. Embrechts, Kltippelberg,  and Mikosch (1997) give a necessary and
sufficient condition for distributions to exhibit polynomially declining or ‘fat’
tails:

. l- fqtx)  --a
&“,  1 - F(t)  = x ’ (20)

for x > 0, where Q is called the tail index. The condition is often dubbed
the condition of ‘regular variation’. The polynomial’s exponent is the rate at
which the tail probabilities decline in x. It can be interpreted as the number
of bounded moments that exist (are finite) for a specific distribution. For
example, a normal distribution is thin-tailed because all moments exist; its
tail index is equal to infinity. The Student-t distribution, by contrast, exhibits
a finite tail index equal to the number of degrees of freedom and is, thus,
fat-tailed.

For sake of clarity, we start by examining the tail behavior of credit losses
within the simplified one-factor setting of Section 3. Because the support of
the portfolio credit loss distribution has a finite upper end point equal to 1,
the above definition of regular variation is not applicable. Embrechts et al.
(1997) also provide a suitable definition for distributions with bounded sup-
port. We use this definition to prove the following theorem, see the Appendix.

Theorem 2 For the one-factor model set out in Section 3, the credit loss
distribution has a tail index equal to

1 - p2

Loosely speaking, Theorem 2 implies that the tails of the credit loss distri-
bution are of the form

F(C) z 1 - (1 - c)(1-p2)‘p2, (22)
for sufficiently large credit losses C, i.e., close to 1. Equation (22) clearly

. demonstrates the polynomially instead of exponentially declining tail shape
of the credit loss distribution.

The present results have a direct bearing on empirical findings. First, the
empirical detection of fat tails of credit risk distributions can be explained
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from a micro-based approach of individual exposures by allowing for common
factors. Though the factors and idiosyncratic shocks may be normally dis-
tributed (and thus thin-tailed), the credit loss distribution will exhibit heavy
tails provided the exposures in the credit portfolio are correlated. Larger
correlations imply fatter tails. Second, one should be very careful in using
the normal distribution as an approximation to the credit loss distribution in
empirical modeling exercises. Of course, situations can be conceived where
the approximation provided by this distribution is not too bad. In general,
however, we expect fat-tailed and/or skewed distributions to provide better
approximations. This holds especially for correlated default probabilities and
low probability quantiles, e.g., credit loss realizations in the tail of the distri-
bution such as the 99th or 99.9th  percentile, see also Sections 5 through 7. In
case one restricts all asset or surplus (and thus default) correlations to zero,
one can resort to the normal approximation, see also Section 5. A setting
with vanishing asset correlations, however, is highly unrealistic from a prac-
tical point of view. It also contradicts the empirical evidence that default
correlations are correlated over stages of the business cycle, see Jonsson  and
Fridson (1996) and Fons (1991). The third implication of the non-normal tail
index of the credit loss distribution pertains to the usual way of presenting
credit loss quantiles in terms of the number of standard deviations above the
expected credit loss. These have to be interpreted with great caution. For
different degrees of tail fatness and different portfolio compositions, similar
quantiles correspond to widely different numbers of standard deviations in
excess of expected loss, see also Section 5. For example, if the tails contain
sufficient probability mass (p2  > l/3 * (1 - p”)/p”  < 2),  estimated second
moments can become very high and unstable. As a result, potential credit
losses in terms of standard deviations might become very low. By contrast,
if p is close to zero, the limiting distribution degenerates and the number of
standard deviations might become very high.

We now show how the above results on fat tails for credit losses generalize
to non-constant RT and 7r(j) and to multi-factor models. First consider a one-
factor model with non-constant Rj”  and r(j). We only consider two different
values for R;  and r(j). The arguments presented here, however, directly
carry over to situations with more than two possible values and even to
situations with a continuum of possible values. Let R;  = @  and r(j) = iii
for ]A  . nJ of the exposures in the portfolio, with X E [0, l] and 1x1  denoting
the integer part of x. For the remaining n - LX. n] exposures, Rj  = @  and
r(j) = +z.  Using analogous derivations as in the case of constant R2’s  and
r(.)‘s,  we establish that the tail index of the credit loss distribution is given
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(23)

Note that for & 3 & E p2,  we recover (21). So the exposure with the
smallest correlation with its systematic component, i.e., with the smallest
R2,  dominates the tail behavior of credit losses. This is intuitively clear.
For example, consider the case & E 0. Then IX  . nj of the firms in the
portfolio only display idiosyncratic risk, which can be eliminated through
diversification. Because of this diversification argument, the potential credit
losses caused by these firms only affect the expected loss and not the tail
behavior. In particular, the probability of average credit losses being near
the upper bound ?i  = X. ?i + (1 - A) - ?2 is zero (in the limit), implying a thin
tail. Now if RT > 0, a similar line of reasoning can be followed to demonstrate
that the firms with the smallest systematic risk component dominate the tail
behavior.

The above example for non-constant R2  also illustrates another impor-
tant property of the tail behavior of credit loss distributions. Again, consider
the extreme case 0 = @  < @.  The worst case credit loss outcome is given
by (1 - X)?, < -OTT,  with ?i  the maximum average credit loss as defined ear-
lier. So the tail between (1 - X) %2  and ?i  has to be flat, i.e., thin. The tail
near C = (1 - X) iiz,  however, is fat, as can be seen from (21). So if R;  is
non-constant, extreme tail behavior is dominated by the largest (1 - Rj2,/R:
values. Quantiles less far out in the tails, however, may also strongly be
affected by smaller values of (1 - R;)/R;.  This mixed tail behavior can re-
sult in unconventional combinations of skewness and leptokurtosis. It may
therefore be very difficult to devise parametric distributions that capture all
salient features of a credit loss distribution for large portfolios. Moreover,
it may also be very difficult to employ (semi-nonparametric) extreme-value
statistical theory for estimating higher order quantiles of the credit loss dis-
tribution, see, e.g., Danielsson and Vries (1997). Such methods presume a
certain degree of homogeneity of tail observations, which might be inappro-
priate given the strongly varying tail behavior of C over different parts of
the portfolio.

