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An Analytic Approach to Credit Risk
of Large Corporate Bond and
Loan Portfolios

Abstract

We consider portfolio credit loss distributions based on a factor
model for individual exposures and establish an analytic characteri-
zation of the credit loss distribution if the number of exposures tends
to infinity. Using this limiting distribution, we explain how skewness
and leptokurtosis of credit loss distributions relate to the underlying
factor model and the portfolio composition. A key role is played by
the R2 of the factor model regression. Based on the limiting distribu-
tion and empirical data, it appears that the Basle 8% rule is not an
unreasonable approximation for high confidence (99.9%) quantiles of
credit losses of a typical portfolio of rated corporate bonds. The prac-
tical relevance of our results for credit risk management is investigated
by checking the applicability of the limiting distribution to portfolios
with a finite number of exposures. It appears that for relatively ho-
mogeneous portfolios a minimum of 300 exposures is enough, while for
relatively heterogeneous portfolios a number of 800 exposures suffices
to obtain an adequate approximation. Thus, our approach can be a
fast and accurate alternative to the standard Monte-Carlo simulation
approach adopted in much of the literature and in practice.

Key words: credit risk; factor model; fat-tailed distributions; skew-
ness; asymptotic analysis.
JEL Codes: G21; G33; G29; C19.

1 Introduction

Increasingly, banks are using portfolio models to quantify the aggregate credit
risk they are exposed to through their loan and trading books. These models
generate the distribution of potential losses due to credit risk, as well as some
summary statistics like standard deviations and percentiles. Loss distribu-
tions are used by banks internally to measure the profitability of (subsets
of) transactions in relation to the risk they contribute to the portfolio. This
information can result in either laying off certain exposures, for example
through securitization, or taking on additional exposures. Additionally, the
loss distribution can be used to determine the level of capital that the bank




needs in order to protect itsdf (with a certan level of confidence) aganst
unexpected credit risk losses. Similaly, it is possble to use the portfolio
models to andyze portfolios of assets to be securitized.

The incressed use of credit risk portfolio modes by financid intermedi-
aries potentidly has a dsgnificant impact on the pricing of credit-risky instru-
ments in financid makets A padld may be dravn with the rdationship
between equity returns and compensation for systemdtic risk, as established
by the Modern Portfolio Theory of Markowitz (1952) and Sharpe's Capitd
Ast Pricing Modd. One can dso envisage far-reaching implications of this
development for the capital adequacy regime to which banks are subjected.
Since the introduction of the Bade Accord in 1988, see Bade Committee on
Bank Supervison (1988), capitd charges are determined for individud as-
sts. These charges are summed to arrive at the capital required for a bank.
The current rules ignore portfolio effects by levying the same capitd charge
for corporate debtors of varying creditworthiness. As a result, banks have
become activdly engaged in ‘regulatory abitrage transactions. These trans
actions reduce the regulatory capitd charge without decreasing the credit
risk exposure proportiondly. This undermines the effectiveness of the cap-
it adequacy regime. The shortcomings of the current regime adso digort
price signas in the market; see ISDA (1998) and IIF (1998) for an overview
of shortcomings of the current regime.

The generd characterigics of the credit risk loss digtribution resulting
from portfolio models are badly understood. It is often observed that the loss
digribution exhibits dgnificant kewness and leptokurtoss, but the promi-
nence of these properties very much depends on the composition of the spe-
cfic portfolio under condderdtion. In this paper we derive an efficient ana
lytic gpproximation to the loss didribution if the portfolio contans a large
number of exposures. Our gpproximation enables us to sudy the sengdtivity
of the loss didribution, and in paticular the shape of its tals to specific
portfolio characterigics. These include its overdl credit qudity, the degree
of sysematic rik, and the maurity profile It is shown for portfolios with
redigic complexity that the agpproximation is reasonable dready for portfo-
lios with 300 to 800 exposures. As compared to usng fully-fledged Monte
Calo gmulaion to generate the loss didribution, which is commonly done in
practice, our gpproximation can be evduated much more efficiently in most
practicad  instances.

Numerica results in this paper indicate that the shgpe of the loss distri-
bution is paticulaly sendtive to the initid credit qudity of the portfolio and
the extent to which credit events occur Smultaneoudy for different debtors.
The credit qudity of a portfolio is often messured by assgning ratlings to
each of the debtors for which exposures are present in the portfolio. These
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ratings can come from externad rating agencies such as Standard & Poor’s
and Moody's, as is the case in CreditMetrics of JP. Morgan (1999). Alterna-
tively, the ratings can be assgned by banks interndly. Each debtor’'s rating is
asociated with a certain probability of default. A different route to edimate
the default probabilities is based on the option-theoretic approach pioneered
by Merton (1974), and later extended by Black and Cox (1976) and Longdtaff
and Schwartz (1995). In this approach, the equity of a company is viewed as
an option on its assets with the drike price equa to the level of lidbilities.
The portfolio mode of KMV combines this approach with historical default
datistics to assign a default probability to each debtor individualy, provided
it has equity lised on a stock exchange, Kedhofer (1995).

Correlation between credit events of different debtors is induced by the
fact that ther wel-being is influenced by the same (economic) factors. A
podtive corrdation is induced by the fact that default rates are dgnificantly
higher in economic recessons than in periods of economic growth, see aso
Jénsson and Fridson (1996) and Fons (1991). The more a portfolio of ex-
posures is diversfied over different countries and indudries, the smdler the
‘average’  correlation will be in the portfolio. We show that this decreases
the likdihood of extrema portfolio credit losses. The corrdation effect on
the shape of the loss didribution also depends on the initid credit qudity
of the portfolio. As Zhou (1997) shows, for a given corrdation between the
aset vaues of two companies, the corrdation between default events of both
companies is higher when the creditworthiness of both is lower. Hence, cor-
rdaion has a lager impact on the tals of the digtribution when the credit
quaity of the portfolio is lower. This is confirmed by our numerica reaults,
and in line with the andyss of Carey (1998).

To our knowledge, only Carey (1998) has thus far performed a systematic
dudy of the tals of the credit loss didribution. In his sudy, he uses histori-
cd data on exposures and credit losses semming from private placements by
US life insurers. Carey samples exposures from this large database to obtain
portfolios with certan characteritics in terms of initid credit qudity. He
then analyzes the actud loss experience from these sampled portfolios His
dudy yidds indghts into the effect of credit qudity, the sze of the portfalio,
and the date of the economy on the tals of the loss didribution. His con-
clusons, however, are only vaid as far as the exposures in the database, and
their aggregation into portfolios, are representative of actua portfolios.

We describe our andyss from the perspective of portfolios with corpo-
rate bonds and loans. This is dso the perspective taken in the credit risk
portfolio models that are avalable in the market, such as CreditMetrics of
JP. Morgan (1999), CreditRisk+ of Credit Suisse (1999), PortfolioManager
of KMV (Kedhofer (1995)), and CreditPortfolio View of McKinsey (Wilson
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(1997a,b)). Although the approach in each of these models appears quite
different a firg sght, Koyluoglu and Hickman (1998) have outlined the un-
derlying unifying framework. We follow ther framework in the sgt-up of our
modd.

This set-up is described in Section 2. In Section 3 we derive the asymp-
totic loss digribution, and point out the sdient features of the obtained
expresson. Section 4 investigaies the properties of the tals of the distribu-
tion.

In Sections 5 and 6 we study the properties of the asymptotic loss distribu-
tion for a large number of portfolios with different characteristics. Section 5
condders dylized portfolios that differ in initid credit qudity, the degree
of inherent sysematic risk, and the maturity of the exposures. The and-
yss in this section shows the sengtivity of the loss didribution to each of
its parameters. The compogtion of the portfolios in Section 6 more closdy
gpproximates actua corporate bond and loan portfolios in two respects (i)
the didribution of exposures over initid credit raings, and (ii) the levd and
vaiability in systematic risk across exposures. For a typica corporate bond
portfolio we find that the standard 8% capitd charge from the Bade 1988
Accord roughly corresponds to a confidence level of about 99.9%.

Section 7 investigates how large the number of exposures in a portfolio
needs to be to render the asymptotic loss digtribution derived in the pa
per a good gpproximation to the actua loss didribution. In sSudying the
convergence properties, we especidly pay atention to the tall behaviour of
the didribution. For relaively homogeneous exposures it is shown that the
gpproximation is dready quite accurate for portfolios with a few hundred
exposures. If a portfolio contains relatively heterogeneous exposures, we find
that approximately 800 exposures suffice to get a close fit with the actua loss
digribution. Section 8 concludes, while the Appendix gathers the proofs.

