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Abstract

The present paper aims to analyse interregional freight transport movements in Europe

with a view on forecasting future patterns of transport flows using simple economic scenarios.

In view of the high dimension of our data-base on transport flows, two different

approaches are compared, viz. the logit  model and the neural network model. Logit models are

well-known in the literature; however, applications of logit  analysis to large samples are more

rare. Neural networks are nowadays receiving a considerable attention as a new approach that is

able to capture major patterns of flows, on the basis of fuzzy and incomplete information. In this

context an assessment of this method on the basis of a large amount of data is an interesting

research endeavour.

The paper will essentially deal with a European research experiment, oriented towards

both calibration/learning procedures and spatial forecasting, in order to compare the two above

methodologies as well as to investigate the potential/limitations of the two above mentioned

intrinsically different, but nevertheless related assessment methods. The application field is the

assessment of European (mainly Transalpine) modal freight flows. The first results in this

framework highlight the fact that the two models adopted, although methodologically of a

different nature, are both able to provide a reasonable spatial mapping of the interregional

transport flows under consideration.



1. Recent Trends in the European Freight Transport Developments

Europe is nowadays in a state of flux. After the completion of the European market and

with the widening of Europe towards easterly direction, mobility in general has shown a steady

increase in Europe. In particular, cross-border transport has been at a rising edge with annual

growth rates exceeding 10 percent, a process reinforced by the current globalisation trends. The

integration of former segmented markets - and the related liberalisation in the European space -

has led to drastic changes in both goods and passenger transport all over Europe.

In recent years, the European Commission has recognised this profound restructuring

phenomenon, an observation which can also be found in the Maastricht Treaty. European

networks are seen as the backbone of integration forces, while changes (i. e. improvements) in

the morphology of the networks are expected to generate (positive) system-wide impacts. Clearly,

the emphasis on the potential of these networks for competitiveness and cohesion provokes

various questions on the relative efficiency and substitutability of the different modes of this

network. This issue is particularly important, as the competition between different modes and the

social acceptability of modal choices are not only determined by the direct operational costs, but

also by environmental externalities. An interesting new situation is created by Swiss initiatives to

reduce Transalpine trucking through limitations on load volumes and the supply of new tunnel

infrastructures.

It is thus no surprise that there is an increasing interest in the issue of intermodal

competition and complementarity.  For surface transport in Europe, especially the competitive

position of rail vis-a-vis road is at stake. This holds increasingly also for commodity transport. It

needs to be added however, that the analysis of freight transport in Europe is fraught with many

difficulties,  as freight is not a homogeneous commodity, but is composed of an extremely

diversified set of goods with specific haulage requirements and logistic needs. This means that a

commodity-specific approach is necessary to analyse in depth implications of changes in network

configurations. This approach will also be adopted in the present paper, with a particular view on

Transalpine movements.



Therefore, the aim of the present paper is to investigate freight flow patterns in Europe

from a multiregional perspective, by looking into the modal choice for these goods from the

viewpoint of freight costs and transport time. In this paper, two competing models, viz. a discrete

choice model and a neural network model, wil be employed to map out the spatial flow patterns

in an explanatory context. This offers also a possibility to compare the relative performance of

those models. A selection of Italian/Greek regions (in order to highlight the Alpine crossing

movements) will be used to test the predictive power of the models concerned. Next, a sensitivity

analysis will be carried out in order to investigate the expected consequences of a rise in transport

costs (e.g., as a consequence of a European environmental tax on freight costs) as well in

transport time. The analysis will also illustrate the need for a reliable and up-to-date European

data base on European freight flows.

2. Models for Spatial Choice Analysis

Market requirements, cost considerations, the morphology of the European transport

network and capacity limits lead to complicated modal choices. The present paper aims to

analyse inter-regional freight transport movements in Europe as well as to forecast resulting

spatio-temporal flow patterns on the basis of new transport-economic scenarios. For this purpose,

a modal split analysis will be carried out by means of two statistical models, namely the logit

model and the neural network model (see also Reggiani et al., 1997). A binary logit  model will

be discussed in Section 2.1, while a feedforward neural network model will be presented in

Section 2.2. Our empirical analysis - illustrated in Section 3 - will use both types of models.

