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Abstract 

The ubiquity of the Calvin-Benson-Bassham cycle (CBB) amongst autotrophic organisms 

suggests that it provides an advantage over a wide range of environmental conditions. However, 

in some habitats, such as hydrothermal vents, the reductive citric acid cycle (rCAC) is an equally 

predominant carbon fixation pathway.  It has been suggested that the CBB cycle poses a 

disadvantage under certain circumstances due to being more energetically demanding compared 

to other carbon fixation pathways. The purpose of this study was to compare the relative 

metabolic cost of cell biosynthesis by an autotrophic cell using either the CBB cycle or the 

rCAC. For both pathways, the energy, in ATP, required to synthesize the macromolecules (DNA, 

RNA, protein, and cell envelope) for one gram of biomass was calculated, beginning with CO2. 

Two sulfur-oxidizing chemolithoautotrophic proteobacteria, Thiomicrospira crunogena XCL-2, 

and Sulfurimonas autotrophica were used to model the CBB cycle and rCAC, respectively while 

Escherichia coli was used to model both pathways because it has had its cell composition 

extremely well-characterized. Since these organisms have had their genomes sequenced, it was 

possible to reconstruct the biochemical pathways necessary for intermediate and macromolecule 

synthesis.  Prior estimates, based solely on the ATP cost of pyruvate biosynthesis, suggested that 

the cellular energetic expense for biosynthesis from the CBB cycle was more than that from the 

rCAC. The results of this study support this conclusion; however the difference in expense 

between the two pathways may not be as extreme as suggested by pyruvate synthesis. Other 

factors, such as oxygen sensitivity, may act in concert with energetic expense in contributing to 

the selective advantages between different autotrophic carbon fixation pathways. 
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Introduction 

Autotrophs use carbon fixation to synthesize cell biomass from inorganic carbon (= CO2 

+ HCO3- + CO3
-2

). Organic compounds synthesized by autotrophs are cycled into the biosphere 

and serve as the building blocks for all life on Earth. Six carbon fixation pathways have been 

elucidated (Berg 2011, Hugler and Sievert 2011) and the presence of organisms that fix carbon 

without using any of the known pathways suggests that there are more yet to be discovered (Berg 

2011). It is puzzling that so many pathways exist in order to perform the same task and it is 

intriguing that the six known carbon fixation pathways are not equally distributed amongst 

autotrophs. Because biomass production is an energetically expensive endeavor, it has been 

suggested that the uneven distribution of carbon fixation pathways may be due to the efficiency 

with which these pathways operate under various environmental conditions (Hugler and Sievert 

2011).   

The most well studied and widely distributed carbon fixation pathway, the Calvin-

Benson-Bassham cycle (CBB cycle), is a conglomeration of gluconeogenesis and the pentose 

phosphate pathway (Figure 1) but is identified by the unique enzymes ribulose 1, 5 bisphosphate 

carboxylase/oxygenase (Rubisco) and phosphoribulokinase. Rubisco incorporates a molecule of 

carbon dioxide into a molecule of ribulose-1, 5-bisphosphate (RuBP). This carboxylation 

reaction results in two molecules of 3-phosphoglycerate which are reduced to glyceraldehyde-3-

phosphate via the addition of six NADPH and nine ATP molecules. The glyceraldehyde-3-

phosphate molecule can be used for biomass production or for the regeneration of RuBP 
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(Bassham 1954). The CBB cycle is primarily used for autotrophic growth; however, it can also 

be used to remove excess electrons from the cell (Wang 1993). The enzymes of the CBB cycle 

are oxygen tolerant but oxygen is a competitive substrate with CO2 for Rubisco and results in a 

wasteful oxygenase reaction. Aerobic cells must minimize the chances of the oxygenase reaction, 

which results in the loss of a carbon dioxide molecule as well as the consumption of ATP to 

regenerate RuBP (Tabita et al. 2008). 

The reductive citric acid cycle (rCAC) is a reversal of the oxidative citric acid cycle and 

fixes carbon dioxide into acetyl-CoA (Figure 1). This cycle requires two NADPH, two to three 

ATP, one quinol (or other unknown donor for fumarate reductase) and four reduced ferredoxin in 

order to produce one molecule of pyruvate (Fuchs 2011).  The reductive version of the cycle is 

characterized by the presence of three key enzymes: ATP citrate lyase, α-ketoglutarate synthase, 

and fumarate reductase. These replace the irreversible enzymes of the oxidative citric acid cycle: 

citrate synthase, α-ketoglutarate dehydrogenase and succinate dehydrogenase, respectively 

(Buchanan and Arnon 1990, Evans et al. 1966). Pyruvate synthase is also required for the rCAC 

and replaces pyruvate dehydrogenase in the oxidative citric acid cycle.  Pyruvate synthase and α-

ketoglutarate synthase are typically inactivated in the presence of oxygen which generally 

restricts this cycle to anaerobes and microaerobes (Bar-Even et al. 2012). However, some species 

such as Hydrogenbacter thermophilus and Aquifex pyrophilus live in microaerophilic 

environments and may have oxygen tolerant versions of these enzymes (Shiba et al. 1985, Beh et 

al. 1993). 
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Figure 1| Key metabolic intermediates of the Calvin-Benson-Bassham cycle and the reductive 

citric acid cycle. These intermediates provide carbon skeletons for the biosynthesis of 

macromolecules. 

 

The four other known carbon fixation pathways are the reductive acetyl-CoA pathway, or 

Wood–Ljungdahl pathway (Wood et al. 1986, Ragsdale and Pierce 2008), the 3-

hydroxypropionate/ malyl-CoA cycle (Herter et al. 2002) and two variations of the 3-

hydroxypropionate cycle: the 3-hydroxypropionate/4- hydroxybutyrate cycle (Berg et al. 2007) 

and the dicarboxylate/4- hydroxybutyrate cycle (Huber et al. 2008). Like the CBB cycle, the 3-

hydroxypropionate/4- hydroxybutyrate cycle operates under aerobic conditions while all of the 

other known extant pathways function in anaerobic conditions. 
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The divergence and distribution of these pathways are driven by strong selective forces 

such as oxygen availability and toxicity as well as the availability of electron donors and the 

efficiency with which autotrophs can use them. This study investigated the metabolic efficiency 

of the two most widely studied carbon fixation pathways, the CBB cycle and the rCAC. 

Hydrothermal vents provide a unique environment to compare the efficiency of these pathways 

since chemolithoautotrophic primary productivity at these sites is provided predominantly by 

microorganisms using either the CBB cycle or the rCAC (Campbell and Cary 2004, Hugler et al. 

2005, Wirsen et al. 1993, Nakagawa and Takai 2008). 

Deep sea hydrothermal vents occur when cold, oxygen-rich ocean water seeps deep into 

the oceanic crust at crustal spreading centers and subduction zones and interacts with magma or 

rock heated by the Earth’s mantle. This water is heated to over 350º C and undergoes a variety of 

chemical transformations. The sulfide and metal enriched water then flows out of the crust and 

mixes with ocean bottom water, both before and after emission from the crust as dilute 

hydrothermal fluid (Van Dover 2000). As dilute hydrothermal fluid is emitted from the crust and 

meets cold bottom water, it creates turbulent eddies. Accordingly, temperatures and the 

correlating chemistry at the vents show variation on timescales ranging from seconds to hours 

(Johnson et al. 1988, Goffredi et al. 1997). 

Ocean bottom water is cold (2 ºC), oxic and alkaline (pH 7.9 to 8.1), while the dilute 

hydrothermal fluid is warm (2-45ºC), sulfidic, anoxic and acidic (pH 5-8). These two bodies of 

water differ markedly with respect to dissolved inorganic carbon (DIC; CO2 +HCO3 + CO3
-2

) 

concentration and composition. Bottom water DIC concentrations are typically around 2 mM and 

due to the alkaline pH, the dominant forms of DIC are HCO3
- 
and CO3

-2
.  Dilute hydrothermal 
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fluid DIC concentrations can be quite elevated (2-5 mM DIC) and when coupled with the more 

acidic pH, result in substantially elevated CO2 concentrations (Goffredi et al. 1997). Due to the 

eddies, microorganisms growing attached to surfaces at vents have their habitat alternate 

between one in which reductant is abundant and the CO2 concentration is high as 1.8 mM to one 

where oxidant is abundant and the CO2 concentration is much lower (~ 20 µM). Hydrogen  

levels can vary from near zero up to 2.5 mM (Takai et al. 2004)  while hydrogen sulfide levels 

can vary from 0.33- 1.90 mM/ kg
-1

 (Johnson et al. 1988, Shank et al. 1998). 