2 Theoretical framework

We consder a portfolio containing n exposures. Each exposure j is charac-
terized by a four-dimensond <tochaestic vector

(Sj7kjaej77r(j) kj)£j>'¢)))- (1)

The fird dement of this vector triggers the mechanism for defaults and rating
migrations. A prime candidate for S; is the company’s surplus i.e, the
difference between the market vaues of ligbilities and assts. If this surplus
fdls bdow a cetan threshold, default occurs. We assume that the portfolio




exposures are driven by a vector of common factors:
Sj =pui+ 6] f +ej, (2)

where u; € R is a condant term, 3; € R™ is a vector of factor loadings,
f € R™ is the vector of common factors, and ¢; € R is a scdar representing
idiosyncratic risk. This set-up follows the modd dructure of, eg., JP. Mor-
gan (1999). For expostiona purposes, we set p; = O for dl j. All results
remain vaid, however, for non-zero intercept terms see dso further below.
Furthermore, we assume that

fNN(O’Qf)v (3)

and
€j N N(Oa wj)7 (4)

with E(g;f) = 0 for dl j, Q; postive definite and E(ese;) = 0 for dl § #
J. The normdity assumption for the factors and the idiosyncratic shocks
consderably amplifies the proof of our man theorem in Section 3. The proof
can, however, easly be generdized to the case of heavy tals and voldility
dugering in the companies surplus variables ;.

If the factor dructure in (2) holds the surplus variables of different firms
are corrdlated. Because the S;’s dso trigger the default mechanism, corre-
lation between the S;’s results in corrdlated default probabilities It turns
out that this corrdation causes the portfolio credit loss digribution to ex-
hibit heavy tails when the number of exposures becomes large, see Sections 3
and 4. It is important to dress that the mere corrdaion between the credit
exposures suffices to induce heavy tals of the credit loss didribution, even if
the underlying stochadtic varidbles f and ¢; ae thintaled, eg., normd.

The second and third element in (1), k; and ¢;, represent the exposure’s
inittd and its end-of-period rating category, respectivedy. We assume r rding
categories, such that &;, £; € {1,. . . , r}. In this paper we work within a
datic, one-period framework. We can therefore assume that the migrations
ae driven by a Makovian trangtion matrix P,

D1 ... Pir
P=1 : -~ |, (5)
prl N

where pgy denotes the probability that a firm with initid rating k switches
to rating ¢ over the period considered. Note that Pe, tr, Where ¢ is
an r-dimensond vector with ones. By sdtting p,y = . . . = pr,—; = 0 and




Table 1. Raing Migration Probability Matrix and Credit Spreads

k 4 1Y 5 10Y
AAA AA A  BBB BB B CCC D

AAA 9082 826 74 6 11 0 0 0O 88 77 125
AA 65 9088 769 58 5 13 2 0 62 87 145
A 8 242 9130 523 68 23 1 5 74 102 160
BBB 3 31 587 8746 4% 108 12 17 87 116 180
BB 2 12 64 771 8116 840 98 98 175 210 350
B 0 10 24 45 686 8350 392 492 278 475 630

ccc 21 0 1 124 267 1170 6448 1920 435 58 980
D 0 0 0 0 0 0 0 10000 =— - _
Base vyiedd 429 409 429
The table contains the probability (in basis points) of a credit rating migration
from category k to £ over a |-year period. The category D stands for default.
The last three columns of the table contain the credit spreads (in basis points)
for firms with initial rating k corresponding to a bond with a maturity of 1, 5,
or 10 years. The base yields are also in basis points and imply a U-shaped yield
curve. Source: CreditMetrics’ web site, October 1998.

P = 1, we can identify the rth raing category as the date of default.
JP. Morgan (1999) presents a trangtion matrix of the form (5) on its Web
dte. This trandtion matrix is based on S&P or Moody's rating categories
and an example is presented in Table 1.

For given vaues of p,, one can sdect congtants ¢, k = 1, . . ., 7 ad
¢=0,..., 7, suchtha ¢ = —oco and ¢, = +oo for dl k, and

®(cre) — (cke-1) = Prey (6)

for dl k and £ = 1,...,7, where ®(:) is the standard normd cumulative

digribution function (c.d.f.). The end-of-period rating of exposure j (with
initid raing k;) is set equa to {;, where ¢; is such that

Cj,kj,ej—l = ij,ej..l "4/ Wy +ﬂ;-Qfﬂj < Sj < Ckj ;' \/ W +ﬂ;erﬁj = Cj,kj,lj
(7)
This is illusrated in Fgure 1. The support of the normd didtribution of S;
is partitioned by means of the congants ¢z, and the standard deviation of
S;. Each bin corresponds to a specific end-of-period rating. Note that the
locations of the bins depend on the exposure's initid reting, as for example
highly rated exposures are less likdy to default than low-graded ones.
As we assumed E(f) = 0 and p; = 0 in (2), the unconditiond distribution
of S; plotted in Figure 1 is centered around O. Nothing materiad changes if
we relax ether of these assumptions. In our present datic, one-period set-




0.6

N
S’
i
o
n, 0.2
Cjk3 j Cik6
Cjk1 Cjk2 Ciks|cjk7
}: AA D
0.0 . l
-5 -3 -1 1 3 5

Figure 1. Relation of the random variable S; and the end-of-period rating Z; in an 8
category rating system. The initial rating of the exposure is k; =BBB. D denotes default,
while ¢;ieequals cpe(w; + B Q5 B8;)'/2. Data are as presented in Table 1.

up the default probabiliies are aways non-stochastic. By an appropriate
choice of the matrix P the default and rating migraion mechanisms are
dictated by the factor modd (2) and the bins (7). If we extend our mode to
a dynamic sdting, the default (and rating migration) probabilities become
dochadtic. For example, assume that the vector of common factors follows
an autoregressve process of order 1,

ft = ‘I}ft-—l + T,

with 7, independent of ¢; for al s, ¢. The bins are again given by (7). By the
dependence of f; on its own padt, the default probabilities vary over different
dages of the busness cycle For example, defaults can become more likely
in case of recessons, while upgrades preval in expandonary periods. These
effects can be ceptured by an agppropriste choice of f and v (see further
beow). A more extensve discusson on dochastic migration rates can be
found in, eg., Credit Suisse (1999) and Bekin, Suchower, and Forest (199813).
See ds0 Koyluoglu and Hickman (1998) for a synthesis. In the present paper,
we fully concentrate on the oneperiod framework. Detailed extensons to
multi-period models are left for further research, see dso Wilson (1997a,b).

The find charecteristic in (1) of exposure j is its credit loss #(-). We
assume that the amount of credit loss depends on the exposure's initid (;)
and find (¢;) rating category, a well as on the state of the economy (3).




This is expressed by specifying

W(j7 kjaejaw)' (8)

A credit loss not only occurs if a firm defaults, but dso if the firm's rating
deteriorates. The later is due to differing credit risk Spreads across rating
categories, maturities, and indudtries. This explans the dependence of = (:)
on j, k;, and £;. The height of the credit soreads can aso be affected by other
economic varigbles. This is captured by the presence of the variable . Note
thet the dements of ¥ and the common factors f may ether overlgp patidly,
completely, or not a dl. The presence of ¢ in the credit loss function dso
dlows for a draightforward link between credit risk and market risk. Up
to now, these types of risks have been treated separately, at least from a
supervisory point of view, see Bade (1988, 1996). This separation appears
atificid. For example, Duffee (1996) argues tha in recessons interest rates
ae typicdly lower, while defaults are more likedly. This implies for example
that the credit risk of the receiveffixed end of a swap transaction between two
equaly rated companies will be higher than the pay-fixed end: the pay-fixed
paty of the transaction is more likdy to default in the recesson, while the

vadue of the recevefixed end of the swagp transaction is more vauable for
lower interest rates.

Given dl above definitions, the credit loss of a portfolio comprisng n
exposures is dmply the sum of the individud credit losses

Co = _ (i ks 45, 9). (9)
3 The limiting distribution of portfolio credit

losses
In this section we edablish the didribution of the portfolio credit loss C,
when the number of exposures becomes large. Before we proceed with the

man theorem, it proves ussful to make some assumptions regarding the
boundedness of factor loadings and potential losses.

Assumption 1

o n7t E}’:lﬁjwj'lﬂf converges to a finite, positive definite matrix.

. ﬂ;ﬁn/(nwn) - 0.




. sup, nT YR YT w(d, kj, £,4)* is bounded almost surely (as.).

The fird requirement in Assumption 1 is saidied if the factor loadings
and the idiosyncraic variances are bounded from above and below, respec-
tivdy. In economic terms, this means that every exposure in the portfolio
should exhibit non-negligible idiosyncratic risk. Moreover, the requirement of
a pogtive definite limiting matrix implies that there are no redundant factors
in the exposure's factor modd (2). The second boundedness requirement im-
plies that the factor loadings divided by the idiosyncratic variances grow less
than linearly in the portfolio 9ze n. Though this requirement differs techni-
cdly from the firg condition in Assumption 1, the economic interpretetion
is dmilar: the idiosyncratic risk should be non-negligible for al firms in the
portfolio. The third pat of Assumption 1 requires that potentid sguared
portfolio losses are bounded on average for sufficiently large portfolios. This
assumption is typicdly satisfied for mogt financid instruments. In particular
for bonds we see that the assumption is trividly satisfied, as the maximum
loss is the vdue of the bond, which is finite. For more complicated ingru-
ments like derivatives, note that the average squared loss mentioned in this
pat of Assumption 1 lies close to the expected squared loss for sufficiently
laoge n under sandard regularity conditions. Pat 3 of the assumption is
thus very much linked to the requirement that the expected squared losses
are bounded (uniformly) for al exposures. This can be the case even though
the loss itself may not be bounded, eg., #(j, ;, ¢, ¥) = max(O, ¢ — K) with
¥ log-normaly  digtributed.’

