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Abstract

The present paper aims to analyse interregional freight transport movements in Europe
with aview on forecasting future patterns of transport flows using simple economic scenarios.

In view of the high dimension of our data-base on transport flows, two different
approaches are compared, viz. the logit model and the neural network model. Logit models are
well-known in the literature; however, applications of logit analysis to large samples are more
rare. Neural networks are nowadays receiving a considerable attention as a new approach that is
able to capture major patterns of flows, on the basis of fuzzy and incomplete information. In this
context an assessment of this method on the basis of a large amount of data is an interesting
research endeavour.

The paper will essentially deal with a European research experiment, oriented towards
both calibration/learning procedures and spatial forecasting, in order to compare the two above
methodologies as well as to investigate the potential/limitations of the two above mentioned
intrinsically different, but nevertheless related assessment methods. The application field is the
assessment of European (mainly Transalpine) modal freight flows. The first results in this
framework highlight the fact that the two models adopted, although methodologically of a
different nature, are both able to provide a reasonable spatial mapping of the interregional

transport flows under consideration.



1. Recent Trends in the European Freight Transport Developments

Europe is nowadays in a state of flux. After the completion of the European market and
with the widening of Europe towards easterly direction, mobility in general has shown a steady
increase in Europe. In particular, cross-border transport has been at a rising edge with annual
growth rates exceeding 10 percent, a process reinforced by the current globalisation trends. The
integration of former segmented markets - and the related liberalisation in the European space -
has led to drastic changes in both goods and passenger transport all over Europe.

In recent years, the European Commission has recognised this profound restructuring
phenomenon, an observation which can aso be found in the Maastricht Treaty. European
networks are seen as the backbone of integration forces, while changes (i. e. improvements) in
the morphology of the networks are expected to generate (positive) system-wide impacts. Clearly,
the emphasis on the potential of these networks for competitiveness and cohesion provokes
various questions on the relative efficiency and substitutability of the different modes of this
network. Thisissue is particularly important, as the competition between different modes and the
social acceptability of modal choices are not only determined by the direct operational costs, but
also by environmental externalities. An interesting new situation is created by Swiss initiatives to
reduce Transalpine trucking through limitations on load volumes and the supply of new tunnel
infrastructures.

It is thus no surprise that there is an increasing interest in the issue of intermodal
competition and complementarity. For surface transport in Europe, especially the competitive
position of rail vis-a-visroad is at stake. This holds increasingly also for commodity transport. It
needs to be added however, that the analysis of freight transport in Europe is fraught with many
difficulties, as freight is not a homogeneous commodity, but is composed of an extremely
diversified set of goods with specific haulage requirements and logistic needs. This means that a
commodity-specific approach is necessary to analyse in depth implications of changes in network
configurations. This approach will also be adopted in the present paper, with a particular view on

Transalpine movements.



Therefore, the aim of the present paper is to investigate freight flow patterns in Europe
from a multiregional perspective, by looking into the modal choice for these goods from the
viewpoint of freight costs and transport time. In this paper, two competing models, viz. a discrete
choice model and a neural network model, wil be employed to map out the spatial flow patterns
in an explanatory context. This offers aso a possibility to compare the relative performance of
those models. A selection of Italian/Greek regions (in order to highlight the Alpine crossing
movements) will be used to test the predictive power of the models concerned. Next, a sensitivity
analysiswill be carried out in order to investigate the expected consequences of arisein transport
costs (e.g., as a consequence of a European environmental tax on freight costs) as well in
transport time. The analysis will also illustrate the need for a reliable and up-to-date European

data base on European freight flows.

2. Models for Spatial Choice Analysis

Market requirements, cost considerations, the morphology of the European transport
network and capacity limits lead to complicated modal choices. The present paper aims to
analyse inter-regional freight transport movements in Europe as well as to forecast resulting
spatio-temporal flow patterns on the basis of new transport-economic scenarios. For this purpose,
a modal split analysis will be carried out by means of two statistica models, namely the logit
model and the neural network model (see also Reggiani et al., 1997). A binary logit model will
be discussed in Section 2.1, while a feedforward neural network model will be presented in
Section 2.2. Our empirical analysis- illustrated in Section 3- will use both types of models.