 Two major groups of autotrophic microbes are found at the vents: gammaproteobacteria 

that use the CBB cycle (Nakagawa and Takai 2008) and epsilonproteobacteria that use the rCAC 

(Campbell and Cary 2004, Hugler et al. 2005). The gammaproteobacteria are generally found 

where the vent fluid has mixed thoroughly with ocean bottom water (2-40°C) (Fisher et al. 

2007). The epsilonproteobacteria can tolerate a higher range of temperatures, from 20° C to 60°, 

(Takai et al. 2003) and are often found in  warmer, less oxygenated water around the vents 

(Campbell and Carey 2004). This study utilized representative members from each of these two 

groups, whose genomes had been sequenced, which facilitated elucidation of biochemical 

pathways likely to be utilized by the organisms based on the presence of genes encoding for 

enzymes within the pathway.  

The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an obligate 

chemolithoautotroph. This species was originally isolated from vents near the Galapagos Islands 

(Jannasch et al. 1985) and subsequently has been detected in hydrothermal vents in both the 

Pacific and the Atlantic oceans.  T. crunogena is a free-living mesophile (15-35 ºC ) that can 

oxidize a wide variety of sulfur compounds present at the vents such as thiosulfate, hydrogen 
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sulfide and sulfide minerals but can only reduce oxygen as a final electron acceptor (Scott et al. 

2006). It uses the CBB cycle to fix CO2 (Scott et al. 2006) as it grows rapidly with a minimum 

doubling time of approximately one hour (Jannasch et al. 1985). 

 Sulfurimonas autotrophica OK 10 is an epsilonproteobacterium found in deep-sea 

hydrothermal sediments that grows at an optimal temperature of 25° C but can handle 

temperatures ranging from 10-40 °C (Inagaki et al. 2003, Sikorski et al. 2010). S. autotrophica 

oxidizes sulfur, sulfide and thiosulfate in order to power carbon fixation via the rCAC. Despite 

using a carbon fixation pathway known for having oxygen sensitive enzymes, S. autotrophica 

can only use oxygen as its final electron acceptor (optimal growth 1-15% v/v oxygen) (Inagki et 

al. 2003). 

The presence of two predominant autotrophic pathways at the vents suggests that they are 

equally successful in allowing autotrophic bacteria to efficiently fix carbon into biomass; 

however, there is an ongoing controversy suggesting that the rCAC is less bioenergetically 

expensive than the CBB. The energetic efficiency of carbon fixation pathways is generally 

compared in terms of the ATP and NADPH required for the synthesis of individual central 

carbon metabolic intermediates from carbon dioxide. For example, the CBB cycle requires 3 

CO2, 5 NADPH and 7 ATP to produce pyruvate while the rCAC requires 3 CO2, 2 NADPH,       

1 quinol, 2 ATP, and 4 molecules of reduced ferredoxin. (Fuchs 2011) Based on this 

stoichiometry, it has been suggested that the rCAC is a less energetically expensive pathway 

based solely on the ATP requirements to synthesize pyruvate (Hugler and Sievert 2011, Markert 

et al. 2007).  
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Comparing the efficiencies of carbon fixation pathways based on the production of a 

single intermediate may not be an accurate reflection of how these pathways are used in nature. 

Because autotrophic cells use their carbon fixation pathways primarily for the production of 

biomass, several variables must be taken into account when determining the actual cost incurred 

by use of a specific pathway. Carbon fixation pathways are used for the production of all central 

carbon intermediates which are in turn used to produce the entire organic biomass of the cell. 

The production of different metabolic intermediates from carbon dioxide requires varying 

amounts of ATP and NADPH. These intermediates are also required in different amounts for the 

synthesis of macromolecules such as proteins, lipids, and nucleic acids. The composition of 

macromolecules varies between species which results in even greater variation in metabolic 

intermediate composition.   

The objective of this study was to clarify the degree to which biomass synthesis expense 

varies between the CBB cycle and the rCAC. The availability of genome data in Integrated 

Microbial Genomes (IMG- http://img.jgi.doe.gov/) and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG- http://www.genome.jp/kegg/) allowed for metabolic pathways to be 

reconstructed for individual species. For comparison, three cell types were synthesized in silico 

from CO2 using both the CBB cycle and the rCAC. The three cells all had genome sequence data 

available and together represented a CBB cycle autotroph (Thiomicrospira crunogena XCL-2), 

an rCAC autotroph (Sulfurimonas autotrophica OK 10) and a heterotroph (Escherichia coli) 

which was used as it had readily available biomass composition values. Pathway maps were used 

to trace the biosynthesis of cell biomass, from carbon dioxide and cellular electron carriers, to 

central carbon intermediates, to building blocks (amino acids, lipid components etc.) to 

macromolecules (proteins, lipids, nucleic acids etc). 
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Chapter 2: Materials and Methods 

 

Figure 2 | Methods overview: Steps used to determine the amount of ATP required to build each 

cell type using the CBB cycle and the rCAC from CO2.    
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Central Carbon Intermediates from CO2 

Metabolic pathways maps from the Kyoto Encyclopedia of Genes and Genomes 

which are based on complete genome sequences were used to determine the pathway for the 

synthesis of central carbon intermediates from CO2, ATP and cellular reductant using both the 

CBB cycle and the rCAC (Figure 1). To facilitate pathway comparison, cellular electron carriers 

were converted to ATP equivalents. Based on genome data, both T. crunogena and                     

S. autotrophica use the same respiratory electron transport complexes: NDH-1-type NADH 

dehydrogenase, bc1 complex, and cbb3-type cytochrome oxidase (http://img.jgi.doe.gov). Based 

on a NDH-1 bc1  cbb3 electron transport chain, the number of protons translocated from a 

cell per two electrons introduced via NAD(P)H oxidation is 12 (4 from NDH-1, 4 from bc1 and 4 

from cbb3) (Rauham et al. 2012) The number of protons per electron pair introduced from quinol 

is 8 (4 from bc-1 and 4 from cbb-3). Assuming 1 ADP phosphorylation per 3 H+ re-entering the 

cell via ATP synthase, this translates to 4 ATP/ NAD(P)H and 2.67 ATP/ quinol. Since 

ferredoxin has redox potential suitable to pass electrons to NAD(P)H via transhydrogenase and 

since 2 ferredoxin are needed to reduce 1 NAD(P)H, 2 ferredoxin were assumed to be equivalent 

to 1 NAD(P)H (= 4ATP). 

Building Blocks from Central Carbon Intermediates 

The pathways necessary to synthesize cellular building blocks from central carbon 

intermediates were identified from KEGG. These building blocks were the components 

necessary to synthesize macromolecules. For proteins, these building blocks included the twenty 

canonical amino acids, for nucleic acids they were the five nucleotides and their appropriate 

deoxy cognates. For the cell membrane, the building blocks were fatty acids, polar lipids and 

lipopolysaccharides. For the cell wall, the building blocks were N-acetylglucosamine (NAG), N-

http://img.jgi.doe.gov/
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acetylmuramic acid (NAM), and tetrapeptide linker amino acids. The ATP necessary to 

synthesize one mole of each building block from central carbon intermediates was calculated. 

Macromolecules from Building Blocks 

Proteins 

 

Figure 3 | Overview of amino acid calculations. On the left, is a general formula for 

turning the molar percent composition values from literature sources into moles of individual 

amino acid per gram of cell biomass. A specific example is given for the amino acid alanine. 

 

To estimate the amino acid composition of total cellular protein for all three species, 

values were obtained from the limited data available for hydrolyzed protein extracts from 
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bacteria. Since amino acid composition values are not available for T. crunogena and S. 

autotrophica, the moles of each amino acid per mole of total amino acids was averaged from E. 

coli (Roberts et al. 1957), Rhizobium japonicum (Lillich and Elkan 1973) and Staphylococcus 

aureus (Okayasu et al. 1997) (Table 1). Protein hydrolysate literature values do not separate 

aspartate from asparagine or glutamate from glutamine. Therefore, the individual proportions of 

these amino acids were determined by obtaining the amino acid sequences of all protein 

encoding genes from Integrated Microbial Genomes (IMG) and calculating their relative 

frequencies for the three species used for this study. These frequencies provided a ratio which 

was multiplied by the asp+asn and glu+gln sums and resulted in the individual proportion of 

each amino acid. 

Table 1 | Moles percent amino acid composition form literature sources. 

