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ABSTRACT 

 
 

Of the considerable challenges researchers face in the control and elimination of 

malaria, the development of antimalarial drug resistance in parasite populations remains 

a significant hurdle to progress worldwide.  Atovaquone is used in combination with 

proguanil (Malarone) as an antimalarial treatment in uncomplicated malaria, but is 

rendered ineffective by the rapid development of atovaquone resistance during 

treatment. Previous studies have established that de novo mutant parasites confer 

resistance to atovaquone with a substitution in amino acid 268 in the cytochrome b 

gene encoded by the parasite mitochondrial genome, yet much is still unknown about 

how this resistance develops, and whether parasites are inherently predisposed to 

resistance development. Here we report phenotypic characterization of isolates from 

patients that failed treatment in the original atovaquone Phase II studies in Thailand by 

using a diverse series of chemotypes that target mitochondrial functions. We defined 

their structure-activity relationships and observed broad resistance (5-30,000 fold in 

atovaquone), suggesting that cytochrome b mutations alone are not sufficient to explain 

this spectrum of resistance.  We also report the first known in vitro selection that 

recapitulates the clinical Y268S mutation using the TM90-C2A genetic background, the 

pre-treatment parent for TM90-C2B. Selection of the Y268S mutation in TM90-C2A and 

others indicates that the parasite genetic background is critical in the selection of clinical 

atovaquone resistance, since selection attempts in multiple other genetic backgrounds 



	

	 ix 

results in mutations at positions other than amino acid 268. We implicate mitochondrial 

heteroplasmy in the development of sporadic, rapid resistance to atovaquone, where 

pre-existing low-level mutations in the multi-copy mitochondrial DNA can be quickly 

selected for in parasite populations.  High-coverage mitochondrial deep-sequencing 

data showed that low-level Y268S mutants were present in admission parasites from 

the atovaquone Phase II clinical trials in Thailand, and recrudescent parasites either 

maintained high level Y268S mutation frequencies or gradually returned to cryptic 

Y268S levels. The phenomenon of gradual heteroplasmic conversion back to wild-type 

was noted in some ex vivo patient isolated parasites as well as some in vitro selected 

lines, which suggests that other factors are at play that influence heteroplasmy stability. 

In addition to mitochondrial heteroplasmy, the total mtDNA copy number is likely 

influencing phenotypes in a gene dose-dependent fashion. Further, pressure on the 

DHODH enzyme that results in DHODH copy number amplifications/mutations has 

been shown to influence mitochondrial heteroplasmy directly. Last, mitochondrial 

diversity was shown to be vastly underestimated without heteroplasmic loci being taken 

into account, as seen in the re-analysis of the Pf3K MalariaGEN genome dataset we 

performed. The complex interactions between these drug resistance mechanisms 

reveal the phenotypic and genotypic plasticity that the Plasmodium falciparum parasite 

utilizes are a clear fitness advantage in the face of mitochondrial stress, and further 

studies are required to determine the impact of this wide-ranging phenotype on the 

development of new mitochondria-targeted drugs. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Malaria: An Ancient and Persisting Global Health Problem  

Malaria remains a significant pathogen in the modern world, retaining its foothold 

that predates the evolutionary divergence of Homo sapiens, and has resulted in more 

deaths than any other infectious disease. Some estimate that half of all the people who 

ever lived were killed by this ancient pathogen [1, 2]. The evolutionary race between the 

Plasmodium species and humans can be seen in our genetic imprints, as evidenced by 

the Plasmodium-protective human adaptations such as sickle cell anemia, thalassemia, 

the altered red blood cell surface antigen expression in the case of P. falciparum 

erythrocytic membrane protein (PfEMP1), and erythrocytes that lack the Duffy antigen 

[3-5].   

The malarial fever has been described by human societies as early as the fourth 

century B.C. that was attributed to spending time in swamps [6]. The gasses rising out 

of swamps, or miasmatas, were the original suspect of the cause of the intermittent 

malarial fevers known as ‘rigors.’ The word malaria translates directly from these early 

assumptions in Italian to mean ‘bad air.’ Today, malaria continues to cause substantial 

morbidity and mortality in South America, Africa, and Asia, caused by the obligate 

intracellular protozoan parasites of the Plasmodium genus. While there are six malaria 

parasites known to infect man (P. falciparum, P. vivax, P. malariae, P. ovale curtisi, P. 
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ovale wallikeri, P. cynomolgi, and P. knowlesi), these represent a minority of the over 

200 known species that infect diverse vertebrate hosts, such as other mammals, birds, 

and lizards [7, 8].  

 Roughly half the world’s population, or 3.3 billion people, is at risk of getting 

malaria. In 2015, there were an estimated 214 million cases of malaria (range 149-303 

million), and 306,000 deaths, with 78% of deaths being in children under 5 years old.  

About 90% of all deaths occur in Africa, and malaria is the fourth leading cause of death 

among children which accounts for 10% of child deaths [9]. The regions of endemicity 

are shown in Figure 1.1 [10].  

 

 

  

 

 

 

Figure 1.1. Worldwide Map of Malaria Endemic Regions, World Health Organization, 
World Malaria Report 2014 [10]. Countries with ongoing transmission of malaria in 
2013, where Africa contains 90% of worldwide cases, and Central and South America 
and Southeast Asia experiencing lower malaria incidence. 
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P. falciparum is dominant in Africa, and is by far more deadly. P. vivax is capable 

of developing in the Anopheles mosquito at lower temperatures and climates, as well as 

higher altitudes, which gives it a wider geographic range than P. falciparum. The burden 

of malaria disproportionately affects the poorest countries in the world, which have the 

highest risk of malaria and the least access to healthcare [9].  

 

Discovery and Historical Overview 

In the nineteenth century, it was suggested by Tomasi-Crudeli that malaria was 

caused by a bacterium, hence named Bacillus malariae. Johann Meckel first noted a 

sign indicating malaria infection in 1847 as a dark pigmentation present in the blood of 

malaria patients, now known as the refractive hemozoin pigment which is manufactured 

by the parasite and stored within the food vacuole. At this time, this pigmentation was 

incorrectly described as being produced by the body in response to malaria infection, 

not made by the parasite itself. Nearly 40 years later, Charles Laveran, a physician of 

the French Army, was credited with the discovery of the malaria parasite while seeing 

pigment in the spleens and erythrocytes of infected patients [11]. At about the same 

time as Laveran, a Russian physician named Vassily Danilewsky identified similar 

protozoan parasites in blood samples of both birds and reptiles [12]. With the 

development of the ability to stain the parasites within red blood cells with an eosin-

based stain developed by Romanowsky in 1891, study of the malaria parasite was 

revolutionized because prior to that, full visualization of the parasite was not possible. In 

1897, MacCallum was credited with observing the exflagellation of gametocytes into 

microgametes and ensuing macrogamete fertilization resulting in the formation of an 
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ookinete from the closely related haemoproteus parasite that infected the blood cells of 

crows [13].   

Following this discovery, Laveran and Manson were the first to suggest that 

mosquitoes transmitted malaria, coming from evidence that mosquitos transmitted 

filarial worms as well. Upon Manson’s suggestions, Ronald Ross, an army surgeon, 

carried out transmission experiments with Plasmodium relictum to demonstrate that the 

avian Plasmodium could be transmitted to chickens from mosquitoes. He observed 

rupture of parasites from the red blood cells, fertilization and development of the midgut 

oocyst wall, and sporozoites in the salivary glands of the mosquito. He then confirmed 

parallel results in humans, completing the life cycle of the Plasmodium parasite.  In 

1948, the liver was discovered to be the primary tissue tropism of asexual replication 

before release into circulation by Shortt and Garnham [11]. Nearly 100 years were 

required to elucidate the Plasmodium life cycle, which shows how far the malaria 

scientific community has come in the years following these discoveries.   

 

Plasmodium Life Cycle 

The life cycle of Plasmodium falciparum is shown in Figure 1.2 [14]. The life cycle 

is comprised of morphological forms that exist in the definitive host (female Anopheles 

spp.) in which the sporogonic cycle occurs, and in the human intermediate host where 

asexual reproduction in the liver hepatocytes occurs, followed by erythrocytic 

schizogony.  
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Figure 1.2. Malaria Life Cycle in Mosquito and Human Hosts, from Bousema et al. 2014 
Nature Reviews Microbiology, 12(12): 833-40 [14]. Parasite densities at each 
successive stage are outlined in boxes. The transmission between mosquito and man 
represents a population bottleneck in the life cycle, where oocyst numbers per mosquito 
are low, typically > 5. Another bottleneck occurs at the gametocyte stage, where 
gametocytes represent > 1% of parasites per microliter (µL) of blood compared to 
asexual forms.  
 

Plasmodium in the Mosquito 

 Anopheles mosquitoes are the definitive host of Plasmodium spp., and 

approximately 30-40 species are capable of transmitting malaria [15]. Among those, 

several species stand out in their ability to efficiently transmit Plasmodium falciparum, 

which are Anopheles gambiae and Anopheles funestus. The geographic distribution of 

mosquito species worldwide can be seen in Figure 1.3 [16]. The typical mosquito life 

span is 7-14 days. When a female Anopheles mosquito takes a blood meal on an 
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infected human and ingests gametocytes, the cycle begins. Male gametocytes 

exflagellate and fertilize female gametocytes, which then forms the zygote. Zygotes 

achieve motility and elongate themselves, becoming ookinetes, at which point they 

invade the midgut wall of the mosquito, converting to an oocyst. As the oocysts release 

sporozoites, they then migrate to the salivary glands of the mosquito, ready to be 

injected through the proboscis of the mosquito during the next blood meal. The entire 

process of development in the definitive host takes from 10-18 days [16]. 

 

 

 

 

Figure 1.3. Global Distribution of Dominant Malaria Vectors, from Sinka et al. 2012, 
Parasites & Vectors, 5(1):69 [17]. This map was created using compiled occurrence 
data from 4800 sources to create this vector distribution which mapped the dominant 
Anopheles species. There were 34 dominant vectors worldwide, with the two most 
dominant species being Anopheles gambiae and Anopheles funestus.  
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Plasmodium in humans 

Once sporozoites have been injected into the skin of a human intermediate host 

by a female mosquito during a blood meal, approximately 100 sporozoites injected will 

begin to traverse through multiple cell types using gliding motility to reach circulation 

[18]. Once in circulation, the sporozoites eventually arrive at the liver, traversing liver 

sinusoidal epithelial cells and Kupffer cells, to eventually reside in hepatocytes during 

which they undergo multiple rounds of asexual replication. At this time, many rounds of 

asexual replication produce an estimated 30,000 merozoites produced per single 

sporozoite, and continues between 6-10 days [19].  

Merozoites are subsequently released from the liver, where the invasion of 

erythrocytes begins. Merozoites bind to the surface of the erythrocyte via surface 

receptor-ligand interactions of several merozoite surface proteins (MSP family), apical 

membrane antigen-1 (AMA-1), and the erythrocyte-binding antigen EBA-175. At the 

apical end of the merozoite, a tight junction is formed which the parasite begins to 

squeeze through, forming a parasitophorous vacuole [19]. At the completion of invasion, 

the fledgling parasite progresses through ring stage for approximately 24 hours, 

followed by trophozoite stage (hours 24-36) and finally schizont stage (hours 40-48) 

[20]. 

The stages have a rough representation to the standard cell cycle format seen in 

other cell types, where the merozoite exists in a G0 state, the main purpose being 

erythrocyte invasion. Once inside the erythrocyte, ring stage follows, which can be 

correlated to G1 of the cell cycle, where the preparation for DNA replication and 

stockpiling of molecule precursors and RNA levels increase [20]. The red blood cell is 
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remodeled by the ring stage parasite, which involves the breakdown of hemoglobin with 

the aid of the plasmepsins and falcipain families of proteases in the digestive vacuole, 

obtaining amino acids in the process [21]. The parasites also intake and sequester the 

glucose and hypoxanthine needed for synthesis of purines and glycolysis during this 

stage [22]. 

 Trophozoites represent the S phase during which DNA replication occurs. 

Further, the knob-associated proteins such as KARP and PfEMP1 are shuttled to the 

surface of the red blood cell, which function to bind to the lining of the smooth 

endothelial cells of the blood vessels via interactions with ICAM-1 and others to 

sequester the trophozoite and schizont stages. This sequestration event prevents the 

more mature stages from being removed from circulation via splenic clearance 

mechanisms [23]. The parasite utilizes antigenic variation to disguise the highly 

immunogenic PfEMP1 protein, which is known to have some 60 var genes that encode 

PfEMP1 variants [24]. 

The segmentation of DNA brings the schizont stage of development, which can 

segment into as many as 30 daughter merozoites. The schizont stage concludes after 

nuclear segmentation and when the mitochondria have segmented as well, coupling 

each daughter nuclei with a single mitochondria and plastid directly prior to cytokinesis 

[20]. The mature merozoites then rupture from the host cells collectively in a 

synchronized fashion within the host, ready to reinvade new erythrocytes. The 

asymptomatic incubation period (time between infection and clinical presentation of 

symptoms) of infection is typically 9-14 days for Plasmodium falciparum. A small 
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proportion of newly ruptured merozoites in circulation differentiate into male and female 

gametocytes, typically induced by high parasitemias. 

 

Clinical Signs, Symptoms, and Diagnosis 

Uncomplicated Malaria 

According to the World Health Organization, clinical presentation of 

uncomplicated malaria consists of fever, headache, chills, malaise, perspiration, 

abdominal discomfort, muscle and joint aches, anorexia, vomiting, and is diagnosed 

with an evaluation of patient blood smears looking for presence of parasites or a 

confirmation of infection using a rapid diagnostic test (RDT).  

The periodic fever is caused by Plasmodium infection and is a direct effect of the 

asexual stages of the life cycle. Schizont rupture of infected erythrocytes coincides with 

expulsion of red blood cell debris, hemozoin, and toxins directly into the blood stream, 

causing an inflammatory immunological response that spikes fever [25]. The length of 

time between periodic fevers is dependent on the length of the asexual cycle duration, 

which is species specific. A fever that occurs every 48 hours is consistent with infections 

of P. vivax, P. falciparum, P. cynomolgi and P. ovale. Fevers occurring every 72 hours 

are associated with P. malariae, and P. knowlesi has an incredibly short 24-hour 

periodicity. Figure 1.4 shows the comparisons of parasite asexual cycle duration 

between various mammalian Plasmodium species [26]. 
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Figure 1.4. Asexual Stage Durations of Plasmodium Species Coincide with Febrile 
Spikes in Humans, from Mideo et al. 2012, Trends in Parasitology, 29(1)  [26]. Circle 
size indicates the parasite cell cycle length in their mammalian hosts. Asterisks indicate 
rodent malaria species, and all others infect primates. Parasites underlined have non-24 
hour cycles. The diversity of mammalian Plasmodium intraerythrocytic cycle duration 
coincides with the periodicity of febrile spike seen in the mammalian host.  
 
 
 
Severe Malaria  

If left untreated, severe Plasmodium falciparum malaria can progress with severe 

anemia, respiratory distress, or cerebral malaria, which is most commonly seen in 

Plasmodium falciparum infection. Severe malaria is indicated in patients that experience 

organ failure, and is accompanied by a high mortality rate between 10-20% with 
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effective antimalarial treatment and supportive care, but approaches 100% when 

untreated [27]. Signs of severe malaria as indicated by the World Health Organization 

include both clinical and laboratory features. Clinical signs include impaired 

consciousness (coma), prostration, convulsions, respiratory distress, significant 

bleeding, shock, and pulmonary edema. Laboratory signs are severe anemia, 

hypoglycemia, jaundice, renal impairment, hemoglobinuria, metabolic acidosis, and 

hyperparasitemia.  

The majority of severe malaria cases are those of cerebral malaria caused by 

Plasmodium falciparum, which account for about 10% of hospitalizations, and 80% of 

malaria deaths. The definition of severe malaria is broad, and some symptoms are 

associated with lower mortality rates (severe anemia, for example) and others with 

subsequently higher mortality risk, such as metabolic acidosis. The risk of death 

magnifies with the presentation of multiple complications. Pregnant women in their 

second and third trimesters are more likely to have severe malaria than other adults, 

with a maternal mortality of 50%. Premature labor and fetal death are common 

outcomes [27]. 

 

Current Control and Eradication Efforts 

Malaria eradication is a goal to which the global malaria research community 

aspires, and renewed vigor comes in large part from the Bill and Melinda Gates 

Foundation, who classified several priority aims to march toward eradication in 2007. 

With their desire to fund projects in transmission blocking, chemoprotection, and new 

drug development, the landscape of malaria research has transformed. Several new 
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promising classes of drugs have been discovered because of massive collaborative 

efforts to speed up the malaria drug discovery pipeline. Malaria eradication is possible 

if: i) new drugs are consistently in development to combat resistance, ii) funding is 

maintained for the public health focus in malarious countries, iii) insecticides, larvicides 

and insecticide treated bed nets are used extensively, and iv) drugs for chemoprotection 

of vulnerable populations are administered. Many additional goals for eradication seem 

critical for success as well, such as the desire for a drug that can provide a single-dose 

radical cure (includes transmission blocking ability), which would eliminate the problem 

of patient compliance to finish drug regimens that last multiple days. Further, those that 

have long in vivo half-lives are attractive, since they would be incredibly beneficial to 

help patients stay protected longer post-treatment in high-transmission areas, who can 

be bitten by mosquitoes on a nightly basis. New chemopreventative drugs are also 

badly needed, since many drugs are unsafe for pregnant women, and the standard 

seasonally distributed sulfadoxine-pyrimethamine chemoprevention is experiencing 

failure due to resistance [28]. Chemoprotection has been an incredibly successful 

campaign in Africa, with monthly chemoprotection during the four months of seasonal 

malaria costing only US$0.60 per child [29].  

Prophylaxis 

Malaria can be prevented by taking causal prophylactic drugs that target liver 

stage parasites (e.g. malarone and primaquine), which means they only need to be 

taken while in malaria endemic areas of the world. Suppressive prophylactic drugs that 

singularly kill blood stages are a less convenient approach that requires treatment for at 

least four weeks after leaving an endemic area to clear any possible parasites emerging 
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from the liver into circulation. Several prophylactic drugs are indicated for non-immune 

travelers to malaria endemic areas of the world by the Centers for Disease Control and 

Prevention [30], which are atovaquone/proguanil (Malarone®), chloroquine, 

doxycycline, mefloquine, and primaquine. Malarone, doxycycline and primaquine are 

contraindicated for pregnant women. Chloroquine and mefloquine have widespread 

resistance, reducing their efficacy. Finally, doxycycline, mefloquine and primaquine are 

all known to have serious side effects, with primaquine possibly causing life-threatening 

hemolysis in people with glucose-6-phosphatase dehydrogenase deficiency (G6PD), 

and mefloquine causing severe psychiatric events [30]. 

Intermittent preventative treatment (IPT) is used in endemic areas of Africa for 

women in their first or second pregnancy, given once a month in the form of 

sulfadoxine/pyrimethamine tablets (SP). SP administration during pregnancy was 

shown to increase mean birth weight by about 56 grams, reduced low-birth weight 

infants by 20%, lower placental parasitemias by 50%, and maternal parasitemias by 

33%. Infants under one year of age in moderate-to-high transmission areas of Africa are 

recommended to receive SP along with standard vaccination schedules, which provides 

protection for approximately 35 days following administration. Administration was shown 

to have overall 30% protection in the first year of life, 21.3% protection against anemia, 

and 22.9% protection in malaria related hospitalization. Children under the age of six 

years of age in regions with seasonal transmission are recommended to receive 

amodiaquine + SP monthly during transmission season. Trials indicated that 

administration prevented 75% of malaria episodes [27]. 
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Treatment 

Uncomplicated malaria.  Currently for the treatment of uncomplicated malaria, 

the front line therapy is an ACT, or artemisinin combination therapy. The five ACTs with 

recommended dosing in mg/kg (milligrams per kilogram) of body weight per day 

recommended by the World Health Organization are: artemether + lumefantrine (5-24 

mg/kg, 29-144 mg/kg, 2x daily for 3 days), artesunate + amodiaquine (2-10 mg/kg, 7.5-

15 mg/kg, 1x daily for 3 days), artesunate + mefloquine (2-10 mg/kg, 5-11 mg/kg, 1x 

daily for 3 days), artesunate + SP (2-10 mg/kg 1x daily for 3 days, 25-70 mg/kg + 1.25-

3.5 mg/kg single administration on day 1), and dihydroartemisinin + piperaquine (2-10 

mg/kg, 16-27 mg/kg 1x daily for 3 days). In the first trimester of pregnancy, women are 

treated with 7 days of quinine + clindamycin, and women in the second and third 

trimester are given standard ACT treatment.  

These combinations of drugs were chosen to pair a short acting, but potent 

artemisinin derivative, with a long half-life drug. These combinations are all 

recommended for three days of treatment [27]. Unfortunately, ACTs have begun to fail 

clinically, and longer courses of treatment or new partner medicines (e.g. artesunate + 

pyronaridine) are being evaluated. Single dose primaquine is strongly recommended as 

an addition to treatment regimens in areas with established artemisinin resistance. In 

low transmission settings, an additional recommendation of a single dose of primaquine 

(0.25 mg base/kg of body weight) is used to reduce transmission as part of a pre-

elimination or elimination program. This dose is unlikely to cause significant 

complications regardless of G6PD status, therefore requires no G6PD testing, and is 

aimed at acting as a gametocytocide.  
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 Recommendations for P. ovale, P. vivax, P. malariae, or P. knowlesi have the 

same recommendations of ACT treatment, with the exception of artesunate + SP, where 

resistance to SP compromises the efficacy significantly. To prevent relapse of infection 

from dormant liver hypnozoites with P. vivax and P. ovale, an additional 

recommendation is to give a 14-day course of primaquine in G6PD normal individuals 

(0.25-0.5 mg/kg body weight per day). The rate of relapse in P. vivax infections varies 

geographically, between 8-80%, making the administration of primaquine of vital 

importance in the overall treatment regimen of P. vivax [27].  

Severe malaria. For the treatment of severe malaria, adults, children, and 

pregnant women are given either intravenous of intramuscular artesunate for at least 24 

hours until they are able to tolerate oral medication, at which point a complete three-day 

course of an ACT is given, with added single dose primaquine in areas of low 

transmission. Children weighing less than 20 kg are recommended to receive a higher 

parenteral dose of artesunate (3 mg/kg/dose) compared with larger children or adults 

(2.4 mg/kg/dose) to optimize optimal drug exposure. With severe malaria cases in 

regions where artemisinin resistance has been established, parenteral artesunate and 

quinine are to be given together in full doses. Substantial supportive care is required in 

instances of severe malaria, and treatment is dependent on the complications that 

present themselves [27]. 

Vaccines   

If malaria is to be eliminated around the world, an effective vaccine will likely 

have to be part of a successful elimination effort. Significant progress has been made in 

the development of vaccines in recent years, with three candidate vaccines in Phase 2B 



	

	 16 

clinical trials, one that has recently completed Phase III clinical trials, and 25 potential 

total projects in development [31]. There are several challenges to the development of a 

malaria vaccine capable of providing sterilizing immunity to patients, many of which are 

a result of the highly-adapted evasive responses the parasite utilizes to conceal itself 

from host immune responses. First, malaria is unlike many other infectious diseases 

that have successful vaccines; people who get malaria do not acquire immunity from the 

disease after infection and recovery. While in many instances, the severity of disease is 

lessened by previous exposures to the malaria parasite, this partial immunity is not 

completely protective. Second, there are ten different transitions in morphology 

throughout the two host life cycle that are present in five different tissue types, making 

the development of a single vaccine capable of inhibiting all the parasitic forms difficult. 

However, hope for an efficacious vaccine is seen in studies with mice that show sterile 

protective immunity after being introduced to attenuated sporozoite injections of P. 

berghei [32, 33].   

Therefore, a perfect malaria vaccine would accomplish three key goals: generate 

a robust immune response to multiple stages in Plasmodium development, overcome 

antigenic variation, and induce both cell-mediated and humoral immune responses in 

the host. There are three main types of vaccine approaches being attempted that focus 

on different stages of Plasmodium development: transmission-blocking vaccines, pre-

erythrocytic vaccines, and blood stage vaccines. Figure 1.5 shows where each vaccine 

type attempts to intervene in the Plasmodium life cycle [34].  
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Figure 1.5. Vaccines Strategies Attempt to Interrupt the Plasmodium Life Cycle, from 
Arama et al. 2014, Journal of Internal Medicine, 275(5): 456-66 [34]. Target sites of the 
malaria life cycle that have vaccine potential, which occur at population bottlenecks. The 
three vaccine strategies are shown in blue circles: transmission blocking vaccines, 
blood-stage vaccines, and pre-erythrocytic vaccines.  
 
 
 
 
 

Transmission-blocking Vaccines. Transmission-blocking vaccines are 

designed to train the host immune response to develop antibodies against antigens 

present on gametes, zygotes, and ookinetes, which would prevent the ookinete-oocyst 
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transformation. This strategy subsequently prevents the formation of viable sporozoites. 

