
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2015

Design, Testing and Implementation of a New
Authentication Method Using Multiple Devices
Cagri Cetin
University of South Florida, cagricetin@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Cetin, Cagri, "Design, Testing and Implementation of a New Authentication Method Using Multiple Devices" (2015). Graduate Theses
and Dissertations.
http://scholarcommons.usf.edu/etd/5660

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F5660&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


Design, Testing and Implementation of a New Authentication Method Using Multiple

Devices

by

Cagri Cetin

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Jay Ligatti, Ph.D.
Dmitry Goldgof, Ph.D.

Yao Liu, Ph.D.

Date of Approval:
May 26, 2015

Keywords: Authentication protocols, security, mobile devices, verification, access control

Copyright c© 2015, Cagri Cetin



ACKNOWLEDGMENTS

I would like to express my special thanks to my advisor Dr. Jay Ligatti for being tremen-

dous mentor for me. I would also like to thank Dr. Dmitry Goldgof for his support and

advising during the project.



TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT vi

CHAPTER 1 INTRODUCTION 1
1.1 Background 1

1.1.1 Single-factor Authentication 2
1.1.2 Multi-factor Authentication 2

1.2 An Overview of the New Authentication Method 3

CHAPTER 2 RELATED WORK 6
2.1 Authentication Using Something the User Knows 6

2.1.1 Advantages and Disadvantages 7
2.2 Authentication Using Something the User Is 7

2.2.1 Advantages and Disadvantages 8
2.3 Authentication Using Something the User Has 8

2.3.1 Advantages and Disadvantages 9
2.4 Multi-factor Authentication 9

2.4.1 Advantages and Disadvantages 9
2.5 Challenge-Response Mechanisms 10

2.5.1 Advantages and Disadvantages 10

CHAPTER 3 SYSTEM DESIGN 11
3.1 Authentication 13

3.1.1 Two-device Authentication 13
3.1.2 Three-device Authentication 16

3.2 Registration 17

CHAPTER 4 IMPLEMENTATION 18
4.1 Infrastructure Setup 18

4.1.1 Server Architecture 19
4.1.2 Database Design 19
4.1.3 Software Management and Deployment 20

4.2 Public Key Infrastructure Setup 20
4.3 Registration Phase 21
4.4 Authentication Phase 23

i



4.4.1 Implementation: Device One: a Smartphone, Device Two: a
Smartphone, Challenge Transmission by QR Code 23

4.4.2 Implementation: Device One: a Smartphone, Device Two: a
Smartphone, Challenge Transmission by NFC 25

4.4.3 Implementation: Device One: a Laptop Computer, Device Two:
a Smartphone, Challenge Transmission by QR Code 26

CHAPTER 5 EXPERIMENTAL RESULTS 29
5.1 Model Checking 29

5.1.1 Modelling the Protocol 30
5.1.2 Results 31

5.2 Experimental Testing 32
5.2.1 Experimental Setup 32
5.2.2 Results 35

5.2.2.1 Test: Device One: a Smartphone, Device Two: a Smart-
phone, Challenge Transmission by QR Code 35

5.2.2.2 Test: Device One: a Smartphone, Device Two: a Smart-
phone, Challenge Transmission by NFC 37

5.2.2.3 Test: Device One: a Laptop Computer, Device Two: a
Smartphone, Challenge Transmission by QR Code 37

5.2.3 Analysis 38
5.2.3.1 Execution Time 39
5.2.3.2 Network Usage 40
5.2.3.3 Memory Usage 41
5.2.3.4 Battery Consumption 42
5.2.3.5 Conclusion 43

CHAPTER 6 DISCUSSION AND FUTURE WORK 44
6.1 Add/Remove Devices 44
6.2 Continuous Authentication 44
6.3 Future Experiments 45
6.4 Future Implementations 45

LIST OF REFERENCES 48

ii



LIST OF TABLES

Table 5.1 Model checker result 32

Table 5.2 Test devices’ technical specifications 33

Table 5.3 Protocol implementation test configurations 35

Table 5.4 Experimental results with the first configuration described in Subsec-
tion 5.2.2.1 35

Table 5.5 Experimental results with the second configuration described in Subsec-
tion 5.2.2.1 36

Table 5.6 Experimental results described in Subsection 5.2.2.2 37

Table 5.7 Experimental results described in Subsection 5.2.2.3 38

Table 5.8 Implementations with different system configurations described in Chap-
ter 4 38

Table 6.1 Further implementation ideas 46

iii



LIST OF FIGURES

Figure 3.1 System design overview. 12

Figure 3.2 An example of the authentication protocol using two devices. 13

Figure 3.3 Access request handling algorithm. 14

Figure 3.4 Challenge verification. 15

Figure 3.5 An example of the authentication protocol using three devices. 16

Figure 4.1 Technical infrastructure design. 18

Figure 4.2 Database design. 20

Figure 4.3 Implementation of the system design. 21

Figure 4.4 First step of the device pairing process. 22

Figure 4.5 Second step of the device pairing process. 22

Figure 4.6 Implementation: two smartphones - QR code. 24

Figure 4.7 QR code displayed. 25

Figure 4.8 Scanning the QR code. 25

Figure 4.9 Implementation: two smartphones - NFC. 25

Figure 4.10 Challenge locally broadcasted. 26

Figure 4.11 Extracting the number. 26

Figure 4.12 Implementation: laptop - smartphone - QR code. 27

Figure 4.13 QR code displayed on the laptop screen. 28

Figure 5.1 HLPSL specification in Alice and Bob notation. 30

Figure 5.2 Authentication time measurement of the protocol. 34

Figure 5.3 Average execution time for each configuration. 39

Figure 5.4 Average network usage for each configuration. 40

iv



Figure 5.5 Average memory usage for each configuration. 41

Figure 5.6 Average battery consumption for each configuration. 42

v



ABSTRACT

Authentication protocols are very common mechanisms to confirm the legitimacy of some-

one’s or something’s identity in digital and physical systems.

This thesis presents a new and robust authentication method based on users’ multiple

devices. Due to the popularity of mobile devices, users are becoming more likely to have

more than one device (e.g., smartwatch, smartphone, laptop, tablet, smart-car, smart-ring,

etc.). The authentication system presented here takes advantage of these multiple devices

to implement authentication mechanisms. In particular, the system requires the devices to

collaborate with each other in order for the authentication to succeed. This new authentica-

tion protocol is robust against theft-based attacks on single device; an attacker would need

to steal multiple devices in order to compromise the authentication system.

The new authentication protocol comprises an authenticator and at least two user de-

vices, where the user devices are associated with each other. To perform an authentication

on a user device, the user needs to respond a challenge by using his/her associated device.

After describing how this authentication protocol works, this thesis will discuss three differ-

ent versions of the protocol that have been implemented. In the first implementation, the

authentication process is performed by using two smartphones. Also, as a challenge, a QR

code is used. In the second implementation, instead of using a QR code, NFC technology

is used for challenge transmission. In the last implementation, the usability with different

platforms is exposed. Instead of using smartphones, a laptop computer and a smartphone

combination is used. Furthermore, the authentication protocol has been verified by using an

automated protocol-verification tool to check whether the protocol satisfies authenticity and

vi



secrecy properties. Finally, these implementations are tested and analyzed to demonstrate

the performance variations over different versions of the protocol.

vii



CHAPTER 1

INTRODUCTION

Access control is a crucial component in many digital and physical systems in order to

prevent unauthorized access to sensitive information. Access control policies are designed to

ensure appropriate access to sensitive information and resources (e.g., smartphones, servers,

smartwatches, operating systems, web applications). Hence, authentication methods are the

key mechanism to enforce access control policies as well as protect access to secure systems.

1.1 Background

There are three standard approaches (factors) in authentication schemes:

• Authentication with something the user knows

• Authentication with something the user has

• Authentication with something the user is

A wide variety of authentication methods has been developed for access control systems.

One of the most popular techniques is using a username and a password for authentication.

Another common approach for extensive security is authentication with bio-metric identity

(e.g.: fingerprint, retina). In addition to these techniques, multi-factor authentication is also

commonly accepted by enterprise organizations.

1



1.1.1 Single-factor Authentication

Single-factor authentication is a cost-effective solution to implement access control mecha-

nisms into the systems. Only one of the authentication factors needs to be used to implement

single-factor authentication.

Using something the user knows, such as a username and a password, four-digit pin num-

ber, is a common solution in digital systems. For example, many of the web applications

(e.g., email clients, social network applications) uses a username and a password authen-

tication scheme [1]. Moreover, in mobile systems, four-digit pin number authentication is

popular way to implement screen locks.

