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Abstract

We propose what be believe to be a novel approach to perform calculations for ra-
tional density functions using state space representations of the densities. By standard
results from redlisation theory, a rational probability density function is considered
to be the transfer function of a linear system with generally complex entries. The
stable part of this system is positive-real, which we call the density summand. The
existence of moments is investigated using the Markov parameters of the density sum-
mand. Moreover, explicit formulae are given for the existing moments in terms of these
Markov parameters. One of the main contributions of the paper are explicit state space
descriptions for products and convolutions of rational densities.

As an application which is of interest in its own right, the filtering problem is inves-
tigated for a linear time-varying system whose noise inputs have rational probability
density functions. In particular state space formulations are derived for the calculation
of the prediction and update equations. The case of Cauchy noise is treated as an
illugtrative example.

1 Introduction

We are going to consider the filtering problem for the first order system
Terr = feZe + e,
Yt = hexe + €,

t=20,1,2,..., where f;, ht, are assumed to be known real numbers, and for ease of exposi-
tion are assumed to be such that f; # 0 and hy > 0, t > 0. The noise sequences {n:}:>0 and
{€t}s>0 are assumed to be mutualy independent sequences of independent random variables
whose probability density functions are rational. The initial state g is aso assumed to be a
random variable which is independent of the noise sequences and aso has a rational density.
No assumption is made that any of the random variables are identically distributed.

This filtering problems with non-Gaussian noise has applications in econometrics, for
example in the analysis of financia time series. Studies have shown that the quantities that
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are encountered there often do not admit a Gaussian distribution ([5], [3], see aso [9]), since
these distributions have ‘heavy tails. As one of the consequences, higher order moments
may not exist. It has therefore been proposed (see e.g. [8]) that these distributions be
modelled by rational densities, both because they do have ‘heavy tails and because of the
richness of the class of distributions. Examples of rational probability densities which have
been used in the literature are Cauchy densities and Student densities with odd number of
degrees of freedom.

The state filtering problem is defined as the problem of finding the best estimate Z; of
x; given knowledge of the distribution of zp and the values of yp, ¥1,.. ., Y. Since

o
Ty = / -'L'p(x):c:Iy:,yc—l,---,yodl'a
-0

this estimate can be found if the conditional density pg,iy, 4 1,..50 Of Zt is known and
the first moment exists, given the measured values of ¥, ¥:—1,- . - , Yo and knowledge of the
distribution of xg.

In principle the calculation of the conditional densities is not difficult. The unnormalized
conditional densities, denoted by p instead of p, are given by
Update step:
for t=0:

Pzo|Vo (z) = Pzolyo (z) = pyulz(yo)pzo (x) = peo (Yo — hox)pz, (2),
fort > 1:

Pzy |V (z)- Py |z (yt)pz, |Ve-1 (@) = Pe, (ye = hsz)pg, |Ve-1 (z)

x € R.
Prediction step:
fort> 0:
% §
Pzyp1| Ve (z) = (pft:u]yz * pf):) (IE) = /oopzqyt(}'t’)/’m (z - é‘)d&
x € R. Here we have set ), to be the collection of observations i, ¥t—1,-. ., Yo . .

In [8] is was noted that the various probability densties occurring in the filtering problem
are al rationa functions if the noise variables and the initiad state have rational probability
densities and explicit formulas are given. The practical problem in doing these caculations
for large numbers of observations is that the conditional densities are fairly complicated
to caculate. To adliviate this problem we propose to use state space techniques for these
caculations. Since by assumption the initial state and the noise segquences have rationa
densities this is indeed possible. For this purpose we are going to develop a ‘state-space
caculus for rational probability density functions. We believe that this point of view is
novel and may be of relevance beyond the application to non-Gaussian filtering as discussed
here.