2.1 The Logit Model

A first approach to modelling freight transport flows is to use an explanatory,
behaviourally-based choice model in an origin-destination setting. In this context, widely adopted
approach for modal split analysis is the logit model (see e.g. Ben-Akiva and Lerman, 1985).

Recent experiments using logit models/ spatial interaction models in order to map out the freight



transport in Europe have been carried out by Tavasszy (1996), who showed the suitability of logit
models also for the goods transport sector (where data are more ‘fuzzy’ and incomplete compared
to the passenger sector). Logit models are discrete choice models, which are used for modeling a
choice from a set of mutually exclusive and exhaustive aternatives. It is assumed that the
decision-maker chooses the alternative with the highest (stocastic) utility among the set of
aternatives. The utility of an alternative is determined by a utility function, which consists of
independent attributes of the alternative concerned and the relevant parameters. By maximizing
the stochastic utility, the highest choice probability is then the probability that the alternative has
the highest utility among all relevant alternatives (see e.g. Ben-Akiva and Lerman, 1985, Cramer,
1991, and McFadden, 1977). Since in our case two discrete choices - rail and road - will be
considered, a binary logit model is adopted. Our binary logit choice model for modal split choice
of a transport mode m (m = 1, 2) vis-avis the complementary transport mode between two

regionsi and j has the following formulation:

. U]
T 2 exp(Uy) (1)
where
Ur=>B.X": z=1,.n (2)
and where:
m  =themode of transport (m = train or truck);

P  =the probability of choosing the mode m fromregioni toregionj (i #j);

U7 = theutility connected with the rail mode m on thelink ij;

Xm

2,if

= the vector of attributes for modem in the utility function for thelink ij (in

our case cost and time);

B, = the vector of parameters related to the vector of attributes time and cost.



The binary logit model has become in the past decades a standard analytical tool in
discrete choice modelling. The results of this logit model for some empirical cases on European
freight transport will be given in Section 3. In particular, given the large amount of data
concerning the road mode, the calibration and forecasting analysis related to model (1) and (2)
will beillustrated - in the following Section 3 - with reference to the latter mode. In the same vein

also some policy scenario experiments will be presented later on.

2.2 The Neural Network Approach

In recent years, a great deal of interest has arisen in neuro-computing, in particular neural
network analysis (see, e.g., Anderson and Rosenfeld, 1990, and Rumelhart and McClelland,
1986). Neural network (NN) analysis has in recent years become a popular analysis tool (see, for
areview, Himanen et al., 1997). NNs replicates human brain functions and are thus considered as
‘intelligent’, since they learn and generalize by examples (see, e.g., Reggiani et al., 1997). NNs
have been widely applied to the area of transport engineering, in particular in relation to traffic
control problems and accidents (see Himanen et al., 1997). However, so far only a few
experiments exist in the field of transport economics or transport route / mode / destination
choice (see, e.g. Nijkamp et al., 1996, and Schintler and Olurotimi, 1997). Our experiments aim
to explore also this novel research direction by comparing NN results with those of a logit
approach.

In a way analogus to most applications of NNs, in this study a two-layer feedforward,
totally connected NN will be used in order to analyse the freight transport modal split problem in
Europe. The methodological structure of the main steps related to the application of a
feedforward NN is described in Reggiani and Tritapepe (1997), wich consists of three stages: i)
definition of network architecture; ii) learning phase; iii) forecasting phase. It is necessary to
define the right architecture of the network, i.e. the number of units on the relevant levels.
Usually, the input and output units depend on the number of input and output variables which
define the problem. In our application one possible NN architecture contains 4 input units which

correspond to the attributes time and cost related to each transport mode (rail and road) and one



output unit corresponding to the probability of choosing one mode’ (e.g., the rail mode). In the
past years we have witnhessed an increasing acceptance of NN models in social science research,
including transportation science. Section 3 will offer empirical results obtained by applying an

NN model to European freight flow data, while scenario results will be presented in Section 4.

3. Empirical Results from European Freight Flow Analysis

After the concise presentation of the methodology, in this section the experiments with the
logit and the NN approach (see Subsection 2.1 and 2.2) will be presented and discussed. In
Subsection 3.1 a concise description of the data set will be given. The experiments carried out by
means of the logit approach and the NN approach will be presented in Subsections 3.2 and 3.3,
respectively. Then the two approaches will be mutually compared in Subsection 3.4.

