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SEMI-NONPARAMETRIC COINTEGRATION TESTING

BY H. P E T E R BOSWIJK  A N D  ANDRE  LU C A S

of Amsterdam and Vrije  Universiteit Amsterdam

This paper considers a semi-nonparametric cointegration
test. The test uses the LM-testing principle. The score func-
tion needed for the LM-test is estimated from the data using
an expansion of the density around a Student t distribution.
In this way, we capture both the possible fat-tailedness
and the skewness of the innovation process. Model selection
criteria are employed to select the appropriate order of the
expansion in finite samples. Using a Monte-Carlo experiment,
we show that the semi-nonparametric cointegration test has
good size and power properties. The test outperforms previ-
ous testing procedures in terms of power over a broad class
of distributions for the innovation process.

1. Introduction. The low power of univariate unit root tests and multi-
variate unit root (or cointegration) tests has been an ongoing puzzle since the
introduction of formal unit root testing procedures. The seminal literature on
unit root testing is generally based on the Gaussian distribution, which is evi-
dent from the use of estimation techniques like ordinary least-squares and Gaus-
sian maximum likelihood, see, e.g., Fuller (1976),  Engle and Granger (1987),
and Johanscn (1988). In order to improve the power of these tests, two comple-
mentary approaches have been put forward in the literature. The first approach
concentrates on the fact that the Gaussian based procedures have difficulty in ap-
proaching the power envelope dictated by the set of point optimal unit root tests.
Power can be improved substantially by considering (exponentially) weighted av-
erages of point optimal tests, see, e.g., Elliot et al. (1996). The second approach
concentrates on the distributional assumptions underlying conventional unit root
tests. Although the assumption of Gaussian disturbances may be appropriate in
some circumstances, it is highly questionable in other settings. If the stochastics
in the model are inherently non-Gaussian, it is intuitively clear that efficiency
and power can be gained by exploiting this non-normality during the estimation
and testing stage of the modeling process. Examples of this type of literature in
the unit root context are, e.g., Lucas (1996a,b)  and Hodgson (1997).

The present article fits in the second strand of literature mentioned above. We
study cointegration tests that exploit the possible non-normality of a set of time-
series in performing a cointegration test. The non-normality is captured by using

The first author acknowledges the support of the Royal Academy of Arts and Sciences
(KNAW). This version: August 8, 1997.

Key words and  plrrases.  Cointegration, semi-nonparametric estimation, fat tails, skewness.
1
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a likelihood based  testing procedure where the likelihood function is estimated
from the dat,a  using semi-nonparametric density expansions as in Gallant and
Nychka (1987).

Several non-Gaussian likelihood based cointegration testing procedures like
the Likelihood R.atio  (LR) test, the Wald test, and the Lagrange Multiplier
(LM) test, have  been studied in Lucas (1996a,b,  1997). In all these papers, the
form of the likelihood is taken as given and specified by the researcher, such
that the likelihood based tests are, in fact, pseudo-likelihood or quasi-likelihood
based tests, stle  \\%ite  (1982) and Gouri&oux  et al. (1984). The main conclusion
emerging from the papers on non-Gaussian cointegration tests is that power can
increase dramat,ically  if one uses a non-Gaussian pseudo-likelihood for estimation
in situations \vit,h  fat-tailed errors. This holds even if the non-Gaussian pseudo-
likelihood does  uot  coincide with the true likelihood. The power gain has to be
paid for in t,crms  of a power loss if innovations turn out to be Gaussian after
all. This power loss can, however, be kept between reasonable bounds by an
appropriate choice of the pseudo-likelihood.

Given the above  general conclusions, it seems straightforward to look for adap-
tive procedures for cointegration testing. Such procedures have the advantage
that power is gained if innovations are fat-tailed, while at the same time no power
is lost (asympt,ot,ically) if innovations turn out to be Gaussian. This contrasts
both with the results  for Gaussian pseudo-likelihood based cointegration tests
as Johansen  (1988,1991)  and cointegration tests based on a non-Gaussian
pseudo-likelihood.

There are several ways to implement adaptive procedures into cointegration
tests, varying from fully non-parametric kernel based methods to fully paramet-
ric modeling techniques, e.g., using the Student t distribution with estimated
degrees of freedom instead of the normal distribution. In this paper we make
use of semi-nonparametric techniques. We use polynomial densities like the ones
proposed by Gallant, and Nychka (1987) as a pseudo-likelihood function. By let-
ting the dcgreca  of the polynomial diverge with the sample size, we are able to
let the pseudo-likelihood come arbitrarily close to the true likelihood function.
The use of semi-nonparametric techniques has advantages over the use of both
the fully noll-parametric  and the fully parametric approach. The advantage over
the parametric approach is evident: less restrictive assumptions have to be made
about the dist,ribution  of the time-series process. There are also some advantages
over the fully non-parametric approach, however. As the semi-nonparametric
approach uses parametric elements, this can be more efficient in finite samples
than a fully non-parametric procedure. Moreover, the parametric elements in
the model might, enhance the interpretability of the final results. Finally, the
semi-nonparamctric approach more easily allows for the use of standard model
selection procedures for model reduction in order to improve efficiency in finite
samples.

The original l)olynomial  densities studied by Gallant and Nychka (1987) es-
sentially use t,hr  product of the normal density and the square of a polynomial.
The normal tlensit,y  can in this setup be considered as the central density or the
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leading term in t,hc  expansion. In the present article we use a slightly different
class of polynomial densities based on a fat-tailed central density. We argue that
this is more al)propriate  in finite samples. Deviations from normality essentially
have two iml)ol.t;rnt  aspects: deviations in the middle of the distribution and
deviations in t,hcl  tails. While the polynomial terms are suited to take care of
the former tyl)c’  of deviations, they are less adequate for dealing with the lat-
ter, unless high order polynomials are used. Therefore, we use the Student t
distribution as t,hc  central density. In this way we can parsimoniously capture
both departures from normality mentioned above, including phenomena such as
skewness and multimodality as well as fat-tailedness.