While this strategy does not prevent humans from getting malaria, it does prevent the 

infected individual from transmitting malaria to others, therefore providing protection to 

the community. The vaccine furthest in development for transmission blocking is 

Pfs25/Pfs28, which is in Phase I trials. The Pfs25/Pfs28 vaccine uses a nanoparticle 

delivery technique to target the P. falciparum ookinete surface antigens Pfs25 and 

Pfs28, as well as the P. vivax homologues of those antigens [34].  

Pre-erythrocytic Vaccines. The pre-erythrocytic vaccine strategy targets the 

liver stage to prevent malaria in the human host, and occurs at a biological choke point 

in parasite development that would disrupt the Plasmodium life cycle before the parasite 

could propagate in circulation. Pre-erythrocytic vaccines include those using attenuated 

sporozoite preparations, as well as truncated circumsporozoite protein (CSp). The most 

developed vaccine in this category is Glaxo-Smith Kline’s RTS,S vaccine, which had 

Phase III clinical trial results released in 2014. The RTS,S vaccine, known commercially 

as Mosquirix®, utilizes a formulation of CSp that is fused to the highly immunogenic 

hepatitis B surface antigen. The mechanism of protection in this vaccine is not well 

understood, but it is proposed to reduce the parasite load of newly emerged merozoites, 

which may in turn provide time for the immune system to obtain naturally acquired 

immunity against blood stages. RTS,S showed modest protection in children first 

vaccinated between 5-17 months old with 36% protection against clinical malaria, and 

32% protection against severe malaria. In the younger age group that received the first 

vaccination at 6-12 weeks of age, there was an overall 26% protection against clinical 

malaria, but no protection against severe malaria over the course of the 38-month study 
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[35]. The World Health Organization is set to review what, if any, policy 

recommendations will be made regarding implementation of this vaccine, and will be 

released as early as 2015. The PfSPZ vaccine candidate, another promising pre-

erythrocytic vaccine manufactured by Sanaria, induces immunity using P. falciparum 

sporozoites in various preparations. The advantage with this approach is that no target 

has to be identified, and allows a complete immune response to develop in the host. 

The PfSPZ vaccine has been shown to provide complete protection against a controlled 

human malaria infection when 6.75 x 105 sporozoites were given by IV injection [36].  

The vaccine has several additional trials planned for 2015-2016, with objectives aimed 

at testing the vaccine in elderly and HIV positive groups, as well as malaria-exposed 

and malaria-naïve subjects 6 months and older [35].   

Because the use of irradiated sporozoites has the risk of potential malaria 

infection if batches of sporozoites are improperly irradiated, the use of genetically 

attenuated sporozoites for vaccination are increasingly attractive options [37]. Another 

alternative uses wild-type sporozoites co-administered with azithromycin, which has 

shown superior protection compared to the irradiated sporozoite preparation. Major 

challenges still face this approach, since the large-scale production of sporozoites 

(either irradiated, genetically attenuated, or wild-type preparations) will be costly and 

labor intensive, since mosquito rearing and dissection is required to obtain sporozoites. 

Further, direct venous inoculation is required, so obtaining large amounts of safe, 

sterile, and stable sporozoites will be a necessity to bring this vaccine through clinical 

trials and into the global malaria eradication arsenal.  
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Blood Stage Vaccines. Blood stage vaccines attempt to intervene in the malaria 

cycle by blocking merozoites from erythrocyte invasion. There are several blood stage 

erythrocyte surface antigens that are being evaluated as potential vaccine candidates in 

clinical trials: AMA1, EBA-175, MSP1, MSP2, MSP3, GLURP, and SERA5 [38-44].   

Other vaccine candidates of this type that show particularly promising 

immunogenicity include the rhoptry-associated leucine zipper-like protein 1 (RALP1), 

and the Pf reticulocyte-binding protein homologue 5 (PfRH5) [34]. In order for surface 

antigen-based vaccines to be a realistic option, researchers will have to address the 

polymorphic nature of these antigens and overcome the challenges that genetic 

diversity presents to vaccine efficacy. Studies on AMA1 and MSP1 demonstrated lack 

of efficacy in African parasite populations, which shows the need to diversify this 

vaccine strategy for ‘vaccine resistant’ malaria [41]. Addressing these hurtles will likely 

involve the combination of multiple antigens to develop an additive or synergistic 

immune response. 

Vector Control 

  The goal of vector control is to reduce transmission of infection from the 

mosquito to human, and from human to mosquito.  Historically, vector control is the 

most effective weapon against malaria; countries that succeeded in malaria elimination 

achieved it largely with the power of larvicides and pesticides such as Paris Green and 

DDT (dichlorodiphenyltrichloroethane), although systematically eliminating standing 

water sources where female mosquitoes lay eggs proved critical as well [45, 46]. The 

primary method of vector control is the widespread use of insecticide-treated mosquito 

nets (ITNs) and indoor residual spraying (IRS). These two interventions combined 
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represent nearly 60% of global funding toward malaria control, with approximately 300 

million long-lasting insecticidal nets (LLINs) distributed in Africa between 2008-2010 

alone. Further, approximately 185 million people were protected by IRS in Africa in 

2010, indicating that aggressive vector control efforts are making a substantial impact in 

these endemic areas [47]. 

  While the use of larvicides and pesticides had a very successful campaign 

against malaria, their potential toxicity became a serious global concern. DDT use was 

largely discontinued after being classified as a persistent organic pollutant in the 2001 

Stockholm Convention based on concerns that chemical residues of DDT are stored in 

fat deposits and vital organs, as well as ecological concerns of the harm to wildlife. In 

spite of the concerns related to DDT use and the development of DDT resistance, in 

2006 the World Health Organization continued to recommend the use of DDT in regions 

of the world where the mosquito remains DDT-susceptible [48].   

 Insecticide-treated Nets. The use of ITNs was based on the suggestion of 

Ronald Ross in 1910 when he thought nets would provide a physical barrier between 

the nighttime feeding behaviors of mosquitoes and sleeping humans to reduce malaria 

transmission. Today, ITNs are used to not only create that physical barrier that Ross 

described, but also to kill the mosquitoes that come to rest on the insecticide-

impregnated nets. Pyrethroids are the insecticides of choice for use on bed nets, 

chosen for their comparatively low toxicity to humans and long-lasting residual activity.  

In comparison with conventional untreated nets, ITNs are twice as effective in malaria 

prevention [49].  Net washing and lack of retreatment every six months compromise ITN 

efficacy; long-lasting insecticidal nets (LLINs) have largely replaced them. LLINs are 
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typically polyester nets that have insecticide resin bound to the fibers, or 

polyethylene/polypropylene that incorporate insecticide into the fibers directly. These 

can withstand repeated washing (> 20) and last several years. When compared directly 

in tests of mosquito mortality, LLINs were able to kill > 80% of mosquitoes that landed 

on them after up to 20 hand washes, in comparison to a conventionally treated ITN, 

which only had comparable mortality for three washes [50]. LLINs have shown strong 

reductions in mosquito densities, with a demonstrated 79% reduction in A. gambiae and 

38% in A. arabiensis in studies in Tanzania. In Kenya, reports show 40-48% reductions 

in children under six, and 78% reduction in all age groups in Zanzibar [48]. The World 

Health Organization gives full recommendations for the use of Duranet® (alpha-

cypermethrin incorporated into polyethylene), Interceptor® (alpha-cypermethrin 

incorporated into polyethylene), MAGNet® (alpha-cypermethrin incorporated into 

polyethylene), Olyset Net® (permethrin incorporated into polyethylene), PermaNet® 2.0 

(deltamethrin coated on polyester), Royal Sentry® (alpha-cypermethrin incorporated 

into polyethylene) and Yorkool® LN (deltamethrin coated on polyester) although there 

are several others that only have interim recommendations as well [51]. 

 Indoor Residual Spraying. IRS refers to the application of long-lasting 

insecticide residue to interior walls of domestic structures with the intention of vector 

contact with residual insecticide. When a female mosquito is seeking a blood meal, she 

often exhibits endophilic (indoor resting) behaviors, and tends to reside on walls and 

ceilings of homes in her search.  When the mosquito lands on surfaces covered with 

residual insecticide, it absorbs the lethal insecticide, killing the mosquito and therefore 

reducing the transmission of malaria. This type of control method is dependent on the 
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majority (over 85%) of dwellings to have received residual spraying, otherwise there is 

minimal protection obtained for an individual home. According to the World Health 

Organization, IRS is appropriate in regions where the vector i) primarily feeds and rests 

indoors, ii) are insecticide susceptible, iii) have a malaria transmission pattern that can 

be covered by one or two IRS applications per year, iv) have structures that suit 

spraying adequately, and v) have dwellings that are condensed in an appropriately 

small area. The WHO-recommended insecticides for IRS against malaria vectors based 

on human safety and efficacy, and include the following chemical classes: carbamates 

(bendiocarb, propoxur), organochlorines (DDT), organophosphates (malathion, 

fenitrothion, pirimiphos-methyl), and the pyrethroids (alpha-cypermethrin, deltamethrin, 

lambda-cyhalothrin, etofenprox, bifenthrin, cyfluthrin) [47].  

 

Historical Antimalarial Drugs and Resistance 

Quinoline-containing antimalarials are the foundation of the historical fight 

against malaria, and are suspected to disrupt hemoglobin digestion in the erythrocytic 

stage of parasite development. As the parasite degrades hemoglobin within the food 

vacuole, byproducts in the form of reactive oxygen radicals and free heme, both of 

which are rendered inert by the parasite via heme polymerization and antioxidant 

mechanisms, respectively. The quinoline-containing antimalarials can be separated into 

three main groups: the arylamino alcohols (quinine, mefloquine, halofantrine, 

lumefantrine), 4-aminoquinolines (chloroquine, amodiaquine, piperaquine), Mannich 

bases (pyronaridine) and the 8-aminoquinolines (primaquine). 
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Arylamino Alcohols 

Quinine. The first of the quinolone antimalarials was quinine, isolated from the 

chinchona tree, a South American native. The chinchona tree was given its name 

according to the legend of the Countess of Chinchon, who was cured of malaria in 1630 

using the crude powdered bark of the “fever tree.” This crude preparation was 

distributed throughout Europe in the 17th century brought by Jesuits and the isolation of 

quinine came from Pelletier and Caventou in 1820; the synthesis of quinine was not 

established until 1944 by Woodward and von Doering [52]. The complexity of quinine 

synthesis prevented commercial production. Following WWII, quinine was widely 

discontinued in favor of chloroquine and pyrimethamine for routine malaria treatment 

and prophylaxis due to toxicity concerns, despite the fact that it is still used today for 

multi-drug resistant malaria infections and severe malaria in situations where an ACT is 

unavailable. The side effects of quinine are observed in nearly all patients, and are 

collectively known as chinchonism (hearing impairment, nausea, headache, blurred 

vision, tinnitus, and dysphoria).  Because quinine use was not used continuously to treat 

malaria, resistance to quinine developed slowly [53-57]. Resistance was first reported in 

Brazil, soon after in Southeast Asia, and is linked to polymorphisms in several 

transporter genes, including pfmdr1, pfcrt, pfmrp1, and possibly even pfnhe1, a sodium 

proton exchanger [58]. Pfmdr1, a multidrug resistance gene that encodes the 

Plasmodium P-glycoprotein homolog, is implicated in the development of drug 

resistance for several antimalarials. The function of PfMDR1 is not known, but it is 

thought to act as a drug transporter; the protein localizes to the digestive vacuole 

membrane [59]. As a whole, changes in pfmdr sequence or copy number modify the 
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transport of several drugs, with polymorphisms that mediate opposite effects on 

different drugs. Additionally, pfmdr gene amplification has been shown to decrease 

sensitivity to quinine [60]. In allelic exchange experiments with pfnhe1, some strains, but 

not all were shown to return some quinine sensitivity [58]. The Plasmodium falciparum 

multidrug resistance protein-1 (PfMRP1) is an ABC transporter that has developed 

mutations conferring resistance to both quinine and chloroquine [61]. 

Mefloquine.  Mefloquine is post-WWII era antimalarial developed at the Walter 

Reed Army Institute of Research, which was developed along with many other structural 

analogs of quinine in response to challenges with malaria during the Vietnam war and 

began therapeutic use in 1985. Mefloquine shows activity in chloroquine-resistant 

parasites, and has been used extensively despite severe neuropsychiatric side effects, 

including depression, panic attacks, insomnia, hallucinations, anxiety, and suicidal 

ideation. Mefloquine was used for nearly 40 years, particularly on chloroquine-resistant 

populations, but has decreased in recent years because of resistance and serious side 

effects [62]. Mefloquine was used extensively in Asia, and resistance developed 

accordingly. Because of the widespread development of mefloquine resistance, it is 

given only as part of an ACT in combination with artesunate.  

Lumefantrine.  Lumefantrine was developed by the Chinese in the 1970’s at the 

Academy of Military Sciences, and is structurally related to halofantrine, but slightly less 

effective. Absorption is varied with this very lipophilic drug, and approaches consistency 

when taken with a fatty meal. Lumefantrine separates itself from halofantrine with a lack 

of cardiac complications, and has shown synergism with artemether, of which it is 

currently used in combination. The ACT combination artemether-lumefantrine is known 



	

	 26 

to select for the N86 and D1246 wild type alleles in the pfmdr1 gene, causing modest 

increases in sensitivity to chloroquine and amodiaquine [63].  

Mechanism of Action/Resistance to Arylamino Alcohols. The mechanism of 

action for the arylamino alcohols is not precisely known but it is thought to be distinct 

from the 4-aminoquinolines. The arylamino alcohols are presumed to work in an 

antagonistic fashion to the 4-aminoquinolines by preventing Ca2+ release, which would 

subsequently shut down vesicle-digestive vacuole fusion needed to transport 

hemoglobin [64]. More is known about the mechanism of resistance to the arylamino 

alcohols, but is still a matter of serious debate. PfMDR1, a membrane transport protein 

analog of ABC multidrug resistance transporters in mammals, contributes to parasite 

resistance in the arylamino alcohols quinine, mefloquine, halofantrine and lumefantrine 

as well as chloroquine and artemisinin [65, 66]. An increase in wild-type pfmdr1 copies 

accompanies a 2-4 fold decreased susceptibility to these compounds, and shows a 

positive correlation with treatment failure risk for mefloquine monotherapy as well as 

mefloquine + artesunate combination therapy [60, 65-71].   

4-aminoquinolines 

Chloroquine. German scientists from Bayer laboratories who developed 

primaquine were also responsible for the development of an acridine derivative called 

quinacrine, also named atebrine and mepacrine. Allied scientists successfully 

synthesized quinacrine with the aid of german patent information, and quinacrine was 

distributed widely to allied forces in the Pacific, despite the characteristic yellowing of 

the skin that the drug caused. In the German surrender of Tunis in 1943, the allied 

forces obtained German research of a compound called resochin, a 4-aminoquinoline 
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that was renamed chloroquine (CQ), which is the single most successful antimalarial 

drug in the history of malaria [72]. Chloroquine is a safe and affordable dibasic 

compound that is known to accumulate significantly in the parasite’s food vacuole, 

killing with a mechanism of assisted-suicide, where the parasite can no longer 

sufficiently detoxify radicals and polymerize free heme, becoming a victim of its own 

waste products.  

Chloroquine remained effective until the 1960’s, when misuse/overuse of the 

drug contributed to the development of resistance independently in four different areas 

of the world, with the vast majority of field isolates being CQ-resistant today [73].  

Considerable blame for CQ resistance is shouldered by the inclusion of CQ in table salt, 

providing low-dose CQ that established suboptimal dosing environments for rapid CQ 

resistance to develop and spread [74].  In areas where CQ was abandoned, there have 

been indications of parasites returning to CQ-sensitivity [75]. The CQ treatment failure 

rate can be drastically reduced with twice per day administration by raising plasma 

levels, which retains activity against resistant parasites. However, this is complicated by 

the fact that the therapeutic window for CQ is quite narrow, with 10 mg/kg b.w. being 

therapeutic, 20 mg/kg being toxic, and 30 mg/kg being lethal [76]. 

The molecular mechanism of CQ resistance involves mutations in the 

chloroquine resistance transporter protein (PfCRT), which was identified by progeny 

analysis in a genetic cross between a CQ-resistant and sensitive strain [77, 78].  PfCRT 

is a membrane-embedded protein that resides in the membrane of the parasite food 

vacuole. All CQ-resistant parasites have the K76T mutation in the pfcrt gene, which is 

thought to allow CQ binding, therefore permitting CQ to be pumped out of the food 
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vacuole so that it cannot accumulate [79]. There are several other mutations that 

accompany K76T to restore viability to PfCRT’s native function and improve fitness, 

which may be used for small peptide/amino acid transport from the food vacuole to the 

cytoplasm [80]. The exact function of PfCRT is unknown, but it is essential, considering 

gene disruption attempts proved unsuccessful [81]. It is important to note that CQ-

resistant strains under pressure with halofantrine have resulted in a S163R pfcrt 

mutation that induces halofantrine resistance and restores CQ-sensitivity, presumably 

from the restoration of positive charge in PfCRT [82, 83]. This finding is in concurrence 

with the return of CQ-sensitivity using verapamil exposure [82, 83]. The K76T mutation 

confers resistance to both CQ and amodiaquine, and increased sensitivity to 

mefloquine, suggesting a reciprocal resistance/sensitivity relationship between CQ-like 

drugs and the arylamino alcohols, which is also seen in the pfmdr1 relationship as well 

[84]. 

Mutations at N86Y and D1246Y in the pfmdr1 gene accompany the K76T pfcrt 

mutation, and leads to the increased sensitivity with mefloquine, halofantrine, 

lumefantrine and dihydroartemisinin [65, 66]. Additionally, pfmdr1 mutations S1034C 

and N1042D occur in CQ-resistant strains of South American origin, all of which result 

in modest increased sensitivity to the arylamino alcohols [85]. It is thought that pfmdr1 

mutations in CQ-resistant parasites compensate for the decrease in fitness caused by 

mutations in pfcrt [86].   

Mutations in pfmrp1 have indicated reduced susceptibilities to chloroquine, 

mefloquine, pyronaridine and lumefantrine in parasites from Myanmar, yet it is unclear 

what role pfmrp1 has in resistance [87]. In genetic disruption experiments with pfmrp1, 
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reduced growth and increased CQ-sensitivity were observed, which suggests it plays a 

role in drug efflux that affects parasite fitness [88].   

 Amodiaquine (AQ). The chloroquine analog amodiaquine resulted from 

improved lipophilicity of the side chain via aromatic structure incorporation, and has 

been used for prophylaxis for about 60 years despite its low bioavailability and relatively 

high rate of treatment failures in Southeast Asia. Some cross-resistance occurs 

between AQ and CQ, which renders AQ only somewhat effective against CQ-resistant 

parasites. Rare but life-threatening side effects of hepatotoxicity and agranulocytosis 

resulted in amodiaquine being largely discontinued therapeutically for long-term use 

(prophylaxis), but has been deemed sufficiently safe for short-term use. These side 

effects led to the discontinuation of AQ use in western countries, however WHO 

recommends amodiaquine as an effective ACT partner drug [27]. Amodiaquine-

containing ACT exposures select for 86Y and 1246Y mutations in pfmdr1, which confer 

decreased sensitivity to chloroquine and amodiaquine [63].  

Piperaquine. Piperaquine was once widely used in China and was developed 

there in the 1980’s, but increasing drug resistance resulted in tapering use of this drug 

for monotherapy. In recent years piperaquine was revived when it was combined with 

dihydroartemisinin as another ACT, and is being administered extensively in Southeast 

Asia. Piperaquine is highly active against chloroquine-resistant parasites, and is also 

known to induce 86Y and 1246Y mutations in pfmdr1 [89].  

Mannich Bases 

Pyronaridine. Pyronaridine was developed in the 1980’s in China, and is 

considered a Mannich base schizonticide but has an unconventional replacement of its 
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quinolone heterocycle with an azaacridine and two Mannich base side chains. Western 

quality requirements prevent pyronaridine’s use in the west as the compound shows 

toxicity in neutrophils [90]. Further, clinical trials indicated high recrudescence rates 

(~25%) with 30-day follow-up periods. However, it has shown utility as an effective 

partner drug in combination therapy, and is currently being combined with artesunate, 

called Pyramax®. 

8-aminoquinolines 

Primaquine (PQ). The 8-aminoquinoline drugs, including primaquine, were 

derived from an initial observation by Paul Ehrlich who noted that methylene blue was 

an excellent Plasmodium stain and postulated that methylene blue could be used as a 

drug as well [72]. In 1891, Ehrlich and Guttmann tested this and successfully treated 

two people using methylene blue, showing curative results as the first synthetic drug for 

malaria. While methylene blue was not introduced therapeutically at this point, the 

syntheses of several 8-aminoquinolines were derived, such as pamaquine and 

primaquine. German researchers from Bayer laboratories under IG Farben created 

pamaquine and primaquine in the 1920’s. While pamaquine was first used in 1926 and 

provided radical cure, it was considered too toxic for use, spurring the development of a 

pamaquine analog called primaquine. WWII activities cut off the world supply of quinine 

to allied forces during the Japanese occupation of Indonesia in 1942 making the 

development of synthetic antimalarials a top US priority, which is when the US Army 

began the development of primaquine. Veterans coming home from the Korean War 

battled relapsing P. vivax malaria following cessation of chloroquine prophylaxis, so the 
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US Army began to bring primaquine into efficacy and safety studies in the 1950’s, and 

late in the Korean War soldiers were given primaquine on their return voyage [91]. 

Primaquine sets itself apart from other antimalarials with potent activity against 

liver stages and some activity against asexual stages. Primaquine remains the only 

antimalarial used for radical cure of P. vivax and P. ovale infections to kill hepatic forms; 

it is also known to eliminate gametocytes, reducing transmission back to the mosquito 

vector. The mechanism of action for the 8-aminoquinolines is unknown. Primaquine 

shows some ability to restore CQ-resistant parasites to sensitivity. However, primaquine 

is dangerous for G6PD-deficient individuals and can cause severe hemolysis; this is 

particularly troubling since this deficiency is relatively common in both Africa and Asia 

[92].  

Antibiotics 

Doxycycline, clindamycin, and tetracycline are part of the tetracycline class of 

antibiotics known to have antimalarial action in binding to ribosomes, which then leads 

to protein synthesis inhibition. The tetracyclines act on liver and blood stage schizonts. 

The elimination time for doxycycline is long, making it well suited for use as a 

chemoprophylaxis agent except in pregnant women and children. Doxycycline is also 

known to cause gastrointestinal distress and photosensitivity. The Walter Reed Army 

Institute of Research conducted the Thailand 1992 Phase II studies that led to FDA 

approval for doxycycline to be used for chemoprophylaxis [93]. Clindamycin is a safer 

alternative, yet its elimination time is unsuitably short for prophylaxis and needs to be 

combined with a faster acting antimalarial, as it is with quinine or artesunate currently.  
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Sesquiterpene Lactone Endoperoxides (Artemisinins) 

 The current gold standard of malaria treatment is the ACT, which includes a 

combination of a fixed-dose artemisinin derivative (artemether, AM; artesunate, AS; or 

dihydroartemisinin, DHA) and either an arylamino alcohol or 4-aminoquinoline. One of 

the biggest issues with artemisinin derivatives is that the plant Artemisia annua is 

needed for its derivation, and has an 18-month lag between the demand and supply 

which leads to wide fluctuations in drug pricing. Because of this, attempts to make 

inexpensive and fully-synthetic endoperoxide drugs became a priority. Significant 

progress has been made in the efficiency of endoperoxide synthesis, yet it is still not as 

cost effective as plant-based derivations [94, 95]. Artemisinin itself is poorly soluble in 

both water and oil, therefore semisynthetic derivatives were created as an alternative. 

Neurotoxicity is a concern with all artemisinin-derivatives because of the formation of 

the primary metabolite, DHA, which is thought to be neurotoxic especially in the brain 

stem [96], although the use of artemisinin for many years in China has not mirrored 

these findings.     

Artemisinin Resistance. In response to the potential loss of efficacy of the 

artemisinin drugs, systemic surveillance was employed to track and prevent the spread 

of artemisinin resistance. It was not until 2008 that an actual treatment failure was 

observed; the initial manifestation of worry came from delayed parasite clearance times.  

This delayed parasite clearance phenotype did not result in EC50 shifts with standard 

72-hour in vitro drug susceptibility assays, so alternative methods had to be used to 

assess the development of resistance in real time [97, 98]. Pfmdr1 was once again 

implicated in the development of antimalarial drug resistance, with pfmdr1 amplification 
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and antioxidant processes being upregulated [99, 100]. A genome-wide association 

study implicated regions on chromosome 13 to be involved in the artemisinin delayed 

clearance phenotype, and then mutations in the kelch gene (K13) on chromosome 13 

were then identified to be associated with resistance [101-103]. Introduction of K13 

mutations in artemisinin-sensitive parasites have confirmed their role in artemisinin 

resistance [104].  