Deriving the tail behavior of credit losses for multi-factor models is some-
what more complicated. We only present the resulting tail index in case
there are only a finite number n* of different combinations (AT,  6jj,  iij). The
result can be generalized to a continuum of possibilities with a correspond-
ing increase in technical details. First, let G c { 1, . . . , n*},  and define the
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limiting credit loss function

g(W) = CXj.

with Xj the fraction of the portfolio with combination (A;,  Cjj, iij). Let

7r*  = sup g(y,  (1,. . .) n*})
YEIW

be the maximum average credit loss of the limiting portfolio. Note that
this maximum loss need not coincide with the maximum average loss for a
portfolio of finite size n. The latter is given by C,“r, Xj?j,  because there is
always a (small) probability that the idiosyncratic risks push all exposures
in the portfolio into default. By contrast, if for example fij = 0 and iij > 0
for some j E (1,.  . . , n*},  then 7r*  < c$ Xj+j.  Next, define

G = {G c (1,. . . 7 n*)  I yFRg  sb, G) = r*>.

S consists of the parts of the portfolio that, when combined, can result in the
maximum average limiting credit loss. One can now prove that the upper-tail
index in the multi-factor case is given by

1 - iz,”
min max -
GEE jG fi; ’ (24)

Note that for identical values of the fi;‘s, the tail index of the multi-factor
model is at most as high as that of the single factor model, see (23). This
follows from the fact that (24) takes the minimum of the tail index from (23)
over different subsets G. The resulting tail index is, ceterus paribus, just as
high or higher for multi-factor models compared to one-factor models.2  This
has a clear intuitive explanation. For the single factor model with 6.j  =  1,
tail behavior is determined by the exposures with the smallest systematic
dependence in terms of fi;. If multiple directions 6j  are possible and if there
are multiple factors, however, it is possible that different realizations of the
systematic risk component f in (2) give rise to similar large values of credit

a 2Note  that in pr actice the R2’s  for multi-factor models will also be higher, thus enforcing
the mentioned ceterus paribus effect. Also note, however, that in a multi-factor model T*
may turn out to be lower than for the one-factor model, such that the tail index may be
higher, while the upper end point of the credit loss distribution is lower.
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losses. The systematic dependence (R;),  however, of the portfolio exposures
in these alternative directions might be very different, resulting in different
tail behavior of credit losses in the different directions mentioned. Equation
(24) now states that the fatter tail dominates, see Ibragimov and Linnik
(1971). This can already be seen in a single factor example (m = 1). Take
n* = 2, Xj z l/2, iij E 1, 61 = 1, 62  = -1, $ = 0.5, and &j = 0.1. The
portfolio now consists of two parts, both of which contain a homogeneous
set of exposures and comprise 50% of the portfolio. The first part of the
portfolio has a positive (Gi = 1) and high (& = 0.5) correlation with the
systematic risk factor, while the second part has a negative (62  = -1) and
low (@  = 0.1) correlation. As the portfolio contains an equal number of type
1 and 2 exposures, the maximum limiting average credit loss (7r*  = 0.5) is
attained if the systematic risk factor f tends to either plus or minus infinity.
If f tends to plus infinity, the type 1 exposures default, so f + oo  results
in a tail index of 0.5/0.5  = 1. Similarly, if f tends to minus infinity, the
type 2 exposures default, resulting in a tail index of 0.9/0.1  = 9. Following
standard results for tail behavior from, e.g., Ibragimov and Linnik (1971),
the fatter tail dominates, i.e., the one with tail index 1. This also follows
from (24), where we take the minimum of 1 and 9.

5 Credit loss quantiles of stylized portfolios

In Sections 3 and 4 we studied the behavior of the limiting dejuzllt  loss
distribution in the stylized setting of Belkin, Suchower, and Forest (1998a)
and somewhat more general factor models. In this section, we investigate
the behavior of credit loss distributions in more detail. We generalize the
previous set-up by allowing for differences in initial ratings, loan portfolio
maturities, and magnitudes of the systematic risk component.

The corporate bond maturities A4 may vary from 1, 5, to 10 years. All
bonds are assumed to be of the same type. At the outset, we evaluate the
bonds at par using the yields taken from the CreditMetrics  site on October
6, 1998. The base yield on the bond is increased by the credit spread. This
credit spread depends on the initial rating of the firm (see further below).
The spreads were also downloaded from the CreditMetrics  site, see Table 1.
We assume constant base yields and credit spreads over the credit risk eval-
uation period in order to focus entirely on the effect of credit risk without
incorporating market risk..

The transition probability matrix used is presented in Table 1. We use
a classification with 7 categories: AAA, AA, A, BBB, BB, B, and CCC.
In addition, we have the default category D, see also Figure 1. The tran-
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sition probabilities are used to determine the binning constants eke  through
(6). Default and rating migration probabilities are then equal to long-term
historical averages.

We consider three different quality levels for the initial portfolio. The
high-quality portfolio constitutes of (equal) positions in AAA, AA, and A
rated companies while the medium quality portfolio has (equal) positions in
BBB, BB, and B rated firms. Finally, the low-quality portfolio only contains
CCC rated firms.