On the other hand, enforcing access control policies in physical systems are achieved

by using something the user has. Physical tokens are a good example for these kind of

authentication schemes [2]. For instance, ID cards could be used to unlock an office door or

a garage gate. Furthermore, a credit or debit card are also examples of authentication by

using something the user has.

Another way to implement an authentication method is fallowing the something the user

is approach. Using the users’ biometric identity is a common strategy for authentication

protocols [3]. In some systems, the user needs to scan her/his fingerprint, retina or iris in

order to prove her/his identity. In addition, face recognition techniques are considered in

the domain of authentication schemes that use something the user is.

1.1.2 Multi-factor Authentication

Multi-factor authentication is another approach for implementing access control methods

by using at least two of three authentication factors[1]. Introducing at least one more factor

into the authentication process increases the difficulty of credential falsification.

In some systems, a fingerprint (something the user is) and a password (something the

user knows) combination is used in order to implement multi-factor authentication. Similarly,

2



using a debit card (something the user has) and a pin number (something the user knows)

is also common way to authenticate the users into banking systems.

However, the great concern with these existing authentication methods is the vulnera-

bility against theft-based attacks [4]. In each scheme, the attacker could steal the identity

information, such as a username and a password, a bio-metric identity or a token device,

and access the users’ sensitive information.

1.2 An Overview of the New Authentication Method

The new authentication method presented in this thesis is an innovative way to authen-

ticate users by using users’ multiple devices. This method uses at least two pre-associated

(paired) devices to authenticate. The user devices need to cooperate with each other in

order to respond to a challenge and successfully authenticate. Using associated devices is a

robust way to prevent theft-based attacks on authentication protocols. Theoretical analysis

has been done on the new authentication protocol in Jean-Baptiste Subils’ thesis [5]. Ad-

ditionally, a U.S. Utility Patent Application regarding the new authentication method was

filed April 22, 2015 [6].

This thesis argues that the presented authentication protocol can be easily implemented

to solve real-life authentication problems, and these implementations can have satisfactory

performance. Furthermore, the authentication protocol can be model checked by a model

checker to ensure that it satisfies secrecy and authenticity properties.

Throughout this thesis, terms “first device” and “device one” refer to the device that is

attempting to authenticate some system. Terms “second device” and “device two” refer to

the device with which the user is performing a task or a challenge to prove his/her identity.

Also, the term “challenge” represents a required task to complete authentication.

After defining the new authentication method, this thesis will discuss three different

versions of the protocol that have been designed and implemented. The main purpose of

3



introducing the different set of implementations is to demonstrate the new authentication

protocol’s adaptability to different authentication problems.

In the first implementation, the authentication process is performed by using two smart-

phones. Also, as a challenge, a QR code is used. When the first device attempts to access

the system, the system sends a QR code to the device one. Then, the user needs to scan

this QR code with his/her second smartphone in order to perform the challenge. Finally, the

authenticator system decides whether or not the authentication is successful. Moreover, to

demonstrate the authentication process with two smartphones and a QR code, an Android

application was developed and installed into the smartphones. Also, a web server application

was developed and deployed to represent the authenticator system.

In the second implementation, a different challenge transmission technique usage is

demonstrated. Instead of using a QR code, NFC technology is used for challenge trans-

mission. Similar to the first implementation, two smartphones, which run the Android

application, and a web server application are used.

In the last implementation, the usability with different platforms is exposed. Instead

of using smartphones, a laptop computer and a smartphone combination is used. In this

particular implementation, the laptop attempts to access to sensitive information on some

system. To perform an authentication, the authenticator system sends a QR code to the

laptop computer, and the user scans this QR code by using his/her smartphone. Finally, the

authenticator system grants or denies access to the laptop computer. Similarly to previous

implementations, the same Android and web server application was used in the smartphone

and the authenticator server. However, new client application have been designed and im-

plemented for laptop computer.

After introducing particular implementations, the authentication protocol was verified by

using an automated security protocol verification tool (Chapter 5). To check if the authen-

tication protocol satisfied the authenticity and the secrecy properties, a security protocol

verification tool needed to be used. At first, the authentication protocol was modeled using

4



a high level protocol specification language. Then, the protocol was verified to show the

secrecy and the authenticity properties were not violated.

These implementations were tested and analyzed to demonstrate the performance vari-

ations over different versions of the protocol. The different implementations compared in

terms of execution time, battery usage, network traffic and memory consumption. The most

effective authentication performance was observed while using two smartphones and NFC

technology for challenge transmission. Using the NFC protocol instead of QR code images

significantly decreased the network traffic and battery usage. However, measured execution

time results were close to each other.

The rest of the thesis is structured as follows: Chapter 2 expresses the related work.

Chapter 3 describes the system design of the new authentication protocol. Chapter 4 in-

troduces different real life implementations of authentication protocol. Chapter 5 analyzes

the implementations in detail. Chapter 6 discusses future work, describes other possibilities,

and concludes the thesis.

5



CHAPTER 2

RELATED WORK

Access control determines who can access system resources [7]. There are two main parts

of broad access control definition, authorization and authentication [2]. Authorization is

the process of specifying access rights to the resources. Further, authentication is the set of

procedures that determines whether someone or something should be allowed access to some

system or resources [2].

Authentication methods are a very common way to confirm the legitimacy of someone’s

or something’s identity in digital and physical systems. The standard three factors in au-

thentication techniques are something the user knows (e.g., a password), something the user

has (e.g., a hardware token device) and something the user is (e.g., a fingerprint) [1]. In

order to achieve an authentication, one of the factors can be used. Also, the factors can

be combined to create a multi-factor authentication. This chapter compares and contrasts

closely related common authentication methods with the new authentication protocol.

2.1 Authentication Using Something the User Knows

One of the most popular approaches is using something the user knows as an authen-

tication factor. Passwords are an example of authentication methods based on something

the user knows [1]. Furthermore, a username and password authentication scheme is mainly

used in online web applications (e.g., online banking applications, social media platforms,

mail clients).

6



Another approach to implement authentication mechanisms based on something the user

know is asking personal questions from the users, such as “What was the make of your first

car,” “What is your first pet’s name” [8]?

2.1.1 Advantages and Disadvantages

A major advantage of the traditional username and password scheme is that it is very easy

to implement. A wide variety of password encryption tools exist in order to store passwords

in the systems. Moreover, password authentication is relatively easy to use because users

are accustomed to it [9].

Researchers have been studying the vulnerabilities of the username and password schemes.

One of the common problems with passwords is attackers can guess the password [10]. Users

are more likely to choose simple passwords in order to better remember them in the future.

Spear phishing and social engineering is also another major attack model with passwords.

The attacker can send a fake email and ask for the username and/or password from the

user [11, 12]. Also, another survey showed that more than 70% of people would reveal their

passwords for just a candy bar [13].

2.2 Authentication Using Something the User Is

Biometric identifiers, e.g., finger prints, voice prints, retina scans, are examples of an

authentication scheme based on something the user is. Before the authentication starts, the

authenticator system needs to take users’ biometric measurements in order to identify them.

Then, when users want to access the system, the authentication mechanism analyzes and

verifies users’ identities [1]. In order to identify users, systems can read fingerprints, scan

retinas, scan voices, read signatures.

7



2.2.1 Advantages and Disadvantages

Since users can forget passwords and lose hardware devices (e.g., hardware token, bank

card), something the user is based authentication mechanism could be used. Furthermore,

these authentication schemes are cost-effective; after setting up the authentication infras-

tructure, there is no need for extra device utilization.

User identity theft is one of the major concerns with “something the user is” based au-

thentication mechanisms. The attacker could steal the fingerprints of users and authenticate

the system. Similarly, the attacker could also spoof voice samples, retina images or signatures

of users [14, 15].

The replay attack is also another vulnerability in the biometric authentication scheme [14].

The attacker could steal the fingerprint information from the authenticator device after a

successful authentication. Additionally, uniqueness is another concern for biometric authen-

tication. Two different people could have the same characteristics of their faces, signatures

or voice prints [16].

2.3 Authentication Using Something the User Has

Some authentication schemes require a physical object in order to complete authen-

tication. These physical objects, known as “something the user has,” are factors of the

authentication. Physical tokens are one of the most popular examples of this scheme [17].

RSA securId [18], Battle.net authenticator [19], yubico [20] are instances of implementation

of the physical tokens.

Magnetic strip cards are another popular example similar to hardware tokens. Magnetic

strip cards (e.g., id cards, credit cards, smart card) are widely used to authenticate the users

into the systems.

8



2.3.1 Advantages and Disadvantages

A wide variety of solutions has been introduced to identify the users with physical au-

thenticator devices [21, 22, 23, 24]. The popularity of studies on the something the user has

authentication schemes leads to cost-effective solutions to authentication problems.

