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Abstract

This paper provides an extensive Monte-Carlo comparison of sev-
eral contemporary cointegration tests. Apart from the familiar Gaus-
sian based tests of Johansen, we also consider tests based on non-
Gaussian quasi-likelihoods. Moreover, we compare the performance
of these parametric tests with tests that estimate the score function
from the data using either kernel estimation or semi-nonparametric
density approximations. The comparison is completed with a fully
nonparametric cointegration test. In small samples, the overall per-
formance of the semi-nonparametric approach appears best in terms
of size and power. The main cost of the semi-nonparametric ap-
proach is the increased computation time. In large samples and for
heavily skewed or multimodal distributions, the kernel based adap-
tive method dominates. For near-Gaussian distributions, however,
the semi-nonparametric approach is preferable again.
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1 Introduction

The last decade has witnessed an explosvely growing interest in the long-run
properties of economic time series. Key words in this area of research are non-
dationarity, unit roots, and cointegration. The concept of cointegration has
witnessed a particularly widespread popularity in the agpplied literature. See,
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eg., Franses et d. (1998) for marketing applications, and Clarida and Taylor
(1997) for an application to spot and forward exchange rates. Other areas
of application include stock markets, the term dtructure of interest rates,
international  trade and purchasng power parity, consumption and income,
and the demand for money.

Cointegrating relations are often given an economic interpretation rela-
ing to maket equilibrium andlor market efficency. As such, it is ussful
to tet whether different economic time series are cointegrated. Stetistical
tests for cointegration have gone through severa stages of development, see,
eg. Hamilton (1994). Here we will focus on cointegration tests based on
the sysems gpproach and the likdihood principle The semind reference is
Johansen (1988). Johansen tests for the presence of cointegrating relations
in the framework of a vector autoregressve (VAR) time series modd. By
assuming a normd didribution for the innovations to the VAR, Johansen is
able to derive a closed-form expresson for the likelihood ratio test Satistics
for the null of no cointegraion agang the dternative of cointegration, as
wel as its limiting digribution under the null. Johansen (1991a) extends the
test procedure to dlow for determinigic trends in the time series.

The assumption of normaly digributed innovations is crucid in deriving
the form of the Johansen text dgatidtic. It is much less important for the
goplicability of the limiting didribution of the test. If, however, innovations
are non-normd, eg., fa-taled or skewed, then the power of the test can be
increasad by exploiting the non-normdity in the esimation and testing Stage.
This can be done by extending the methodology of Johansen to non-Gaussian
likdihoods or quasi-likelihoods as in Lucas (1997a,1998). This is a parametric
goproach which gives stisfactory results if the sdient festures of the true
likdihood are adequatdly captured by the postulated quasi-likdihood. If this
is not the case, then the parametric approach adopted in Lucas may result
in poor power performance, compare the smulations in Shin and So (1998)
for the univariate case.

To avoid the loss in power due to an inappropriate choice of the quasi-
likelihood, it might seem a good idea to edimate the likeihood function from
the data usng (semi-)nonparametric techniques. Hodgson (1998) discusses
adaptive edimation of long-run parameters in an error-correction framework.
His ideas can eadily be extended to the edtimation of the unit root parame-
ters in such modds. For the univariate case, this has been done by Shin and
So (1998). We extend their test procedure in the present paper to the mul-
tivariate setting, thus condructing an adaptive verson of Johansen's coin-
tegration test. Boswijk and Lucas (1997) follow a smilar route and use
semi-nonparametric (SNP) dengty expansons following the idess of Gdlant
and Nychka (1987) ingead of kernd edimation as in Hodgson (1998) and
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Shin and So (1998). Both the adaptive and the SNP approach clam a power
gan ove the Johansen method. Moreover, Boswijk and Lucas dso clam a
power gain with respect to the parametric tests proposed in Lucas (1998).
No forma comparison between the adaptive and SNP methods in the frame-
work of cointegration testing has yet been peformed, such tha it is difficult
to say which of the two methods performs best.

The am of the present paper is to provide a Monte-Carlo comparison of
severd cointegration tests available in the contemporary literature. We inves-
tigate the sze and power properties of the tests under various distributiona
assumptions, sample sizes, and data generating processes. We are mainly
interested in three comparisons. (i) the Gaussan versus the non-Gaussan
teds, (ii) the parametric versus the (semi)-nonparametric tests, and (iii) the
adaptive versus the SNP tests. To complete the comparisons, we aso include
a fully nonparametric cointegration test, in particular the test proposed by
Bierens (1997). This tests builds on a smilar generdized eigenvaue problem
as Johansen (1988,1991a).

The dmulations reved that the SNP approach is a clear winner in smal
samples. The power gan under non-normd innovations does not come a
the cot of a power loss under Gaussan innovations. This stands in sharp
contrast to the adaptive approach. For large sample sizes, however, the SNP
tets have much more difficulty in picking up skewness and/or multimoddity
compared to the adaptive approach. Again, however, the adaptive approach
auffers from a subgtantid power loss if the innovaions are (near) normdl.
The main cost of usng the SNP gpproach over the adaptive approach is the
required computation time.

The paper is set up as follows. Section 2 gives details on the modd and
cointegration test procedures. Section 3 presents the edimation principles
used. This section aso provides some computationd detalls pertaining to
the availdble Gauss code to compute the tets. The smulation sst-up and
results are presented in Section 4. Section 5 concludes.

2 Model and test statistics

Congder the VAR of order p,
Ay = Mye1+ @183+ .+ Po1Yt—pr1+ p + &, (1)

where y;, p, e € RF T, &, e R***for 1= 1,. .. ,p — 1, g, is an observed time
series, 4 is a vector of congtants, Il and @, . . ., $,_; are parameter matrices,
and ¢; is an unobserved innovation process. Model (1) can be augmented with
additiond deterministic components such as seasond  dummies and linear
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trends. These additiond complexities are not the prime focus of our paper,
however, and are therefore omitted from the anayss.

We make the following standard assumption for the process in (1), see
adso Johansen (1988,1991a).

Assumption 1 (i) The roots of |(1—2)-1z2—® (1-2z)—...—®p_12P71(1—
z)| lie outside the unit circle or at +1; (ii) the series Ay is stationary; (iii)
the innovations &; are independent and identically distributed (i.i.d.) with
finite variance-covariance matrix €2 .