3.1 Description of Available Data

Comprehensive detailed data on European freight flows are rare. The data set* contains the
freight flows and the attributes related to links between 108 European regions for the year 1986.
The attributes considered here are ‘time’ and ‘cost’ between each link (ij) for each transport
mode, so that the data set pertains to variables related to each link (ij). Furthermore, the flow
distribution in the matrices concerned refers to one particular kind of goods, viz. food. Clearly,
other sectors might have been chosen as well.

After screening and elimination our data set contains finaly 4,409 observations on
interregional freight flows in Europe. This data set is next randomly subdivided into three sub-
sets:

«+ a training set containing 2,992 observations, i.e. aout 68% of the data-sd;

« a cross-validation set containing 447 observations, i.e. about 10% of the data-set;

« atest set containing 970 observations, i.e. about 22% of the data-set.

! The choice probability of the other mode is just the complement.
2 The data set has been ki ndly provided by NEA Transport Research and Training, Rijswijk. (see, for a detailed map of the
European regions, Reggiani et al.,1997).
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On the basis of these data we will now carry out our experiments.

3.2 Applications Based on a Logit Approach

In our approach a binary logit model is used to analyse the modal split problem between
road and rail in relation to inter-regional food transportation between 108 regions in Europe. In
Subsection 3.2.1, the calibration results and an evaluation of the logit model will be presented.
Then, results from a spatial forecasting of the calibrated logit model will be presented and
evaluated in Subsection 3.2.2.

3.2. | Edtimation of the binary logit model

In our empirical application, the logit model is estimated in order to assess the
unknown parameters in the utility function. For this purpose, the learning data set, which is the
training set combined with the cross-validation set, has been used. Concerning the logit model
structure, two distinct cases are considered; in case A only the cost attribute is used for estimating
the parameters, while in case B cost and time are considered as attributes. In particular, the logit
model has been calibrated by using the LIMDEP software. The estimated parameters resulting
from the calibration stage are presented in Tables 1 and 2 for Case A and Case B, respectively.

Next, the goodness-of-fit of the model has been evaluated using two statistical indicators:
the likelihood-ratio (p2 ) and the t-test. The related results are also presented in Tables 1 and 2.

Table 1 about here
Table 2 about here

The t-test indicates that the two parameters are significantly different from zero in both
cases (see again Table 1 and Table 2). Also the value of p” indicates that the calibrated logit

models are performing reasonably well for the two cases. However, the calculated p2 for Case B

3 We will then denote as Case A (L), Case B (L) the respective cases A and B implemented by logit models, while Case A
(NN) and Case B (NN) will indicate the respective cases A and B estimated by NN models.

6



(L) is better than that for Case A (L), which suggests that Case B (L) = with inclusion of more
attributes in the utility function - performs better than Case A (L).

322 Satigical performance of the binary logit model

Next the binary logit model, estimated in the previous subsection, is used to make freight
transport forecasts on the basis of various transport economic scenarios. For this predictive
purpose, both the data set used in the calibration stage and the test set which is not used in the
calibration stage, are employed.

In our analysis of the spatial forecasting performance of the binary logit model, the
statistical indicators p°, ARV, R>, MSE, RMSE, EPMA have been adopted. The definition of
these indicators can be found in Annex 1. These indicators have been used - individualy or
jointly considered - for examining the statistical/econometric merits by varying the combination
of attributesin the utility function. In particular, they have been calculated for both the calibration
and the test set. They will also be used subsequently to explore the performance of NN models.
The probabilities of train and truck have been used in calculating the statistical indicators. The
results are presented in Tables 3 and 4 for case A (L) and Tables 5 and 6 for case B (L),

successively.