Given our choice for the semi-nonparametric approach based on polynomial
densities wit,11  ;1 fat,-tailed central density, we are left with the choice of the test-
ing principle. 111  our case. we choose between the LR, the LM, and the Wald
testing princ:il)lc>s.  The:  Wald cointegration test is least attractive in the present
context, as t,his  ttsst  can  be very sensitive to trivial transformations of the data,
like reordering t11~  variables, see Kleibergen  and Van Dijk (1994) and Lucas
(1996a,  Chal)t,or S). By contrast, both the LR and the LM test have the at-
tractive prol)clrty that, they are invariant to non-singular reparameterizations of
the model. In t,hc  present article, we focus on the LM testing principle for three
reasons. First. unlike the LR test, the LM test can be corrected for the possible
misspecificat,ion  of the pseudo-likelihood using a White-type information matrix
estimator. The  failure of t,he  LR. test to make such a correction leads to addi-
tional nuisanccl  parameters in the limiting distribution of the LR statistic. In the
present cont,cst,  of scm-nonparametric cointegration testing this may seem less
important, as t,hr  additional nuisance parameters should vanish asymptotically
because the SNP estimator envisages to provide a consistent estimate of the true
likelihood funct,ion.  The second reason for preferring the LM test over the LR
test is computation t,ime.  The LM test requires estimation under the null only,
whereas the LR tc:st,  requires estimation under both the null and the alternative.
Although one might, argue that with the present state of computer technology the
additional effort, of computing the LR test is only marginal, it is the experience
of the authors that,  t,he  computational advantage of the LM test in the present
context is sllbstirntial.  This is intuitively clear, because the estimation problem
for coint,cgr;ltcxtl  time-series  models based on polynomial Student t densities is
highly noll-li~lc~:ll~ i11  t,hc  parameters. Moreover, as  testing for cointegration in-
volves a mult  iT.;lriilt,c’ estimation problem, the computational burden increases
rapidly with t 11~~ ortlcr of the semi-nonparametric density expansion. Therefore,
the merits of tllo Lhl test over the LR test from a computational point of view
remain consitl(~r;ll)lo  in the present, context. The third reason for preferring the
LM test over  r11(~  LR test emerges from Lucas (199613) and concerns the stability
of the test, if tllo  data exhibit volatility clustering. Lucas shows that the size
distortions of’ 111(x  Lh’I  test are generally lower than those of the LR test if the
data display iIlltorc,grcssive  conditional heteroskedasticity (ARCH), especially if
the ARCH c+f(lc,t,s  arcs  highly persistent. Because one possible area of application
of our semi-Ilolll)~Lranlctric  cointegration testing procedures is in financial eco-
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nomics  and as  inan!~  financial economics time-series display volatility clustering,
the reduced size  tlistortions of the LM test make the LM test preferable over the
LR test.

The cant  ril)lltions  of the present article to the contemporary literature are
the follonin~.  1:irst,.  we contribute to the literature on non-Gaussian cointegra-
tion testing 1)~. using a pseudo-likelihood that is dictated by the data. In this
way we coml)lcirlcnt  t,he  results of Shin and So (1997),  who study adaptive uni-
variate unit root tcst.s.  and of Hodgson (1997) , who studies adaptive inference
procedures for t hc  st,ationary  relations in multivariate cointegrated time-series
models. \f’e  ;rlso  gcncralize  the results of Lucas (1996a,b,  1997) for fixed pseudo-
likelihoods. SCYXNI~~.  we use semi-nonparametric techniques instead of fully non-
parametric kerlrel-based  methods t,o  estimate the true likelihood function in the
present multi\.ariat,e  context. Third, we derive the limiting distribution of the
semi-nonpal.;rillc’tl.i~  cointegration test and propose an inference procedure that
can easily b(,  irtlJ)lcmented in practice. Fourth, we present a simulation experi-
ment comparing  tllc J)roposed  method with several likelihood based cointegration
tests availal)lc  ill t 11~1 literature. It t,urns  out that the adaptive cointegration test
that uses a t ia~lit  ional model selection criterion to determine the degree of the
polynomial in tll(B  tlensity expansion has the best overall performance.

The article  ih  set  up as fol lows. Section 2 discusses the model that is
used and intio(11iccs  the pseudo-maximum likelihood estimator and the non-
Gaussian L.\l  coint)egration  test. Section 3 presents the implementation of the
serni-nonpnr;~~l~c~tl~i(~  cointegration LM test. Section 4 gives the asymptotic distri-
bution theor\- li)~,  the proposed testing procedure. Section 5 presents the results
of a Monte-C;rilo  simulation experiment in which the performances of several
(old and nc\v)  I cst,ing  procedures are evaluated for a variety of distributional
assumptions. Finally.  Section 6 concludes the paper with some suggestions for
future research.

2. The t,esting  procedure. We consider the vector autoregressive (VAR)
model of ortlt.1  /I.

(1)
p--l

AY,  = HYt-I + c  aiAytvi  + p  +  ,ct,
i=l

where R ant1  cl),  / = 1, . , p are rF x k: parameter matrices, p is a constant term,
and et  is an IIIIIC  )\‘ilt  ion. We assume that {it}  is an independently and identically
distributed (i.i.tl.)  Jjrocess  and that yt  is observed for t = -p+  1,. . . ,T. The key
parameter oJ intcrtrst  in the present article is T = rank(n).  If r < k, the matrix
II can be tl~~o~t~J~osed  into f?$JT, with Cr  and p two k x T matrices of full column
rank r, XC.  ct.;..  .Johansen  (1991).

Following I 11( ,  tlecomposition  of II of Kleibergen and Van Dijk (1994),  we
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obtain that (1) can be rewritten as’

(2)
P-1

Ayt = 4L,PT)yt--1 + &wm,t--1 + c @&t-i + P + Et,

i=l

where (Y is again a Ic x r matrix of full column rank, I,. denotes the identity
matrix of order r, /3  is a (k - r) x r matrix, ~22  is a (!c  - r) x (k - r) matrix,
Ez = (O,Ik-T)T  is a Ic x (k - r) matrix, and y2,t-1  denotes a vector containing
the last (k - r) elements of yt-1. Under the null hypothesis He : rank(II)  = r,
we have (~22  = 0. So the null of no cointegration can be tested by testing whether
~22  = 0 or not. In fact, the trace cointegration test of Johansen  (1991) amounts
to performing a likelihood ratio (LR) test for He : cysz  = 0 versus the alternative
~22  # 0, see also Lucas (1997). A Wald and a Lagrange Multiplier (LM) test
for Ho : ~22  = 0 can be found in Kleibergen and Van Dijk (1994) and Lucas
(1996a,b).

In the present paper we confine ourselves to the LM cointegration test for
the reasons outlined in the introduction. The LM test for cointegration using
non-Gaussian (quasi- or pseudo-)likelihoods was introduced by Lucas (199613).
Our test extends the analysis of Lucas in that we allow the (quasi-)score to be
estimated from the data. The precise procedure used to achieve this objective is
outlined in Section 3. In the remainder of the present section, we provide some
more details on the LM cointegration test.