Pats (i) and (ii) of Assumption 1 ensure that the time series y, is inte-
grated of a most order one, i.e, the first differences of the time series are
detionary, while the levels are possbly non-gationary. Part (iii) of Assump-
tion 1 dlows us to invoke a multivariae invariance principle to establish the
limiting digribution of our test datidics This assumption can be relaxed
to the assumption of a finite variance marttingde difference sequence a the
codt of additiona complexities in the proofs. As the focus of the present pa
per is not on the limiting digribution theory, but more on the finite sample
performance of the cointegration tests, we gick to the requirement in part
(iii).

Our main interest is in the rank of the matrix Il. If the rank of I] equds
r, We sy there are r cointegrating relations. In that case the matrix 1l can
be decomposed as II = 8T, with ¢ and 8 two k x r marices of full column
rank. The columns of g are caled the cointegrating vectors, while r is caled
the cointegration rank of the sysem. In order to test whether the rank of I
Is equa to r, we introduce the LU-type decomposition of II as proposed by
Kleibergen and van Dijk (1994). Let

_ Q1 0 Ir ﬂ;-l )

I (azl Qg2 ) ( 0 L )’ @)
with 11, Qig1, Qia, and /321 r X T, (k -_ 7') X T, (k -_ 'f') X (k -_ T'), and (k -—
) X T matrices respectively. Moreover, we define o' = (o), ag;) ad g7 =
(I;, By;), and assume that o and § have full column rank. The hypothesis
Hp : rank(IT) = » now boils down to the hypothess Hj : gy = 0, See
Kleibergen and van Dijk (1994) and Lucas (1997a,1998) for more details.

Let vec(-) denote the operator that stacks the columns of a matrix into
a vector. Define 7 = (vec(a)T, vec(®,)7,. . ., vec(®p—1)T, u'). Mot of the
teds in this paper build on the parametric mode (1), combined with a (pos-
gbly misypecified) family of dendties f(e;; v), where v is an additiond pa
rameter vector determining the shape of the density. Defining €,(0, ag) as




the resdud from (1) under (2) for a paticular vaue of the parameters, the
(possbly nonparametricdly estimated) quasi-likelihood L£(-) becomes

T
L(Yr; 8, a2,v) = [ [ £(ex(6, az2); v), (3)
t=1
with Y7 = (y7,. .. , y7), ad T the sample sSze. The dimension of v may

range from zero to infinity. For example, if a Gaussan quas-likdihood with
known covariance matrix is used, v is empty. By contradt, if the densty of
g in (1) is edimated nonparametricdly, v is infinite dimensond. Normdly,
the parameter vector v a least contains the nonredundant eements of the
covariance matrix of the errors, ., see Assumption 1. Our main interest in
the present paper is to compare contemporary cointegration tests that use
different soecifications of v in (3) and/or different methods to edimate p.
To tes the null hypothess Hy : a9 = O agang the dtenaive H, :
az # 0, we condder two types of tests namdy the (quas)-likelihood ratio
(QLR) test and the (quas)-Lagrange multiplier (QLM) tes. A Wdd variant
of the test is not consdered, as the Wad test for a,; = O turns out to depend
on the ordering of the variables in y,, see Kleibergen and van Dijk (1994) and
Lucas (1996). Let 4 and 6 denote the estimates of § under the dternative
and under the null, respectivdy. A smilar definition holds for 7 and 7. We
dso need the additiond notation § and 7 to denote estimates of 6 and v
respectively, based on a prdiminary estimation procedure. We now obtain

QLR = -2 In[£(Y; 6,0, )/ L(Yr; b, s, 9)], 4)

as one of the tests consdered. The QLM tests are somewhat more difficult
to present. Let

Gr = G(Y1;0, as,v), (5)

J1 = J(Y1;6, 020, V), (6)
and

HT = H(YT,G, a22ay), (7)

denote the gradient, the outer product of gradients, and the Hessan of the
quasi-likelihood with respect to (87, vec(ag)T, vec(v)T), respectively. Fur-
thermore, let S denote a sdection matrix such that

S(67, vec(ang) ", vec(r)T) T = vec(ags). (8)
Then the QLM tests we congder are either of the form
NG -1, . .
(SH;IGT) (SHT‘IJTHflsT) (SH;IGT) , 9)
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or
(SH7*Gr)" (SHF JrH;'ST) ™ (SH;'Gr), (10)

where the notation with a tilde, eg., G, denotes evaudion in (8, 0, ), while
the notation with the upper bar, eg., G, denotes evaudion in (6,0, ). The
formulation in (9) will be used for the parametric and semi-nonparametric
cointegration tests, while (10) is useful for the adgptive cointegration test.

For inference, the computed cointegration tests have to be confronted
with a criticd vadue. It is common practice to use the criticd vaues from the
limiting digribution of QLR and QLM. In the present paper, we do not want
to focus on the different regularity conditions needed to establish the limiting
digribution for the parametric, semi-nonparametric, and the adaptive tedts.
For the technicd detals, the reader is referred to Johansen (1988,1991a),
Lucas (1997a,1998), Boswijk and Lucas (1997), Hodgson (1998), and Shin
and So (1998). The limiting digribution, however, is the same for dl tesing
procedures conddered. This is summarized ‘informaly’ in Theorem 1.

Define oy asany k x (k-r) matrix of full column rank such that oo = 0.
Furthermore, define the quasi-score ¢, and the quas-information 7 as

_9ln f(e; v) & 1In f(es;v)
8Et aEtaE;r ‘
Theorem 1 Under ‘suitable’ regularity conditions (see the references men-

tioned above), the QLM tests for model (1) under the additional assumption
K = apg With g € R7, converge weakly to the functional

trace { ({B1dB; )" (BB )™ ([B:dB; )} (12)
with B, = B, ~ [ By, B, and B, two standard (k = r)-vector Brownian

motions with diagonal correlation matrix R, and R containing the canonical
correlations betweenaJe; and o[ Z71¢);.

P = ., I=-E ( (11)

Remark 1 The notation in Theorem 1 is dandard, [ B;dB, dencting the
stochastic integrd [, Bi(s)dBs(s)T, and [ By and [ B,B] denoting standard
Riemann integrdls, [' By (s)ds and [ B (s)Bi (s)7ds, respectively.