To complete the comparison, we consider three different values for the
degree of systematic risk: R2  = 0.2,0.4,0.6.  We assume that these R2’s
correspond to a one-factor model where all @j’s  are positive, such that 21j  E 1.
All firms have the same R2 , i.e., R: ZE  R2.  The chosen values of R2  imply
tail indices as defined in (23) between 4 for R2  = 0.2 and 2/3  for R2  = 0.6.

Using the present setting, we derive the credit loss distribution. Note
that the right-hand side of (12) reduces to

where T = 8, & denotes the fraction of firms in the portfolio with initial
rating Ic,  e.g., 33% for AAA (T  = 1) in the high-quality portfolio, and ii(k, e)
is the credit loss/gain on the corporate bond when a firm migrates from
rating k to rating e,  i.e.,

{

(l-yk/ye).(l-(l+ye)-(“-‘))  f o r  C=l,...,r-1,
%(k,C)  =

1 + yk for e = T,
(26)

with yk the yield on an M-year corporate bond with initial rating k.
Using the methodology mentioned in the first comment to Theorem 1, we

can now compute the credit loss quantiles without resorting to simulations.
The expected loss and its variance can moreover be computed by numerical
integration, see (16). The boxplots  in Figure 3 summarize the 27 credit loss
distributions resulting from our experiments.

First consider the effect of changing the degree of systematic risk, R2.  It
is clear that more systematic risk leads to more prolonged tails. The upper
credit risk quantiles all shift to the right. Note, however, that the lower
quantiles may shift in the opposite direction, see for example the medians of
the C rated portfolios. This stems from the fact that credit rating upgrades
will also be more correlated over the different exposures in the portfolio.
The effects are substantial. For certain settings, the 99.9th  percentile of
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Figure 3: The figure summarizes the effect of varying maturities, systematic risk, and
portfolio quality on the limiting credit loss distribution by means of boxplots. The 3 left
plots express the credit quantiles as a fraction of the notional whereas the three right plots
express the credit quantiles in terms of the numbers of standard deviations in excess of
the expected loss. Each row of two plots corresponds with a given maturity. Each plot
contains 3 panels corresponding with different degrees of systematic risk R2. Each panel
comprises 3 boxplots representing credit loss distributions of a high-quality portfolio (A)
with equal positions in AAA, AA, and A rated firms, a medium quality portfolio (B) with
equal positions in BBB, BB, and B rated firms, and a low-quality portfolio (C) consisting

. of CCC rated firms only. Each box represents the interquartile range of credit losses, the
middle line indicating the median. The whisker of the boxplot has 4 markings, relating to
the 0.9, 0.95, 0.99, and 0.999 quantile of credit losses.
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credit losses may shift by more than 20% of the invested notional when R2
is increased from 0.4 to 0.6.

If we express the quantiles in terms of standard deviations in excess of the
expected loss (right panels in Figure 3),  we see a remarkable feature of credit
loss distributions. The distributions with the most prolonged tails appear to
have the smallest ‘surprise’ element in terms of standard deviations. Though
the C rated portfolios have the highest 99.9% quantiles, these quantiles are
only about 3 to 4 standard deviations in excess of the expected loss. This
is the number one would expect when using a normal distribution. By con-
trast, the 99.9% quantiles of the A rated portfolios appear almost negligible,
but they are between 9 and 13 standard deviations in excess of the expected
loss. These large numbers illustrate that the use of the normal distribution
for approximating credit loss quantiles may be completely inappropriate in
this case: the 99.9% quantile of the normal is only about 3 standard devi-
ations in excess of its mean. The log-normal distribution, by contrast, has
its 99.9% quantile about 9.4 standard deviations in excess of its mean. As
such, the log-normal may be more suited for the highly rated portfolios, but
it will prove inappropriate for the portfolios with many low-rated exposures.
Instead of relying on the normal or the log-normal, it appears more appro-
priate to use the limiting distribution of Theorem 1 directly, either using the
analytical method of the present paper, or the more traditional simulation
based methods, see, e.g., J.P. Morgan (1999). In any case, great care has to
be taken in interpreting credit loss quantiles represented in terms of standard
deviations in excess of expected loss.

Next, Figure 3 clearly shows that low-quality portfolios have a worse
credit risk performance. Indeed, upper credit loss quantiles shift to the right if
one includes more poorly rated companies in the portfolio.The lower quantiles
also shift to the right most of the time. If the maturity of the bond is as long
as 10 years, however, the lower quantiles shift to the left for a high degree of
systematic risk (R2  = 0.6). If we express all quantiles in terms of standard
deviations, we again note the reverse in the magnitudes compared to the raw
quantiles.

Finally, the bonds’ maturities appear to have only minor effects on the
credit loss quantiles. Of course, longer maturities give rise to higher upper
credit loss quantiles. For 1 year bonds, the only credit losses are those due
to default. For 5 and 10 year bonds, we also have to take the effect of rating
migrations and differing credit spreads into account. These effects will have a
higher impact the longer the maturity, i.e., the higher the duration or interest
elasticity of the bond. The effect can work both ways, because upgrades as
well as downgrades have a larger effect for longer maturities.
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Table 2: Percentage of firms in the portfolio with specific initial ratings
Rating AAA AA A BBB BB B CCC

% 3 1 3 3 0 2 2 1 7 1 4 1

6 Examples based on empirical data

In the previous section, we studied the behavior of the limiting credit loss
distribution for stylized portfolios. The advantage of using such portfolios is
that one can isolate the effects of parameter changes on the limiting distri-
bution. On the other hand, the credit loss quantiles have limited practical
applicability for credit portfolios in practice. In this section we study the
limiting distribution on a more realistic portfolio of corporate bonds.

