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Quantitative Biological Microscopy by Digital Holography
Christopher J. Mann
ABSTRACT
In this dissertation, improved techniques in digital holography, that have produced

high-resolution, high-fidelity images, are discussed. In particular, the angular spectrum
method of calculating holographic optical field is noted to have several advantages over
the more commonly used Fresnel transformation or Huygens convolution method. It is
observed that spurious noise and interference components can be tightly controlled
through the analysis and filtering of the angular spectrum. In the angular spectrum
method, the reconstruction distance does not have a lower limit, and the off-axis angle
between the object and reference waves can be lower than that of the Fresnel
requirement, while still allowing the zero-order background to be cleanly separated.
Holographic phase images are largely immune from the coherent noise commonly found
in amplitude images. With the use of a miniature pulsed laser, the resulting images have
0.5um diffraction-limited lateral resolution and the phase profile is accurate to about
several nanometers of optical path length. Samples such as ovarian cancer cells (SKOV-
3) and mouse-embryo fibroblast cells have been imaged. These images display intra-
cellular and intra-nuclear organelles with clarity and quantitative accuracy. This

technique clearly exceeds currently available methods in phase-contrast optical

Xi



microscopy in both resolution and detail and provides a new modality for imaging
morphology of cellular and intracellular structures that is not currently available.
Furthermore, we also demonstrate that phase imaging digital holographic movies
provide a novel method of non-invasive quantitative viewing of living cells and other
objects. This technique is shown to have significant advantages over conventional

microscopy.
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Chapter 1
Introduction

Holography, formed from the Greek words Holo (whole), and graphe (write), is a
method of recording both the intensity and phase information of a wave-field. It was first
suggested by Dennis Gabor in 1948 while working to improve upon the resolution of
electron microscopy [1], which suffers from limiting aberrations. Since its discovery,
holography has become an active field of research in modern optics and is now an
established tool for scientific and engineering studies.

This chapter presents an introduction to digital holography and the motivations
behind our research, in the following order: Section 1.1 discusses the foundations of
holography and its development in a historical context. Section 1.2 describes the advent
of digital holography, which has seen rapid progression due to advances in computers and
technology. Its applications to microscopy are investigated in Section 1.3. Section 1.4
summarizes research contributions and motivations. Finally Section 1.5 outlines the

organisation of this thesis.

1.1 Foundations of holography

An object illuminated with a coherent light source reflects or transmits the light
wave, which consequently carries information about the object’s physical and optical
properties. The intensity or amplitude information of the wave is associated with the

reflectance or attenuation property of the object while the phase information is related to

1



the topography or thickness. Recording devices such as Charged-Coupled Device (CCD)
cameras and photographic plates are able to capture the intensity of the incoming light,
but not the phase information. As an inherent three-dimensional technique, holography
presents a means of encoding the phase information as an intensity variation termed a
“hologram”, which can then be recorded by devices sensitive only to the intensity component
of light.

A hologram is defined as the recorded interference pattern between a coherent
object wave transmitted or reflected by an object and a reference wave which interferes
directly with this wave at the recording medium. The hologram contains information
about the entire three-dimensional wave-field (amplitude and phase) which is encoded in
the form of interference lines at high spatial frequencies. In conventional holography the
recorded object wave is reconstructed optically by illuminating the chemically processed
hologram with an optical replica of the reference wave. This produces a reconstructed
object which is indistinguishable from the original object and contains the 3D
information, both amplitude and phase.

In the original experimental set-up of Gabor, both the object wave and reference
wave are located along the optical axis normal to the recording medium. This leads to a
reconstructed image superimposed by the bright reconstruction wave called the dc term
or zero order and a second component, the so-called ‘twin or conjugate image’. These
unwanted components obscure the true amplitude and phase of the reconstructed object
wave.

While the basic foundations of holography were laid down by Gabor, it was not

until the 1960s, that holography gained widespread interest and practical use. This was

2



due to the availability of the laser and the introduction of the off-axis technique by Leith
and Uptanieks [2], in which the twin images and the dc term are spatially separated by
the introduction of an angle between the object and reference waves. In the late 1960°s
the first paper on Holographic Interferometry (HI) was published by Stetson, Powell et al
[3]. Holographic Interferometry, was designed as a non-contact optical test tool for
deformation studies of strains, vibrations and heating, and enabled non-destructive
measurement of surfaces with an accuracy of less than a micron.

Other significant advances in holography made around the same time were the
creation of computer generated holograms using Fraunhofer diffraction. Numerical
methods for reconstruction of the hologram were initially proposed by Goodman et al [4]
and Kronrod et al [5]. These methods included digitizing holograms recorded on

photographic plates which were then reconstructed numerically.

1.2 Digital holography

The conventional process of performing holography using photographic plates is
time consuming and cumbersome. This has precluded the widespread use of conventional
holography except in the case where measurements are considered important enough to
justify the time and expense involved. Also real time processing of a conventional
hologram is not feasible unless one uses photo-refractives and other nonlinear optical
materials. The advances in digital imaging and computation technologies have now made
it feasible and advantageous to replace the photochemical processing of conventional
holography with CCD arrays and numerical computation [6, 7]. With the development of
higher performance CCD and computational techniques, digital holography is fast

3



becoming an increasingly attractive alternative to conventional film-based holography. It
offers a number of significant advantages, such as simple, fast image acquisition and the
availability of many powerful digital processing algorithms. By calculating the complex
optical field of an image volume, the amplitude and phase of the optical field are
simultaneously available for direct manipulation [8-12].