Let

(3) c(O) 0;  fi IRI  . w(-dRTe(0)))
t=1

denote a quasi- or pseudo-likelihood function (cf. White, 1982, and Gourieroux
et al., 1984),  with 0 the vector of unknown parameters, with R a k x k matrix
such that (RTR)-’  is a positive definite scaling matrix (the covariance matrix
of Et  in the Gaussian case), and I = Ayt  - cr(l,.,/3T)y,-i  - Eza22yz,t-1  -
Cfzt  +iAyt-i  - p. Let OT = (OT,O,‘,O,‘), w h ere 01  = vec(Lyzz) (with vet(.)  the
column-stacking operator), 02  contains the parameters @i,  CL, (Y, and ,0,  and 0s  is
a vector of unknown parameters characterizing R and the function p(.). Define
the log-likelihood function e(O) = log,C(O) = CT=, et(O),  the gradient G(O) =

WO)/aO  = C;, G(e), minus the Hessian matrix He(O) = -~2~(0)/~O~OT,
and the outer-product-of-gradient matrix Ho(O)  = CT=, Gt(0)G,(O)T.  Then the

‘A decomposition of (1) as in (2) is not always possible. The decomposition is invalid if
the leading r x r submatrix of the cointegrating vectors fi is singular, in which case it cannot
be normalized to the identity matrix. This complication is irrelevant for most situations of
practical interest, because for empirical data singularity of the leading submatrix of p occurs
with probability zero under suitable assumptions for the innovation process {it}.  Even if the
singularity occurs, a somewhat more complicated decomposition applies for which all the results
in this paper hold true, see Lucas (1996b).
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LM statistic for Ho : cr22  = 0 with a possibly misspecified likelihood is given by

(4) LM = (SIH,lG)T(S~H,-‘H~(H~l)TSIT)-lSIH~lG,

with Sr = (Ic~-~)z,  0) a selection matrix such that 5’10 = 81  = vec(ozz),  and with
G, Hc,  and Hn evaluated at the pseudo-maximum likelihood estimator 8 under
the restriction 022  = 0. The form of the LM test statistic in (4) is standard, see,
e.g., Gallant (1987, p. 230). We consider that part of the gradient (normalized
by the information matrix) that corresponds to ~~22.  Next, we test whether this
part of the gradient is sufficiently close to zero at the estimates under the null.
To cope with the possible misspecification of the likelihood, the matrix in the
middle of (4) is needed, see also White (1982). If the likelihood were correctly
specified, the matrices Hc  and Ho would have the same expected value, and
after suitable normalization, the same limit (in distribution), such that the LM
statistic could be simplified somewhat further.

Suppose that 0s is void, so that both the scaling matrix and the form of the
pseudo-likelihood are known. Defining $t(e)  = g(st(13)) = ap(RT~t(0))/&,  and
Z,(0)  = --&T(Q)/%,  the gradient becomes G(B) = CT=,  &(e)+,t(@,  whereas
asymptotically valid choices for HC and HQ  are given by

t=1 t=1

where  GT(@  = T-l  CL1 W(Et(@)ld$, and n22~(0)  = CL1 $t(~)+t(~)T.  In

this form, the LM statistic was first proposed and analyzed by Lucas (1996b),
albeit with the scaling matrix (RTR)-’ estimated jointly with the other param-
eters. In the next section, we extend his analysis to the case where the form of
the pseudo-likelihood (i.e., the function p(.))  is estimated as well.

3. Semi-nonparametric estimation of the score function. The LM
cointegration test statistic based on a non-Gaussian likelihood was already in-
troduced in Lucas (1996b). This test has superior power compared to the Jo-
hansen (1991) trace test if the innovations are fat-tailed. If the innovations are
Gaussian, however, the LM cointegration test based on a fixed non-Gaussian
pseudo-likelihood has less power than Johansen’s test. A natural extension of
previous work in this area, therefore, is to let the data decide on which pseudo-
likelihood has to be used. If the data are nearly normally distributed, Johansen’s
test can be used best. By contrast, if the data are fat-tailed or heavily skewed,
the use of a non-Gaussian pseudo-likelihood is called for. The form of the pseudo-
likelihood is determined by the choice of p(.) in (3). So by varying p(.),  we can
tune the performance of the LM cointegration test under different distributional
assumptions for the innovation process.

Related work in this area consists of papers by, e.g., Hodgson (1997) on the
adaptive estimation of the long-run parameters in vector error-correction models,
and Shin and So (1997) on adaptive univariate unit root testing. In both papers,
kernel-based methods are used to estimate the pseudo-log-likelihood p(e)  in (3).
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In the present paper we use the semi-nonparametric (SNP) techniques as intro-
duced in Gallant and Nychka (1987). The advantage of the SNP approach over
the kernel-approach lies in the fact that the semi-nonparametric approach allows
one to employ certain parametric elements. In particular, one can choose a para-
metric family of densities as the leading term in a Hermite  expansion of the true
likelihood, see the comments in Gallant and Nychka (1987). This is especially
useful if one has some information about the shape of the distribution under
study. By a clever choice of the leading density, one can improve the efficiency of
the estimation procedure in finite samples compared to the fully non-parametric
kernel-based approach.

Analogously to Gallant and Nychka (1987),  we define the Kth order approx-
imation to the true density of the innovations as

( )

2

frc(e)  = cK1 5 Yil...ih  fi e; b(e),

il,...,ik=O h=l

where the &dimensional vector e denotes R&(&t - mK),  with RK a Choleski
decomposition of the inverse of the scaling matrix. Furthermore, tv(.) is the
Student t distribution with zero mean, unit scaling2matrix,  and v degrees of
freedom. The constant cK  and the vector mK  are such that jK(R$(&t  - mK))
integrates to one and &tfi<(RL(&t  - mK))  integrates to zero such that &t  has
zero mean.

To fix ideas, consider the following univariate (k = 1) example with a third
order (K = 3) SNP expansion:

f3(e) =  CT1 (70 + xe +  3”2e2  +  73e3)2 L(e),

with e = R3(~t - ms).  (6) clearly shows that the density expansion is always
positive. In fact, the expansion amounts to multiplying the central density, which
in our case is t,,(.),  by the square of a polynomial. These polynomial terms “mop
up” the differences between the true likelihood and the postulated central density.
By an appropriate choice of the central density, the number of additional terms
in the SNP expansion can be kept to a minimum.

Before proceeding, a few remarks are in order. First, the expansion in (5) is
different from that in Gallant and Nychka (1987) in that the Student t distri-
bution is used as the leading term in the expansion, as opposed to the normal
distribution. Although this difference is irrelevant if we consider the asymptotics
of the procedure (T, I< + co), in finite samples a low order Hermite-type ex-
pansion around the normal might prove insufficient to describe the degree of
leptokurtosis usually encountered in, e.g., financial data. By modeling the lep-
tokurtosis directly through the choice of the central density, we can substantially
limit the number of terms needed in the SNP expansion when the procedure is

2By this we mean that the covariance matrix corresponding to tY(.)  for v > 2 is equal to
Vlk/(V - 2).
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applied in finite samples. Note, however, that the use of the Student t distribu-
tion also gives rise to certain additional complications. For example, the degrees
of freedom parameter u must now be linked to the number of terms in the density
expansion in order for the SNP expansion in (5) to be integrable. These technical
issues are dealt with below.