Remark 2 Theorem 1 only gives the results for the QLM test. The only
QLR test we condder in this paper is that of Johansen (1991a) based on
the Gaussan quas-likdihood. The limiting digribution of that tet dHdidic
is given by (12) with By replaced by B;, see Johansen (1991a). If a non-
Gaussan quasi-likelihood were to be used for the QLR tedt, additiond nui-
sance parameters would enter the limiting distribution if the quad-likelihood
and the true likelihood did not coincide, see Lucas (1997a). This is why we
concentrate on the use of the QLM rather than the QLR type teds.
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Remark 3 Theorem 1 dates the additional assumption g = apg. This
implies that there are no linear determinigtic trends in the data generating
process. If this assumption does not hold, the limiting digtribution changes in
the familiar way, compare Johansen (1991a). In paticular, the firg dement
of the vector Bi(s) then has to be replaced by s - 05. Similar changes
to the limiting didribution have to be caried through in case additiond
deterministic components are present ether in the regresson modd or in the
data generating process.

Before proceeding with the presentation of the different estimators used
in this paper, we fird pay some more dtention to the way to conduct in-
ference in the present framework. As mentioned in Theorem 1, the limiting
digribution of the cointegration tests consdered depends on the nuisance pa
rameter R, containing the canonica correlations between ale; and ofZ-14;.
It is therefore clear that the criticdl values of the QLM test depend both on
the true likdihood and the quas-likdihood. This means that new criticd
vaues have to be tabulated for each new estimation principle chosen and
each new digribution of the innovations. There are a least two ways to ded
with this problem. The fird agpproach was suggested and implemented by
Lucas (1998). One obtains a consgtent estimate of R using the regresson
resduds &, &, or &, and the estimated quasi-scores o, ¥, or ¥ (and cor-
responding estimates of the quas-information Z). Usng the esimaed vaue
of R, the integrds and Brownian motions in (12) can be approximated by
sums and by random waks, respectively. The random waks have sandard
norma innovations with corrdation matrix R, R, or R. By drawing a large
number of (corrdated) random waks for a given edimate of R and usng
the discretized verson of (12), one can obtain an estimate of the appropriate
asymptotic critical vaue or p-vdue of the test. The computation time re-
quired for these smulations is feasible for practicd purposes. We adopt this
smulation based method in the Monte-Carlo comparison in Section 4. As
an dtenative to the smulation based method, one can use Gamma gpproxi-
mations to the usud limiting digtribution of the Johansen cointegration test
and mix these with an independent stochestic term depending only on the
(estimated) matrix R. For the univariate case, this approach was suggested
by Abadir and Lucas (1996), while the multivariste case has very recently
been addressed by Boswijk and Doornik (1998) and Doornik (1998).




3 Estimators and implementation of test statis-
tics

In this section we consder the different choices for the quas-likelihood (3).
We aso discuss how the parameters of the quad-likelihood can be chosen,
and how these edtimates can be used in the construction of the cointegra-
tion teds Each choice of the quas-likdihood and edtimation principle is
treated in a separate subsection. The find subsection contains some details
on the non-parametric cointegration test procedure of Bierens (1997). This
test is included for completeness. It can be used to contrast the results for
the parametric modd (1) combined with a possbly nonparametricaly esti-
mated quas-likdihood, with the results one obtains by a fully nonparametric
approach.

3.1 Gaussian quasi-likelihood

As an obvious benchmark case, we consider the Gaussan QLR and QLM
cointegration tests as proposed by Johansen (1991a) and Kleibergen and van
Dijk (1994), respectively. In this case the parameter v only contains the non-
redundant dements of the variance-covariance matrix 2., of the innovaions.
Maximum likdihood esimates of v under both the null and the dternative
can be obtained explicitly once the parameters 6 and oo are known, see
Johansen (1991a). For the Gaussian quasi-likelihood, R in Theorem 1 reduces
to the identity matrix, such that By = B, see dso Remark 2.

3.2 Student t quasi-likelihood

A fird parametric dternative to the Gaussan quad-likdihood is the Student
t quas-likdihood. We use a Student ¢ with 5 degrees of freedom. Coin-
tegration tests based on this quas-likdihood were sudied in, eg., Lucas
(1997a,1998), and successfully applied in, eg., Franses and Lucas (1998),
Franses e d. (1998). Fixing the degrees of freedom parameter a priori
has some advantages from a datidtical robustness point of view, see Lucas
(1997b). Again, v only contains the nonredundant parameters of the c¢o-
vaiance marix of the innovations. Though no explict form is avalade
for the edimates of 6, asy, and v, they can be obtained sraightforwardly
by dandard maximization techniques. Estimated resduas and Qquas-scores
can be used to edtimate the nuisance parameter R and to conduct inference
as described towards the end of Section 2.




3.3 Semi-nonparametric approach

The semi-nonparametric (SNP) approach centers around the following spec-
ification of the quas-likdihood for the t-th observation:

Pn(Les +m; &1)? - t(Ley + m; &), (13)

where p,(+; &) is a nth order polynomia with coefficients given in &, ¢(-; &) is
the standard Student ¢ didribution with zero mean and unit scading matrix,
and degrees of freedom parameter &. The lower-triangular matrix L cap-
tures the covariances between the innovations, while the vector m is added
to ensure that the expectation of ¢, following from (13) equds zero. For
& — oo, we obtain the SNP approach as introduced by Galant and Nychka
(1987). The extenson to the Student ¢ didribution (v < oo) was proposed
by Boswijk and Lucas (1997) in order to obtan a parsmonious parameter-
iztion of skewness and fa-taledness. The skewness is manly captured by
the premultiplication with the polynomia factor, while the fat-tailedness is
captured by both the polynomid factor and the leptokurtoss of the Student
t digribution.

For the ques-likelihood in (13), we have v = (&, &, &), where £; contains
the non-redundant eements of L. The vector m does not enter, as it is a
known function of v, see Boswijk and Lucas (1997). Moreover, there is a
condrant on the vadue of & with respect to the order n of the polynomid,
see dso Boswijk and Lucas (1997). This condraint is needed to ensure that
(13) is a proper dengty, i.e, integrates out to 1.

To obtan somewha more indght into the form of the polynomid, con-
Sder the bivariate case, k = 2. We then have

P n (($1,$2);§1):1+ (14)
§1,121 + £1,272 +
£1387 + £1,57182 + 1,673 .

n n—1 -1
§L,N-nZ] + & Nn1Z] T2t & N1z + & Nad,

where N denotes the number of dements in &, i.e, N = n(n+ 1)/2 - 1, and
&= (&1, .., &) By an gopropriate choice of the elements of £, one can
modd severa types of skewness and leptokurtosis. Note that for n = 0, (13)
reduces to the Student t quas-likeihood with estimated degrees of freedom
parameter.