There are numerous digital processing techniques for manipulating the optical
field information in ways that are difficult or impossible in real space processing. For
example, optical system aberration can be numerically corrected [13,14] and holographic
interferometry can be performed between remotely situated objects through
telecommunication links [15].

Figure 1.1 illustrates the digital holography process. A digital hologram is created
by the interference between a coherent object and a reference beam which is recorded by
a CCD camera and digitally transferred to a computer, where it is processed by
computational methods to obtain the holographic images. The digital hologram contains
not only amplitude information of the object, but also phase.

Moreover, the ability of the CCD camera to quantify the recorded light gives rise
to a number of post processing methods that can for instance be used to obtain
quantitative three-dimensional topography of an object surface from the phase
information. The fact that quantities such as the phase of the wave cannot be measured
directly with conventional detectors, which are only sensitive to the wave-field’s
intensity, makes digital holography a particularly attractive technique for measuring

morphological properties of an object.
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1.3. Applications to microscopy

Digital holography has been applied in diverse fields, including metrology [16],
deformation measurement [17], vibrational analysis [18], art conservation [19],
microstructures [20, 21] and more recently biological microscopy [22-27].

The applications to microscopy are particularly appealing due to a number of

technical advantages.

1.3.1 Three-Dimensional Microscopy

One of the main drawbacks in conventional optical microscopy is the small depth
of focus at higher spatial resolution, due to the objective’s large numerical aperture and
magnification. Only two dimensional information of an object can be obtained. More
specifically the diffraction-limited depth of focus is given by

nA

Az focus — W

(1.1)

where n is the index of refraction of the medium surrounding the object, A is the
illumination wavelength, and NA is the numerical aperture of the focusing lens or the
microscope objective.

Common ways to circumvent the problem of the low depth of focus in
conventional microscopy include sectioning of the sample or a mechanical motion along
the optical axis to scan the complete experimental volume. However, physical sectioning
of a biological sample is invasive and the mechanical operation of scanning increases the
time for acquisition of three-dimensional images. These are constraints for three-

dimensional imaging of a live sample.



This problem can be resolved using digital holographic microscopy. The
information on a complete volume can be recorded in just a single hologram and optically

reconstructed with visual 3-D observation.

1.3.2 Phase Contrast Microscopy

As well as the limited depth of focus, conventional bright-field microscopes have
difficulty in observing transparent samples such as living biological cells which exhibit
little intensity contrast. The conventionally applied phase contrast techniques of Zernike
and differential interference contrast (DIC) microscopy of Nomarksi that have been
developed for visualization of unstained transparent specimens do not offer direct
quantitative evaluation of the phase information.

The unavailability of quantitative phase information in these techniques presents a
difficulty in observing and interpreting morphological changes and properties of a
sample. Quantitative phase imaging is particularly important in microscopy because it
enables determination of either the refractive index or optical thickness variations from
the measured optical path length with an accuracy of a few nanometers.

Unlike the above-mentioned conventional phase-contrast microscopic techniques,
interferometric techniques allows for quantitative measurement of the phase information
produced by the object. In addition, digital holography as an interferometric technique
offers quantitative phase information and high fidelity and high resolution images with a
precision of optical thickness in the order of tens of nanometers [28]. While other
interferometric configurations such as interference microscopy are commonly used in

metrology, very few applications have been reported in biological microscopy. These
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techniques often require the phase to be measured through the process of multiple image
acquisition and phase modulation. Digital holography on the other hand requires only a
single image (hologram) and no phase modifying devices in order to obtain phase
information. This is a significant advantage for real-time sample analysis.

A common presumption is that coherent imaging suffers from the image
degrading effect of coherent noise; however, through careful control of laser beam and
other optics quality, remarkably clean images can be obtained. This is especially true
with phase imaging in digital holography because of its relative immunity to the

amplitude or phase noise of the laser profile.

1.3.3 Numerical Focusing

Another unique capability of digital holography is numerical focusing, which
emulates the focusing control of conventional microscopes. As the focusing can be
adjusted in the reconstruction process, digital holography is free from the process of
mechanical focusing and can be used to monitor the dynamic change of objects.

A number of algorithms have been developed for use in the reconstruction of a
hologram such as the Fresnel transform, convolution and angular spectrum methods [28-
31]. In particular, the use of the angular spectrum reconstruction algorithm provides a
significant advantage in focusing and reconstruction [32]. It has no minimum distance
requirement from the object plane to the hologram plane, and allows for flexible and
effective filtering and control of the dc term and spurious noise components from sources

such as stray reflections within the experiment.



1.3.4 Phase Unwrapping

From a computational point of view, phase images are directly determined from
the computed field. However, the phase images are required to be unwrapped in order to
simplify their interpretation. Of particular significance is the 2n-discontunuity problem in
phase-imaging. A conventional approach is to apply one of many phase-unwrapping
algorithms [33, 34], but often these require substantial user intervention and strict
requirements on the level of phase noise and phase discontinuity.