A second remark concerns the degree K of the approximation. The elegance
of semi-nonparametric maximum likelihood estimation as proposed by Gallant
and Nychka (1987) consists of the fact that the procedure can be as efficient as
maximum likelihood if we let the order K of the SNP expansion rise with the
number of observations T. In that case the approximation becomes more accurate
if more data are available. Given the comments in the previous paragraph, the
lower bound on the value of u must then also rise with the number of observations.

The third remark concerns the need for the vector mK  in (5). As already
noted by Johansen  (1994),  the asymptotic distribution of cointegration tests is
extremely sensitive to the deterministic components included in the regression
model and the drift terms present in the data generating process. In order to
guarantee a similar interpretation of these components over different orders of
the SNP expansion, we impose the restriction that the mean of the innovations Et
is equal to zero. Note that this complicates the estimation, as the mean generally
is a function of the remaining parameters used in the SNP expansion. More on
this topic can be found in the remainder of this section.

The final remark before proceeding concerns the identifiability of (5). In its
present form, the parameters in the approximation are not identified. This is
easily seen by multiplying all y-parameters by a constant factor. As a result, the
integrating constant cK  has to be multiplied by the square of this constant factor,
resulting in an identical density approximation. To overcome the identifiability
problem, we impose the restriction ~o...o  = 1, such that the leading term in the
SNP expansion becomes the Student t density with v degrees of freedom, zero
mean, and scaling matrix (RiRK)-‘.

The parameters that have to be estimated for the Kth order SNP expansion
consist of v,  12, ,B,  @I,  . . . , ape-l,  p, RK,  and all y parameters. The parameters
CK and mK  depend on the remaining parameters in the following way.

L E M M A  1 . Given the density approximation in (5),  and given that v >
2.  lc. K, then

cK . fK(e)de =

with p/2 i + 1
Co(i)  = ---I- -( 1

(1+  (-l)i)

J;;  2 2
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and

Cl (u, i) = (f) i’2 “y;;“‘,

Furthermore, for v > 2. k. K + 1

k
n  CO(ih  + j/L  + l{kn})
h=l

v, C(ih  + jh)  + 1 )
h=l

with e,  the nth element of the k-dimensional vector e, and 1,~  the indicator
function of the set A.

C O R O L L A R Y  1 . Let <I denote the right-hand side of (7),  and let & denote
a k-dimensional vector with the nth element being equal to the right-hand side of
(8). Then given the restrictions

1
Oc, fic(Rh - mK))d&t = 1-cc

and

it follows that cK = [~/IRK~  and mK  = -(RL)-‘G/G.

So for a fixed value of K, we can view the SNP expansion as a simple pseudo-
likelihood with additional nuisance parameters to be estimated. To be somewhat
more precise, the function p(.) in (3) now also depends on the parameters u and
y.... The asymptotic distribution theory of the LM cointegration test for K fixed
and T + co  is not affected by the presence of additional nuisance parameters
in the estimation stage. Evidently, however, the asymptotic distribution does
depend on the order K of the SNP expansion. More on this issue can be found
in Section 4. For now it suffices to note that the Kth order SNP expansion
can be used in a straightforward way to obtain estimates of the parameters of
interest and to test the cointegration hypothesis in a pseudo-maximum-likelihood
framework.

To conclude this section, we briefly comment on the form of the SNP expan-
sion as provided in (5). In our view, the expansion used in (5) is not the most
natural one to use in applications. In fact, the polynomial term in parentheses
is a restricted (Ic  . K)th order polynomial. This is easily seen by considering the
case k = 2 and K = 1, in which case the polynomial can be written as

(9) 700  + yl0el  + -role2  + mele2,
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with 700 = 1. (9) is a second order polynomial, with zero coefficients for the terms
ef and e;. This is not important if we consider the asymptotics  K,T  + co. In
applications with finite samples, however, it seems more natural to let the Kth
order SNP expansion be based on an unrestricted Kth order polynomial instead
of a restricted (Ic.K)th  order polynomial. To achieve this, we impose the condition
that

(10) ‘-ral...zk = 0 v c;=, ih > K.

In (9), this would amount, to setting 711 = 0. If T, K + m, it does not matter
asymptotically whether (10) is imposed or not. In finite samples, however, re-
stricting the Kth order SNP expansion to a Kth order polynomial may matter
a great deal.

4. Asymptotic distribution theory. In this section we discuss the
asymptotic properties of the semi-nonparametric cointegration test as discussed
in the previous section. The most appropriate limit theory would be one in
which the order of the expansion K and the sample size T diverge to infinity
simultaneously. This, however, proved outside the scope of the present paper.
Therefore, we provide a different limit theory. First, we discuss the limiting result
if K is kept fixed, while the sample size T tends to infinity. These results are
heavily based on the work of Lucas (1996a,b,  1997) for fixed pseudo-likelihoods.
Next, we discuss the effect on the limiting distribution if we let K tend to
infinity.

We first introduce some assumptions for the error process in (1).

A SSUMPTION  1 . The innovations Et are independently and identically dis-
tributed (i.i.d.) with zero mean and finite variance-covariance matrix R11.

The results in this section can probably be generalized to sequences of martingale
differences, but this is not pursued in the present paper. Note that Assumption
1 formally excludes phenomena like volatility clustering, which are dominantly
present in, e.g., financial data. It appears from Lucas (1996b),  however, that
techniques like the ones studies in the present paper are still useful for analyz-
ing the cointegrating properties of multivariate systems exhibiting ARCH-type
behavior.

We now treat the order K of the SNP expansion as fixed and consider the
limiting distribution as the sample size T tends to infinity. Recall that 13~  =
(e:,  19:,  O,‘), where 01  = vec(aZ2) T,  92 contains the remaining regression param-
eters, and t3s  contains V, the y parameters, and the non-redundant parameters
inRK.LetB,  - (T  - Q:,  e,‘),  the full vector of regression parameters. Define

~daue3)  = -lOg.fKuGwa)  - mK)),

with frc(.)  as in (5) with  constants  CK and mK  as in Corollary 1, so
that the log-likelihood is given by &(e)  = - CT=,  PK(&t(&),  0,).  Define
y’,K,t(o)  = &+t&)$3)  = aPK(+%)$3)iaEt  and XK,t@)  =  XK(Et(&),e3)  =
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-dplc(~t(B,),  es)/%, . We need the following conditions on PK  and the true
distribution of it, compare Lucas (1996b,  1997).

ASSUMPTION 2. There is a pseudo-true value OK satisfying Sr0~ = 0, such
that

1 . the vector (&t(e~)~,1Llc,t(elc)~,  XK,~(@K)~)~  has mean zero and finite pos-
itive semi-definite covariance matrix flK  = (nij,K),  i, j, = 1,2,3, and flii,K
positive definite for i = 1,2;

2 . the following expectations exist:

with \C~,K/  # 0 and jC3,KI # 0.