Table 3 about here
Table 4 about here
Table5 about here

Table 6 about here

Concerning the ‘optimal’ values of the above indicators it should be noted that the ARV,
MSE and RMSE measures should idealy approach zero; EPMA suggest an extremely good
forecast when his value is less than 10%, and a good forecast when his value is ranging from 10%
to 20% (see Annex 1), while the R* measure should approach one. Regarding the general results
presented in Tables 3-6, the binary logit model appears to have an insufficient predictive ability,
when only one attribute is considered (see, e.g., case A (L) for both the calibration and the test set

7



in Tables 3 and 4, respectively). On the contrary, the logit model performs quite better for case B
(L) - related to the two attributes (cost and time) = for both the calibration and the test set (see,
e.g., again the values of ARV and R* in Tables 5 and 6). Consequently, the parameters emerging
from Case B (L) will be employed for the forecasting analysis carried out - on the basis of policy

scenarios - in the next Section 4.

3.3 Exneriments bv means of a Neural Network Approach

After the applications of the logit model, now the modal split problem will be analysed by
means of a more recently developed statistical model, viz., the feedforward NN model (see
Subsection  2.2).

It has already been mentioned that the whole data set contains 4,409 observations (examples
or patterns). The following general considerations apply to the experiment undertaken here:
« Both Case A and Case B - analogously to logit analysis - are trained (they have been named
Case A (NN) and Case B (NN), respectively; see footnote 3).
« The training for the neural net model (and the calibration for the logit model) has been
carried out by using the training set.
« The performance measure has been evaluated by using thetest set (spatial forecasting).

Concerning the number of hidden units, they have empirically been defined by taking into
account the number of observations in the data set as well as by carrying out a large number of
experiments. In regard to the parameters defining the neural architecture, they have been
determined after several empirical experiments. Finally, the parameters of the NNs are set as
follows:

number of hidden units: 6
learning rate a= 0.9
momentum factor 1 = 0
training tolerance = 0.1

initial weight values: randomly between [-0. 1;0. 1]



It should be noted that by using a feedforward NN it is necessary to cope with the
over-fitting problem. Consequently, in the experiments the cross-validating technique (by using
the cross-validation subset) has been used in order to avoid such a problem (for details on the
overfitting problem and the cross-validating technique, see e.g. Fischer and Gopal, 1994, and
Reggiani and Tritapepe, 1997).

The results related to the above mentioned experiment will now be presented. In general, by
using a statistical model for forecasting, the first step is to evaluate the predictive quality of the
model, i.e. to determine how well the model learned to approximate the unknown input-output
function for arbitrary values of input units, while the final am of our work is to evaluate the
freight transport movements in Europe in order to forecast spatio-temporal patterns on the basis
of new transport economic scenarios. The present section will particularly anayse this first
research stage, i.e. the spatial forecasting of the model adopted. The predictive quality will be
evaluated - by means of several performance measures - by using the test set which had been set
apart and not yet used for the calibration (learning) phase, as mentioned above.

The predictive performance of an NN can be judged by means several statistical indicators
like ARV, R2, MSE, RMSE, EPMA, as previoudy indicated for binary logit model. The results
of the statistics are displayed in the following Tables 7 and 8.

Table 7 about here
Table 8 about here

It is evident from the above tables that the ARV and R indicators, emerging from NN,
give a better result than the ARV and R? indicators emerging from the logit analysis, while the

MSE, RMSE and EPMA values are dightly better for logit models with respect to NNs.

3.4 Comparison of the Logit and Neural Network Approach

After the presentation of the above results, we will, in this subsection, compare and

evaluate the spatial forecasting performance of the two alternative approaches. First, the values of



goodness-of-fit indicators for both the two models and for each case A and B are compared - with

reference to the test set - by means of histogramsin Figures|-5.

Figure 1 about here
Figure 2 about here
Figure 3 about here
Figure 4 about here
Figure 5 about here

It is noteworthy that Figures I-5 show in particular the higher performance of NNs - with
respect to logit models - in Case A (adoption of only one attribute in the utility function). This
results confirms previous findings in the framework of different data bases (see Nijkamp et al,
1996), underlining the goodness-of-fit of NNs in the presence of uncertain and incomplete data
(viz., by using only one attribute). Concerning Case B, deaing with the assumption of two
attributes in the utility function, both approaches display good values to the assessment of freight
flows.

Finaly, in order to better evaluate the performance of logit and NN models, an
extrapolation of estimated data againist the real datawill be shown (see Tables 9-12).