It has long been recognized that the range of unambiguous phase measurement
can be extended beyond a single wavelength by synthesizing a beat wavelength between
two wavelengths [35, 36]. The 2n-discontunuities inherent in the wrapped phase image
can be effectively removed without the addition of any noise, by using a multi-
wavelength digital holographic approach in a microscope configuration [37]. This
technique, unlike the mathematically challenging and often time consuming processes of
conventional phase unwrapping algorithms, makes real time processing much simpler to
perform because any calibration for removing 2n-discontinuities can be made prior to any
image capture. The drawback with this method lies in the increased technical effort
required for optical alignment of more than one laser (unless the same laser produces the

required wavelengths) along the same optical path.

1.4 Research Contributions
As a recently developed technique, digital holography has yet to be firmly
established in the microscopy world and many of its technical advantages are yet to be

fully explored and examined. The motivation behind this work has been to improve and
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develop techniques of digital holography in order to obtain images which effectively
provide more information and clarity than images produced by other comparable
microscopy techniques.

In this thesis, techniques of digital holography have been vastly improved to
obtain high-resolution, high-fidelity, quantitative phase-contrast images of microscopic
samples. The level of resolution and details in these images clearly exceed currently
available techniques in phase-contrast optical microscopy and provides a new modality
for imaging the morphology of cellular, intracellular and intra-nuclear structures that is
not currently available with non-invasive optical methods. Furthermore for the first time
to our knowledge, quantitative, dynamic effects have been measured on living biological
samples using digital holography [38].

This research will help with precise measurements of such properties as the
physical thickness of a cell, to a vertical resolution of just a few nanometers. This might
be of significance to biologists who can then accurately investigate the physical
morphology of specimens like cancer cells, which are known to have different thickness
and other morphological properties as compared to healthy cells [39].

We also demonstrate the use of the angular spectrum reconstruction method for
digital holography, which is seen to solve some of the significant problems that have so
far prevented the wider use of digital holography in biomedical imaging applications.
Spurious noise components can be easily controlled and there is no minimum
reconstruction distance as with other methods for numerical reconstruction. Also the dc
term of diffraction and the conjugate image can be eliminated by an appropriate selection

of spatial frequencies in the angular spectrum of an off-axis hologram.
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Finally we show that multi-wavelength phase imaging digital holography is an
effective and efficient technique for removal of 2n-discontunuities in the phase image by
the  extension of the axial range and also  overcomes  many
of the limitations imposed by conventional, mathematical based phase unwrapping

techniques.

1.5 Thesis organization

This thesis is organized into seven chapters and four appendices. The main body
of content in this dissertation is contained in Chapters 2, 3, 4, 5, and 6. Chapter 2 presents
some of the basic optical concepts and principles of holography, beginning with an
analysis of the wave theory of light and later describing the properties and roles of effects
such as interference, coherence, diffraction, and speckle in holographic recording and
reconstruction. Chapter 3 presents the technique of recording digital holograms and
discusses the reconstruction of the recorded optical wave field by the Fresnel transform,
the convolution approach and the angular spectrum. In Chapter 4, digital Gabor
holography is described and experimental results are presented which show the
capabilities for microscopy. Chapter 5 describes methods of determining quantitative
phase information and demonstrates the high quality results achievable by digital off-axis
holography. Chapter 6 describes phase imaging digital holography using two or more
wavelengths that achieves unambiguous phase unwrapping by an optical method. Future

works and conclusions are presented in Chapter 7.

11



Chapter 2
Principles of Holography
This chapter introduces a number of fundamental optical principles which
together form the conceptual and mathematical foundations of holography. Section 2.1
discusses the wave theory of light, in which both the intensity and phase information
form the three-dimensional nature of the light wave. Section 2.2 describes the phenomena
of interference which stems directly from the wave theory of light. Section 2.3 examines
different aspects of coherence. Section 2.4 includes a detailed analysis of the
development of models of diffraction, which provide the foundations of wave-field
propagation in holography. Finally Section 2.5 introduces the theoretical background and

underlying principles of holography.

2.1 Wave Theory of Light

A light wave can produce both diffraction and interference effects which form the
basis of holographic recording and reconstruction. Light is an electromagnetic wave and
the theory used to explain its motion is described by the wave model. The propagation of

a light wave in a vacuum can be described by

O°E 1 9%E

c? ot?

=0 (2.1)
where E is the electric field and V? is the Laplace operator defined as
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The electric field E is a vector quantity and therefore has direction associated with it. It
can oscillate in any direction perpendicular to the light waves’ propagation direction.
However, it frequently oscillates only within a single plane. In such cases we say that the
light is linearly polarized and so the scalar wave equation can be considered where the

light propagates in one direction. If the light is propagating in the z-direction, then

2 2
PE_L1OE_

_-9o0c_ 2.3
0z%  ¢? ot? (23)

The electromagnetic wave can be considered in terms of two components, namely the
real part and the imaginary part of a complex quantity.