The following limit law conditutes the heart of the paper and is proved
in the Appendix.

Theorem 1 Define

T
7w+ BB
as the R? of the factor regression model (2), ie., the correlation between S;
and its ‘fit’ B f. Moreover, let

v =610/ 1- R/ \JuRs, (11)

1This corresponds for example to being on the long side of an OTC transaction involving
a call option on a stock index with strike price K, where the counterparty can default.

(10)
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such that v/ v; = 1, and let Y be an m-dimensional standard normal random
variate defined by Y = Q;l/zf. Let

. Ck; 6 — \/Rjz-’UJTY ij’e_l - 1/R32-’U;-FY
q)je =9 -9 ) (12)
J1- R J1- R

denote the conditiona (on f) probability of migrating from rating k; to rating
¢, and define

n T
Bn=zzéj€'7r(j7kj:‘€7¢)' (13)

j=1 £=1
Then given Assumption 1 and the framework of Section 2, we have

n'C,-n"'B, =0, (14)

with C, the portfolio credit loss as defined in (9) and %3 denoting almost sure
convergence.

The expresson B,/n in Theorem 1 no longer depends on the idiosyn-
cratic risk factors ¢;, but only on the systematic risk factors f and 1. This
condderably faclitates smulation from the credit loss didribution. A smi-
lar result is wel known in linear portfolio theory. Indeed, within the CAPM
modd, only the systemdtic risk maiters because it cannot be diversfied away
by increesing the number of exposures. Theorem 1 generdizes this result to
the nonlinear setting of credit losses while smultaneoudy dlowing for richer
dynamics in terms of corrdated defaults mechaniams and rating migrations.

To see how the smulaions from the credit loss didribution can be sm-
plified or even avoided, consder a one-factor modd m = 1 where v; = 1,
and R;‘-’ = p’. Consder a st of loss functions 7(-) corresponding to a
portfolio corporate bonds or loans, see dso the example further below in
this section. Given an increasng credit spread for lower raing categories,
it can be seen tha B, is a monotonicaly increesng function of Y. Take
XY) = lim, B,/n, then usng the usud transformation of varisbles tech-
nique the didribution of credit losses ¢ is given by

$(G7'(c))/ 1@ (), (15)
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with g~!(-) and g'(-) denoting the inverse and the firgt derivative of §(-),
respectively. One can now use the trapezoid rule for numericd integration

N

> 5w ) (4 - vioy) (16)

i=1

for k = 1,2 to obtain an easy approximation of the expected credit loss and
its variance, respectively, where -K = gy < 3 < . . . < yy = K denotes
an gopropriate partitioning of the inteva [-K, K] for a aufficently lage
congant K > 0. Computing the quantiles of the credit loss in this case is
even eader than cdculating the moments. Note that

PC<9=6sc=gele) (17)

where C = lim,_,q Cr/n, such that the d-quantile can be obtained by a Sm-
ple evauation of g( -) in one point. The present methodology is applicable
whenever the credit risk mapping g(-) is a monotonic function of the stochas-
tic variable Y in (12). As long as this is the case, the gpproach sketched above
may be used, even if the notiond amounts of the bonds and the R?’s of the
factor model regressons differ across firms. This provides a large compu-
tational advantage of our method over smulaion based methods such as
CreditMetrics, as long as one gticks to one-factor models and long corporate
bond portfolios.

A second festure of the expresson B,/n is that the factor loadings and
idiosyncratic variances do not enter directly. Only the R;‘? of the factor mode
regression and the unit-length vector »; matter. The Rf- determines the
megnitude of the impact of sysemdic risk fluctuations on the jth credit
loss. The lager the vadue of R?, the higher the influence of the systemdic
risk factors f on the jth credit loss. In paticular, if R;‘? 4 0, the Stochastic
vector Y does not enter a dl into the jth teem of B, in (13). In paticular,
if R; =0, B, becomes non-stochestic. The second exposure specific eement
entering (12) is the vector v;. As dready noted, this vector has unit length.
Therefore, it can be interpreted as a directiond vector, indicating which
factors matter for a specific exposure. For example, if m = 1 such that
(2 is a onefactor model, we have v; = £1. The directiona vector v; now
indicates whether the sysematic risk factor f has a podtive or negative
impact on S;. A gmilar interpretation holds for multi-factor models. Note
that the number of dements in (6;,w;) is the same as in (v;, R%). However,
v; has the redriction that va v; = 1, such that one cannot recover (5;,w;)
from (v;, R3).
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A third feature of (12) through (14) is that by replacing C,, by B,, we are
effectively replacing the actua credit loss due to a rating migration from £,
to ¢; by the conditiona expectation of the jth credit loss The conditioning
st is given by f. This is essentialy the same as in the case of linear portfolio
theory.

Findly, it is important to sress that normdity of f and the transformed
varigble Y is not necessary for (14) to hold. Indeed, if the factors f have a
clear-cut economic interpretation, the credit risk manager might have some
ideas about the future development of f in terms of its forecasting distribu-
tion. This digribution can then be used in (14) to obtan smulaions from
the credit loss didribution that are more reevant from an economic per-
oective. Alterndively, the credit risk manager might be interested in the
effect of gpecific didributiona assumptions for f, eg., Stress scenarios, in
which case f places discrete (or unit) mass on certain scenarios. Also in that
case, such digributiond assumptions can readily be incorporated to obtan
samulations for credit losses that are relevant for the purpose a hand.

To get a better feding for the derived limit law, consder a onefactor
version of our model with m = 1, R? = p? p >0, and v; = 1. So all
exposures exhibit the same sydemdic risk. A smila modd is dudied in
Belkin, Suchower, and Forest (19983). There are only two rating categories
r = 1,2. The second rating category corresponds to a State of default. We
adso assume that the exposures in our portfolio are ordinary loans that ether
fully default or not, irrespective of the date of the economy . This is
captured by setting (4, k5, 1,4) = 0 and = (j, k;, 2,9) = =(j), where n(j)
is the dze of the jth loan. Given these assumptions, B, as defined in (13)
gmplifies to

B, = Z 1- @ (C_%> (7). (18)
such that
Cn/n—[l—fb(\c/%) Tn X0, (19)

where 7, is the average size of a loan, 7, = n~' 3°%_ =(j), while c is a
condat determining the default probability.

Figure 2 plots the cdf. of the limiting credit loss C for various vaues
of p and c given an average loan sze of # = 1. This means that credit
losses are expressed as a fraction of the notiond amount. The two vaues of
c conddered give rise to a default probability of 5% and 1%, respectively.

It is cler from the figure that large credit losses occur much more often if
one dlows for pogtive correations between the underlying ‘surplus variables
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Figure 2: Asymptotic default loss (C) distributions for constant R]? = p? and v;=1in
a one-factor model (m = 1), see Theorem 1. There are only two rating categories, one of
which corresponds to a state of default. The constant ¢ is chosen such that there is either
a 5% (left-hand panel) or a 1% (right-hand panel) probability of default.

S;. The result holds irrespective of the probability of default, as specified
through c. We dso note that for smdler vaues of p the credit loss digtribution
becomes more concentrated. For p = O, the c.d.f. collapses to a step function,
taking the vaue O before, and 1 after the expected credit loss, respectively.
In that case, the limiting didribution in Theorem 1 is of no use for credit
rsk management. A second order limiting result would be needed instead of
the presented first order result.

4 Tail behavior of average credit losses

Figure 2 suggedts that a higher corrdation between default risks increases the
likelihood of extreme portfolio credit losses The increase in probability mass
in the talls may partly be due to an increased variance of the credit portfolio.
However, we find that the properly rescaled C ill exhibits more probability
mess in the tals than the norma didribution. Stated otherwise, the tails
of the derived limit law seem to decline a a lower than exponentid rae
In this section we show that the tal probabilities are polynomidly declining
functions of the credit loss quartile, i.e, the average credit loss exhibits ‘fat
tals. Moreover we edtablish the relation between the tall index and the asset
corrdlations through the factor modd fit R? and the directiona dependence
vj. A correct assessment of the tal index is important for a proper credit
rnsk assessment, especidly if one is interested in the credit loss associated
with very smdl dgnificance leves i.e, very far into the loss didribution’s
tal. In particular, if the credit loss didribution is fat-talled, common rules of
thumb for computing loss quantiles no longer apply. For example, the 99.9%
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percentile may lie much more than 3 standard deviations above the expected
loss, which is the number one would expect for the norma digtribution. In
other words, extreme credit losses are much more likely to happen than under
the normd didribution.

In order to characterize the tal behavior of credit losses, we firgt intro-
duce the datidtica definition of tal faness Let F(-) denote a distribution
function. Embrechts, Kliippelberg, and Mikosch (1997) give a necessary and
aufficient condition for didributions to exhibit polynomidly dedining or ‘fa’
tails:

. 11— F(tz) _

T = (@)
for x > 0, where a is cdled the tal index. The condition is often dubbed
the condition of ‘regular variation’. The polynomid’s exponent is the rate a
which the tal probabilities decline in x. It can be interpreted as the number
of bounded moments that exis (are finite) for a gpecific didribution. For
exanple, a normd didribution is thintalled because dl moments exis; its
tal index is equd to infinity. The Student-t didribution, by contrast, exhibits
a finite tal index equa to the number of degrees of freedom and is, thus,
fat-tailed.