Amino Acid 
E. coli 

(Roberts) 

E. coli 

(Okayasu) 

R. japonicum 

(Lillich) 

S. aureus 

(Okayasu) 
Average 

Alanine 12.7 11.97 12.3 14.95 13.20 

Arginine 5.3 4.4 4.3 2.8 3.98 

Cysteine 1.7 0.19 n/a 0.18 0.56 

Glycine 7.8 9.07 9.4 16.43 11.42 

Histidine 0.97 1.96 1.6 1.53 1.53 

Isoleucine 4.6 7 4.6 5.94 5.45 

Leucine 7.9 9.46 7.5 6.22 7.47 

Lysine 7.0 5.52 9.1 7.82 7.73 

Methionine 3.4 2.92 2.7 1.88 2.58 

Phenylalanine 3.3 4.04 3.7 3.32 3.56 

Proline 4.6 4.37 3.8 3.42 3.90 

Serine 6.1 4.87 6.4 4.47 5.45 

Threonine 4.7 5.58 5.4 4.23 4.92 

Tryptophan 1.04 n/a n/a n/a 1.04 

Tyrosine 2.1 2.67 2.7 2.22 2.44 

Valine 5.5 8.23 6.9 5.88 6.55 

Aspartate+asparagine 9.9 11 9 9.9 9.78 

Glutamate+glutamine 10.5 11.3 10.6 11.37 10.96 
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To calculate the moles of ATP necessary to synthesize the protein component of 1 gram 

of dry cellular biomass, it was necessary to convert the relative abundances of the amino acids 

into moles of each amino acid.   The above calculations provided molar ratios of each amino acid 

(e.g., moles of alanine per mole of total amino acids in proteins).  The total moles of amino acids 

necessary to make 1 gram of dry cellular biomass has not been reported.  Instead, the amount of 

protein in 1 gram of dry cellular biomass has been determined (0.55 g protein/ grams dry weight 

(gdw); Neidhart et al. 1990).  Because of this, the initial molar ratios had to be converted to mass 

ratios, and multiplied by 0.55 g protein/gdw, to obtain the grams of a particular amino acid per 

gram dry cellular biomass, which could then be converted back to moles of a particular amino 

acid.  The total amino acid value (124 g/mol total amino acids) was calculated by summing the 

gram weight of all individual amino acids in one mole of protein. 

 To convert the relative abundances of amino acids into moles of each amino acid, each 

molar ratio was multiplied by the gmw of the appropriate amino acid (e.g., 0.13 mol alanine/mol 

amino acids × 89.1 g alanine/mol alanine = 11.5 g alanine per mol total amino acids).  This value 

was then divided by the combined mass of 1 mol of the amino acid mixture with the composition 

calculated above (e.g., for alanine, 11.5 g alanine per mol total amino acids ÷ 124 g  total amino 

acids per mol total amino acids  = 0.092 g alanine per g protein).  This value was then multiplied 

by the amount of protein per gram dry cellular biomass to obtain the grams of a particular amino 

acid per gram dry weight (0.092 g alanine per g protein × 0.55 g protein per gram dry weight = 

0.051 g alanine per gram dry weight).  This mass was converted to moles by dividing by the 

cognate amino acid gram molecular weight (0.051 g alanine per gram dry weight ÷ 89.1 g 

alanine/mol alanine = 0.00057 mol alanine per gram dry weight). 



13 
 

 The ATP necessary to synthesize enough of each amino acid to synthesize 0.55 g protein  

was calculated by multiplying the number of moles of each amino acid by the number of moles 

of ATP necessary to synthesize 1 mol of each amino acid from CO2 (as calculated above).  The 

sum of these values from each amino acid was then taken to provide an estimate of the total 

amount of ATP necessary to synthesize the amino acids which constitute 0.55 g protein. To 

account for the cost of amino acid activation and peptide bond formation, per amino acid, an 

additional 2 ATP were added to represent the cost of activating the amino acids and forming 

aminoacyl- tRNAs; an additional ATP was added per amino acid to account for GTP hydrolysis 

by elongation factor G during ribosome translocation along the mRNA (Novelli, 1967). 

Nucleic Acids 

The A, T, G and C content of DNA was determined directly from the chromosome 

sequences of T. crunogena, S. autotrophica and E. coli listed in IMG.  To calculate the amount 

of ATP necessary to synthesize sufficient nucleotide triphosphates to polymerize into DNA, it 

was necessary to convert the relative abundances of nucleotides into moles of nucleotides.  As 

for proteins, it was necessary to convert molar ratios into mass ratios to make use of the reported 

amount of DNA per gram dry weight cellular material (0.03 g DNA/ gram dry weight of cell, 

from E. coli (Neidhart et al. 1990).  These mass ratios were then converted to moles as described 

for proteins above. 

For example, the moles of deoxyguanine triphosphate (dGTP) per gram dry weight of 

cellular biomass were calculated as follows.  The grams of dGTP per mole of nucleotides in 

genomic DNA (gDNA) was calculated by multiplying the fraction of gDNA that is dGMP (0.21 

in T. crunogena) and multiplying by the gram molecular weight of dGMP.  This value was then 
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divided by the sum of the grams of dNTPs per mole of nucleotides in gDNA, to obtain the grams 

of dGMP per gram gDNA.  This value was then multiplied by the amount of DNA per gram 

cellular biomass (0.03 g/ gram dry cellular biomass; Neidhart et al. 1990) to obtain the grams of 

dGMP per gram dry cellular biomass.  This value was then divided by the gram molecular 

weight of dGMP to obtain the number of moles of dGMP per gram dry cellular biomass.  This 

process was repeated for dATP, dCTP, and dTTP.  For each dNTP, the amount of ATP necessary 

to synthesize enough for one gram of dry biomass was calculated by multiplying the amount of 

each dNTP per gram dry biomass by the moles of ATP necessary to synthesize 1 mol of dNTP. 

Ribonucleic acids were separated into rRNA, tRNA, and mRNA. The A, U, G and C 

content of the RNA was determined from the 23S, 16S and 5S gene sequences of T. crunogena, 

S. autotrophica and E. coli obtained from IMG.  These values were converted into mass ratios as 

described above for dNTPs so that the published amounts of these RNAs per cell could be used 

to estimate the moles of each NTP per gram dry weight of cell (Neidhart et al. 1990).  

Fatty Acids 

The composition of fatty acids in cell membrane constituents was based on values 

published for E. coli (Ratledge, C. 1989) and T. crunogena (Conway, N.  91). Values for S. 

autotrophica were averaged from other epsilonproteobacteria Sulfurimonas paralvinellae, 

Sulfurimonas autotrophica, and Nitratifractor salsuginis (Takai et al. 2006).  These molar ratios 

of fatty acids were converted into mass ratios as described above for amino acids and 

nucleotides, as a step in calculating the moles of each fatty acid per gram dry weight of cellular 

material by using the published value for grams of fatty acids per gram dry weight of cellular 

material (Table 2). 
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Polar Lipids 

Polar Lipids were divided into cardiolipin (CL), phosphatidylglcerol (PG), 

phosphatidylserine (PS) and phosphatidylethanolamine (PE).   The relative amount of these 

components in E. coli’s cell membrane has been published (Epand 2010 and Ratledge, C. 1989).  

For T. crunogena, these values were based on those determined for chemolithoautotrophic 

betaproteobacterium Thiobacillus neapolitanus (Ratledge, C. 1989); the pathways necessary to 

synthesize these polar lipids were verified to be possible in T. crunogena by examining KEGG 

maps.  Values for S. autotrophica were based on an average of seven species of Helicobacter and 

Campylobacter jejuni (Mendz, GL et al.. 200) which are members of the epsilonproteobacteria. 

These molar compositional data were treated identically to similar data for amino acids and 

nucleotides above, to obtain the ATP needed to synthesize sufficient polar lipids per gram dry 

weight of cellular material. 