A sinusoidal time-varying signal, ¢, at a time t and at a point z of a wave
propagating in the z direction can be represented by
U(z,1) = Ae'eY (2.4)
where A is the amplitude, wis the angular frequency and k is the wave number. The

(kz —wt) term is the absolute phase and is dimensionless. The real part of Equation (2.4)
is taken to be that of the measurable signal E,

E = R[Ae'® Y] = Acos(kz — wt) (2.5)
Equation (2.4) can be rewritten as

U(z,t) = Ae?@Pe ™t — y(z)e (2.6)

where u(z) = Ae'*®is the complex amplitude of the signal and ¢(z) = kz is the phase.
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The only directly measurable quantity is intensity, which is proportional to the time

average of the square of the electric field.
1 T
_ 2 . . L 2
I _aoc<E >t _gocTILngo T _fTE dt (2.7)

The intensity is calculated by taking the square of the modulus of the complex amplitude.

The intensity at a point z is then defined as

1(2) =u"(2)u(z) =|u(z)| = A? (2.8)

2.2 Interference

The concept of interference was first introduced by Thomas Young in 1804. He
noted that under appropriate conditions, light could be combined with light to create
darkness.

Interference is, in essence, the superposition of two or more waves in space. The
result of adding two waves of the same frequency depends on the value of the phase of
the wave at the point in which the waves are added. For two sources of electromagnetic
waves to interfere they must be coherent, have the same frequency and polarization, and
the superposition principle must apply.

If we consider each individual wave of the form Ej (¥,t), which is a solution to

the wave equation, the superposition of the waves is found by

E(r.t)=> E;(F,1) j=1, 2 (2.9)
i

For two monochromatic waves with the same polarization direction and

frequency, the complex amplitude of the waves are
14
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A(x,y,z) = ae™ (2.10)

A (x,y,z) = a,el?)
The scalar approach can be considered in this case because the waves have the same
polarization. The addition of each single wave in Equation (2.10) creates a new resultant

wave with complex amplitude A,
A=A+A (2.11)
From Equation (2.8), then
L=[A+A[ = (A+A)A+A) (212)
=&’ +a," +2a,8, C0S(¢y — ¢,)
=l +1, —f—ZMCOSAgb
where I, and 1, are the individual intensities and the phase difference between the
sources of the two waves is
Ap=o— (2.13)
If the phase difference ¢, — ¢, is constant, the two sources are mutually coherent. If the
sources are mutually incoherent, then ¢, —¢, varies randomly with time. If this latter

condition occurs, it signifies that the average value of the cos A¢ term is zero and

therefore no interference exists. In effect, this explains why no interference occurs
between two incoherent sources.

In Equation (2.12) the total intensity is calculated by the sum of the individual

intensities 1, and 1, plus the addition of the last term 2,/1,1, cos A¢ .
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This last term depends on the phase difference between the waves as seen from Equation
(2.13). The intensity reaches its maximum at points for which
A¢p=2nm forn=0,1,2...... (2.14)
which represents the condition for constructive interference.
The intensity is a minimum where
Ap=(2n+D7 forn=0,1,2..... (2.15)
This is the condition for destructive interference. n represents the interference order and
IS an integer. On examination of an interference pattern, one sees bright and dark fringes
as a consequence of the constructive and destructive interference of the light waves.
Consider the superposition of two plane waves E; (dashed lines) and E; (solid
lines) which creates an interference pattern with equidistant spacing d as illustrated in

Figure 2.1.

Eq

aly

Py P
d

Figure 2.1: The Interference between two plane waves. (Adapted from “Digital
Holography” by U. Schnars, W. Jueptner).
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The distance between the interference maxima formed at points P; and P is
defined by the fringe spacing d. By geometry the following relations are true

ol

- 5'1 -
sing, = —+ and sin¢, = —2

(2.16)

where ¢, and ¢, represent the angles between the vertical plane and the propagation
direction of each individual wave-front. él, is the path difference between the wave-front

E. with respect to that of the second wave-front E;, which is located at the position of the

interference maximum P . In addition —¢l, is the path difference between the wave-front

E, with respect to E;.

One notices in the Figure that E; travels a longer distance to P; than E; and
conversely at P, the opposite is also true with E; traveling a further distance than E;. It
follow that the path differences between the maxima at points P; and P is

ol + 41, (2.17)
This path difference is equal to one wavelength so that
ol +6l, = A (2.18)
By combination of equations and substitution then
A A

T sing +sing, Aty o PP
2 2

(2.19)
2sin

By substitution of the approximation of cos(¢, —¢,)/2~1 and ¢ = ¢ + ¢, we obtain

the fringe spacing

(2.20)



2.3 Coherence

Coherence is the measure of the ability of light to interfere. The coherence of two
waves follows from how well correlated the waves are as quantified by the cross-
correlation function and is derived from the phase relationship between two points,
separated in either time or space, along a wave-train.

Consider two points along the train that are spatially separated and moving with
the train. If the phase relationship between the waves at these points remains constant in
time, then the waves between these points are coherent. On the other hand, if the phase

relationship is random or rapidly changing, the waves at these two points are incoherent.