For sake of darity, we dat by examining the tall behavior of credit losses
within the amplified onefactor setting of Section 3. Because the support of
the portfolio credit loss digribution has a finite upper end point equa to 1,
the above definition of regular variation is not gpplicable Embrechts et d.
(1997) dso provide a suitable definition for didributions with bounded sup-
port. We use this definition to prove the following theorem, see the Appendix.

Theorem 2 For the one-factor model set out in Section 3, the credit loss
distribution has a tail index equal to
1~ p?
p?
Loosdy spesking, Theorem 2 implies that the tals of the credit loss distri-
bution are of the form

(21)

FO ~ 1 -1 = C)=/7, (22)

for aufficiently large credit losses C, i.e, close to 1. Equation (22) clearly
demondrates the polynomidly instead of exponentidly declining tal shape
of the credit loss digtribution.

The present results have a direct bearing on empiricd findings. Fird, the
empiricdl detection of fat talls of credit risk digributions can be explained
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from a micro-based gpproach of individua exposures by dlowing for common
factors. Though the factors and idiosyncratic shocks may be normdly dis
tributed (and thus thintaled), the credit loss didribution will exhibit heavy
talls provided the exposures in the credit portfolio are corrdated. Larger
corrdations imply fatter talls. Second, one should be very careful in usng
the normd didribution as an approximation to the credit loss didribution in
empiricd modding exercises. Of course, Stuations can be concelved where
the approximation provided by this digribution is not too bad. In generd,
however, we expect fat-taled and/or skewed didtributions to provide better
goproximations. This holds especidly for corrdated default probabilities and
low probability quantiles, eg., credit loss redizations in the tal of the didri-
bution such as the 99th or 99.9th percentile, see aso Sections 5 through 7. In
case one redricts dl asset or surplus (and thus default) correlations to zero,
one can resort to the norma approximation, see adso Section 5. A seting
with vanishing asset corrdations, however, is highly unredidic from a prac-
ticd point of view. It adso contradicts the empiricd evidence that default
correlations are correlated over stages of the business cycle, see Jénsson and
Fridson (1996) and Fons (1991). The third implication of the non-normd tail
index of the credit loss didribution pertains to the usud way of presenting
credit loss quantiles in terms of the number of standard deviations above the
expected credit loss. These have to be interpreted with grest caution. For
different degrees of tal faness and different portfolio compogtions, smilar
quantiles correspond to widdy different numbers of Standard deviations in
excess of expected loss, see dso Section 5. For example, if the tals contain
sufficdent probability maess (p* > 1/3 & (1 - p?)/p? < 2), etimated second
moments can become very high and ungtable As a result, potentia credit
losses in terms of dandard deviations might become very low. By contrag,
if p is cose to zero, the limiting distribution degenerates and the number of
dandard deviations might become very high.

We now show how the above results on fat tals for credit losses generaize
to non-constant R? and 7(j) and to multi-factor models. First consider a one-
factor model with non-constant RJ"-’ and 7(j). We only consder two different
velues for R? and w(j). The arguments presented here, however, directly
cary over to dtuations with more than two possble vdues and even to
stuations with a continuum of possible vaues Let R? = R} and 7(j) = #,
for [A. n] of the exposures in the portfalio, with A € [0, 1] and [z denoting
the integer part of x. For the remaining n = |\ - n| exposures, R? = R} and
m(j) = #,. Usng andogous derivations as in the case of constant R?'s and
7(-)’s, we edablish that the tal index of the credit loss digtribution is given
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jreri?',}zf}(l R:)/R;. (23)
Note that for B2 = RZ = p?, we recover (21). So the exposure with the
gndlest corrdaion with its sysematic component, i.e, with the smdlest
R%, dominates the tal behavior of credit losses This is intuitively dear.
For example, consider the case B2 = 0. Then |\ . n] of the firms in the
portfolio only display idiosyncratic risk, which can be diminated through
diverdfication. Because of this diverdfication argument, the potentid credit
loses caused by these firms only affect the expected loss and not the tall
behavior. In particular, the probability of average credit losses being near
the upper bound 7 = X\ #; + (1L = A): #p is zeo (in the limit), implying a thin
tal. Now if R? > 0, a Smilar line of reasoning can be followed to demondgrate
that the firms with the smdlest sysematic risk component dominate the tall
behavior.

The above example for non-constant R? dso illustrates another impor-
tant property of the tall behavior of credit loss digtributions. Again, consder
the extreme case 0 = R? < R2. The worst case credit loss outcome is given
by (1 — A)@p < #, with # the maximum average credit loss as defined ear-
lier. So the tail between (1 = A)7, and 7 has to be fla, i.e, thin. The tall
near C = (1 = \)#,, however, is fat, as can be seen from (21). So if R? is
non-congtant, extreme tail behavior is dominated by the largest (1 - R?)/R:
vaues. Quantiles less fa out in the tals, however, may adso srongly be
affected by smdler vaues of (1 - R;‘?)/R;‘?. This mixed tal behavior can re-
ault in unconventiond combinations of skewness and leptokurtosis. It may
therefore be very difficult to devise parametric digributions that capture al
sdient festures of a credit loss didribution for large portfolios. Moreover,
it may adso be vey difficut to employ (semi-nonparametric) extreme-vaue
datistical theory for edimating higher order quantiles of the credit loss dis
tribution, see, eg., Danidsson and Vries (1997). Such methods presume a
catan degree of homogendty of tal observations which might be ingppro-
priate given the grongly varying tal behavior of C over different pats of
the portfalio.

Deriving the tal behavior of credit losses for multi-factor models is some-
wha more complicated. We only present the resulting tal index in case
there are only a finite number n* of different combinations (Rf, v;, ;). The
result can be generdized to a continuum of posshilities with a correspond-
ing increase in technical detals. First, lt G¢c {1, ..., n*}, and define the
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limiting credit loss function

c—+/R25TY
(G =T, [M(_{f_) .
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~

with ); the fraction of the portfolio with combination (&2

5 Uj, ). L&t

™ =sup g(y, (4. . ., n*})
yER™

be the maximum average credit loss of the limiting portfolio. Note that
this maximum loss need not coincide with the maximum average loss for a
portfolio of finite size n. The latter is given by 37~ \;#;, because there is
dways a (smdl) probability that the idiosyncratic risks push al exposures
in the portfolio into default. By contrast, if for example RZ = 0 and #; > 0

for some je{1,...,n*}, then 7* < 37" A#;. Next, define
G={Gc(1...,n"}| sup g(y, G) = 7*}.
yeR™

G condds of the parts of the portfolio that, when combined, can result in the
maximum average limiting credit loss. One can now prove that the upper-tal
index in the multi-factor case is given by

_ 1-R?
2 et 24
Note that for identicad values of the R'J‘?’s, the tall index of the multi-factor
mode is & mogt as high as that of the sngle factor modd, see (23). This
follows from the fact that (24) takes the minimum of the tal index from (23)
over different subsets G. The reaulting tail index is ceterus paribus, just as
high or higher for multi-factor models compared to onefactor models.? This
has a clear intuitive explanation. For the single factor modd with 9; = 1,
tal behavior is determined by the exposures with the smdlest systemdtic
dependence in terms of }%JZ.. If multiple directions 9; are possble and if there
ae multiple factors, however, it is possble that different redizations of the
systematic risk component f in (2) give rise to Smilar large vaues of credit

ZNote that in practice the R%’s for multi-factor models will also be higher, thus enforcing
the mentioned cet er us paribus effect. Also note, however, that in a multi-factor model 7*
may turn out to be lower than for the one-factor model, such that the tail index may be
higher, while the upper end point of the credit loss distribution is lower.
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losses. The systematic dependence (R?), however, of the portfolio exposures
in thexe dterndive directions might be very different, resulting in different
tal behavior of credit losses in the different directions mentioned. Equation
(24) now dates that the fatter tal dominates, see lbragimov and Linnik
(1971). This can dready be seen in a single factor example (m = 1). Take
=2 \=1/2, %=1 =1, 9 =-1, R =05 ad R} = 0L The
portfolio now condss of two parts, both of which contan a homogeneous
st of exposures and comprise 50% of the portfolio. The firg pat of the
portfolio has a positive (3, = 1) and high (R? = 05) corrdation with the
systemdtic risk factor, while the second part has a negative (9, = -1) and
low (R% = 0.1) correlation. As the portfolio contains an equa number of type
1 and 2 exposures, the maximum limiting average credit loss (#* = 0.5) is
atained if the sysemdic risk factor f tends to ether plus or minus infinity.
If f tends to plus infinity, the type 1 exposures default, O f — oo results
in a tal index of 0.5/0.5 = 1 Smilaly, if f tends to minus infinity, the
type 2 exposures default, resulting in a tal index of 0.9/0.1 = 9. Following
dandard results for tail behavior from, eg. lbragimov and Linnik (1971),
the fatter tal dominates i.e, the one with tal index 1. This dso follows
from (24), where we take the minimum of 1 and 9.