2.1 The Lonit  Model

A first approach to modelling freight transport flows is to use an explanatory,

behaviourally-based choice model in an origin-destination setting. In this context, widely adopted

approach for modal split analysis is the logit  model (see e.g. Ben-Akiva and Lerman, 1985).

Recent experiments using logit  models / spatial interaction models in order to map out the freight
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transport in Europe have been carried out by Tavasszy (1996) who showed the suitability of logit

models also for the goods transport sector (where data are more ‘fuzzy’ and incomplete compared

to the passenger sector). Logit  models are discrete choice models, which are used for modeling a

choice from a set of mutually exclusive and exhaustive alternatives. It is assumed that the

decision-maker chooses the alternative with the highest (stocastic)  utility among the set of

alternatives. The utility of an alternative is determined by a utility function, which consists of

independent attributes of the alternative concerned and the relevant parameters. By maximizing

the stochastic utility, the highest choice probability is then the probability that the alternative has

the highest utility among all relevant alternatives (see e.g. Ben-Akiva and Lerman, 1985, Cramer,

1991, and McFadden, 1977). Since in our case two discrete choices - rail and road - will be

considered, a binary logit  model is adopted. Our binary logit  choice model for modal split choice

of a transport mode m (m = 1, 2) vis-a-vis the complementary transport mode between two

regions i and j has the following formulation:

z=l,...n (2)

and where:

m = the mode of transport (m = train or truck);

P;r” = the probability of choosing the mode m from region i to region j (i f j);

u; = the utility connected with the rail mode m on the link ij;

XZyV = the vector of attributes for mode m in the utility function for the link ij (in

our case cost and time);

Pz = the vector of parameters related to the vector of attributes time and cost.



The binary logit  model has become in the past decades a standard analytical tool in

discrete choice modelling. The results of this logit  model for some empirical cases on European

freight transport will be given in Section 3. In particular, given the large amount of data

concerning the road mode, the calibration and forecasting analysis related to model (1) and (2)

will be illustrated - in the following Section 3 - with reference to the latter mode. In the same vein

also some policy scenario experiments will be presented later on.

2.2 The Neural Network Aunroach

In recent years, a great deal of interest has arisen in neuro-computing, in particular neural

network analysis (see, e.g., Anderson and Rosenfeld, 1990, and Rumelhart and McClelland,

1986). Neural network (NN)  analysis has in recent years become a popular analysis tool (see, for

a review, Himanen et al., 1997). NNs replicates human brain functions and are thus considered as

‘intelligent’, since they learn and generalize by examples (see, e.g., Reggiani et al., 1997). NNs

have been widely applied to the area of transport engineering, in particular in relation to traffic

control problems and accidents (see Himanen et al., 1997). However, so far only a few

experiments exist in the field of transport economics or transport route / mode / destination

choice (see, e.g. Nijkamp et al., 1996, and Schintler and Olurotimi, 1997). Our experiments aim

to explore also this novel research direction by comparing NN results with those of a logit

approach.

In a way analogus to most applications of NNs,  in this study a two-layer feedforward,

totally connected NN will be used in order to analyse the freight transport modal split problem in

Europe. The methodological structure of the main steps related to the application of a

feedforward NN is described in Reggiani and Tritapepe (1997) with  consists of three stages: i)

definition of network architecture; ii) learning phase; iii) forecasting phase. It is necessary to

define  the right architecture of the network, i.e. the number of units  on the relevant levels.

Usually, the input and output units depend on the number of input and output variables which

define  the problem. In our application one possible NN architecture contains 4 input units which

correspond to the attributes time and cost related to each transport mode (rail and road) and one
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output unit corresponding to the probability of choosing one mode’ (e.g., the rail mode). In the

past years we have witnessed an increasing acceptance of NN models in social science research,

including transportation science. Section 3 will offer empirical results obtained by applying an

NN model to European freight flow data, while scenario results will be presented in Section 4.