2.3.1 Temporal Coherence

Temporal coherence describes the correlation of a wave with itself at different
instances in time and is related to the finite bandwidth of the source Av . If light were
strictly monochromatic then the following conditions would apply: Av=0and At, =cc .
This is not practically attainable. However, over a shorter period of time At , a wave can
behave like it’s monochromatic. The temporal coherence length is the greatest distance
between two points for which there is a phase difference that remains constant in time.
For points separated by a distance greater than the coherence length, there is no phase
correlation. The coherence time At, is defined as the temporal interval required for the
train to traverse the coherence length when traveling in vacuum. In optics, temporal
coherence is measured by combining beams from the same source but having a known

path length difference, and observing the interference pattern produced.
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2.3.2 Spatial Coherence

Like temporal coherence where a source is considered to be never strictly
monochromatic, spatial coherence derives from the fact that a source is never truly a
point source. Spatial coherence depicts the mutual correlation of different parts of the
same wave-front. Thus, for two laterally displaced points residing on the same wave-front

at a given time, the fields are spatially coherent.

2.4 Diffraction Theory

A mathematical description of the propagation of light waves must recognize
diffraction effects. Diffraction is broadly defined as the spreading out of light from its
geometrically defined path. Figure 2.2 illustrates the problem posed by diffraction. Light
emitted by a source at a location Q falls on an opaque plate containing an aperture. The
problem is then to describe the light field that will be received at point R to the right of
the aperture. One of the earliest solutions was put forward by Huygens, whose principle
underlies the idea that each point on a wave-front acts as a source of secondary wavelets.
In terms of Figure 2.2 this means that that the illuminated aperture can be replaced by an
array of point sources.

Huygens theory was mathematically described by Fresnel, who integrated the
appropriate contributions and Kirchhoff, who put in place all the correct multiplying
terms. The problem was later solved by Fresnel and Fraunhofer in the form established
by Huygens, and was later solved in more detail by Kéttler and Sommerfield. Kottler
considered the vectorial nature of light, and Sommerfield presented a rigorous scalar
derivation.
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Figure 2.2: Diffraction from an aperture
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2.4.1 Huygens-Fresnel Principle

Diffraction is a phenomenon by which wave-fronts of propagating waves bend in
the neighborhood of obstacles. It can be described qualitatively by Huygens principle as
depicted in Figure 2.3. Every point on a primary wave front serves as the source of
spherical secondary wavelets, such that the primary wave front at some later time is the
‘envelope’ of these wavelets. Moreover, the wavelets advance with a speed and
frequency equal to that of the primary wave at each point in space. By simple
assumptions about the amplitude and phase of the secondary waves that form the
envelopes, Huygens principle was able to accurately determine the light distribution of

diffraction patterns.

CCD
Camera

A\l

Figure 2.3: Huygens’s principle. The construction of envelopes, propagating from a
point source.
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Huygens principle accounted satisfactorily for the reflection and refraction of
light waves. However, his theory did not explain why there is no backward propagation
of the waves. Furthermore, even though it predicts diffraction, it does not explain
quantitatively the results obtained from diffraction experiments.

Fresnel made changes to Huygens's principle to account for the deficiency in the

back wave propagation. He introduced a new term, K (y) known as the obliquity or

inclination factor, in order to solve this problem.
Figure 2.4 illustrates a geometrical representation of a spherical wave-front,
arising from a point source Po. In the figure, S represents the instantaneous position of the

wave-front with a radius rp and a frequency w . P is a point at which the light disturbance
is to be determined. Omitting the periodic factore ™!, the disturbance at point T on the
wave-front may be represented by Ae'k® /'y, where A is the amplitude at a unit distance

from the source.

Figure 2.4: Huygens-Fresnel Principle. (Adapted from M. Born, E. Wolf, “Principles of
Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light™).
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From Huygens-Fresnel principle, each point on the wave-front is the source for a
secondary disturbance which propagates as a spherical wave. For an element of dSat T

the contribution to du(P) is found by

ikry Likr
du(P) = K () 28 Oers 2.21)

0

where r =TP , and the obliquity factor K () is introduced to describe the variation in
the propagation direction of the amplitudes of the secondary waves. y is the angle

between the normal to S at T and the direction TP.

Fresnel made the assumption that K (i) was a maximum in the original direction
of propagation, i.e. for y = 0and that it rapidly decreases with increasing x , eventually
being zero when TP is tangential to the wave-front, i.e. wheny =7 /2. The total

disturbance at P is then found by

ikry ikr
u(P):A‘:0 Jf K0 =—ds (2.22)

The Huygens-Fresnel principle is a superposition integral, or alternatively it can be

regarded as a convolution integral.

2.4.2 Integral Theorem of Kirchhoff and Helmholtz
The Huygens-Fresnel principle contained certain inconsistencies which were
remedied by Kirchhoff. He established that the results and theory could be directly

derived from the wave equation. The scalar wave equation in three-dimensions is

%: c2V2ih(x,t) (2.23)
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where ¢ (x,t)is the wave-field at the point x = (x; y; z)" at time t and c is the speed of

light in vacuum.