5 Credit loss quantiles of stylized portfolios

In Sections 3 and 4 we dudied the behavior of the limiting default loss
digribution in the stylized setting of Bekin, Suchower, and Forest (1998a)
and somewha more generd factor models. In this section, we investigae
the behavior of credit loss didributions in more detall. We generdize the
previous sgt-up by dlowing for differences in initid raings, loan portfolio
maturities, and meagnitudes of the sydemaic risk component.

The corporate bond maturities A4 may vay from 1, 5 to 10 yeas All
bonds are assumed to be of the same type. At the outset, we evauate the
bonds a par using the yidds taken from the CreditMetrics site on October
6, 1998. The base yield on the bond is increased by the credit spread. This
credit spread depends on the initid raing of the firm (see further below).
The spreads were aso downloaded from the CreditMetrics site, see Table 1.
We assume condant base yields and credit spreads over the credit risk eva-
uation period in order to focus entirdy on the effect of credit risk without
incorporating market risk.

The trandtion probability matrix used is presented in Table 1. We use
a dasdfication with 7 caegories AAA, AA, A, BBB, BB, B, and CCC.
In addition, we have the default category D, see dso Figure 1. The tran-
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sition probabilities are used to determine the binning congtants ¢, through
(6). Default and rating migration probabilities are then equd to long-term
higorica  averages.

We condgder three different qudity levels for the initid portfolio. The
high-qudity portfolio conditutes of (equa) postions in AAA, AA, and A
rated companies while the medium qudity portfolio has (equad) postions in
BBB, BB, and B raed firms. Findly, the low-qudity portfolio only contains
CCC rated firms.

To complete the comparison, we condder three different vaues for the
degree of systematic risk: R? = 0.2,0.4,0.6. We assume that these R?’s
correspond to a one-factor model where dl (3;’s are postive, such that v; = 1.
All firms have the same R? , ie, R} = Ré. The chosen values of R? imply
tail indices as defined in (23) between 4 for R = 0.2 and 2/3 for R? = 0.6.

Usng the present setting, we derive the credit loss digribution. Note
that the right-hand sde of (12) reduces to

Ut cre — VR?Y ko1 — VRZY
Sl (22 <[

k=1 ¢=1

-7 (k,£),  (25)

where r = 8, ¢ denotes the fraction of firms in the portfolio with initid
raing k, eg., 33% for AAA (r = 1) in the high-qudity portfolio, and #(k, £)
is the credit losgan on the corporate bond when a firm migrates from
raing k to raing ¢, i.e,

QT—wefye) =1 +y) M for £=1,...,7r-1,
7(k,8) = {

1+ for £ =7,
(26)
with y; the yidd on an M-year corporate bond with initid reting k.

Usng the methodology mentioned in the firs comment to Theorem 1, we
can now compute the credit loss quantiles without resorting to smulations.
The expected loss and its variance can moreover be computed by numerica
integration, see (16). The boxplots in Figure 3 summarize the 27 credit loss
digributions resulting from our expeiments.

Firg consider the effect of changing the degree of systematic risk, R2. It
is clear that more systemdtic risk leads to more prolonged tals. The upper
credit risk quantiles dl shift to the right. Note, however, tha the lower
quantiles may shift in the oppodte direction, see for example the medians of
the C rated portfolios. This sems from the fact that credit rating upgrades
will aso be more corrdated over the different exposures in the portfolio.
The €ffects are substantid. For cetan sdtings, the 99.9th percentile of
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Figure 3: The figure summarizes the effect of varying maturities, systematic risk, and
portfolio quality on the limiting credit loss distribution by means of boxplots. The 3 left
plots express the credit quantiles as a fraction of the notional whereas the three right plots

express the credit quantiles in terms of the numbers of standard deviations in excess of
the expected loss. Each row of two plots corresponds with a given maturity. Each plot
contains 3 panels corresponding with different degrees of systematic risk R2. Each panel
comprises 3 boxplots representing credit loss distributions of a high-quality portfolio (A)

with equa positions in AAA, AA, and A rated firms, a medium quality portfolio (B) with

equal positions in BBB, BB, and B rated firms, and a low-quality portfolio (C) consisting

of CCC rated firms only. Each box represents the interquartile range of credit losses, the
middle line indicating the median. The whisker of the boxplot has 4 markings, relating to

the 0.9, 0.95, 0.99, and 0.999 quantile of credit losses.

21




¥

credit losses may shift by more than 20% of the invested notiond when R2
is increased from 0.4 to 0.6.

If we express the quantiles in terms of standard deviations in excess of the
expected loss (right pands in Figure 3), we see a remarkable feature of credit
loss didributions. The digributions with the most prolonged tals appear to
have the smdlest ‘surprisg dement in terms of dandard deviations. Though
the C raed portfolios have the highest 99.9% quantiles, these quantiles are
only about 3 to 4 standard deviations in excess of the expected loss. This
is the number one would expect when usng a normd didribution. By con-
trast, the 99.9% quantiles of the A rated portfolios gppear dmost negligible,
but they are between 9 and 13 standard deviations in excess of the expected
loss Thee large numbers illudrate that the use of the norma didribution
for approximating credit loss quantiles may be completely ingppropriste in
this case the 99.9% quantile of the norma is only about 3 standard devi-
aions in excess of its mean. The log-normd digtribution, by contrast, has
its 99.9% quantile about 9.4 standard deviations in excess of its mean. As
auch, the log-normad may be more suited for the highly rated portfolios, but
it will prove ingppropriate for the portfolios with many low-rated exposures.
Intead of relying on the norma or the log-normd, it gppears more appro-
priste to use the limiting digribution of Theorem 1 directly, ether usng the
andyticd method of the present paper, or the more traditiond simulation
based methods, see, eg., JP. Morgan (1999). In any case, great care has to
be taken in interpreting credit loss quantiles represented in terms of standard
deviations in excess of expected loss.

Next, Figure 3 clealy shows that low-quality portfolios have a worse
credit risk performance. Indeed, upper credit loss quantiles shift to the right if
one includes more poorly rated companies in the portfolio.The lower quantiles
adso ghift to the right most of the time. If the maturity of the bond is as long
as 10 years, however, the lower quantiles shift to the left for a high degree of
systematic risk (R? = 0.6). If we express dl quantiles in terms of standard
deviations, we again note the reverse in the magnitudes compared to the raw
quantiles.

Findly, the bonds maturities appear to have only minor effects on the
credit loss quantiles. Of course, longer maturities give rise to higher upper
credit loss quantiles. For 1 year bonds, the only credit losses are those due
to default. For 5 and 10 year bonds, we dso have to teke the effect of rating
migrations and differing credit spreads into account. These effects will have a
higher impact the longer the maturity, i.e, the higher the duration or interest
eladticity of the bond. The effect can work both ways, because upgrades as
well as downgrades have a larger effect for longer maturities.
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Table 20 Percentage of firms in the portfolio with specific initid ratings
Rating AAA° AA A BBB BB B CCC
% 3 13 30 22 17 14 1

6 Examples based on empirical data

In the previous section, we dudied the behavior of the limiting credit loss
digribution for sylized portfolios The advantage of using such portfolios is
that one can isolate the effects of parameter changes on the limiting didri-
bution. On the other hand, the credit loss quantiles have limited practica
applicability for credit portfolios in practice. In this section we dudy the
limiting digtribution on a more redidic portfolio of corporate bonds.

We need 5 types of datar the raing migraion probabilities, the yields
and yidd gsoreads, the initid ratings of the exposures in the portfolio, the
credit loss functions «(-), and the R%s of the factor modd (2). The rating
migration probabilities, yidds, and yidd spreads used in this section are the
same as in the previous section and were reported in Table 1.

Because proprietary data on the typicd qudity of a bank’s portfolio are
difficult to obtan, we consder a portfolio with initid rating distribution
equa to the didribution implied by the totd number of S&P rated companies
in 1997, see S&P (1998). The raings empiricd didribution is given in
Table 2 and comprises a wide vaiety of firms. The reported distribution
forms the benchmark case. For sake of comparison, we aso consder a low-
initial-rating and a high-initial-rating portfolio. The high-rating portfolio
IS obtained by upgrading exposures in the benchmark portfolio (except the
AAA ones) by one category. Similarly, the low-rating portfolio is constructed
by downgrading the exposures in the benchmark portfolio (except the CCC
rated firms) by one category.

Suitable empirical vaues for the R? are obtained as follows. We take eg-
uity returns as a proxy for the surplus variables S; in (2), see dso JP. Mor-
gan (1999). We downloaded the Research Top 2000 company list (comprising
monthly total returns of 1762 lised companies) from DATASTREAM Inc.
The sample period runs from January 1980 until December 1998. We regress
each return on a congant and on the tota return of the S&P500 index. If less
than 5 years of data are avalable, the firm is omitted from the sample. This
eventudly results in a totd of 1645 R%’s. Figure 4 presents kernel estimates
of the R? frequency digributions for three different data frequencies low R?
(monthly data), midde R? (quaterly daa), and high R? (annud data).