We need 5 types of data: the rating migration probabilities, the yields
and yield spreads, the initial ratings of the exposures in the portfolio, the
credit loss functions r(m),  and the R2’s  of the factor model (2). The rating
migration probabilities, yields, and yield spreads used in this section are the
same as in the previous section and were reported in Table 1.

Because proprietary data on the typical quality of a bank’s portfolio are
difficult to obtain, we consider a portfolio with initial rating distribution
equal to the distribution implied by the total number of S&P rated companies
in 1997, see S&P (1998). The ratings’ empirical distribution is given in
Table 2 and comprises a wide variety of firms. The reported distribution
forms the benchmark case. For sake of comparison, we also consider a low-
initial-rating and a high-initial-rating portfolio. The high-rating portfolio
is obtained by upgrading exposures in the benchmark portfolio (except the
AAA ones) by one category. Similarly, the low-rating portfolio is constructed
by downgrading the exposures in the benchmark portfolio (except the CCC
rated firms) by one category.

Suitable empirical values for the R2  are obtained as follows. We take eq-
uity returns as a proxy for the surplus variables Sj in (2), see also J.P. Mor-
gan (1999). We downloaded the Research Top 2000 company list (comprising
monthly total returns of 1762 listed companies) from DATASTREAM Inc.
The sample period runs from January 1980 until December 1998. We regress
each return on a constant and on the total return of the S&P500 index. If less
than 5 years of data are available, the firm is omitted from the sample. This
eventually results in a total of 1645 R2’s.  Figure 4 presents kernel estimates

. of the R2  frequency distributions for three different data frequencies: low R2
(monthly data), middle R2  (quarterly data), and high R2  (annual data).

Given our available data set, we did not find any significant relationship
between R2  values and firm ratings. We therefore impose the same distri-
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Figure 4: R2  values of factor model regressions using monthly, quarterly, and annual
data. The data are obtained from the Research Top 2000 list of DATASTREAM Inc. and
comprise 1762 firms observed over the period January 1980-December  1998. The factor
model explains total return of the firm by a constant and the total return on the S&P500.
A minimum of 5 years of data is used for the factor model regressions.

bution  of R2’s  per rating categories. We also inspected the values of the
directional vectors zlj of Theorem 1. In our one-factor set-up we have vj = 1
or vj = -1 depending on whether pj > 0 or pj < 0, respectively. For the
vast majority of firms in our sample, the estimated ,6j  was positive and none
was found to be significantly negative. Thus we can safely set vj E 1 for all
exposures in the sample.

As the structure of a typical bank portfolio is difficult to determine due to
data (non)-availability, we only consider a fixed maturity loan for each firm
in the portfolio. This can, however, easily be altered. In our present study,
the maturities and sizes of the loans are identical for all firms. This may seem
overly simplistic. Note, however, that the size and maturity of the loan can
be interpreted as a kind of portfolio average, see (19), such that the maturity
of the bond can be interpreted as the maturity of the bank portfolio. As a
result, only considering an identical fixed maturity loan for each firm is a
viable approach from a limiting portfolio point of view. Of course, differing
loan sizes across firms may be very important for the adequacy of the limiting
distribution as an approximation to the credit loss distribution for portfolios
of finite size, but this is deferred until Section 7. We consider the same three
cases as in Section 5, namely a unit loan size with a maturity of 1, 5, and 10
years, respectively.
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A final important difference with the set-up of Section 5 is that we con-
sider a non-zero recovery rate. Based on S&P (1998),  a realistic setting is
obtained if we set the recovery rate to 0.5 for all bonds and firms. This means
that the lower line in (26) is replaced by (1 + yk)/2.

The results are presented in Figure 5. Altering the parameters of the
credit loss distribution seems to shift the quantiles in roughly the same di-
rection as Figure 3. Longer maturities, lower portfolio quality, and a higher
degree of systematic risk all make extreme credit losses realizations more
likely. For example, using the quarterly instead of the monthly R2  for the
benchmark portfolio results in a 99.9% credit loss quantile that is higher by
about 2% of the notional. A 4% increase in terms of the notional is estab-
lished for the monthly R2  values if the maturity of the portfolio is increased
from 1 year to 10 years. The differences in the upper credit loss quantiles
are extremely large if the initial rating distribution of the portfolio is varied
from high-quality (H) to low-quality (L). By contrast, switching from the
quarterly to the annual R2’s  has virtually no effect.

Concerning the size of the upper quantiles, we note that for the bench-
mark portfolio with the R2’s  based on monthly data, the 99.9% quantile lies
between 5% and 13% of the invested notional. For a typical bank portfolio,
we expect a duration of 5 rather than 1 or 10 years. For the 5 year maturity
bond, the 99.9% quantile lies between 7 and 9 per cent of the notional. This
comes close to the number of 8% prescribed by the Basle proposals, Basle
Committee on Bank Supervision (1988). For high-quality portfolios, the typ-
ical 99.9% lies significantly below the Basle guideline of S%,  while the reverse
holds for the low-quality portfolios. Also note that the normal approxima-
tion is not applicable in the present empirical setting. The 99.9% quantiles
all lie far more than 3 standard deviations above the expected loss, which
would be the appropriate number for the normal distribution. Also note the
inapplicability of the log-normal distribution, as the 99.9% quantile lies sub-
stantially above or below 9.4 for most portfolios considered. In any case, it
appears that proper credit risk management should allow for more diversified
capital requirements depending on the maturity, composition, quality, and
systematic risk of the portfolio. Similar focal points apply to supervisory
institutions for credit risk.