Theft-based attacks is one of the major concerns in something the user has based authen-

tication mechanisms [4]. A physical token device, such as an id card, or a credit card could

be stolen by an attacker and the attacker could easily access systems. In addition, another

common attack model on token devices are the replay attacks [25], in which, physical token

devices or credit cards could be copied by an attacker and used to gain access to systems.

Clock drift, battery and synchronization problems are other examples of physical token

issues. In a certain time period, users need to do maintenance in order to reuse their token

devices [26].

2.4 Multi-factor Authentication

Multi-factor authentication mechanisms combine at least two of three authentication fac-

tors (something the user knows, something the user has, something the user is). Automated

Teller Machines (ATMs) extensively uses the two-factor authentication scheme during the

bank transactions. For example, withdrawing money from ATM requires a bank or a credit

card (something the user has) and a personal identification number (PIN) (something the

user knows). Another common example of multi-factor authentication schemes is a combi-

nation of an RSA securID physical token and a password [27].

2.4.1 Advantages and Disadvantages

In the single factor authentication schemes, a token device can be stolen or a password

can get compromised. Introducing multiple authentication factors can diminish the attack

surface. For example, if an attacker compromises the hardware token in a two-factor authen-

tication scheme using a password and a hardware token, the system still remain inaccessible.

9



Although multi factor authentication schemes have improved the security compared to

single factor authentication schemes, the usability is a major concern [28]. Users may need

to carry additional devices (e.g., physical token) on them. Moreover, since there are multiple

factors involved in authentication, extra steps need to be performed in order to complete

authentication. Users can get tired of performing extra steps and disable the multi-factor

authentication feature from systems.

2.5 Challenge-Response Mechanisms

Challenge-response mechanisms use one-time usable identifiers as an authentication fac-

tor. For example, instead of using the same password, the authenticator system uses one-time

passwords [1]. One-time passwords are the ideal example of challenge response mechanisms.

In every authentication attempt, the system generates a random password and sends it to

the user. In addition to one-time passwords, using a hardware token (e.g., mobile phone,

physical token device) is another approach to implement challenge-response mechanisms.

CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans

Apart) is another example of a challenge-response mechanism that tests whether the user is

human or not [29].

2.5.1 Advantages and Disadvantages

Challenge-response mechanisms are robust against bot attacks on the system [1]. Fur-

thermore, many challenge-response mechanisms (e.g., CPATCHA) are very popular and easy

to implement.

Dictionary attacks are a common attack model on challenge-response mechanisms [1]. If

an attacker knows the challenge and the response, a dictionary attack can be performed to

predict one-time passwords. Furthermore, there are many studies showing that CHAPCHA-

based mechanisms can get compromised by automated systems [30, 31, 32].

10



CHAPTER 3

SYSTEM DESIGN

This chapter introduces the system design of the new authentication protocol. Unlike the

traditional authentication techniques (e.g., username and password, bio-metric identity, RSA

securId), this new authentication method requires at least two associated (paired) devices

to complete the authentication process.

This new authentication method is a one-factor authentication mechanism. Furthermore,

this technique uses at least two user devices as the “what the user has” factor of authentica-

tion. Instead of using additional devices (e.g., hardware token, id-card), using user devices

is a cost-effective solution to implement this authentication protocol. Therefore, the authen-

tication protocol implementations are easy to deploy into systems.

The association of multiple devices with a user is an innovative way to prevent device

theft. All user devices need to be granted a private key or create their own private key, during

the registration phase. In this regard, all of the associated devices need to participate in the

authentication process. For example, if two smartphones are associated with a particular

user and one of them is stolen, the attacker needs the private key of the other device to

authenticate the stolen device.

The public key infrastructure (PKI) has been used to ensure confidentiality and integrity

of shared information during the authentication process [2]. The device pairing process is

an essential part to sharing public keys of the devices. The device pairing process should be

done in registration phase and the registration should be performed before the authentication

starts.

11



First Device

Second Device

Authenticator

1 – Requests Access

2 – Sends Authentication Challenge

3 – Transfers
      Challenge

4 – Sends Authentication Challenge

5 – Sends Access Acknowledgment

Figure 3.1. System design overview.

During the current investigation and analysis of the protocol, the following assumptions

have been made:

• The public key infrastructure is sound and robust against network-based attacks (e.g.:

man in the middle, eavesdropping, masquerading).

• The device registration process was completed properly and the devices were paired

with each other and the user.

Figure 3.1 provides an overview of the authentication protocol with two devices. In the

first step, the authentication process starts with an access request from the first device. Then

in the second step, the authenticator server generates an authentication challenge and sends

it to the first device. In the third step, the first device transmits the challenge to the second

device. In the fourth step, the second device generates a response and sends this response to

the authenticator server. Finally, in the fifth step, if the received authentication challenge is

valid, the server sends a successful access acknowledgment to the access requesting device.

12



Authenticator First Device Second Device

1 - Access Request

2 - Random Number

3 - Random Number

5 - Access Granted

4 - Authentication Response

Figure 3.2. An example of the authentication protocol using two devices.

3.1 Authentication

The authentication process is the main contribution of the authentication protocol. How-

ever, in order to start the authentication process, the user needs to pair at least two devices

and register them into the authenticator system. The device pairing process will be explained

in Section 3.2 in detail.

3.1.1 Two-device Authentication

The authentication protocol requires at least two devices, which are associated with a

user, to perform an authentication process. Figure 3.2 describes in detail an example of

the authentication protocol using two devices. All the communication in the system was

designed with public key infrastructure. The device and the server have a pair of public

and private keys to encrypt communication. Additionally, all network messages contain a

time-stamp and a digital signature. PKI, digital signatures and time-stamps are vital factors

of the system design setup in order to prevent man in the middle, masquerading, and denial

of service attacks [33].

13



Begin

Receive, access 
request from first device

Is request from 
first device valid?

Start timer

Generate
authentication challenge

Send 
authentication challenge

Deny access to
resource(s)

End

NO

YES

Figure 3.3. Access request handling algorithm.

In the first step, the first device sends an access request to the authenticator server.

This encrypted access request message contains a user identification information (e.g., email

address of user), a device identification information (e.g., device name), and a time stamp.

Besides this information, the message contains a digital signature that signed with the private

key of the first device.

After the authenticator server receives and encrypts this message, it runs an algorithm

to validate the access requesting device (first device) as shown in Figure 3.3. At first,

the authenticator server checks the first and the second devices’ identification information.

14



  Has a new response 
been received?

Is time out?

Deny access to
resource(s)

End

Is the new 
response valid?

Grant access to
resource(s)

NO YES

Begin

NO

YES

NO

YES

Figure 3.4. Challenge verification.

These two devices need to be associated with each other in the system database. The device

association process is described in Section 3.2. Then, the server generates a random number,

and it starts a timer to limit the authentication time.

In the second step, the authenticator server sends the random number to the first device.

The randomly generated number is used as a challenge in the authentication protocol.

In the third step, the first device transmits the challenge to the second device. The

challenge transmission could be done in many alternative ways. For example, images, QR

codes, NFC protocol, vibration, sound and light waves, and infrared technology could be

used.

In the fourth step, after the second device receives the challenge, it forwards the challenge

to the authenticator server.

At this point, the authenticator server runs an algorithm to validate the challenge as

specified in Figure 3.4. First, the timer checks if the authentication time is expired. Then,

15



Authenticator First Device Second Device

1 - Access Request

2 – Random Number

5 – Random Number

7 - Access Granted

6 - Authentication Response

Third Device

4 - Authentication Response

3 – Random Number

Figure 3.5. An example of the authentication protocol using three devices.

the authenticator server checks if the second device is paired with the first device. Finally,

the authenticator server checks if the challenge is valid. If all these requirements are met, in

the fifth step, the authenticator server grants access to the first device.

3.1.2 Three-device Authentication

Two-device authentication is not the only version of the authentication protocol. Hence,

more than two devices could be used to implement this authentication process. Also, since

an attacker needs to steal all associated devices in order to access the system, introducing

more devices brought extra layers of security into the authentication process.

Figure 3.5 illustrates another example of the authentication protocol using three devices.

The devices shown in Figure 3.5 need to be associated with the same user. In the first

step, the first device requests access to the authenticator server. Then, in the second step,

the authenticator server generates a random number and sends it to the first device. In

the third step, the second device receives the random number from the first device. In the

fourth step, the second device sends an authentication response back to the server. In the

fifth step, the second device sends this random number to the last device. In the sixth step,

16



the third device then sends another authentication response back to the authenticator server.

If the authenticator server determines that the responses received from the second and third

devices are valid for the issued random number, the authenticator system grants the first

device access to the resource.

