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Abstract

Portfolio insurance strategies based on options typically treat the
investment in the risky asset, e.g., stock, as fixed. We show in a
mean/downside-risk framework that such a strategy is inefficient. Us-
ing at the money put options, expected returns can be increased by
more than 250 basis points without taking on more risk. Gains can
become arbitrarily large when one uses options with extremely high
strike prices. This is due to a serious caveat to the mean/downside-risk
framework that is typically adopted in the literature by substituting
downside-risk measures for standard risk measures such as the vari-
ance of returns. These pathologic results vanish when one maximizes
an appropriately chosen HARA utility function. In this framework,
fixing the holding of the risky asset in advance leads to efficiency losses
that vary between 250 and 650 basis points depending on the degree
of risk aversion.
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1 Introduction

Risk management and optima asst dlocation are key issues in modern fi-
nancid economics. Fostered by an increased integration and liberdization of
financid markets and a spectacular growth in the number of financid prod-
ucts, managers have fet an increased need to efficiently dlocate the available
resources given an acceptable risk profile. Though the basic dlocation prob-
lem is essy to formulate, formdizing it and implementing its solution are a
far more difficult task. Mogt of the results one obtains hinge on the eficiency
framework and the risk measure one adopts.

Since Markowitz (1952), the dominating efficiency paradigm in financid
economics has been that of mean/variance efficiency. In this framework,
expected return is taken as a measure of profitability, while the variance cap-
tures the risk. Efficient drategies in this paradigm attan a given expected
retlurn & minimum risk, i.e, a minimum variance. The use of the variance
as a measure of risk has a wdl-known drawback: it pendizes postive and
negative deviaions from the expected return in a pefectly symmetric way.
This does not match the notion of risk of practitioners, who typicdly link
rsk to adverse price movements rather than favorable ones, see Sortino and
van der Meer (1991). Moreover, the use of the variance can lead to per-
vase dfidency results if nonHinear indruments like options are available
see Ledand (1996) and Lhabitant (1997).

An dternative for the variance is a downsderisk measure. A prototypica
example of such a measure is vaueat-rik (VaR). VaR measures the maxi-
mum amount one can loose over a given horizon given a certan confidence
level, see Jorion (1997). It is a popular risk measure that is used by practi-
tioners as wdl as supervisory inditutions. If one subditutes VaR (or some
other downsderisk measure) for the variance, one obtans an dterndive to
the mean/ivariance efficiency framework. Such dternatives were. proposed
and studied by, eg., Roy (1952), Tdsar (1955), and Kataoka (1963).

In the present paper we adopt the mean/downsiderisk framework to as-
sess the efficiency of portfolio insurance drategies if nonlinear ingtruments,
in paticular options, are avalable The liquidity in derivetive markets has
improved dramaticaly over the last decade. This endbles investors to include
derivative indruments in thar invesment drategies. Strategies usng deriva
tives dlow invedors to efficently atan return didributions that suit ther
preferences better than drategies based on traditional investment categories
only. Studies such as Merton, Scholes, and Gladstein (1978, 1982), Fglewski,
Chidambaran, and Kaplan (1992), and Bodie and Crane (1998) clearly illus-
trate that the use of options or equivdent dynamic trading dSrategies results
in superior return digributions. They do so manly by comparing smulaion




results for invesment drategies without options and drategies that employ
options according to prespecified rules of thumb. In contrast to these stud-
ies, we adopt an andytic gpproach and formdly derive optima portfolios.
Andytical results on optimadly optioned portfolios in relaion to the adopted
risk/return framework are scarce, see, eg., Ahn, Boudoukh, Richardson, and
Whitelaw (1998).

Our findings extend the results of Ahn, Boudoukh, Richardson, and
Whitelaw (1998), who andytically condgder optima portfolio insurance based
on options given a condraint on the cost of the insurance. In their framework,
optimdity is evduated in teems of the VaR profile of the insured portfolio.
A typicd portfolio insurance gpproach as in Ahn et d. (1998), however,
treats the investment in the basic risky asset, eg., sock, as fixed. We show
that such a drategy leads to large efficiency losses in a mean/downside-risk
framework. Given a condrant on the dlowable VaR, subdanttidly higher
expected returns can be achieved if the amount invested in the basic risky
asst is dlowed to vary and if options on this asset are avalable. We present
redigic numericd examples in which the efficiency gains range from 250 to
650 basis points.

We andyticdly deive the optima asst dlocation in the framework of
perfect and complete markets, see Black and Scholes (1973). If a the money,
in the money, or dightly out of the money put options are available, the typ-
icd pay-off funtion of the mearvdowndderisk optimd portfolio mimics that
of a cdl option combined with a riskfree invesment. The riskfree invest-
ment effectively ensures a tolerable (VaR) risk profile, while the cal option
creates the upward potentid of a stock investment without the associated
downsderisk of a naked stock drategy. We aso show that for sufficiently
low drike prices it is optimd to short unlimited amounts of put options
if VaR is used as a downdderisk measure. This illusrates a firs pathol-
ogy in the mean/VaR efficiency framework: as VaR only accounts for the
event of adverse price movements, and not for the extent of their impact, the
mean/VaR framework may lead to unredidic asset dlocation policies,