For a monochromatic scalar wave then
»(x,t) =u(x)e ™ (2.24)
Using separation of variables, then u(x) satisfies the time-independent wave equation
(VZ+k?)u=0 (2.25)
Equation (2.25) is known as the Helmholtz equation.
Referring to Figure 2.5, if V is the volume bounded by a closed surface S, and P is
a point within it, we can assume that u(x) possesses continuous first and second order
partial derivatives within and on S.
If f and g are defined as scalar functions, are continuous and integrable in V, and
bounded by S, then we have the general form of Greens theorem

$(gvf - fvg)eds=[(gV*f-V’g)dv (2.26)

S \

Figure 2.5: Integration surface in Green’s Theorem.
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If v(x) is another function which satisfies the same continuity requirements as u(x), we

have by substitution into Green's theorem in Equation (2.26)

au(x)]

fffd X [u(x )V2v(x) — v(x)Vzu(x)]—f d2xu(x) L8272 ( ) v(x) (2.27)

where 82 = A.V is the directional derivative along the inward normal Ato S.
n

One now chooses a Green function of the Helmholtz Equation in (2.25) so
thatv(x) = G(x.x ) . This function describes the disturbance at a point X on the surface S
due to a spherical point source at a position x.

Within the volume the disturbance, G(x.x ) satisfies

o o(x=x]
(V2+k2)G(x,x):‘—l‘2 (2.28)
47r‘x —X ‘
The equation in (2.28) contains spherical symmetry, and G (x, x ) = G(r),
wherer = ‘x — x" . By spherical coordinates relations
»_ 1 0
\Y — () (2.29)
r? or?
and subsequent substitution into Equation (2.28) yields
2
1(a—(re) +K2(rG)) = 5“) (2.30)
For r >0, then
62
—(rG)+k (rG)= (2.31)
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ikr —ikr

This implies the condition that rG = Ae™ +B'e " where A and B’ are arbitrary
constants. From the Helmholtz equation
G :ieikl’ +ie7ikr (232)

4y Ay

with A = A/4rand B = B/4x. To avoid back waves, when B =0, then

A ikr

G=——-t forr>0 (2.33)
drr
Now, extending G to all values of r then
G = lim(A2 =4 iy (2.34)
e—0 47r

Where O(x) =1 if x>0, and©(x) = 0 for all other x. ©(x) is the Heaviside function.

Then
19 ,,0 ,AO(—¢) i
V26 = lim[—= —(r? =— (———¢ 2.35
8—>0[r2 8r( or-  Axr Nl (2.35)
T 0 ikr o ikr ikr
= lim[———(rAe™ 6(r —¢) + (rAike™ — Ae™)O(r —¢))]
e=0 4gr< Or
= lim[—; 2(gAe‘kE(S(r — &)+ (rAike™ — Ae®)O(r —¢))]
e=0 4qr® Or
— lim[—1 (e Ae™5 (r — ) + (cAlke™ — Aek).
=0 47r
§(r—e) + (—rk?Ae™ + ikAe™ — ikAe™)O(r —¢]]
2 .ikr
:ﬂ—A(SS(X—X‘)
47r
and so
(V2 +k?)G(x,X) =—As%(x—X) (2.36)
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Choosing A=-1 to agree with Greens theorem, then

ik‘x—x"
G(x,X)=—

47r‘x— x" (2:37)

Substituting the Helmholtz equations for u(x) and G(x, x ), ((2.25) and (2.36)) into the

volume integral in Green's theorem (2.27), we obtain

k‘x—x" |k‘

- X8u(x)]
] ] o

u(x) == f dx[u(x) ( (2.38)

This is the integral theorem of Helmholtz and Kirchhoff.

2.4.3 Fresnel-Kirchhoff Diffraction

Consider a monochromatic wave, propagating from a point source, Q, to an
opening in a plane opaque screen as depicted in Figure 2.6. The problem is to find the
light disturbance at a point R. The disturbance can be found by taking Kirchhoff’s
integral over a surface S formed by the opening A, a portion of the non-illuminated side
of the screen, B, and a portion of a large sphere of radius Ry, centered at R, C, which,
together with A and B, form a closed surface.

Using Equation (2.38), we obtain the total disturbance at point R,u(R), as

i
u(R)——[ff+ff+ff]dx[u(x) ‘ ‘) ‘X ‘a“(x’] (239)

where, r = ‘x— x" is the distance of the element dS from R and 0/0n=n.V denotes

differentiation along the inward normal to the surface of integration.
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Figure 2.6: Fresnel-Kirchoff Diffraction. (Adapted from M. Born, E. Wolf, “Principles
of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of
Light”).
The values of the function of u and du/on on A, B, and C are not known
accurately, which presents a difficulty. On the other hand, by the assumption that at A, u
and ou/on will not differ significantly from the values obtained in the absence of the

screen, and that at B these quantities are approximately zero, then the boundary

conditions are
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on B: u=0, 8_u:O
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The conditions in Equation (2.40) are known Kirchhoff’s boundary conditions and these
allow for substantial simplification of the results. If the aperture is large compared to the
wavelength, then the boundary conditions can yield very accurate results.

For the incident field then

_ _ 0 ,
u® — A gkl T _ ie"‘ro [ik —1] cos(n, 1)
4, on  4mr, Iy

where A is a constant and cos(n, ry) is the cosine of the angle between n and r, in Figure
2.6.

Finally, one considers the point C. The field at this point is produced by a source

that emits at a timet =t;. At a later time, t > t; the wave propagates outward from the
source. However, the field’s outer boundary is at distance not greater than c(t—t;) from

Q. Therefore, if one chooses the radius Ry to be large enough, so that at the time when the
disturbance at R is considered no contributions from C have reached R, the integral over
C will vanish.