3.2 Registration

Registration is a vital part of the authentication protocol. In order to start an authenti-

cation process, at least two devices need to be associated.

During the authentication process, the authenticator server needs to know two pieces of

basic information: the identity of the paired devices, and the identity of the user who owns

the devices. To collect this information, a unique device name could be used as an identifier

of the device. Also, an email could be used to identify the user.

Although this proposed approach is used in this authentication protocol, it’s not the

only way to implement the registration process. Many existing techniques can be used to

enforce the registration process. Registration with call center, short message service (SMS)

activation or many alternative approaches could be used.

Device registration is not the main contribution of this thesis. Hence, the security aspects

of the registration phase is not addressed in this thesis.

17



CHAPTER 4

IMPLEMENTATION

Implementing the authentication protocol has been useful for confirming its practicality.

This section introduces the infrastructure (Section 4.1) and the cryptographic (Section 4.2)

setup of the implementation. Then, the device pairing process is explained in Section 4.3.

Finally, this chapter presents multiple implementations of the authentication protocol with

different system configurations (Section 4.4).

Web Server
Application

Database
(MySQL)

First
Device

Second
Device

Encrypted
communication

Encrypted
communication

Database
read/write

Figure 4.1. Technical infrastructure design.

4.1 Infrastructure Setup

Implementing different versions of the authentication protocol requires flexible software

architecture in order to reduce development overhead. Hence, a flexible server infrastructure

18



was designed and implemented. Thanks to this infrastructure design, the authenticator

server implementation does not need to be changed while implementing new versions of

the authentication protocol. Furthermore, the rest of the different authentication protocol

versions were developed based on this particular infrastructure setup.

4.1.1 Server Architecture

The principal mechanism to implement this authentication protocol is the authenticator

server. A web server application is suitable to implement the authenticator system of the

protocol as shown in Figure 4.1. The server application communicates with devices via

REST API [34]. Representational State Transfer (REST) is a software design approach to

implement web services. Thus, this design approach allows the web server application to

communicate with different devices regardless of their operating systems.

The web server application was implemented by using Spring Framework [35] in Java

language. The Spring Framework is a Java-based tool for developing and configuring the

enterprise web applications.

4.1.2 Database Design

Another essential contribution of this protocol is the device association process. To

associate devices, a device and user identification information are required. Hence, a simple

database was designed and implemented as shown in Figure 4.2. An email address was

used to identify the users. Also, the unique device name was used to identify the associated

devices. The associated device identity information (device name and email address) was

created during the registration phase and stored in the database.

For data storage and data persistence, MySql database and Hibernate framework [36]

were used. Hibernate is an open source object-relational mapping library project for Java

language. The goal of using a third party framework to manage database operations is to

prevent SQL injection attacks [37].

19



      ID
      DeviceName
      UserName

DEVICES

      ID
      UserName

USERS

Figure 4.2. Database design.

4.1.3 Software Management and Deployment

For build automation and software dependency management, Apache Maven was used.

Apache Maven is a software project management tool for software projects [38].

This server application was deployed on the Apache Tomcat [39] application server.

Apache Tomcat is an open source Java servlet implementation for web applications.

4.2 Public Key Infrastructure Setup

The asymmetric encryption was implemented for all communication steps in the authen-

tication protocol. To implement asymmetric encryption, RSA encryption algorithm was used

in Java [40]. During the registration process, the server shares its public key with the device.

Then, the device creates its own public and private key pair and sends the public key to

the server. In every communication step, the server encrypts the data with devices’ public

key. Also, the devices decrypt the data with their private key as shown in Figure 4.3. For

example, in the second step in Figure 4.3, the server generates a random number and sends

it to the first device. The server encrypts this message with the first device’s public key.

After the first device receives this encrypted data, it decrypts by using its private key.

In order to prove the authenticity of the data in the system communication, a digital

signature scheme was used. In every communication step, the data are signed with the

devices’ private key as shown Figure 4.3. First, the server creates a hash function by using

SHA-1 hashing algorithm. SHA-1 is a cryptographic hash function [41]. Then, in the second

20



Server First Device Second Device
1- {{AR,TS

1
}
       

, ID
1
}

K D1
−1 K S

2 - {{TS
2
} 

       
, RN}

K S
−1 K D1

3 - {{TS
3
} 

       
, RN}

K D 2K D1
−1

4 - {{RN,TS
4
}
       

, ID
2
}

K D2
−1 K S

5 - {{TS
4
}
       

, ACK}
K S

−1 K D1

     – Machine m's public key AR – Access request message
     – Machine m's private key ACK – Access acknowledge
TS – Timestamp RN – Random number
ID

1
 – First device name + the user's email 

ID
2
 – Second device name + the user's email

 

K m

K m
−1

Figure 4.3. Implementation of the system design.

step, the server encrypts the hash function with its own private key by using RSA encryption

algorithm, which creates the signature. Finally, the signature and the data are merged by

the server and sent to the device as digitally signed data. After the device receives the signed

data, it needs to verify it. First, the signature is decrypted with the server’s public key by

using the same algorithm; then the device creates another hash code from the data. Finally,

if the two hash codes match with each other, the authenticity of the data is ensured.

4.3 Registration Phase

The authentication protocol and registration methodology were discussed in Chapter 3.

One particular registration process was implemented in order to perform the authentication

protocol. In this section, the registration phase implementation is explained in detail.

21



Server Device 1

Device 1's unique  name
+

 Email

Figure 4.4. First step of the device pairing process.

Server

Device 2

Email 
Server

Device 2's unique  name 
+  Email + OTP

Send
Email with OTP

OTP

Figure 4.5. Second step of the device pairing process.

Figure 4.4 and Figure 4.5 demonstrate the registration process in two steps. In the first

step (Figure 4.4), an email address and a unique device name need to be entered to identify

the device and the user. After the server receives the registration request from the first

device, first it validates the information by checking whether the device name is unique and

the email address has not been registered before. If the device and the user are valid, the

server starts a timer to open a time frame to limit second device registration duration. If the

second device isn’t registered in this time frame and the timer expires, the email becomes

blacklisted in the server.

In the second step (Figure 4.5), the second device sends the same email address and a

unique device name. Then, the server validates the user and the device identities by applying

22



the same process in the first step. In this moment, in order to confirm the user’s identity, a

One Time Password (OTP) was used. The server generates an OTP by using Java security

API [42]. Then, the server sends the OTP to the email address, which is already provided by

the user. The OTP should be entered on the second device within the time frame, which is

already started in the first step by the server. After this step, if the timer is still not expired,

the server associates these two devices with each other and with the user. Furthermore, the

server stores the identity information of the associated devices in the system database.

4.4 Authentication Phase

In this section, a different set of implementations of the authentication process will be

presented. All these implementations were embodied from the authentication protocol con-

cept presented in Chapter 3. Although these implementations were designed with a different

set of system configurations, they use the same shared modules.

The following implementations use the same infrastructure implementation presented in

Section 4.1. As an authenticator system, the web server implementation presented in Sub-

section 4.1.1 was used. For the device association and the user initialization, the registration

phase presented in Section 4.3 was used. Furthermore, the cryptographic infrastructure

implementation presented in Section 4.2 was used to ensure the network security of the

implementations.

4.4.1 Implementation: Device One: a Smartphone, Device Two: a Smartphone,

Challenge Transmission by QR Code

In this implementation, two Android smartphones were used to represent the first and

second devices in the authentication protocol. Additionally, an Android application was

designed and implemented to operate the authentication process. Before the authentication

process starts, the registration phase presented in Section 4.3 was performed in order to

associate the devices with each other.

23



Server First Smartphone Second Smartphone

1 - Access Request

2 – Challenge: QR code

3 – QR Code

5 - Access Granted

4 -  Random Number

Figure 4.6. Implementation: two smartphones - QR code.

Figure 4.6 demonstrates this specific implementation. After the first step, when the

server receives the access request, it creates a 32-bit alpha numeric random number using

Java security API [42]. Then, the server generates a QR code from the random number.

To compute a QR code from the random generated number, Google Zxing open source

framework [43] was used.

In the second step, the server sends this QR code as a challenge. After the second step,

when the first smartphone receives the challenge, it locally broadcasts the QR code to the

other associated device by displaying the QR code on its screen as shown in Figure 4.7.

The second device scans the QR code (Figure 4.8) and extracts the random number, which

was already created by the server. To read the QR code, Google Zxing framework was

implemented in the Android application. In the fourth step, the second smartphone sends

the random number to the server. The server runs an algorithm to validate the request as

discussed in Chapter 3. In the fifth step, if the request is valid, the server grants access to

the smartphone. Finally, the server successfully authenticates the Android application.

24



Figure 4.7. QR code displayed. Figure 4.8. Scanning the QR code.