Surveillance of artemisinin resistance indicates that areas of Thailand, 

Cambodia, Vietnam and Myanmar have regions of delayed parasite clearance and 

recrudescent infection from K13 mutations, but none so far have been observed in 

Africa [105]. Parasites with acquired K13 mutations also have prolonged ring stages of 

development, yet have the same overall cycle duration as sensitive isolates. 

Comparative transcriptomics studies revealed an upregulation of the unfolded protein 

response (UPR), which is thought to help resistant parasites withstand the exposure to 

artemisinin drugs. Artemisinins are activated by iron-containing moieties, which then 

cause destruction of intracellular structures with alkylation and oxidation events [106].  

This upregulated UPR would theoretically aid the parasites repair and degradation 

responses to artemisinin. The kelch protein itself is thought to function as a negative 

regulator of signal transduction that can initiate the UPR in the event of damage to 

proteins. A resistant parasite with a K13 mutation may lead to constitutive action of the 

UPR pathway or potentially increased activation in the presence of artemisinin [107].  

2-Hydroxynaphthoquinones 

 The development of quinone compounds for antiplasmodial activity began in the 

1940’s, but real interest in new antimalarials were stalled because chloroquine was both 
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inexpensive and effective. In the 1960’s, the naphthoquinones were revisited as 

chloroquine failed and the need arose for new scaffolds that had antimalarial potential. 

One of the first naphthoquinones was called hydrolapachol, and the structure was 

further developed to create lapinone, a compound shown to successfully treat P. vivax 

at high doses [108]. Menoctone has the characteristic 2-hydroxynaphthoquinone 

structure and cyclohexyl group in the side chain, yet very high doses were required and 

made toxicity an issue, as the molecule was found to undergo biotransformation and it 

was subsequently abandoned [72]. Menoctone was shown to have broader antiparasitic 

activity so the cyclohexyl side chain was pursued further, leading eventually to 

parvaquone, BW58C80, and atovaquone [109-111]. A comparison of these compounds 

and their structures can be seen in Figure 1.6 [72]. Atovaquone is a costly compound to 

synthesize, though in recent years alternative atovaquone syntheses and the expiration 

of Malarone’s patent led to more affordable generics [112].  

Atovaquone (ATQ). Atovaquone is a hydroxy-1,4-naphthoquinone that functions 

as a ubiquinone analog and is a competitive inhibitor that binds to the Qo site (quinol 

oxidation site) of the cytochrome bc1 complex [113, 114]. Atovaquone binding leads to 

collapse of mitochondrial membrane potential, and a loss of mitochondrial function 

[115]. Because the primary function of the mitochondrial electron transport chain is to 

provide pyrimidine precursors for DNA synthesis via the action of the P. falciparum 

dihydroorotate dehydrogenase enzyme, the parasite is deprived of its ability to 

synthesize pyrimidines [116, 117]. ATQ is administered as a fixed-dose combination 

with proguanil (Malarone®), indicated for use in both children and adults for prophylaxis 

when travelling to malaria-endemic countries. 70% of all antimalarial travel prescriptions 
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in the United States from 2009-2011 were for Malarone [118]. Malarone obtained FDA 

approval in 2000 for treatment and prophylaxis of P. falciparum malaria, is known to 

have activity in blood and early liver stages. It is also indicated for the treatment of 

Pneumocystis pneumonia under the trade name Mepron [91]. While atovaquone 

potently inhibits P. falciparum, sporadic resistance developed in ~30% of patients in 

Phase II clinical trials in Thailand, leading it to be paired with its synergistic partner 

proguanil  [119].  

 

Figure 1.6. The Development of Antiparasitic Naphthoquinones, from Schlitzer 2007, 
ChemMedChem, 2(7) [72]. (a) Hydrolapachol, an early naphthoquinone developed in 
the 1940’s. (b) Lapinone, the first naphthoquinone used to successfully cure human 
malaria. (c) Menoctone, toxic at therapeutic doses but shown to have broad antiparasitic 
activity against Theileria parva. (d) Parvaquone, used to treat cattle for Theileria parva 
infections. (e) BW58C80 has broad anti-protozoal activity but lost metabolic activity in 
humans. (f) Atovaquone, a (2-[trans-4-(48-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-
naphthoquinone) is a stable compound with high anti-protozoal activity against 
Pneumocystis jiroveci, Toxoplasma gondii, and Babesia spp. infections in humans. 
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Antifolates 

 Antifolates act on two important parasite enzymes, dihydrofolate reductase 

(DHFR) and dihydropteroate synthase (DHPS) which in turn inhibits nucleic acid 

synthesis [120, 121]. These parasitic enzymes can be exploited as drug targets based 

on their necessity to synthesize pyrimidines for nucleic acids and an absence of a 

pyrimidine salvage pathway. Resistance to antifolates is associated with several 

mutations in these enzymes, with substitution S108N conferring resistance to 

cycloguanil and pyrimethamine in Africa and Southeast Asia, and S108T also present in 

South America. [122-124]. Additional resistance-contributing mutations coincide with 

S108 mutations, most commonly C59R and N51I. 

Proguanil and Cycloguanil. Proguanil (originally named Paludrine) is currently 

used in combination with atovaquone as the commercial drug Malarone for the 

treatment and prevention of malaria. Cycloguanil is the highly active metabolite of 

proguanil and is activated by cytochrome P450 [125]. The addition of proguanil with 

atovaquone profoundly enhances the ability of atovaquone to collapse mitochondrial 

membrane potential in a synergistic fashion [126]. While proguanil is known to bind to 

DHFR much like PYR, the primary action of proguanil in Malarone may not involve this 

pathway at all. The strong synergy seen with proguanil is not found when atovaquone is 

combined with the active metabolite cycloguanil—meaning the synergistic action relies 

on proguanil itself. Further, PYR and atovaquone do not have synergy, so proguanil 

likely acts elsewhere to create synergistic action. Studies have shown that proguanil 

does not collapse mitochondrial membrane potential on its own, yet when combined 

with atovaquone, it lowers the concentration of atovaquone needed to collapse 
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membrane potential [127]. The cause for this atovaquone-hypersensitization is not 

known and is responsible for keeping the treatment failures low when compared with 

atovaquone alone, since atovaquone monotherapy leads to atovaquone-resistant 

treatment failures in 30% of patients [119]. Atovaquone-proguanil synergy is lost in 

atovaquone-resistant parasites, rendering Malarone ineffective [128].  

Sulfadoxine and Pyrimethamine (SP). Pyrimethamine was developed by 

George Hitchings with a group at Burroughs Wellcome in the US in 1950, originally 

meant to be an anticancer therapy. Pyrimethamine and sulfadoxine each inhibit DHFR 

and DHPS enzymes respectively, which in turn prevents the synthesis of folic acid in the 

parasite and therefore inhibits pyrimidine biosynthesis. Because each drug interferes 

with folic acid synthesis from different enzymes, SP combination results in synergistic 

action. SP, known as Fansidar, has been very successful in treating CQ-resistant 

malaria in the past. Pyrimethamine was originally given as monotherapy (Daraprim) for 

both P. vivax and P. falciparum, but within a year resistance was observed [129]. SP 

combination therapy also induced parasite resistance in Southeast Asia and South 

America, with the target enzymes developing several mutations in dhfr and dhps [120, 

121]. Microsatellite surveillance of the spread of SP resistance points to dhfr resistance 

mutations crossing from Asia to Africa before SP was even introduced to African 

parasite populations [130]. Interestingly, dhps mutations in Southeast Asia and Africa 

are thought to occur de novo [131, 132]. While resistance limits the efficacy of SP to 

treat malaria, it is still implemented for use in intermittent preventative therapy in Africa 

for pregnant women and for seasonal chemoprevention in the sub-Sahel region of 

Africa. It is also used in ACT formulations widely in India [133]. 
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Experimental Antimalarials in Clinical Development 

 The current landscape for antimalarials as of 2015 is promising, with several 

novel targets being exploited. Figure 1.7 shows the structures of some new 

experimental antimalarials in clinical development, as well as a few that were 

abandoned as clinical candidates early in 2016. Compounds that remain in 

development currently are discussed. 

Phase I Clinical Trials  

P218. P218 is a selective Pf-DHFR inhibitor from a partnership with Thai 

BIOTEC, Monash University, London School of Hygiene and Tropical Medicine and the 

Medicines for Malaria Venture. Concerns remain about DHFR inhibitors because of their 

historical propensity to fail because of rapid development and spread of resistance. 

However, P218 is a “next generation” DHFR inhibitor designed with affinity for both 

DHFR-resistant mutant and sensitive parasites alike, owing to a flexible side-chain 

capable of acting on both [134].  

 SJ733. SJ733 is a dihydroisoquinolone that came from St. Jude Children’s 

Research Hospital. SJ733 is an inhibitor of the P. falciparum sodium-transporting 

ATPase (Pf-ATP4), and is a fast-acting antimalarial with blood stage and transmission 

blocking ability [135]. SJ733 has potential to be part of a single dose radical cure.  

MMV048. MMV048 is 2-aminopyridine compound from the University of Cape 

Town. Its molecular target is known to inhibit the P. falciparum phosphytidylinositol 4-

kinase, and has blood stage, relapse prevention, and chemoprevention potential. Phase 

I trials for MMV390048 began in 2014, with completion of PhaseI/Ib studies with a new 

formulation and submission for Phase IIa protocol in 2016.    
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Phase II Clinical Trials 

 KAE609 + KAF156. KAE609 is a spiroindolone compound developed by 

Novartis and the Swiss Tropical and Public Health Institiute, which emerged from a 

phenotypic screen. The target of KAE609 was determined to be a sodium-ATPase 4 ion 

channel called PfATP4. PfATP4 is a plasma membrane protein and is believed to be a 

sodium efflux pump [136]. Several classes are now known to target PfATP4, including 

the spiroindolone KAE609. Diverse chemotypes from the Malaria box library have 

indicated sodium and pH modulation that coincides with PfATP4 inhibition [137]. 

KAE609 had very promising Phase I trials, with faster parasite killing than even 

artesunate [138]. KAF156 is a imidazolopiperazine that inhibits the cyclic amine 

resistance locus (CARL) [139]. It also showed promise pre-clinically in chemoprevention 

against liver stages. Both KAF156 and KAE609 have been tested in Phase II as 

monotherapies prior to being put in combination.  

 OZ439 + Piperaquine/Ferroquine. OZ439, also known as artefenomel, is 

currently in combination studies with piperaquine. Ferroquine is a chloroquine analog 

that is a ferrocene tethered to a 4-aminoquinoline, making it active in two locations. 

Ferroquine is also being paired with OZ439, and has promise as a combination therapy 

since it is active against both chloroquine and mefloquine-resistant parasites [140]. 

OZ439 contains the endoperoxide group found in artemisinin-derivatives, but is 

structurally distinct.  

 Fosmidomycin + Piperaquine. Fosmidomycin is an inhibitor of parasite 

isoprenoid biosynthesis, and was originally isolated from Streptomyces lavendulae for 

potential use as an antibacterial in the 1970’s.  Plasmodium uses a distinctive method to 
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produce isopentyl diphosphate (IPP) with a mevalonate-independent mechanism called 

the 1-desoxy-D-xylulose-5-phosphate pathway (DOXP). The enzymes involved are 

localized in the parasite apicoplast organelle, which represents a valuable antimalarial 

target unique from the human host [141]. Fosmidomycin was shown to inhibit the 

second enzyme in the DOXP pathway, 1-desoxy-D-xylulose-5-phosphate 

reductoisomerase (DXR) which catalyzes the transformation of DOXP to MEP (2-C-

methyl-D-erythritol-4-phosphate) [142]. Fosmidomycin is a substrate analog that inhibits 

PfDXR with an IC50 of between 400-950 nM, but because the toxicity is so low, relatively 

high plasma levels are realistic [143]. The recrudescence rates were shown to be 

unacceptably high, which led to it being used as a partner drug [144]. Fosmidomycin 

shows additive effects with quinine and doxycycline, and synergy with clindamycin [143, 

145]. Fosmidomycin showed poor efficacy in young children, so the partner drug was 

changed to piperaquine, and clinical trials are in progress for that combination.  

 DSM265. DSM265 is an inhibitor of the dihydroorotate dehydrogenase (DHODH) 

enzyme of the mitochondrial electron transport chain, which has excellent selectivity for 

the Pf-DHODH enzyme when compared to the human DHODH enzyme. DSM265 has 

potential for both chemoprophylaxis and combination single dose radical cure. In 2015, 

DSM265 began Phase IIa trials in Peru for patients with either P. falciparum or P. vivax, 

and Phase Ib blood stage challenge in combination with OZ439 [146]. As of 2016, it is 

set to do Phase II combination studies with OZ439, direct mosquito bite challenge, and 

sporozoite challenge studies.  

 Methylene Blue. Methylene blue is a synthetic phenothiazin dye that was used 

to successfully treat malaria by Paul Ehrlich more than a century ago. Methylene blue is 
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redox active, thought to deliver electrons from flavoproteins to hemoglobin-associated 

or free Fe(III)-protoporphyrin IX [147]. Fe(III)-protoporphyrin IX reduction would then 

inhibit hemoglobin digestion/heme detoxification, leading to parasite death. Methylene 

blue has promise as a transmission-blocking compound, and is planned to be used in 

combination with ACTs. A clinical trial in Thailand is in progress to evaluate its use 

compared to single dose primaquine [146].   

 Arterolane + Piperaquine. Arterolane, also known as OZ277 is the result of a 

combined effort with the Medicines for Malaria Venture, Ranbaxy, and the Indian 

Government to develop the first somewhat cost-competitive fully-synthetic endoperoxide 

derivative. This combination is marketed as Synriam® and has been administered to 

over one million people in India; it is cheaper than any other ACT currently available 

there but is yet to receive stringent approval from the WHO.  

Phase III Clinical Trials  

Trimethoprim. Trimethoprim/sulfamethoxazole (Cotrimoxazole®) are well known 

antibacterial compounds that also show antimalarial activity, with trimethoprim being 

both a potent inhibitor of Pf-DHFR and a potentiator of sulfonamides [148]. 

Cotrimoxazole has effectively treated chloroquine-resistant parasites, but concerns of 

rapid resistance development because of its similarity in mechanism of action as well as 

resistance with SP prevented its use previously. However, the WHO recommends the 

use of Cotrimoxazole as prophylaxis against potential opportunistic bacterial infections 

in HIV-infected individuals. Its combined antibacterial and antimalarial properties make it 

an ideal candidate for prophylaxis in these populations, and a clinical trial in Malawi is 

ongoing to determine whether there is a reduction in morbidity/mortality in patients 
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taking anti-retrovirals, and if so, whether the benefits come from its antibacterial or 

antimalarial properties [149].  

 Tafenoquine. Tafenoquine is a derivative of primaquine with more lipophilic 

qualities, and is structurally distinct with its trifluoromethylphenoxy substituent that is 

responsible for its elevated blood, liver, and sporontocidal activity. However, 

tafenoquine is inactive against gametocytes [150]. Tafenoquine is yet another drug 

developed by the Walter Reed Army Institute of Research, and development of this drug 

candidate came from the support of GlaxoSmithKline and the Medicines for Malaria 

Venture (MMV). Tafenoquine showed rapid therapeutic effect, with a single dose being 

comparable to 14 days of primaquine dosing [151, 152]. Tafenoquine carries the same 

risk for hemolysis in G6PD-deficient individuals, but is generally better tolerated in 

patients when compared to primaquine. The mechanism of tafenoquine action is 

unknown, but it does appear to have similarities to primaquine in causing respiratory 

chain effects and heme polymerization defects within the parasite. Tafenoquine is on 

track for submission to regulatory authorities for approval some time in 2017, which 

could have a substantial impact in reducing relapse rates in patients infected with 

Plasmodium vivax considering there is a greater potential for mass-drug administration 

applications compared to primaquine.  
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Figure 1.7. Experimental Compound Structures in Clinical Development  in 2015, from 
Wells et al. 2015, Nat Rev Drug Discov, 14(6):424-442 [146]. A diverse set of 
antimalarials in various stages of clinical development: Phase I (a), Phase II (b), or 
Phase III (c) clinical trials represent new antimalarial chemistry from the Medicines for 
Malaria Venture. As of 2016, several of the Phase I studies in (a) have been put on hold 
or abandoned: ELQ300, CDRI 97/78, PA21A082, ACT451840, as well as AQ13 from 
Phase II (b). MMV048 inhibits phosphatidylinositol 4-kinase. OZ439 is a synthetic 
trioxolane with the active endoperoxide group found in artemisinin, but is otherwise 
structurally distinct. SJ733 and KAE609 target the Pf Na+-ATPase 4. P218 selectively 
inhibits Pf-DHFR. DSM265 inhibits mitochondrial DHODH. KAF156 inhibits the cyclic 
resistance amine locus. Older compounds in trials are also included: fosmidomycin and 
tafenoquine. Methylene blue and trimethoprim have been indicated in treatment of other 
medical conditions and are currently being evaluated for use in malaria.  
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Plasmodium Mitochondria  

Metabolism  

In canonical eukaryotic systems, glycolysis converts glucose into pyruvate and 

the tricarboxylic (TCA) cycle/oxidative phosphorylation in the mitochondria converts 

pyruvate into ATP, which is used for energy by cells. For this reason, mitochondria are 

considered the “powerhouse” of the cell, as oxidative phosphorylation results in 

abundant ATP production when compared to glycolysis. In P.falciparum asexual stages, 

however, it has been shown that the mtETC only converts 7% of host-scavenged 

glucose into ATP, with the remaining 93% being consumed in aerobic glycolysis; not 

surprisingly, lactic acidosis is a symptom of severe malaria [153]. Initially this hardly 

seems efficient, yet aerobic glycolysis is known to be a hallmark of rapidly dividing cells, 

such as with cancer cells, where glycolysis is used to convert glucose to lactate for ATP 

even in the presence of oxygen [154]. Since glucose is abundant and ATP can be 

derived quickly, it is preferred to the more efficient oxidative phosphorylation at this 

point in their development. Even though the mitochondria are not generating sufficient 

ATP in asexual stages, the parasite mtETC remains essential for the regeneration of 

ubiquinone and maintenance of membrane potential that the DHODH enzyme requires 

to synthesize pyrimidine precursors, as the parasite lacks a pyrimidine salvage pathway 

and must synthesize them de novo [117].  

A small subpopulation of parasites in the blood stages convert to gametocytes in 

hopes of being taken up by a mosquito blood meal, and are now known to have very 

different energetic requirements. Recently, gametocytes were shown to utilize much 

more glucose, have increased glycolytic flux and TCA pyruvate catabolism compared to 
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asexual blood stages [153]. This transition from aerobic glycolysis to oxidative 

metabolism is an advantage for sexual parasites in several ways. Gametocyte 

conversion increases with disease severity in the human host, and hypoglycemia is 

common in severe malaria, making the switch to oxidative phosphorylation an 

advantage in glucose scarcity. Glucose scarcity is also likely in the mosquito 

hemolymph, where the female gametes will need more energy to prepare for fertilization 

and development [153].  

Structure 

In asexual stages, P. falciparum parasites contain a single metabolically active 

mitochondrion with a double membrane and mitochondrial activity that is abbreviated in 

function compared to the mitochondria of its human host, and have a simplified 

structure reflective of this [155]. The mitochondria transform throughout the asexual 

stage, with its single discrete organelle forming a larger elongated structure as the 

parasite transitions from trophozoite to schizont [156]. As schizonts, the parasite 

mitochondria form branched structures without distinct cristae (morphologically called 

‘type I’ mitochondria) and with cytokinesis they segment into multiple organelles, couple 

with a nucleus and apicoplast, which become merozoites.  

There is a noticeable difference in the mitochondrial structure between asexual 

and sexual stages, where mature gametocytes have 4-8 ‘type II’ mitochondria that show 

presence of distinct tubular cristae. A subset of mature gametocytes were observed with 

more cristae that were electron-dense, which were termed ‘type III’ [155]. This is 

consistent with the sexual stages having more demanding energetic requirements 

compared to asexual stages. The ATPase complex of the mitochondria is structurally 
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responsible for the formation of the curved cristate structure of the inner mitochondrial 

membrane, so the observation that cristae structure is pronounced in sexual stages is 

consistent with their metabolic switching to TCA oxidative energy generation [157].  

Genome  

The malaria parasite has a truncated genome, which consists of highly 

conserved linear, tandemly repeated 6 kb units, and is the smallest known genome in 

eukaryotes [158-160]. The mitochondrial genome is maternally inherited, and has about 

90% sequence identity within the human malaria species [161]. Estimates on the 

mtDNA copy number in P. falciparum vary between 20-30 copies, yet mtDNA copy 

number may not be conserved among the Plasmodium spp. as Plasmodium yoelli was 

estimated to have approximately 150 copies [162]. There is also evidence that copy 

number varies within members of the same species [162, 163]. Only three genes are 

encoded in the mtDNA which are mtETC subunits: coxI and coxIII of the cytochrome c 

oxidase enzyme (Complex IV), and cytochrome b which belongs to the cytochrome bc1 

enzyme (Complex III), as well as fragmented rRNA genes. All other participants in the 

mtETC are nuclear encoded and require localization to the mitochondria, including 

genes typically seen in the mitochondria: tRNA genes, NADH dehydrogenase subunits, 

and cytochrome c oxidase subunit II (coxII) [164].  

In a comparison of sexual and asexual mitochondrial DNA/RNA with qPCR and 

q-RT-PCR, mtDNA copy number and mt-associated transcripts were 3-8 fold higher in 

sexual stages, illustrating that sexual stage mtDNA gene dose and mt-transcription are 

both elevated and dynamic [155].  
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Mitochondrial Diversity, Replication and Inheritance 

 The mitochondrial genome replication of the linear, concatamerized 6–kb 

elements of P. falciparum was described as having highly-branched networks of 

replication and recombination intermediates, some rolling circle lariat intermediate 

species characteristic of the T4 phage, and a subpopulation of small circular form DNA 

[165]. These small circular forms of 6 kb mtDNA were shown to directly interact with the 

highly-branched recombination forms of the main mt-genome, and were said to account 

for less than 5% of the total mtDNA forms. Interestingly, this type of replication is 

common to plants, as they too have linear, concatamerized mtDNA molecules, form 

branching structures, and possess small single-unit circular forms; what follows is a 

discussion of relevant mitochondrial inheritance mechanisms and their important 

implications for P. falciparum.  

The mitochondria are uniparentally maternally inherited generally in eukaryotes, 

and as a consequence mitochondrial genomes within an individual favor homoplasmy, 

which is when the mitochondrial genomes are all identical. This strict maternal 

inheritance (SMI) creates a bottleneck in oogenesis that reduces mtDNA copy number, 

and would therefore rid mtDNA of mutations because only a subset of mtDNA 

molecules will be passed on [166]. Current working knowledge of the inheritance of 

mtDNA has contributed to the following model governing organellar inheritance: (i) 

uniparental inheritance exists to both prevent the propagation of selfish cytoplasmic 

elements and to minimize mito-nuclear incompatibility; (ii) uniparental inheritance is 

evolutionarily unstable since mtDNA would be subject to Muller’s ratchet (lack of 

recombination will eventually accumulate irreversible deleterious mutations) and (iii) 
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uniparental inheritance must be relaxed regularly or occasionally by various 

mechanisms [167]. Mechanisms of disruption have been noted in different organisms, 

such as temporary biparental transmission and occasional paternal leakage, and 

maternal inheritance of stable/constitutive heteroplasmy [166]. 

Mitochondrial heteroplasmy is the presence of multiple mitochondrial genomes 

present within a single organism. Mitochondrial heteroplasmy has distinguished itself as 

a wealth of mitochondrial diversity in many other systems, found in humans, 

Trypanosoma cruzi, and even Plasmodium relictum [168-171]. It is important to note 

that mitochondrial heteroplasmy was originally thought to be evolutionarily transient 

state, where homoplasmy is reinstated after several generations’ time. There are 

notable examples of organisms that diverge from homoplasmy and stably maintain low 

levels of heteroplasmy that have been uncovered with next-generation sequencing, 

where heterplasmy can be resolved at 0.1% frequencies at ~45,000x mtDNA coverage 

with strict read quality control measures [169]. 

Mitochondrial heteroplasmy has been implicated in severity of human disease, 

but also in sustained health and longevity. In a study of centenarians using ultra-deep 

sequencing, Giuliani et al. was able to show that maternal low-level heteroplasmies can 

be passed down and sustained in humans, and were part of a “rare variant pool” which 

may be involved in prolonging life [169]. The presence of a low-level variant pool of 

mitochondrial diversity can also be seen universally in humans, the product of both 

inherited and somatic processes, which can be beneficial in coping with various types of 

physiological or environmental stressors [172]. It is obvious how this would lend 

particular utility in the context of enzymes participating in oxidative phosphorylation, as 
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having low-level variants could allow for enzymatic isoforms that better handle stress 

conditions [173]. 