Let p be a not necessarily normalized rational probability density, i.e. p(z) is a rationa
function in the independent variable x, such that p(x) >0, x € ®, and 0 < [ o, p(z)dz < oo.
This implies that p is strictly proper, i.e. lim|x|_,°° p(z) = 0. By standard redlization there
exists a minima state space redlization such that

p(z) = clizl — A)~'b, x € R

In paticular we will present here state-space formulae for the trandation, scaling, prod-
uct and convolution of rational probability density functions. Most of our results will be



formulated in terms of state space redlizations for the density summand, which is defined
to be the ‘stable’ part of the probability density function. One reason for doing this is
that in this way the dimensions of the redlizations are typicaly haf of what they would
be otherwise. For actua implementations of our results this could lead to significant com-
putational advantages, in particular when repeated applications are necessary such as can
be expected for the filtering case. Moreover, we will investigate the existence of moments
from the state-space point of view and give state-space formulae for the existing moments in
terms of the Markov parameters of the density summand. A maor part of the investigation
will be built on a careful anaysis of the connections between impulse responses, transfer
functions and characteristic functions of the various objects. In a result that may be of
independent interest a state-space formula is given for the system whose impulse response
is the product of impulse responses of two systems.

2 Notation and Preliminaries

The symbol C stands for the complex field and the symbol R stands for the rea field. If
Alb
¢ dd
a complex matrix M* denotes the adjoint matrix. If G is a rational function, G* is defined
by G*(s) = (G(-3))*, s € C. If G has the redlization (A, b, c, d) then G* has the redlization
(-A*, c*, —b*, d*). We cdll a system (A, b, c, d) stable if al eigenvalues of A are in the open
left half plane. Note that such systems are often also called asymptotically stable. A rational
function G is called drrictly proper if lims_o G(S) = 0. An unnormalized probability
density function p is a nonnegative integrable function on R such that ff°°° p(z)dz > 0,
but not necessarily 1. Then p = ]'_":f(?)d_z is a normalized density function. The set of

functions P is defined in Section 3.

(A, b, ¢, d) is alinear state space system we aso often use the notation 4 1If M s

3 State space representations of rational densities

If p is a not necessarily normalized rational probability density function, then p is drictly
proper, i.e. Hmz|o0 p(z) = 0. Therefore by standard realization theory (see eg. [2]) there
exists a minimal linear state space system (A, b, c¢) such that

p(x) = c(izI — A)™1b, zeR.

If n denotes the McMillan degree of p, the system matrix A will in genera be a square
complex matrix of size n x n, b will be a complex n x 1 matrix and ¢ will be a complex 1 x n
matrix. A rational probability density function which is symmetric with respect to 0 could
however be realized with real system matrices.

Note also that we have set up the redlization in such a way that we consider the rational
function to be defined on the imaginary axis. While in principle the choice of axis is
arbitrary it is convenient to choose the imaginary axis since then standard redlization
theoretic methods can be adopted without having to change axis. In particular we will
be using the formal analogy of methods developed for spectral densities which are most
naturally considered to be defined on the imaginary axis. To make this convention clear set

®(iz) = p(x), X € R

Since ® is a rational function defined on the imaginary axis it can be extended as a rationa
function to the whole complex plane. This rational function has the following properties:



1. ®(s) = ®*(s), s € C.

2. ® has no poles on the imaginary axis.
3. @(@ix) 20, x € R

4. limg00 B(s) = 0.

The set of rationa functions that satisfy properties 1.,2.,3. and 4. is denoted by P. Many of
our calculations are going to be based on the following well-known additive decomposition

of §:
®(s) = Z(s) + Z*(s), s EC,

where Z is a stable rational function, i.e. al poles of Z are in the open left half plane. This
decomposition is unique if we assume that Z(oo) = 0 which can be done since &(co0) = 0.
The function Z is caled the spectral summand of ®. We will also cal Z the density summand
of p.

In the following Lemma some elementary and standard state space properties are col-
lected concerning this additive decomposition of ®.

Lemma 3.1 Let (A, b, ¢) be a minima realization of ®, i.e. ®(s) = c(sI — A)~'b, and
(A, b, c) is minimal. There exists an equivalent realization

of (A, b, c) such that all eigenvalues of Aj are in the open left half plane and all eigenvalues
of A, are in the open right half plane. The state space system (Ai,b1,¢1) is a minimal
redlization of Z and (As, by, cp) is a minima redization of Z*.