Thus, on substituting the above conditions into Equation (2.39), we obtain

: . ik(r+ry)
u(R):—ngfdzx © - [cos(n, r,) —cos(n, )] (2.41)

Equation (2.41) is the Fresnel-Kirchhoff diffraction formula.

29



2.4.4 Rayleigh-Somerfield Diffraction

The Fresnel-Kirchhoff diffraction theory has limitations; it has attached boundary
conditions which make it mathematically inconsistent. The difference between the
Rayleigh-Sommerfield theorem and the Fresnel-Kirchhoff theorem is in the inclination
factor.

For Kirchhoff, the obliquity factor can be written as

cos(f, F)—cos(f, )

K(x) = > (2.42)
In the Rayleigh-Sommerfield approach the obliquity factor is
K (x) =cos(f,F) (2.43)

A drawback of Kirchhoff’s theory lies in the attached boundary conditions which
are required for the field and its derivative. If a two-dimensional potential function and its
normal derivative vanish together along any finite curve segment, then that potential
function must vanish over the entire plane. Similarly, if a solution of the three
dimensional wave equation vanishes on any finite surface element; it must vanish in all
space. The two Kirchhoff boundary conditions together imply that the field is identically
zero everywhere behind the aperture, a result which contradicts the known physical

situation. From the integral theorem of Helmholtz and Kirchhoff, Equation (2.38), then

u(x) :iffdzx'[u(x')%—e(x,x‘)%] (2.44)
S

By making adjustments to the Greens function in Equation (2.44), G, or its derivative,
0G/0n, disappears at the aperture A and the non-illuminated portion B. In both cases,

the necessity of imposing simultaneous boundary conditions on u and du/dn is

30



removed. Using the former case in which G vanished over the aperture, the integral

theorem is
i , ' eikr
u(x)=—— [ d“xJu(x)——-cos(n,r 2.45
() AfAf [u(x)~—cos(n.r)] (2.45)
and the Rayleigh-Somerfield diffraction formula is

eik(r+r0)

u(x):—%A J; f d2x| m cos(n, r)] (2.46)

The derivation is more self consistent than Kirchhoff’s derivation.

2.5 Speckles

Holography uses coherent light sources to form the interference pattern which
creates the hologram. However, a significant issue with using a coherent source is the
degradation in image quality due to a phenomenon called speckle.

A rough, uneven surface illuminated with a coherent light source produces a
coarse indeterminate pattern as displayed in Figure 2.7. The coherent light which
illuminates the surface is scattered by the surface and produces randomly oriented bright

and dark patches.

Figure 2.7: A typical speckle pattern formed by coherent illumination of a rough surface.
(Obtained from http://www.polytec.com/)

31



The occurrence of speckle is a result of the interference between different scattered
beams from the surface. This kind of speckle pattern is created if the height variations of
the rough surface are larger than the wavelength of the light. The coherent noise of
speckle effectively disturbs the image quality to a particularly high degree and makes
identification of features in highly scattering structures difficult. This has been a major
barrier for widespread coherent imaging and in particular, microscopy.

The probability density function for the intensity in a speckle pattern is given by

&
P(1)dl = el (! (2.47)
(1)

where P(1)dI is the probability that the intensity at a certain point is lying between

landdl . (I} is the mean intensity of the entire speckle field. The most probable intensity

value of a speckle is therefore zero, which is why most speckles, in fact, appear black.
The standard deviation is found by

o) = (I) (2.48)
That means the intensity variations are in the same order as the mean value. The contrast
is given by

g

V=21 (2.49)

)

The contrast of the speckle pattern is unity.

2.6 Holography Recording and Reconstruction
In conventional imaging techniques, such as photography, what is recorded is

simply the intensity distribution of the original object. As a result all information about
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the relative optical paths to the different parts of the object is lost. The unique
characteristic of holography is the recording of both intensity and phase information of
the light wave reflected or transmitted by an object. As recording media respond only to
the intensity, it is necessary to convert the phase information into variations in intensity.
This is performed by using coherent illumination.

The general principle of conventional holography is shown in Figure 2.8, one
wave illuminates the object and is scattered onto the recording medium. This is called the
object beam. The second wave, the reference beam, illuminates the recording medium
directly. Both waves interfere and the pattern is recorded onto the photographic plate.
This recorded interference pattern is termed a “‘Hologram’.

Let the complex amplitude object and reference waves at the photographic plate
be denoted by U,andU,, respectively.

The complex amplitude of the object wave is described by

Uo (X, y) =a, (X, y) exp(e, (X, ¥)) (2.50)
with real amplitude a, and phase ¢,
The reference wave is described by

U, (x,Y) =2, (x, Y)exp(@, (x.Y)) (2.51)
with real amplitude a, and phase ¢, .

Both waves interfere at the recording medium and the intensity may be written as
1%, ) = U (%, Y) +U, (%, V)| = U, (%, ¥) +U, (%, ))U, (%, ) +U, (% y))° (2.52)

=U, (X, YU (%, ¥) +U, (X, YU, (X, ) U (X YU (X, Y) +U 5 (X, YU (X, Y)
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The amplitude transmission of the developed photographic plate is proportional to the

intensity and can be represented by

t=qy+al(x,y)= (2.53)

= o +afUg (X, Y)Uo" (%, ) +U, (% YU, (%, Y) +Uo (X U (%, y) +U," (% U (X V)]
where oy and « are constants determined by the recording medium type.