Heteroplasmy has also been shown to contribute to severity of resistance to 

drugs that target cytochrome b in other organisms. Indeed, the strawberry grey mold B. 

cinerea has been characterized with dynamic heteroplasmy against a cytochrome b Qo 

site inhibitor in the strobilurin fungicide family [174]. Mitochondrial heteroplasmy has not 

been explored in Plasmodium falciparum, and has an mt genome that has been 

described as “incredibly intolerant of mutation” owing to the general lack of sequence 

divergence observed despite the fact that mitochondrial mutation rates in higher 

eukaryotes are orders of magnitude higher than their counterpart nuclear genomes 

[163]. Indeed, mitochondrial barcoding relies on the mtDNA mutation rate to discern 

speciation events, and is a standard utilized in population genetics.  

Last, it is interesting to note that in genetic cross experiments with several P. 

falciparum clones, it was shown that in every cross there was unidirectional dominance 

of inheritance of the mitochondrial and apicoplast genomes, suggesting a “unidirectional 

parental incompatibility” in cross-fertilization, alluding to cytoplasmic incompatibility as a 

selective force [175]. It seems that while the Pf mitochondrial mutation rates might 

appear slow and well-conserved at the surface level, cryptic mitochondrial heteroplasmy 

could provide an explanation for the input of mitochondrial diversity that has been 

suspiciously lacking to date.  

Mitochondrial Electron Transport Chain (mtETC)  

As discussed earlier, in eukaryotic systems the mtETC is responsible for 

generating the protonmotive force needed for oxidative energy generation, but P. 
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falciparum asexual stages utilize glycolytic metabolism and it was unclear for some time 

whether the parasite even utilized oxidative phosphorylation at all, especially 

considering many canonical enzymatic subunits have still not been identified [176]. 

Genetic knock out studies illustrate that mtETC enzymes are nonessential in blood 

stage; the only requirement is a functional DHODH enzyme and ubiquinone 

regeneration [117, 177]. The four enzyme complexes characteristic of many inner 

mitochondrial membrane of eukaryotes are: NADH:ubiquinone oxidoreductase 

(Complex I), succinate:ubiquinone oxidoreductase (Complex II, SDH), 

ubiquinol:cytochrome c oxidoreductase (also known as cytochrome bc1 or Complex III), 

and cytochrome c oxidase (Complex IV). Ubiquinone and cytochrome c carry electrons 

between complexes in this traditional system, with the protonmotive force being fueled 

by Complexes I, III and IV. The Pf-mtETC differs substantially from this canonical 

system, which are discussed in the descriptions of the Pf-mtETC components to follow. 

Briefly, Complex I is missing, yet electron flow is maintained in complexes II-IV. There 

are five non-protonmotive dehydrogenases that provide electrons to the downstream 

complexes: NADH:ubiquinone oxidoreductase (NDH2), SDH, glycerol-3-phosphate 

dehydrogenase (G3PDH), the malate:quinone oxidoreductase (MQO), and 

dihydroorotate dehydrogenase (DHODH). Neither DHODH nor MQO are found in 

human mitochondria, and the full enzymatic functional occupations remain somewhat 

elusive. The dehydrogenase activity converts dihydroorotate to orotate, essential for 

synthesizing nucleic acids, as well as to donate electrons to Complex III and then 

Complex IV, where ubiquinone and cytochrome c act to shuttle electrons among 

complexes, generating electrochemical potential. The ATP synthase at the end of the 
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chain (Complex V) is essential in sexual stages and utilizes the transmembrane proton 

gradient generated upstream to make ATP, but is not very active in blood stage [178, 

179]. The locations of the respiratory enzymes and electron flow of the Pf mtETC can 

be seen in Figure 1.8.  

 

 

 

 

Figure 1.8. Mitochondrial Electron Flow in Plasmodium falciparum, adapted from 
Ginsburg, 2016, Malaria Metabolic Pathways Database [180]. Pink boxes show the 
name of enzyme complexes participating in the mtETC. Red text indicates specific 
enzyme inhibitors. Black boxes designate the direct link of mitochondrial electron flow to 
another branch of parasite metabolism.   
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Enzymes and Their Functions. Type 1 NADH Dehydrogenase (NDH2). 

Complex I is absent in Pf, but instead utilizes a non-proton pumping NDH that reduces 

ubiquinone. Pf-NDH2 is available to function without being influenced by the 

electrochemical gradient, being a non-protonmotive enzyme, which is an advantage to 

maintain protonmotive force required for mitochondrial import especially since the 

asexual stages have minimal oxidative phosphorylation to maintain it. Pf-NDH2 

additionally performs NADH/HAD+ cycling, with its NADH-dependent respiration being 

responsible for providing approximately half of the quinol flux to bc1 [181]. Pf-NDH2 is 

inhibited by HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone) which leads to a loss of 

membrane potential [182, 183].  

 Glycerol 3-Phosphate Dehydrogenase (G3PDH). G3PDH is a non-proton motive, 

FAD-dependent quinone reductase enzyme located on the inner mitochondrial 

membrane’s outer surface. It acts to reoxidize glycerol-3-phosphate to DHAP 

(dihydroxyacetone phosphate), as well as shuttling electrons from cytosolic NADH and 

delivering them into the mitochondrial ubiquinone pool [164]. 

 Malate:quinone oxidoreductase (MQO). MQO is a peripheral, membrane bound 

flavoprotein that is a non-protonmotive quinone reductase. MQO is responsible for 

catalyzing the oxidation of malate to oxaloacetate, feeding into the TCA cycle. The 

oxidation reaction then donates the electron generated to reduce ubiquinone [164]. The 

Pf-MQO is a replacement malate dehydrogenase in the TCA cycle, and is likely 

essential in blood stages as multiple knockout attempts were unsuccessful, however 

this is a puzzling finding since MQO enzymatic activity could be disrupted without 

consequence, suggesting it has structural essentiality of some kind [116] .  
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 Dihydroorotate Dehydrogenase. DHODH is another non-protonmotive quinone 

reductase shown to be essential in its function as the only redox reaction in the de novo 

pyrimidine biosynthesis pathway; its conversion of dihydroorotate to orotate is crucial to 

feed into pyrimidine metabolism as the parasite is incapable of pyrimidine salvage. 

DHODH functions as a dihydroorotate:quinone oxidoreductase with its active site 

oriented toward the intermembrane space [117]. The triazolopyrimidine class of 

compounds (DSM1, DSM76) are inhibitors of the DHODH enzyme [184].  

 Succinate Dehydrogenase (Complex II). Another non-protonmotive enzyme, 

SDH is composed of two active units: the flavoprotein subunit and the iron-sulfur center. 

Succinate from the TCA cycle is converted to fumarate by the iron-sulfur center, which 

may then provide electrons to ubiquinone.  

 Cytochrome bc1 Complex (Complex III). Complex III has a three-subunit catalytic 

core consisting of cytochrome b, cytochrome c1 and the Rieske iron-sulfur protein (ISP). 

Complex III possesses two active sites for quinone binding, Qo (quinol oxidation site) 

and Qi (quinone reduction site), which are located on opposite sides of the inner 

mitochondrial matrix but connected via transmembrane electron transfer pathway [185]. 

A basic schematic of electron transfer through Complex III can be seen in Figure 1.9 

[186]. 
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Figure 1.9. The Plasmodium Cytochrome bc1 Complex Reactions in the Q-cycle, from 
Biagini 2014, The Encyclopedia of Malaria, Mitochondrial Electron Transport Chain of 
Plasmodium falciparum [186]. The Plasmodium Complex III (red) and Complex IV 
(green) participate in a series of reactions that result in the translocation of protons from 
the matrix to the intermembrane space. The schematic shows the ubiquinol substrate 
(QH2) docking at the ubiquinol oxidation site (Qo), and ubiquinone docking at the 
ubiquinone reduction site (Qi), as well as the electron transfers that take place from 
ubiquinolàcytochrome càcytochrome c oxidase.  

 

 

Complex III is responsible for the transfer of electrons from ubiquinol (reduced 

form of ubiquinone) to cytochrome c, where one complete catalytic cycle is completed 

as follows: (2) ubiquinol molecules bind to the Qo site and are reduced to ubiquinone, 

two electrons transfer to the ISP where it moves to transfer them to the c-type heme of 

cytochrome c1, then cytochrome c1 gets oxidized by cytochrome c oxidase (2). The 

second electron pair gets transferred by two b-type heme molecules to the Qi site of 

cytochrome b, and ubiquinone is reduced to (1) ubiquinol. The Pf mitochondria have a 

distinct ubiquinone homolog (CoQ8) unique from that of their human host, making it 

theoretically a good target of inhibition [187, 188].  
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 Cytochrome c Oxidase (Complex IV). Complex IV is the final electron acceptor, 

converting O2àH2O through the oxidation of cytochrome c and subsequent transfer of 

protons through the electrochemical gradient. Cytochrome c oxidase strips four matrix 

protons for each 2-electron half-cycle as shown in Figure 1.9, where two protons are 

utilized by the oxygen reduction, and two are transclocated through the enzyme’s 

hydrophilic channel through the membrane and out into the intermembrane space [186].  

 ATP Synthase (Complex V). The function of the F1F0-ATP synthase/hydrolase in 

P. falciparum utilizes the electrochemical gradient generated in the mtETC to couple 

proton transfer with ATP synthesis/hydrolysis. Complex V has a matrix facing external 

catalytic domain (F1) that is responsible for the conversion of ATP to ADP and inorganic 

phosphate. The membrane domain (F0) forms a proton pore through the membrane, 

which rotates to relocate protons through the inner mitochondrial membrane to the 

matrix. The ATP synthase (and TCA cycle) are essential in later sexual development 

and transmission through the mosquito, although there is modest growth impairment in 

asexual stages with ATPase knockouts [179].  

The mtETC Inhibitors and Resistance 

 Atovaquone. As discussed earlier, atovaquone is a competitive inhibitor of 

ubiquinol in the bc1 complex at the Qo site, which is encoded in the cytochrome b gene 

in the mtDNA. Docking studies using yeast cytochrome b revealed atovaquone forming 

hydrogen bonds with the iron-sulfur domain as well as cytochrome b, tethered between 

the hydrogen bonding and inhibiting translocation of the ISP [189]. Inhibition by 

atovaquone causes a drop in mitochondrial membrane potential, as ubiquinol is not 

getting regenerated back to ubiquinone by Complex III [115]. The downstream impact of 
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inhibiting ubiquinone regeneration prevents the essential DHODH function of converting 

dihydroorotate to orotate, a key pyrimidine precursor that is essential since Plasmodium 

lack a pyrimidine salvage pathway. The mechanism of death by atovaquone in asexual 

stages is that of slow pyrimidine starvation, as DNA synthesis primarily occurs in 

trophozoites, explaining the delayed death [190]. Indeed, metabolite concentrations 

from the pyrimidine biosynthetic pathway are altered during atovaquone exposure [191]. 

Ubiquinone regeneration inhibition also inhibits the TCA cycle in asexual stages, since 

the TCA cycle enzymes MQO, SDH, and the ATPase of the ETC all rely on coupling 

their reactions to the donation of electrons to ubiquinone [116]. Atovaquone inhibitory 

concentrations vary substantially, with published findings of mean EC50 values from 0.5 

to 6.2 nM (0.4—22.6 nM range) in vitro for both lab strains and field isolates [67, 128].  

Atovaquone Resistance. Atovaquone resistance was an issue from the very 

beginning of atovaquone’s clinical use, where Phase II studies for atovaquone in 

Thailand reported parasite populations that came from patient treatment failures with 

atovaquone monotherapy that developed resistance mutations in the Qo site of 

cytochrome b, with either Y268S or Y268N mutations. The most common atovaquone 

resistance mutations were found to be Y268S, Y268N, or Y268C [192]. This type of 

rapid resistance selection is a highly unusual event in terms of historical resistance 

development patterns, as the resistant parasite populations had to have been selected 

within the duration of a single patient infection. Typical resistance patterns require a 

heritable trait that must pop up and then spread through a region, but this is not the 

case for atovaquone. This sporadic resistance pattern led to atovaquone being 
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immediately paired with its highly synergistic partner drug proguanil, and has been used 

successfully for chemoprophylaxis and occasional treatment of uncomplicated malaria.  

  The resistance mutation at the Y268 position is thought to destabilize the Qo 

pocket, which makes atovaquone inefficient at binding a pocket with a deformed 

conformation and allows the parasite to survive atovaquone exposure. Further, there 

are known fitness costs associated with this mutation, as the bc1 complex has been 

shown to have decreased catalytic turnover compared to wild-type enzymes [193]. 

Despite this decreased fitness, there have been no reports of resistant parasites 

reverting back to wild-type, which is partially explained by the parasite utilizing fitness 

compensatory mechanisms, such as reducing rieske-iron sulfur subunit protein 

expression as well as transcriptional upregulation of Complex III and IV enzymes [193].  

Atovaquone resistance development in vitro has not resulted in clinically relevant 

atovaquone resistance mutations to date. Multiple reports of in vitro resistance 

generation in lab strains such as 3D7, AT200 and K1 link decreased susceptibility to 

several other mutations or mutation combinations in cytochrome b: M133I, M133V, 

F267V, and other peripheral mutations that accompany them [192, 194, 195]. In 

addition, the ability of parasites to generate atovaquone resistance varies among 

different strains, where 3D7, W2, and FCR3 easily generate atovaquone resistance 

compared to HB3 and D6, which are incapable of developing atovaquone resistance 

regardless of parasite population density. Interestingly, the same set of parasites were 

used in selection with 5-fluoroorotate, and only W2 was able to generate resistance at 

any parasite density, showing that there are variations in frequencies of drug resistance 

between parasite lines [196]. Since the molecular target for 5-fluoroorotate is likely 
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nuclear-encoded, perhaps it is possible that these two drug selection experiments also 

highlight the ability of certain parasites to develop resistance to mitochondrial-encoded 

genes more readily than those encoded in the nucleus.  

Myxothiazol and Antimycin A. Myxothiazol is a generic inhibitor of the Qo site 

of the cytochrome bc1 complex, and is a competitive inhibitor of ubiquinol. Antimycin A 

is a generic inhibitor of the Qi site in the bc1 complex, which inhibits the oxidation of 

ubiquinone.  Myxothiazol binding causes collapse of mitochondrial membrane potential 

similar to that of atovaquone, but its binding only forms the b-proximal region of the Qo 

site, as compared with atovaquone which prevents movement of the ISP [183].  

 HDQ. 1-Hydroxy-2-dodecyl-4(1H)quinolone is a potent nanomolar inhibitor of P. 

falciparum. HDQ is structurally very similar to that of ubiquinol, and was found to inhibit 

the mitochondrial NDH2 enzyme, as well as a potent inhibitor of the cytochrome bc1 

complex, where inhibition is caused by binding the Qi site. This is a novel mechanism of 

action capable of targeting two mitochondrial enzymes [182, 183].  

 GSK93121A. This GSK compound belongs to the 4(1H)pyridone class, and is an 

electron transport inhibitor that acts on the Qi site of cytochrome bc1. It was initially a 

preclinical candidate but was discontinued based on safety data from a soluble 

phosphate prodrug of the candidate, leading to other related compounds being 

abandoned as well [197]. It has been suggested that the Qi site binding was to blame 

for safety concerns [198].  

 ICI56,780 and P4Q-391. Both compounds are known to be very potent inhibitors 

of the cytochrome bc1 complex. Both compounds remain effective against atovaquone-

resistant parasite TM90-C2B, but to a slightly diminished extent which brings about 
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questions as to whether it is truly a Qi site inhibitor or possibly acts to inhibit the bc1 

complex at a site other than Qo or Qi [199].  

DSM1. DSM1 is a novel triazolopyrimidine inhibitor of the DHODH enzyme. 

Parasite resistance to this inhibitor has manifested as DHODH copy number 

amplifications, but resistance to the related triazolopyrimidine DSM74 has shown both 

DHODH copy number amplifications and mutations in DHODH [200, 201]. DSM74 

selection yielded the following DHODH mutations: E182D, F188I, F188L, F227I, I263F, 

and L531F [201]. Interestingly, high levels of DSM1 pressure were shown to create 

atovaquone tolerance, though the cause for this is uncertain [202]. 

 

Preliminary/Relevant Studies from the Kyle Laboratory 

Phase II Clinical Trials of Atovaquone, Thailand (1991) 

 Initial observations made in the Phase II studies of atovaquone in Thailand 

showed that roughly 30% of patients experienced treatment failure to atovaquone 

monotherapy [119]. The patient histories for the admission and recrudescent isolate 

pairs can be seen in Table 2.1, as well as the various treatment regimen dosing groups 

they belonged to. Parasites from the treatment failures with atovaquone alone or in 

combination with pyrimethamine were found to either have a Y268S/N mutation in the 

cytochrome b gene, or wild-type in the case of TM90-C6B. TM93-C1088 had an 

admission isolate but it was lost in a liquid nitrogen tank failure. TM92-C1086’s paired 

admission isolate TM92-C1028 was found to be positive for mycoplasma contamination 

upon thawing and was treated with MRA (mycoplasma removal agent), but it failed to 

thrive in culture. 
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Chemotype Screens Identify Extreme Pan-Resistance to mtETC Inhibitors 

 

 In order to identify whether any cross-resistance was observed in patient isolate 

samples, [3H]hypoxanthine assays were performed using drugs that target diverse 

mitochondrial function. Any unique cross-resistance patterns may have given clues as 

to alternative mechanisms of resistance that contribute to the wide-ranging atovaquone 

resistance phenotype, considering Y268S mutations alone cannot explain it. As seen in 

Table 1.2 below, TM90-C6B (wt-treatment failure) only showed low-level resistance to 
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atovaquone. TM90-C2B and TM90-C50B5 (Y268S treatment failures) both display 

moderate levels of resistance to atovaquone and myxothiazol (both mtETC inhibitors 

that act on the Qo site of Complex III), while their sensitive admission isolate pairs 

TM90-C2A and TM90-C40B2 are sensitive. TM92-C1086 and TM93-C1088 are Y268S 

recrudescent parasites that came from the atovaquone/pyrimethamine treatment 

regimen, and they displayed high-level resistance to atovaquone as well resistance to 

all electron transport chain inhibitors tested.  

 

 

 

Focus of Study 

The primary aims of this project were to understand the mechanisms by which 

atovaquone resistance is generated, as well as to provide an explanation of the diverse 

parasite phenotypes that derived from atovaquone treatment failures, as well as in vitro 

selected parasite lines.  
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CHAPTER 2 

PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF ADMISSION AND 

RECRUDESCENT PATIENT ISOLATES  

 (SPECIFIC AIM 1) 

 

 

 

Rationale of Study 

  Parasite resistance to all existing drugs endangers the global elimination 

campaign, with untreatable malaria as a potential consequence. The Plasmodium 

falciparum parasite has historically defeated several remarkably efficacious drugs, the 

most recent being the potent artemisinin class. Many new chemotherapeutic strategies 

are currently exploiting the parasite mitochondria as a drug target, since their divergent 

and severely attenuated mitochondrial functions provide an attractive biological choke 

point to kill the parasite with minimal host toxicity. Although the mtETC is abbreviated in 

P. falciparum, it is the source of the mitochondrial electrochemical gradient and is 

essential in its role to provide orotate for pyrimidine biosynthesis via activity of the 

dihydroorotate dehydrogenase enzyme (DHODH) [117, 155, 176]. 

  Atovaquone, a naphthoquinone, along with the pyridones [197, 203, 204], 

acridones [205], acridinediones [206-208], tetrahydroacridines [206], and the 4(1H)-

quinolones [190, 209-211] potently inhibit the cytochrome bc1 complex of the 

mitochondrial electron transport chain (mtETC) within the mitochondria, with disruption 
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of pyrimidine biosynthesis and collapse of membrane potential leading to parasite 

death. 

  Despite the initial appeal of this strategy, there has been mounting evidence that 

targeting this pathway leads to rapid development of antimalarial resistance, beginning 

with the treatment failures first seen in the initial Phase II clinical trials for atovaquone 

between 1991-1994 in Thailand [119]. These studies demonstrated that atovaquone 

monotherapy resulted in clinical treatment failures and subsequent recrudescence of 

infection, prompting the use of atovaquone in combination with proguanil (Malarone) for 

malaria treatment and prophylaxis. Following the administration of Malarone in 

Thailand, sporadic treatment failures were reported soon after, and it is estimated that 

approximately 1 in 100 travelers treated with Malarone to treat P. falciparum infection 

experience treatment failure attributed to atovaquone resistance [212]. Clinical 

treatment failure was linked to an amino acid substitution at position Y268 in 

cytochrome b and was additionally confirmed in unpublished genotype data of the 

treatment failures from these initial Phase II studies [192, 213].   

  While it is thought that atovaquone monotherapy rapidly gives rise to de novo 

resistance within the duration of a single patient infection with the acquisition of the 

cytochrome b Y268 substitution, this clinically relevant mutation has yet to be seen with 

in vitro atovaquone resistance selection studies.  It has been suggested that 

evolutionary fitness plays a role in limiting the diversity of resistance development, with 

repeated selection of Y268 substitutions accounting for parallel mutation development in 

clinical resistance outcomes [201].  However, this concept alone cannot explain why in 

vitro selections do not have the same mutation outcome of clinical atovaquone 
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resistance, with reports of mutations elsewhere in cytochrome b reported at peripheral 

amino acid positions, such as M133I, M133V, P275T, K272R, G280D, L283I, V284K, 

L144S and F267V [192, 194, 201].  Additionally it has been shown that there are strain-

specific differences in the propensity of parasites to become resistant to atovaquone in 

any capacity, where HB3 and D6 parasites failed to generate resistance to 10-8 M 

atovaquone even with parasite densities of 108/flask [196]. Taken together, these two 

studies suggest that parallel selection of the Y268 cytochrome b mutation will occur only 

in certain genetic backgrounds.  

  Here we show the phenotypic characterization of parasites isolated from patients 

that failed various dose regimens of atovaquone or atovaquone/pyrimethamine 

combination therapy.  These patient isolates exhibited remarkable phenotypic diversity, 

with a range of 5-30,000 fold resistance to atovaquone. Parasites with exceptionally 

high resistance to atovaquone also revealed pan-mtETC resistance to all drugs we 

tested that target the mitochondria, as well as phenotypic plasticity with a gradual loss 

of high-grade resistance during continuous culture over time. In the field isolates, we 

observed considerable variation in resistance to atovaquone and other drugs that target 

diverse mitochondrial enzymatic functions. This spectrum of response to mitochondrial 

inhibitors cannot be explained by the Y268 mutation alone, leaving many questions 

about how parasites respond and overcome drug pressures in the mitochondrial setting, 

and how mitochondrial mutations emerge in parasite populations. These remarkable 

parasite adaptive strategies underscore a potential threat to many drugs in the pipeline 

that target mitochondrial function. 
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Materials and Methods 

Parasites and in vitro Culture  

 Admission and recrudescent parasite samples were collected from patients in the 

Phase II clinical trials upon admission for treatment, and again following failure of the 

treatment regimen (various dose regimens of atovaquone monotherapy or 

atovaquone/pyrimethamine combination therapy) [119]. The parasite history for paired 

admission and recrudescent isolates are outlined in Table 1.1.   

 Parasites were adapted to in vitro culturing and maintained according to the 

methods previously described by Trager and Jensen, with modifications [214].  

Parasites were maintained at 2% hematocrit in human O+ erythrocytes in RPMI 1640 

(Invitrogen) medium containing 25 mM HEPES, 28 mM NaHCO3, 10% human type A 

positive plasma and incubated at 37°C in 5% O2, 5% CO2, and 90% N2 atmospheric 

conditions. Cultures were sustained with media changes three times per week and kept 

below 5% parasitemia with sub-culturing. 

In vitro Drug Susceptibility Testing 

The methods used were performed as described previously [215] with a 

modification of a 72-hour incubation period. Briefly, sorbitol-synchronized ring stage 

parasites were diluted to 2% parasitemia, and seeded into 96-well plates in the 

presence of drug in a 1:3 dilution series. After 48 hours of incubation, [3H]hypoxanthine 

was added to the plates at 48 hours, and allowed to incorporate for an additional 24 

hours. The radiolabeled cells were harvested at 72 hours, and 50% maximal response 

concentrations (EC50) were calculated using Trifox. Several drugs were used that target 

mitochondrial function to perform a mini-structure activity study for a clearer 
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understanding of the broad spectrum atovaquone-resistance phenotypes (as seen in 

Table 1.2). The drugs atovaquone (ATOV; 2-hydroxynapthoquinone), antimycin A 

[ANT], and myxothiazol [MYX] were purchased from Sigma (St. Louis, MO). The 

compounds ICI 56,780 [phenoxyethoxy-4(1H)-quinolone], P4Q-391 [4(1H)-quinolone], 

ELQ-300 [4(1H)-quinolone], and HDQ [1-hydroxy-2-dodecyl-4(1H)-quinolone] were 

synthesized and purified by the Manetsch laboratory at the University of South Florida, 

Department of Chemistry. DSM-1 [triazolopyrimidine] was generously provided by 

Pradipsinh Rathod (University of Washington). All compounds were used following 

dilution in DMSO with final concentrations no more than 0.5%.  