As a second result in our paper, we establish some serious pathologies
in the more general mean/downside-risk framework, see aso Dert and Old-
enkamp (1997). It turns out that if the optima asset dlocation for a fixed
drike price of the option is optimized over the drike price, the expected
return diverges to infinity for a given VaR profile Given the typicd struc-
ture of the optima asst dlocation, the manager effectivdly ends up taking
a bet on an extreme dock price redizaion by going long in an extremey
far out of the money cdl option, given that the downsderisk condrant is
met by a riskfree invesment. This sgnds tha the mean as a measure of
profitability combined with a measure of downgderisk gives an incomplete
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characterization of the preference ordering of typicd investors over different
pay-off profiles. Both measures fal to take account of the variability of the
pay-offs above the VaR criticd level, wheress investors are not completely
indifferent in this respect.

We ague tha generd utility specifications for optima assst dlocaion
are more appropriate than either the mean/variance or the mean/downside-
rik efficiency frameworks. Such utility specifications should incorporate the
tradeoff between downdderisk, upward potentid or expected return, and
vaiability of returns with an acceptable downgderisk profile We there-
fore propose an n-dtribute efficiency framework rather than the usud two-
atribute one, with n a least equd to three. Even in such a framework,
however, the portfolio insurance drategy is dominated in terms of efficiency
by a draegy that dlows the investment in the basc risky assst to vay. To
Ubgtantiate these clams, we condder an example usng a threshold power
utility function. For this utility specification, effeciency losses of portfolio
insurance with respect to an unrestricted optima dtrategy vary between 250
and 650 basis points for different degrees of risk averson.

The aticle is set up as follows. In Section 2, we present the modd and
give the andyticd derivaions. Section 3 presents the efficiency comparison
between the stock-only investment drategy, portfolio insurance based on op-
tions, and an unredricted optima invesment drategy. This leads to the
pathology in the mean/downsderisk framework, which is discussed in Sec-
tion 4. Section 5 concludes by summarizing the man results and suggesting
possible directions for future research.

2 Analytical results

In Subsection 2.1, we st up our basc modd. We focus on portfolios that
may condst of holdings in a non dividend paying stock, a put option, and
a riskfree asset, see dso, eg., Merton e d. (1982) and Ahn, Boudoukh,
Richardson, and Whitelaw (1998). In Subsection 2.2 we present the exact
andytic characterization of the optimd portfolio.

2.1 Set-up of the model

Condder an invetor who has $1 to invet. The manage’'s planning pe-
riod darts a time t = 0 and ends a time ¢t = 1. At time ¢ = O, there are
three invesment categories. (i) a riskfree asset, eaning a (continuoudy com-
pounded) rate of return r¢ (i) a non dividend paying stock, giving a risky
(continuoudy compounded) rate of return r°, and (iii) a European put option




on the stock with exercise price K. For smplicity, we assume that the op-
tion matures a the planning horizon { = 1. We adso assume that the ‘perfect
market conditions of Black and Scholes (1973) are sdtisfied, such that the
usud option pricing formula can be gpplied. Note that in the framework of
Black and Scholes (1973) options are in fact redundant assets as they can be
perfectly replicated by a dynamic invesment drategy. Although this may be
a vaid gatement for the market as a whole, the large marjority of investors is
unable to replicte an option efficiently by implementing a dynamic trading
drategy. Proper use of options may dramaticaly improve their ability to
creste pay-off paterns that suit ther invetment preferences. Alterndively,
one can interpret our results as pertaning to dynamic investment drategies
that are equivdlent to datic option invesments.

We focus on the case where only a sngle option series can be included in
the portfolio. This suffices to obain indght in the dructure of optima portfo-
lios in the stylized framework presented below, see dso Det and Oldenkamp
(1997) and Ahn et a. (1998).

One of the implications of the framework of Black and Scholes (1973) is
that stock returns r* are normdly distributed with mean u and variance o2.
To save on notation, we define i = p + ¢%/2, such that the expected ¢ = 1
price of the stock is exp(f). Without loss of generdity, we assume the initid
stock price and the intid asset level to be equd to 4, = $1 and P§ = $1,
respectively. Notice that the intid stock price of $1 dlows us to interprete
the drike price K as the money-ness of the option. The final asset value A,

IS given by
Alzercn(l—y—PO"-a:)+e’8_y+rnax[K-—e's,0].;r, (1)

with Py denoting the initid price of the option, X denoting the number of
options in the portfolio, and y denoting the number of stocks in the portfolio.
The amount of initid funds left after buying stock and options is invested
(lent or borrowed) in cash a the riskfree rate. Note that by dlowing for
negaive vaues of x and y, we dso dlow the investor to sdect combina
tions of put options, stocks and cash that are equivdent to holding long or
short pogtions in cdl options We formulate the problem in terms of put
options, however, following the usud convention in the literature on portfolio
insurance, see, eg., Ahn et a. (1998).