.
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Figure 5: The figure summarizes the effect of differing maturities, systematic risk and
portfolio quahty  on the limiting credit loss distribution by means of boxplots. The plots
express the credit loss either as a fraction of the notional (left 3 panels), or in terms of
the number of standard deviations in excess of the expected loss (right 3 panels). Each
row of 2 plots relates to corporate bond portfolios of a given maturity. Each plot contains
three panels for three different degrees of systematic risk R2. The left panel is based on
the distribution of R2's using regressions with monthly data (M-R2),  while the middle and
right panel use quarterly (Q-R2)  and yearly (Y-R2)  data, respectively. See also Figure 4.
Within each of these panels, 3 boxplots are presented for a high-quality portfolio (H)
with initial rating distribution as in Table 2, but with all firms upgraded by one rating

e category; a benchmark portfolio (B) with initial rating distribution as in Table 2, and
a low-quality portfolio (L) with all firms downgraded one category with respect to the
benchmark situation. Each box represents the interquartile range of credit losses whereas
the middle line indicates the median. The whisker of the boxplot has 4 markings, relating
to the 0.9, 0.95, 0.99, and 0.999 quantile of credit losses. The R2 distribution is generated
using data extracted form DATASTREAM Inc. A recovery rate of 0.5 is used for all bonds.
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7 Speed of convergence to the limiting distri-
bution

.

So far, we have concentrated on calculating credit loss quantiles if the number
of exposures in the portfolio gets very large. For credit risk management,
however, quantiles corresponding to a limited number of exposures in the
portfolio may be more relevant. In this section we investigate for which
portfolio size n the upper quantiles for the limiting distribution provide a
reasonable approximation for the finite sample quantiles. As in the previous
sections, we concentrate on the one-factor model.

The previous section constitutes the theoretical framework for studying
the speed of convergence towards the limit law. We only consider loan ma-
turities of 1 year and 5 years. Note that credit risk equals default risk for
a one year maturity. In contrast, for a maturity of 5 years, credit risk both
encompasses default risk and risk due to credit rating migrations. For each
of the 2 maturities, we conduct 9 different experiments, relating to 3 dif-
ferent distributions of R2  (Monthly, Quarterly, Yearly) and 3 initial rating
distributions (High, Benchmark, Low).

For a finite number of exposures n in the portfolio, the distribution of
R2’s  over the portfolio has to be discretized. Let &i(q)  denote the inverse
c.d.f. of the R2’s  corresponding to the p.d.f.‘s provided in Figure 4. Assume
nk  exposures with initial rating k in a portfolio of size n. For these exposures,
we set the R2  value equal to

FR;’  @/(nk  +  1))  7 (27)

fori=l,... , n&.  This discretization implies an identical distribution of R2’s
across rating categories when the number of exposures becomes large. For
finite n, the R2’s  are spread evenly over the interval [O,l]  using the inverse
c.d.f. For example for the R2’s  based on monthly data this implies that there
will be relatively more low R2  values than high ones for every n. In the limit
n + 00,  the postulated distribution FRZ(-)  of R2  is recovered for every rating
category.

We extend the above simulation exercise by introducing a measure of
portfolio ‘heterogeneity’ or ‘dispersion’. Portfolio dispersion may slow down
the convergence towards the limiting distribution. In order to create disper-
sion in the portfolio, we only vary the loan sizes. Let u E N  U (0) be our
measure of portfolio dispersion. If u = 0, we set all loan sizes to unity such
that there is no dispersion. If v > 0, we set
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where ii(.) denotes the loss function of a unit loan size, and <j denotes the
size of loan j. Let 1x1  again denote the integer part of x. Then we let
[n/v] of the exposures have loan sizes that are uniformly distributed over the
interval CO.5 + V, 1.5 + v].  The remaining exposures have loan sizes uniformly
distributed over the interval [0.5,1.5].  Broadly speaking, we now have a
portfolio with both large and small loans. The large loans comprise a fraction
of about l/y of the portfolio, while the remaining fraction of (~-1)/y  consists
of small loans. By increasing Y,  we can increase the loan portfolio’s degree of
dispersion or heterogeneity. For example, for v = 1, loan sizes are distributed
uniformly (per rating category) over the interval [1.5,2.5], such that the
degree of heterogeneity is relatively modest. For u = 10, 10% of the portfolio
consists of loans that have an approximately ten times larger than the median
portfolio loan size. This type of dispersion may significantly distort the
applicability of the limiting distribution for finite n.

Instead of introducing the different loan sizes directly at the portfolio
level, we introduce them at the initial rating level. In particular, for each
rating category k with nk  exposures, we consider a fraction of l/v of larger
loans and (V  - l)/Y  of smaller loans. We adapt the procedure for assign-
ing R2-values  to individual exposures, accordingly. In particular, we use
the approach sketched in (27) per rating category and segment of loan size
(large/small) instead of per rating category only.

We are now ready to calculate credit loss quantiles of the limiting credit
loss distribution under different scenarios for maturities, portfolio dispersion,
R2  distribution, initial rating distribution, and portfolio size. These quantiles
are used as the benchmark in checking the convergence speed of the credit
loss distribution. They can be computed using (17) without the need for
simulations.

For finite portfolios, computing quantiles is much more difficult. Gener-
ally, we have to resort to simulations. Estimated quantiles of credit losses
based on simulations can be very unstable. We tackle this problem as fol-
lows. For portfolios of size n = 100,200,. . . , 1000, we first generate 20,000
simulations from the factor model (2) using 10,000 pairwise  antithetic draws.
These simulations are used to obtain estimates of the 50th,  75th,  90th,  95th,
99th,  and 99.9th  percentile of credit losses. In order to further reduce the
variability of the simulated quantiles, this process is repeated 10 times. The
final estimates of the quantiles are the averages over the 10 replications. The
discrepancies between these averages and the limiting distribution’s quantiles
in percentages of the notional are presented in Figures 6 through 13.