Genomic DNA Sequencing 

 DNA Extraction from Parasites. For PCR and downstream candidate gene 

sequencing, P. falciparum-infected erythrocytes (8-10% parasitemia, predominantly 

trophozoite/schizont stages) were centrifuged to remove media, washed with 0.1% 

saponin in 1x PBS for 10 min, centrifuged for 10 min and washed again briefly in 0.1% 

saponin PBS. Following saponin lysis, two more PBS washes and spins were 

performed to remove any residual lysis products. The parasite pellet was resuspended 

in 10x of the original RBC pellet volume in 1x PBS, and incubated with 20 uL RNase A 

(20 mg/mL) at 37°C for 10 min. Genomic DNA (gDNA) was then extracted with the 

Qiagen DNeasy Kit according to manufacturer’s protocols. 

 Sequencing for SNPs in Mitochondrial Genes. We wanted to sequence 

several candidate genes in the mtETC for possible additional SNPs to explain our drug 

resistance spectrum phenotypes, beginning with confirming the mutations in 

cytochrome b. All genes that were sequenced for patient isolates are denoted in closed 
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boxes in Figure 2.1, and all primer sets and programs can be found in Table 2.1. All 

PCRs were set up similarly to the sequencing of the cytochrome b gene below. 

Candidate genes included PFI0735c (NDH2), PFF0160c (DHODH), PFE1155c (Core 

1), PFI1625c (Core 2), PF14_0597 (cyt. c1), PF14_0373 (Rieske), PF14_0248 (QCR6), 

PF10_0120 (QCR7), and the three mt-encoded genes: MAL_MITO_3 (cyt. b), 

MAL_MITO_1 (coxIII), MAL_MITO_2 (coxI). For the primers in Table 2.1, the primers 

labeled PCR FOR and PCR REV were used in PCR amplifications, and SEQ PR 

denotes primers used to sequence the amplification in its entirety. 

 All P. falciparum cytochrome b PCR products were amplified using primers 

cytbFOR 5’—TGCCTAGACGTATTCCTG—3’ and cytbREV 5’—

GAAGCATCCATCTACAGC—3’ with AccuPrime Taq DNA Polymerase HF (Invitrogen) 

as 50 μL reactions with 10X AccuPrime PCR Buffer II (5 μL), PCR primers (0.2 μM final 

concentration), template DNA (~20-50 ng), AccuPrime Taq HF (1 U), and brought to 50 

μL total volume with nuclease-free water. The P. falciparum cytochrome b 

thermocycling conditions were as follows: initial denaturation of 94°C for 1 min, 32 

cycles of 94°C for 30s, 54°C for 20s, and 68°C for 1:20s. All PCR products and no-

template controls were run out on 1% agarose in 1X Tris-acetate-EDTA (TAE) gels 

stained with SYBR Safe DNA Gel Stain (Invitrogen) and visualized on a BioRad GelDoc 

imaging system. PCR products were purified with the QIAquick PCR purification kit 

according to kit protocols (Qiagen), and the concentration assessed using a NanoDrop 

spectrophotometer. Sequencing of PCR products was performed by Genewiz using 

sequencing primers for cytochrome b outlined in Table 2.2. Each parasite sample was 

PCR amplified and sequenced in duplicate to rule out any SNPs being introduced by 
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PCR polymerase. Sample sequences were analyzed and aligned using ApE (A Plasmid 

Editor) software, and mapped to the Pf-3D7 cytochrome b gene for mutation detection. 

Pyrosequencing of Cytochrome b Y268S Allele 

  The Pyromark Q96 ID system was used for the detection of SNPs for Y268S 

detection in Pf-cytochrome b, with Qiagen Pyromark Gold Q96 reagents and buffers 

along with streptavidin sepharose beads (GE Healthcare). All template and reaction 

components were prepared according to manufacturer’s protocols. Pyrosequencing 

primers were designed using Pyromark Assay Design Software. Primers for the initial 

PCR reaction were amplified with PFcytb_pyro_Biotin_FOR  5’—Biotin-

ACCATGGGGTCAAATGAGTTAT—3’ and PFcytb_pyro_REV 5’—

AGCTGGTTTACTTGGAACAGTTTT—3’ as 50 μL reactions with 25 μL 2X Phusion Hot 

Start II HF PCR Master Mix, 0.2 μM primer concentrations, ~10-50 ng template gDNA, 

brought to 50 μL total volume with nuclease-free water, with the following thermocycling 

conditions: initial denaturation of 98°C for 30s, 55 cycles of 98°C for 30s, 53°C for 5s, 

and 72°C for 8s. Subsequent PCRs were run on 1.5% agarose gels to confirm a single 

discrete band without excess primer present, as unconsumed primer has been shown to 

interact with the pyrosequencing primer to contribute to a background signal in no 

template controls commonly in pyrosequencing reactions. This was minimized by using 

low primer concentrations and using a high cycle number to exhaust any residual 

primers.  

  The Pyromark pyrosequencing assay was performed according to standard 

manufacturer’s protocols with pyrosequencing primer PFcytb_seq_assay_REV 5’—

TGGAACAGTTTTTAACATTG—3’. Each parasite gDNA sample was initially amplified 
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independently in triplicate, and had two technical replicates per reaction (25 μL PCR per 

pyrosequencing reaction) on the Pyromark Q96 ID for a total of at least 12 

pyrosequencing runs per parasite gDNA template. Allele frequencies were analyzed by 

Pyromark ID software in allele quantification mode.  

Establishment of Pyrosequencing Y268S Assay Standard Curve 

  Since all Y268S mutant genotypes still contained some small quantities of wild-

type allele (wt), we chose to use the parasite with the highest percentage Y268S 

mutant, TM90-C50B5 gDNA (99.52% mutant) and D6 (0% mutant) were mixed at 10% 

increments from 0% wt gDNA + 100% wt gDNA, adding in additional increment mixtures 

at the lower 5% and upper 95%, with 1% increments to look at the sensitivity of 

detection. These ratio wild wt:mutant gDNA mixtures were made independently four 

times and then used in subsequent PCR reactions and pyrosequencing reactions to 

generate the standard curve seen in Figure 2.2. The standard curve was plotted as 

mean % wt frequencies, and error bars indicate SEM.  

Phenotype/Genotype Stability Assessment of TM92-C1086 

  TM92-C1086 displayed an unstable phenotype with declining atovaquone EC50 

over a period of two months. A fresh cryopreserve of TM92-C1086 and TM90-C2B were 

thawed, and parasites were monitored weekly with [3H]hypoxanthine assays and Y268S 

pyrosequencing to see if the parasite was maintaining the Y268S mutation. This 

experiment was performed two times with the same outcome, though the week-to week 

EC50 fluctuations in each flask was different, so for clarity a single two-month time 

course was plotted.  



	

	 70 

Table 2.1. PCR Primers and Programs Used in mtETC Sequencing.  
 

Primer Type Primer Name 
(Gene ID, Primer 

Use, Primer 
Orientation) 

Primer Sequence PCR 
Product 
Length 

PCR 
Program 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 
SEQ PR 
SEQ PR 

0120_PCR_FOR 
0120_PCR_REV 
0120_FOR_INT 
0120_E1_REV 
0120_E1_FOR 
0120_REV_INT 

5’—CTAACCGCGTTTGTCCTAACC—3’ 
5’—CTGGTGGTATCGTGTCATC—3’ 
5’—ATTCAGCTCCAAGCCTGTTC—3’ 
5’—TAAGAGCACCATATGAGAGATGG—3’ 
5’—CAAGGAGATATAGAAGGATGTTAAGAGGAAC—3’ 
5’—AGCAGCCATACCTCATTC—3’ 

2733 bp 94°-1:00 
32 cycles: 
94°-0:20 
52°-0:20 
58°-4:00 

 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 
SEQ PR 
SEQ PR 

0735_PCR_FOR 
0735_PCR_REV 
0735_FOR_INT 
0735_REV_INT 
0735_FORINT2 
0735_REVINT2 

5’—ACCCTAATTCGCCTGCTC—3’ 
5’—GGTTCCTCCAAATCACATGC—3’ 
5’—GTTCAGGAAATGTGGACAAG—3’ 
5’—CAAATGGTATGGGCGTCCTT—3’ 
5’—TATGGTCTTCTTATCTGGGCTAGTGG—3’ 
5’—CATGTAGCTGTTGTAGGAGGAGGTC—3’ 

5038 bp 94°-1:00 
32 cycles: 
94°-0:20 
55°-0:20 
58°-4:00 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 

0248_PCR_FOR 
0248_PCR_REV 
0248_FOR_INT 
0248_REV_INT 

5’—CTTGACACATTCACCTGAAC—3’ 
5’—ACAGTACATTCTTGTGGGAC—3’ 
5’—GCAGTCAAATGTGTAAGACCAG—3’ 
5’—ACAGTACATTCTTGTGGGAC—3’ 

2707 bp 94°-1:00 
32 cycles: 
94°-0:20 
52°-0:20 
58°-4:00 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 
SEQ PR 
SEQ PR 

1155_PCR_FOR 
1155_PCR_REV 
1155_REV_INT 
1155_E1_REV 
1155_E2_REV 
1155_E2_FOR 

5’—AGCATAGCACTGAGAACAAG—3’ 
5’—ACGGACAAGAGTTGATACTG—3’ 
5’—GAACCATCGAATACCTCTG—3’ 
5’—GCTTCACGTTTACCTATCGAACAC—3’ 
5’—GTTCTTAAATGAGATAAATGTGCCGTACTATG—3’’ 
5’—GAATCATGTATGGCCTTTAGTACTCAGCATTCAG—3’ 

3209 bp 94°-1:00 
32 cycles: 
94°-0:20 
55°-0:20 
58°-3:30 
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Table 2.1, continued. PCR Primers and Programs Used in mtETC Sequencing. 

Primer Type Primer Name 
(Gene ID, Primer 

Use, Primer 
Orientation) 

Primer Sequence PCR 
Product 
Length 

PCR Program 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 
SEQ PR 
SEQ PR 

1625_PCR_FOR 
1625_PCR_REV 
1625_FOR_INT 
1625_FOR_INT2 
1625_REV_INT 
1625_REV_INT2 

5’—TCCTGCCCTCTTCATTTG—3’ 
5’—CGAGCAATACAAACGGAC—3’ 
5’—CGAGCAATACAAACGGAC—3’ 
5’—TATGTGCCGTTGGTGATG—3’ 
5’—TGATGACTCAGGTCCAAATG—3’ 
5’—TCAGTACATCGACCTCAG—3’ 

3511 bp 94°-1:00 
32 cycles: 
94°-0:20 
55°-0:20 
58°-3:30 

PCR FOR 
PCR REV 
SEQ PR 
 

MM2_PCR_FOR 
MM2_PCR_REV 
MM2_REV_INT 

5’—CTGGCCTACACTATAAGAAC—3’ 
5’—GAGAATTATGGAGTGGATGGTG—3’ 
5’—GGTATGATACACAGCTCTTC—3’ 
 

1809 bp 98°-0:30 
32 cycles: 
98°-0:10 
53°-0:30 
72°-7:00 

72°-0:30FE 

PCR FOR 
PCR REV 
 

MM1_PCR_FOR 
MM1_PCR_REV 
 

5’—TGCGATGAGACGACATGGAG—3’ 
5’—GCTATCAAATGGCGAGAAGGGAAG—3’ 
 

1008 bp 98°-0:30 
32 cycles: 
98°-30s 
61°-0:30 
72°-0:15 

72°-3:00FE 

PCR FOR 
PCR REV 
SEQ PR 
SEQ PR 

MM3_PCR_FOR 
MM3_PCR_REV 
MM3_2B_REV 
MM3_2A_FOR 

5’—TGCCTAGACGTATTCCTG—3’ 
5’—GCTGTAGATGGATGCTTC—3’ 
5’—CTGAGTATTGAGCGGAAC—3’ 
5’—GTGGAGGATATACTGTGAGTG—3’ 

1382 bp 98°-0:30 
32 cycles: 
98°-0:10 
54°-0:40 
72°-0:30 

72°-7:00FE 
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Table 2.1, continued. PCR Primers and Programs Used in mtETC Sequencing. 

Primer Type Primer Name 
(Gene ID, Primer 

Use, Primer 
Orientation) 

Primer Sequence PCR 
Product 
Length 

PCR 
Program 

PCR FOR 
PCR REV 
SEQ PR 

DHODH_FOR 
DHODH_REV 
DHODH_INT 

5’—GATCCCTAGGATGATCTCTAAATTGAAACCTCAATTTATG—3’ 
5’—GATACTCGAGTTAACTTTTGCTATGCTTTCGGCCAATG—3’ 
5’-CATTATTTGGATTATATGGGTTTTTTTGAATCTTATAATCCTG—3’ 

1774 bp 94°-1:00 
32 cycles: 
94°-0:20 
55°-0:20 
58°-3:30 

PCR FOR 
PCR REV 
SEQ PR 
 

0597_PCR_FOR 
0597_PCR_REV 
0597_FOR_INT 
0597_REV_INT2 

5’—AAAAATGGCTGGTGGGGGAG—3’ 
5’—CCAACGTCCAAAAATAAGAAACTAATCCA—3’ 
5’—TTCCTTGTCCACTGTGTAG—3’ 
5’—GGCAAAGATTCTTCTGGAC—3’ 

1428 bp 94°-1:00 
32 cycles: 
94°-0:20 
56°-0:20 
58°-2:10 
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Results  

Sequencing of Mitochondrial Genes in Patient Isolates 

 In an attempt to find additional SNPs potentially involved in the observed 

differences between low, moderate, and extreme resistance, candidate genes were 

chosen from the mtETC to sequence. All Complex III subunits were sequenced, the 

NDH2 and DHODH enzymes, and the other two subunits encoded in the mtDNA: COXI 

and COXIII in Complex IV.  As seen in figure 2.1 below, all enzyme subunits sequenced 

and their gene IDs are identified in boxes. Primers were initially designed for the 

Complex II subunits, as well as glycerol-3 phosphate dehydrogenase and malate 

quinone oxidoreductase, but they were unable to be amplified because of long repetitive 

AT stretches in the intronic regions of the DNA. 
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Figure 2.1. The mtETC and Candidate Resistance Genes (adapted from Biagini et al. 
2012. PNAS 109(21): 8298-303) [190]. All genes enclosed in boxes were successfully 
amplified and sequenced to look for SNPs that may contribute to the atovaquone-
resistance spectrum of phenotypes, including all subunits of the cytochrome bc1 
complex, DHODH, NDH2, and all mitochondrially-encoded genes (cyt. b, coxI, coxIII). 
Several other genes seen in this figure were attempted to be amplified, but were 
unsuccessful after primer optimization/redesigns.  
  
 

 

 As seen in Table 2.2 above, the only gene sequenced that contained SNPs was 

MAL_MITO_1 (coxIII), with D6, TM90-C2A, TM90-C2B, TM90-C40B2, TM90-C50B5, 

and TM93-C1090 having an I239V mutation. It seems unlikely that this mutation is of 

significance in extreme mtETC resistance, considering it is present in both admission 

and recrudescent isolates in moderate-resistant phenotypes like TM90-C2A/C2B. 



	

	 75 

Further, it is not a novel SNP as it can be found commonly in among parasites with 

available sequence data in PlasmoDB. However, it is of interest that TM93-C1051 has 

an I239V mutation, yet its recrudescent pair TM93-C1090 loses the mutation after 

atovaquone exposure, especially since TM93-C1090, TM92-C1086 and TM93-C1088 

are all missing the mutation and were in the atovaquone/pyrimethamine treatment 

group. Further, no peripheral mutations were found that could explain the low-level 

resistance for TM90-C6B.  

Establishment of a Y268S Pyrosequencing Assay 

 Since there are 20-30 mtDNA copies in the mitochondrial genome, we developed 

a pyrosequencing assay to detect the Y268S allele so that we could monitor the 

presence of Y268S in our populations of parasites that exhibited unstable drug 

response phenotypes. Additionally, we aimed to pyrosequence all of the admission and 

recrudescent isolates to see whether low levels of Y268S mutants could be seen in the 

pre-treatment admission isolates. It is a widely-held theory that the Y268S mutation is 

generated de novo in the parasite, and that this could be because atovaquone exerts a 

mutagenic effect on the parasite. However, it would then be expected to have this same 

mutagenic effect in vitro, yet many have generated in vitro atovaquone resistance 

without recapitulating the clinically relevant Y268S mutation, leaving questions about 

how Y268S mutations arise. Therefore, we speculated that the Y268S mutation could 

be a heritable trait, and that low levels of mutants could be cryptically present in 

sensitive parasites, since its theoretically possible that a 20-30 mtDNA copy parasite 

could have heterogeneity in these copies.  
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 A standard curve was created to assess the ability of the assay to detect known 

percentages of wild-type and mutant DNA. Parasite wild-type DNA (D6) was combined 

at in 10% intervals with TM90-C50B5 (99.5% mutant) DNA from 0% wild-type to 100% 

wild-type, in addition to the lower 5% and upper 5% being mixed in 1% increments. All 

DNA mixtures were PCR amplified and pyrosequenced (PCRs in triplicate, and 2 runs 

per PCR product) on four separate occasions (n=24). Means and SEM were plotted to 

generate the standard curve in Figure 2.1. No false-positives were detected in the 100% 

D6 pyrosequencing runs that passed quality control in pyromark analysis (n=21). As 

seen in Figure 2.1, the assay slightly over-estimates the WT percentage in the lower 

10% of the standard curve, and slightly underestimates it in the upper 10%, with an 

R2=0.9946 calculated in Graphpad Prism Software. A combination of D6, W2, NF54, 

and 3D7 runs were used to calculate the false-positive rate for the assay, since D6 is 

known not to be capable of generating atovaquone resistance, and W2, NF54, and 3D7 

are known to generate atovaquone resistance mutations other than Y268S [192, 194, 

196, 201]. Out of 48 combined pyrosequencing runs, four gave false-positives (3 in D6, 

1 in 3D7), for a false-positive rate of 8.3%.  
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Figure 2.2. Standard Curve of Y268S Cytochrome b Pyrosequencing Assay. Genomic 
DNA from D6 (wt) and TM90-C50B5 (99.52% mutant) were mixed at various 
concentrations and used to create a standard curve. Data points were plotted as mean 
percent wt frequencies with at least 12 pyrosequencing runs per data point. Allele 
frequencies on the lower 10% and upper 10% were slightly overrepresented and 
underrepresented, respectively.  
 
 
 
Extreme mtETC Resistance Parasites Gradually Lose Resistance  
 

 While culturing the extreme-resistant parasites TM92-C1086 and TM93-C1088, 

there was a general observation made that they did not thrive in culture like other 

culture-adapted strains such as D6 and W2, as noted by a reduced proliferation rate. 

However, over a period of several months in continuous culture, the parasites began to 
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grow better but that was accompanied with a fluctuating decline in EC50 value, until the 

parasite lost extreme resistance altogether. While TM90-C2B has been seen to 

fluctuate more than 3-fold in EC50 to atovaquone (generally 10-60 µM), it has never 

experienced a sharp, steady decline or showed signs of reversion of the Y268S allele 

despite over 20 years of in vitro culturing. In order to better understand this unstable 

phenotype, a pyrosequencing assay was used to quantify the frequencies of the Y268S 

allele and observe the parasite phenotype/genotype relationship over time. Fresh 

cryopreserves of TM92-C1086 and TM90-C2B were thawed and cultured continuously, 

with gDNA samples and [3H]hypoxanthine assays obtained weekly. As seen in Figure 

2.3, TM90-C2B indeed showed fluctuating responses to atovaquone and DSM1 over 

time, but it remained steady in Y268S allele frequency. TM90-C2B spiked up to 68 µM 

in atovaquone EC50, and was seen as low as 15 µM during this two-month period.  

 With TM92-C1086, the atovaquone and DSM1 EC50 values did not rise and fall in 

tandem, but fluctuated without any discernable pattern. During the course of the 

experiment, the Y268S frequency declined to nearly wild-type at the end of two months. 

This genotype reversion back to wild-type was accompanied with accelerated growth 

rates in the parasites, as initially the parasites did not grow to high parasitemias.  

  

 

 



	

	 79 

 

 

 
 
 
Figure 2.3. TM90-C2B Retains Stable Y268S Genotype. While EC50 for both 
atovaquone (shown in red) and DSM1 (blue) fluctuate in parallel from week to week, 
there is no evidence in the loss of Y268S (shown in grey bars, plotted as mean 
frequency of Y268S and SEM). The left axis corresponds to the frequency of Y268S as 
% mutant, and the left axis corresponds to inhibitor EC50 in µM for atovaquone and 
DSM1. Pyrosequencing mean Y268S frequencies are the average of three independent 
PCR reactions, each run in duplicate (6 pyrosequencing runs total). The error bar 
missing on week 2 indicates that it detected 100% mutant for all 6 pyrosequencing runs.  
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Figure 2.4. TM92-C1086 Gradually Loses Y268S Genotype. EC50 values for 
atovaquone (shown in red) and DSM1 (blue) do not correlate from week to week, and 
Y268S genotype declines over a period of two months (shown in grey bars, plotted as 
mean frequency of Y268S and SEM). The left axis corresponds to the frequency of 
Y268S as % mutant, and the left axis corresponds to inhibitor EC50 in µM for 
atovaquone and DSM1. Pyrosequencing mean Y268S frequencies are the average of 
three independent PCR reactions, each run in duplicate (6 pyrosequencing runs total). 
The data point for DSM1 missing on week 4 indicates DSM1 EC50 was not obtained for 
that week.   
 
 
Pyrosequencing the Y268S allele in Patient Isolates 

  All parasites were grown to harvest gDNA from earliest cryopreservation dates, 

and each parasite was pyrosequenced as seen in Figure 2.5. All admission isolates had 
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detectable Y268S, with TM90-C2A, TM90-C6A, and TM90-C40B2 having 1.0 ± 0.39, 

1.0 ± 0.30, and 1.1 ± 0.40 percent mutant respectively.  

 TM90-C6B was a supposed ‘wild-type treatment failure’ from the Phase II 

studies, and it was found to be 2.3 ± 0.63 percent mutant. TM90-C6B was deposited 

into the MR4 repository to be a public research resource for parasite lines, but it was 

reported in publication as having atovaquone-resistant EC50 values from researchers 

that obtained it. MR4-C6B was included in this dataset because it was speculated that 

this parasite was actually TM90-C2B and was accidentally mislabeled. Another 

possibility is that our TM90-C6B parasite grew up from cryopreservation in one vial as 

wild-type, and another was mutant and got sent to MR4.  MR4-C6B was 94 ± 1.6% 

mutant, while TM90-C2B is 97 ± 0.81% mutant, giving them comparable Y268S 

frequencies, but it is unsure what the identity of MR4-C6B is without more in-depth 

genotyping.  

 TM90-50B5 had the highest Y268S mutant frequency of any parasite sampled, 

with 99.5 ± 0.32% mutant, and extreme-resistant parasite TM93-C1088 had 99.3 ± 

0.45% mutant. TM92-C1086 shows signs of beginning reversion in pyrosequencing, 

with two lower values being detected around 50%, with a mean of 88.9 ± 6.09% mutant. 
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Figure 2.5. Detection of Y268S Mutants in Patient Isolates. For each pyrosequencing 
run, parasite gDNA sample was PCR amplified in triplicate and pyrosequenced in 
duplicate for n=6. Pyrosequencing runs were completed twice (total n=12) but some 
individual wells did not pass quality control, so all gDNAs have between 9-12 overall 
data points (single dots are individual runs plotted, line is population mean). Genotype 
frequencies were plotted as % mutant Y268S gDNA. D6, W2, NF54, and 3D7 were 
used as controls because they are either known to be incapable of developing 
atovaquone resistance (D6) or known to develop mutations other than Y268 mutations 
(NF54, W2, 3D7).  P-values are significantly different than controls in a one-tailed t-test, 
with p < 0.01 in admission and “wt treatment failure” groups, and p < 0.0001 for other 
recrudescent isolates.  
 

 

 

 



	

	 83 

Discussion 

 While sequencing of the candidate mtETC genes was important to rule out as a 

possibility in contributing to the atovaquone resistance spectrum, only a single change 

was noted in the cytochrome c oxidase subunit III, coding for an I239V amino acid 

substitution. All of the mutations in Pf-cytochrome b were consistent with their initially 

reported genotypes, with the exception of the TM90-C6B in the MR4 repository. 

Interestingly, this is not the first time there has been a discrepancy between the 

genotypes of parasites stored there and our own collection. The MR4-stock of TM93-

C1088 was sequenced and had a Y268S mutation as expected, but in addition, it also 

had a K272R mutation (data not shown). The K272R mutation has never been seen in 

isolation, but it has been seen to be co-selected with M133I during in vitro atovaquone 

selections, and it contributes to a substantial increase in EC50 compared with an M133I 

mutation alone [192]. We can only speculate what causes the genotypic inconsistencies 

between parasites from the same parasite line (assuming they weren’t mislabeled). It is 

unlikely that MR4-1088 was mislabeled considering we have not observed the K272R 

mutation in patient isolates before so it does not resemble any of the Thai patient 

genotypes, suggesting that these parasites are actively mutating without drug pressure. 