3. Empirical Results from European Freight Flow Analysis

After the concise presentation of the methodology, in this section the experiments with the

logit  and the NN approach (see Subsection 2.1 and 2.2) will be presented and discussed. In

Subsection 3.1 a concise description of the  data set will be given. The experiments carried out by

means of the logit  approach and the NN approach will be presented in Subsections 3.2 and 3.3,

respectively. Then the two approaches will be mutually compared in Subsection 3.4.

3.1 Descrintion  of Available Data

Comprehensive detailed data on European freight flows are rare. The data set2  contains the

freight flows and the attributes related to links between 108 European regions for the year 1986.

The attributes considered here are ‘time’ and ‘cost’ between each link (ij) for each transport

mode, so that the  data set pertains to variables related to each link (ij). Furthermore, the  flow

distribution in the matrices concerned refers to one particular kind of goods, viz. food. Clearly,

other sectors might have been chosen as well.

After screening and elimination our data set contains finally 4,409 observations on

interregional freight flows in Europe. This data set is next randomly subdivided into three sub-

sets:

l a training set containing 2,992 observations, i.e. about 68% of the data-set;

l a cross-validation set containing 447 observations, i.e. about 10% of the data-set;

l a test set containing 970 observations, i.e. about 22% of the data-set.

’ The choice probability of the other mode is just the complement.
2 The data set has been kindly provided by NEA  Transport Research and Training, Rijswijk. (see, for a detailed map of the
European regions, Reggiani et a1.,1997).
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On the basis of these data we will now carry out our experiments.

3.2 Annlications Based on a Lonit Approach

In our approach a binary logit  model is used to analyse the modal split problem between

road and rail in relation to inter-regional food transportation between 108 regions in Europe. In

Subsection 3.2.1, the calibration results and an evaluation of the logit  model will be presented.

Then, results from a spatial forecasting of the calibrated logit  model will be presented and

evaluated in Subsection 3.2.2.

3.2. I Estimation of the binary logit  model

In our empirical application, the logit  model is estimated in order to assess the

unknown  parameters in the utility function. For this purpose, the learning data set, which is the

training set combined with the cross-validation set, has been used. Concerning the  logit  model

structure, two distinct cases are considered; in case A only the cost attribute is used for estimating

the parameters, while in case B cost and time are considered as attributes. In particular, the logit

model has been calibrated by using the LIMDEP software. The estimated parameters resulting

from the calibration stage are presented in Tables 1 and 2 for Case A and Case B3,  respectively.

Next, the goodness-of-fit of the model has been evaluated using two statistical indicators:

the likelihood-ratio (p’ ) and the t-test. The related results are also presented in Tables 1 and 2.

Table 1 about here

Table 2 about here

The t-test indicates that the two parameters are significantly different fi-om  zero in both

cases (see again Table 1 and Table 2). Also the value of p2 indicates that the calibrated logit

models are performing reasonably well for the two cases. However, the calculated p2 for Case B

3 We will then denote as Case A (L), Case B (L) the respective cases A and B implemented by logit models, while Case A
(NN) and Case B (NN) will indicate the respective cases A and B estimated by NN models.
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(L) is better than that for Case A (L), which suggests that Case B (L) - with inclusion of more

attributes in the utility function - performs better than Case A (L).

3.2.2 Statistical pe@ormance  of the binay  logit  model

Next the binary logit  model, estimated in the previous subsection, is used to make freight

transport forecasts on the basis of various transport economic scenarios. For this predictive

purpose, both the  data set used in the calibration stage and the test set which is not used in the

calibration stage, are employed.

In our analysis of the spatial forecasting performance of the binary logit  model, the

statistical indicators p2, ARV, R2,  MSE, RMSE, EPMA have been adopted. The definition of

these indicators can be found in Annex 1. These indicators have been used - individually or

jointly considered - for examining the statistical/econometric merits by varying the combination

of attributes in the utility function. In particular, they have been calculated for both the calibration

and the test set. They will also be used subsequently to explore the performance of NN models.