Lipopolysaccharides 

Lipopolysaccharides were separated into lipid A plus the core and further broken into 

the building blocks UDP-n-acetylglucosamine 6-P, ADP-glyceromannoheptose, ethanolamine, 

UDP-galactose, UDP-glucose, CMP-3-deoxy-D-manno-octulosonate (CMP-KDO), 3-OH-14:0 

and 12:0 (Caroff 2003). Cellular lipopolysaccharide composition was based on published values 

for E. coli (Neidhart et al.. 1990) (Table 1) and verified through KEGG. The molar composition 

was calculated in a similar fashion to data for amino acids and nucleotides in order to obtain the 

ATP necessary to synthesize the lipopolysaccharide for one gram of cell. 
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Peptidoglycan 

As the contribution of peptidoglycan to total cell mass has not been determined for 

many organisms, values from E. coli were used for all three organisms (Table 6).  The genetic 

capability for peptidoglycan biosynthesis was verified for S .autotrophica and T. crunogena by 

examining KEGG maps.  The monomer from which peptidoglycan is polymerized is a NAG-

NAM dimer with a tetrapeptide linker covalently bonded to NAM (Izaki, 1968) The number of 

moles of this monomer per gram dry weight of cell was calculated by dividing the grams of 

peptidoglycan per gram dry weight of cellular material (Table 1) by the molecular weight of the 

monomer (~1030 g/mol).  The number of moles of the monomer is equal to the number of moles 

of NAG, NAM, and tetrapeptide linker.  The amount of ATP necessary to synthesize sufficient 

monomer per gram dry weight of cell was calculated by taking the sum of the ATP necessary to 

synthesize the NAG, NAM, and tetrapeptide linker. 

 

Table 2 | Macromolecular composition in grams per dry weight of cells 

Cellular composition 
a 

Grams/ gram dry cell weight 

Protein 0.55 

DNA 0.03 

r-RNA 0.16 

m-RNA 0.01 

t-RNA 0.03 

fatty acid 0.06 

polar lipids 0.09 

Lipopolysaccharides 0.03 

Peptidoglycan 0.03 

Sum 1.00 
a 

From E. coli hydrolysate values (Neidhart et al.. 1990) 
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Chapter 3: Results and Discussion 

ATP to build central carbon intermediates from CO2 

The moles of ATP required to build one mole of central carbon intermediates from CO2 

were determined from KEGG pathway maps (Table 3, Figure 4). The ATP requirements were 

calculated from metabolic pathways that are possible in each species based upon the presence of 

the genes encoding all of the enzymes present in the pathways. The CBB cycle requires more 

ATP than the rCAC to produce all intermediates (Table 3, Figure 4). For example, the CBB 

cycle requires 27.3 more ATP to produce fumarate than the rCAC. Organisms growing via the 

CBB cycle generate fumarate through glycolysis and the oxidative citric acid cycle. In contrast, 

fumarate is a direct product of the rCAC.   

The ATP values in Table 2 appear higher than previously published ATP costs (Fuchs 

2011, Bar-Even et al. 2012) because they include the ATP equivalent cost of cellular electron 

carriers.  For example, in (Fuchs 2011) it was calculated that 5 NADPH and 7 ATP are required 

to produce pyruvate via the CBB cycle. When the NADPH is converted to its ATP equivalent (4 

ATP/NADPH) the total ATP value comes out to 27 ATP to make pyruvate via the CBB cycle 

(Table 3, Figure 4).  Previously published values (Fuchs 2011, Bar-Even et al. 2012) state the 

rCAC requires 2 ATP, 2 NADPH, 1 quinol and 2 Fdred pairs to produce a molecule of pyruvate. 

When the values are converted to their ATP equivalents, this equates to (8 ATP + 2 NADPH 

(8ATP) + 1 quinol (2.66 ATP) + 4 Fdred (8ATP) for a total of 20.66 ATP.  

The fractional values for the rCAC (Table 3) result from the fractional ATP equivalent of 

quinol (2.66 ATP/quinol) and the need to balance the number of carbons during synthesis 
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calculations. For example, four molecules of the three-carbon compound glyceraldehyde-3-

phosphate are used to synthesize three molecules of the four-carbon compound erythrose-4-

phosphate. In order to tally the amount of ATP to synthesize a single molecule of erythrose-4-

phosphate, the amount of ATP needed to synthesize four molecules of glyceraldehyde-3-

phosphate were divided by three. The same approach was used for ribose-5-phosphate and 

sedoheptulose-7-phosphate. 

Table 3 | Moles ATP required to make one mole of central carbon intermediates from CO2. 

Intermediates CBB ATP rCAC ATP (CBB-rCAC) 

Fructose 6-P 66 55.32 10.68 

Sedoheptulose 7-P 77 64.54 12.46 

Pyruvate 27 20.66 6.34 

Oxaloacetate 27 22.66 4.34 

2-ketoglutarate 51 34.32 16.68 

3-phosphoglycerate 28 22.66 5.34 

Acetyl-Coa 24 16.66 7.34 

Fumarate 54 26.66 27.34 

PEP 28 22.66 5.34 

Erythrose-4-P 44 36.88 7.12 

Ribose-5-P 55 46.1 8.9 

 

 

Figure 4 | ATP required to make one mole of central carbon intermediates from CO2 
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Building blocks from central carbon intermediates 

The moles of intermediates to synthesize building blocks for macromolecules (i.e amino 

acids to build proteins, nucleotides to build nucleic acids etc…) were tallied for all three species. 

The production of amino acids required large amounts of pyruvate, oxaloacetate and cellular 

energy carriers in the form of ATP, and NAD(P)H (Table 4, Figure 5). Pyruvate provides a basic 

carbon skeleton for the formation of the amino acids alanine, valine and leucine and is also 

required for the production of lysine and isoleucine. Oxaloacetate provides a carbon skeleton for 

the amino acids glutamine, aspartate, asparagine, arginine, threonine, methionine and isoleucine. 

Although oxaloacetate is used for the production of a wider variety of amino acids, the amount 

of pyruvate required for the amount of amino acids in a gram of cell biomass is higher. This can 

be attributed to the high percentage of alanine in the hydrolyzed cell extracts used for the 

biomass composition values for this study (Table 1) (Roberts et al. 1957, Okayasu et al. 1997, 

Lillich and Elkan 1973). As expected, large amounts of cellular reductant were required to 

synthesize amino acids from central carbon intermediates (Table 4, Figure 5). The values only 

reflect the amount of ATP to build each amino acid and do not take into account the amount of 

energy required to generate peptide bonds. The negative values for CO2, NADH and fumarate 

indicate that they are produced during the synthesis of certain amino acids. Carbon dioxide is a 

byproduct in the synthesis of several amino acids that have carbon skeletons provided by 

pyruvate, phosphoenolpyruvate or erythrose-4-phosphate. NADH is produced during the 

synthesis of amino acids based on 3-phosphoglycerate such as cysteine and glycine. Fumarate is 

a byproduct of arginine synthesis and is generated when citruline and aspartate form L-

arginosuccinate which is broken into fumarate and arginine by the enzyme arginosuccinatelyase 

(KEGG). 
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Table 4 ǀ Moles of intermediates to build amino acids for proteins in one gram of cell biomass 

Intermediates
a 

T. crunogena S. autotrophica E. coli 

Pyruvate 2.30E-03 2.30E-03 2.31E-03 

Oxaloacetate 1.48E-03 1.48E-03     1.51E-03 

2-ketoglutarate 8.12E-04 8.12E-04 8.59E-04 

3-phosphoglycerate 7.06E-04 7.06E-04 5.87E-04 

Acetyl-Coa 6.29E-04 6.29E-04 6.15E-04 

Fumarate -1.72E-04 -1.72E-04 -2.06E-04 

PEP 6.07E-04 6.07E-04 6.03E-04 

Erythrose-4-P 3.03E-04 3.03E-04 3.01E-04 

Ribose-5-P 6.60E-05 6.60E-05 6.22E-05 

CO2 -1.80E-03 -1.80E-03 -1.47E-03 

ATP 8.24E-03 8.02E-03 8.27E-03 

NADH -4.94E-04 -1.10E-03 -5.15E-04 

NADPH 8.27E-03 8.76E-03 8.48E-03 
a
Intermediate values to synthesize amino acids based on genomic data from KEGG and cell 

composition literature. 

 

Figure 5 | Moles of intermediates to build amino acids for proteins in one gram of cell biomass. 

 

The moles of intermediates to build nucleotides for DNA and the three forms of RNA 

(mRNA, rRNA and tRNA) in a gram of cell biomass were tallied for all three cell types (Table 5, 

Figure 6). Oxaloacetate, 3-phosphoglycerate and ribose-5-P were most utilized intermediates for 
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nucleotide synthesis. Slight variations in these values for the three cell types are mainly due to 

differences in nucleotide composition and not variations in biosynthetic pathways. Oxaloacetate 

provides the carbon skeleton for aspartate which is a key component for purine and pyrimidine 

rings. For the synthesis of purines, aspartate provides a nitrogen atom for the larger of the two 

rings, while the carbon skeleton is removed as fumarate. For pyrimdine synthesis, aspartate 

provides three of the four carbons in the single ring as well one of the two nitrogen atoms (Yates, 

1956). Three-phosphoglycerate is incorporated into purine biosynthesis by providing the carbon 

skeleton for glycine. Ribose-5-p is incorporated into all purines and pyrimidines by providing the 

carbon skeleton for 5-phosphoribosyl-pyrophosphate (PRPP). Large amounts of ATP and 

NAD(P)H are required for nucleotide synthesis while NADH is produced as a byproduct of the 

orotate synthesis for pyrimidines. Reduced thioredoxin provides the hydride ion needed to 

generate deoxynucleoside diphosphates from nucleosides. 