We assume that the investor maximizes the return on his portfolio, given
a condrant on the portfolio's risk. If the variance of the returns is used
a a messure of rik, we obtan the familiar mean/variance framework of
dandard portfolio theory, Markowitz (1952). As argued in the introduction,
however, it is more useful to consder downsderisk measures in our present




context with options. We concentrate on the following class of downsde-risk

measures.
E (ax = A)" . 1a-(41)), (2)

where A* denotes a benchmark asset level, 14-(A;) is a step function, 14:(A4;) =
1 for Ay < A*, and 14-(A;) = O otherwise, and « > O defines the specific
downsiderisk measure. Well-known downsderisk measures are obtained for
k = 0 (shortfdl probability), « = 1 (expected shortfal), and « = 2 (semi-
vaiance). In the remainder of this paper, we concentrate primarily on the
shortfdl probability (« = 0). Shortfal probabilities form the bass of value-
a-risk (VaR) andyses, which are now common practice in risk management,
see eg., Jorion (1997). VaR measures the maximum loss over a certan pe-
riod given a cetan dedred confidence level. Further beow in this section,
we aso discuss how our results generdize to settings where the expected loss
or the semivariance is used to measure risk.
Note that for k = 0, (2) can be rewritten as

P(A; € AY, (3)

where P(-) denotes the probability messure of the stock price exp(r®). An
efficient invesment drategy maximizes expected return given a bound on
the risk profile as given in (3). Formaly, the. optima drategy for a given
rik profile, i.e, a maximum VaR levd, is the solution to

max  E(A) (4)
st P(A <A%<,

where 1 is a preyecified condant relating to the confidence level of the
VaR. Spedificdly, following Ahn e d. (1998) and Artzner et d. (1997), we
define Ap . exp(r¢) — A* asthe (1 —¢) confidence levd VaR over the planning
period. So the VaR is defined with respect to the assat level that can be
ataned by inveding dl initid funds in the riskfree asset, i.e, exp(r¢)A,.
The condraint in (4) is ds0 labded a (probabiligic) shortfdl condraint in
the literature, see Lebowitz and Kogdman (1991) and Lebowitz, Kogeman,
and Bader (1992). Given the above investment problem, we are interested in
two questions.

1. Does the optimd portfolio contan options?

2. If s0, what is the magnitude of the improvement that can be achieved
over (i) a dock-only drategy (i.e, x = 0) and (ii) an optima portfolio
insurance drategy (i.e, y is fixed)?




These questions are addressed in the remainder of the paper.

2.2 An analytic characterization of the global optimum
The following theorem is proved in the Appendix.

Theorem 1 The optimal solution to (4), if it exists and is bounded, takes
the form:

( erC_A*
xzy:(1+P6;)_ 7~ max(K, P (@) for ¢1>¢o > 0,

9 0 2= e~ A
y="u T By € = max(0, K - P7'(v))

fOT' COZCIZOa

where .
FPy.e" =a
CO e —

(6)

ef — e

and .
_ P —max(O, K - P71(y))

e OETs i

a = E[max(0, K -~ exp(r®))], and P(exp(r®) < P~(¢)) = . For ¢; < 0, (4)
is unbounded.

Proof: see Appendix.

So far, the strike price of the option has not been treated as a decison
vaiable in the optimization problem. We rdax this redriction in Section 3.
As can be verified in (5), the holdings in the optima portfolio strongly depend
on the drike price K of the avalable option series If the drike price is far
out of the money or deep in the money, peculiar results emerge which are
discussed in Subsections 2.2.2 and 2.2.3, see aso Pesser and Vorst (1995).
We fird interpret the portfolios presented in (5). It is perhgps illudrative
to mention right away that for the vast mgority of reasonable drike prices,
the fird solution in (5) is optimd, i.e, y = x. This portfolio contans an
equal number of stocks and options. Via put-cdl parity, this boils down to
a riskfree investment in cash combined with a long pogtion in cdl options.
The riskfree invesment guarantees that the chortfdl condraint is met with
certanty, while the cal option serves to maximize expected return. More
details follow below.

To facilitate the interpretation of Theorem 1, fird note that the numerator
in (5) dways equds the investor's maximum dlowable VaR, see below (4). If
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the investor wants maximum certainty, A* equas exp(r¢) and, consequently,
both stock and option invesments are zero.

The congant ¢y in (6) gives the negetive ratio of the risk premium of the
option to that of the sock. Similarly, ¢; gives the negdive ratio of pay-offs
of an option-only invesment to a dock-only investment, both in exces of
an eguivdent riskfree invetment, and both pay-offs evduated a the VaR
criticd redization of the stock price, P~!(y). The condants ¢, and ¢; adso
have a geometric interpretation. The congant ¢, is the dope coefficient of
the contour lines of the objective function in (z, y)-space. Smilarly, ¢; is the
dope of the VaR congrant in (z, y)-space, i.e, the dope of the boundary
of the feasble region, see aso the Appendix. As such, ¢, and ¢, reflect the
relative stegpness of the boundary of the feasible region in (z, y)-space with
respect to the iso-objective lines

Figure 6 plots the condants ¢, and c; as functions of K for a spedific
st of paameter vdues. The plot remans very dmilar as long as the risk
premium of stock is postive (z > r¢ > 0) and the VaR criticd return on
stock is below the riskfree rate (P~1(y) < exp(rc)). It is clear that ¢, lies
between O and 1 and is monotonicaly increesing in the drike price K. The
contant ¢; is negative and monotonicaly decreesing for K < P~!(y)], ad
monotonicelly increesing for K > P~1(4)).