For the homogeneous portfolios (V  = 0), the results in Figures 6 and 7
reveal that the quantiles of the limiting credit loss distribution generally lie
very close to those of the distribution for finite portfolio sizes. The difference
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Figure 8: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
1 year for all firms in the portfolio. The degree of portfolio heterogeneity Y is 1, so the bond size is uniformly distributed on the interval
[1.5,2.5].  The discrepancy is given in percentage terms of the notional. The figure contains 9 plots. The columns contain the results
for given degree of systematic risk (R2)  based on monthly (M), quarterly (Q), or annual (Y) factor model regressions, while the rows
contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles of the finite portfolios are based on
averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of size 20,000.
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Figure 9: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity
of 5 years for all firms in the portfolio. The degree of portfolio heterogeneity v is 1, so the bond size is uniformly distributed on the
interval [1.5,2.5].  The discrepancy is given in percentage terms of the notional. The figure contains 9 plots. The columns contain the
results for given degree of systematic risk (R2)  based on monthly (M), quarterly (Q), or annual (Y) factor model regressions, while the
rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles of the finite portfolios are
based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of size 20,000.
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Figure 10: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
1 year for all firms in the portfolio. The degree of portfolio heterogeneity u is 5, so 20% of the firms have a loan size that is approximately
5 times the loan size of the remaining 80% of firms. The discrepancy is given in percentage terms of the notional. The figure contains 9
plots. The columns contain the results for given degree of systematic risk (II’) based on monthly (M), quarterly (Q), or annual (Y) factor
model regressions, while the rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles
of the finite portfolios are based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of
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Figure 11: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
5 years for all firms in the portfolio. The degree of portfolio heterogeneity v is 5, so 20% of the firms have a loan size that is approximately
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plots. The columns contain the results for given degree of systematic risk (R’) based on monthly (M), quarterly (Q), or annual (Y) factor
model regressions, while the rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles
of the finite portfolios are based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of
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appears to be in an acceptable range for portfolios with at least n = 300
exposures. This certainly holds if we account for the sampling uncertainty in
the quantile estimates for finite portfolio sizes, see for example the instability
of the estimated 99.9% quantile in the bottom-middle and lower-right panels
of Figure 7. For homogeneous portfolios, the convergence behavior is very
similar for different initial rating distributions and values of systematic risk
(R2). The maturity does not have a significant effect on convergence either.

Figures 8 and and 9 show that small deviations from portfolio homo-
geneity leave the finite portfolio convergence behavior virtually unaffected.
A number of 300 to 400 exposures in the portfolio suffices to get a good
match between the finite sample quantiles and the limiting quantiles. Hence
the limiting distribution provides a good approximation for most practical
purposes.

If the portfolio heterogeneity is more pronounced, the convergence behav-
ior is affected significantly. This is shown in Figures 10 and 11 for v = 5, and
in Figures 12 and 13 for v = 10. As expected, much larger portfolio sizes are
needed to obtain a similar accuracy as in the case of homogeneous portfolios,
i.e., n should preferably lie within the range 500-800. Thus the slowdown in
convergence speed is more pronounced for larger values of V. For portfolios
comprising more than 1,000 exposures, however, the figures also reveal that
the limiting distribution still provides a useful approximation for practical
risk management problems.

Summarizing, the limiting distribution fits the distribution for finite port-
folios very closely for reasonably sized homogeneous portfolios (n 2 300).
The fit decreases if the homogeneity of the portfolio decreases, i.e., if v in-
creases. In that case, larger portfolio sizes are needed, n between 500 and
800. It is well-known that there is a generic uncertainty surrounding some
of the input parameters of credit risk models, e.g., precise default probabili-
ties and recovery rates, as well as some of the output, e.g., simulated upper
(99.9%) quantiles. Given this uncertainty, the discrepancies reported in Fig-
ures 6 through 13 seem acceptable once one is willing to adopt a simulation
based credit risk management model. The additional error caused by the use
of a limiting distribution to approximate quantiles of finite portfolios appears
limited for all practical purposes if the portfolio size is sufficiently large.

8 Conclusions

In this paper we studied the credit loss distribution of portfolios comprising
a large number of exposures. We concentrated on the study of corporate
bond or loan portfolios, but our results can be generalized towards more
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complicated financial instruments. The proposed approach builds further
upon the factor model approach to credit risk as laid out in J.P. Morgan
(1999). Using asymptotic distribution theory, we formally derived the credit
loss distribution if the number of exposures in the portfolio gets large. The
limiting distribution reveals that tail behavior of credit losses is highly influ-
enced by the fit of the factor model regressions, where the fit is measured in
terms of R2.  Higher values of R2  imply more systematic risk in the credit
loss portfolio and, therefore, fatter tails of the credit loss distribution.

Using an extreme value theory perspective, we derived the tail indices
of the credit loss distribution in one-factor and multi-factor models. Again
we found that higher values of R2  lead to smaller tail indices, i.e., fatter
tails. If, however, one allows for heterogeneity in the fits of the factor model
regressions, i.e., differing R2’s  over the exposures in the portfolio, we find that
the smallest R2  values ultimately dominate tail behavior. The exposures with
the smallest R2  have the relatively highest idiosyncratic risk components. As
idiosyncratic risk can be diversified, the contribution of these exposures to
the limiting distribution of credit losses is small. As a result, it becomes less
likely that the limiting credit loss will hit the maximum loss, which in turn
implies that the tail of the distribution is thinner. For multi-factor models,
we found that the tail index is ceterus pa&us at most as high as that of
the one-factor model, implying a fatter tail for multi-factor models. These
effects may be counterweighted by a drop in the maximum possible limiting
loss for multi-factor models vis-a-vis one-factor models.