Moreover, (As, b2, co) is equivalent to (—A}, —c}, bf). In particular there exists a mini-
mal redization of & such that

0 |b
—4i |4
—5 |0

Example: As a speciad case we are going to consider the Cauchy density, which was sug-
gested for example in [5] as a suitable density to study financial time series. The normalized
Cauchy density is defined as
1 k
p(x) =

7 (z - z0)2 T k2’

z € R, where zo € Rand k > 0. A state space redlization of ®(ix) := p(x), x € R, is given
by

1

—k +izg 0 3
[A“’ bg’]:[ 0 k+izg|-—n
ce 1 1 | 0

The density summand of p is
1 1

26) = o s kT i)’



which has one pole at —k + izy. A state space redlization of Z is given by

)= e

4  Fourier transforms, moments and Markov parameters

In order to obtain state space formulae for the moments of probability density functions
and for the convolution of such densities we need to employ the Fourier transform. The
main tool will be to interpret the density summand as the Fourier transform of the impulse
response of a stable linear state space system. Actualy we introduce the Fourier transform
as the Laplace transform evaluated on the imaginary axis. For a general reference on Fourier
transforms see e.g. (7], [4]. This way of proceeding is of course closely related to the use of
the characteristic function in statistics, but there are a few more minor technical differences.
For an integrable function f on R define the Fourier transform as usual by

FGw) = [

o

flOe ™t iw € iR
ox

If (A, b, ) is a stable minimal system, let m+(t) := cet4b for ¢t > 0, and m+(t) := 0 for
t < 0. Then the Fourier transform of m™ is given by

(f'm+)(iw) :/0. cetAbe 0 gt = c(—z'wI + A)—le(—iwI+A)tlgob — c(iwI _ A)_lb

= G(iw), w €k

If we set m-(t) := b*e=4"c* for t < 0, and m~(t) := 0 for ¢ > O, then the Fourier transform
of m™ is given by

0 . ) ~ .
(Fm—)(iw) = / b*e—tA e Mgt = b*(—zwI _ A*)—le(—-zwl—A )tl(looc*
—00

= —BGwl - (AN)%* = G*(w), W €R.

The [*-derivative of m* at t > 0 is given by (m*)D(t) = cAlet4h. Hence the right-
hand side limit of the I** derivative a O is given by (m*)®(0+) = cAlb. The [th_derivative
of m~at t <0 is given by (m™)I(t) = b*(—~A*)le~*4"¢*. Hence the left-hand side
limit of the I** derivative a 0 is given by (m~)D(0-) = b*(-4*)c* = (-1)}(cAlb)* =
(-1} (O (0+))", 12 0.

Assume now that (A, b, ¢) is the minimal redlization of the spectral summand 7 of the
function ® € P. Then (Fm*)(iw) = Z(iw), (Fm™)(iw) = Z*(fw), and for m := mT +m~
we have that (Fm)(iw) = ®(iw), tw € R. Hence m is the inverse Fourier transform
of ®. Note that m is | times continuoudy differentiable a ¢ = 0, | > 0, if and only if
cA¥b = (=1)F(cA*b)*, k= 0,1,.. . L



If G is a strictly proper rational function on C, then G admits a Laurent expansion
around oo such that

G(s) = {2 M(j)%, s EC.
=1

The parameters M(j), =1,2,.. ., are the Markov parameters of G (see e.g. [2]). If (A, b, ¢)
is a realization of G then
1 A 1 & (1 \* -1 .
G = I -A)-b =- I——-—lb:— (—A) b= —:Aj_lb.
(s) = o(sI = A) ~(I-3) sczkao - ;SJC

Hence the Markov parameters of G are given by
M) = cA’', j=1,2,3,....

The Markov parameters of a rational strictly proper function in P and its spectral
summand are easily determined.

Lemma 4.1 Let ® be a strictly proper rational function in P with spectral summand Z. If
(A, b, c) is a minimal realization of Z then

1. the Markov parameters of Z are given by

cA"1p, §=1,2,3,....
2. the Markov parameters of Z* are given by

(=1)78%(A*Y et = (~1)7(cAT7Mh)*, §=1,2,3,....
3. the Markov parameters of ® are given by

cAI b = (=171 (cAT1h), j=123,....