The probabilities of train and truck have been used in calculating the statistical indicators. The

results are presented in Tables 3 and 4 for case A (L) and Tables 5 and 6 for case B (L),

successively.

Table 3 about here

Table 4 about here

Table 5 about here

Table 6 about here

Concerning the ‘optimal’ values of the above indicators it should be noted that the ARV,

MSE and RMSE measures should ideally approach zero; EPMA suggest an extremely good

forecast when his value is less than lo%,  and a good forecast when his value is ranging f?om 10%

to 20% (see Annex l), while the R2  measure should approach one. Regarding the general results

presented in Tables 3-6, the binary logit  model appears to have an insufficient predictive ability,

when only one attribute is considered (see, e.g., case A (L) for both the calibration and the test set
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in Tables 3 and 4, respectively). On the contrary, the logit  model performs quite better for case B

(L) - related to the two attributes (cost and time) - for both the calibration and the test set (see,

e.g., again the values of ARV and R2  in Tables 5 and 6). Consequently, the parameters emerging

from Case B (L) will be employed for the forecasting analysis carried out - on the basis of policy

scenarios - in the next Section 4.

3.3 Exneriments bv means of a Neural Network Approach

After the applications of the logit  model, now the modal split problem will be analysed by

means of a more recently developed statistical model, viz., the feedforward NN model (see

Subsection 2.2).

It has already been mentioned that the whole data set contains 4,409 observations (examples

or patterns). The following general considerations apply to the experiment undertaken here:

l Both Case A and Case B - analogously to logit  analysis - are trained (they have been named

Case A (NN)  and Case B (NN),  respectively; see footnote 3).

l The training for the neural net model (and the calibration for the logit  model) has been

carried out by using the training set.

l The performance measure has been evaluated by using the test set (spatial forecasting).

Concerning the number of hidden units, they have empirically been defined by taking into

account the number of observations in the data set as well as by carrying out a large number of

experiments. In regard to the parameters defining the neural architecture, they have been

determined after several empirical experiments. Finally, the parameters of the NNs are set as

follows:

* number of hidden units: 6

. learning rate a = 0.9

. momentum factor 1 = 0

- training tolerance = 0.1

. initial weight values: randomly between [-0. l;O. l]
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It should be noted that by using a feedforward NN it is necessary to cope with the

over-fitting problem. Consequently, in the experiments the cross-validating technique (by using

the cross-validation subset) has been used in order to avoid such a problem (for details on the

overfitting problem and the cross-validating technique, see e.g. Fischer and Gopal,  1994, and

Reggiani and Tritapepe, 1997).

The results related to the above mentioned experiment will now be presented. In general, by

using a statistical model for forecasting, the first step is to evaluate the predictive quality of the

model, i.e. to determine how well the model learned to approximate the unknown input-output

function for arbitrary values of input units, while the final aim of our work is to evaluate the

freight transport movements in Europe in order to forecast spatio-temporal patterns on the basis

of new transport economic scenarios. The present section will particularly analyse this first

research stage, i.e. the spatial forecasting of the model adopted. The predictive quality will be

evaluated - by means of several performance measures - by using the test set which had been set

apart and not yet used for the calibration (learning) phase, as mentioned above.

The predictive performance of an NN can be judged by means several statistical indicators

like ARV, R2, MSE, RMSE, EPMA, as previously indicated for binary logit  model. The results

of the statistics are displayed in the following Tables 7 and 8.

Table 7 about here

Table 8 about here

It is evident from the above tables that the ARV and R2 indicators, emerging from NNs,

give a better result than the ARV and R2 indicators emerging from the logit  analysis, while the

MSE, RMSE and EPMA values are slightly better for logit  models with respect to NNs.

3.4 Comparison of the Logit and Neural Network Anproach

After the presentation of the above results, we will, in this subsection, compare and

evaluate the spatial forecasting performance of the two alternative approaches. First, the values of



goodness-of-fit indicators for both the two models and for each case A and B are compared - with

reference to the test set - by means of histograms in Figures l-5.