Table 5 ǀ Moles of intermediates to build nucleic acids for one gram of cell biomass 

Intermediates
a 

T. crunogena S. autotrophica E. coli 

Oxaloacetate 6.88E-04 7.25E-04 7.28E-04 

3-phosphoglycerate 3.49E-04 3.44E-04 3.47E-04 

Fumarate -5.35E-04 -5.45E-04 -5.06E-04 

Ribose-5-P 6.88E-04 7.25E-04 7.28E-04 

CO2 9.65E-06 -3.74E-05 -3.35E-05 

ATP 6.72E-03 6.93E-03 7.02E-03 

NADH -5.02E-04 -5.23E-04 -5.70E-04 

NADPH 1.32E-03 1.36E-03 1.33E-03 

Thioredoxin 9.63E-05 9.18E-05 9.53E-05 
a 

Nucleotide content based on chromosome data for each organism from IMG. 
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Figure 6 ǀ Moles of intermediates to build nucleic acids for one gram of cell biomass 

 

 The moles of intermediates required to build lipids for a gram of cell biomass was 

tallied for all three cell types (Table 6, Figure 7). Fatty acid synthesis required the largest 

amounts of acetyl-CoA, ATP and NADPH. Fatty acids are synthesized via the sequential 

condensation and reduction of acetyl-CoA molecules. In order to continue this process, ATP is 

needed to activate the acetyl-CoA.  Acetyl-CoA and malyonyl CoA combine to form 3-ketoacyl-

SACP which reduced by NADPH. The requirement of 3-phosphoglycerate is tied to the 

production of serine and dihydroxyacetone phosphate (DHAP), which is used as the carbon 

skeleton for the construction of other polar lipids.  

Lipopolysaccharides (Table 7, Figure 8), from which the outer leaflet of gram 

negative bacteria is comprised, are synthesized using the same pathways for all three cell types. 

The large requirement for acetyl-CoA, ATP and NADPH is due to the synthesis of tetradecanoic 

acid (3-OH-14:0) and dodecanoic acid (12:0), fatty acids found within the lipid A molecule of 
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the lipoloysaccharide. Fructose-6-phosphate inputs are directed into the synthesis of UDP-n-

acetylglucosamine 6-phosphate, and UDP glucose and galactose. Sedoheptulose-7-phosphate is 

used in the synthesis of ADP-glyceromannoheptose while ribose-5-phosphate and 

phosphoenolpyruvate are used for the synthesis of CPM-3-deoxy-manno-octulosonate (CMP-

KDO). 

Table  6ǀ Moles of intermediates to build phospholipids and other polar lipids for one gram of 

cell biomass. 

Intermediates T. crunogena S. autotrophica E. coli 

Fructose 6-P 4.54E-06 5.05E-06 5.24E-05 

3-phosphoglycerate 2.26E-04 2.35E-04 2.43E-04 

Acetyl-Coa 1.19E-03 1.18E-03 1.14E-03 

ATP 1.31E-03 1.28E-03 1.30E-03 

NADPH 2.15E-03 2.14E-03 2.08E-03 

 

 

Figure 7ǀ Moles of intermediates to build phospholipids and other polar lipids for one gram of 

cell biomass. 
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Table 7 | Moles of intermediates to build lipopolysaccharides for one gram of cell biomass. 

Intermediates T. crunogena S. autotrophica E. coli 

Fructose 6-P 5.24E-05 5.24E-05 5.24E-05 

Sedoheptulose 7-P 2.24E-05 2.24E-05 2.24E-05 

3-phosphoglycerate 7.48E-06 7.48E-06 7.48E-06 

Acetyl-Coa 3.22E-04 3.22E-04 3.22E-04 

PEP 2.24E-05 2.24E-05 2.24E-05 

Ribose-5-P 2.24E-05 2.24E-05 2.24E-05 

ATP 4.94E-04 4.94E-04 4.94E-04 

NADPH 4.79E-04 4.79E-04 4.79E-04 

 

 

Figure 8 | Moles of intermediates to build lipopolysaccharides for one gram of cell biomass. 

The moles of intermediates to build peptidoglycan for all three cell types were based on 

data available for E. coli (Table 8, Figure 9). The peptidoglycan layer is constructed of 

alternating molecules of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) which 

are connected by tetrapeptide cross links. Fructose-6-phosphate provides the six carbon sugar for 

UDP-NAG and UDP-NAM while acetyl-CoA provides an acetyl group. The synthesis of NAM 

from NAG requires phosphoenolpyruvate which donates a lactyl unit to form a NAG-3-
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enolpyruvalether intermediate which is further reduced by NAD(P)H . Pyruvate requirements 

stem from the production of D-alanine which is used in creating peptide cross links in the 

bacterial cell wall. High ATP costs result from the synthesis of NAG and NAM and for the 

formation of tetrapeptide linkers. 

Table 8 ǀ Moles of intermediates to build peptidoglycan for one gram of cell biomass. 

Intermediates  T. crunogena, S. autotrophica, E.coli 

Fructose 6-P 4.86E-05 

Pyruvate 7.28E-05 

Oxaloacetate 2.43E-05 

2-ketoglutarate 2.43E-05 

Acetyl-Coa 4.86E-05 

PEP 2.43E-05 

ATP 3.16E-04 

NADPH 1.70E-04 

 

  

Figure 9ǀ Moles of intermediates to build peptidoglycan for one gram of cell biomass. 
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The amounts of metabolic intermediates needed to make all macromolecules were 

summed (Tables 4-8) and multiplied by the moles of ATP needed to synthesize each 

intermediate from CO2 (Table 3) in order to estimate the amount of ATP necessary to make 

enough of each metabolic intermediate for one gram of cell biomass (Figure 10). The CBB cycle 

requires more ATP to build all the intermediates required for a gram of cell biomass. However, 

the amount of ATP and NADPH required to turn these intermediates into macromolecules 

slightly mitigates their overall difference in producing biomass. While both cycles require more 

ATP to build larger intermediates such as sedoheptulose-7-phosphate, these large intermediates 

are not required in high amounts for biomass synthesis. Therefore large intermediates do not 

have high ATP costs per gram of biomass of cell even though they are more expensive to make 

than smaller intermediates such as pyruvate. 

As noted in Table 3, fumarate production from CO2 requires twice as much ATP using 

the CBB cycle instead of the rCAC. The negative ATP values for fumarate are indicative of its 

production during arginine biosynthesis (Cunin et al. 1986) and therefore net ATP is not 

consumed for fumarate synthesis when building cell biomass. In other words, the negative value 

for the amount of ATP required to build enough fumarate for a gram of cell biomass results from 

multiplying the negative intermediate input value by the positive ATP requirement to synthesize 

fumarate from CO2. While the actual amount of fumarate that is produced is quite small, the ATP 

values are amplified due to the expense of building fumarate from CO2.  
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Table 9 ǀ Moles ATP to build intermediates for one gram of cell biomass for three species. 