Server First Smartphone Second Smartphone

1 - Access Request

2 – Challenge: Random Number

3 – Random Number

5 - Access Granted

4 -  Random Number

NFC

Figure 4.9. Implementation: two smartphones - NFC.

4.4.2 Implementation: Device One: a Smartphone, Device Two: a Smartphone,

Challenge Transmission by NFC

Similarly to the implementation presented in Subsection 4.4.1, this implementation uses

two Android smartphones during the authentication process. However, for the challenge

transmission, Near Field Communication (NFC) technology was implemented. Instead of

scanning the QR code, two smartphones need to be tapped together in order to transmit the

challenge.

25



Figure 4.10. Challenge locally broadcasted. Figure 4.11. Extracting the number.

Figure 4.9 illustrates this specific implementation with NFC. Different from the previous

implementation (Subsection 4.4.1), after the first step, when the server receives the access

request, the server creates a random number, but it doesn’t generate a QR code. Instead of

sending the QR code, the server sends the generated random number to the first device as

shown in the second step. When the second device receives the random number, it locally

broadcasts it by opening an NFC connection as shown in Figure 4.10. NFC is a set of

technologies that transmits data over radio waves by bringing the devices into proximity

(generally a distance of 10 cm or less) [44]. To implement the challenge transmission process

via NFC, Android NFC library was used [45]. In the third step, to perform the challenge,

users need to tap devices together to establish radio communication as shown in Figure 4.11.

Then, the second smartphone extracts the random number and sends it to the server as

shown in the fourth step. Finally, the server validates the request and grants access to the

first device.

4.4.3 Implementation: Device One: a Laptop Computer, Device Two: a Smart-

phone, Challenge Transmission by QR Code

In this implementation, a laptop computer represents the first device and a smartphone

represents the second device. For challenge transmission, a QR code was implemented.

26



Server Laptop Computer Smartphone

1 - Access Request

2 – Challenge: QR code

3 – QR Code

5 - Access Granted

4 -  Random Number

Figure 4.12. Implementation: laptop - smartphone - QR code.

To associate the smartphone with the laptop computer, the particular registration phase

implementation was performed (Section 4.3). An Android application, which is the same

application used in the first and second configurations, was used in this implementation

to operate authentication process on the smartphone. For the laptop computer (the first

device) a Java desktop application was designed and developed. For this implementation,

a laptop computer was used. Additionally, the developed desktop application was designed

to be operated on cross platforms. Hence, it can run on Windows, Mac OS X or Linux

empowered computers.

Figure 4.12 demonstrates this specific implementation in detail. In the first step, the

laptop computer wants to access to the system. Similar to the first implementation as

presented in Subsection 4.4.1, the server sends a challenge via QR code. In the second

step, the computer receives this QR code and locally broadcasts it by displaying it on the

screen as shown in Figure 4.13. And the rest of the process follows as similar to the first

implementation. The smartphone scans the QR code, extracts the random generated number

and sends it to the server. Finally, the server grants or denies access to the laptop computer.

This implementation allows users to access the systems from their laptop computer by using

their smartphone.

27



Figure 4.13. QR code displayed on the laptop screen.

28



CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, the new authentication protocol design presented in Chapter 3 will be

examined, and the implementations presented in Chapter 4 will be tested in detail. First,

the authentication protocol was validated by using an automated validation tool for Internet

security protocols. Then, the implementations were tested by using different devices and

platforms to determine their performance.

5.1 Model Checking

In this section, the authentication protocol is modelled and verified. To verify that the

authentication protocol guarantees authenticity and secrecy of the communication between

devices and the authenticator server, a model checker must be used. Thus, AVISPA [46]

model checker was used to check authenticity and secrecy properties. Automated Validation

of Internet Security Protocols and Applications (AVISPA) is an automated model checker

for large scaled security protocols. The AVISPA automation tool supports four verification

backend tools [47]:

• OFMC (On-the-fly model checker)

• CL-AtSe (Constraint Logic based Attack Searcher)

• SATMC (SAT-based Model-Checker)

• TA4SP (Tree based model checker)

29



Server Alice Bob
{{AR,TS

1
}
 inv(Ka) 

, ID
1
}
 Ks

{{TS
2
}
 inv(Ks) 

, RN}
 Ka

{{TS
3
}
 inv(Ka)

, RN}
 Kb

{{RN,TS
4
}
  inv(Kb)

, ID
2
}
 Ks

{{TS
4
}
 inv(Ks)

, ACK}
 Ka

Ka – Alice's public key AR – Access request message
Kb – Bob's private key TS – Timestamp
Ks – Server's private key ACK – Access acknowledge
RN – Random number
ID

1
 – First device name + the user's email 

ID
2
 – Second device name + the user's email

 

Figure 5.1. HLPSL specification in Alice and Bob notation.

CL-AtSe and SATMC backend platforms are used to verify the bounded number of

sessions and protocol falsification. OFMC backend is useful for detecting guessing and

replay attacks [47]. TA4SP backend provides unbounded security protocol verification by

using tree-based languages [47].

5.1.1 Modelling the Protocol

In order to verify the authentication protocol with AVISPA, the protocol was modelled

with HLPSL. High-Level Protocol Specification Language (HLPSL) is a language for mod-

elling and specifying security protocols. HLPSL uses Alice and Bob notation to model

security protocols [48].

The authentication protocol was modelled by using HLPSL in Alice and Bob notation

as shown in Figure 5.1. The server represents the system that authenticates the devices.

30



Alice represents the first device and Bob represents the second device of the authentication

protocol. Ka, Kb, Ks are the public keys of the first device, the second device, and the server

respectively. The inverse function (inv) retrieves the private keys of the public keys.

There are two security goals exist in the AVISPA. To verify if the devices are being

authenticated, the following goals were specified:

• Authentication on the first device

• Authentication on device two

Furthermore, to verify if the authentication communication was kept secret, the following

goal was specified:

• Secrecy of hashed message

5.1.2 Results

The automated validation was performed on the specified protocol (Figure 5.1) by using

the AVISPA model checker. During the experiments a laptop computer was used. The

laptop computer is a MacBook Pro, which has 8GB RAM, a 2.2 GHz Intel Core i7 processor

and 750GB storage.

Table 5.1 summarises the results of the verification. To verify the bounded number of

sessions and protocol falsification, CL-AtSe and SATMC backend platforms were used [47].

CL-AtSe completed the verification in 6 seconds by analyzing 2470 states. Also, it took

285.13 seconds to complete verification with SATMC. As a result, both backends did not

find any possible attacks on the protocol. To detect guessing and replay attacks, the protocol

was verified by OFMC backend. OFMC ran a heuristic search algorithm with 1000000 plies

and analyzed 68 total nodes. As a result, the authentication protocol proposed in Chapter 3

was validated by using an automated tool for verification of the security protocols.

31



Table 5.1. Model checker result

Backend Summary Statistics
CL-AtSe SAFE Analysed: 2470 states

Reachable: 2470 states
Translation: 0.02 seconds
Computation: 6.0 seconds

SATMC SAFE attackFound: false
upperBoundReached:true
graphLeveledOff: 7 steps
satSolver: zchaff solver
maxStepsNumber: 30 steps
stepsNumber: 7 steps
encodingTime: 285.13
seconds
solvingTime: 0 seconds
if2sateCompilationTime:
0.49 seconds

OFMC SAFE parseTime: 0.00s
searchTime: 5.86s
visitedNodes: 68 nodes
depth: 1000000 plies

5.2 Experimental Testing

Different versions of the authentication protocol were designed and implemented as pre-

sented in Chapter 4. In this section, the presented implementations will be explored to

measure the performance overhead.