Given the definitions of ¢; and ¢;, we now interpret the optima portfolios
in (5) in more deall.

2.2.1 Optimality of cash and call

If ¢; > ¢y, the top asset dlocation presented in (5) is optimal. As remarked
ealier, a portfolio containing an equa number of stocks and put options
is equivdent to a riskfree cash invesment combined with a long postion
in cdl options Such invesment drategies have often been invedigated in
the literature without a forma proof of ther optimdity properties in the
mean/VaR framework, see, eg., Merton, Scholes, and Gladstein (1978) or
Zimmerman (1996). The range of drike prices for which ¢; > ¢ is the
halfline darting from the mog rightward verticd dashed line in Fgure 1.
The economic intuition for the condition ¢; > ¢, can be seen by solving (4)
under an edditiond condraint that fixes either the number of stocks y = y*,
or the number of options, x = z*, with y* and z* fixed condants. It can
then be proved usng dsandard Lagrangean optimization that the condition
c1 > ¢ bolls down to the requirement that the shadow price of ether of
. the above two condraints is podtive. Consequently, if the number of stocks
or options is fixed in advance and if a feasble solution exigs under this
condraint, it pays to reax the condraint and increase the number of stocks
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Figure 1. Sope coefficients ¢, and c¢; from (6) and (7) as a function of the
drike price K of the put option; r¢ = 5%, u = 10%, ¢ = 15%, ¥ = 0.05.

and/or options. It follows from the Appendix that this line of reasoning only
holds as long as the find asset levd A; is a monotonicaly non-decreasing
function of the stock price, see dso Dybvig (1988). This is the case if y > 0
and x < y. In this region, ¢ 2> ¢y thus implies that it is profitable from an
expected return perspective for a given VaR profile to increase the number
of options and the number of stocks up to point where x = y. After this
point the find asset level A; will no longer be non-decreasing in the stock
price exp(r®), see Figure 6 in the Appendix.

The cash and cdl investment scheme provides the investor with the up-
ward potentiad of stock, without the downsderisk associated with a naked
stock drategy. It is easy to see that excess cash is needed in order to imple-
ment a long cal dsrategy, i.e, A* < exp(r®). Ay = exp(r®). This boils down
to the requirement that the maximum dlowable VaR of the investor mugt
be postive, implying tha he is willing to teke some rik. The ‘spare casdh
left after guaranteeing the criticd asset levd A*  with certainty should, from
a maximum expected return perspective, be used to buy cdl options.




2.2.2 Optimality of short put options

There is a amdl region of drike prices for which it is optima to invest noth-

ing in docks while smultaneoudy shorting put options and investing the
proceeds at the riskfree rate. This region corresponds to the smdl interva
characterized between the verticd dashed lines in Figure 1. In this region,
co > ¢; > 0. Usng dmilar condrained optimization programs as in Subsec-
tion 2.2.1, we obtain that ¢y > ¢; > 0 implies that the shadow prices on fixed
stock and option investments are negative. It thus pays to decrease option
and stock holdings up to the point where the VaR condraint is binding and
the find asxt levd A, becomes non-monotonic in the stock price exp(r®).
Jugt as in the case of an unbounded program (4), see Subsection 2.2.3, the
optimality of short put options is due to the choice of VaR as the downside
rsk measure. It gives rise to aggressive pay-off functions and may, therefore,
have limited practicd relevance. The optimdity of the short put drategy
vanishes if the extent of shortfdl is dso taken into account, eg., by usng
expected shortfall or semivariance as a downdderisk measure. Findly note
that the short put drategy is only feesble if the investor is willing to take
ome risk, i.e, A* < exp(rc).

2.2.3 Unbounded

The problem (4) is unbounded if ¢; < O, which occurs for a large interval
of (far out of the money) drike prices, see Figure 1. For typica parameter
vaues, we have P~1(y) < exp(r¢), such that ¢; < O implies tha the VaR
citical pay-off of the option is smdler than that of an equivdent riskfree
invetment. As a reault, it is optimd to short an infinite amount of put
options. The proceeds of this transaction can be invested in cash and in
sock in such a way that the VaR condrant in (4) is jus met, Smilar
results were established by Pelssr and Vorst (1995).

The above invetment drategy gives rise to extremdy aggressve pay-
off patens and is genedly not practicdly implementable. In fact, one
can ague that the solution is driven by an inadequate specification of risk
condraints. huge losses with a smdl probability are acceptable. Note that
even in caes where no feasble solution exigs if the number of options is
resricted to zero, the unbounded solutions can be feasble and optima. For
example, if »¢ = 0.05, A* = 1.1, and A4, = 1, it is clear that the investor's
maximum VaR is negative, such tha no riskfree investment has a tolerable
risk profile This implies that no feesble invesment drategy exids if one can
invest in stock and cash only. Depending on the set of parameters there may

't suffices that i > r¢, P~1(y) < exp(r®), and A* < exp(r¢).
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exig a “bust or boom” drategy: for ¢, < O one can (theoreticaly) short huge
amounts of options and invest the proceeds partly in stock and partly in cash.
In this way, one obtains a feasble draegy if the drike price of the option
Is aufficently low, i.e, if the probability of the put option being exercised
is aufficiently smdl. It is dear that the unbounded solution is an atifact
which is due to the specific choice of the downsderisk messure shorting
aufficiently far out of the money puts does not increese the VaR, i.e, the
probability of shortfdl. It does, however, (i) margindly incresse the amount
of funds avalable, and (ii) subgantidly increase the extent of shortfal. If
we incorporate the latter in our (downsde) risk measure, aggressve pay-off
patterns as described above are no longer optimal.