In our empirical investigation, we have focused our attention in particular, on the
Transalpine area. Considering that the Alpine chain separates more or less Europe from Geece
and Italy, an extrapolation of these data has been carried out (see Tables 9 and 10). More
precisely, Table 9 illustrates the estimated/real flows for the outflows, from Greece and Italy,
towards Northen and Western Europe (without considering Spain and Portugal), while Table 10
displays the estimated values for the inflows from Europe to Italy and Greece. It should be noted
that the valuesiillustrated in Tables 9-10 emerge from an estimation process carried out on a data
set constituted by the sum of the learning and test set for both the two approaches ( NNs and logit
models).

Table 9 about here
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Table 10 about here

It is evident from Tables 10 and 11 that a NN model performs overall slightly better than
the logit model (see the values of the relative prediction error for each link as well as the related
mean values). Surprisingly, despite a weaker behavioural basis in NN models, the results seems

to be fairly precise.

4. Policy Scenario Experiments

The above estimation procedures were based on time and financial sacrifices in the
European transport sector. It is noteworthy however, that freight transport causes also high socia
costs (environmental pollution, accidents, etc.), which might be charged to the transportation
sector. We will now investigate the consequences of varying the transportation time/costs for
freight flows by including some level of socia costs. A sensitivity analysis of the previous results
based on some economic scenarios will now be carried out in this section by using again both the
binary logit model and the NN model. Two policy scenarios based on different external time/cost
assignments will be used; they will concisely be discussed here. Later on, we will present the
results related to the sensitivity analysis for the logit and the NN approach.

Nowadays, because of severe problems on the road transport network (for example,
pollution, congestion), governments are trying to reduce the road usage by imposing policy
measures that serve to increase the cost of road usage (see Verhoef, 1996) in order to induce a
shift to other modes. An example of a Pigouvian policy for coping with environmental
externalities is the recently increased tax on fuel in the Netherlands. In so doing, the usage of the
road transport network is made less attractive than other transport networks, so that a modal/shift
IS encouraged.

Since it is very difficult to assess the social costs of freight transport in Europe, two
scenarios are developed and considered for a sensitivity analysis on the transport costs. Generally
we assume that a uniform European tax policy for freight transport is adopted and that the cost
attribute related to the road mode is increased by 10 % for al links (ij). In Scenario 1 we assume

- on the road mode - only an increase of transport time of 10%, due to congestion problems.
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Scenario 2 is a dlight variation of Scenario 1, since here it is assumed that each attribute
(time/cost) isincreased by 10%. In particular, Scenarios 1 and 2 have been implemented for the
Alpine sector (see Tables 11 and 12).

The results from the above sensitivity analysis can be highlighted by the relative
prediction error, which is defined as the (relative) difference between the predicted flow and the
real flow as a percentage of the real flow. In this context, the resultsin our tables indicate that the
binary logit model is relatively more sensitive to changes in the time/cost attribute than the NN
model.

It is interesting to note that in the neural network case, and particularly in the case of
inflows from Europe to Greece/ltaly, the model shows -in the mean value- a dlight increase of
flows, despite the time/cost increase. This result may be plausible by taking into account the
increasing amount of interaction among regional flows as a result of increased efficiency. It
would certainly be relevant to compare these results with more updated data in order to better
evaluate the ‘forecasting’ analysis of the two models, in particular since we have used -as a
darting point- a set related to the year 1986.

In general, however, the above results may be considered to be plausible, in the absence of
updated data that would be able to test our hypothesis on an increase in the time or cost indicator,
given the good performance from the calibration / test phase. Moreover, these results may offer a
‘range of plausible values' to policy actors who aim to evaluate the impact of time or cost
changes on freight flows, given the intrinsic limits of both adopted models for freight transport
analysis.

It is noteworthy that the large amount of freight flow data at an aggregate level hampers a
behavioural micro perspective inherent in logit models. A further limitation consist of the type of
architecture adopted in NN models, which seems critical for the validity of the results.
Consequently, the results of our model may be used as a benchmark for the results of other

models (for example, genetic algoritms), by offering amore *flexible output to policy actors.

Table 11 about here
Table 12 about here
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5. Concluding Remarks

The European integration, the regulation policy and new infrastructure policies call for a
proper insight into European freight flow developments. This paper has aimed to depict transport
flows of commodities in an inter-regional European setting. Based on an extensive data set,
various estimates of the impacts of costs on transport movements have been made. The test
results show that both the logit and the NN approach are giving fairly plausible results. In
general, NN models seem to perform dightly better.