Gdlant and Nychka (1987) formdly prove for & = oo that the st of
dengties characterized by (13) forms a dense set in a larger class of densties
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that comprises most familiar dendties used in econometric gpplications. This
holds a fortiori if & € Ry. It is therefore posshble to approximate most
familiar dengties ahitrarily closdy by a qued-likdihood (13) that has a
aufficiently large vdue of n. By letting the degree n of the polynomid diverge
to infinity with the sample Sze a the appropriate rate, one can under suitable
regularity conditions consgtently estimate the true likdihood from the data
Little is known, however, on the precise rate required. We therefore adopt
a different gpproach in the Monte-Carlo smulations in Section 4. Firg,
we estimate the model parameters for several choices of N =0, 1, . . ., ii.
For each of these choices, we compute the cointegration test. Next we use
the Akake Information Criterion (AIC) to sdect the mogt auitable vaue
of n and the corresponding cointegration test datistic. This gpproach can
be compared with kernd edimaion of the innovations dendty with data
dependent bandwidth selection, see also Subsection 3.4. Similar approaches
are adopted in the literature, see, eg., Galant and Tauchen (1997). We have
no forma proof that the AIC results in an admissble rate of divergence of
the polynomid degree n with the sample sze T. Given our Smulation results
in Section 4, however, we conjecture that the use of the AIC for the SNP
goproach does not invdidate the inference procedure suggested in Section 2.

The quas-likdihood maximization problem based on (13) is highly non-
linear. Apat from this, however, there ae no conceptud difficulties with
obtaining the parameter estimates of § and v under the null for given n or
for the AIC sdected vdue of n. Agan, these estimates are used to construct
an edimate of R that can be used for inference purposes.

3.4 Adaptive approach

Whereas in the previous subsection we used semi-nonparametric dendity ex-
pansons in order to edimate the complete true likelihood from the data,
here we use kernd edimation. We label this approach the adaptive one.
Adaptive estimation has a long history, see, eg., Manski (1984). It has been
goplied in the non-dationary time series context by Hodgson (1998) for the
esimation of the parameters in (1) for known vaue of r, and by Shin and So
(1998) for tegting the rank of 1l in (1) in the univarige (k = 1) case. In the
present paper we extend the results of the previous papers by congructing
an adaptive cointegration test for the multivariate case. Though a formd
proof of the vaidity of Theorem 1 for this adaptive test is beyond the scope
of the present paper, such a proof can quite straightforwardly be constructed
usng the results of Hodgson (1998) and Shin and So (1998). This clam is
srongly supported by the smulation results in Section 4.

The adaptive cointegration testing procedure is effectivdy a two-step
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procedure. First, consstent estimates of the modd parameters are con-
sructed. For this we use the dandard estimates based on the Gaussan
quasi-likelihood. Let ¢; denote the t-th regresson residud implied by these
prliminay paameler edimates. Then the dendty of the innovaions is
etimated as )

fr(&) = T—_igKh (ef —&1), (15)
where K (-) is a kernd, see further below for more detalls. The delete-one
(1 # t) kernd edimate in (15) is needed to edtablish the limiting digtribution
of the test, see Hodgson (1998) and Shin and So (1998). The parameter v is
now equa to the true dengty of the innovaions ¢;, and it is esimated usng
(15). Denote this edimate by v*. Given v*, one can update the preiminary
edimate of 19 by doing a one-step Newton-Raphson improvement. The gra
dient needed for this one-step improvement can be obtained directly from
(15) by draghtforward differentiation. The Hessan, however, is replaced
by the outer-product-of-gradient matrix. In this way, we avoid the explicit
computation of second order derivatives. The replacement of the Hessan by
the outer-product-of-gradient is vaid asymptoticdly due to the information
matrix equdity and the consgency of the kerne estimator. Denote the up
dated estimate of § by 4. This § can used to construct residuas under the
nul oo = 0. Cdl these resduds é;. The edimate of v used to congtruct the
cointegration test is now given by

7= fle) = %ZR" (& — &) . (16)

Agan, (16) is used to condruct the gradient of the likdihood and the outer-
product-of-gradients. The test gdatistic is then given by (10), with Ay set
equa to Jp. Moreover, the canonica correlations between the gradients
based on (15) and the residuds &; are used to estimate the nuisance parameter
R needed for inference.

To complete the description of the adaptive approach, we have to give
some more details on the choice of the kernd functions K, (-) and K, (+) . We
only discuss Kj(+), as the definiion of Kj,(-) is completdy anaogous. Let
¢(-) be the multivariste standard norma dendty function. Then

Kn(z) = k71 [VI7V2 g((V*) ™2/ h), (17)

where

peo 1 Ze:(e:)T. (18)




The scdar h denotes the bandwidth parameter. We choose Silverman's
(1986) rule of thumb to sdect the bandwidth,

h = 0.96/TY/(4+k) (19)

Note that no scale parameter is needed in the expresson for h, as the scde
parameter is dready present through the matrix V in (18).

Following Hodgson (1998) and Shin and So (1998), we aso consder a
symmetrized verson of the density esimates (15) and (16), eg.,

P = 5o I

such that f**(¢;) = f**(—¢;). Aclam made by Hodgson is that the sym-
metrized verson of the kernd edimate dso has sdisfactory properties for
non-symmetric digributions. We invedigate this dam in Section 4 by fo-
cusng on the properties of the adaptive cointegration test.

3.5 Fully nonparametric approach

All cointegration tests so far are centered around the parametric modd (1).
In this subsection, we briefly discuss the fully ‘nonparametric cointegration
testing procedure of Bierens (1997). Though the motivation underlying the
test of Bierens differs from that underlying the adaptive approach, it is useful
to confront the cointegration tests based on (1) with a test that does not use
any parametric modd at dl.