We introduce the following notation. If B(s)  denotes a Brownian  motion, then
s B is a short-hand notation for Jt B(s)ds.  Similarly, Jb’ B(sjdB(s)  is denoted
by s BdB.  We can now prove the following theorem.

T H E O R E M  1 . If the data is generated by (1) with et satisfying Assumption
1, and the pseudo-likelihood oK(.)  is used for estimation, with oK(‘)  satisfying
Assumption 2, then the LM cointegration test given in (4) weakly converges to

(11) trace  ( [/--@IT  [/Pt”]-’  [/I&j@-]),

where F  = F - s F, F = B1  if CX~P  = 0, B1  and Ba  are two correlated stan-
dard Brownian  motions with E(F(s)B~(s)~)  = PK  with PK  a diagonal matrix
containing the canonical correlations between oIEt and ff~Ci~~$K(&t),  with (~1

denoting the orthogonal complement of cr. If (YIP  #  0, the first element of F(s)
is replaced by s.  Moreover, in that case the matrix PK  contains a zero in the
upper-left element, while the remaining diagonal elements contain the canonical
correlations between (aIp)lcuI&t  and CYIC,~$JK  (Et).

The result in Theorem 1 is identical to the result in Lucas (1996b). Limiting
results for more general deterministic functions of time like the ones in Johansen
(1994) can be found in Lucas (1996a).

The limiting distribution of the non-Gaussian LM tests depends both on the
postulated pseudo-likelihood and on the true likelihood through the correlations
in the matrix PI<.  This makes it difficult to perform inference in practical settings,
as new critical values have to be computed for each new choice of the pseudo-
likelihood and for each underlying true likelihood. Lucas (199613) proposes an
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inference procedure that can be implemented in practice. Using the parameter
estimates under the null, one can obtain a consistent estimate of the matrix PK.
This estimate of PI< can be used to simulate from the asymptotic distribution in
(11)) where the (correlated) Brownian  motions are replaced by correlated random
walks of length T. The simulations can be used to compute an asymptotic p
value of the LM test. As simulating from the (approximation to the) asymptotic
distribution does not take much time, this way of performing inference seems
well-suited for practical applications of non-Gaussian cointegration tests. The
results in Lucas (1996b) and in Section 5 illustrate that the procedure produces
good results in samples as small as T = 100 with only 500 drawings from the
asymptotic distribution used for estimating the pvalue of the LM test.

The result in Theorem 1 is not entirely new, albeit that in the proof of the
theorem we have to deal explicitly with the additional nuisance parameters due
to the SNP expansion used as a pseudo-likelihood. It is more interesting, how-
ever, to discuss the effect on the limiting distribution if K + co.  If K tends to
infinity, the SNP expansion approaches (in Sobolev norm, see Gallant and Ny-
chka, 1987) the true likelihood, such that the function $K(.)  approaches the
true score function. Let $co(.) d enote the true score function, then it holds
automatically that E($J,(E~))  = 0. M oreover,  the covariance between st  and
$K(E~) tends to the covariance between Et and $J~(Q),  i.e., -Ik. By a similar
argument, the information matrix equality holds for K + m. In particular, let
0s2,~  = E($~~(E~)$,~(E~)~),  then 0z2,00 = Cl,,.  As a result, the correlations
for the case cr:p = 0 mentioned in Theorem 1 reduce to the singular values
of the matrix (a=Rllcul)-‘l”(a=R,~~~) li2. All these results follow from the
fact that we estimate the true density of the innovations et  adaptively. Another
advantage of adapt,ing for the true innovation density is that the pseudo LM test
automatically approaches a true LM test. The true LM test is approximately
optimal from an (asymptotic) expected mean-squared error perspective if the
innovations are sufficiently fat-tailed or if sufficiently distant (local) alternatives
to the null hypothesis are considered, see Lucas (1996a,  Section 7.4). Finally,
note that a simplification of the LM test statistic can be carried through as for
K + 03 it holds that HC = Ho  in (4).

5. Simulation experiment. In this section we consider a simple simula-
tion experiment to uncover the main characteristics of the SNP cointegration
LM test in finite samples. We compare the new test with the performance of
Johansen’s (1991) trace test and Lucas’ (1996b) LM test based on a Student t
pseudo-likelihood with five degrees of freedom. We consider the following data
generating process (DGP),

(12)

with T denoting the sample size and c denoting a constant. A DGP as in (12) was
also used in Lucas (199Gb, 1997). Note that (12) does not contain a drift term,
such that the limit distribution with a=~ = 0 of Theorem 1 applies. Simulations
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with a drift term were also performed, but resulted in identical conclusions.
Despite the model’s simplicity, it suits the present purposes of demonstrating
the main differences between the cointegration testing procedures. Using more
complicated DGP’s  involving, e.g., contemporaneously correlated errors or non-
trivial cointegrating vectors, does not alter the general conclusions of this paper,
see also the simulations in Lucas (1996b). For c #  0, the DGP in (12) contains
one cointegrating relation, namely (0,l) T.  We test the null hypothesis of no
cointegration, He : T = 0, versus the unrestricted alternative, HI  : T = 2.

The regression model used to estimate the parameters is given in (1). Note that
the data generating process satisfies (YIP = 0, such that there are two nuisance
parameters entering the limiting distribution of the cointegration test. These
parameters are estimated consistently using the methods described in Section 4.
Next, p-values are simulated using 500 simulations. If the simulated pvalue is
below 0.05, we conclude that the null hypothesis of no cointegration is rejected.

The sample size used in the simulations is T = 100. Especially if for example
financial data are used, one expects to have a much larger number of observa-
tions. By using T = 100, we can check whether the SNP cointegration test also
works well in small samples. In particular, we are interested in whether the SNP
approach can already outperform Johansen’s (1991) LR test in samples of this
size, or whether we have to pay for the increased flexibility of the SNP approach
by a substantial power loss.

We consider two values of c in (12),  namely c = 0 and c = 20. If c = 0, we
should obtain the null distribution. The rejection frequency in this case should,
therefore, be approximately equal to the nominal size of the test: 5%. The power
of the test is investigated by looking at the rejection frequencies for c = 20.

We consider eight different test statistics. Test one is Johansen’s (1991) LR
trace test for cointegration. Test two is an LM version of Johansen’s trace test. It
uses the LM test discussed in Section 2 based on a 0th order SNP expansion with
v fixed at infinity. Test three is the LM test of Lucas (1996b) based on the fixed
Student t pseudo-likelihood with five degrees of freedom. This corresponds to a
0th order SNP expansion with u fixed at five. Tests four through seven use the
LM test based on SNP expansions of orders K = 0 through K = 3, respectively,
as given in (5). Finally, test eight uses the Akaike Information Criterion (AIC)
to select the order of the SNP expansion. For K = 0 through K = 3, the AIC is
computed. The value of K with the highest AIC is used in the computation of the
LM cointegration test. Note that the highest order of the SNP expansion used
in the present setup is three. Given the comments at the end of Section 3, this
expansion results in five y parameters to be estimated. Given the limited number
of observations, it seems difficult to go beyond this order of the SNP expansion
without running into severe convergence problems during the estimation stage.
As explained in Section 3, there is a link between the order of the SNP expansion
and the value of V. If v < 2K, then (5) no longer represents an integrable density
function. In the simulation experiments, we impose v 2 3 + 2K, such that the
first two moments of the density given in (5) always exist.