Figure 1 about here

Figure 2 about here

Figure 3 about here

Figure 4 about here

Figure 5 about here

It is noteworthy that Figures l-5 show in particular the higher performance of NNs - with

respect to logit  models - in Case A (adoption of only one attribute in the utility function). This

results confirms previous findings in the framework of different data bases (see Nijkamp et al,

1996),  underlining the goodness-of-fit of NNs  in the presence of uncertain and incomplete data

(viz., by using only one attribute). Concerning Case B, dealing with the assumption of two

attributes in the utility function, both approaches display good values to the assessment of freight

flows.

Finally, in order to better evaluate the  performance of logit  and NN models, an

extrapolation of estimated data againist the real data will be shown (see Tables 9-12).

In our empirical investigation, we have focused our attention in particular, on the

Transalpine area. Considering that the Alpine chain separates more or less Europe from  Geece

and Italy, an extrapolation of these data has been carried out (see Tables 9 and 10). More

precisely, Table 9 illustrates the estimated/real flows for the outflows, from Greece and Italy,

towards Northen and Western Europe (without considering Spain and Portugal), while Table 10

displays the estimated values for the inflows from Europe to Italy and Greece. It should be noted

that the values illustrated in Tables 9-10 emerge from an estimation process carried out on a data

set constituted by the sum of the learning and test set for both the two approaches ( NNs and logit

models).

Table 9 about here
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Table 10 about here

It is evident from Tables 10 and 11 that a NN model performs overall slightly better than

the logit  model (see the values of the relative prediction error for each link as well as the related

mean values). Surprisingly, despite a weaker behavioural basis in NN models, the results seems

to be fairly precise.

4. Policy Scenario Experiments

The above estimation procedures were based on time and financial sacrifices in the

European transport sector. It is noteworthy however, that freight transport causes also high social

costs (environmental pollution, accidents, etc.), which might be charged to the transportation

sector. We will now investigate the consequences of varying the transportation time/costs for

freight flows by including some level of social costs. A sensitivity analysis of the previous results

based on some economic scenarios will now be carried out in this section by using again both the

binary logit  model and the NN model. Two policy scenarios based on different external time/cost

assignments will be used; they will concisely be discussed here. Later on, we will present the

results related to the sensitivity analysis for the logit  and the NN approach.

Nowadays, because of severe problems on the road transport network (for example,

pollution, congestion), governments are trying to reduce the road usage by imposing policy

measures that serve to increase the cost of road usage (see Verhoef, 1996) in order to induce a

shift to other modes. An example of a Pigouvian policy for coping with environmental

externalities is the recently increased tax on fuel in the Netherlands. In so doing, the usage of the

road transport network is made less attractive than other transport networks, so that a modal/shift

is encouraged.

Since it is very difficult to assess the social costs of freight transport in Europe, two

scenarios are developed and considered for a sensitivity analysis on the transport costs. Generally

we assume that a uniform European tax policy for freight transport is adopted and that the cost

attribute related to the road mode is increased by 10 % for all links (ij). In Scenario 1 we assume

- on the road mode - only an increase of transport time of lo%, due to congestion problems.
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Scenario 2 is a slight variation of Scenario 1, since here it is assumed that each attribute

(time/cost) is increased by 10%. In particular, Scenarios 1 and 2 have been implemented for the

Alpine sector (see Tables 11 and 12).

The results from the above sensitivity analysis can be highlighted by the relative

prediction error, which is defined as the (relative) difference between the predicted flow and the

real flow as a percentage of the real flow. In this context, the results in our tables indicate that the

binary logit  model is relatively more sensitive to changes in the time/cost attribute than the NN

model.

It is interesting to note that in the neural network case, and particularly in the case of

inflows from Europe to Greece/Italy, the model shows -in the mean value- a slight increase of

flows, despite the time/cost increase. This result may be plausible by taking into account the

increasing amount of interaction among regional flows as a result of increased efficiency.  It

would certainly be relevant to compare these results with more updated data in order to better

evaluate the ‘forecasting’ analysis of the two models, in particular since we have used -as a

starting point- a set related to the year 1986.