It is beyond the scope of the present paper to give a detailed expostion
of the implementation of Bierens’ test. The essentid idea is based on the
following properties. Let {Fi(z), £ = 1,2,.. .} denote a set of functions
on [0, 1] sisfying fol Fy(z)dz = 0 and fol Fi(z)Fx(z)dz = 0,5 # k; these
conditions are satisfied, eg., by Fi(z) = cos(2kwz). Next, define for any

time series {z,t = 1,. . ., T}, the weighted average
1 & t
Mk(Z) = T;Fk (T) Zt. (21)

If yi ~I(1), then it follows that M(y) = Op(TY?). However, for a da
tionary linear combination B'y;, we find My (8'y) = B'Mi(y) = Op(T~1?).
This different rate of convergence in the dationay and non-daionary di-
rections is used to obtan a consgent tet for the null hypothess of no
cointegration againg the dternative of cointegration. The reader is referred
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to the origind paper, Bierens (1997), for more details on the test dais
tic and its null digribution. Here we only mention that we have imple-
mented two versions of Bierens tes. The fird vaiatt of the test (using
Fy(z) = cos(2k7z)) only provides the correct limiting distribution in case
the assumption 4 = aug in Theorem 1 is stisfied. The second variant of the
test uses Fy(z) = cos(2kr[Tz - 3]/T), and is correct even if this assumption
fals to hold, eg., in case there are determinidtic trends in the data

4 Monte-Carlo set-up and results

Following the sSmulation experiment in Boswijk and Lucas (1997), we con-
gder the following bivariae (k = 2) data generating process (DGP):

a(3)-(0 o) () ()

More complicated DGP’s involving genuine cointegrating relaions and/or
endogeneity of regressors can dso be used without dtering the results of the
present paper. Of course, such dterations will affect the absolute regection
frequencies of our test procedures, but they will not affect the ordering of
the different testing principles in terms of power performance, see dso Lucas
(1998). Dividingc in (22) by the sample sze T follows the locd dternatives
formulation of Phillips (1988), see dso Johansen (1991b). It dlows us to
investigate the effect of the sample size on the performance of the tests in an
elegant way.

We consider 4 values for ¢, namdy ¢ = 0,5, 10,20, and two sample sizes,
nandy T = 100,1000. To limit the (heavy) computationa burden of the
smulations, we conduct 2000 and 1200 Monte-Carlo smulations for sample
Szes T = 100 and T = 1000, respectively. Note that within each Monte-
Calo dmulation, we need an additiond Smulation in order to determine the
critica vaues or pvaues of the test, see the end of Section 2. We use 500
samulaions to edimate the asymptotic pvaues. In our experience this is
aufficient from a practicd point of view. We test the null of no cointegration
agang the dternative of a least one cointegrating relation. We use a 5%
dgnificance levd. We st 7 = 3 as the upper bound on the order of the
SNP polynomid used in the smulaions. This is done in order to limit the
computational  burden.

In order to invedigate the peformance of the tests under dternative
conditions, we use severd didributions for the innovetions ¢,. Following
Boswijk and Lucas (1997), we use:

o the gandard bivariate normd digribution;
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the standard bivariate Student ¢ digtribution with 3 degrees of freedom;

the standard bivariate Student ¢ didribution with 1 degree of freedom,
truncated such that 95% of the origind probability mass is preserved;

o ax? digtribution with 3 degrees of freedom for each of the (independent)
components of &;;

e an F didribution with degrees of freedom parameters equa to 3 and
3, respectively, for each of the (independent) components of &;;

e a mixture of three normals, each with unit covariance matrix, and with
means (0, —3/2) with probability 0.5, (3/2,7/6) with probability 0.3,
and (—9/4,2) with probability 0.2;

e a mixture of four normds, each with unit covariance matrix, and with
means (£3, +3), each mixture component receiving probability 0.25.

This comprises a vaiety of different digributions, displaying skewness, fat-
taledness, and multimodaity. We extend the above set of didributions
for i.i.d. e; by consdering bivariate ARCH and GARCH processes. ARCH
and GARCH processess exhibit volatlity cdudering, a phenomenon that is
important for financid time series. We concentrate on two processes.

o the components of ¢; are individudly ARCH(l) with parameter 0.95,
i.e, &x = Vham for i =1,2with hy =1+ oef,_;, where @ = 0.95 and
;e 1S i.i.d. standard normal (over ¢ as well as t);

o the components of ¢, are individudly GARCH(1,1) with parameters
0.15and 0.8, i.e, ey = vhim for i = 1,2 with hy = 14+0eZ,_;+B8hi1,
where @ = 0.15, 8 = 0.8, and n;; is i.i.d. standard norma (over i as
wel as t);

The parameters of the GARCH process are typicaly found in empirical ap-
plications for financid time series usng daly daa The pesgence of the
volatility process for our GARCH(1,1) specification is ¢ + 8 = 0.95, which is
adso the vaue taken for the ARCH(l) parameter. By consdering the volatil-
ity clustering processes, we can investigate the robustness of our results with
repect to redigtic deviations from Assumption 1.

The results of the smulations are presented in Tables 1 and 2.

Fird note that the sizes of the tests seem acceptable in dl cases consd-
ered, excepting the ARCH(l) process. For the ARCH(l), dl tests appear
overszed, but the sze digortion for the Gaussan tests is much grester than
for the non-Gaussan tests. This is in accordance with results of Caner (1998).
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Table 1.
Cointegration Test Performance Conparison, Sample Size T = 100

¢ Joh G t(5) SNP A-S A-NS NPT NPZ
0 12 3 AC
Nor mal
0 006 004 00 00 00 00 00 00 70704 0.0 0.0 0.04
5 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.04
10 0.15 0.13 0.12 0.13 0.13 0.13 0.11 0.13 0.11 0.09 0.06 0.05
20 0.48 0.43 0.35 0.42 0.43 0.38 0.35 0.42 0.33 0.27 0.05 0.04

Truncat ed (95% Cauchy
0 0.07 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.03 0.04 0.05 0.04
5 0.08 0.07 0.45 0.48 0.38 0.36 0.30 0.48 0.22 0.28 0.05 0.05
10 0.17 0.15 0.84 0.84 0.80 0.75 0.67 0.84 0.57 0.60 0.05 0.04
20 0.48 0.42 0.99 0.99 0.99 0.98 0.94 0.99 0.91  0.90 0.06 0.05
*(3)
0 005 0.04 0.06 005 006 00 00 00 U004 0.03 0.05 T0.04
5 007 007 011 010 012 013 013 013 012  0.20 005 0.05
10 01 013 02 02 030 030 030 032 0.26 046 0.05 004
20 046 040 0.56 059 070 072 074 074 061 0.8 0.06 005
F(3,3)
0 005 004 004 003 003 004 004 003 003 003 006 004
5 006 005 08 08 09 09 08 093 084 08 006 004
10 010 009 09 09% 09 09% 092 0098 097 09 004 004
20 0.37 030 09 09 097 09% 09 097 100 L00 0.07 005