Along the same lines, it is possible that our TM90-C6B experienced spontaneous 

reversion of its Y268S genotype, while the MR4-C6B did not. Regardless, there is a 

dynamic process involved that is contributing to rapid genotypic changes in these 

parasites that warrants further investigation.  

 In the phenotype stability experiments with TM90-C2B and TM92-C1086, we 

were able to show that TM90-C2B has an unstable response to atovaquone, yet its 



	

	 84 

genotype remained stable (Figure 2.3). We are unsure what would cause such strong 

fluctuations in drug response, but it was observed in two separate studies. It is possible 

that the pyrosequencing assay is not sensitive enough to truly capture 5% differences in 

genotype frequencies, but another possibility is the parasites have unstable mtDNA 

copy number inheritance in each replication round. Plants that have similar mtDNA 

structure and replication strategies are known to have fluctuating mtDNA copy numbers, 

which would make sense in the context of being genotypically stable, yet having 

phenotypic fluctuations [216]. However, it cannot be ruled out that there are other 

elements acting on the phenotype of TM90-C2B, such as transcriptional expression of 

cytochrome b. Indeed, it has been shown that Y268S mutants have ~2-fold upregulated 

expression of both Complex III and Complex IV genes to compensate for the fitness 

costs associated with the Y268S mutated enzyme [193]. Our control parasites during 

this time frame did not experience more than 2-fold differences in their atovaquone EC50 

during this experiment, so we believe it is unlikely to be due to week-to-week assay 

inconsistencies. More experiments, such as using RT-PCR to investigate TM90-C2B 

atovaquone response fluctuations are warranted to better understand the unique 

phenotypes of mitochondrial mutants in this setting.  

 TM92-C1086 was monitored over a two-month time course and was found to 

revert its Y268S genotype in favor of wild-type (Figure 2.4). The evidence for the 

beginning of genotype reversion can be seen in the pyrosequencing of TM92-C1086 in 

Figure 2.5, where lower trailing values were detected and had an overly disperse 

detection plot. We can speculate that the extreme resistance phenotype has a higher 



	

	 85 

fitness cost to the parasite, causing a genotypic reversion event, though what causes 

extreme resistance remains unclear.  

 This is the first in vitro study implicating cryptic Y268S in parasites prior to 

atovaquone exposure, as seen in Figure 2.5. All admission isolates were shown to have 

significant Y268S frequencies around 1% compared to controls, and over 2% in the “wt 

treatment failure” TM90-C6B. While the assay is in the lower limit of detection for 

pyrosequencing technology, there are clear differences in detection between the control 

strains and low-level mutants. Other groups have looked at detection of mutants in 

admission isolates as well, but none have been detected [217]. This could be for many 

reasons, such as method of detection. Sanger sequencing, for example, will only detect 

minor allele frequencies starting between 20-30%, with low frequencies being 

completely missed. Further, strains may be different in the relative frequency of low-

level mutants they may harbor, and ours were high enough to be detected. Traits 

conferring selective advantage are random events, and a selection pressure bottlenecks 

a population which allows for survival of a minor variant that otherwise would be less fit, 

so we see no reason why the mutagenic atovaquone theory is the best explanation for 

the development of atovaquone resistance, as shown in Aim 2.  
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CHAPTER THREE 

INDUCTION OF ATOVAQUONE AND DSM1 RESISTANCE IN ADMISSION AND 

RECRUDSCENT ISOLATE CLONES  

 (SPECIFIC AIM 2) 

 

Rationale of Study 

  Evidence of cryptic Y268S heteroplasmy in admission isolates made us curious 

whether these cryptic mutants were capable of being selected in vitro. No in vitro 

selections with atovaquone have yielded the clinically relevant Y268 mutations, so we 

aimed to show that the parasite genetic background determines the type of resistance 

mutation that is selected upon atovaquone exposure. We included another cryptic 

Y268S mutant, ARC08-88-8A that was unrelated to the Thailand atovaquone studies, to 

see whether a wild, culture adapted clonal line with cryptic Y268S could develop 

atovaquone resistance. We also used menoctone (structurally related to atovaquone) in 

some drug selections to see whether developing the Y268S mutation is specific to 

atovaquone action.   

  In addition to selections with cryptic Y268S isolates, we wanted to attempt to 

select for an in vitro extreme resistance phenotype by taking an atovaquone resistant 

parasite (TM90-C2B clone) and exposing it to DSM1 pressure. DSM1 is an inhibitor of 

the DHODH enzyme, and is the only essential mtETC component in asexual stages, so 
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we speculated that a combination of atovaquone resistance and DSM1 resistance may 

create an extreme resistance phenotype. DSM1 resistance has been shown to manifest 

as either copy number amplifications or mutations in DHODH  [201, 218]. Further, high 

levels of DSM1 resistance have shown to create “atovaquone-tolerant” parasites, 

although the cause for this is uncertain.  

 

Materials and Methods 

Cloning by limiting dilution of Patient Isolates 

 Parasites from Phase II studies (TM90-C2A, TM90-C2B) were thawed as 

cryopreserved infected erythrocytes with the earliest possible freeze date, and cultured 

until they reached 2% parasitemia. Parasites were then diluted in whole culture and 

erythrocytes were counted on a hemocytometer to determine the number of 

erythrocytes per mL of culture volume. Parasites were then diluted to 1 parasite/50 µL 

concentration, and seeded into 96-well plates. Only plates with fewer than 50% positive 

wells were used, to increase confidence that they were single parasite clonal 

populations. Complete media (80%) was changed twice per week, and blood thick 

smears were made weekly of each well until parasites were sufficiently high to expand 

into larger culture volumes, and >20 clones were generated. A clone selected from 

TM90-C2A (TM90-C2A-F6) and TM90-C2B (TM90-C2B-A3) were used for subsequent 

resistance selection experiments. Sub-cloning the parasites prior to drug selections was 

necessary in order to provide an isogenic background as well as to maximize 

phenotypic stability, as many of these parasites experienced more widely fluctuating 

EC50 values to mitochondrial inhibitors (4-8 fold) than control parasites ( > 3 fold). We 
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believe the phenotypic fluctuations are a function of the genotypic plasticity within the 

population as a whole, where successive replication rounds vary somewhat in Y268S 

frequency. 

Development of Resistant Parasite Lines to Atovaquone/Menotcone in vitro 

  In order to evaluate whether the genetic cryptic heteroplasmy background of 

parasite strains is essential to the development of the Y268S mutation conferring 

atovaquone resistance, we assessed the resistance potential of admission isolate 

clones TM90-C2A-F6, TM90-C40B2, and ARC08-88-8A. TM90-C2A and TM90-C40 

were taken from patients prior to treatment and later recrudesced with Y268S mutations 

in cyt. b following atovaquone monotherapy regimens (Table 1.1).  TM90-C2A, TM90-

C40, and ARC08-88 were sub-cloned by limiting dilution prior to any drug selections, 

and sub-clones TM90-C2A-F6, TM90-C40B2, and ARC08-88-8A were used for all drug 

selections. ARC08-88 was originally obtained from the World Health Organization 

Global Plan Artemisinin Resistance Containment group, and was used to demonstrate 

the development of atovaquone resistance from a parasite outside the Phase II studies 

of atovaquone in Thailand that had cryptic Y268S heteroplasmy. TM90-C2A, TM90-

C40B2, and ARC08-88-8A were grown from earliest available cryopreserves to 108 and 

seeded into 25 ml flasks in triplicate. The complete medium contained approximately 

~10x EC50  atovaquone (10 nM)  or ~10x EC50 menoctone (1.5 µM) with media changed 

twice per week, and split 1:2 with fresh erythrocytes every 10 days to maintain 2% 

hematocrit. Parasites were considered “recovered” from drug selection when parasite 

densities reached 2% parasitemia and continued growth under continuous drug 
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pressure to freeze gDNA and cryopreserved samples. All parasites had the cytochrome 

b gene sequenced to look for possible mutations developed during drug pressure.  

Development of DSM1 Resistance in vitro 

  DSM1 selection was carried out as described above, with using concentrations at 

~10x EC50 of DSM1 for TM90-C2B-A3 (300 nM) and the same concentrations given to 

the atovaquone-sensitive clone TM90-C2A-F6. Initial EC50 values for these parasites 

was between 30-40 nM for DSM1, so the lower 30 nM was chosen for drug selection 

experiments. Because selection with the atovaquone-resistant population TM90-C2B 

was unsuccessful in three separate attempts at the 10x EC50 concentration, a lower 

concentration was attempted at ~2x EC50 (60 nM) and was successful.  

DHODH Copy Number Quantitative PCR (qPCR).  

Pf-DHODH copy number was determined using the DHODH qPCR primers 

previously described by Guler et al. [218] and the LDH-T1 FOR/REV control primers 

from Chavchich et al. [219] using Brilliant II/III SYBR Green Master Mix with ROX and 

the Mx3005P qPCR machine (Applied Biosystems). The relative copy number of 

DHODH was determined for 0.1 ng of gDNA and normalized to the LDH gene using the 

∆∆CT method [220]. Copy number is described as mean values of 2 or 3 replicates, 

rounded to the nearest whole number.  

 

Results 

Parasites Develop Resistance to Atovaquone/Menoctone in vitro 

  The atovaquone/menoctone selections aimed to evaluate the possibility that the 

genetic background is responsible for the type of resistance that develops in 
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atovaquone exposure. Each parasite background was cloned prior to drug selection. 

Interestingly, clonal populations of TM90-C2A and TM90-C2B were much more stable in 

their initial EC50, yet clonal populations have not been in continuous culture for 

comparable amounts of time to be compared directly about phenotype stability. On day 

three and four of all selections, many parasites were seen outside erythrocytes, and 

schizonts were observed that lacked significant DNA content. This morphological 

aberration is consistent with pyrimidine depletion in the parasites caused by atovaquone 

preventing ubiquinone generation in the parasite [117]. This was followed by parasites 

generally clearing from detection in blood thin smear. Parasites could still be seen 

sparingly in the thick smear, with one parasite visible for every 10-20 microscope fields 

of view. The notable exception to this is ARC08-88-8A, which showed evidence of 

crashing in the thin smear, but parasites were much more present in the thick smear, 

with 1-2 parasites still visible per field. As seen in Figure 3.1 below, there were 

considerable differences in recovery times between strains. TM90-C2A-F6 and TM90-

C40B2 under atovaquone pressure had similar recovery times, with approximately 30 

days until healthy parasites grew through continued atovaquone pressure. ARC08-88-

8A was fully recovered and growing 7 to 10 days sooner than the other atovaquone 

selections. ARC08-88-8A is a cloned parasite from the Artemisinin Resistance 

Containment group, and is known to have a delayed clearance phenotype to artemisinin 

as well as being a cryptic Y268S mutant, so it is uncertain whether this is a contributing 

factor to its earlier recovery from atovaquone exposure.   
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Figure 3.1. Schematic of Drug Selections using Atovaquone and Menoctone in vitro. All 
parasites were treated with 10x EC50 (10 nM) drug pressure with 108 parasites. Clonal 
lines of TM90-C2A (TM90-C2A-F6), TM90-C40B2 and ARC08-88-8A were used to 
generate resistant parasites in cryptic Y268S backgrounds to see if low-level mutants 
are responsible for the development of Y268S resistance. The mechanism of action of 
menoctone is suspected to be similar to atovaquone, so menoctone selections were 
performed to see if menoctone could generate Y268S mutations as well.  W2 does not 
have cryptic Y268S mutant frequencies and is not anticipated to generate Y268S 
mutants. All atovaquone-treated parasite groups successfully generated resistant 
mutants by day 32, but ARC08-88-8A developed resistance rapidly with recrudescent 
parasites at 2% parasitemia on day 15. In the menoctone-treated parasites, recovery 
times were the same at 22 days.  
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Sequencing of Atovaquone/Menoctone Resistant Selections Reveals Clinically 
Relevant Y268S Mutations 
 

  All parasite selections were PCR amplified and sequenced for mutations in 

dhodh, cytochrome b, and coxIII. All cryptic mutants were found to be Y268S mutants in 

cytochrome b, which is the first time the Y268S mutation has been successfully 

recapitulated in vitro. Menoctone, a napthoquinone related to atovaquone, developed an 

M133I mutation, which is a common atovaquone-resistance mutation that has been 

selected in vitro in multiple genetic backgrounds, suggesting the mode of 

action/resistance is similar to that of atovaquone. C2A-F6+10xMEN resulted in a Y268S 

mutation, which furthers that notion. All parasites sequenced were wild-type dhodh upon 

sequencing as expected. The majority of the parasites retained the coxIII genotype of 

their parental lines, with the exception of ARC08-88-8A+10xATOV, which started out as 

wild-type prior to selection. The significance of this genotype switching is unknown. 
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Figure 3.2. Pyrosequencing of Atovaquone/Menoctone Selected Parasites. Genomic 
DNA was harvested from parasite populations immediately following recovery and was 
used to evaluate the Y268S frequency.  
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Pyrosequencing confirms Y268S populations in resistant parasites 

  To evaluate whether the parasites fully selected for the Y268S allele, pre-

treatment and post-recovery parasite populations were pyrosequenced. All atovaquone-

selected parasites as well as menoctone-selected C2A showed majority Y268S 

genotypes, although no parasite has shown complete 100% mutant frequencies to date, 

they hover between 98-99% mutant. Interestingly, ARC08-88-8A (pre-treatment) 

showed a single detection of 10% mutant in its population, which may indicate a 

subpopulation that had higher Y268S frequencies (above 1-2%) that allowed it to 

recover so much faster than either TM90-C2A or TM90-C40B2.  

 
C2A+10xATOV Parasites Display Variable Phenotypes 
 

  Following recovery, all parasites were maintained on atovaquone pressure in the 

hopes of keeping stable phenotypes. As seen in Table 3.2, the majority of atovaquone-

selected populations had stable EC50 values such as C2A+10xATOV-3A and 3B, which 

were on the low-end of EC50’s typical for TM90-C2B. ARC08-88-8A+10xATOV-1A was 

incredibly resistant to atovaquone immediately following drug selection, with an EC50 of 
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66 µM to atovaquone but remained sensitive to DSM so did not exhibit an extreme 

resistance profile. In fact, this parasite was tested for drug susceptibility immediately 

following selection, and had not been in continuous culture for very long, so little can be 

said about whether this high EC50 is stable over time.  

  Menoctone resistance is in W2 developed the common M133I mutation, which 

accompanies a very modest resistance profile to atovaquone as published elsewhere 

[192]. C2A+10xMEN-1A on the other hand, had high grade resistance to atovaquone 

similar to ARC08-88-8A+10xATOV-1A, which may indicate that the parasites show 

highest resistance profiles prior to being cryopreserved, as both of these were assessed 

for drug susceptibility prior to cryopreservation, where the others were not.  

  However, certain parasites did not keep stable phenotypes (like C2B) and could 

be cultured at different times and have periods of low and high EC50s. An example of 

this is C2A+10xATOV-2B, which over time had EC50’s similar to that of the other 

atovaquone-selected parasites, but would then go through periods with highly elevated 

resistance similar to that of TM90-C2B. There was no particular correlation to timing or 

duration of culture to explain these fluctuations, similar to that of TM90-C2B during the 

phenotype stability experiments shown in Aim 1. Additionally, the high levels of 

atovaquone resistance were accompanied by an elevated, but not extreme resistance to 

other electron transport chain inhibitors, as seen in comparisons of C2A+10xATOV-2B 

EC50’s below. The lower and upper limits show the lowest and highest EC50’s obtained 

respectively, and is the representation of four replicates, two while in high EC50 

phenotype, and two in low EC50 phenotype.  
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   *Starred parasites indicate menoctone selection 
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  Overall, the atovaquone selections were successful in recapitulating the TM90-

C2B genotype and phenotype, especially where the phenotypic plasticity is concerned. 

No changes were observed in dhodh copy number for these parasites (data not shown) 

so DSM1 involvement in unlikely to be involved in this phenotype. A summary chart of 

drug selections outcomes in vitro to date are seen below in Table 3.5.  

 

TM90-C2B Cannot Generate DSM1 Resistance at 10x EC50 Concentrations 
 
  In an effort to recreate extreme resistance, TM90-C2B was given DSM1, a drug 

known to target the DHODH enzyme, as we believed that double-mutant parasites 

would have pan-resistance to mtETC inhibitors. Following multiple (3) attempts at 

selecting DSM1-resistant C2B parasites and carrying it out for 90 days, it was 

determined that these two resistance mechanisms are intolerant of one another, where 

atovaquone-resistance conferred by Y268S mutations could not tolerate generating the 

DSM1-resistance mechanism simultaneously. This argument is strengthened by the 

simultaneous selection of TM90-C2A-F6 with 10x EC50 DSM1 (300 nM), which was able 

to generate resistance readily at this high concentration. We then attempted a lower-

level DSM1 selection for TM90-C2B, where ~2x EC50 DSM1 was used (60 nM). 

Parasites readily tolerated this lower concentration, and while they dropped 

considerably in parasitemia and failed to grow for about two weeks, they didn’t 

completely crash, as is typical in a drug selection experiment. C2B+2xDSM1 parasites 

recovered on average at day 21, while C2A+10xDSM1 took somewhat longer, about 24 

days. A summary of DSM1 selection experiments can be seen below in Figure 3.3 

below.  
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Figure 3.3. Summary of DSM1 Selections in Atovaquone Sensitive and Resistant 
Backgrounds. C2B parasites fail to recover at 10x EC50 concentrations of DSM1, yet 
readily generate resistance at 2x EC50 concentrations. Atovaquone sensitive TM90-C2A 
readily generates resistance to 10xEC50 DSM1, suggesting these two resistance 
mechanisms are intolerant of one another.  
 
 
 
 
Initial Characterization shows Several Compensatory mechanisms to DSM1 
Pressure  
 

  Initial characterization of DSM1 selection parasites showed that parasite 

exposures in atovaquone-sensitive and atovaquone-resistant lines varied considerably 

in their chosen mechanism to combat DSM1 pressure. As the genotyping of DSM1 

selections in Table 3.6 show, atovaquone-sensitive TM90-C2A responded to DSM1 

pressure with either copy number amplifications in dhodh (which has been previously 

reported) as seen with C2A+10xDSM1-1A, or shockingly with low-level amplification of 

Y268S genotype combined with a mutation in dhodh, R265G, as seen in 

C2A+10xDSM1-2B. This R265G mutation in dhodh is a novel one, and the combination 

with partial Y268S/WT mutant, yielded a combined DSM1 and atovaquone-resistant 
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genotype as seen in Table 3.6. This is the first description of a Y268S mutation popping 

up from drug pressure on the DHODH enzyme. In order to quantify the percentages of 

Y268S mutant present in this parasite, all DSM1-selected lines were pyrosequenced as 

seen in Figure 3.4 below. Pyrosequencing results indicate that C2A+10xDSM1-2B was 

in fact 30% Y268S mutant at the time of sequencing, while C2A+10xDSM1-1A 

remained WT, as its chosen selection strategy was multiple (3) copies of the dhodh 

gene.  

  C2B+2xDSM1 selections sequenced immediately following recovery showed a 

mixture WT/Y268S mutant genotype, and initial EC50 determinations are shown for the 

parasites in Table 3.7. Parasites show varying response to atovaquone and DSM1, with 

the highest atovaquone EC50s accompanying the highest DSM1 EC50s, such as in 

C2B+2xDSM1-1B, 3B, and 2C. The two lowest EC50 pairs seen were in C2B-2xDSM1-

1A. The C2B+2xDSM1 parasites all had various mixtures of the Y268S mutant along 

with copy number amplifications in DSM1 that corresponded to their spectrum of 

response to the two drugs. The parasites tolerated both mechanisms sufficiently at low 

pressure at the cost of reverting some of the Y268S copies back to wild-type. 

Pyrosequencing was used to determine the relative frequencies of these Y268S 

mutants as seen in Figure 3.4. These phenotypes show populations in flux, with varying 

amounts of dhodh copy number, Y268S copies, and WT copies.   
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Figure 3.4. Pyrosequencing of DSM1-selected parasites shows Y268S heteroplasmy is 
responsible for combined atovaquone/DSM1 resistance spectrum phenotypes. 
Pyrosequencing was performed as previously described in Aim 1 with the gDNA of the 
parasites immediately following recovery from DSM1 treatment. Control parasite TM90-
C2B (n=6) is representative of gDNA harvested right before selection experiments 
began. All other parasites had 6 PCRs run in duplicate (n=12) and all that passed 
quality control were plotted.  
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Low-grade Resistance to DSM1 Causes Loss of Y268S mutation in TM90-C2B 
 
 
  Initial phenotypic characterization following parasite recovery in the 

C2B+2xDSM1 selections showed was impeded by gradually declining EC50s from week 

to week, despite being maintained by constant drug pressure. The highest and lowest 

EC50 values for each of the C2B+2xDSM1 parasites are shown in Table 3.8, where 

EC50s started out moderately pan-resistant to all mtETC inhibitors, but exhibited a 

gradual decline until all EC50s except DSM1 were sensitive. Because the parasite 

populations were a mixture of WT/Y268S mutant, it was speculated that these parasites 

were in the process of reversion of the Y268S genotype. Parasites were allowed to 

grow while under continuous drug pressure for a month following recovery, and parasite 

EC50s for atovaquone and DSM1 were determined along with pyrosequencing of the 

Y268S allele as seen in Figure 3.5. All parasite populations completely reverted their 

Y268S genotype over time. Consistent with the notion that these two resistance 

mechanisms are incompatible, the continued DSM1 pressure gradually converts the 

Y268S copies back to WT, and losing their atovaquone resistance in the process. Once 

parasites reverted, they retained a modest 2-3 fold resistance to DSM1, indicative of a 

duplicated DHODH gene in exchange for atovaquone resistance. Considering they were 

on constant DSM1 pressure, this exchange of one resistance mechanism for another 

was very gradual.  
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Means represent between 4 and 11 replicates of EC50s for each parasite.  
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Figure 3.5. C2B+2xDSM1 Cultures Gradually Convert Their Heteroplasmic State Under 
Continuous DSM1 Pressure. Beginning with TM90-C2B parasites that successfully 
generated resistance to 2x EC50 DSM1 and recovered to 2% parasitemia (~4 weeks), 
parasites were monitored after an additional 4 weeks for their heteroplasmic Y268S 
status using pyrosequencing, as well as their EC50s for both ATOV (red) and DSM1 
(blue). It took a total of 8 weeks from the beginning of DSM1 selection with DSM1 to 
fully convert TM90-C2B parasites to wild-type (ATOV-sensitive), despite growing 
normally after 4 weeks. Parasites maintained modest (~2-3 fold) resistance to DSM1 
after full Y268S reversion. Error bars indicate SEM for averaged pyrosequencing 
frequencies (n=12).  
 

 

Discussion 

  In Aim 2, we showed that cryptic Y268S presence can be selected out in several 

parasite backgrounds, in both admission isolates from the Phase II studies in Thailand 

(TM90-C2A, TM90-C40B2) as well as wild parasites (ARC08-88-8A). Further, we 

showed that the related napthoquinone menoctone was able to select out the clinically 

relevant mutation Y268S in TM90-C2A, as well as the common in vitro selected M133I 
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mutation in W2. The phenomenon of mitochondrial heterogeneity is called 

heteroplasmy, which is when mitochondrial copies consist of multiple genotypes. Last, 

we showed that mitochondrial heteroplasmy can be induced in both atovaquone 

susceptible and atovaquone resistant backgrounds, with C2B+2xDSM1 parasites 

gradually experiencing heteroplasmic conversion from mutant Y268S to WT, and also in 

TM90-C2A+10xDSM1, which in one parasite selected for a partial Y268S mutant along 

with a dhodh R265G mutation.  

  The long-term incompatibility of atovaquone and DSM1 resistance suggests that 

while the parasites dislike having both mechanisms simultaneously, it is not completely 

lethal at low enough DSM1 levels. Increasing the copy number of dhodh to overcome 

DSM1 pressure likely means that the parasite wants a functional bc1 complex so that it 

is not compensating for two things at once. This is not the first time that these two 

mechanisms were shown to be incompatible. Indeed, the combination of 5-fluoroorotate 

with atovaquone was shown to be superior in suppression of atovaquone resistance in 

vitro [221]. Since atovaquone kills parasites with slow pyrimidine starvation in asexual 

stages, having a somewhat inefficient bc1 complex with reduced catalytic turnover as 

well as an inhibited DHODH enzyme is a huge survival disadvantage, and only 

suboptimal concentrations of DSM1 allowed for this resistance mechanism conversion 

to take place. For this reason, it is interesting that high levels of DSM1 (10x EC50) 

induced a partial Y268S mutant. This may have something to do with the additional 

R265G mutation observed in this parasite, or it could be that the parasite tries out any 

adaptive strategy that could lend an advantage, and since it was only ~30% Y268S 

mutant, it could be unintended, unrelated, or transient in nature. The combination of 
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Y268S and dhodh amplifications in this transitionary period conferred an enhanced 

resistance to all mtETC inhibitors, though not truly extreme resistance.  