We consider 9 different Monte-Carlo experiments. For each experiment, we
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use 100 Monte Carlo replications. The experiments use different distributions for
the i.i.d. sequence {it},  namely

1. &t  is drawn from the standard normal

2. Et is drawn from the Student t distribution with 3 degrees of freedom;

3. Et is drawn from the Student t distribution with 2 degrees of freedom;

4. Et is drawn from the Cauchy  distribution, which is truncated such that
95% of the original probability mass is retained;

5. Elt  and Ezt  are independent drawings from a (mirrored) x2 distribution
with 3 degrees of freedom, recentered to have zero mean;

6. &it and E2t are independent drawings from a (mirrored) F distribution with
(6,6) degrees of freedom, again recentered to have zero mean;

7. Et is drawn from a mixture of three normals; only the means of the mixture
components differ; the first component has mean (0, -If)’ and is drawn
with probability 0.5; the second component has  mean (l$,  If)’ and is
drawn with probability 0.3; the third component has mean (-2+,  2)T  and
is drawn with probability 0.2;

8. Et is drawn from a mixture of three normals, each drawn with equal proba-
bility and each having a unit covariance matrix; the means of the normals
are (3, fi), (-3, d),  and  (0,  -a&);

9. sit  and s2t  are independent; &St  is standard normally distributed, while the
density of &it is given by (4507r)-‘/226  exp(-x2/2).

The first experiment provides a benchmark. One of the aims of the SNP coin-
tegration test is have a good level and power performance for both thin-tailed
and fat-tailed innovations. For Gaussian Et,  therefore, we hope that the SNP test
does not much worse than the test based on the Gaussian pseudo-likelihood. The
next three experiments are used to investigate the performance of the tests under
increasing degrees of leptokurtosis. Note that the t(2) distribution does not sat-
isfy Assumption 1. It is included to study the effect on the tests of extreme forms
of leptokurtosis. The x2 and the F distribution are used to investigate the effect
of skewness and the combination of skewness and leptokurtosis. The experiment
with the mixtures of normals shows the performance of the tests if the underly-
ing distribution is heavily skewed and multi-modal. The main difference between
the two mixtures is the distance between the means of the mixture components.
Especially if the distance between the mixture components becomes large, the
performance of cointegration tests based on a fixed non-Gaussian pseudo like-
lihood can deteriorate substantially, see the univariate simulations in Shin and
So (1997). The final experiment shows the performance of the tests if the true
distribution is an SNP expansion of order K = 3. Some plots of the relevant
distributions are given in Figure 1.
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Normal S tuden t  t ( 3 )

T r u n c a t e d  Cauchy

M i x t u r e  I

Mixture 2 SNP(3)

FIG. 1. Some of the densities used in the Monte-Carlo experiments.
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The rejection frequencies of the different tests in the Monte-Carlo experiments
can be found in Table 1.

The first, thing to note in Table 1 is that the rejection frequencies under the
null (c = 0) reflect the nominal level of 5% quite accurately for all test statistics
and distributions given the limited number of Monte-Carlo replications. Further
note that the rejection frequencies of the Gaussian-based tests (Joh and G)
under the alternative (c = 20) are fairly stable, with only the F distribution
giving rise to a lower power given the average performance. When we compare
the rejection frequencies of the LR-type test (Joh) and the LM-type test (G)
under the alternative (c = 20), we find that in terms of finite sample power the
LR-test outperforms the LM test in terms of power.

As noted in the earlier literature on non-Gaussian cointegration tests, the LM
test based on the St,udent  t(5) pseudo-likelihood outperforms the Gaussian-based
test if innovations are fat-tailed. For thin-tailed innovations, however, we note
that the Student t(5) based test does worse than the Gaussian test if innovations
are heavily skewed and/or multi-modal (see Mix2 and SNP(3)). The notable
exception to this statement is given by the x2(3)  distribution, which is heavily
skewed, but still results in an outperformance of the Student t(5) based test
compared to the Gaussian tests. It is also worthwhile to note the relatively good
performance of the Student t(5) test for the F(3,3)  distribution. The skewness
of this distribution seems to have no major adverse effects on the power of the
test.

Given the performance of the tests based on a fixed pseudo-likelihood, we now
turn to the performance of the semi-nonparametric cointegration tests. Ideally,
we would like the SNP-based tests to be at least as  powerful as  both the Gaussian-
based tests and the Student t(5) test. We concentrate our discussion on the
SNP test where the order of the SNP expansion is determined by the Akaike
Incormation  Criterion (S(A)). For normal innovations, S(A) has similar power
behavior as the Gaussian LM test (G). The optimal order of the SNP expansion
(K) is low on average. Note that for Gaussian innovations, the LR test works
better than the LM test. Therefore, although S(A) performs about as well as
the Gaussian LM test, it is still preferrable in this context to use the LR test of
Johansen  (1991). If we consider the fat-tailed distributions t(3) through t(l), we
see that S(A) has about the same power as the Student t(5) based LM test. The
average order K of the SNP expansion is generally low. Note that for t(2) and
t(l), one always chooses K = 0 in the simulations, such that the S(A) test is
in these cases based on a Student t pseudo-likelihood with estimated degrees of
freedom parameter. Both S(A) and the t(5)-based test outperform the Gaussian
based tests (Joh and G) for the t(3) through t(1) distributions.