M xt ur eof normals, |
0 7006 00 00 00 0.0F8 008 0 . . . ;
5 008 0.07 0.07 006 006 012 016 0.16 0.06 0.14 0.04 0.04
10 01 013 013 012 0.14 0.27 040 0.40 0.12 0.34 005 0.04
20 049 043 038 043 0.47 068 08 081 0.3 0.74 0.06 006
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Table 1. (continued)

c Joh G {5 SNP A-S A-NS NP1 NP2
0 T 7 3 AIC

Mixture of normals, Il
0O 006 004 005 005 005 004 005 004 o004 004 005 004
009 008 005 007 008 011 053 052 039 066 004 004
10 016 013 005 013 016 021 084 084 079 09 006 005
20 046 041 016 041 049 049 094 094 098 100 005 005

ARCH(l), a = 095
0 024 021 006 006 007 008 009 00/ 008 008 00/ 006
5 024 023 014 015 015 016 015 015 013 015 007 006
10 033 030 024 024 025 026 025 023 021 022 009 006
20 061l 056 035 036 041 044 040 035 031 030 013 008

GARCH(1,1), a =015, 8 =08

0O 008 007 006 006 006 006 006 006 006 005 005 o004

5 011 010 007 009 008 009 009 009 009 008 006 005

10 018 016 011 015 015 014 014 014 014 013 006 004

20 052 046 029 041 040 040 038 040 034 029 006 005
Nore:  The table contains empirical rejection frequencies over 2000 Monte Carlo repli-
cations of several cointegration testing procedures. The data generating process is
Ayye = €1t, Ayt = ¢ . y2:-1/T + €. c is the non-centrality parameter in the data
generating process, such that ¢ = O gives an indication of the size of the test. Joh is
the Johansen (1991) test statistic. G and t(5) are the cointegration LM test statistics
based on a Gaussian and a Student t(5) quasi-likelihood, respectively. SNP is the semi-
nonparametric approach, with fixed order of the polynomia equal to O, 1, 2, and 3. The
column AIC indicates that the order of the SNP expansion is determined through the
Akaike information criterion. A-S and A-NS give the results for the Hodgson (1997) type
adaptive cointegration test with symmetrized and non-symmetrized kernel density esti-
mator, respectively. NP1 and NP2 give the results for Bierens (1997) nonparametric test,
without and with taking care of deterministic trends in the data, respectively. The table
has nine panels, corresponding to different distributions for the innovations g; = (ey;, €2¢) ' .
Normal is the standard normal distribution. t(3) is a Student ¢ distribution with 3 de-
grees of freedom. Truncated Cauchy gives drawings from a standard Cauchy distribution.
The drawings are discarded if &, e; exceeds the 95th percentile of the F( 1,1) distribution.
For the x2(3) and the F(3,3) distribution, e;; and ey are drawn independently from the
mentioned distributions. The first mixture of normals consists of 3 normals with unit ¢go-
variance matrix. The means are (0, —3/2) with probability 0.5, (3/2,7/6) with probability
0.3, and (—9/4,2) with probability 0.2. The second mixture of normals has four normals
with unit variance matrix and means (43, +3), al selected with equal probability 0.25.
For ARCH(I), €it = vRatmit, hit = 1+ae?,_;, with o = 0.95 and 7 i.i.d. standard normal
(over i as well as t). For GARCH, similarly hy; = 1+ a€?,_; + fh; 41, with ¢ = 0.15 and
4 =08
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Table 2:

Cointegration Test Performance Conparison, Sample Size T =1000

¢ Joh G t(5) SNP A-S A-NS NP1 NP2
0 12 3 AIC
Nor mal
0 0.6 006 006 00 005 0.06 006 00 0.0 0.06 0.07 0.07
5 009 009 00 009 009 009 009 009 009 007 006 006
10 014 014 013 013 015 0.14 0.14 013 013 012 0.05 0.0
20 0.44 0.43 035 043 0.43 043 041 0.43 034 033 005 0.05
t(3)
0 "006 U006 006 006 0.0/ 006 006 00 0.0 0o 0.07 0.0/
5 0.08 008 020 020 02 018 016 020 020 0.17 0.06 0.06
10 017 0.16 052 053 050 046 036 05 047 043 005 0.05
20 042 042 092 09 09 09 079 09 089 0.8 00 006
Truncat ed (95% Cauchy
0 005 00 005 005 006 005 006 00 00 0.06 005 0.05
5 0.07 0.07 053 057 045 043 02 057 05 051 0.06 0.0
10 017 017 09 09 091 0.87 060 0.9 09 090 005 005
20 0.43 0.4 100 100 100 0.9 0.85 100 100 100 0.06 0.06
X (3)
0700y 00 U0 00 00 00 00 00 00K 0.05 005 0.0
5 0.08 0.08 0.11 0.12 0.14 0.13 0.13 0.14 0.22 0.36 0.07 0.07
10 0.16 0.16 0.26 0.25 0.35 0.32 0.30 0.34 0.56 0.81 0.06 0.06
20 0.43 0.43 0.65 0.68 0.83 0.81 0.75 0.80 0.95 0.99 0.08 0.08
F(3,3)
0 700 U0 00 00 008 00 00 008 004 0.03 006 006
5 006 0.06 09 100 1200 100 0.97 100 100 100 0.06 0.06
10 010 0.10 1200 200 100 100 0.98 100 100 100 0.06 0.06
20 037 0.3 100 100 100 100 0.98 100 100 LOO 0.05 0.0
M xt ur eof normals, I
0 00 U0 00 00 00> 0.0F 0.04 008 008 0.06 0.0 0.0
5 0.08 00 007 008 008 015 016 016 007 019 006 006
10 015 015 015 015 0.17 038 0.46 0.46 0.14 0.47 0.06 0.06
20 0.46 0.45 0.41 0.46 0.50 0.8 0.86 0.86 0.43 0.92 005 0.05
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Table 2. (continued)

c Joh G i) SNP A-S A-NS NPI NP2
0 1 2 3 AIC

Mixture of normals, Il
0 006 006 006 006 006 005 004 004 005 006 006 006
5 009 009 006 009 009 010 043 043 o047 071 005 005
10 015 014 007 015 017 017 071 071 091 097 005 005
20 044 043 014 043 055 052 08 08 100 100 006 006

ARCH(l), ¢ = 095

0 "014 013 00/ 006 00/ 00/ 007/ 00/ 006 006 006 006
5 018 018 026 026 026 025 019 026 025 028 005 005
10 028 027 054 053 053 052 039 053 052 053 005 005
20 054 054 088 088 08 087 067 08 08 08 006 006