2.2.4 Infeasible

The program (4) has no feasible solution if ¢y, ¢; > 0 and A* —exp(r€)-Ag > O.

If A* > exp(rc) . Ag), the invetor's maximum VaR is negaive, implying he
wants to earn more than the riskfree rate with a probability of a leesst 1 - .

If ¢y, ¢; > O however, this cannot be achieved.

3 Efficiency evaluation

We now turn to a comparison of the efficient portfolio derived in Section 2
with a gsock-only drategy and an optima portfolio insurance drategy. We
concentrate on VaR as the relevant downdderisk measure, i.e, k = 0. Sec-
tion 4 contans some remaks as to how our results generdize to dternative
downsderisk measures such as expected shortfdl and semivariance. The
optima stock-only investment drategy (z*° = 0) is given by

so A =
A (8)

if the par (z%°, y*°) is a feasible drategy, with the superscript  denoting
stock-only. The optima portfolio insurance srategy under a VaR condraint
Is derived in Ahn & d. (1998). These authors minimize the cost of the
option invesment ingead of maximizing the expected pay-off as in (4). This
is equivalent to our approach for a fixed vaue of the drike price K. If we
dso want to optimize over the drike price as in Ahn e d. (1998), the two
goproaches differ dightly (for fixed stock investments). In our present setting
with the expected pay-off as the objective, we obtain for fixed K the optima
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Figure 2. Expected find asset vdue E(A;) as a function of the drike price K
of the option for the unredricted investment drategy, a portfolio insurance
drategy with fixed stock exposure y = y* = 1, and a stock-only investment
graegy; ¢ = 5%, p = 10%, 0 = 15%, ¥ = 0.05, A, = 1.

strategy

(A* - erc) - y* : (P_l(w) - erc) (9)
max(O, K — P-1(y)) = PY. e’

where y* denotes the fixed stock investment which has to be insured. Again
we assume that the optima portfolio insurance pair (2%, y*), is feadble, with
the superscript ” denoting portfolio  insurance.

Figure 2 presents the expected return of the three investment drategies
as a function of the drike price of the option. The result is computed for a
VaR, probability of ¢ = 5% and two criticd asset levels, A* = (.9,1.0. At
the riskfree rate of 5% used in the plots, this corresponds to VaR vaues of
15 cents and 5 cents per dollar of the invested notiond. The results remain
quaitativly smilar as long as i > ¢, A* < exp(r®), and P~1(¢) < exp(rc),
which are rdevant redrictions from an empiricd point of view.

Note that for both vadues of A* the dlowable VaR is postive given the
initial asset level Ag = 1 and the riskfree rate r¢ = 5%. Therefore, the
efficient portfolio derived in Subsection 2.2 contains a pogtive number of
socks and options for sufficiently high srike prices K. The precise portfolio
compostions for the different invesment drategies are presented in Figure 3.
For the portfolio insurance drategy, we follow Ahn et d. (1998) by assuming
a fixed number of stocks equa to y* = y* = 1. Note that this implies that
the initid asset levd conggs of sock only. To limit the VaR of this portfalio,
cash can be borrowed at the riskfree rate to buy put options, compare Ahn

=P (y) =

. et al. (1998).

Obvioudy from Figures 2 and 3, the dock-only investment drategy is
invariant to changes in the drike price of the option. This invesment Srategy
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Figure 3: Compostion of optima portfolios usng unredtricted optimization,
a portfolio insurance approach (fixed one unit stock invesment y = y* = 1),
and a dock-only invetment drategy (i.e, no options x = 0). The figure
presents the number of stocks and options and the amount invested in the
riskfree ast, al as a function of the drike price K of the option; r¢ = 5%,
p=10%, ¢ = 15%, v = 0.05, 4o = 1.

has the lowest expected return of the three drategies conddered, illustrating
the usefulness of incorporating options in the portfolio if options are available.