In the following Lemma a basic result on the integrability of rational functions is sym-
marized.

Lemma 4.2 Let G = g—g with ng and dg coprime polynomials. Then

[ 6@)ds < oo

If and only If degree(ng) < degree(dg) = 2 and dg(z) # 0 for all x € R.

If G is as defined in the Lemma then degree(dg) — degree(ng) is called the co-degree
of the rational function G. Therefore G is integrable if and only if the co-degree of G
is greater or equal to 2. This Lemma also implies that if the random variable X has
the rational probability density function p = %;1, then the moments EX¥* exist for k =
0,1,2,..., co-degree(p) = 2.

Let k be such that M(j) =0, for j=1,2,.. ., k =1 and M(k) # 0. Then the co-degree
of G is k ([2]).

Summarizing the previous remarks we obtain the following Proposition.



Proposition 4.1 Let & be a strictly proper rationa function in P with spectral summand
Z. Let (A, b, c) be a minima redization of Z. Let m(t) := ce*4b, for t > 0 and m(t) :=
b*e~tA"c* for t < 0. Then

1. the co-degree of ¢ is k if and only if M(j) =0 for all j € (1,.. ., k-I} and M(k) # 0,
where M(j) is the j** Markov parameter of &.

2. the co-degree of ® is k if and only if
cA?7Mb = (=1)77 Y (cAT D)
forallje{l,...,k -1} and
cA* b £ (—1)F1(cAF1b)*.

3. mis k = 1 times continuously differentiable at 0 if and only if the first k Markov
parameters of ¢ are zero.

4. @ has co-degree k if and only if m is k — 2 times continuously differentiable but not
k = 1 times continuously differentiable at 0.

The following theorem provides important results concerning moments of a random
variable with rational probability density.

Theorem 4.1 Let X be a random variable with unnormalized rational probability density
function p. Let (A, b, c) be aredizaion of the density summand Z of p. Then

1, the co-degree of p is k if and only if
cAT b = (=1)7" (AT 1)
for all j € {1,..., k = 1} and cA*F~1p # (~1)k~1(cA*-1p)*.

2. the I*» moment EX! of X, with 1 a non-negative integer, exists if and only if | €
{0,1,..., k=2).

3. EX'=(~i)t<4b forall1€{0,1,... ,k=-2).

Proof: 1) The follows immediately from Proposition 4.1.
2) Recdl that the I** moment of X is given by

1 o0

EX'== 7 p(z)dr,

R J-
where R = [0, p(z)dz. The co-degree of the integrand is k -~ [, By Lemma 4.2 the
integrand is integrable if and only if its co-degree is greater of equal to 2. Hence the claim.
3)Let 0 €1 <k =2 Set &(iz) := p(z), x € R, and use the notation of Proposition 4.1.
Then m is k = 2 times continuoudy differentiable a 0 and therefore on R. Since the co-
degree of p is greater or equa to 2, m is continuous on R, Since p and m are continuous and
integrable we have by the inversion theorem for Fourier transforms (see e.g. [4], Theorem

60.1, p.296) that

oo .
m(t) = 2—17; /_ B(iw)e™dw,  teR.



Note that differentiation up to order k = 2 under this integra is judtified by the usua
argument (see eg [4], Theorem 535, p. 268) as |w'®(iw)e™?| = |w'®(iw)| is integrable for
eacht € R and 0 <] < k ~2. Hence for ¢t € R,

1

d 1 /° . d o L[ g Gt
@—m(t) = Zr_/;w (iw) P dw= (i) 5 -/w w B(iw)e"™ dw.

Evduating a t = 0, we have

d — 1,0 [ i wt 1
Zm(®h=o = (0 /M w' @(iw)e™ dulimo = R (5) - X"

Since %m(t)lmo = cA',1=0,. .., k=2, we have that

EXx' = %r(—i)’cAlb.

The constant R is determined by considering this equation for I = 0. Since EX? = 1 we

have that R = 27rcb. Hence EX! = (—i)le4b, 0

In most of this paper we will be dealing with unnormalized rational probability den-
dties p. If (A, b, €) is a state space redlization of the density summand of p, the normal-
ized probability density function is given by p = T:m' By the above proposition
Jo p(z)dz = 2mcbywhixh provides a state space formula for the normalization constant.