5.2.1 Experimental Setup

The implementations of the authentication protocol use two devices and a web server

application. During the experiments, three different Android smartphones and two different

laptop computers were used. Table 5.2 shows the technical specifications of the devices, which

are used during the experiments. One device is a Samsung Galaxy S3 I9300, which has a

Quad-core 1.4 GHz processor, 1GB RAM, 16GB storage, a 2100mAh lithium ion battery, a

8MP camera and Android 4.4.4 operating system. The second mobile device is a LG Nexus

32



Table 5.2. Test devices’ technical specifications

Device name Technical specification
Samsung Galaxy S3 I9300 Quad-core 1.4 GHz CPU

1GB RAM
16GB storage
2100mAh lithium ion battery
8MP camera
Android 4.4.4 operating system

LG Nexus 4 Quad-core 1.5 GHz CPU
2GB RAM
16GB storage
2100mAh lithium ion battery
8MP camera
Android 4.4.4 operating system

Motorola Nexus 6 Quad-core 2.7 GHz CPU
3GB RAM
32GB storage
3320mAh lithium ion battery
13MP camera
Android 5.0 operating system

MacBook Pro 2.2 GHz Intel Core i7 CPU
8GB RAM
750GB storage
Mac OS X Yosemite operating system

Windows computer 2.1 GHz Intel Core i5 CPU
8GB RAM
250GB storage
Windows 7 operating system

4, which has a quad-core 1.5 GHz processor, 2GB RAM, 16GB storage, a 2100mAh lithium

ion battery, a 8MP Camera and Android 4.4.4 operating system. The last smartphone is a

Motorola Nexus 6, which has Qualcomm Snapdragon 805 processor with 2.7GHz quad-core

processor, 3GB RAM, 32GB storage, a 3320mAh lithium ion battery, a 13MP camera and

android 5.0 operating system. The web server application was run on a MacBook Pro, which

has 8GB RAM, a 2.2 GHz Intel Core i7 processor and 750GB storage. The other laptop

computer is a Windows 7 machine, which has 8GB RAM, a 2.1 GHz Intel Core i5 processor

and 250GB storage.

33



Server First Device Second Device

Access Request

Challenge

Challenge

Access Granted

Authentication Response

T1

T2

T5

T3

T4

T6

Figure 5.2. Authentication time measurement of the protocol.

For each protocol implementation, the same tests were performed. For each test, 20 iter-

ations of the authentication procedure were executed to measure the average authentication

time, memory usage, network consumption, and battery drain on each device. Authentica-

tion time was measured by summing up two different timer functions not including human

interaction time. The first timer starts at time T1 and ends at time T3 as shown in Fig-

ure 5.2. Then the second timer starts at time T4 and ends at time T6. As a result, execution

time calculated as shown below:

ExecutionT ime = (T3− T1) + (T6− T4)

The memory usage was measured by Android DDMS (Dalvik Debug Monitor Server) [49].

The sampling frequency of the allocated memory on the heap was set to 10 seconds. The

network consumption was measured by the network traffic tool provided by Android DDMS.

To measure battery consumption, a third-party tool was used. During the experiments,

mobile devices and computers never went to sleep. Target programs were compiled with

Eclipse Luna using required frameworks. The web server application implementation has a

total of 2184 lines of code (not including empty lines). The desktop application has a total

of 1339 lines of code (not including empty lines) and the Android mobile application has a

total of 2467 lines of code without empty lines.

34



Table 5.3. Protocol implementation test configurations

Test configuration
described in Sub-
section 5.2.2.1

Test configuration
described in Sub-
section 5.2.2.1

Test configuration
described in Sub-
section 5.2.2.2

Test configuration
described in Sub-
section 5.2.2.3

First Device Samsung Galaxy S3 LG Nexus 4 Samsung Galaxy S3 Laptop
Second Device LG Nexus 4 Samsung Galaxy S3 LG Nexus 4 LG Nexus 6
Challenge QR Code QR Code NFC QR Code

Table 5.4. Experimental results with the first configuration described in Subsection 5.2.2.1

Device Execution Time (s) Network Usage (bytes) Memory Usage (MB) Battery Consump-
tion (Joule)

First Device
(Samsung S3)

0.0754 4749.3 4.055 14.4

Second Device
(LG Nexus 4)

0.0754 476.2 9.380 4.1

5.2.2 Results

Table 5.3 shows the different test configurations with multiple devices. These test configu-

rations were designed to evaluate the individual performance of each protocol implementation

presented in Chapter 4.

5.2.2.1 Test: Device One: a Smartphone, Device Two: a Smartphone, Chal-

lenge Transmission by QR Code

The authentication protocol implementation presented in Subsection 4.4.1 was tested.

Two Android smartphones were used to represent the first and second devices. In this

implementation, two sets of tests were performed. First, the experiments were performed

with a Samsung Galaxy S3 as the first device and an LG Nexus 4 as the second device.

Then, the second experiments were performed with an LG Nexus 4 as the first device and a

Samsung Galaxy S3 as the second device.

Table 5.4 shows the test results with a Samsung Galaxy S3 as the first device and an LG

Nexus 4 as the second device. Similarly, Table 5.5 shows the results with an LG Nexus 4 as

the first device and a Samsung Galaxy S3 as the second device. Average execution time for

one complete authentication is 0.0754 seconds with the first configuration. To demonstrate

the efficiency of the system, the time performance was measured with a different set of

35



Table 5.5. Experimental results with the second configuration described in Subsection 5.2.2.1

Device Execution Time (s) Network Usage (bytes) Memory Usage (MB) Battery Consump-
tion (Joule)

First Device
(LG Nexus 4)

0.0739 4674.3 10.2 11.3

Second Device
(Samsung S3)

0.0739 481.2 3.3 5

smartphones, in which the first device was upgraded to a device with better resources (e.g.,

faster CPU, bigger memory) as shown in Table 5.5. As a result, execution time was not

significantly affected by the specification of the device.

The network usage for the first device is approximately 10 times higher than the second

device on each test. Indeed, the server exchanges more data with the first device. There

are three network communications between the server and the first device and one of them

contains an image. Between the server and the second device, there is only one network

communication, and this communication does not contain large data (e.g., an image).

The LG Nexus 4 consumes more memory than the Samsung Galaxy S3 in each test.

Memory allocation is managed by the Android operating system [50]. Since the LG Nexus 4

has larger memory, the memory allocation on runtime is larger for the LG Nexus 4 regardless

of its role (e.g., the first or second device) in the authentication system.

Since both smartphones are using the same battery, it is expected that they will have close

battery consumption results during the authentication process. The slight difference comes

from the screen contrast setup of each phone. Furthermore, the network consumption causes

a slight difference between the first and second device on the battery consumption. Since

the first device uses more network, it also consumes more battery. To better understand

the battery drain, average battery consumption of the Android message application was

measured while sending a message. To send a message, this application consumes 7.4j energy

with the Samsung Galaxy S3.

36



Table 5.6. Experimental results described in Subsection 5.2.2.2

Device Execution Time (s) Network Usage (bytes) Memory Usage (MB) Battery Consump-
tion (Joule)

First Device
(Samsung S3)

0.0689 628.2 3.65 8.2

Second Device
(LG Nexus 4)

0.0689 476.2 8.992 5.6

5.2.2.2 Test: Device One: a Smartphone, Device Two: a Smartphone, Chal-

lenge Transmission by NFC

The authentication protocol implementation presented in Subsection 4.4.2 was tested.

Similar to the previous implementation, this implementation also contains two Android

smartphones to represent the first and second devices. Furthermore, NFC technology was

used to transmit the challenge. One set of tests was performed to measure the performance

differences while transmitting the challenge with NFC technology. The experiment was

performed with a Samsung Galaxy S3 as the first device and an LG Nexus 6 as the second

device.

Table 5.6 shows the experimental results for the specific implementation presented in

Subsection 4.4.2. The average execution time for one authentication process is 0.0689 sec-

onds. Since only one device is being authenticated during the authentication process, the

same execution time was measured for both devices.

The network usage for the first device is approximately 30% greater than the second de-

vice. Sending a random number instead of a QR code image for challenge transmission results

closer network usage numbers for both devices. Because the first device makes more network

communications than the second device during the authentication process, the battery usage

is slightly higher in the first device.

5.2.2.3 Test: Device One: a Laptop Computer, Device Two: a Smartphone,

Challenge Transmission by QR Code

The last experiment was performed on the implementation presented in Subsection 4.4.3.

Instead of using two Android devices, a Windows laptop computer and an Android smart-

37



Table 5.7. Experimental results described in Subsection 5.2.2.3

Device Execution Time (s) Network Usage (bytes) Memory Usage (MB) Battery Consump-
tion (Joule)

First Device
(Windows Computer)

0.0717 4987 80 16.9

Second Device
(Motorola Nexus 6)

0.0717 520 22 6.1

Table 5.8. Implementations with different system configurations described in Chapter 4

Implementation system
configuration 1

Implementation system
configuration 2

Implementation system
configuration 3

First Device Smartphone Smartphone Laptop
Second Device Smartphone Smartphone Smartphone
Challenge QR Code NFC QR Code

phone (Motorola Nexus 6) were used for the authentication process. For challenge transmis-

sion, a QR code image was used.

Table 5.7 presents the test results for the specific implementation presented in Subsec-

tion 4.4.3. Similar to the previous tests, the execution time measured the same for the first

and second device. QR code image dominates the network usage on the first device. On

the other hand, since the smartphone only sends a random number, not the QR code, the

network usage on the second device is noticeably lower than the first device.

The first device uses 80 MB and the second device uses 22 MB of memory space. Memory

allocation is entirely managed by the Windows and Android operating systems for the laptop

computer and the smartphone respectively. Hence, the monitored memory space is not

related to application size.