If we now turn to the skewed distributions, we note the improvement ob-
tained for the x2(3)  innovations when using S(A) instead of the Gaussian-based
or t(5)-based LM tests. Although the Student t(5) pseudo-likelihood already
outperforms the Gaussian based tests, the t(5) pseudo-likelihood is not flexible
enough to capture the skewness. The pseudo-likelihood based on the SNP expan-
sion, however, is able to capture some of the skewness, which results in a higher
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TABLE  1
Rejection Frequencies of Cointegration Tests

Distr. c Joh G t(5) S(O) S(l) WI S(3) S(A)  K U K
Normal 0 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.56 0.94

20

0
2 0

0
20

0
20

0
20

0
20

0
20

0
20

0

0.55 0.46

0.07
0.35

0.03
0.47

0.06
0.40

0.04
0.38

0.05
0.21

0.04
0.39

0.03
0.43

0.04
0.39

0.31 0.45 0.47 0.40 0.35 0.77

t(3) 0.08
0.42

0.04 0.04 0.04 0.03 0.03
0.75 0.72 0.76 0.76 0.67

0.66
0.82

0.05
0.51

0.06 0.06 0.06 0.05 0.04
0.94 0.93 0.93 0.92 0.88

0.00
0.00

t(l) 0.06
0.46

0.03 0.03 0.01 0.00 0.01
0.96 0.98 0.97 0.94 0.93

0.00
0.00

x2(3) 0.04
0.42

0.05 0.04 0.04 0.04 0.04
0.56 0.55 0.71 0.73 0.64

0.45 0.42

0.04 0.16
0.69 0.24

0.06 0.00
0.93 0.00

0.03 0.00
0.98 0.00

0.04 1.54
0.70 1.46

0.01 0.99
0.96 0.24

0.06 2.93
0.81 2.87

0.07 2.81
0.94 2.85

0.03 1.12
0.46 1.57

0.89
0.88

F(3,3) 0.05
0.26

0.04 0.01 0.01 0.02 0.04
0.97 0.96 0.96 0.95 0.93

0.10
0.55

Mix1 0.04
0.44

0.05
0.41

0.04
0.39

0.02
0.45

0.04
0.35

0.04 0.06 0.06
0.42 0.62 0.82

0.29
0.46

Mix2 0.04
0.52

0.03
0.17

0.04 0.06
0.51 0.41

0.46
0.39

SNP(3) 1.30
20

0.05
0.44

0.04
0.32

0.03 0.04
0.38 0.47

0.07
0.94

0.04
0.47 1.22

Note: the table contains the rejection frequencies over 100 Monte-Carlo replications
of 8 cointegration tests. These tests use different pseudo-likelihoods to estimate the
parameters in model (1) with p = 1. Joh is the Johansen  (1991) trace statistic (critical
taken from Johansen  and Juselius (1990)). S(0) through S(3) use the LM test based
on SNP expansions of orders 0 through 3, respectively, as a pseudo-likelihood. G and
t(5) use the Gaussian and the Student t(5) pseudo-likelihood, respectively. S(A) uses
the AIC to select the optimal order of the SNP expansion. The mean value of K
selected with the AIC and its standard deviation flK are also provided. Inference is
conducted using simulated asymptotic p-values based on 500 simulations as described
in Section 4. Eight different distributions are considered for the innovations: the stan-
dard normal, Student t(3), Student t(2), truncated Cauchy (or Student t(l)) retaining
95% of the original probability mass, recentered x2(3) (zero mean), recentered F(3,3)
(zero mean), two mixture of 3 normals (Mix1 and Mix2, both described in the main
text), and a simple density falling in the SNP(3) class. The nominal level of the tests
is 5% in all cases. c = 0 gives the rejection frequency under the null, while c = 20
gives the rejection frequency under the alternative. The data generating process in all
cases is (12). The number of observations is T = 100. The table took about 72 hours
of computation time on a Pentium PC using the Gauss programming language.
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rejection frequency of the test under the alternative (c = 20). If the innovations
are both fat-tailed and skewed as is the case for the B’(3,3)  distribution, S(A) and
the Student t(5) based test have again the same performance. It seems that fat-
tails have a more  prominent effect on the performance of the cointegration tests
than skewness. This also appears from the average order of the SNP expansion,
which is lower for the F(3,3)  distribution than for the x2(3)  distribution.

The mixtures of normals (Mix1 and Mix2) deviate significantly from the fa-
miliar bell-shaped density curves. The power of the Gaussian based tests for
these distributions is similar to the power for the Gaussian distribution. This
is in accordance with asymptotic theory, which states that the distribution of
the Gaussian-based tests does not depend on the form of the distribution, as
long as second moments exist. The power behavior of the test based on the Stu-
dent t(5) pseudo-likelihood for the first mixture is about the same as for the
Gaussian distribution. For the second mixture, however, the Student t(5) test
suffers from a dramatic power loss. This is in accordance with univariate results
obtained by Shin and So (1997). The SNP expansion is able to capture most of
the skewness of the first mixture distribution, and some of the peculiar shape
of the second mixture distribution. Note the relatively high average orders of
the SNP expansion (K). The power increase of S(A) for Mix1  and Mix2 is quite
dramatic compared to the power of Johansen  test, the Gaussian LM test, or the
Student t(5) test. Note that the power of S(A) for Mix2 is mainly due to the
consideration of the I<  = 3 expansion. Lower order expansions do not result in
substantial power gains. This indicates that one should consider high enough
orders for the SNP expansion if severe deviations from normality are suspected.
This corroborates the unreported results for a mixture of four normals located
at (&3, f3), for which no significant power gains were found if only SNP orders
below 4 were considered.

The results for the SNP(3) distribution are as expected. The S(A) test and
the S(2) and S(3) tests, i.e., the tests with high-order SNP expansions, have the
highest power of the LM-type tests. which is what we would expect. The LR test
of Johansen, however, has about the same performance as the LM tests in this
context. Note that although the true distribution is a third order SNP expansion,
lower order expansions (K)  are often chosen by the AIC. This does not result in
a substantial power loss.

To summarize, we obtain the following conclusions from the simulation exper-
iment .

1. If innovations are fat-tailed, the Student t(5) pseudo-likelihood often results
in a good power performance for the cointegration tests.

2. If innovations are thin-tailed and heavily skewed, the cointegration tests
based on SNP expansions outperform the tests based on a Gaussian or
Student t(5) pseudo-likelihood.

3. For thin-tailed, multi-modal distributions, the Student t(5) based test can
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perform very poorly. The SNP LM test clearly outperforms the other test-
ing principles considered in this context.

6. Concluding remarks. In this  paper we have developed a semi-
nonparametric LM-type test for cointegration. The asymptotic distribution of
this test depends on nuisance parameters, which can be estimated consistenly.
Using the consistent estimates, one can easily simulate asymptotic pvalues
of the cointegration test. Using a set of Monte-Carlo experiments, we demon-
strated that the new test has good size and power properties. If innovations
are fat-tailed, the test based on the SNP approach leads to considerable power
gains with respect to tests based on the Gaussian distribution. Also if there is
apparent skewness in the distribution, the SNP approach leads to power gains
with respect to tests based on a Gaussian pseudo-likelihood. In such cases, the
SNP approach also improves upon the power of non-Gaussian LM cointegration
tests like the Student t(5) based test of Lucas (1996b, 1997).

Although the model used in the present paper only allowed for a constant in
the regression model and (at most) linear trending in the data generating process,
we conjecture that our findings also hold for more general deterministing trend
functions in either the regression model and/or the data generating process. The
limit theory of the SNP cointegration test for these cases can for familiar cases
as the ones in Johansen  (1994) be deduced from Lucas (1996a). Some further
simulation experiments could be used to corroborate the above conjecture.