If X is a random variable with rational probability density function p whose density

summand has the state space redization (A4,b, c), then the first moment exists if the co-
degree of p is a least three. This is the case if and only if

th = (cb)*
and
cAb = -(CAb)*.
If the first moment, i.e the mean, exists then by the Theorem it is given by
EX = —z’gi;b.
ch

In the above discussion we gave a state space construction for the inverse Fourier trans-
form m of a not necessarily normalized rational probability density function p, i.e.

1 x> ;
m(t) = —| plw)e*tdw, wWEeER.
27V
In the datistical literature an important object is the characteristic function of a random

variadble X which is defined by E(e®X), t € R If X has the unnormalized probability
function p, then

1 2 y
L = @z

Hence up to a (known) scaling factor the function m is identical to the characteristic
function.

. o
B(e*X) = / e p(z)dr = teR.
—o0



Example continued: We continue the discussion of the Cauchy density from Section 3.
Note that for al zg € Rand k£ > 0

cAb = '2}7;(-16 + ’i:L'o) # -f(-k = Z:II[)) = —(cAb)‘.

Hence by the Theorem the mean EX does not exist. This is of course also directly evident
by consideration of the integra [0 zp(z)dz.

If m*(r) := &e™(=k+i=0) for ¢t > 0 and m*(r) := 0 for ¢ < O, then F(m*)(iw) =
o Wy W € iR I m(r) = gre~("F=im) for t < 0 and

{
m~(7) = 0for ¢t > 0, then F(m~)(iw) = & —t—, iw € iR With m = mt + m™,

27 twt(k—1zp)

we have that m is continuous a 0. The derivative IS given

1 , Cbin
i'm(t) =5 (~k+ img)e”(TkHE), 150,

d 1 .\ —7(—k—izg)
dtm(t) = 27r(k + izg)e sy T <O0.

Note that the left-hand side limit and the right-hand side limit do not agree at 0. Hence m
is not differentiable at 0. As the co-degree of p is 2 this is in agreement with Proposition 4.1.
The Markov parameters of ¢ are

—k
caby = 0, coApbe = -

Hence the second Markov parameter is nonzero Which is also in agreement with Proposi-

tion 4.1.
cl

5 Operations on probability densities

In this section we are going to discuss state-space formulations of operations on ratio-
nal probability densities. Given state space redlizations for the density summands of two
probability densities we will give state space redizations for the density summand of the
trandation, scaling, the product and convolution of the densities.

5.1 Translation and scaling of a probability density

In the next Lemma the effect of trandation and scaling of a random variable on the state
space redization of the density is considered.

Lemma 5.1 Let X be arandom variable with ynnormalized rational density p. Let (A, b, c)
be a realization such that p(x) = c(izl ~ A7, x € R,

Let zp € R. Then the random varidble X + zp has an unnormalized probability density
function g(z) = p(z — zp) which has a realization (A + izl, b, c), so

q(x) = clizl - (A + izol))"1h, x€R.



Let a € R, a # 0, then the random variable ¢X has the unnormalized probability density
function g(z) = ﬁp(%) which has a redization (a4, b, c), S0

? |af

q(z) = |—Z—lc(ixl -aAd)7 b,  xeR

In the following Lemma we are going to write down the analogous results for the case
when a state space redlization is given for the density summand of the probability density.

Lemma 52 Let X be a random variable with unnormalized rational density p. Let (A, b, ¢)
be a realization of the density summand Z of p.

Let gy € R, then the random variable X + gy has the unnormalized probability density
function q(x) = p(z — xc), x € R, whose density summand has a realization

A+ixol | b
c 0/’

Let a € R, a # 0, then the random variable ¢X has the unnormalized probability density
function q(x) = ﬁp(f)whose density summand has a realization

ad | b
c |0 )’
ifa> 0 and

—aAi c*
|0 )’

ifa<O.

5.2 Product of two rational probability densities

In the update step of the filtering problem it is necessary to calculate the product of
two density functions. We are going to do this also by state space techniques using the
decomposition into density summands. The following Lemmas will be useful.