GARCH(1,1), a = 0.15,8 = 08

0O 008 008 006 007 007 008 008 007 007 007 005 005

5 010 010 009 010 010 009 010 010 009 010 005 005

10 018 018 015 016 016 016 015 016 014 017 005 005

20 046 045 037 043 043 044 040 042 036 034 006 006
NOTE. The table contains empirical rejection frequencies over 1200 Monte Carlo repli-
cations of several cointegration testing procedures. ‘The data generating process is
Ay = €1, Ayar = ¢+ Y2,6-1/T + €. C is the non-centrality parameter in the data
generating process, such that ¢ = 0 gives an indication of the size of the test. Joh is
the Johansen (1991) test statistic. G and t(5) are the cointegration LM test statistics
based on a Gaussian and a Student t(5) quasi-likelihood, respectively. SNP is the semi-
nonparametric approach, with fixed order of the polynomial equal to O, 1, 2, and 3. The
column AIC indicates that the order of the SNP expansion is determined through the
Akaike information criterion. A-S and A-NS give the results for the Hodgson (1997) type
adaptive cointegration test with symmetrized and non-symmetrized kernel density esti-
mator, respectively. NP1 and NP2 give the results for Bierens (1997) nonparametric test,
without and with taking care of deterministic trends in the data, respectively. The table
has nine panels, corresponding to different distributions for the innovations ¢; = (1, s2t)T,
Normal is the standard normal distribution. t(3) is a Student ¢ distribution with 3 de-
grees of freedom. Truncated Cauchy gives drawings from a standard Cauchy distribution.
The drawings are discarded if s;r €; exceeds the 95th percentile of the F(l, 1) distribution.
For the x2(3) and the F(3,3) distribution, £;; and e; are drawn independently from the
mentioned distributions. The first mixture of normals consists of 3 normals with unit co-
variance matrix. The means are (0, —3/2) with probability 0.5, (3/2,7/6) with probability
0.3, and (~9/4,2) with probability 0.2. The second mixture of normals has four normals
with unit variance matrix and means (+3, +3), all selected with equal probability 0.25.
For ARCH(I), i = vRienit, hir = 1+ae?,_;, with @ = 0.95 and #;, 1.i.d. standard normal
(over i as well as t). For GARCH, similaly hy = 1+ ae?,_; + Bh;;-;, With @ = 0.15 and
B =08
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Caner proves that the Gaussan cointegration test with infinite variance er-
rors has critica vaues which lie to the left of those of Johansen (1988,1991a).
As the ARCH(l) conddered is close the the infinite variance region, the high
rgjection frequencies for ¢ = 0 can be expected. Note, however, that these
Sze digortions do not appear if the ARCH effect is not dominant, though
the volatility persistence may be just as high, see the GARCH(1,1) results
Smadler size digortions in case of ARCH(l) for the robugt tests and the SNP
tests can aso be expected, see also Lucas (1998), as the critical vaues of
these tedts generdly dso lie to the left of those of Johansen. Note that the
SNP and adaptive density estimates will generdly be fat-tailled, because the
unconditiond didribution of €, for GARCH processes is fat-tailed, see Nelson
(1990).

Given the satifactory result for the level of the tests, we concentrate the
remaining discusson on the power properties of the tets We firg discuss
the case of smdl sample sizes, T = 100. Next, we ded with larger samples,
T = 1000.

For the Gaussan ditribution, we see that the Gaussan QLR test is op-
timad, dosdy followed by the Gaussan QLM test and the SNP(Q) based
test, SNP(0) denoting the Oth order SNP expansion, i.e, the Student ¢ with
edtimated degrees of freedom. As expected in this case, the power of the
SNP test generdly decreases if the degree of the polynomid is (unnecessar-
ily) increased. The AIC based SNP approach, however, succeeds in sdecting
the appropriate order of the polynomia, such that the power behavior of
SNP(AIC) d mogt coincides with that of the Gaussan QLR and QLM tests.
We dso note the familiar power loss of the Student ¢ approach with fixed
degrees of freedom parameter (t(5)), see, eg., Lucas (1998). Furthermore,
the power behavior of the adaptive gpproach is much worse than that of
the SNP(AIC) approach, especidly for the non-symmetrized kernd densty
edimator. Findly, note tha the nonparametric test has virtudly no power
whatsoever. This holds consgently throughout the smulations. We there-
fore refran from further comments on the fully nonparametric approach in
the subsequent discussion.

For the Student t(3) digtribution and the truncated Cauchy, some of
the results are changed dramaticaly. The power of the Gaussan teds is
smilar to the case of Gaussan ;. The power of the SNP, t(5), and adaptive
approaches, however, are incressed substantidly. Again we note a decrease
in power for the SNP gpproach if the degree of the polynomid is increased.
Also, the performance of the t(5) based QLM test and of the SNP(AIC) test
are indiginguishable. The power of the adaptive tests clearly fdls below that
of the SNP(AIC) approach. Note that absolute power substantialy increases
with the degree of leptokurtoss.
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We now turn to the skewed didtributions. If the didribution is thin-
tailed (x* (3)), we note a Smilar power behavior of the Gaussian tests as for
normaly digtributed innovations. The robust test based on the t(5) quasi-
likdihood clearly does better. However, the robust test is outperformed for
digant dternatives by the adaptive procedure based on the incorrect sym-
metrized kernd densty edimate. This in turn, is outpeformed by the
SNP(AIC) approach, while findly the adaptive procedure based on the non-
symmetrized kernel dendgty estimator performs best. Note that the power of
the SNP tests is genedly increesng now in the degree of the polynomid.
This is to be expected, as the quas-likdihoods with the higher order poly-
nomids are better suited at capturing the skewness. Quite Smilar results
hold if the skewed digtribution is dso fat-tailed (F'(3,3)). Note that the non-
Gaussan cointegration tests reved a subgtantiad power increase with respect
to the stuation with thintaled skewed innovations (x%(3)). By contrast,
the Gaussan based procedures display a power loss.