After this exploratory comparative study of two modelling approaches, it is certainly
opportune to investigate more thoroughly the differences in backgrounds of these two research
paradigms. It is well known that the logit model is a particular spatial interaction model that has
its roots in social behaviour of actors, albeit with some limitations like the well known 1A
(Independence from Irrelevant Alternatives) assumption. The NN model is based on similarily of
learning experiments and has certainly a behavioural adjustment potential, but is less easily
interpretable from social science motives, even though recent results show a compatibility
between feedforward NNs and binary logit models (see Schintler and Olurotimi, 1997),
feedforward NNs and spatial interaction models (see Fischer and Gopal, 1994) and feedforward
NNs and logistic regression models (see Schumacher et al., 1996). Given its predictive ability,
more research is needed to better investigate the behavioural roots of NN models, while also

extentions towards genetic algorithms may be explored.
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Figures and Tables

Table 1: Resultsfor case A (L) related to thelogit model

Case A

Number of observations; 3,349
Attributes:  cost

Variables Coefficient St. Error t-ratio p
cost -0.091482 0.1308E-04 -699.40 0.6538
Table 2: Resultsfor case B (L) related to the logit model
Case B
Number of observations: 3,349
Attributes: cost, time
Variables Coefficient St. Error t-ratio p*
cost -0.064926 0.1535E-04 -4229.7 1 0.71023
time -0.09%5 153 0.35 14E-05 -2707.83
Table 3:Case A (L); n° of observations: 3,439
ARV R’ M SE RM SE EPMA
0.96 0.45 0.19 0.44 36%
Table 4:Test Case A (L), n° of observations: 970
ARV R” M SE RMSE EPMA
091 0.48 0.19 043 35%
Table5: Case B (L); n° of observations. 3,439
ARV R’ M SE RM SE EPMA
0.35 0.73 0.07 0.26 17%
Table 6: Test Case B (L), n° of observations: 970
ARV R’ MSE RM SE EPMA
0.20 0.83 0.04 0.20 15%




Table 7: The values of goodness-of-fit indicators for the NN model: Case A (NN)

Case A (NN)
N° of observations: 970 (test set)
Attributes.  cost

ARV R* M SE RMSE EPMA

0.16 0.94 0.07 0.26 20%

Table 8: The values of goodness-of-fit indicators for the NN model: Case B (NN),

Case B (NN)
N° of observations: 970 (test set)
Attributes: cost, time

ARV R’ MSE RMSE EPMA

0.17 0.92 0.07 0.16 18%

ARV

0.91

cost cost, time

Attributes

Figure 1: The value of the indicator ARV for cases A and B



R2

A 0.94 0.92
N |
@ logit
cost cost, time
Attributes
Figure 2: The value of the indicator R* for cases A and B
MSE
@ NN
g logtt

cost cost, time

Attributes

Figure 3: The value of the indicator MSE for cases A and B
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Figure 4: The value of the indicator RM SE for cases A and B
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Figure 5: The value of the indicator EPMA for cases A and B



Table 9: Transalpine food transport flows by road fi-om Italian plus Greek regions to the rest of
Europe’ (flowsin tons; year: 1986)

REGIONS Transalpine Logit results NN results rel. pred. err. rel. pred. err.
real flows Logit (%) NN (%)

Thessaloniki 19764 16122 19274 -18.43 -2.48
Athens 25965 29120 28287 12.15 8.94
Patras 22569 13082 22478 -42.04 -0.40
| Heraklion 18622 17711 19104 -4.89 2.59
Turin 820281 724980 780102 -11.62 -4.90
Milan 3980845 3137979 3835833 -21.17 -3.64
Venice 922574 648524 864446 -29.70 -6.30
Bologna 7213650 5821584 6442638 -19.30 -10.69
Florence 1143048 1055770 1044481 -7.64 -8.62
Ancona 1035352 992532 931062 -4.14 -10.07
Pescara 683626 628053 624495 -8.13 -8.65
Rome 351976 313587 318727 -10.91 -9.45
'Naples 1258182 1167890 1155432 -7.18 -8.17
Bari 2442992 2086402 2279118 -14.60 -6.71
Reggio C. 222407 211238 209597 -5.02 -5.76
Palermo 703347 614024 668120 -12.70 -5.01
Cagliari 48357 48196 46894 -0.33 -3.03
M= -12.10 -4.84
MA** 13.53 6.20