Lemma 53 Let G; and Gy be two stable strictly proper rational functions with state space
realizations (41, by, ¢1) and (A, by, ). Then the product G}G; can be decomposed as

G;Gz =F + H*

where F, H are stable strictly proper rationa functions such that F has the realizations
given by

( Ay b2> (Ag Tgc’{)

b1 | 0 )’ c2 0

and H* has the realizations given by
( —AY | Tyb, ) ( —At | = )

—b; 0 ! 62T2 0 ’

where Tj is the unique solution to the Sylvester equation
ATy + T1As+ cjea = 0

and T3 is the unique solution to the Sylvester equation
A2T2 + T2AI + bzbﬂil =0.

10



Proof: Note that a realization of G7 is given by
(-4l e, —b1)

and a realization of G} G2 is given by

—A} clca | O
0 Ay | bs
—-b3 0 } 0

. . : . . . T
Performing a state space basis transformation with transformation matrix ( 6 Il ) we

obtain the equivalent realization

—AI AITl +T1As + CI ca | Tibo —A} 0 Tibo
0 As by = 0 Ay by
—-b] T ’ 0 ~bi b , 0

since T3 is such that ATy + T1 A2 + cjcp = 0. Note that such a T} exists and is unique
since both A} and A, have all their eigenvalues in the open left half plane (see e.g [6]).

This representation implies the first set of realizations. The other set of realizations follows
analogously by considering the state space formula which corresponds to G3Gj. o

Remark. A method to generate explicit formulas for the solutions of Sylvester equations
is presented in [1].

We can now derive the desired representation for the density summand of the product
of two rational probability density functions.

Proposition 5.1 Let p; and p, be two unnormalized rational probability density functions
with density summands Z; and Z3. Let (4;, b;, ¢;) be a realization of Z;, 1= 1,2. Then the
density summand Z of the un-normalized rational probability density function p = p1p2 has
a realization given hy

A1 bl C2 TQ* C;
0 AZ b2 )
C1 b’{T1 ' 0

where T3, Ty are the unique solutions to the Sylvester equations
ATy + T1 Az 4+ cjea = 0,
ATy + Ty A; + by} = 0.
Proof: We have that
p =pip2=(Z1+ Z{) (2o + 23) = Z1Zo + 2125 + (Z123)* + (Z1Z,)".
By Lemma 5.3 a state space realization for the stable part of this expression is given by

Ay bz 0 0 0
0 A2 0 0 ba
0 0 A 0 |Tyes |,
0 0 0 A by
C1 0 Ci b’{Tl | 0

11



where 77 is the unique solution of the equation
AT+ T1As + clep = 0

and Ty is the unique solution of the equation
ATy + Th AT + bad] = 0.

Performing a state space basis transformation with transformation matrix

I 0 00
o 1 0o
T=10 0 10
0 -I 0 I

we obtain the equivaent redization

Ay by O 0 0

0 A2 0 0 b2

0 0 A 0 [T3c |,

0 0 0 A, 0

C1 bITl (4] bITll 0
which is equivaent to

A1 b1c2 0 0

0 A4 0 bs

0 0 A |Tyc

C1 b’{Tl Ci | 0
On this redization perform ancother state space basis transformation with
matrix

T =

O O M~
o~ O
~N O M~

to obtain
Al bl C2 0 T; C;
0 4 0 b
0 0 A |T5e |’
C1 b’{Tl 0 I 0
which is equivaent to

Ay b [Tic
0 Ay bo
C1 b’{Tl I 0

transformation

It was noted before that the co-degree of a rational probability density function is at
least two. Therefore the product of two such probability density functions has co-degree
at least four. Hence for a random variable whose density is given by such a product at
least the first and second moments exist. This will be used in the next section to show the

existence of a conditiona mean and variance.