Given our avalable data s, we did not find any dgnificant reationship
between R? vaues and firm ratings. We therefore impose the same distri-
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Figure 4: R? values of factor model regressions using monthly, quarterly, and annual
data. The data are obtained from the Research Top 2000 list of DATASTREAM Inc. and
comprise 1762 firms observed over the period January 1980-December 1998. The factor

model explains total return of the firm by a constant and the total return on the S&P500.
A minimum of 5 years of datais used for the factor model regressions.

bution of R?s per rating categories. We aso inspected the values of the
directiona vectors v; of Theorem 1. In our onefactor set-up we have v; = 1
or v; = -1 depending on whether §; > 0 or 3; < O, respectively. For the
vagt mgority of firms in our sample, the estimated §; was podtive and none
was found to be dgnificantly negative. Thus we can safdy st v; = 1 for dl
exposures in the sample.

As the dructure of a typicd bank portfolio is difficult to determine due to
data (non)-avalability, we only condder a fixed maturity loan for each firm
in the portfolio. This can, however, easly be dtered. In our present sudy,
the maturities and szes of the loans are identicd for dl firms. This may seem
overly smpligic. Note, however, that the sze and maturity of the loan can
be interpreted as a kind of portfolio average, see (19), such that the maturity
of the bond can be interpreted as the maturity of the bank portfolio. As a
result, only conddering an identica fixed maturity loan for esch firm is a
viable gpproach from a limiting portfolio point of view. Of course, differing
loan szes across firms may be very important for the adequacy of the limiting
digribution as an gpproximation to the credit loss didribution for portfolios
of finite Sze, but this is deferred until Section 7. We consder the same three
cases as in Section 5, namdy a unit loan 9ze with a maturity of 1, 5, and 10

years, respectively.
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A find important difference with the set-up of Section 5 is that we con-
Sder a non-zero recovery rate. Based on S&P (1998), a redigdic sdting is
obtained if we set the recovery rate to 0.5 for al bonds and firms. This means
that the lower line in (26) is replaced by (1 + vx)/2.

The results are presented in Figure 5. Altering the parameters of the
credit loss didribution seems to shift the quantiles in roughly the same di-
rection as Figure 3. Longer maturities, lower portfolio quaity, and a higher
degree of sysematic risk al make extreme credit losses redizations more
likdy. For example, usng the quaterly ingead of the monthly R? for the
benchmark portfolio results in a 99.9% credit loss quantile that is higher by
about 2% of the notiond. A 4% increase in terms of the notiond is estab-
lished for the monthly R? vaues if the maurity of the portfolio is incressed
from 1 year to 10 years. The differences in the upper credit loss quantiles
ae extremdy large if the initid raing didribution of the portfolio is varied
from high-qudity (H) to low-qudity (L). By contrast, switching from the
quaterly to the annua R?’s has virtudly no effect.

Concerning the sze of the upper quantiles, we note that for the bench-
mark portfolio with the R?’s based on monthly data, the 99.9% quantile lies
between 5% and 13% of the invested notiond. For a typical bank portfolio,
we expect a duration of 5 rather than 1 or 10 years. For the 5 year maturity
bond, the 99.9% quantile lies between 7 and 9 per cent of the notiond. This
comes close to the number of 8% prescribed by the Bade proposds, Bade
Committee on Bank Supervison (1988). For high-qudity portfolios, the typ-
icd 99.9% lies sgnificantly below the Bade guiddine of 8%, while the reverse
holds for the low-qudity portfolios. Also note that the norma approxima
tion is not agpplicable in the present empirica setting. The 99.9% quantiles
al lie fa more than 3 dandard deviations above the expected loss, which
would be the appropriate number for the norma digribution. Also note the
ingpplicability of the log-normd didribution, as the 99.9% quantile lies sub-
dantidly above or beow 9.4 for most portfolios consdered. In any case, it
appears that proper credit risk management should dlow for more diversfied
cgpitd requirements depending on the maturity, compodtion, qudity, and
sysematic risk of the portfolio. Similar foca points aoply to supervisory
inditutions  for credit risk.
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Figure 5: The figure summarizes the effect of differing maturities, systematic risk and
portfolio quality on the limiting credit loss distribution by means of boxplots. The plots
express the credit loss either as a fraction of the notional (left 3 panels), or in terms of
the number of standard deviations in excess of the expected loss (right 3 panels). Each
row of 2 plots relates to corporate bond portfolios of a given maturity. Each plot contains
three panels for three different degrees of systematic risk R2. The left panel is based on
the distribution of R2’s using regressions with monthly data (M-R?), while the middle and
right panel use quarterly (Q-R?) and yearly (Y-R?) data, respectively. See also Figure 4.
Within each of these panels, 3 boxplots are presented for a high-quality portfolio (H)
with initial rating distribution as in Table 2, but with all firms upgraded by one rating
category; a benchmark portfolio (B) with initial rating distribution as in Table 2, and
a low-quality portfolio (L) with al firms downgraded one category with respect to the
benchmark situation. Each box represents the interquartile range of credit losses whereas
the middle line indicates the median. The whisker of the boxplot has 4 markings, relating
to the 0.9, 0.95, 0.99, and 0.999 quantile of credit losses. The R? distribution is generated
using data extracted form DATASTREAM Inc. A recovery rate of 0.5 is used for al bonds.
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7 Speed of convergence to the limiting distri-
bution

So far, we have concentrated on calculating credit loss quantiles if the number
of exposures in the portfolio gets very large. For credit risk management,
however, quantiles correponding to a limited number of exposures in the
portfolio may be more rdevant. In this section we invedigae for which
portfolio Sze n the upper quantiles for the limiting didribution provide a
reasonable agpproximation for the finite sample quantiles. As in the previous
sections, we concentrate on the one-factor modd.

The previous section conditutes the theoretical framework for sudying
the speed of convergence towards the limit law. We only consder loan ma-
turities of 1 year and 5 years. Note that credit risk equds default risk for
a one year maturity. In contrast, for a maturity of 5 years, credit risk both
encompasses default risk and risk due to credit rating migrations. For each
of the 2 mauritiess, we conduct 9 different experiments, relaing to 3 dif-
ferent digributions of R? (Monthly, Quarterly, Yealy) and 3 initid raing
digributions (High, Benchmark, Low).

For a finite number of exposures n in the portfolio, the distribution of
R?s over the portfolio has to be discretized. Let Fi;' () denote the inverse
cdf. of the R*’s corresponding to the p.df.'s provided in Figure 4. Assume
Ny exposures with initid raing k in a portfolio of sze n. For these exposures,
we set the R? vaue equd to

Foi (i (ng + 1)), (27)

fori=1,..., ng This discretization implies an identicd didtribution of R*’s
across raing categories when the number of exposures becomes large. For
finite n, the R®’s are spread evenly over the interva [0,1] using the inverse
cdf. For example for the R*'s based on monthly data this implies thet there
will be reaivdy more low R? vaues than high ones for evary n. In the limit
n — oo, the postulated distribution Fre(-) of R? is recovered for every rating
category.

We extend the above Smulation exercise by introducing a measure of
portfolio ‘heterogeneity’ or ‘disperson’. Portfolio digperson may dow down
the convergence towards the limiting digtribution. In order to create disper-
son in the portfolio, we only vay the loan sizes Let v € N u {0} be our
measure of portfolio disperson. If v = 0, we st dl loan Szes to unity such
that there is no dispersion. If ¥ > 0, we set

(4, kj, &5) = it (ks 45), (28)
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where 7(-) denotes the loss function of a unit loan size, and g; denotes the
dze of loan j. Let |z] again denote the integer part of x. Then we let
|n/v| of the exposures have loan sizes that are uniformly distributed over the
interval CO5 + v, 1.5 + v]. The remaining exposures have loan sizes uniformly
disributed over the interva [0.5,1.5]. Broadly spesking, we now have a
portfolio with both large and smal loans. The large loans comprise a fraction
of about 1/v of the portfolio, while the remaining fraction of (v—1)/v conssts
of smdl loans By increasng v, we can increase the loan portfolio’'s degree of
disperson or heterogeneity. For example, for v = 1, loan sizes are distributed
uniformly (per rating category) over the interval [1.5,2.5], such that the
degree of heterogeneity is rdatively modest. For v = 10, 10% of the portfolio
conggs of loans tha have an gpproximatey ten times larger than the median
portfolio loan dze. This type of disperson may dgnificantly digort the
goplicability of the limiting digribution for finite n.

Intead of introducing the different loan dzes directly a the portfolio
level, we introduce them a the initid rating levd. In paticular, for each
reting category k£ with n, exposures, we consider a fraction of 1/v of larger
loans and (v -~ 1)/v of smdler loans. We adapt the procedure for assign-
ing R2-values to individua exposures, accordingly. In paticular, we use
the approach sketched in (27) per rating category and segment of loan sze
(large/amdl) ingead of per rating caegory only.

We ae now ready to cdculate credit loss quantiles of the limiting credit
loss digribution under different scenarios for maturities, portfolio digpersion,
R? digribution, initid rating digribution, and portfolio sze. These quantiles
are used as the benchmark in checking the convergence speed of the credit
loss didribution. They can be computed using (17) without the need for
simulations.