1) in order to highlight the Alpine crossing movements, data related to Spanish and Portuguese regions have been

diminated

* M = mean value of the variations from the red data
** MA = mean value of the absolute variations from the real data

Table 10: Transalpine food transport flows by road from the rest of Europe’ to Italian plus Greek

regions (flows in tons, year: 1986)

REGIONS Transalpine Logit results NN results rel. pred. err. rel. pred. err.
real flows Logit (%) NN (%)

Thessaloniki 44380 38636 43297 -12.94 -2.44
Athens 52047 43557 51038 -16.31 -1.94
Patras 53626 46130 52145 -13.98 -2.76
Heraklion 56930 53420 56916 -6.17 -0.02
Turin 259075 379966 398615 46.66 53.86
Milan 414190 350049 432237 -15.49 4.36
Venice 53795 40932 56748 -23.91 5.49
Bologna 365183 355578 377438 -2.63 3.36
Florence 178632 157254 185540 -11.97 3.87
Ancona 43653 42143 43540 -3.46 -0.26
Pescara 119774 113282 115746 -5.42 -3.36
Rome 35705 31264 34076 -12.44 -4.56
Naples 183553 188948 194825 2.94 6.14
Bari 105824 93432 99806 -11.71 -5.69
Reggio C. 29960 29558 28841 -1.34 -3.73
Palermo 126464 114747 124608 907 -147
Caglian 64435 57372 64633 -10.96 0.31
M* -6.38 301
MA** 1221 6.10




Table 11: Results of a sensitivity analysis by means of scenarios (Transalpine food transport
flows from Italian plus Greek regions to the rest of Europe’)