The expected return on the optimd portfolio insurance drategy, if fees-
ble, is adways higher than that of the stock-only drategy. For feeshility, the
avalable option needs a sufficiently high drike price. This result hinges on
the level of the fixed exposure to stock and on the VaR levd. If the risk toler-
ance is higher, i.e, if the VaR exp(r¢) — A* is higher, the portfolio insurance
drategy for y* = 1 becomes feasble for a wider range of srike prices K. As
in Ahn et d. (1998), we can optimize the expected pay-off of the portfolio in-
surance drategy over the drike price of the option. For A* = 1, for example,
this implies that the same drategy is chosen as in the unredtricted optimum.
The optima drike price in this case corresponds to a 7.8% in the money put
option. For A* = 09, the optimd portfolio insurance dsrategy uses a 4%
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out of the money put option. Optima portfolio insurance now leads to a
different asset dlocation drategy than unredtricted optimal  asset dlocation.
This dso appears from the fact that the expected pay-off for K = 0.96 of
the unredricted drategy exceeds that of the portfolio insurance drategy by
about 100 bass points. The portfolio compogtion for the portfolio insurance
strategy as presented in Figure 3 shows that cash is borrowed at the riskfree
rate in order to buy protective put options. The number of options bought
is decreasing in the drike price K for K auffidently large This is intuitively
clear, as options with a higher K provide more protection and are dso more
expendve.

As sen in Figure 2, the unredtricted drategy has by far the highest ex-
pected return of the three drategies consdered. This is especidly clear for
sufficiently high grike prices K. In accordance with Theorem 1, Figure 3
shows that the optima portfolio contains a long riskfree cash investment to
guarantee compliance with the VaR condraint. The remainder is invested
iIn an equa number of stocks and options. The expected return of the un-
resricted dtrategy over the portfolio insurance approach (for fixed K) is
monotonicaly increesng in the drike price, see Figure 2. Moreover, if we
optimize the expected return for a given VaR over the drike price K, the
difference in expected pay-offs even tends to infinity. These results can easly
be explaned in the mea/downsderisk framework we condder. Neverthe-
less, such solutions are undesrable from a practitioner’s point of view. We
eaborate on these pathologic findings in the next section.

4 Caveats to the mean/downside-risk frame-
work

In order to obtan insght into the efficiency results of the previous section,
we plot the pay-off paterns of the optima portfolio insurance and the unre-
dricted drategy a the investment horizon as a function of the stock price.
The result is presented in Figure 4. We condder the same criticd asset levels
as in Fgure 2. We assume that the avalable put options have drike prices
of K=09 and K =1.078 for A* = 0.9 and A* = 1.0, respectively. These
drike prices are optimd for the portfolio insurance drategy.

We note that the portfolio insurance dtrategy has a less non-linear pay-off
pattern if it does not coincide with the unrestricted srategy. As explained
ealier, this dtuaion arises for a aufficiently high risk tolerance, i.e, dlowable
VaR levd. The optima pay-off of the unresricted dSrategy, however, dways
has the same dructure a cdl option combined with a riskfree invesment.
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Figure 4: Find asst vaue A; as a function of the stock price redizetion at
t = 1. The drike price K of the option is 0.96 and 1.078 for A* = 0.9 and
A* = 10, respectively; y* = 1, r¢ = 5%, p = 10%, ¢ = 15%, ¥ = 0.05,
Ay = 1. max(CDF, CDF*¢) denotes the maximum of the probability of the
stock price faling aove and below exp(r?).

Optimizing the unrestricted pay-off over the drike price, we obtain K — oo.
The corresponding expected pay-off dso diverges to infinity, implying an
infinite efficiency gan over the optima portfolio insurance draegy. The
pay-off pettern of the optimd (over K) unredtricted drategy, however, is
highly unredigtic. As the cal option for K — oo is extrendy far out of the
money, the pay-off of the drategy will be equa to the riskfree cash investment
with very high probability. With a very smal probability, the option expires
in the money, cregting a large leverage effect and an extremdy large pay-off.
This amounts to the investor teking a bet on an extreme redization of the
gock price, something appropriately labeled the casino effect by Dert and
Oldenkamp (1997). The casno effect is not an artifact due to the choice of
the specific downsderisk measure. Dert and Oldenkamp (1997) prove that
in complete markets for generd vaues of ¥k > 0 in (2), extreme bets sSmilar
to the one described above are optimal.

Preventing the cadno effect requires a reformulation of the investment
problem as lad out in (4. The man problem with (4) is tha no redis
tic didinction is made between different pay-off functions that have iden-
ticd downdderisk vaues, see dso Figure 4. As agued in the literature,
downdderisk is the most relevant notion of risk from a practitioners point
of view, see, eg., Sortino and van der Meer (1991). Combined with the ex-
pected return as a measure of profitability, however, downdderisk does not
provide a sufficiently rich characterizetion of the (utility) ordering of different
pay-off profiles. An extreme example of this was given above for the optima
portfolio insurance drategy and the optima unrestricted dtrategy.  Though
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investors may perceive risk in terms of the event and extent of faling below a
cetain benchmark return or asset levd, it is not true that they are indifferent
with respect to the variability of the pay-off above the benchmark. Both the
expected return and the downsderisk measure are insendgtive to this type
of variability. The combination of these two messures in an efficiency frame-
work, therefore, does not provide an adequate description of the investor's
preference ordering over different pay-off profiles.

By contragt, the mean/variance paradigm does not suffer from this defi-
ciency, as the variance tekes the variability of the pay-off into account both
above and below the shortfal asset level. The main drawback of the variance,
however, is that it assgns equd weght to deviations above and below the
threshold asset value, which is less redigtic, see Sortino and van der Meer
(1991). Moreover, with the asymmetric return digtributions that come with
optioned portfolios, the use of the variance can lead to perverse efficiency
results, see Leland (1996) and Lhabitant (1997).