Intermediates T. cru CBB S. auto CBB E. coli CBB T. cru rCAC S. auto rCAC E. coli rCAC 

Acetyl CoA 5.26E-02 6.06E-02 5.11E-02 3.65E-02 4.21E-02 3.55E-02 

Erythrose-4-p 1.33E-02 1.33E-02 1.33E-02 1.12E-02 1.12E-02 1.11E-02 

Fructose-6-p 6.96E-03 7.00E-03 6.66E-03 5.83E-03 5.87E-03 5.58E-03 

Fumarate          -3.82E-02 -3.87E-02 -3.84E-02 -1.88E-02 -1.91E-02 -1.90E-02 

 2-ketoglutarate 4.26E-02 4.26E-02 4.51E-02 2.87E-02 2.87E-02 3.03E-02 

Oxaloacetate 5.93E-02 6.03E-02 6.12E-02 4.98E-02 5.06E-02 5.14E-02 

Phosphenolpyruvate 1.77E-02 1.83E-02 1.82E-02 1.43E-02 1.48E-02 1.47E-02 

 3-phosphoglycerate 3.61E-02 2.67E-02 3.32E-02 2.92E-02 2.16E-02 2.68E-02 

 Pyruvate 6.40E-02 6.40E-02 6.44E-02 4.90E-02 4.90E-02 4.93E-02 

Ribose-5-p 4.27E-02 4.47E-02 4.47E-02 3.58E-02 3.75E-02 3.75E-02 

Sedoheptulose-7-p 1.73E-03 1.73E-03 1.73E-03 1.45E-03 1.45E-03 1.45E-03 

ATP 1.72E-02 1.68E-02 1.74E-02 1.72E-02 1.68E-02 1.74E-02 

NADH -2.99E-03 -4.85E-03 -3.25E-03 -2.99E-03 -4.85E-03 -3.25E-03 

NADPH 3.72E-02 3.81E-02 3.76E-02 3.72E-02 3.81E-02 3.76E-02 

Thioredoxin 2.89E-04 2.67E-04 2.86E-04 2.89E-04 2.67E-04 2.86E-04 

 

 

Figure 10ǀ Moles ATP to build intermediates for one gram of cell biomass for three species. The 

total moles ATP to build metabolic intermediates in one gram of cell biomass were tallied for 

each cell type using both the CBB cycle and the rCAC. Intermediates built using the CBB cycle 

are clustered in columns to the left of each label and those built using the rCAC are clustered to 

the right.  
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Table 10 | The total molar amount of ATP to build one gram of cell biomass. Values include the 

cost to polymerize amino acids into proteins. The native carbon fixation pathways for T. 

crunogena and S. autotrophica are marked in bold. 

Organism CBB Cycle rCAC 

T. crunogena 0.36 0.31 

S. autotrophica 0.36 0.31 

E. coli 0.37 0.31 

 

The total molar amount of ATP to build one gram cell biomass was tallied for each 

organism using both carbon fixation pathways (Table 10). The CBB cycle requires about 0.05 

mols of ATP more than the rCAC to synthesize one gram of cell biomass from CO2 when cells 

are compared using their native carbon fixation pathways (i.e. T.crunogena  CBB and S. 

autotrophica rCAC). This difference is retained even with varying biomass composition. This 

study supports previously published literature which suggests that the CBB cycle is more 

expensive than the rCAC. However, the differences between the two cycles are mitigated by 

process downstream from intermediate synthesis such as the cost to turn the intermediates into 

building blocks and macromolecules. For the production of pyruvate using the rCAC, the ATP 

costs are approximately 77% of the CBB (ATP needed to synthesize 1 mol pyruvate from rCAC 

÷ ATP needed to synthesize 1 mol pyruvate from CBB = 20.66÷27=0.77). For the production of 

biomass using the rCAC, the ATP costs are approximately 84% of the CBB (ATP needed to 

synthesize 1g biomass from rCAC ÷ ATP needed to synthesize 1g biomass from CBB = 31 ÷ 37 

= 0.84). Although the CBB cycle requires more ATP to synthesize biomass than the rCAC, the 

predominance of both pathways in hydrothermal vent communities suggests that CBB cycle 

must confer some selective advantage to the microbes utilizing it. Oxygen tolerance, enzyme 
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kinetics, structural costs, phylogenetic affiliation or other factors may be the driving forces 

behind the distribution and use of these pathways.  

In some cases, a cell may adapt a less than ideal carbon fixation pathway for its 

environment simply because it has inherited the pathway from ancestors that were adapted to 

different environmental conditions. For example, species that have been found with variations of 

the rCAC with relatively oxygen tolerant enzymes may have transitioned to a more oxygen rich 

environment and through selection their descendants evolved more oxygen tolerant pathways. 

These species would have to maintain a high level of metabolic efficiency in order to remain 

competitive in the new environment. Alternatively, if the rCAC is not prevalent in a lineage, it 

may be that an aerobic organism acquired rCAC genes from an rCAC autotroph while 

incorporating oxygen tolerant enzymes of its own. 

Enzyme kinetics also contributes to the expensive of a particular pathway. Enzymes with 

a low maximal velocity (Vmax) must be produced in higher quantities by the cell in order to 

process large amounts of substrate. A cell using a pathway with low Vmax enzymes may have to 

synthesize more enzymes in order to metabolize the same amount of substrate as a pathway with 

higher Vmax enzymes. Indeed, Rubisco enzymes have very low Vmax values compared to other 

enzymes (Tabita, F.R. 1999), which may boost the expense of this pathway. 

 Increased enzyme production is not the only structural cost that must be taken into 

consideration when comparing the efficiency of a carbon fixation pathway. In the case of the 

CBB cycle, autotrophs must take precautions to avoid a costly oxygenase reaction by Rubisco 

(Tabita, F.R. et al. 2008). Under low DIC conditions, T. crunogena will synthesize protein 

microcompartments called carboxysomes which isolate Rubisco in order to maximize its ability 
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to function as a caroboxylase (Dobrinski et al. 2005). When grown under low CO2 conditions, T. 

crunogena and many other autotrophic bacteria that use the CBB cycle form multiple 

carboxysomes per cell; the added cost of forming these subcellular structures is large, and 

therefore is carefully regulated (Yeates et al. 2008).  Given this added cost, the CBB cycle does 

not seem like an advantage; however, it appears to be the only one that functions well at low CO2 

concentrations (Fuchs 2011). 

The CBB cycle and the rCAC are both “patchwork” pathways in that they are composed 

primarily of other central carbon pathways. They become carbon fixation pathways by the 

presence of two or three enzymes that catalyze irreversible steps to drive reactions in the 

reductive direction. For example, the CBB cycle is a conglomeration of the pentose phosphate 

pathway and the glycolytic pathway and is functional as carbon fixation pathway only with the 

addition of Rubisco and the irreversible phosphatase, phosphoribulokinase.  It can be surmised 

that the addition of a few key enzymes via horizontal gene transfer may allow a heterotrophic 

species to gain autotrophic abilities. Indeed, genes encoding key enzymes for autotrophic 

pathways have been found to be widely transferred by horizontal gene transfer. Most 

cyanoobacteria have form 1B Rubisco while some marine cyanobacteria have form 1A Rubisco 

which is believed to have been transferred to the cyanobacteria (Rae et al. 2011). Some 

dinoflagellates also have form II Rubisco which appears to have been horizontally transferred 

from the proteobacteria. (Bachvaroff  et al. 2004) Thus, the acquisition of autotrophic 

metabolism via insertion of a key carboxylase or other key enzyme is quite feasible. 

Despite its apparent expense with respect to metabolite synthesis, the CBB cycle may 

have an advantage based on its reliance on NADPH instead of ferredoxin as its main electron 
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carrier. Some enzymes of the rCAC require ferredoxin (-400 mV) as a substrate (pyruvate 

synthase, alphaketoglutarate synthase).  Cognate enzymes from CBB cells require NADPH as a 

substrate (-320 mV; e.g., glyceraldehyde 3-phospate dehydrogenase). Many organisms using the 

rCAC utilize hydrogen as their electron donor (~-400 mV standard reduction potential at pH 7); 

transfer of electrons from hydrogen to ferredoxin (~-400 mV standard reduction potential) is 

facile.  In contrast, cells using other electron donors, such as hydrogen sulfide (~-200 mV), 

would find reduction of ferredoxin to be an energetically expensive proposition; reduction of 

NADP (~320 mV) is still costly, but less so. (Buckel and Thauer 2013) Use of an autotrophic 

pathway (CBB) which consumes electrons from less ‘costly’ cellular electron carriers (e.g., 

NADPH) may be an advantage when environmental electron donors with less negative reduction 

potentials (e.g., H2S) predominate. 
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Appendix A: Random and site-directed mutagenesis of T. crunogena to identify genes 

responsible for its CO2-concentrating mechanism 

Introduction 

Deep in the world’s oceans, unique communities of organisms thrive on reductant-

enriched water flowing from hydrothermal vents. Ubiquitous at these hydrothermal vents are 

Thiomicrospiras, which are obligate chemolithoautotrophs.  The ecophysiology of carbon 

fixation by these organisms, or any other chemolithoautotroph, has not been well-studied.  The 

genome of Thiomicrospira crunogena has been sequenced, and provided some clues (Scott et al. 