For finite portfolios computing quantiles is much more difficult. Gener-
dly, we have to resort to smulations. Edsimated quantiles of credit losses
based on dmulaions can be very ungable We tackle this problem as fol-
lows. For portfolios of sze n = 100,200,. . . , 1000, we first generate 20,000
smulaions from the factor mode (2) usng 10,000 pairwise antithetic draws.
These smulations are used to obtain estimates of the 50th, 75th, 90th, 95th,
99th, and 99.9th percentile of credit losses. In order to further reduce the
vaiability of the smulated quantiles, this process is repeated 10 times. The
find edimates of the quantiles are the averages over the 10 replications. The
discrepancies between these averages and the limiting distribution’s quantiles
in percentages of the notional are presented in Figures 6 through 13.

For the homogeneous portfolios (v = 0), the results in Figures 6 and 7
reved tha the quantiles of the limiting credit loss didribution generdly lie
veary cdose to those of the didribution for finite portfolio sizes The difference
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Figure 8 The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
1 year for al firms in the portfolio. The degree of portfolio heterogeneity v is 1, so the bond size is uniformly distributed on the interval
[1.5,2.5). The discrepancy is given in percentage terms of the notional. The figure contains 9 plots. The columns contain the results
for given degree of systematic risk (RZ) based on monthly (M), quarterly (Q), or annual (Y) factor model regressions, while the rows
contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles of the finite portfolios are based on
averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of size 20,000.
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Figure 9: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a

portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity

of 5 years for al firms in the portfolio. The degree of portfolio heterogeneity » is 1, so the bond size is uniformly distributed on the

interval [1.5,2.5). The discrepancy is given in percentage terms of the notional. The figure contains 9 plots. The columns contain the
results for given degree of systematic risk (RZ) based on monthly (M), quarterly (Q), or annual (Y) factor model regressions, while the
rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles of the finite portfolios are

based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of size 20,000.
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Figure 10: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
1 year for al firms in the portfolio. The degree of portfolio heterogeneity v is 5, so 20% of the firms have a loan size that is approximately

5 times the loan size of the remaining 80% of firms. The discrepancy is given in percentage terms of the notional. The figure contains 9
plots. The columns contain the results for given degree of systematic risk (R?) based on monthly (M), quarterly (Q), or annual (Y) factor
model regressions, while the rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles
of the finite portfolios are based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of
size 20,000.
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Figure 11: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity of
5 years for al firms in the portfolio. The degree of portfolio heterogeneity v is 5, so 20% of the firms have a loan size that is approximately
5 times the loan size of the remaining 80% of firms. The discrepancy is given in percentage terms of the notional. The figure contains 9
plots. The columns contain the results for given degree of systematic risk {R?) based on monthly (M), quarterly (Q), or annual (Y) factor
model regressions, while the rows contain the results for a given distribution of initial ratings (see Section 5 for the details). Quantiles
of the finite portfolios are based on averages over 10 estimates of the appropriate quantiles. The quantiles are estimated on samples of
size 20,000.
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Figure 12: The figure presents the estimated discrepancy between the upper credit loss quantiles (90%, 95%, 99%, and 99.9%) for a
portfolio consisting of n firms and those of the corresponding limiting distribution. The figure presents the results for a bond maturity
of 1 year for al firms in the portfolio. The degree of portfolio heterogeneity v is 10, so 10% of the firms have a loan size that is
approximately 10 times the loan size of the remaining 90% of firms. The discrepancy is given in percentage terms of the notional. The
figure contains 9 plots. The columns contain the results for given degree of systematic risk (R?%) based on monthly (M), quarterly (Q),
or annual (Y) factor model regressions, while the rows contain the results for a given distribution of initial ratings (see Section 5 for
the details). Quantiles of the finite portfolios are based on averages over 10 estimates of the appropriate quantiles. The quantiles are

estimated on samples of size 20,000.
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aopears to be in an acceptable range for portfolios with a leet n = 300
exposures. This cetainly holds if we account for the sampling uncertainty in
the quantile estimates for finite portfolio sSzes see for example the ingability
of the edimaed 99.9% quantile in the bottom-middle and lower-right panels
of Figure 7. For homogeneous portfolios, the convergence behavior is very
amilar for different initid rating digributions and vadues of sysemdic risk
(R?). The maturity does not have a significant effect on convergence either.

Figues 8 and and 9 show that smdl deviaions from portfolio homo-
genaity leave the finite portfolio convergence behavior virtudly unaffected.
A number of 300 to 400 exposures in the portfolio suffices to get a good
maich between the finite sample quantiles and the limiting quantiles Hence
the limiting digtribution provides a good approximation for most practica
purposes.

If the portfolio heterogeneity is more pronounced, the convergence behav-
ior is affected ggnificantly. This is shown in Figures 10 and 11 for » = 5, and
in Figures 12 and 13 for v = 10. As expected, much larger portfolio szes are
needed to obtain a smilar accuracy as in the case of homogeneous portfolios,
i.e, n should preferably lie within the range 500-800. Thus the dowdown in
convergence speed is more pronounced for larger vaues of v. For portfolios
comprisng more than 1,000 exposures, however, the figures dso reved that
the limiting digribution 4ill provides a ussful  gpproximation for practica
rnsk management problems.

Summarizing, the limiting didribution fits the didribution for finite port-
folios very closdy for reasonably szed homogeneous portfolios (n > 300).
The fit decreases if the homogeneity of the portfolio decreases, ie, if v in
creases. In that case, larger portfolio sizes are needed, n between 500 and
800. It is wdl-known that there is a generic uncertainty surrounding some
of the input parameters of credit risk modds, eg., precise default probabili-
ties and recovery rates, as well as some of the output, eg., sSmulated upper
(99.9%) quantiles. Given this uncertainty, the discrepancies reported in Fg-
ures 6 through 13 seem acceptable once one is willing to adopt a smulation
based credit risk management modd. The additional error caused by the use
of a limiting didribution to gpproximate quantiles of finite portfolios appears
limited for al practicd purposes if the portfolio sze is sufficiently large

8 Conclusions
In this paper we dudied the credit loss digribution of portfolios comprising

a large number of exposures. We concentrated on the study of corporate
bond or loan portfolios, but our results can be generalized towards more
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complicated financid indruments. The proposed approach builds further
upon the factor modd approach to credit risk as lad out in JP. Morgan
(1999). Using asymptotic didribution theory, we formdly derived the credit
loss digribution if the number of exposures in the portfolio gets large. The
limiting didribution reveds tha tal behavior of credit losses is highly influ-
enced by the fit of the factor modd regressons, where the fit is measured in
teems of R2. Higher vdues of R? imply more systemdic risk in the credit
loss portfolio and, therefore, fatter tails of the credit loss digtribution.

Usng an extreme vadue theory perspective, we derived the tal indices
of the credit loss didribution in onefactor and multi-factor models. Agan
we found that higher vaues of R? lead to smdler tal indices i.e, fatter
talls. If, however, one dlows for heterogeneity in the fits of the factor mode
regressions, i.e, differing R¥s over the exposures in the portfolio, we find that
the smdlet R? vdues ultimaey dominate tal behavior. The exposures with
the smdles R% have the rdaively highest idiosyncratic risk components. As
idiosyncratic risk can be diversfied, the contribution of these exposures to
the limiting digribution of credit losses is samdl. As a reault, it becomes less
likdy thet the limiting credit loss will hit the maximum loss which in turn
implies that the tal of the didribution is thinner. For multi-factor modds,
we found that the tail index is ceterus paribus @& most as high as that of
the onefactor modd, implying a fatter tal for multi-factor modes These
effects may be counterweighted by a drop in the maximum possble limiting
loss for multi-factor models vis-avis onefactor modes.

When goplying our limiting result to dylized and empiricdly oriented
portfolios, we found that perturbations in factor modd fits (R2?) and portfolio
quaity (rating didribution) matter a grest ded for credit risk. Quantiles
of the limiting credit loss didribution can vay subgantidly depending on
the choices made for these portfolio characteristics. Moreover, expressng
portfolio credit risk in terms of standard deviations in excess of the expected
credit loss produced a reversed ordering of riskiness compared to the direct
measurement of credit loss quantiles. Thus, one should be very careful when
interpreting the standard way of reporting credit losses in terms of standard
devigtions. From cdculations based on representative empirica  portfolios
it further proved that the Bade 8% capita requirement seems a reasonable
approximation to the 99.9% quantile of the credit loss digtributions for typicd
portfolios of corporate rated bonds.

The derived limiting didribution is only intereting as fa as it provides a
good agpproximation to the credit loss didribution of a finite szed portfolio.
We therefore studied the speed of convergence of the credit loss digtribution
for an increesng number of exposures and found tha this convergence is
rapid enough for most practicd circumstances. The limiting didribution ap-
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pears gpplicable if the portfolio comprises more than say 300 exposures. The
degree of portfolio heterogeneity, however, plays a key role in the convergence
behavior. If the portfolio contans a highly heterogeneous st of exposures
(eg., drongly differing loan szes), the required number of exposures per
portfolio might be higher for the limiting digribution to become applicable.

The paper suggests severd important topics for future research. Fird,
our gpproach can be extended to a dynamic setting. Second, the mode
can be used to obtan a complete assessment of portfolio risk, comprisng
both market risk and credit risk. Such an integrated credit-risk/market-risk
management perspective would provide a vauable contribution to the current
literature.