There are severd ways to cope with the above deficiency in the mean/downside-
risk framework. The firsd gpproach controls the casno effect by introducing
additiond shortfdl congraints in (4). For example, in addition to (4), the
manager might require that the assets A; exceed a second threshold value
A** > A* with a sufficiently high probability. This effectivdly reduces the size
of the feadble region in Figure 6. Such an gpproach is adopted by Dert and
Oldenkamp (1997). Ther findings reved that the introduction of additiona
shortfdl condraints indeed yidlds more redidic portfolios, but mitigates or
masks rather than solves the casno effect. As an dternative to the solution
of Dert and Oldenkamp (1997), one can fix ether the dlowable range of
drike prices K or the maximum amount invested in gock. The latter ap-
proach closdy links to the portfolio insurance drategy, where stock holdings
are fixed in advance. It explans why the cadno effect has faled to emerge
clearly from the literature on portfolio insurance usng options.

A second approach to solve the casino effect uses dternative specifications
of the objective function. For example, one can replace the expected asset
levd by a nonlinear trandormation of the find asst vaue This reflects
the tradeoff between expected return and variability of VaR acceptable pay-
offs. Alternaively, one can replace the expectations operator by a different
messure of profitability, eg. the median pay-off or some other quantile.
Both the firs and second approach are quite ad-hoc and may to some extent
prevent the casno effect.

A third posshle approach that encompasses the previous two is to use
generd utility functions to deive optimd portfolios Such utility functions
should incorporate the appropriate trade-off between downsderisk, upward
potential or expected return, and variability of risk-acceptable pay-offs. De-
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ggning an empiricdly rdevant verdon of a utility function that incorporates
al these issues, however, is not trivial, and more research has to be directed
to this aea A smple utlity function that goes some way in incorporating
the above three key characterigtics of pay-off digributions is the wel-known
threshold power utility function:

U(A,) =

(4 ANT(1=7) for 4> A%,
{ (10)

—00 for A4, < A%,

where v > O denotes the risk aversion parameter.? The threshold level A*
ensures a redriction on downdderisk: portfolios with a postive probability
of a pay-off smdler than A* cannot be optimal, because U(A,) = —oo for
A; < 0, and thus E(U(A,)) = «oo. Vaidbility of the pay-offs above the
threshold levd ae taken into account by the concave shape of the utility
function. Findly, profitability is accounted for by the fact that the utility
function is monotonicaly incressng.

The expected utility based on (10) is maximized with respect to (z, y),
both with and without the redriction y = 1. The threshold A* is set to 0.9
as in the left-hand pand of Figure 4. The results are presented in Figure 5.

To compare the portfolio insurance drategy with the optima unrestricted
drategy, we compute the additiond amount of initid funds (A,) needed to
equate the expected utility of the portfolio insurance drategy to that of the
unrestricted  drategy. To fedlitate the comparison, we optimize over the
srike price of the option in the range [0.9, 1.2],3 i.e, we compare the K-
optima portfolio insurance drategy with the K-optima unredtricted  strat-
egy for a given degree of risk averson . The top-left pand of the figure
reveds that the efficiency loss varies from 250 basis points for v = 2 to 650
basis points for v = 6. This is intuitively cear. The incresse in. flexibility
for the investor caused by dropping the condraint on the fixed invesment in
gock becomes more worthwhile if risk is pendized more heavily in the objec-
tive function. The top-right and bottom-left pands of the figure demondrate
that increased risk averson leads to lower stock investments and lower op-
tion invesments. In paticular, for v > 3, the manager Sarts short sdling
ingdead of buying put options, though the amounts remain smdl for near and
a the money options. It is useful to re-emphasze that even if one agrees on
solving or mitigating the cadno effect by resorting to threshold power util-
ity optimization, the unredricted drategy dill provides dgnificant  efficiency

2For v = 1, (10) has to be replaced by In(4; — A*).
3This range of strike prices was used to facilitate the numerical computations, which
are quite involved.
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Figure 5: Efficiency loss for various degrees of risk averson y of optima port-
folio insurance versus an optima unrestricted srategy computed over a grid
of drike prices (top-left). The efficiency loss is computed as the percentage
of additional funds needed to equate the expected utility of the portfolio in-
surance drategy to that of the unredricted drategy. The fractions invested
in options and stock for the unredtricted drategy are in the top-right and
bottom-left panels, respectively. The bottom-right pand contains the option
invesment for the portfolio insurance drategy. The plots are based on (10)
andA* = 0.9, v* = 1,r°=5%,u=10%,0=15%,4y = 1

gans over the portfolio insurance drategy.

To conclude this section, note that the reported caveats in principle aso
aoply to optima portfolio insurance as in Ahn e d. (1998). The extent
to which these cavests can be exploited, however, is hindered sgnificantly
by the condraint that holdings in sock may not be changed. As mentioned
before, fixing the number of gtocks in advance is one possble way to over-
come the casno effect. Fundamentaly, however, fixing the number of stocks
masks raher than solves the pathologies in the mean/downsiderisk efficiency
framework.
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5 Conclusions

In this paper we andyticdly derived the optima portfolio in a mean/downside-
rik efficency framework if options ae avalable Usng this optimd solu-
tion, we showed that portfolio insurance and sock-only investment drate-
gies ae inefficent from a mean/downdderisk efficiency perspective. Given
a downsderisk limit, the expected return can be increased subgtantialy by
relaxing condraints on the amount invested in the risky asst and/or the
amount invested in options on this asse.