2006).  Based on gene complement, it has adaptations for CO2 scarcity (carboxysomes), and 

based on physiological studies, it can generate intracellular CO2 concentrations considerably 

higher than extracellular.  The purpose of this study was to elucidate the molecular mechanism 

for dissolved inorganic carbon (DIC) uptake by T. crunogena. To find the genes encoding 

system(s) for (DIC) uptake, random knockout mutants were generated and screened for inhibited 

growth under low CO2 conditions.  
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Methods 

Growth Medium  

Thiomicrospira crunogena was grown in chemostats (New Brunswick Scientific BioFlo 

110) in TASW medium, an artificial saltwater medium supplemented with 40 mM thiosulfate 

and 100 mM Na HEPES to maintain pH 8 (Dobrinski et al.  2005). Cells were grown under DIC 

limitation (0.1 mM DIC) and had the NaCl content dropped to 20% (65 mM) in order to facilitate 

mating with E. coli for random and site-directed mutagenesis. Escherichia coli was grown in 

TYE medium (Larsen et al.., 2002) supplemented with kanamycin (25 mg/L). TCTYE medium 

used for the mating of T. crunogena and E. coli consisted of tryptone (10 g/L), yeast extract 

(5g/L), NaCl (3.8g/L), (NH4)2SO4 (0.8g/L), MgSO4·7H2O (1.4g/L), CaCl2·2H2O (0.2g/L), 

K2HPO4 (0.6g/L), NaHCO3 (4.2g/L), Na2S2O3 (anhydrous, 6.3 g/L), NaHEPES (26g/L), agar 

(15g/L) and SL-8 (Biebl and Pfennig, 1978). 

Random Mutagenesis  

Thiomicrospira crunogena cells were harvested and resuspended at an optical density of 

20 at 600nm (OD600) in TASW medium. Escherichia coli strain BW20760, carrying plasmid 

pRL-27  (Larsen et al.., 2002), were grown to an OD600, washed twice in TASW and 

resuspended as described for T. crunogena above.  Plasmid pRL-27 contains a transposon that 

has a kanamycin resistance cassette as an identifiable marker (Figure A11). The transposase gene 

does not move with the transposon into the chromosome, resulting in a stable insertion. To mate 

the cells, 50 µl of a 1:1 T. crunogena/E. coli suspension was added to solid TCTYE. The 

suspension was allowed to dry and form a biofilm. Plates were incubated overnight at 32ºC 

under a 5% CO2 headspace. Biofilms were resuspended, washed three times with TASW, spread 
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onto recovery plates (TASW medium + 25 mg/ml kanamycin) and incubated under a 5% CO2 

headspace. 

 

Figure A11| Generation of random knockout mutants. Plasposon PRL27 was propagated in 

Escherichia coli and transformed into T. crunogena via conjugation. The transposon on pRL27, 

which carries a kanameycin resistance gene as a selectable marker, inserted randomly in the wild 

type T. crunogena genome generating a random mutant library. 

 

Site-directed Mutagenesis 

Site-directed mutagenesis was used to generate strains of T. crunogena to use as controls 

for screening strains generated by random mutagenesis for CO2 sensitivity.  Two strains with 

mutations in genes encoding carboxysomal proteins were created (Tcr_0838:  Rubisco large 

subunit cbbL;  Tcr_0841:  carboxysomal carbonic anhydrase csoSCA), anticipating that these 

strains would be sensitive to the CO2 concentration available during growth (Cannon and 
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Shively, 1983), and could therefore function as positive controls when screening for this 

phenotype.  A strain that could function as a negative control (insensitive to CO2 concentration 

during growth) was generated by targeting a gene predicted to encode a conserved hypothetical 

protein located within a prophage (Tcr_0668).  Transcript abundance from this gene is 

insensitive to the concentration of CO2 during growth (Dobrinski et al. 2012), suggesting the 

protein product would be less likely to be part of a CCM.  Further, its location within the 

prophage suggests that its protein product would not be necessary for T. crunogena growth in 

general. 

 Site-directed mutagenesis of Tcr_0838, Tcr_0841, and Tcr_0668 was conducted as 

described in (Metcalf, 1996).  Target genes were PCR-amplified from T. crunogena genomic 

DNA using Taq polymerase (Qiagen Taq PCR Master Mix Kit) and primers directed to each 

gene (Table 1; Integrated DNA Technologies, Inc.) which were modified at the 5’ termini to 

carry a BamHI restriction sequence (AGGATCC).  PCR products as well as a carrier plasmid 

(pcDNA3.1; Invitrogen, Inc.) were cleaved with BamHI.  Cleaved plasmids were treated with 

Antarctic alkaline phosphatase (New England Biolabs, Inc.); linearized dephosphorylated 

plasmids and PCR products were then purified via phenol/chloroform and ethanol precipitation.  

Amplified target genes were then ligated into pcDNA3.1 (T4 Ligase; New England Biolabs, 

Inc.), and introduced into chemically competent E. coliTop10 cells (Invitrogen, Inc.).  

Transformants were selected by growth on solid Luria agar supplemented with 100 mg/L 

ampicillin.  E. coli colonies were screened via PCR for the presence of one of the target T. 

crunogena genes, and plasmids were purified from PCR positives.  Purified pcDNA3.1 plasmids 

carrying the target T. crunogena genes were subjected to Tn5-transposon mutagenesis using the 

EZ-Tn5<kan-2> kit (Epicentre, Inc.), transformed into chemically competent E. coliTop10 cells, 
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and selected by cultivation on solid Luria agar supplemented with ampicillin (100 mg/L) and 

kanamycin (25 mg/L).  Transformants with plasmids in which Tn5 inserted itself into the T. 

crunogena gene carried by the plasmid were selected via colony-pick PCR, using primers for the 

target T. crunogena genes; insertion of Tn5 into the T. crunogena gene increased the size of its 

PCR product by 1221 nucleotides.  Plasmids containing Tn5-interrupted T. crunogena genes 

were purified, and mutated genes were sequenced to elucidate the position of Tn5-insertion 

(Macrogen, USA).  Plasmids carrying T. crunogena genes in which Tn5 was bracketed at 5’ and 

3’ ends by at least 200 nucleotides of the target T. crunogena gene were carried forward, to 

facilitate eventual RecA-mediated recombination into the T. crunogena genome (Metcalf, 1996). 

 Mutated genes were amplified from these plasmids using primers (Table 8) modified at 

their 5’ ends to include SpeI restriction sites (AACTAGT).  PCR products, as well as E. coli 

mating plasmid pLD55 (Metcalf, 1996), were digested with SpeI (New England Biolabs, Inc.), 

purified and ligated as described above.  This DNA was introduced into chemically competent E. 

coliBW20767 (Metcalf, 1996), and transconjugants were selected by plating onto solid Luria 

agar supplemented with 100 mg/L ampicillin and 25 mg/L kanamycin.  To introduce mutated 

target genes into T. crunogena, these E. coli BW20767 cells were then mated with T. crunogena 

as described above for random mutagenesis. 

 Kanamycin-resistant T. crunogena were screened for the presence of mutated target 

genes via PCR.  A single RecA-mediated crossover event between the plasmid carrying the 

mutated T. crunogena gene and the T. crunogena chromosome results in integration of the 

plasmid into the T. crunogena chromosome (Figure A12); as a result, these cells carry two copies 

of the target gene: one wild-type and one interrupted by Tn5.  Cells that successfully mated with 



50 
 

E. coli and integrated the plasmid into the chromosome will therefore have two PCR products 

when screened using primers directed to the target gene.  T. crunogena strains with two bands 

from PCR using primers to the target genes were carried forward. 

 These strains were next cultivated under conditions favoring cells in which a second 

RecA-mediated crossover event had occurred, removing the plasmid and the wild-type copy of 

the gene (Metcalf, 1996).  Cells were cultivated under high-CO2 conditions in liquid TASW 

supplemented with 25 mg/L chlortetracycline (added before autoclaving; degradation products 

induce the tet
R
 gene without killing tet

S
 cells) and 25 mg/L kanamycin.  A set of 5 ml cultures 

was harvested via centrifugation and resuspended in TASW.  A dilution series of the 

resuspended cells was plated on solid TASW medium supplemented with 25 mg/L 

chlortetracycline (degraded by autoclaving), 25 mg/L kanamycin, and 6 mg/L fusaric acid, which 

preferentially destabilizes cytoplasmic membranes of cells expressing TetR (Metcalf, 1996).  

The most rapidly growing colonies from these plates were screened for loss of the wild-type 

target gene via colony-pick PCR. 
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Figure A12 |Generation of site-directed mutants. pLD55 plasmid carrying mutant gene 

interrupted with a transposon containing Kanamycin resistance (indicated by black line through 

interrupted gene). Homologous recombination with the wild-type gene results in a genome 

containing both mutant and wild-type copies of the gene. A second round of homologous 

recombination results in the loss of the plasmid and the generation of strains carrying either a 

wild-type or mutant copy of the gene. 