  The cryptic Y268S presence was both detectable and able to be selected out in 

vitro, which is a sharp contrast to what is commonly believed about Plasmodium 

mitochondria. Current thought believes that the mitochondria are inherently intolerant of 

mutation, and further, that their recombination-dependent replication mechanism 

combined with strict maternal inheritance keeps diversity to a minimum [165, 222]. If 

generation of the Y268S mutant is a de novo occurrence and caused by a mutagenic 

effect of atovaquone, then how did these parasites manage to revert to WT when given 

DSM1 pressure? Considering DSM1 pressure causes an amplification in a nuclear-

encoded gene, it seems far-fetched that DSM1 is also a mutagenic force on the 

mitochondrial DNA. Several labs have selected for mutants with triazolopyrimidines, yet 

none have seen any mt-encoded mutations develop [201, 202, 218]. It seems much 

more likely that these parasites are genotypically much more diverse and plastic than 

initially thought, since we have shown that parasites with cryptic Y268S heteroplasmy 

are never forced to 100% mutant or 100% WT, regardless of pressure. This lack of 

evidence for homoplasmy (100% homogeneous mtDNA copies) in the face of strong 

selective pressure suggests there are intrinsic mechanisms that maintain either low 

levels of Y268S or low levels of WT at all times. This work highlights the need to 

understand mitochondrial diversity, particularly how it is generated and how it is 

maintained in populations.  
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CHAPTER FOUR 

 GENOTYPIC CHARACTERIZATIONS OF ADMISSION/RECRUDESCENT ISOLATES 

AND IN VITRO DRUG SELECTED LINES (SPECIFIC AIM 3) 

 

Rationale of Study 

  Mitochondrial heteroplasmy is a phenomenon found to be common in many 

organisms such as humans, plants, fungi, trypanosomes, and even found in other 

Plasmodium species [166, 168-170, 172, 174]. We aimed to look at heteroplasmy with a 

more zoomed-out perspective in the hope of finding Plasmodium mitochondrial diversity 

on a global scale. In order to accomplish this, we used a combination of pyrosequencing 

and NGS technologies to show that mitochondrial diversity is not a just a temporary 

reaction to drug pressure, but a common and much needed mechanism of maintaining 

parasite fitness in Plasmodium falciparum. Heteroplasmy is now commonly detected 

with deep-sequencing at high coverage (>10,000x) with strict requirements for base-

calling, including double-strand validation and phred quality scores >30 to achieve 

confidence in calling low-level variants. Because sequencing error at specific loci is both 

predictable and reproducible in multiple samples, and usually only present on a single 

strand, errors can be distinguished from true low-level variants with this filtration method 

with confidence [169].  
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  To discover low-level pre-existing heteroplasmy at known drug resistance alleles 

such as Y268S, we deep-sequenced paired admission and recrudescent isolates with 

high coverage (10-30,000x). Low-level Y268S heteroplasmy was successfully detected 

at 1-2% frequency in pre-treatment (wild-type, ATO susceptible) patient isolates, which 

agrees with pyrosequencing data that Y268S exists in parasites before drug pressure. 

Parasite lines generated with in vitro drug pressure were sequenced as well, and 

provide new insights into the mechanics of mitochondrial heteroplasmy. Further, to 

discover mitochondrial diversity in the worldwide parasite population, we re-analyzed 

the publicly available P. falciparum genome data from the MalariaGEN Pf3K project for 

minor allele frequencies (MAF) > 0.15 to uncover mitochondrial heteroplasmic diversity 

in the ~2600 parasite collection. We estimated the mt copy number to be between 10-27 

copies and we found that mitochondrial genome diversity was underestimated at least 

5-10 fold without taking heteroplasmy into consideration. Mitochondrial heteroplasmy 

and its role in providing genetic diversity to a parasite with strict maternal inheritance of 

mitochondrial DNA is a necessary response to maintain parasite viability and fitness.  

 

Materials and Methods 

Mitochondrial Deep-Sequencing of Patient Isolates and Drug Selections.  

  Parasites were all grown and maintained under their respective drug pressures 

while being propagated for gDNA for sequencing, or in the case of patient isolate 

parasites, they were not given drug pressure since they are normally maintained without 

it. DNA was harvested from parasites and extracted as previously described in Aim 1.  

Parasite DNA samples were sent for mitochondrial deep-sequencing at the Genomics 
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Core at the Oklahoma Medical Research Foundation to be run on the Illumina HiSeq 

3000, as 150 cycle, paired-end reads.  

 
 
Estimation of mtDNA Copy Number in MalariaGEN PI3K Parasite Collection 
    

  For the 2640 samples of the MalariaGEN Pf3K parasite genome collection, we 

extracted the median coverage (DP) for each of the reported sites for nuclear 

chromosome 7 (N) and the mitochondrial genome (M). Then, the samples lying in the 

top and bottom 10% of DP were removed for both chromosome 7 and the mitochondrial 

genome, since these samples exhibit extremes in the higher end (> 1500) or lower end 

(< 5) of DP. This left 1784 remaining samples that were subsequently extracted to 

estimate the distribution of mtDNA copy number. The following equation was used to 

determine the estimated mtDNA copy number for each sample ("), where:  

$% =
'()"*+ ,-.	0
'()"*+(,-10 )

 

A histogram of composed of the estimated copy number for each sample (") was plotted 

which displays the overall distribution of estimated copy number of all mitochondrial 

genomes, where the green curve indicates the background Gaussian distribution 

estimated by maximum likelihood. The yellow shadow represents the probability of 0.8 

(integral area) under the Gaussian distribution curve, which estimates the mitochondrial 

copy number to be between 9.6 and 26.8 copies in the population.  
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Estimation of mtDNA, DHODH, and Y268S Copy Number of Patient Isolates/Drug 
Selections 
   

  The read depth of DNA sequencing is often used as an estimation of relative 

copy number, where the ratio of average depth of a genomic region compared to that of 

the whole genome can be used to infer copy number. Similar approaches have been 

used to estimate the mitochondrial copy number by comparing the average mtDNA 

depth as a whole to the average autosomal read depth [163]. Similar to above, the 

average mtDNA copy number was estimated:  

 

$% =
'(*+ ,-.	0
'(*+(,-10 )

 

   

  During asexual replication, the nuclear and mtDNA replicate at approximately the 

same rate, therefore this should reflect approximate the mtDNA copy number of the 

sequenced parasites at the time of sequencing [165]. Whether or not copy number 

fluctuates in the same population of parasites has not been determined. We used the 

mean for these calculations so that they could be compared to that of other studies 

[163], but either method is appropriate. 

  Similarly, the DHODH copy number of the parasites was estimated by dividing 

the average read depth of the DHODH gene to that of the nuclear genome with the 

same basic formula. These numbers were then compared to that of the DHODH qPCR 

results from Aim 2 to see whether the sequencing data was a good representation of 

DHODH copy number.  
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  Once the mtDNA copy number was calculated for each parasite, if the parasite 

had Y268S heteroplasmy, the estimated mtDNA WT copy number and estimated 

mtDNA MUT copy number were determined by multiplying the % Y268S SNP by the 

mtDNA copy number. This is simply to provide an estimation of Y268S gene dose, since 

parasites with higher mtDNA copy numbers would correspondingly have higher 

numbers of Y268S mutant DNA copies.  

Worldwide Distribution of Y268S Cryptic Heteroplasmy 

  Parasites that were pyrosequenced to look for cryptic Y268S heteroplasmy came 

from clinical sites in the 1990’s in Peixoto, Brazil [223], Yaounde, Cameroon [224], and 

Bangkok, Thailiand from the Bangkok Hospital for Tropical Diseases, and the Shoklo 

Malaria Research Unit along with the clinic in Pailin Province, Cambodia [119]. Any of 

the isolates labelled “Thai” or “Cam” were clinical isolates from Shoklo and Cambodia 

clinics, respectively in 2008. All parasites had gDNA extracted from non-viable 

cryovials, and were subsequently sequenced. In the group of S.E. Asian parasites, 

those from the Phase II studies were also included, since they were clinical isolates 

from that region and timeframe. All parasites were sequenced with three triplicate PCRs 

run in duplicate (n=12). All parasites were plotted as mean % mutant, and error bars 

indicate SEM. Only parasites that were statistically significant (p < 0.01) compared to 

controls in a student’s one-tailed t-test were considered “cryptic Y268S positive,” as the 

parasites we know to be cryptic mutants that develop resistance were in this p-value 

range. All graphs were made to the same scale for ease of comparison.  
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Results 

Pyrosequencing Detects the Y268S Allele in Global Populations 

  Using the same Y268S pyrosequencing assay as Aim 1 and 2, we aimed to look 

at parasite populations in Africa (Figure 4.1), South America (Figure 4.2), and S.E. Asia 

(Figure 4.3) in the hopes of detecting Y268S cryptic heteroplasmy. Indeed, we were 

able to detect four heteroplasmic parasites from Yaounde, Cameroon, and four from 

Peixoto, Brazil. Interestingly, no new parasites were detected with a p-value < 0.01 in 

S.E. Asia, aside from the parasites we already knew to be cryptic mutants from the 

Phase II studies in Thailand although one parasite “thai 8” approached significance.  

Since we had a low sample number at all sites, it would be unwise to make statements 

about the frequency of Y268S at these locations, but we can say that Y268S was 

detected in 4/14 (28%) in Cameroon, 4/28 in Brazil (14%), and 3/31 (10%) in S.E. Asia. 

Overall, 11/73 (15%) of parasites sampled had cryptic mutants. It is interesting to note 

that Brazil had the highest proportion of parasites detecting heteroplasmy, as almost all 

of the samples were nonzero, but Africa had the highest detected frequencies of Y268S, 

with samples as high as 2-3% Y268S. We chose to use a stringent p-value in a 

student’s one-tailed t-test as a metric for detecting true heteroplasmy because our 

cryptic mutants from the Phase II studies were within this significance level and wanted 

to feel confident that these were not false positives, as our assay had a false positive 

detection rate as high as 8%. It is entirely possible that many other sampled parasites 

represent true Y268S detection frequencies, but a more conservative estimation was 

used.   
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Figure 4.1. Pyrosequencing Detection of Cryptic Y268S Mutants in Africa. Parasites 
from sites in Yaounde, Cameroon (n=14) were collected between 1995-1996. Only four 
(28%) were found to be cryptic Y268S according to a cutoff p-value < 0.01, although 
these parasites had the highest mutant frequencies of any parasites sequenced to date. 
All parasites were sequenced with 6 individual PCRs and pyrosequenced in duplicate 
(n=12).  
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Figure 4.2. Pyrosequencing Detection of Cryptic Y268S Mutants in Brazil. Brazilian 
parasites (n=28) collected between 1995-1996, and though this population detected the 
most nonzero events, it had only four parasites with significant Y268S heteroplasmy 
with p <0.01, a positive rate of 14%. All parasites were sequenced with 6 individual 
PCRs and pyrosequenced in duplicate (n=12).  
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Figure 4.3. Pyrosequencing Detection of Cryptic Y268S Mutants in S.E. Asia. De-
identified patient isolates from Bangkok Hospital for Tropical Diseases (1995) and 
Shoklo Malaria Research Unit in Thailand (2008), as well as patient isolates from Pailin 
Province in Cambodia (2008) were compiled to use to detect cryptic mtDNA Y268S 
heteroplasmy (n=31). The only parasites that reached significance with a p-value < 0.01 
were the isolates in the Phase II studies at the Bangkok Hospital (n=3), for a positive 
rate of 10%. All parasites were sequenced with 6 individual PCRs and pyrosequenced 
in duplicate (n=12).  
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The MalariaGEN Pf3K Project is Used to Estimate the Scope of Global 
Mitochondrial Diversity  
 
  The MalariaGEN Pf3K Project is a collection of ~2600 parasites that have been 

collected from patients and deep-sequenced all over the world. In order to make this 

dataset useful for the purpose of mining for mitochondrial heteroplasmy, it had to be re-

analyzed based on different criteria for SNP-calling and differential criteria for read 

quality and depth of coverage. First, all reads had to be high-quality (Phred >30), since 

a phred quality score is logarithmically tied to error probabilties; a phred score of 30 

indicates the probability of an incorrect base call being 1:1000, or a base-call accuracy 

of 99.9%. Typically, a quality score of 20 or above is used in deep-sequencing, so to 

enable a lower MAF detection-threshold, this had to be modified to reflect more 

stringent base-calling criteria. In addition, any SNPs called had to be present equally on 

the forward and reverse strand, as sequencing errors are typically strand-specific and 

appear disproportionately. Following re-analysis of the raw reads, detection of 

heteroplasmic sites in the mtDNA was made possible with the maximum likelihood 

estimation model, where sites were identified as homoplasmic REF (WT), homoplasmic 

ALT (MUT), or heteroplasmic ALT (MUT) by defining homoplasmy as being AF=1, and a 

moderate heteroplasmy allele being the detection of an AF > 0.3 as represented in 

Figure 4.5.  

  From the Pf3K project, we were able to estimate the mtDNA copy number of 

each parasite in the dataset by comparing the median chromosome 7 nuclear coverage 

depth to the median mtDNA coverage depth as described in Figure 4.6 below. Using the 

maximum likelihood model to estimate the Gaussian distribution, where the integral 
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area under the Gaussian distribution curve estimated the mtDNA copy number of the 

dataset to lie between 10 and 27 mtDNA copies.  

  The distribution of heteroplasmy could be observed in the context of a single 

SNP, as in Figure 4.7 shows a highly polymorphic SNP at position 4819 of the mtDNA 

genome. When taking homoplasmic SNPs at this locus into consideration, only 1.8% of 

the parasites surveyed constituted mutants. However, when the same dataset is 

surveyed with a MAF > 0.3, 15.2% of parasites were heteroplasmic at this locus, 

bringing the total mtDNA diversity up 10-fold. Once heteroplasmy is taken into account, 

overall diversity in the population at this locus increases from only 1.8% to 17%, making 

mitochondrial diversity vastly understimated. The geographic distribution of SNP-calling 

remains the same, with predominantly parasites from African origins having the highest 

SNP prevalence at this locus.  

  When looking at mitochondrial diversity at the genome level, a similar trend 

emerges. In the top panel of Figure 4.7, the mitochondrial genome is plotted in terms of 

heteroplasmy (blue) and in terms of heteroplasmy between a MAF of 0.3 < 0.5 (red), 

and for MAF 0.5 < 1 (yellow).  When compared to homoplasmic alleles, heteroplasmy 

with a MAF < 0.3 contributed 5 times more diversity, showing that homoplasmic SNPS 

are only a subset of the total mtDNA diversity in these parasites. In the bottom panel, 

geographic differences between SNP prevalence can be seen, showing that regions 

have mitochondrial haplotypes specific for Cambodia and Malawi, characterized by both 

homoplasmic and heteroplasmic SNPs. In Cambodia, 30 homoplasmic and 597 

heteroplasmic SNPs were characterized from a total of 570 parasites, when compared 
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with Malawi, which had 44 homoplasmic and 641 heteroplasmic SNPs in only 367 

isolates, indicating that African parasites may be more diverse than those in Asia.  

 

 

 
 
Figure 4.4. Maximum Likelihood Estimation of Mitochondrial Heteroplasmy. Using the 
maximum likelihood estimation model, moderate heteroplasmic sites were classified as 
MAF < 0.3, where a homoplasmic site exists as AF=1. Heteroplasmic loci were located 
using this model, where outcomes may be homoplasmic REF (WT), homoplasmic ALT 
(MUT), or heteroplasmic ALT.  
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Figure 4.5. Estimating the mtDNA Copy Number in the MalariaGEN Pf3K Project. A 
histogram of estimated copy number for each sample used in the analysis (") was 
plotted showing the overall copy number distribution of the Pf3K dataset. The green 
curve fit to the dataset indicates the background Gaussian distribution estimated by the 
maximum likelihood model. The yellow shadow represents the probability of 0.8 
(integral area) under the Gaussian distribution curve, which estimates the mitochondrial 
copy number of the parasites sampled to be between 9.6 and 26.8 copies. Only 
parasites collected from patients with single infections were included for use in this 
analysis.  
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Figure 4.6. Homoplasmy and Heteroplasmy Contribute to Mitochondrial Diversity in a 
Single Pf-SNP. At the A4819 locus in the mitochondrial genome (Pf_M76611), 
homoplasmic SNPs (in yellow) can be detected in 1.8% of the ~2600 samples 
worldwide, with the SNP being called (A to C substitution) most prevalently in African 
samples. Using this enhanced method of detecting SNPs at a minor allele frequency of 
30% or higher, the heteroplasmy detected (in blue) increases the amount of 
mitochondrial diversity ~10 fold (15.2% of parasites were heteroplasmic (A -> C) at this 
locus. Taking heteroplasmy into account shows same overall distribution of SNPs 
geographically, but increases the prevalence of these SNPs. The navy circles indicate 
how many samples were represented from each geographic site.  
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Figure 4.7. Both Homoplasmic and Heteroplasmic SNPs Vary by Region. 1033 SNPs 
were characterized in the ~2600 genome dataset, showing mitochondrial homoplasmy 
represents a small subset of overall diversity compared to heteroplasmy throughout the 
mitochondrial genome. Heteroplasmy detected at minor allele frequencies of between 
30-50% are plotted in red for the top panel, and in yellow for frequencies between 50-
100%. Homoplasmic SNPs are plotted in blue. In the lower panel, geographic 
differences exist between Asian and African SNPs, where some SNPs are common to 
both regions, and some are signatures of their region. In Cambodia, 570 parasites were 
sequenced that contained 30 homoplasmic SNPs, and 597 heteroplasmic SNPs, 
compared with Malawi which had 367 parasites sequenced and 44 homoplasmic SNPs 
were detected compared to 641 heteroplasmic SNPs.  



	

	 122 

Mitochondrial Deep-Sequencing of Patient Isolates/Drug Selections shows cryptic 
Y268S and common heteroplasmic loci 
 

  Combining high-coverage (>10,000x) mtDNA sequencing with the same stringent 

base-calling strategies described earlier allowed us to detect minor variants at lower 

detection thresholds than with the Pf3K Project, as low as 1% MAF, and would enable 

detection of low variants such as Y268S. The full set of SNP frequencies, mtDNA copy 

number estimations, and dhodh copy number estimations for all the parasites 

sequenced can be seen in Table 4.1. Sequencing of admission and recrudescent 

isolates from the Phase II studies in Thailand (Figure 4.8) confirmed the presence of 

cryptic Y268S heteroplasmy in all admission isolates sequenced, including TM90-C2A, 

TM90-C2B, TM90-C6A, and TM93-C1051. Interestingly, TM90-C6B was shown to have 

a majority K272R mutation, one that is typically only seen in conjunction with M133I 

mutations and confers additional resistance to the M133I mutation (alone EC50 is ~68 

nM, but combined with K272R jumps to over 1 µM (see Table 3.5) [192]. This K272R 

mutation was not present in Sanger sequencing of multiple PCR products prior to this. 

Interestingly, a K272R mutation was found in the MR4-TM93-C1088 parasite upon 

Sanger sequencing, where TM93-C1088 kept in our laboratory did not. Deep-

sequencing of the MR4-C6B parasite did not have the K272R mutation, but was Y268S 

mutant, while the TM90-C6B in our laboratory is WT and known as the “atovaquone WT 

treatment-failure.” 

  Further, low level Y268S heteroplasmy was absent in the control parasites D6 

and W2, who are either incapable of developing atovaquone resistance (D6) or favor 

alternative atovaquone resistance mutations like M133I (W2) [192, 196]. Cryptic Y268N 
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heteroplasmy was not detected in TM93-C1051, nor was cryptic M133I detected in W2.  

PL08-025, a patient isolate from Pailin Province, Cambodia in 2008 was found to have 

cryptic Y268S heteroplasmy as well. All of the TM90-C2A+10xATOV selections were 

98-99% mutant, as well as ARC08-88-8A+10xATOV-1A and C2A+10xMEN-1A. The 

C2B+2xDSM1 parasites were all confirmed to be at various points of transition between 

WT and mutant Y268S because of DSM1 pressure, and the C2A+10xDSM1-2B showed 

~30% Y268S selection, 8% Y268N, as well as ~34% R265G in the nuclear-encoded 

DHODH gene. In contrast, C2A+10xDSM1-3B parasite was completely R265G DHODH 

mutant. All parasites showed cryptic heteroplasmy in at least one mtDNA locus, typically 

at 1-2% frequencies, and interestingly, mtDNA mitotypes were not conserved between 

isolates and their clones in TM90-C2A and TM90-C2A-F6 or TM90-C2B and TM90-

C2B-A3 (Table 4.1).  

  As far as estimated mtDNA copy number, parasites were estimated to have 

between 11 and 104 mtDNA copies, where highest copy numbers (> 50) were seen in 

the in vitro atovaquone or menoctone-selected lines (which were maintained under drug 

pressure) or the extreme mtETC-resistant parasites TM92-C1086 (54 mtDNA copies, 

99% Y268S mutant). When you compare that to TM90-C2B, which was 89% Y268S 

mutant and 15 mtDNA copies, real phenotypic differences could be caused by that 

observation alone. If that is viewed in terms of Y268S gene dose, that would be 51.48 

Y268S copies per parasite in TM92-C1086, and only 13.35 Y268S copies in TM90-C2B. 

DHODH qPCR results correlated well with deep-sequencing coverage-based 

estimations of DHODH copy number, with the exception of 5 samples that were off by 1 

copy (Table 4.1).  



	

	 124 

 

Figure 4.8. Y268S Status of Patient Isolates/Drug Selections Using Mitochondrial 
Deep-Sequencing. Using a MAF cutoff of 1%, parasites were plotted according to their 
Y268 frequencies of either REF (WT-black bars) or Y268S (red bars). Blue dots indicate 
parasites that have cryptic Y268S. Mitochondrial deep-sequencing confirms the cryptic 
Y268S status of admission isolates, unrelated parasites (PL08-025), and confirms 
absence of Y268S in lab strains W2 and D6. M133I (green bar) is seen in W2+10xMEN-
1A selection. Drug selected parasites also indicate the gradual conversion of Y268S 
status to WT in the C2B+2DSM1 parasites, as well as the partial Y268S selection in 
C2A+10xDSM1-2B. Actual percentages of SNPs are reported in Table 4.1. The right 
panel shows cryptic Y268S parasites and control parasites plotted against SNPs 
reported in the dataset, with common SNP sites on the top axis. Navy represents 
homoplasmic REF (WT), yellow corresponds to heteroplasmic SNP, and blue 
represents homoplasmic SNP.  
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Table 4.1 Mitochondrial Deep-Sequencing of Patient Isolates/Drug Selections. Green boxes indicate high-frequency heteroplasmy, 
and orange boxes indicate low-level heteroplasmy. Estimated mtDNA copy number, DHODH copy number, and qPCR DHODH copy 
number are included for comparison. Mt coverage at Y268 is the sequencing read depth of the Y268 locus. Est # Mut copy is the 
estimated copy number of Y268S genotype in the parasite population, and calculated as previously described. The Est # WT copy 
was performed similarly. All mt SNPs are listed by their nucleotide position in the mt-genome, as well as the amino acid change they 
code for and nucleotide substitution. Two parasites were found to have DHODH mutations, and confirmed the prior sequencing 
results in Aim 2.  