We now turn to the multimodd didributions, i.e, the mixtures of nor-
mas. If multimoddity is farly limited and if there is dso skewness (mixture
1), we see the familiar behavior for the Gaussan tests Also the Student
t(5) based test and the adaptive (symmetrized) test display about the same
behavior as for normaly disributed innovetions. By contrast, the SNP and
the non-symmetrized adaptive approaches are able to detect this form of
non-normality. For the SNP approach, however, the order of the polynomid
has to be sa high enough. It is comforting to note tha the AIC generdly
succeeds in choosng aufficently high polynomid orders. This results in a
doubling of power for this sample sze for digant dternatives. It is important
to notice the drong effect of the incorrect impostion of a symmetrized ker-
nel dendty esimate. Clearly, if skewness is expected, the non-symmetrized
gpproach seems preferable to the symmetrized adaptive approach. If the mul-
timoddity is much stronger and if skewness is absent (mixture I1), the results
change. The power of the Gaussan based tedts is ill constant. By contragt,
the power of the Student t(5) quasi-likelihood based test is very poor. This
confirms smulatiion results for the univarite case of Shin and So (1998).
The power of the SNP tet is again increesng in the order of the polyno-
mid, with the AIC sdecting the appropriate order for power maximization.
The symmetrized adaptive tet dso works quite wel in this setting, though
the power lags somewhat compared to the SNP(AIC) approach for not too
digant dternatives. Surprisngly, the non-symmetrized adaptive approach
performs even better than the symmetrized one.

The find two processes for the innovations exhibit volatility cdustering.
Firg note that there are subgstantiad Sze didtortions for the Gaussan tedts,
and to a lesser extent for the non-Gaussian based tests. This was explained a
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the beginning of the present section. For the remainder, the results for both
types of voldility clustering look very smilar to the case of i.i.d. Gaussan
innovations. The only driking difference is the low power of the Student t(5)
based test for the GARCH process. Moreover, the AIC seems less able to
pick the appropriate orders of the polynomid from a power maximization
perspective.

We now invedigae the effect of a larger sample sze by discussng Ta
ble 2. For the Gaussan dtuation, increesng the sample sze does not have a
subgtantial impact on the results. Some patterns are emerging for the other
digributions, however. Generdly, power seems to increese if the uncondi-
tiond didribution of the innovations is fa-taled and heavily multimodd,
while little is changed otherwise. Another interesting effect of an increased
sample Sze is the rdative ordering of SNP(AIC) and the adaptive approach
in terms of power. Whereas the SNP(AIC) approach dominates for smal
sample sizes, for larger sample szes the adaptive approach seems preferable
if the didribution is thintaled and skewed or heavily multimodd. This
holds a least if we only consder SNP expansons up to order 3. The results
might change if higher orders were incorporated in the andyss. This is not
unreasonable, as we can link the maximum order of the SNP polynomid
(inversdly) to the bandwidth parameter of the kend estimator. Whereas
the later automatically decresses with the sample sze, see (19), the for-
mer does not automaticaly increase in our present set-up. More parameters
or higher order polynomiads are needed to adequately capture skewness and
multimoddity if more observations are avalable. We leave this for further
research.

We dso note tha increesing the sample size has no effect on the inability
of the symmetrized adaptive approach to exploit moderate departures from
normdity in the foom of moderae skewness and multimoddity, see mixture
|. By contrast, the SNP(AIC) and non-symmetrized adaptive approaches
succeed in ganing power with respect to the Gaussan based test for the
mixture | digribution, both for samples of Sze T = 100 and T = 1000.

Some find remarks are due concerning the computetion time. For T =
100, the computation time of the SNP agpproach of order 3 is dramaticaly
much higher than that of the adaptive approach. It appears, however, that
the required computation time for the SNP gpproach increases gpproximately
linearly, while that of the adaptive approach increases (at least) quadraticaly.
For T = 1000, the computetion time for SNP(3) is ill higher than for
the adaptive approach, but the percentage difference has decreased by a
factor between 5 and 30, depending on the distribution considered. Note
that the difference in computational burden would be reduced consderably
if the adaptive approach is augmented with a crossvdidation procedure for
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bandwidth sdlection. In that case, the SNP gpproach might well become less
computationdly intensve than the adaptive approach.
We summaize the man findings of the dmulaions in the next section.

5 Conclusions

In this paper we have contributed to the literature on cointegration testing
and the application of (semi)-nonparametric techniques to non-dtationary
data. We have condructed an adaptive multivariate cointegration test and
confronted its performance to old and new dternative cointegration test pro-
cedures under a wide variety of different conditions. Severa conclusons
emerge.

Fire, it turns out to be possble to use semi-nonparametric (SNP) and
nonparametric techniques efficiently in the condruction of cointegration tedts.
By udng these techniques, we can avoid the arbitrary specification of a quas-
likelihood. In finite samples, this can be done a ether a substantid power
loss with respect to datisticaly optima procedures, or (dmost) no loss a
al, depending on the method used. The advantages dready take effect for
samples as smdl as 100, at least for bivariate processes. We have aso shown
that the power losses of cointegration tests based on arbitrarily chosen quasi-
likdihoods, eg., a Student t(5), can peform quite poorly if they fal to cap-
ture sdient characterisics of the true likelihood.

As a second concluson, for smdl sample sizes (T' = 100) edtimating the
likeihood through SNP dendty expansons with the order of the expanson
determined by the AIC is dealy preferable to kerne edtimation in terms of
ovedl peformance of the corresponding cointegration test datistic. If the
kernd edimate is symmetrized, it is not suited for picking up mild forms of
skewness in contrast to the SNP approach. If it is not symmetrized, there is
a substantial power loss with respect to the SNP approach for near-Gaussan
innovations. For large sample szes (' = 1000), the reverse result emerges
from our dmulation experiments. This is due to the fact that for both sample
gzes we use the same upper bound on the order of the SNP expanson that is
consdered. The generd pattern that emerges, therefore, is that the order of
the SNP expanson must not be set to low. Otherwise, the potentid power
advantages of usng SNP techniques will not materidize. It is then preferable
to ue kend edimators for the dendty of the innovations.

A third dear concluson from our smulaion is thet the fully nonpara-
metric cointegration testing approach of Bierens has amost no power againgt
smple reasonable dternatives. This implies there is further room for the de-
veopment of fully nonparametric cointegration teds
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As aways, severd interesting directions for further research remain. Firg,
the tests can be gpplied to red data. For example, when conducting a stan-
dard modding exercise usng the Johansen (1988,1991a) cointegration ted,
one can check the robustness of the results to the choice of the Gaussan quasi-
likdihood by running one of the tests discussed in the present paper. If the
results differ, closer ingpection of the data and/or the modd is warranted.
As a second extenson, one can further refine the adaptive cointegration test
with cross-vdidation for the bandwidth sdection. Some prdiminary amula
tion results reveded, however, that little is ganed. Also a forma proof of
the vdidity of the AIC (or some other criterion) for the SNP gpproach would
be very wecome Findly, it is interesting to see how the tests perform if the
data generating process is more complicated, especidly if the dynamics in
the system are more complicated than that of the smple VAR() used in the
present paper.
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