 

Assay to detect CO2 sensitivity in random knockout mutants  

A high throughput assay for growth was based on sulfuric acid production from 

thiosulfate by T. crunogena. Phenol red was added to TASW (P-TASW); growth resulted in 

medium color changing from red (pH 8) to yellow (pH < 6). Random knockout colonies were 

inoculated into 96 well plates (200 µl P-TASW/ well) and placed in 5% CO2 headspace growth 

chambers at room temperature for approximately two weeks. Strains were then transferred into 
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two new 96 well plates containing either high or low DIC P-TASW. High DIC strains were 

grown under a 5% CO2 headspace while low were kept at ambient (~.03% CO2). Strains that 

grew well under high DIC conditions but were inhibited under low were selected for further 

investigation. Site-directed mutants served as controls for the assay. The positive control strain 

was the carboxysomal carbonic anhydrase mutant (csoSCA:Tn5) that resulted in a carbon 

sensitive phenotype while the negative control strain was the embedded prophage mutant that 

was predicted to be unlikely to have a CO2 sensitive phenotype (Tcr_0668:Tn5). 

Growth and protein assays to verify CO2 sensitivity  

CO2 sensitivity was confirmed by monitoring growth of larger volume (40 ml) cultures of 

candidate strains under low and high DIC conditions via OD600. Growth was measured until cells 

reached stationary phase and the culture was centrifuged to collect the cells. Proteins were 

extracted by vortexing cells in a solution of extraction buffer (1% triton and 20 mM Tris) and 

3.5% beta-mercaptoethanol. Proteins were quantified using a RC DC protein assay kit microfuge 

tube protocol (BioRad Inc.).  

PCR to eliminate carboxysome mutants and verify presence of transposon 

 It was anticipated that mutants whose carboxysomal genes were interrupted would 

exhibit a CO2 sensitive phenotype (Cannon and Shively 1983). To remove these mutants and 

focus on those which might have mutated transport-related genes, each strain was screened with 

four PCR reactions, with four sets of primers (Table A11) which together covered the whole 

carboxysome operon (Tcr_0840-0846). Increased band size or missing bands indicated an 

interruption within the operon. Strains that had wild-type carboxysome genes but were CO2 

sensitive were selected for further scrutiny. To verify that kanamycin sensitivity was due to the 
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presence of the Tn5 transposon, strains were screened via PCR for the presence of the 

transposon-encoded kanamycin gene (Table A11). 

 

Table  A11 ǀ Primer sets, forward (f) and reverse (r), for kanamycin resistance (aph) which was 

used a selectable marker for transposon insertion. Tcr_0668 is a hypothetical protein found in a 

prophage embedded in the T. crunogena genome. Tcr_0841 encodes the large subunit of Rubisco 

(cbbL) while Tcru_0838 encodes carboxysomal carbonic anhydrase (csoSCA). Four primer sets 

were used to cover the entire length of the T. crunogena operon Tcr_0840-Tcr_0846. 

Primers for Kanamycin resistance 

APH  F 5’-CGA GGC CGC GAT TAA ATT CCA ACA-3’ 

APH  R  5’-AGG CAG TTC CAT AGG ATG GCA AG -3’ 

Primers for site-directed mutagenesis 

Tcr_0668 F 5'-ACGTTCATGGCGACAACTGTTTTGATA-3' 

Tcr_0668 R 5'-TTGGCCACTTCTCTCCATTTTCCTG-3' 

Tcr_0841 F 5'-ATGAATCGTTTGAAAAAAAGTCATC-3' 

Tcr_0841 R 5'-CTATGCGGTTCTTTGCTT-3' 

Tcr_0838 F 5'-CAGCGGTAGCAGCAGAAAGTTCAA-3' 

Tcr_0838 R 5'-ACCACCACCGAACTGAAGAACAGA-3' 

Primer set for T.crunogena carboxysome operon 

Carboxy F 1 5’-TTG CGC GCT CCC GAT ATC TG-3’ 

Carboxy R 1 5’GAG TAT AGT TGT CAT ACC CAA CCA AAC GGA TC-3’ 

Carboxy F 2 5’-GGT ACA CGC GAT CCA AAT GAA GTT TTG G-3’ 

Carboxy R 2 5’-GTA ATT ACG CTC GTG CAC CAC CTG-3’ 

Carboxy F 3 5’-TAA CAA TGA AGT TCC GAT GAG CCC GAT T-3’ 

Carboxy R 3 5’-GAT GCC GCC ACC CGT TAA ATC TGT TAA T-3’ 

Carboxy F 4 5’-AAC AAA AGA TGG TGA CTG GGT TTT TAC CAT CG-3’ 

Carboxy R 4 5’-CGT TTG AGC GTT TTC GAC AGA AGC TTT ACT AG-3’ 
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Results 

Growth and protein assays to verify CO2 sensitivity 

Forty random knockout strains exhibited a CO2 sensitive phenotype ‘in the high-

throughput 96-well assay and were grown in 40ml cultures to verify the results of the CO2 

sensitivity assay. Thirty-eight of these strains exhibited the same CO2 sensitive phenotype when 

grown in flask cultures (Figure A13). Because elemental sulfur produced by the cells during 

growth cause false-high absorbance readings, protein measurements were taken for each strain. 

The protein assays confirmed that the strains did not grow as well under CO2 limited conditions 

(Table A12).  

 

Figure A13 |Growth curves for random knockout strains. (Clockwise from top left). Strain 

P1-E2 shows strong growth at high CO2 and no growth at low indicating carbon sensitivity. 

Strain P3-E9 showing strong growth at high CO2 and delayed growth at low CO2. The spike in 

absorbance is due to sulfur globules in the media. T. crunogena eventually reabsorbed the sulfur 

causing the drop in absorbance. Control strain CsoSCA:Tn5 shows strong growth at high CO2 

and no growth at low CO2. Control strain Tcr_0668:Tn5 shows a slight delay in growth at low 

CO2. 
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Table A12| Protein assay absorbance readings for a selection of random-knockout mutant 

strains.  

Strain ID High DIC Low DIC 

P1-E2 .520 .008 

P1-H8 .721 .330 

P2-A9 .520 .314 

P2-G8 .679 .306 

P3-E9 .520 .285 

P3-F9 .552 .246 

 

 

PCR to eliminate carboxysome mutants and verify presence of transposon 

 Thirty-eight random knockout strains expressed CO2 sensitivity in the growth and protein 

assays (Figure A14). These strains were scanned via PCR in order to eliminate strains that 

contained mutations within the T. crunogena carboxysome. Strains Tcr_0668:Tn5 and wild-type 

served as positive controls since it was known that they have wild-type carboxysomes while 

strain cbbL:Tn5 served as a negative control due to its interruption within the caroboxysome 

operon. Out of the thirty-eight strains tested, sixteen exhibited wild-type carboxysome operons 

while the remaining strains had mutations within their carboxysome operons. 
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Figure A14 | PCR to detect carboxysome mutants. A: cbbL and cbbS represent the large and 

small subunits of Rubisco. CSOS2 is a carboxysome shell peptide and CSOS 3 is the 

carboxysome shell carbonic anhydrase.  B: Sample of PCR results from strains treated with four 

primers directed towards the carboxysome operon. For strain P7-C12, the missing band in primer 

2 indicates that the cbbS and/or the csos2 genes were interrupted by the transposon. The larger 

primer 1 band for Rubisco results from site-directed interruption of the cbbL gene by a 

transposon. Strains 668 and P1-H7 have normal bands across all four primer sets indicating that 

they have uninterrupted wild-type carboxysomes.  

 

PCR to detect presence of transposon within the mutant genome 

The sixteen random knockout strains that expressed CO2 sensitivity while having wild-

type carboxysomes underwent PCR to scan for the Kanamycin (aph) gene (Figure A15). This 

was to ensure that the kanamycin resistance expressed by these strains was due to the presence of 

the transposon and not to a random mutation that conferred kanamycin resistance. Strains 

Tcr_0668:Tn5, csoSCA:Tn5 and pRL27 served as controls as they are known to contain the 

transposon encoded APH gene. Only eight of the sixteen strains retained the aph gene. These 
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eight candidate strains were further investigated in order to find the site of the transposon 

insertion within the genome. Preliminary attempts to use inverse PCR to characterize the location 

of the transposon in the eight CO2 sensitive strains with intact carboxysome operons were 

unsuccessful. 

 

Figure A15 | Eight candidate strains containing the kanamycin (aph) gene. To ensure that the 

kanamycin resistance exhibited by the sixteen strains was due to the presence of the transposon, 

a PCR was run with primers directed towards the kanamycin resistance gene (aph).  
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