A Proofs

Proof of Theorem 1: For simplicity, we only provide the proof for =(j, kj, £;, ¥) =
w(j, kj, £;). The proof for non-redundant + can be established similarly. Let T, be the

column vector with elements Sy, . . . , S,, and summarize the regression equations for the
Sj(j=1,...,n) a8 Tn=Bpf + &awith& = (e1,.. . ,&,)T,ad By = (b1, . . . ,Bn)- &n
has diagonal covariance matrix X, = diag(wy , . . . , Wn)-

Let h, be defined as h, = E(f|T,.). Then the sequence (k,) is a uniformly integrable mar-
tingale, which by the Martingale Convergence Theorem has an as. limit h, = E(f|S1, S2, . - ),
see Doob (1953). Since for &l p > 1 dl moments E |h,|? are bounded by E |f|?, we also
have that E |h, — hoo|? = O (for p > 1). Moreover, since Cov(f = hwo, h,) = 0 we also
have the identity

Cov(f) = Cov(f = h,) + Cov(ho).

We now compute Cov(h,). As a first step we have Cov(h,) = Cov(f) = E Cov(f|T,).
Since f,S1, S, ... is a Gaussian sequence, we have that

E Cov(f|Ty) = Cov(f|T,) = Cov(f) = Cov(f, T,) Cov(Ty) ™" Cov(Ty, f) =
O — QB (BaQy B, + £,)7'BaQly = (7' + B, S;'B,)7 1

Hence Cov( hs) = Qy = (7' + B £ Bn)™" . Notice that this gives an increasing seguence.
Given the first part of Assumption 1, we obtain that Cov(heo) = §25. But then Cov(f -
h,) = 0, and so he = f with probability (w.p.) 1, because f and he have the same
expectation.

Next we look at the conditional distribution of S, given T,,. The distribution is
Gaussian with mean mn41 = B, .1 hn and variance

Sne1 = (Wntl + Brs1QBnt1) = Bay1Q4 By (BaQyBl + T,) ' BuQy B -
wnt1 + Bap1 (7' + By B Bn) " B

Introduce the following notation. B, = ;' + Bi2;'Ba and g = B, Py B Then

- 1 1
2 T T -1 —_—
Sp4+1 = Wnt1 + ﬁn+1 (Prt1— - ﬂn+lﬂn+1) Bn+1 = wn+1_‘_1 —Gal © Wntl-
n W4l
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Define H, = P, — Q7'. We have g,/w, = B (n~1P,)~B,/(nw,). From parts 1 and 2
of Assumption 1, we then obtain & — N ("—IH")- Bn 0 and én(—"-l—H"——_—) 0. The
latter follows from the convergence of H,/n and B B/ (nwy,) to a posrtlve definite matrix
and to zero, respectively. As a result, we establish that g, /wy, = 0 and s, ; fwn41 = L.

We now turn to the analysis of C,. The first idea is to compensate C,, to form a
martingale. So we look at

My =Cp - z E(ﬂ'(]’ kjaej)lTj-l)' (Al)
=1

Let 14, stand for the indicator of the event that a transition of firm j from its initial state
(ratlng) k; to £ takes place. Then we can write «(j, k;, £;) = Y1, 71'(], kj, £)1k,¢, and the
condltlonal expectation 3°7; E(w(j, kj,£)|Tj-1) in (Al) becom& Yooy 7, k],é) E(1ke|Tj-1)-
By definition of the numbers ¢k and the fact that (unconditionaly) S; has a normal dis-
tribution with mean zero and variance a = B;Q48; + w;, such a trangition takes place if

S; fals into the interval (cx, 1105, ¢, ,o]) See Section 2. Since, conditiona On Tj-1, §;

has a N(mj, s ) distri butlon we get ‘the’ conditional probability

Py = EllkelTj—1] = Plek;,e-105 < S5 < cx;405)
= BTy (T m T (A2)
J J

The next step is to show that the martingale centra limit theorem holds for M, or
rather, that (Al) is of order \/n in probability. We compute the conditional variance
A(M); = E[(M; — M;-1)?|T;-1]. In order to get a decent and compact expression for this,

it is convenient to introduce some additional notation. let m; = (n(j, k;,1), - . ., 7(J, kj, 7T
and Pj=(F, . . . : P;;)T. Then it is straightforward to show using elementary calculatlons
that A(M)' (dxag(P) PPT)7rJ This is obviously bounded by «[x;. From

Assumption 1, We have that = Z -1 7r 7; 1S bounded. Hence we obtain thaf[ M, is of
stochastic order at most /n, see Doob (1953)

The next object to study is the compensating term in (Al). We will show that it is of
order n, so therefore (in view of the asymptotics of M,) its asymptotic behavior coincides
with that of C,. We aim at showing that we can replace m; and s; in (A2) by ﬂJT fand

ag;. Consider
Ck;¢05 — My

3( ). (A3)

]
Use the notation ~;; = ckjgaj/w}/z, &= Bj/w;/z, and v; = s; /wjl-/2 to rewrite (A3) as
®((vje =& hyj-1)/v;)- (Ad)

Notice that v; > 1 and that v; = 1. We want to approximate (A4) by ®(vj¢ = 5 f)-
Therefore, we consrder<I>(('y,g-§Th] 1) Jui)= @(vje = & £). Let (h}, v5) denotearandom

point between (h;—1,v;) and (f, 1) and let t; = (yje — §Th*) Moreover, let ¢(-) denote
the density of the standard normal distribution. We now apply the mean value theorem,

and obtain
®((vje = & hj—1)/vj) — (e = & f) =
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¢(tj/v;)(_%,—(7j£ - §;h')/(v;)2) ( hj-1-f ) _

i ’Uj—].

Rewrite this with Ah;=h;_; - f and Av; = y; - las
—olt355) L Ay — ot /) 2 L A
31V vl i ]/Uj)v_;v_; Uj-

Now consider the absolute value of each of the two summands. Since ¢ is bounded by 1 and
U; > 1, we obtain that the first summand is bounded by |§]T Ah;|. As ug(u) is aso bounded
by 1, we moreover obtain that the second summand is bounded by |Aw,|. Therefore, the
absolute value of &((v;e — & hj—1)/v;) = ®(yje = & f) is bounded by £ Akj| + |Av;).
Notice that this is independent of ¢.

Write P]Q for the column vector with elements

ck,; 005 — B f ck; 4-105 — B] f

P = &( 7 ) — &( 7 ).
Then
(Pit = Ppp)® < 4(l&] Ak + [Av;))? < 8(1&] AR 2 + |Av;?)
< 8(& & AR ARy + |Ay;l?).
Hence

(Pj = P)T(P; - P}) < 8r(&] &AR] Ah; + |Av;[?). (445)
Now consider the difference of

n

n~'> " Elm(, kj, 1) Tjo1) = nt Z m; P
=1 =1

and n~' 3%, nJP?, ie, n7? Z?:l n] (Pj = PJ). lts absolute value is bounded by
[t Y w2 0 (P — PI9YT (P = PP)JY/2. The first factor is bounded by As-
sumption 1. We henceforth concentrate on the second factor. Since we know that Ah; - 0

w.p. 1 and Av; = 0, we have that for any given 7 > 0O there is an as. finite random number
N such that | Ah; <nand Av;|<nif j> N on asubset of the basic probability space
with probability one. For each element of this subset we splitn‘lz:?=1 (Pj=P)T (Pj —P)
as n-! Ef’zl(Pj - POT(P; - PY) +n T (P = P9)T(P; = PY), because we can

take n bigger than N. The first term obviously tends to zero if n — 0. Because of (A5),
the second term is bounded by n~1 2?:1 8r(§]7'§,- + 1)n?, which is less than a constant

times n2. The latter follows from Assumption 1 by noting that & = ﬂj/wjl-/z. Because 7
is arbitrary, we can now conclude that n—? Z;’zl 7] (P; = P?) - 0 as. Now use the final

part of Assumption 1.
Finally, note that

rro  Cov(Si BT BT
77 Cov(S;) - COV(ﬂ,-Tf) Wi +5;Qf/3j,
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such that
BIQsB; 1 - R?
wj  1-R}™ 1—R2'

This proves the theorem. .

Proof of Theorem 2: Using Corollary 3.3.13 of Embrechts et al. (1997), it suffices to
prove that
m1=0). F(O) 1= 4
ct1l -F(C) P2

with F(-) and f(-) the c.df. and p.d.f. of credit losses, respectively. Define u; =1 = C.
We can now rewrite (A6) as

(A6)

ou - f(1-uy)
T Fa—u) (A7)

Using (19), we can rewrite (A7) as
T g ()
lim

u140 =1 (uyy/1—p2—c ’
p'¢<§ (Upl P ) .¢(¢_1(u1))

(A8)

with &(-) and ¢(-) the standard normal c.d.f. and p.d.f., respectively. Using the substitu-
tion up = ® M) u; = &(uy), (A8) transforms into

Vo ()
T C=or

(A9)

Now from equation (26.2.13) of Abramowitz and Stegun (1970), we have that for large
negative us
P(uz2)

(1 ofuz ). (A10)

Applying this result to (A9), we establish

P(uz) =

lim

BT pe (Ll" - ¢(uz)

_c)
¢(u2)-ﬂ~¢( \/‘_)

—p2
. _1- 0?
lim (A11)
U2 —>—00 2 2 7
; ual-p+6 (22 ) - oun) °
which proves the theorem. .
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