5.2.3 Analysis

The individual performance overheads for each implementation were presented in Sec-

tion 5.2.2. In this subsection, performance differences between the implementations will be

compared and analyzed with each other in detail.

Table 5.8 summarizes the hardware configurations used in the different implementations.

The first and second implementation configurations use the same set of devices. However, for

the challenge transmission, QR code was used in the first configuration and NFC technology

38



Figure 5.3. Average execution time for each configuration.

was used in the second configuration. The devices used in the third configuration have better

system resources (faster CPU, larger memory) than the devices used in the first and second

configurations.

5.2.3.1 Execution Time

Figure 5.3 shows the average authentication time for each implementation configuration.

There is a slight performance difference between the first and second configurations. The

only hardware difference between the first and second configurations is the first device.

Instead of a smartphone, a laptop computer was used to represent the first device in the

third configuration. For the challenge transmission both implementations use a QR code.

Since the network card on the computer is faster than smartphones, the hardware of the

devices cause that small performance difference.

A larger difference was observed between the first and second configurations. The authen-

tication process is approximately 0.01 seconds faster in the second configuration. Although

both tests were performed with the same devices, the second configuration uses NFC tech-

nology instead of a QR code. In the first configuration, after the server generates a random

number, the server needs to generate a QR code from the random number. Whereas, in

39



Figure 5.4. Average network usage for each configuration.

the second configuration, after the server generates a random number, the server directly

sends the random number to the access requesting device. The QR code generation and

transmission process adds around 0.01 seconds to the whole execution time.

5.2.3.2 Network Usage

Figure 5.4 illustrates the average network usage during the experiments. Similar to the

execution time, the network usage results for the first and third configurations are fairly

close to each other. Since they both use a QR code image for the challenge transmission,

they exchange around 2.5MB of data during the authentication process.

The network usage for the second configuration is significantly lower than the network

usage in the first and third configurations. Since the second configuration does not send or

receive a large file (e.g., QR code image) during the authentication, the whole authentication

can be performed using under 1MB of data.

40



Figure 5.5. Average memory usage for each configuration.

5.2.3.3 Memory Usage

The dynamic memory allocation is mainly managed by operating systems. Hence, the

developed applications for authentication protocol implementation do not have direct access

to the memory. Although, to demonstrate the memory usage over different devices, memory

tests were performed on each configuration as shown in Figure 5.5. The first and second

configurations use the same set of devices (Samsung S3, LG Nexus 4). Therefore, these

memory usage results are almost the same.

The third configuration was tested with two high-end devices. To represent the first

device, a laptop computer with 8GB main memory was used. Also, to perform the challenge,

a powerful smartphone (Motorola Nexus 6) with 3GB main memory was used. Since these

devices have very large main memory compared to the Samsung Galaxy S3 and the LG Nexus

5, larger memory space was allocated for both applications by their operating systems.

Memory allocation results showed that the presented authentication method can run on

devices, which have low memory capacities (less than 1GB main memory).

41



Figure 5.6. Average battery consumption for each configuration.

5.2.3.4 Battery Consumption

The average battery consumption is illustrated for each configuration in Figure 5.6. To

better understand the battery consumption in different systems, Android messaging applica-

tion’s battery usage was measured while sending a message over the network. To send only

one message over the network, the messaging application uses 7.4j of energy.

The second configuration consumes the least battery of all the configurations. Since the

only difference between the first and second configurations was the challenge transmission,

reading and decoding the QR code causes relatively higher battery consumption on devices.

However, the largest battery consumption was noticed in the third configuration, which also

uses a QR code for the challenge transmission.

The laptop computer and the smartphone used in the third configuration have more

powerful CPUs than the devices used in the first configuration. Thus, more energy was

consumed while performing an authentication process with a laptop computer and a more

powerful smartphone. Nevertheless, devices used in the third configuration have larger bat-

teries, thus the authentication process’ impact on the battery usage was as low as the usage

of the first and second configurations.

42



5.2.3.5 Conclusion

The authentication protocol implementations’ performances were analyzed in terms of

execution time, network usage, memory usage, and battery consumption in the previous

subsections.

The greatest performance differences were caused by the challenge transmission method-

ology. Instead of using a QR code, sending only a random number as a challenge dramatically

increased the performance of the execution time and the network usage. Sound waves, in-

frared technology, or motion detection can also be used as alternatives to a QR code in order

to improve the performance of the authentication process.

In addition, the different device hardware specifications did not significantly effect the

network usage. However, the execution time performance slightly increased while using

higher performance devices during the authentication process. Moreover, the variety of the

devices showed that the proposed authentication protocol can be implemented by using even

slower devices.

Finally, none of the configurations significantly effected the battery life of the devices

during the authentication process.

43



CHAPTER 6

DISCUSSION AND FUTURE WORK

In this chapter, several extensions will be addressed and future opportunities will be

discussed.

Although many authentication schemes are being introduced, most of them are vulner-

able to theft-based attacks. The new authentication protocol using two associated devices

has been proposed to minimize attack surface over theft-based attacks. Several real-life ex-

amples of the authentication protocol were designed and implemented by using multiple sets

of devices. Then, the authentication protocol was modeled with a high level protocol spec-

ification language and verified by a model checker in order to indicate the soundness of its

secrecy and authenticity properties. Finally, the performance overhead of the protocol was

evaluated to demonstrate the performance differences between multiple implementations.

6.1 Add/Remove Devices

A particular registration method was implemented and used in all configurations to pair

devices with each other and the user. This registration phase can be done only once. To

increase usability, it would be a very useful feature to allow users to add or remove additional

devices into the system after the first device pairing process.

6.2 Continuous Authentication

Continuous authentication is an emerging topic in the security field. The main concern

in standard user authentication schemes (e.g., username/password) is that after a certain

44



amount of time the user can become inactive. However, asking for authentication within a

period of time could be used to track activity of the user.

In the proposed authentication protocol, if the system successfully authenticates the user,

then that authentication remains active until the defined session time. However, an attacker

can steal the authenticated device before the authentication session expires and get access to

the system. To solve this problem, a continuous authentication approach could be integrated

into the proposed implementations. The system could send a challenge to the first device

every few minutes, and the user could perform this challenge with the second device in order

to keep authenticated.

6.3 Future Experiments

Various experiments have been performed on the proposed implementation to demon-

strate the performance overhead of the authentication system. During the experiments, the

user interaction time was not considered. Using human participants and measuring their

challenge performing times could be a good way to evaluate real authentication time with

user interaction. Furthermore, similar experiments could be performed on other authenti-

cation schemes (e.g., username and password, physical token, two-factor authentication) to

illustrate the performance advantages and disadvantages over different schemes.

6.4 Future Implementations

In Chapter 4, three particular implementations were presented. These authentication

protocol implementations introduce solutions to distinct authentication problems. However,

it would be useful to demonstrate more implementations to solve real life authentication

problems.

Table 6.1 shows further possible implementations to solve common authentication prob-

lems in daily life. One general problem with cars is if the car key is stolen, an attacker also

can steal the car itself. However, adopting the proposed authentication protocol could solve

45



Table 6.1. Further implementation ideas

Authenticator System First device Second device Challenge transmission
method

Car Smartwatch Smartphone NFC
Home door Smartphone Smartwatch QR code
Hotel door Smartring Smartwatch NFC
Garage door Car Smartphone Bluetooth
GPS navigator Car Smartphone Bluetooth
Military facility Smart necklace Smartwatch Bluetooth
Server Laptop Smartwatch Image

the problem without extra overhead cost. For example, the car can represent the authentica-

tor system. When the user gets close to the car, the car sends a challenge to the smartwatch,

then the user taps the smartphone to perform the challenge. Finally, the smartphone sends

the challenge back to the car and the car unlocks the doors and/or starts the car.

Another common problem is garage door or facility gate access. In this particular prob-

lem, the garage door represents the authenticator system and the user’s car and smartphone

act as the first and second devices. When the car gets close to the garage door, the garage

door sends a challenge to the car. Then, the smartphone reads this challenge via bluetooth,

and sends it back to the garage door. Finally, the garage authenticates the car and opens

the door.

Alternatively, this authentication protocol can be implemented with any other lock sys-

tem. The lock can act as the authenticator system and the user’s multiple devices (e.g., a

smart ring and a smart military necklace, a smart “dog tag”) can act as the first and second

devices. When the user comes within a threshold proximity of the lock, the smart ring will

initiate the authentication protocol with the lock. Then, the lock sends a challenge to the

smart ring. The smart ring sends the challenge to the smart dog tag. In this particular

implementation, the protocol executes automatically, without user involvement, based on

proximity to the lock.