When applying our limiting result to stylized and empirically oriented
portfolios, we found that perturbations in factor model fits (R2) and portfolio
quality (rating distribution) matter a great deal for credit risk. Quantiles
of the limiting credit loss distribution can vary substantially depending on
the choices made for these portfolio characteristics. Moreover, expressing
portfolio credit risk in terms of standard deviations in excess of the expected
credit loss produced a reversed ordering of riskiness compared to the direct
measurement of credit loss quantiles. Thus, one should be very careful when
interpreting the standard way of reporting credit losses in terms of standard
deviations. From calculations based on representative empirical portfolios
it further proved that the Basle 8% capital requirement seems a reasonable
approximation to the 99.9% quantile of the credit loss distributions for typical
portfolios of corporate rated bonds.

The derived limiting distribution is only interesting as far as it provides a
good approximation to the credit loss distribution of a finite sized portfolio.
We therefore studied the speed of convergence of the credit loss distribution
for an increasing number of exposures and found that this convergence is
rapid enough for most practical circumstances. The limiting distribution ap-
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pears applicable if the portfolio comprises more than say 300 exposures. The
degree of portfolio heterogeneity, however, plays a key role in the convergence
behavior. If the portfolio contains a highly heterogeneous set of exposures
(e.g., strongly differing loan sizes), the required number of exposures per
portfolio might be higher for the limiting distribution to become applicable.

The paper suggests several important topics for future research. First,
our approach can be extended to a dynamic setting. Second, the model
can be used to obtain a complete assessment of portfolio risk, comprising
both market risk and credit risk. Such an integrated credit-risk/market-risk
management perspective would provide a valuable contribution to the current
literature.

A Proofs
Proof of Theorem 1: For simplicity, we only provide the proof for ~(j,  Icj,  .$, $) E
rr(j,  I$,  !?j).  The proof for non-redundant $ can be established similarly. Let T, be the
column vector with elements Si,  . . . , S,, and summarize the regression equations for the
Sj (j = l,..., n) as T,,  = B,f + & with & = (cl,.  . . ,E,)~,  and BL  = (,&, . . . ,,&). <,,
has diagonal covariance matrix C,  = diag(wi  , . . . , w,).
Let h, be defined as h, = E(~(T~).  Then the sequence (hn) is a uniformly integrable mar-
tingale, which by the Martingale Convergence Theorem has an a.s. limit h, = E(flS1,  5’2,  . . .),
see Doob (1953). Since for all p 2 1 all moments E Ih,lP  are bounded by E IflP,  we also
have that E Ih, - h,IP  -+ 0 (for p > 1). Moreover, since Cov(f  - h,,  h,) = 0 we also
have the identity

Cov(f) = Cov(f - h,) + Cov(h,).

We now compute Cov(h,).  As a first step we have Cov(h,)  = Cov(f)  - ECov(flT,).
Since f,Si,Ss,... is a Gaussian sequence, we have that

E Cov(flTn)  = Cov(flTn)  = Cov(f)  - Cov(f,  Tn) Cov(T,J-’  Cov(T,, f) =

Of - R+?;(B,&B; + C,)-‘B,& = (f-27’ + B,TC,lB,)-l.

Hence Cov(  hn)  = Rf - (07’  + BzCgl B,)-’ . Notice that this gives an increasing sequence.
Given the first part of Assumption 1, we obtain that Cov(h,)  = of.  But then Cov(f -
h,) = 0, and so h, = f with probability (w.p.)  1, because f and h, have the same
expectation.

Next we look at the conditional distribution of S,+i  given Tn.  The distribution is
Gaussian with mean m,+i  = ,0L+ih,  and variance

2
%+I =  (aa+ +  P,T+$,Pn+d - P:+G-V;(M%B~ +  CJIBn$Pn+l  =

wn+l+P,=,uy+ B,TC,lB,)-lPn+~.
.

Introduce the following notation. pn = 0;’ + BTC;lB,  and 4%  = @,‘P;l&.  Then

3 9



.

Define H,, = pn  - i-2;‘. We have qn/wn  = P,‘(n-1pn)-1/3n/(nw,).  From parts 1 and 2

of Assumption 1, we then obtain J$ - a,‘(n-~~)-‘s”  + 0 and P,‘(n-~~~)-‘Bn  + 0. The
latter follows from the convergence of H,/n and @:,0/(nw,)  to a positive definite matrix
and to zero, respectively. As a result, we establish that qn/w,,  + 0 and si+r/wn+r  + 1.

We now turn to the analysis of C,. The first idea is to compensate C,, to form a
martingale. So we look at

MT2  = c, - 2 E(T(j,  kj,~j>lTj-1). (Al)
j=l

Let lk,e stand for the indicator of the event that a transition of firm j from its initial state
(rating) Icj to e takes place. Then we can write ~(j,  kj,  lj) = ~~z‘=l  ~(j,  kj, L)lk,e,  and the
conditional expectation cy=, E(r(j, kj,-tj)lTj-1)  in (Al) becomes CL=, ~(j,  kj,J?)  E(lk,elT’-l).
By definition of the numbers ck[  and the fact that (unconditionally) Sj has a normal dis-
tribution with mean zero and variance u: = ,6jfl,@j  + wj, such a transition takes place if
Sj falls into the interval (ckj,l-lujj,  ckj,[uj),  See Section  2. Since, conditional On Tj-1,  Sj
has a N(mj,  ~3)  distribution, we get the conditional probability