For large ranges of drike prices of the option, the optima unrestricted
portfolio conssts of a riskfree investment that suffices to meet the downsde-
rik condrant. The remaning funds, if any, ae inveted in a cdl option.
By optimizing over the drike price of the cal option, we were able to point
out a serious cavest to the mean/downdderisk efficiency framework. This
framework implies optimdity of portfolios that essentidly bet on extreme
redizations of the stock price. With high probability, the pay-off equds the
shortfdl leve, while with smdl probabdility, the pay-off is extremdy high.
Det and Oldenkamp (1997) appropriately labd this the casino effect. Such
portfolios seem very unlike the pay-off function desred by a typicd invedor.
This peculiar result is robust to the gspecification of the downsderisk mea
sure, see Det and Oldenkamp (1997). Moreover, if a portfolio insurance
drategy is augmented with the sdection of the exposure to the basc risk
factor, identical cavests gpply to this drategy.

A second cavest was reported if value-at-risk (VaR) is used as a downside-
rnsk messure. In that case it is optima to sdl unlimited amounts of far out
of the money put options and to invest the proceeds in stock, which gives
rise to extremdy aggressve pay-off functions. This is caused by the fact that
VaR as a downsderisk measure only accounts for the event of adverse price
movements, and not for the extent of their impact. In tha sense it is an
inadequate messure for downside-risk.

We mentioned severd dterndives to overcome the pahologies in the
mean/downsde-risk  framework. The most relevant of these uses generd
utility functions and expected utility maximization to deive optimd port-
folios. Such utility functions should include an appropriate tradeoff between
downgderisk, upward potentid or expected return, and varidbility of the
pay-offs that have an acceptable downsderisk profile. Such a tradeoff effec-
tively requires a preference ordering of an investor over pay-off distributions
that are characterized by multiple (> 2) attributes. We discussed the effect
of the familiar threshold power utility specification, which goes some way in
dedling with these issues Much research effort, however, has gill got to be
put into desgning empiricdly rdevant versons of utility functions for asset
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Figure 6 Typicd shepe of the pay-off function for different vaues of the
fractions invested in stock (y) and options (z); the dashed polygon reveds
the typicd shgpe of the feasble region.

dlocation  problems.

Irrespective of the approach adopted to overcome the cavests to the
mean/downside-risk  framework, unrestricted optimal  asset  dlocations  pro-
vide dgnificant efficdency improvements over optimd portfolio insurance type
dlocations. This dresses the need for Smultaneous rather than partia asset
alocation  procedures.

A Appendix: Proof

Proof of Theorem 1: Figure 6 contans 4 subdiagrams giving the shape
of the find asst vdue A; as a function of the stock price. The (z, y)-plane
is divided into 4 sections, dictated by the linesy = x and y = 0. The figure
adso shows a typicd shgpe of the feasble region of problem (4).

In the region {(x, y) y = 0, x <y}, A, is monotonicaly incressing in the
stock price exp(r®). With a dight abuse of notation, define A,(exp(r®)) as
the asset level as a function of the stock price We edtablish that

P(A, £ A0 £ 9 &
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P(Ai(exp(r®)) < A7) < ¥ &
Plexp(r®) < AT}(A") < ¥
ATNA) < PTW) &
A(PTNW) > AT (A1)

where A7' denotes the inverse function of A,(-), and where P! (.) denotes
the inverse cdf. As A(-) is linear, (Al) presents the border of the feasible
region in (z, y)-space. Note that this part of the border is only vaid in the
region {(z, y)| y > 0, x < y}. In the other regions, Smilar derivations as
(Al) can be usad to edtablish the remaining parts for the border.

Clearly, the border in the region {(X, ¥)|y >0, X <y} has dope coefficient
c; & in (7). It is dso clear that the iso-objective curves have dope ¢, which
exceeds zero for usua parameter values, see Section 2. Note that the iso-
objective curves are increasing in the upper-right direction. We can now
diginguish three dtuaios, assuming the feasble region is non-empty.

Case (i): ¢;> ¢g > 0, now the dope of the border of the feasble region
is dteeper than that of the iso-objective curve, resulting in the intersection
point of the x = y-line and the border of the feasble region being optimal.
Solving for this intersection point results in the firg portfolio given in (5).

Caxe (ii): co0 > ¢ > 0, we now have the reverse gtuation of case (i).
The dope of the iso-objective curve is steeper than that of the border of
the feasble region. Given tha the iso-objective curves indicate increasing
expected returns in the upper-right direction in the (z, y)-plane the left
intersection point of the border of the feesble region with the line y = 0
gives the optimd portfolio. Solving for this intersection point gives second
portfolio presented in (5).

Case (jii): ¢; < 0, now the feasble region is unbounded.

This proves the theorem.
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