In general, however, the above results may be considered to be plausible, in the absence of

updated data that would be able to test our hypothesis on an increase in the time or cost indicator,

given the good performance from the calibration / test phase. Moreover, these results may offer a

‘range of plausible values’ to policy actors who aim to evaluate the impact of time or cost

changes on freight flows, given the intrinsic limits of both adopted models for freight transport

analysis.

It is noteworthy that the large amount of freight flow data at an aggregate level hampers a

behavioural micro perspective inherent in logit  models. A further limitation consist of the type of

architecture adopted in NN models, which seems critical for the validity of the results.

Consequently, the results of our model may be used as a benchmark for the results of other

models (for example, genetic algoritms), by offering a more ‘flexible’output to policy actors.

Table 11 about here

Table 12 about here
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5. Concluding Remarks

The European integration, the regulation policy and new infrastructure policies call for a

proper insight into European freight flow developments. This paper has aimed to depict transport

flows of commodities in an inter-regional European setting. Based on an extensive data set,

various estimates of the impacts of costs on transport movements have been made. The test

results show that both the logit  and the NN approach are giving fairly plausible results. In

general, NN models seem to perform slightly better.

After this exploratory comparative study of two modelling approaches, it is certainly

opportune to investigate more thoroughly the differences in backgrounds of these two research

paradigms. It is well known that the logit  model is a particular spatial interaction model that has

its roots in social behaviour of actors, albeit with some limitations like the well known IIA

(Independence from Irrelevant Alternatives) assumption. The NN model is based on similarily of

learning experiments and has certainly a behavioural adjustment potential, but is less easily

interpretable from social science motives, even though recent results show a compatibility

between feedforward NNs and binary logit  models (see Schintler and Olurotimi, 1997),

feedforward NNs and spatial interaction models (see Fischer and Gopal,  1994) and feedforward

NNs  and logistic regression models (see Schumacher et al., 1996). Given its predictive ability,

more research is needed to better investigate the behavioural roots of NN models, while also

extentions towards genetic algorithms may be explored.
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Figures and Tables

Table 1: Results for case A (L) related to the logit  model
Case A
Number of observations: 3,349
Attributes: cost

Variables
cost

Coefficient St. Error t-ratio L
P

-0.091482 O.l308E-04 -699.40 0.6538

Table 2: Results for case B (L) related to the logit  model
Case  B
Number of observations: 3,349
Attributes: cost, time

Variables Coefficient
cost -0.064926
t ime -0.095 153

St. Error
O.l535E-04
0.35 14E-05

t-ratio L
P

-4229.7  1 0.71023
-2707.83

Table 3:Case A (L); no  of observations: 3,439
ARV RL M S E
0.96 0.45 0.19

R M S E
0.44

EPMA
36%

Table 4:Test Case A CL): no of observations: 970
ARV
0.91

\
i2

0.48
M S E
0.19

R M S E
0.43

EPMA
35%

Table 5: Case B (L); no  of observations: 3,439
ARV RL MSE
0.35 0.73 0.07

RMSE
0.26

EPMA
17%

Table 6: Test Case B (L);  no of observations: 970
ARV
0.20

‘I;”
0.83

MSE
0.04

RMSE
0.20

EPMA
15%

i



Table 7: The values of goodness-of-fit indicators for the NN model: Case A (NN)
Case A (NN)
No of observations: 970 (test set)
Attributes: cost

ARV R” MSE RMSE EPMA
0.16 0.94 0.07 0.26 20%

Table 8: The values of goodness-of-fit indicators for the NN model: Case B (NN)
-Case B (NN)

No of observations: 970 (test set)
Attributes: cost, time

\ ,

ARV
0.17

R”
0.92

MSE
0.07

RMSE
0.16

EPMA
18%

ARV

0.8

0.6

0.4

0.2

0
cost cost, tit-m

Attributes

Figure 1: The value of the indicator ARV for cases A and B
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R2
1