Another line of future research concerns the relaxation of the i.i.d. assumption
used in the present paper. Most financial time series are characterized not only by
fat-tailedness, but also by volatility clustering. The SNP approach can easily be
extended to handle general forms of volatility clustering in a semi-nonparametric
fashion. In a subsequent paper, we plan to extend the present cointegration
testing procedures to situations with conditional heteroskedasticity.

Appendix

PROOF  OF  LEMMA 1. By staightforwardly  applying the substitution z =
y2/2  and the definition of the I-function, we obtain

(Al) Co(i)  = /a & exp(-y2/2)dy  = gr (F)  (’  ’ b-l)‘).
03

Moreover, let, y denote a univariate Student t variate with location zero, unit
scale, and v degrees of freedom. Then from Abramowitz and Stegun (1970, Sec-
tion 26.7.2) we obtain E(Y’~+‘)  = 0 for v > 2i + 1 and

vi

E(y2i)  = J;;  .

r((2i  + 1)/2)I?((Y  - 2i)/2)

Uy/2) ’
for v > 2i. Define
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then E(y”)  = G(i) Cl (v,  i).
Let iI, . . , ik be a set of k non-negative integers, and let the nth element of e

be denoted by e,,. Moreover, let tv(e) denote the multivariate standard Student
t distribution. Then using the above results, we have

(A4) s_:, (iek) hzlt,(e)de = fi  Co(ih)

and

Now consider the Kth  order SNP expansion given in (5). Set cK  = 1. Then
2

t,(e)de  =

t,(e)de.
il ,..., is,j*  ,..., j,=O

with jr, . . , j, another set of non-negative integers. Using (A5) we can simplify
(A6) to the following expression:

The proof of s-“,  efrc(e)de  runs completely analogously.

PROOF OF COROLLARY~. Define f~,l(.) as in (5), only with CK = 1. Using
Lemma 1, we obtain

wl=
J’

fr@:(~t  - mrc))det  =
s

O" (CKiRKI)-'fK,de)de  = ~I/(CKIRK~),
-m -co

such that cl< = [r/[R~<l.  Similarly,

J

.co
o = Etfl<(RfZ-(Et-mK))dEt  =

s
O" (CK)RK1)-l((R~)-le+mK)fK,l(e)de  @

-m -co

PROOF OF THEOREM 1. The proof mainly follows the lines of Lucas
(1996a,1997).  As usual in this type of asymptotic analysis, we restrict attention
to the VAR model of order 1, p = 1. Higher order VAR models do not affect
the limiting result for the unit root parameters. Moreover, we only consider the
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case 01~  = 0, or for simplicity p = 0. The case 01~  #  0 is proved similarly.
Finally, we only discuss the case He : T = 0 versus the alternative T = Ic.
Nonzero  cointegrating ranks can be dealt with by considering the asymptotic
behavior of yt  in the directions dictated by p and PI,  respectively, and using
the block-diagonality of the information matrix between the stationary and
non-stationary regressors in the model.

Because in the simplified model, & = -&:(0,)/80,  = (yt-1,  l)T @  Ik,  the
score vector is given by

Gg!H)=g  (yt-~~‘e’).
Furthermore, an (asymptotically valid) expression for minus the Hessian matrix
is

fk,K(*) = 5

(

Yt-l?/tT_~  ‘8 clT(*) !!t-1 @ ‘%T(d) Yt-1 @ C2T(o)T

YtT_l @ GT(*) clT(e) c2T(*jT  ,
t=1 YtT_l @ &T(e) &T(o) C3T  (0) )

with  CIT(*) =  T-l CT=,  Wrc,t(*)/d$, GT(~> =  T-’ CF=,  ax~,t(*)/a$,
and c3T(6) = T-l  CT=,  dxK,t(0)/d6rz.  Finally, the outer-product-of-gradient
matrix HQ,K  is the same as Hc,K, but with CUT,  CUT and CUT replaced by

fi22dQ) = T-l CL, 4,K,t(*)QK,t (0) T, S22327(0)  = T-’ C;=, h,t (*)xK,t (0)T
and Rss~(8)  = T-’  CT=,  xK,t(0)xK,t(O)T,  respectively.

Let DT  = diag(T-lIk2,  Te1j21k,  T-‘/2Im),  with m the dimension of 0s.  From
the functional central limit theorem for i.i.d. sequences, together with the con-
tinuous mapping theorem, it follows that

DTGK (0,) *
( )

s  7gw2
.I-‘:

= G;IK,

where W = (WIT,WzT,WT  T3) is a vector Brownian  motion process with covari-
ante  matrix RI<. Furthermore, we have

DTHc,K(~K)DT * &,K, DT&,K(~K)DT  * &l,K,

with

and

swlwlT  @O22,K  s wl 8 fl22,K j-w1  @'R,T,,,
al,K  = fl22,K

fl23,K
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Let 6 denot,e  the pseudo-maximum likelihood estimator under the restriction
022  = 0. Note that the restricted model is simply the i.i.d. model Ay/,  = p + Ed,
so that 8 is e-consistent, which implies DT(HC,K(6)  - HC,K(OK))&  = oP(l)
and &(Hn,rc(@  - HQ,K(BIC))DT  = oP(l).  Using SIDT  = T-‘SI  and a Taylor
series approximation &GK(@  = DTGK(BK)  + DTHc,K(BK)(c?  - OK)  + op(l),

we obtain

T-%W,-,;&GK(~)  = S,(DTHC,K(~)DT)-‘DTGK(~)

= S~(DTHG,I((~K)DT)-~DTGK(BK)  +

s,o&i  - eK)  + op(i)

*  S,H&GK.

Similarly, we have

LM  =s  (SIH~,:,G~~)T(SIH,-,l,H*,K(H~,~)TS~)-lSIH~,~GK.

From the partitioned inverse of I?,>, we obtain, using its specific structure,

Defining I@,  = IV1 - s  WI, this leads to

where B1 =  OL:‘2W~  a n d  B2  =  (C,~:,R~~,KC~,~)-~/~C~~W~  a r e  s t a n -
dard Brownian  motion processes, with correlation matrix PK’ = E(BIBz)  =
R,-:‘“R~~,KC;:;(C;~~~~~,~~C~~~)-”~.  B y an appropriate choice of the in-
verse square rbot datrices,  thk matrix PK  is diagonalized, with the canonical
correlations bet,meen  Et and c<i{$K(&t)  on the diagonal.

Observe that,. although the limiting Hessian and outer-product-of-gradient
matrices are not block-diagonal, the nuisance parameters t93 have no effect on
the limiting distribution of the test statistic: the same result would be obtained
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if 03 were known, which is the case analyzed in Lucas (1996b). His proof for more
general models (with lagged differences, a possible drift, and with cointegrating
ranks greater than zero under the null hypothesis) can be readily extended to
the current situation of unknown 03
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