12



5.3 Convolution of probability densities

We now come to determine a state space formulation for the convolution of two probability
densities. Recal that if X and Y ae two random variables with rational probability
densities px and py, then the probability density of X + Y is given by the convolution
PX* PY-

Let p; and pa be two unnormalized rational probability functions with corresponding
spectra summands Zy; and Z,. Let (A;, bj,c;) be a redization of Z; j = 1,2. Let for
j = 1121

A.
+ . C-.;jiT ij T 2 0,
mJ (T) ’ { 0 T <O,
bte~™ict <0,
- — M J
m; (r): { 0 r>0

Then (Fml)(iw) = Z;(iw), (Fm7)(iw) = Z;(iw), w € iR and
oo . -1 o0 ' . .

(o1 + pa) (iw) = [&* p1 (iw = )py (iv) dv = 3 (.F /m p1(iw — w)pz(w)du>

= F ((Fo)(F ) (w) = F (F7H@1 + 2)(F (2 + 23)) (i)

= F (mf + mI)(mf +m7)) Gw) = F (mfmi +mim;) (iw)

= F(mimy)(iw) + F(mymy)(iw).
It follows that the spectral summand Z of p; # p2 is given by Z(iw) = F(mim3)(w).

In the following Proposition we are going to give the state space formulae for the product

of the impulse responses of two single-input single-output state space systems. This will

be the key step to determine a state-space redization for the convolution of two rationa
probability density functions.

Proposition 5.2 Let mj’(r) = ¢;e™ib; for T > 0, and m;'('r) = 0 for 7 < 0, where
(Aj, bj, cj) is an nj-dimensional single-input single-output system, j = 1,2. Then

mt(r) = mimi(), 20
has a realization m™*(7) = ce”™b for 7 > 0 and m*(r) =0 for 7 <0, where
A=A1Q In, + In; ® A,
b= b ® by,
c=1¢ Q Cs.

(Here ® denotes the Kronecker product.)
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Proof: This follows immediately from basic rules on the Kronecker product (see e.g. [6]),
since for 72 0

m+(7') = ce™b = (Cl ® Cz)eT(Al ®lng+Iny ®A2)(b1 ® bg)
= (a @ c2)(e™ ® e™2)(b1 @ by) = c1e™1b) @ coe™2by = cre™1 by coe™2by

= mif (r)m3 ().

The Proposition is of interest in its own right, as it alows one to find state space

formulas for products of impulse response functions.
Summarizing we have the following result.

Proposition 5.3 Let p; and p; be unnormalized rational probability densities whose spec-
tral summands Z; and Z; have the n; dimensional and n; dimensional state space realiza-

tions (A1, b1, ¢1) and (Ag, b, ¢2). Then the density summand Z of the convolution p = p; *p2
has the state space realization

A1®In2+Inl®A2 |b1®bg
: 1)
1 ®c | 0
Proof: Suppose Z has redlisation 1. Then the inverse Fourier transform of Z is mimyg,
showing that Z is the spectra summand of p. o

Note that the state space dimension of this redlisation is nyns, which implies that the
McMillan degree of Z is at most n3ng.

6 State space expressions for the filtering equations

We are now in a position to derive state space expressions for the unnormalized conditional
densities in the filter equations which were discussed in the introduction.

Theorem 6.1 Assume the notation and assumptions for the filtering problem as presented
in the introduction.

Let t > 0 and let (Az,,_, , bzy,_, , sz_l) be ¢ ng, -dimensional state space realization
of the density summand of the unnormalized conditional density pg, |y,_,- For t = 0, set
Pze Vo1 ‘= Pz, the density of the initid state zo. Let (A, by, cp,) be a ny,-dimensional
state space realization of the density summand of the unnormalized rational density pp, of the
noise random variable 7; and let (A,,, b, ¢, ) be a ne, -dimensional state space realization of
the density summand of the unnormalized rationa density pe, of the noise random variable
Et,t>0.