Pjl := E[lkjelTj-11 = P(ckj,e-laj  < sj < ckjegj)
= +(%@j - mj) _ g(Ckj,e-lSql  - mj ).

sj 3 C-42)

The next step is to show that the martingale central limit theorem holds for M,,  or
rather, that (Al) is of order fi in probability. We compute the conditional variance
A(M)j = E[(Mj -Iklj-r)2(l”‘-r].  In order to get a decent and compact expression for this,
it is convenient to introduce some additional notation. let rj = (n(j,  kj, l), . . . , n(j,  kj, T))~
and Pj = (Pjl , . . . , PjT)T.  Then it is straightforward to show using elementary calculations
that A(M)j  = ~T(diag(Pj)  - PjP3’)rj.  This is obviously bounded by TTrj.  From
Assumption 1, we have that i Cy==, r:Xj is bounded. Hence we obtain that M,  is of
stochastic order at most &i, see Doob (1953).

The next object to study is the compensating term in (Al). We will show that it is of
order n, so therefore (in view of the asymptotics of M,)  its asymptotic behavior coincides
with that of C,.  We aim at showing that we can replace mj and Sj in (A2) by @T f and
0.j. Consider

1. (A3)
Sj

Use the notation yje = ckje~j/w~'2,  <j = ,6j/Wi’2,  and Vj = sj Jwi’2  to rewrite (A3) as

+((Tje  - SJhj-l>/Vj)- (A4)

Notice that vj > 1 and that vj + 1. We want to approximate (A4) by @(yje - <,‘f).
Therefore, we consider @( (rje - e;hj-r) Jvj)  - @(rje  - e,‘f).  Let (II;,  VT)  denote a random
point between (h.3-1,2/j) and (f, l), and let tj = (yjl  - JThJ).  Moreover, let 4(o) denote
the density of the standard normal distribution. We now apply the mean value theorem,
and obtain

4 0



.

Rewrite this with Ahj  = hj-1 - f and Av~ = 2/j  - 1 as

Now consider the absolute value of each of the two summands. Since 4 is bounded by 1 and
VT  > 1, we obtain that the first summand is bounded by 1s: Ahj  1 . As ZM$(U)  is also bounded
by 1, we moreover obtain that the second summand is bounded by IAvjj.  Therefore, the
absolute value of 3((Tje  - [Thj-1)/vj)  - @‘(yjt  - <,‘f) is bounded by lJTAhj[  + IAvjl.
Notice that this is independent of L.

Write Pj  for the column vector with elements

Then

(Pjl - P,0e)2  5 4(1<TAhjI  +  lAvjl)2  5 8(j[TAhj12  +  IAz/jl”)

5 8(<T&AhTAhj  + lAvjj2).

Hence
(Pj - Pf)T(Pj - PT)  5 8r(<T[jAhlAhj  + lAuj12).

Now consider the difference of

(445)

n-l2 E[T(j,  kj, lj)lTj-13  = n-l 2 TTPj
j=l j=l

and n-l Cj”=,  ITTP~O, i.e., n-l ‘&  r: (Pj - PT). Its absolute value is bounded by
[?I-’ CT=,  7T~7Tj]“2[n-’  Cy=,(Pj  - Pjo)T(Pj  - Pf)]lj2.  The first factor is bounded by As-
sumption 1. We henceforth concentrate on the second factor. Since we know that Ahj  + 0
w.p. 1 and Avj  + 0, we have that for any given n > 0 there is an a.s. finite random number
N such that I I Ahj  1 I < r]  and I Avj I < q if j > N on a subset of the basic probability space
with probability one. For each element of this subset we split n-i cy=,  (Pj - Pf ) T (Pj -P,“)
as n-l C,“=l(Pj - Pf)T(Pj  - P.f)  + n-i Cy=N+1(Pj - Pj”)T(Pj  - Pf), because we CZLII
take n bigger than N.  The first term obviously tends to zero if n + 00. Because of (A5),
the second term is bounded by n-i ‘&  Sr(<T<j  + 1)q2, which is less than a constant

times v2. The latter follows from Assumption 1 by noting that <j = ,0j/ui”.  Because q
is arbitrary, we can now conclude that n-l Cy=,  rT(Pj  - Pj”)  + 0 a.s. Now use the final
part of Assumption 1.

Finally, note that

COv(sj,  P,'fj2

Rj"  = COV(Sj)  ' COV(pTf) =
Pj'"f  Pj

W j  + @TRfPj ’
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such that
PjTnfPj 1-=-- Rj2

wj 1 - Rj2 l=1_R3’.

This proves the theorem. n

Proof of Theorem 2: Using Corollary 3.3.13 of Embrechts et al. (1997),  it suffices to
prove that

lim (l- ‘) . ~(‘) _  ’ - P2
ct1 1  - F ( C ) P2 ’

(-46)

with F(e)  and f(.) the c.d.f. and p.d.f. of credit losses, respectively. Define ‘1~~ = 1 - C.
We can now rewrite (A6) as

647)

Using (19),  we can rewrite (A7) as

lim

u1 . JiqT.  4 (+-*(y-c)

UlJ.0

(

9-l (I&*)  1-&72--c

7

7 (-48)
P*@ P . dJ(@-l  (w))

with Qr(.)  and $(.)  the standard normal c.d.f. and p.d.f., respectively. Using the substitu-
t ion 212 = +)-I( )ur *  211 = @(IQ),  (A8) transforms into

Now from equation (26.2.13) of Abramowitz and Stegun (1970),  we have that for large
negative u2

@(lb) = fg(l + o(?.$)). (AlO)

Applying this result to (A9),  we establish

.
which proves the theorem. n
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