Furthermore, more than two devices could be implemented during the authentication

process. Two devices might not be enough for theft protection, especially when authenticat-

46



ing users to more sensitive information, such as, military source, intelligence agency source,

etc. In this particular solution, a military base could house an authenticator system, and a

user could use a smartphone, a smartwatch and a smart ring all together in order to complete

authentication.

47



LIST OF REFERENCES

[1] Matt Bishop. Computer Security: Art and Science, volume 200. Addison-Wesley, 2012.

[2] Mark Stamp. Information Security: Principles and Practice. John Wiley & Sons, 2011.

[3] Anil K Jain, Patrick Flynn, and Arun A Ross. Handbook of Biometrics. Springer Science
& Business Media, 2007.

[4] Lawrence O’Gorman. Comparing Passwords, Tokens, and Biometrics for User Authen-
tication. Proceedings of the IEEE, 91(12):2021–2040, 2003.

[5] Jean-Baptiste Subils. Authentication Via Multiple Associated Devices. Master’s thesis,
University of South Florida, 2015. To appear.

[6] Cagri Cetin, Jay Ligatti, Dmitry Goldgof, and Jean-Baptiste Subils. Systems and
Methods for Authentication Using Multiple Devices, April 22 2015. US Patent App.
14A079PRC.

[7] Messaoud Benantar. Access Control Systems: Security, Identity Management and Trust
Models. Springer Science & Business Media, 2006.

[8] Steven Furnell. An Assessment of Website Password Practices. Computers & Security,
26(7):445–451, 2007.

[9] Kim-Phuong L Vu, Robert W Proctor, Abhilasha Bhargav-Spantzel, Bik-Lam Belin Tai,
Joshua Cook, and E Eugene Schultz. Improving Password Security and Memorability
to Protect Personal and Organizational Information. International Journal of Human-
Computer Studies, 65(8):744–757, 2007.

[10] Robert Morris and Ken Thompson. Password Security: A Case History. Communica-
tions of the ACM, 22(11):594–597, 1979.

[11] David L Jobusch and Arthur E Oldehoeft. A Survey of Password Mechanisms: Weak-
nesses and Potential Improvements. part 1. Computers & Security, 8(7):587–604, 1989.

[12] David L Jobusch and Arthur E Oldehoeft. A Survey of Password Mechanisms: Weak-
nesses and Potential Improvements. part 2. Computers & Security, 8(8):675–689, 1989.

[13] Passwords Revealed by Sweet Deal, April 2004.
http://news.bbc.co.uk/2/hi/technology/3639679.stm.

48



[14] Qinghan Xiao. Security Issues in Biometric Authentication. In Information Assurance
Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pages 8–13.
IEEE, 2005.

[15] Umut Uludag and Anil K Jain. Attacks on Biometric Systems: a Case Study in Fin-
gerprints. In Electronic Imaging 2004, pages 622–633. International Society for Optics
and Photonics, 2004.

[16] Anil K Jain, Lin Hong, Sharath Pankanti, and Ruud Bolle. An Identity-Authentication
System Using Fingerprints. Proceedings of the IEEE, 85(9):1365–1388, 1997.

[17] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical One-way
Functions. Science, 297(5589):2026–2030, 2002.

[18] EMC Corporation. RSA SecurID Hardware Tokens | Two-Factor Authentication, 2015.
http://www.emc.com/security/rsa-securid/rsa-securid-hardware-tokens.htm.

[19] Blizzard Entertainment. Battle.net Authenticator - Battle.net Support, 2015.
https://us.battle.net/support/en/article/battlenet-authenticator.

[20] Yubico. YubiKey Standard & Nano, 2015. https://www.yubico.com/products/yubikey-
hardware/yubikey-2/.

[21] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1987.

[22] Manik Lal Das, Ashutosh Saxena, and Ved P Gulati. A Dynamic ID-based Remote User
Authentication Scheme. Consumer Electronics, IEEE Transactions on, 50(2):629–631,
2004.

[23] Hung-Yu Chien, Jinn-Ke Jan, and Yuh-Min Tseng. An Efficient and Practical Solution
to Remote Authentication: Smart Card. Computers & Security, 21(4):372–375, 2002.

[24] Dwayne Mercredi, Joseph Robinson, and Joachim Vance. Token Authentication System,
October 17 2005. US Patent App. 11/252,040.

[25] Yen Sung-Ming and Liao Kuo-Hong. Shared Authentication Token Secure Against
Replay and Weak Key Attacks. Information Processing Letters, 62(2):77–80, 1997.

[26] Geoff Brown. The Use of Hardware Tokens for Identity Management. Information
Security Technical Report, 9(1):22–25, 2004.

[27] Guomin Yang, Duncan S Wong, Huaxiong Wang, and Xiaotie Deng. Two-factor Mutual
Authentication Based on Smart Cards and Passwords. Journal of Computer and System
Sciences, 74(7):1160–1172, 2008.

[28] Fadi Aloul, Syed Zahidi, and Wassim El-Hajj. Two Factor Authentication Using Mo-
bile Phones. In Computer Systems and Applications, 2009. AICCSA 2009. IEEE/ACS
International Conference on, pages 641–644. IEEE, 2009.

49



[29] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. CAPTCHA: Using
Hard AI Problems for Security. In Advances in Cryptology—EUROCRYPT 2003, pages
294–311. Springer, 2003.

[30] Jeff Yan. Bot, Cyborg and Automated Turing Test. In Security Protocols, pages 190–
197. Springer, 2009.

[31] Philippe Golle. Machine Learning Attacks Against the Asirra CAPTCHA. In Pro-
ceedings of the 15th ACM conference on Computer and communications security, pages
535–542. ACM, 2008.

[32] Elie Bursztein, Matthieu Martin, and John Mitchell. Text-based CAPTCHA Strengths
and Weaknesses. In Proceedings of the 18th ACM conference on Computer and commu-
nications security, pages 125–138. ACM, 2011.

[33] Carlisle Adams and Steve Lloyd. Understanding Public-key Infrastructure: Concepts,
Standards, and Deployment Considerations. Sams Publishing, 1999.

[34] Mark Masse. REST API Design Rulebook. ” O’Reilly Media, Inc.”, 2011.

[35] Pivotal Software Inc. Overview of Spring Framework, 2012.
http://projects.spring.io/spring-framework/.

[36] Hibernate Object/Relational Mapping, 2014. http://hibernate.org/orm/what-is-an-
orm/.

[37] Alan Paller Dennis Kirby Bob Martin, Mason Brown. Improper Neutraliza-
tion of Special Elements used in an SQL Command (’SQL Injection’), 2011.
http://cwe.mitre.org/top25/CWE-89.

[38] The Apache Software Foundation. Apache Maven Project, 2015.
https://maven.apache.org/.

[39] The Apache Software Foundation. Apache Tomcat, 2015. http://tomcat.apache.org/.

[40] Rich Helton and Johennie Helton. Java Security Solutions. John Wiley & Sons, Inc.,
2002.

[41] D. Eastlake, 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1), 2001.

[42] Oracle. Java Security (Java Platform SE 7) | Oracle Documentation, 2011.
http://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html.

[43] Google Zxing | GitHub, 2014. https://github.com/zxing/zxing/.

[44] Gerald Madlmayr, Josef Langer, Christian Kantner, and Josef Scharinger. NFC Devices:
Security and Privacy. In Availability, Reliability and Security, 2008. ARES 08. Third
International Conference on, pages 642–647. IEEE, 2008.

50



[45] Google. Near Field Communication | Android Developers.
https://developer.android.com/guide/topics/connectivity/nfc/index.html.

[46] The AVISPA Project, funded by the European Union in the Future and Emerg-
ing Technologies (FET Open) programme, Project Number: IST-2001-39252., 2003.
http://www.avispa-project.org/.

[47] Luca Viganò. Automated Security Protocol Analysis with the AVISPA Tool. Electronic
Notes in Theoretical Computer Science 155 (2006) 61–86, pages 64–66, 2006.

[48] David Basin Carlos Caleiro, Luca Viganò. Deconstructing Alice and Bob. Electronic
Notes in Theoretical Computer Science 135 (2005) 3–22, pages 19–20, 2005.

[49] Google. Using DDMS | Android Developers, 2012.
http://developer.android.com/tools/debugging/ddms.html.

[50] Patrick Dubroy. Memory Management for Android Apps. Google I/O Development
Conference, https://www. youtube.com/watch?v=CruQY 55HOk, 2011.

51


	University of South Florida
	Scholar Commons
	January 2015

	Design, Testing and Implementation of a New Authentication Method Using Multiple Devices
	Cagri Cetin
	Scholar Commons Citation


	tmp.1442348284.pdf.j2_nj