 

Parasite name

Est. 
mtDNA 
copy 

number

Est. WGS 
DHODH 

copy 
number

Est. qPCR 
DHODH 

copy 
number

Mito. seq. 
coverage at 

Y268
Y268S 

heteroplasmy

est # 
MUT 
copy

est # WT 
copy

SNP4294 
Y268S 
SNP%        
A->C

SNP4293 
Y268N 
SNP%     
T->A

SNP4306 
K272R 
SNP%       
A->G

SNP3890 
M133I 
SNP%       
G->C

SNP2686 
SYN 

SNP%      
T->C

SNP1776 
(ncr) 

SNP%     
T->C

SNP1723 
(RNA2) 
SNP%      
T->G

SNP1692 
(RNA2PR) 

SNP%     
G->A

SNP772 
I239V 
SNP%      
T->C DHODH mutation

W2 37 1 ND 25000 No 0 37 0 0 0 0 0 1 2 0 1
D6 39 1 1 24000 No 0 39 0 0 0 0 0 1 1 98 100

TM90-C2A-F6 37 1 1 26000 Yes 0.37 36.6 1 0 0 0 0 100 1 0 100
TM90-C2A 24 1 1 10500 Yes 0.48 23.5 2 0 0 0 0 98 2 0 98

TM90-C40B2 11 1 1 12500 Yes 0.22 10.8 2 0 0 0 0 99 2 0 99
TM90-C6A 20 1 ND 12000 Yes 0.4 19.6 2 0 0 0 97 3 2 0 3

1051 12 1 1 7000 Yes 0.36 11.6 3 0 0 0 0 99 2 0 99
C2B-53A 40 1 1 3500 Yes 36.8 3.2 92 0 0 0 0 99 2 0 99

TM90-C2B 15 1 1 12000 Yes 13.35 1.65 89 0 0 0 0 90 2 9 99
TM90-C50B5 13 1 1 8500 Yes 12.74 0.26 98 0 0 0 0 99 2 0 99
TM90-C6B 24 1 1 15500 Yes 0.48 23.5 2 0 99 0 98 2 2 0 2

MR4-TM90-C6B 16 1 ND 7600 Yes 15.68 0.32 98 0 0 0 0 3 2 0 3
TM93-C1090 26 1 1 14000 Yes 0.52 25.5 2 98 0 0 0 2 2 0 2
TM92-C1086 52 1 1 17500 Yes 51.48 0.52 99 0 0 0 0 2 2 0 1

C2A+10xATOV-1A 87 1 1 36500 Yes 86.13 0.87 99 0 0 0 0 100 2 0 100
C2A+10xATOV-3A 74 1 1 29500 Yes 74 0 100 0 0 0 0 100 1 0 100
C2A+10xATOV-1B 60 1 1 26000 Yes 59.4 0.6 99 0 0 0 0 99 1 0 100
C2A+10xATOV-2B 17 1 1 8500 Yes 16.83 0.17 99 0 0 0 0 100 2 0 99
C2A+10xATOV-3B 89 1 1 42500 Yes 89 0 100 0 0 0 0 99 2 0 99

ARC08-10xATOV-1A 104 1 ND 36000 Yes 104 0 100 0 0 0 0 100 1 0 100
C2A+10xMEN-1A 90 1 ND 36000 Yes 89.1 0.9 99 0 0 0 0 100 1 0 100
W2+10xMEN-1A 90 2 ND 32000 No 0 90 0 0 0 99 0 1 2 0 1
C2B+2xDSM1-1A 23 2 2 13000 Yes 13.11 9.89 57 0 0 0 0 99 2 0 100
C2B+2xDSM1-2A 28 2 ND 13500 Yes 18.2 9.8 65 0 0 0 0 99 2 0 99
C2B+2xDSM1-3A 44 2 ND 30000 Yes 22.88 21.1 52 0 0 0 0 100 2 0 100
C2B+2xDSM1-1B 30 1 2 27000 Yes 0.6 29.4 2 0 0 0 0 100 1 0 100
C2B+2xDSM1-3B 26 1 1.5 25000 Yes 1.56 24.4 6 0 0 0 0 99 2 0 99
C2B+2xDSM1-2C 37 2 1 10500 Yes 13.69 23.3 37 0 0 0 0 100 1 0 100
C2A+10xDSM1-1A 21 4 3 10500 Yes 0.42 20.6 2 0 0 0 0 99 2 0 99
C2A+10xDSM1-2B 27 1 1 10200 Yes 8.1 18.9 30 8 0 0 10 60 2 3 68 34% R265G
C2A+10xDSM1-3B 43 1 1 25000 No 0 43 0 0 0 0 0 100 2 0 100 97% R265G
C2A+10xDSM1-1C 24 4 3 18000 Yes 0.48 23.5 2 0 0 0 0 100 2 0 100
C2A+10xDSM1-2C 34 4 ND 30000 No 0 34 0 0 0 0 0 100 1 0 100

ARC08-22-5G 20 1 ND 7854 Yes 0.2 19.8 1 0 0 0 0 2 2 0 1
ARC08-88-5A 34 1 ND 20000 No 0 34 0 0 0 0 0 1 2 0 1

PL08-025 34 1 ND 22500 Yes 0.34 33.7 1 0 0 0 0 100 2 0 100
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Discussion 

  Using a pre-existing global malaria genome dataset from the MalariaGEN Pf3K 

Project, we were able to demonstrate that mitochondrial heteroplasmy is a common 

event in the Plasmodium falciparum parasite, and that mitochondrial diversity is vastly 

underestimated between 5-10 fold both at individual loci and as a whole mt-genome 

(Figures 4.8 and 4.9). In addition, we’ve shown that geographic differences exist in the 

prevalence of both homoplasmic and heteroplasmic SNPs, with African parasites and 

Asian parasites showing evidence of their own distinct mitotypes (mitochondrial 

haplotypes) and this is in agreement with barcoding studies that show region-SNP 

specificity [163]. There was also a wide distribution of mitochondrial copy number 

among the 2600 mt-genomes (Figure 4.6) which is also in agreement with previous 

analyses, and we estimated the copy number to be between 10-27 copies, although the 

method for determining the copy number differed, as we were providing a range and not 

a single representative number [163]. Preston et al. plotted the mean autosomal 

coverage depth against the mean mitochondrial coverage depth and then fit a slope to 

the line, giving them an average mtDNA copy number to be 21.7. This is relatively 

consistent with our findings. Considering the parasites in this population were taken 

directly out of patients, and they have to be ring stages since later stages sequester, the 

relative mtDNA to nuclear coverage depth ratio should be a good representation of 

mtDNA copy number. Even in the instance of using later stage trophozoites and 

schizonts for genetic material as we did in the patient isolate/drug selections deep-

sequencing, the mitochondria and nucleus replicate DNA at nearly equal rates, implying 

that the nuclear to mtDNA ratio is unchanged in any parasite stage [165]. As seen in 
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Table 4.1, the mtDNA copy number is seen as low as 11 (TM90-C40B2) and as high as 

104 (ARC08-88+10xATOV-1A). All parasites with high mtDNA copy numbers (>50) 

were in vitro drug selected lines, with the exception of one, which is the extreme-mtETC 

resistant parasite TM92-C1086. Whether mtDNA copy number is involved in the 

resistance profile cannot be determined from this dataset, as drug susceptibility assays 

would have to have been performed on the day of gDNA extraction. This idea of high-

copy number and its influence on parasite phenotype should be investigated further, as 

it could clarify the fluctuating atovaquone phenotype seen in parasites such as TM90-

C2B, or even the high 63 µM atovaquone EC50 of ARC08-88-8A+10xATOV-1A, which 

had an estimated 104 mutant copies, and C2A+10xMEN-1A with 54 µM atovaquone 

EC50 with 89.1 mutant copies (Table 4.1). Further, the estimation of DHODH copy 

number was consistent with the majority of DHODH copy number estimations 

performed by qPCR. There are five samples that were not in agreement, and only 

differed by 1 copy. This is likely a discrepancy because the qPCR copy number 

determinations were performed on gDNA from immediately after parasite recovery, and 

the gDNA samples used in mitochondrial deep-sequencing were parasites remained in  

culture longer in the process of being thawed and subsequently expanded to obtain 

enough gDNA for deep-sequencing. For the 5 samples that had a 1-copy disagreement, 

a qPCR run of DHODH in the gDNA samples used for deep-sequencing would clarify 

further as to the accuracy of estimating DHODH copy number in this manner for 100% 

of cases.  

  The mtDNA-deep sequencing data revealed that the Y268S mutation is found in 

the admission isolates from the Phase II studies, and that Y268S is not present in 
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parasites such as D6 and W2 (Table 4.1). Interestingly, the Y268N mutation expected in 

TM93-C1051 was not found, but did have cryptic Y268S. Its recrudescent partner 

TM93-C1090 was a Y268N mutant as expected, leading to questions as to why we did 

not see cryptic Y268N in TM93-C1051. It is possible that the Y268N mutation occurs de 

novo, where Y268S is maintained at low levels but Y268N is generated spontaneously. 

However, considering that every single parasite sequenced in this dataset is 

heteroplasmic in at least one site, it seems more likely that the Y268N mutation is 

present at levels undetected at our MAF cutoff of 1%. This is also the case with the 

M133I mutation, where we cannot detect a cryptic presence in W2, yet the 

W2+10xMEN-1A developed the M133I mutation. However, we did not use the exact W2 

parasite that was the parent for the W2+10xMEN-1A, and that could be the reason for 

lack of detection. The extent to which these mutant frequencies occur in heteroplasmy 

has not been evaluated, and some could be more common variants than others. 

Indeed, it is easy to speculate that the variants we are seeing are relatively common, as 

we were able to detect 3-4 parasites in Brazil, Africa, and S.E. Asia using Y268S 

pyrosequencing. The possibility of there being rarer or lower-frequency variants than the 

ones observed here warrant further investigation.  

  The mitochondrial genome replication of the linear, concatamerized 6-kb 

elements of P. falciparum was described as having highly-branched networks of 

replication and recombination intermediates, some rolling circle lariat intermediate 

species characteristic of the T4 phage, and small circular form DNAs [165]. As unusual 

of a replication strategy as that may be, this same mt-genome and replication structure 

is described in plant species as well, and was first seen in the mitochondria of soybeans 



	

	 129 

and yeast. Indeed, the recombination activity of these plant genomes is now recognized 

as a critical and effective influence of plant mtDNA that dictates its structure, 

organization and evolution [225]. Prior to the understanding of the role of heteroplasmy 

in plants, there was also a long-standing argument that the plastid and mitochondrial 

genomes were homogeneous and lacked diversity. When heteroplasmy was first 

suggested, it was only attributed to deleteriously mutated mtDNA that caused 

phenotypic abnormalities, not a commonplace event. Now, heteroplasmy is viewed as 

the “normal situation” of plant mtDNA, and interestingly, plastid DNA heteroplasmy is 

also common [216]. The dynamics of heteroplasmy in plants has been intensively 

investigated, and much is known about the involvement of heteroplasmy in the evolution 

and maintenance of this unusual replication strategy. The main mt-genome is described 

as the genome that determines the plant phenotype, which in the case of P. falciparum 

is the 6 kb linear, tandemly repeating elements. The copy number estimation in P. 

falciparum is said to be 20-30, but in plants this number varies substantially even within 

clonal lines, and could vary by a factor of 10 [216]. It is of particular interest that there is 

a description of small circular forms of mtDNA in P. falciparum, and they were described 

as being products of recombination that interacted with the main linear mtDNA 

molecules and showed no evidence of self-replication, and represented less than 5% of 

the total mtDNA molecules [165]. The small circular forms of mtDNA described in P. 

falciparum have a striking resemblance to the description of sublimons in plants, and 

they are also present in low numbers compared to the main genome. These 

substoichiometric mtDNA circular molecules can be 10-1000 fold less abundant than 

the main mt-genome, and even so low that small fractions of cells contain them, and 



	

	 130 

also are not uniformly distributed within mitochondria. These sublimons are functionally 

silent and maintained as a substoichiometric population, and are capable of interacting 

with the main mt-genome, recombining and essentially becoming the main genome, 

functionally switching the contents of the main genome and sublimon. This 

phenomenon is called substoichiometric switching, and has been shown to be a 

mechanism used for rapid evolution and phenotype switching. This maintenance of 

main mt-genome and the substoichiometric sublimon genome is a dynamic process, 

and the unique recombination-based replication strategy rapidly expands advantage-

conferring traits encoded in the sublimon. Figure 4.9 represents the mechanism of 

substoiciometric switching common in plants and is shown below. 

 

Figure 4.9. Substoichiometric shifting in plants with Class 1 and class 2 sublimons, from 
Woloszynska 2010, J Exp Bot, 61(3):657-671 [216]. The class 1 sublimon is the more 
abundant type, regularly produced by recombination using short repeats in the main 
genome (arrow 1). The sublimons and main genome can interconvert using either the 
process of reversible recombination (arrow 2) or non-reciprocal recombination (arrows 
3). The class 2 sublimons are not as abundant as class 1, cannot be produced de novo 
and autonomously replicate, and have regions of non-homology with the main genome 
(yellow). Considering the small circular DNA molecules of Pf are products of 
recombination and interact with the main genome, they are presumed to be of Class 1.   
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The fact that we have shown the presence of heteroplasmy in Plasmodium 

genomes all over the world with mitotypes (mitochondrial haplotypes) that are 

geographically clustered suggests that heteroplasmy could be inherited in some way. 

This method of maintaining mitochondrial diversity could explain why some treatment 

failures look like wild-type parasites upon sequencing, as substoichiometric shifting can 

rapidly swap the main mtDNA and sublimon mtDNA. Interestingly, similar observations 

were made during the clinical trials in Thailand, where cryopreservation of a mutant 

parasite would be thawed and have a sensitive phenotype, and another vial frozen on 

the same day would maintain the resistant phenotype (Dennis Kyle, personal 

communication). This is a plausible explanation for our experience with TM90-C6B, 

which was sequenced and showed no mutations in mtDNA, yet a cryopreserve 

expanded years later for sequencing showed a predominant K272R mutation that could 

not have been missed the first time, as multiple PCRs and overlapping sequencing 

primers would have detected it since it was present at 99% frequency. Further, we have 

never put selection pressure on TM90-C6B, so this appearance of K272R was an 

example of spontaneous substoichiometric shifting, if the model is to believed. In 

addition, we could not have mixed this parasite up and mislabeled it, considering we 

don’t have any other parasites with this genotype. This substoichiometric shifting is 

known to happen spontaneously in both cultivated and wild plants [226, 227]. We have 

a similar scenario with the MR4-repository having different parasite genotypes than our 

own in the case of MR4-C6B and MR4-1088. MR4-1088 was both Y268S and K272R 

instead of just Y268S, and MR4-C6B was Y268S and should have been WT. These 

events are unlikely to be spontaneous mutation, and without the hypothesis of 



	

	 132 

substoichiometric shifting, there is nothing that comes to mind that could possibly 

explain these observations.  

Indeed, all the seemingly bizarre selection observations make sense in the 

context of substoichiometric shifting, especially when it comes to the two C2A parasites 

that selected for a R265G mutation upon DSM1 selection, C2A+10xDSM1-3B, which 

selected for a R265G genotype (near 100%), and C2A+10xDSM1-2B. C2A+10xDSM1-

2B is 30-34% Y268S and DHODH R265G, 8-10% Y268N and SNP1776, and 60% 

SNP1776. If these were grouped by their frequency in the flask, one could imagine the 

possibility of three different mitotypes (mitochondrial haplotypes) being present, which 

would mean that the R265G DHODH mutant parasites in the flask happened to have a 

Y268S/N mitotype. In that context, the Y268S/N mutations could be more of an 

accidental hitchhiker with their nucleus, which might explain why the parasite never 

made it to 100% R265G like C2A+10xDSM1-3B, since 3B didn’t have to fight selection 

with a dysfunctional enzyme. There was no evidence of any partially-selected mitotypes 

in C2A+10xDSM1-3B, and it had a 97% base-call for R265G, so the population was 

nearly pure. We have provided evidence that these mechanisms are incompatible in 

Aim 2, so the notion that by chance a Y268S-mtDNA-dominant parasite would be the 

parasite to develop the R265G mutation and fail to thrive in the flask would be evidence 

of cytoplasmic incompatibility in action.  

Further, the concept of the sublimon explains why some researchers have failed 

to detect cryptic mutants in sensitive parasite admission samples, and others have [217, 

228]. As stated earlier, sublimon populations are maintained at low levels, even as low 

as 1 sublimon copy per 100 cells, and nothing aside from very high coverage ultra-deep 
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sequencing would catch it, if at all. Indeed, the only two instances of seeing low-level 

cryptic mutants prior to atovaquone exposure is our own data, and another group that 

used a very high coverage WGS approach much like our own [228]. In their work, 

Talundzic et al. detected a cryptic I258M mutation at a 0.1% MAF, but dismissed the 

finding in favor of the conventional de novo mutation theory because 0.1% was within 

the threshold that could be considered error, despite high-quality, 45,000x sequencing 

coverage. The main argument for the de novo development of atovaquone resistance is 

that mutants cannot be detected prior to atovaquone treatment, yet we have parasites 

that have high enough copy presence to detect the low-level mutants, at 2% MAF. 

Indeed, we do not see Y268N at our 1% MAF cutoff, yet it could be argued that TM90-

C2A does possess Y268N at very low levels, as it was partially selected in the 

C2A+10xDSM1-2B parasite. Much higher-resolution deep sequencing (ultra-deep 

sequencing) or sequencing of whole mtDNA molecules (3rd generation sequencing) will 

be required to sort out what truly is lurking at low levels in mtDNA.  

This model would also provide clarification for what we see with the loss of the 

TM92-C1086 Y268S mutant populations.  The application of drug selective-pressure 

would immediately select a parasite with a Y268S sublimon, have rapid sublimon-

mtDNA recombination and mtDNA recombination-based expansion of the sublimon’s 

mitotype leading to survival, while all other parasites rapidly succumb to atovaquone 

pressure. With the wt-mtDNA now being the sublimon, it is maintained at 

substoichiometric levels. If spontaneous substoichiometric shifting were to occur again 

in one parasite that converts back to wild-type dominant mtDNA, it would look much like 

a fitness study, seeing gradual conversion of wt-dominant parasites in the flask because 
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of increased fitness in normal growth conditions. However, TM90-C2A nor TM90-C2B 

match exact mtDNA mitotypes with their clones TM90-C2A-F6 and TM90-C2B-A3, 

suggesting that substoichiometric shifting of highly similar mitotypes must be a common 

occurrence, not just the work of drug-selective forces.  

In conclusion, there are three main pieces of direct evidence that this model 

applies to Plasmodium falciparum. First is its mtDNA replication strategy, which is the 

same as many plants, who are well known to have their main linear mt-genome 

replicate with a branching, recombination-based mechanism [165]. Second is the 

observation that the mtDNA in P. falciparum has small circular forms that were shown to 

directly interact with the linear, highly branched forms. Lastly, our parasites typically 

maintain either majority wt or majority mutant states in their mtDNA, which is important 

in the context of sublimon heteroplasmy in plants, as subtelomeric shifting does not 

result in homoplasmy, but instead results in a low-maintenance number of sublimon 

mtDNA and its main mt-genome. For the few that appear homoplasmic at sites that 

were once heteroplasmic in our mitochondrial deep-sequencing dataset, it is likely that 

they are simply below the 1% MAF cutoff used, as coverage limits the depth one can go 

in confident base-calling [229]. Looking at the SNP-calling in our mtDNA collection as a 

whole, every single parasite was low-level heteroplasmic in at least one site. Continuing 

to develop methods to look at low-level variants and fully investigate this new branch of 

mitochondrial DNA research is warranted. Mitochondrial heteroplasmy may be 

contributing to parasite fitness in nuanced ways that have yet to be investigated, such 

as the potential to investigate mitonuclear interactions in the parasite, which would 
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undoubtedly affect parasite metabolism in important ways, including the possibility of 

cytoplasmic incompatibility [173].  
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CHAPTER FIVE: SUMMARY 

 

  Although the mechanism of action and resistance to atovaquone was first 

suggested in 1999, the publication rate of this compound has not tapered off [114]. 

Atovaquone has fueled 20 years of debate in the malaria community, from its 

mechanism of action, to mechanism of resistance, and most recently the potential 

transmission of resistance. But before we can decide whether or not atovaquone 

resistance can be transmitted, it seems that first we must know how resistance is 

actually generated and maintained, which is something that is vastly understudied. 

There was a single paper on the mitochondrial replication of Plasmodium falciparum, 

and since there has been 20 years of silence. All we know about mitochondrial 

replication and inheritance come from shockingly little information, and where the 

malaria community trailed off, botanists continued on, to move past the ‘low-diversity 

mitochondria’ phase and into the current line of thinking that instead portrays plant 

mitochondria as having diverse, dynamic mitochondrial genomes that are orchestrated 

by the presence of mitochondrial heteroplasmy and carried out by their mitochondrial 

recombination-based replication strategy. Since P. falciparum has the same mtDNA 

structure and replication strategy, we might consider the possibility that the case is not 

closed.  
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  This dissertation sought to understand the phenotypic diversity among 

atovaquone-resistant parasites. In Aim 1, we sequenced candidate genes looking for 

potential clues, but no explanations were found, and created a pyrosequencing assay 

that detected cryptic mutants in atovaquone-sensitive parasites. With the 

pyrosequencing assay, we recognized that atovaquone-resistant phenotypes are 

unstable even with a stable genotype, as with TM90-C2B. We then noticed that the 

extreme mtETC-resistant phenotype is genotypically unstable, rapidly reverting to WT in 

less than two months. These observations led to Aim 2, which involved several drug 

selection experiments in cryptic Y268S mutant genetic backgrounds. Using clonal 

parasites and atovaquone pressure, we found similar phenotypic variation to that found 

in patient isolates, and most importantly, we recapitulated the Y268S clinical resistance 

genotype in Plasmodium falciparum, which has never been successful in 20 years of 

research. Many people speculated that the reason for non-relevant genotypes being 

selected by atovaquone in vitro had to do with complex immunological interactions 

within the host to generate the de novo resistance. In reality, it was as simple as picking 

the right genetic background to select for atovaquone resistance. TM90-C2A, TM90-

C40B2, and wild parasite ARC08-88 all had cryptic Y268S heteroplasmy according to 

pyrosequencing, and they all successfully generated Y268S resistance. Interestingly, 

we also found a way to de-select for resistance, by exposing TM90-C2B to low levels of 

DSM1, as higher doses proved to be lethal in the Y268S background because of likely 

incompatible resistance consequences. All parasites on continuous DSM1 pressure 

gradually reverted their Y268S atovaquone-resistance conferring mutation in favor of 

copy number amplification of DHODH. Then, when exposing the sensitive TM90-C2A to 
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DSM1, most parasites responded with copy number amplifications, with the exception of 

two parasites that mutated their DHODH enzyme instead to an R265G. One of these 

parasites, TM90-C2A+10xDSM1-2B was a ~30% mixture of R265G/Y268S/Y268N 

mutations and the other was completely R265G mutant, which suggests that the Y268 

mutations combined with R265G struggled to thrive. Finally, we were able to show that 

menoctone is also capable of generating the Y268S and the M133I mutations, in TM90-

C2A and W2, respectively. All of this evidence points to the selection of pre-existing 

mitochondrial mutants that are present at low-levels, which led to Aim 3, where we 

sought to make sense of the low-level heteroplasmy we were seeing. We 

pyrosequenced parasites from geographically diverse locations and found cryptic 

Y268S heteroplasmy, and found massive, previously uncharacterized heteroplasmic 

diversity in 2400 parasites from around the world. Finally, we used a high-mitochondrial 

DNA coverage approach to look for cryptic variants at low levels in our in vitro cultured 

parasite lines which gave us the first true evidence of how heteroplasmic diversity is 

maintained in Plasmodium falciparum. Deep-sequencing of the mtDNA led to the 

observation of distinct, low-level mitochondrial haplotypes that are frequently 

interchanged in our parasite lines over time, which is made possible by the sublimon, 

known in the plant world as the small, circular mtDNA molecule by which mtDNA 

diversity is maintained.  

   The implications of this work are that we know very little about mitochondrial 

diversity maintenance, and while I hope I’ve convinced you that this diversity exists, the 

work to prove the mechanism of substoichiometric shifting would be a logical step in a 

future direction. In order to do this, 3rd generation sequencing of intact mtDNA 
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molecules at very high coverage would essentially allow you to sequence every single 

mtDNA mitotype present without shearing DNA, and you could enrich for molecules of 

6-kb size in search of the sublimon’s mtDNA contents. This would be enhanced with a 

method to reliably isolate intact mtDNA in sufficient quantities.  

  Other future experiments would include trying to make a decisive correlation 

between parasite phenotype and mtDNA copy number, as gene dose is likely to 

influence the extent of phenotypic resistance to atovaquone. Pairing high-coverage 

mitochondrial sequencing with phenotypic drug assays would solidify this matter, or the 

development of a highly-sensitive qPCR method to estimate mtDNA copy number could 

also work.  

  Future work with the TM90-10xDSM-3B needs revisiting, as it was one of the 

parasites that did not get phenotyped; I selected one from each treatment flask to 

evaluate, and did not know its unique R265G DHODH mutant status until deep-

sequencing was carried out. We do not know what its resistance profile is and the 

results of a true DHODH mutant that is uncharacterized deserves attention. Along that 

same line, careful observation of the seemingly confused TM90-C2A+10xDSM1-2B 

parasite in conditions of prolonged drug pressure would be interesting to see if the 

parasite can/will retain a combined Y268S/R265G mutant status, it would be my guess 

that this parasite is struggling because of cytoplasmic incompatibility, which of course is 

an unintended consequence stemming from mitochondrial heteroplasmy. Observations 

in plants have shown heteroplasmy-induced substoichiometric shifts causing male 

sterility [226, 227]. The implications of heteroplasmy in an organism are not always 

fitness-conferring results, so mitonuclear interactions would be a very interesting subject 
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to study, especially in the transmission subtext. The question of whether transmission 

can occur in atovaquone resistance would also be a question of whether sublimons can 

be transmitted, as low-level mutants would be inherited if sublimons are inherited. The 

possibility of the main-genome being transmitted by mosquitos has already been 

confirmed in our lab, which are in direct contrast to the most recent paper by Goodman 

et al. 2016 that claims atovaquone resistance is not transmitted [113]. I hope that all of 

this work is the beginning of a new branch of research that looks into the impact of 

mitochondrial diversity in Plasmodium falciparum.   
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