Let T3 be the unique solution to the equation

1 .
(EAE: + ZytI)Tl + Tleglg—l + bét cIc|t—1 =0
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and let T be the unique solution to the equation
1 .
Axtlt—lTZ + T2(E;A6z + 1Yt) + bztlt—lceﬁ =0

Then the density summand of the unnormalized density p,, |y, has state space realization

1 4= : * * .k
A, by h_tAEt - ZytI Ce; Cryje—1 T2 c=Et|t—1
c = 6t = _ 0 A'—’?c[:—l bxt[t—l
T
e b, i | O

The density summand of pg,,, . has state space redization

¢t+1[z ' b3c+11z )
C7-'t+1[t l 0

. < ftA:z:m ® Inm + Inzm ® ATIt | b$e|t ® b"lt
czt[t by C"Jt | 0

)7 ifft>07

( ft zt]t n"t + In ¢t ® Anﬁ | c;t!g ® b"lt

, if fe <0.
ztlt ® c’n l 0 )

Proof: Since by assumption h; > 0, the density summand of the density g(z) = pe, (y:—ht),
z € R, has the redlization

( EAL -l | e, )
b |0

Pz; |V (:L') = Pet (yt - hiz)pq, Iy:—1(x)’
z € R, by Proposition 5.1 the density summand of p has the redlization

As

1 4= : * K
TL:AGt - zytI cﬁtcztlt—l T Itlt 1
0 Aztlt—l b-'”tlt—l ’
L 7%
h_gbft cEng \ 0

where Tj is the unique solution to the equation
1 . * 1 .
(E;A:t - WD)+ TlAzt]t—1 + bezCItlt—l = (h,_tAE‘ + 1ytI)T1+T1Az‘l‘—1+b‘tc‘”tlt-1=0
and T, is the unique solution to the equation

Az T2 + Tz( Ag, e l)* + bzy,_y ceo = Agy, To + Tz( As, +iyd) +b

Ze|t— 1Ce = 0.
To obtain a state space formula for the prediction step

Pzyi1 1 Vi = Peze Vi Pt

we use Proposition 5.3. We need to introduce two cases depending on the sign of fi. If
ft > 0 the density summand of py,z, | 3, has the redization

(ftAI:c bmet )
Cayyg 0
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If fi < O the density summand of pf,q, | y, has the redization

_ftA;m l c;m
w0 )

Te|e

The remaining parts of the result now follow by Proposition 5.3. a

As the formulae that use Kronecker products show, the dimensions of the state space
representation can potentially grow very fast as the number of data points increases. If,
however, the density summand corresponding to #; only has McMillan degree 1, i.e. m; has
Cauchy didtribution, then the Kronecker products reduce to standard multiplication and
the prediction step does not lead to an increase in dimension. Also, if the density summand
corresponding to ¢ has McMillan degree 1, i.e. ¢ has Cauchy distribution, then the matrix
equations can be solved explicitly to give

1 , N
Ty - ‘becczclz-—l ((EA& « )l Aztlt—l)

1 . -1
T = - (h—t(AEt +iye+ 1)+ Azm-1> by, Cer

Note that the inverse exists, since Awm_1 has al eigenvalues in the open left half plane and
,}—LAE, + iy has negative real part, because of the stability of A, and since h: > 0.

From the remark after Proposition 5.1 it follows that the conditional mean E(z:Y:) and
the corresponding conditional variance E ((z: = E(z:|Y:)? [):) exist and can be caculated
from the density summand realization (A,,,, , bs,, , ¢z, ) Using the formulas given in Theorem
4.1.

Note that prediction is aso possible using the formulas presented here. For example the
unnormalized rational conditional probability density of the output variable a time ¢t + 1
given the observations of the output until time ¢ is equal t0 Py, s, (Y) = Phygrz, s ¥ Peesas
and the spectral summand of this density can be calculated using the formulas of Section 5.

7 Conclusions

State space formulae have been developped for various operations on rationa density func-
tions, and it is shown how this can be used to treat the filtering problem in case of a first
order linear stochastic model with stochastically independent noise variables with rational
probability densities and stochastically independent initial state with rational probability
density. This makes such filters easy to program on present day computers, using eg. a
linear algebra package. If the number of observations is not very small, however, the order
of the conditional rational densities will tend to grow quickly. Therefore various schemes of
order reduction for positive rea functions may be of relevance in practical applications. The
formulae presented can also be used for further theoretical research in the behaviour of the
optima filter. It follows for example that the conditional mean of the present state given
present and past observations, is a rational function of the present and past observations,
which could be further investigated. The formula that is presented for redlization of the
product of impulse response functions appears to be important in its own right.
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