REGIONS Real Scenario 1 Scenario 2 Scenario 1 Scenario 2
Flows (time + 10%) ((timelcost )+ 10%) rel. pred. er. rel. pred. err.
LOGIT NN LOGIT | NN |Logit (%) |NN (%) |Logit (%) | NN (%)
Thessaloniki 19764 6649 19324 16283 19488 -66.36 -2.23 -17.61 -1.40
Athens 25965 6813 28431 26213 28501 -73.76 9.50 0.96 9.77
Patras 22569 8713 22101 16846 22155 -61.39 -2.07 -25.36 -1.83
Heraklion 18622 12340 19055 12086 19052 -33.73 2.33 -35.10 2.31
Turin 820281 774691 793751 400811 796122 -5.56 -3.23 -51.14 -2.95
Milan 3980845 | 3880482 | 3874579 | 1808444 | 3887546 -2.52 -2.67 -54.57 -2.34
Venice 922574 | 886303 830692 392430 831592 -3.93 -9.96 -57.46 -9.86
Bologna 7213650 | 7057064 | 6247481 | 3258554 | 6257957 -2.17 -13.39 -54 83 -13.25
Florence 1143048 | 1102063 | 1014918 | 559767 | 1011246 -3.59 -11.21 -51.03 -11.53
Ancona 1035352 | 991756 892805 518466 893153 -4.21 -13.77 -49 .92 -13.73
Pescara 683626 | 642061 616435 339372 615614 -6.08 -9.83 -50.36 -9.95
Rome 351976 | 329765 304467 172024 301735 -6.31 -13.50 -51.13 -14.27
Naples 1258182 | 1190396 | 1135565 | 624124 | 1129908 -5.39 -9.75 -50.39 -10.20
Bari 2442992 | 2385679 | 2202194 | 1120275 | 2186937 -2.35 -9.86 -54.14 -10.48
Reggio C. 222407 | 205187 202594 113536 201097 -7.74 -8.91 -48.95 -0.58
Palermo 703347 | 567622 646903 389092 645495 -19.30 -3.03 -44 68 -8.23
Caglian 48357 48921 45347 24706 45661 1.17 -6.22 -48.91 -5.58
M* -17.84 | -6.64 | -43.80 | -6.65
MA** 17.97 | 8.03 | 43.91 [ 8.07
Table 12:Results of the sensitivity analysis by means of scenarios (Transalpine food transport
flows from to the rest of Europe’ to Italian plus Greek regions)
REGIONS Real Scenario 1 Scenario 2 Scenario 1 Scenario 2
Flows (time + 10%) ((time/cost )+ 10%) rel. pred. err. rel. pred. err.
LOGIT | NN LOGIT NN Logit (%) | NN (%) | Logit (%) | NN (%)
Thessaloniki 44380 22564 42904 29176 43115 -49.16 -3.33 -34.26 -2.85
Athens 52047 16050 50565 30341 50693 -69.16 -2.85 -24 41 -2.60
Patras 33626 25265 52340 35481 52603 -52.89 -2.40 -33.84 -1.91
Heraklion 56930 50317 57730 30332 57824 -11.62 141 -46.72 1.57
Turin 259075 | 343890 401170 220704 401352 32.74 54.85 -14.81 54.92
Milan 414190 | 386103 432723 208729 432999 -6.78 4.47 -49 .61 4.54
Venice 53795 47947 56775 26790 56851 -10.87 5.54 -50.20 5.68
Bologna 365183 | 365225 378716 192796 379190 0.01 3.71 -47.21 3.84
Florence 178632 | 164387 181798 101032 182357 -7.97 1.77 -43.44 2.09
Ancona 43653 42401 43617 22771 43574 -2.87 -0.08 -47.84 -0.18
Pescara 119774 | 107433 116100 64002 116021 -10.30 -3.07 -46.56 -3.13
Rome 35705 30840 34466 18261 34464 -13.63 -3.47 -48.86 -3.48
Naples 183553 | 140320 197702 122312 197946 -23.55 7.71 -33.36 7.84
Bari 105824 99633 101972 52125 102277 -5.85 -3.64 -50.74 -3.35
Reggio C. 29960 21101 28566 20258 28608 -29.57 -4.65 -32.38 -4.51
Palermo 126464 90232 126808 75681 127036 -28.65 0.27 -40.16 0.45
Caghan 64435 64478 64336 31155 64503 0.07 -0.15 -51.65 0.11
M* -17.06 3.30 -40.94 347
MA** 20.92 6.08 40.94 6.06

Vi




ANNEX 1

The Ro Squared Coefficient (p?)
The statistical indicator p’ is defined as

P’ =1-(A@/ M) (a.1)

where A () = the vaue of the log likeihood function when dl weights are zero and A = the vaue of the
log likelihood function at its maximum (see Ben-Akiva and Lerman, 1985).

The Average Relative Variance (ARV)

The datigica indicator ARV is defined as

D (-9
ARV = &=~ 2
> -y @

where Y= the observed transport flow using car, ¥ = the trangport flow by truck, predicted by the

adopted model, and ¥ = the average of the observed transport flow by truck (see Fischer and Gopal,
1994).

The Correation Coefficient (R%)
The gtatistical indicator R” is defined as:
R2= Z(y_y)z (33)
2=y’
where the variables are defined in equation (a2)

The Mean Squared Error (MSE)

The MSE indicator is gpplied for al estimates and is indipendent of the underlying methodology.
In fact it is specified as the squared difference between the observed vaues (y,) and the predicted values

( }2 ) (see, e.g., Scardovi and Monari, 1988):

1 A\
MSE = —Z(yi —yz_)
N

(a.4)

This indicator denotes a good performance of the cdibrated modd when its vaue is gpproaching
zero.



The Root Mean Squared Error (RM SE)
This indicator is obtained as the root of the MSE indicator (see equation (a. 1)):
1¢ au
RMSE = \/—Z(y,- - y,-) (@\5)
i=1
The Mean Absolute Percentage Error (MAPE or EPMA)

The andyticd expresson of this indicator is the following:

n A

Z‘Yi -,

EPAdd = =L o (2.6)
n

According to some authors (see eg. Wegener and Graef, 1982), the EPMA vaues may be
interpreted as following:

. EPMA < 10%; = extremely good forecast
10% < EPMA < 20%; = good forecast
20% < EPMA < 50%; = reasonable forecast
EPMA > 50%. = bad forecast