1 0 . 9 2I -.-
0.8

0.6 q NN I
0.4 cq logit
0.2

0

cost c o s t ,  t i m e

Attributes

Figure 2: The value of the indicator R” for cases A and B

M S E

0 . 1 9
0.2

0 . 1 5

0.1 q NN

0 . 0 5
c
q logit

0
cost c o s t ,  t i m e

Attributes

J

Figure 3: The value of the indicator MSE for cases A and B
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0.4

0.3

0.2

0.1

I O
cost cost, time

Attributes

Figure 4: The value of the indicator RMSE for cases A and B

EPMA

i 0%

cost cost, time

Attributes

Figure 5: The value of the indicator EPMA for cases A and B
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Table 9: Transalpine food transport flows by road fi-om Italian plus Greek regions to the rest of
Europe’ (flows in tons; year: 1986)

M* -12.10 -4.84
MA** I 13..53 I 6.20

1) in order to highlight the Alpine crossing movements, data related to Spanish and Portuguese regions have been
eliminated
* M = mean value of the variations from  the real data
** MA = mean value of the absolute variations from the real data

Table 10: Transalpine food transport flows by road from the rest of Europe’ to Italian plus Greek
regions (flows in tons; year: 1986)

Cndinri I 64475 57372 I 64633 -10.96 I 0.31 I
M” -6.38 3.01
MA** 12.21 6.10
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Table 11: Results of a sensitivity analysis by means of scenarios (Transalpine food transport
flows from  Italian plus Greek regions to the rest of Europe’)

1 REGIONS I Real Scenario 1 I Scenario 2 Scenario 1 I Scenario 2
((time/cost )+ 10%) rel. pred. err. rel. pred. err.
LOGIT  1 NN Logit  (%) 1 NN (%) Logit  (%) 1 NN (%)
16283 1 19488 -66.36 1 -2.23 -17.61 i -1.40

1 -17.84 1 -6.64 1 -43.80 1 -6.65
1 17.97 1 8.03 1 43.91 1 8.07

Table 12:Results  of the sensitivity analysis by means of scenarios (Transalpine food transport
flows from  to the rest of Europe’ to Italian plus Greek regions)
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ANNEX 1

The Ro Squared Coefficient (p2)

The statistical indicator p2  is defined as:

p2  = l-(h/h@)) (a4

where h(o) = the value of the log likelihood function when all weights are zero and h(p)  = the value of the
log likelihood function at its maximum (see Ben-Akiva and Lerman, 1985).

The Average Relative Variance (ARV)

The statistical indicator ARV is defined as:

rnv = c(J+-@2
c (Y -7)”

(a4

where Y= the observed transport flow using car, y = the transport flow by truck, predicted by the
adopted model, and Y= the average of the observed transport flow by truck (see Fischer and Gopal,
1994).

The Correlation Coefficient (R”)

The statistical indicator R”  is defined as:

R2 = c(‘-‘)’
C(Y 9)”

(a.9

where the variables are defined in equation (a.2)

The Mean Squared Error (MSE)

The MSE indicator is applied for all estimates and is indipendent of the underlying methodology.
In fact it is specified as the squared difference between the observed values (y,)  and the predicted values

(Ji ) (see, e.g., Scardovi and Monari, 1988):

A4sE  = ;-$(yi -y);
i-1

(a4

This indicator denotes a good performance of the calibrated model when its value is approaching
zero.



The Root Mean Squared Error (RMSE)

This indicator is obtained as the root of the MSE indicator (see equation (a. 1)):

(a.5)

The Mean Absolute Percentage Error (MAPE or EPMA)

The analytical expression of this indicator is the following:

n

cl I
Yi -Gi

EPA44 = j=l  ’ % (a@
n

According to some authors (see e.g. Wegener and Graef, 1982),  the EPMA values may be
interpreted as following:

. EPMA < 10%; a extremely good forecast

. 10% < EPMA < 20%; z good forecast

. 20% < EPMA < 50%; 3 reasonable forecast

. EPMA > 50%. =a bad forecast