The original object wave is reconstructed by illuminating the recorded hologram
at the photographic plate with the reference beam as shown in Figure 2.9. The observer
sees the virtual image, which is indistinguishable from the image of the original object.

When the plate is illuminated by the reference beam for reconstruction
Urt=Urag+alUg(x y)Uo" (X, YU +U (X, YU (X, YU +Uo (% U7 (X YU (X Y) U™ (X YU (X YU (X, Y)]

—U g +allUo[ Uy +]U, [P Uy +Ug U, F +UqU, 2] (2.54)
The first term on the right hand side of Equation (2.54) is usually called the ambiguity
term, and is the product between the object wave’s intensity and the reference wave.
Since |U0|2 is generally non-uniform, it produces a wave that propagates along the

direction of the illuminating plane wave within a cone, the angular aperture of which
depends on the spatial spectrum of the object wave. The second term on the right-hand

side is the product of the intensity of the reference wave the illumination wave. Since the
reference wave is a plane wave, |U, [*is uniform, this term represents a plane wave

propagating along the direction of the illuminating plane wave. Together, these first two
terms on the right-hand side of Equation (2.54) form the zero order of diffraction also

known as the dc term.
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Figure 2.9: Reconstruction of a hologram
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The third and the fourth terms in Equation (2.54) are produced by the holographic
interference terms, and each of them generates an image of the object. The third term is
the reconstructed object wave forming the virtual image located at the position initially
occupied by the object. The fourth term produces a real image located on the other side of
the hologram. Since this term is formed by the conjugate of the object wave u," the
depth is inverted. Points on the virtual image and real image are located at equal distances
from the hologram plane but in opposite directions. The real image, therefore, appears

inside out and is called a pseudoscopic image.
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Chapter 3
Digital Holography

This chapter discusses principles of digital holography. Section 3.1 examines the
physical and mathematical aspects of recording holograms onto a CCD camera. Section
3.2 analyses numerical diffraction methods for reconstructing the digital hologram in the
diffractive planes of the holographic terms. Section 3.3 describes methods of separating
the dc and holographic terms. In Section 3.4, the use of CCD cameras for holographic
recording is discussed. Finally, Section 3.5 examines resolution and calibration issues in

the holographic optical system.

3.1 Digital Recording of Holograms

The method of recording digital holograms is illustrated in Figure 3.1. A coherent
object wave reflected or transmitted from an object and a reference wave interfere at the
surface of a CCD camera. The holographic interference pattern formed at the CCD is
electronically recorded and stored.

In digital holography this recorded hologram is subsequently reconstructed
computationally by using numerical algorithms to provide direct access to amplitude and

phase information of the object.
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In the numerical reconstruction of the hologram, the holographic terms, the virtual

image and real image are formed at distances, d and d’ respectively from the hologram

plane which is assumed to be in the d =d = 0 plane as displayed in Figure 3.2, which
illustrates the coordinate system for hologram reconstruction. In classical holography, the
hologram is reconstructed by illumination with an optical replica of the wave-field. In
digital holography reconstruction takes place by multiplication with the numerical model

of the reference wavefield. The interference between the object wave 0(&,7) transmitted
by the object located at the object plane and the reference wave r(&,7) is recorded in the

hologram plane (&£,7) . The complex object wave at the hologram plane is

ik
0(&,71) = 0, eXp{ﬁ(ﬁ—X)zﬂL(n—Y)z} (3.1
where 0, is the amplitude of the object wave. The complex amplitude of the reference

wave diverging from a point (X.,Y,,d,) is
ik ) )
r&n=r GXP{—Zd E—%) +Mn—Y)7} (3.2)
r

where [, is the amplitude of the reference wave. The complex amplitude of the

interference pattern at the hologram plane is

U(s.m) =o(s,m+r(s,m) 3.3)

A CCD sensor records this interference pattern in the form of the intensity distribution

h(&,m=U (&MU’ (&) (3.4)

which is stored in the computer as the digital hologram.
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The interference pattern is then mathematically described by

h&,m) =|o(&n)| +|rEmf +0" (& mrE m)+o&mr (&.n) (3.5)

3.2 Numerical diffraction

Once the hologram has been captured, the optically diffracted field is numerically
propagated by the use of reconstruction algorithms. The diffraction pattern is calculated
at a distance d’ behind the CCD focal plane (hologram plane), which means, it
reconstructs the complex amplitude in the plane of the real image. Note however, that one
can focus on either the real or virtual image located a respective distances d” and d from
the hologram plane. The magnitude of the distances is the same but the signs are
opposite. In this thesis we define the general expression for the reconstruction distance
for either of the holographic images as z.

Mathematically, the reconstruction process reduces to the calculation of the
Rayleigh-Sommerfeld diffraction integral. If one treats the digital holographic system as
a coherent imaging system, then the reconstruction algorithm functions like the lens in an
optical system. All computer calculations can be performed based on the Rayleigh-
Sommerfeld diffraction formula, however, using this formula directly is often time
consuming. There are a number of computationally efficient numerical methods available
to calculate the holographic diffraction[40]. The most commonly applied method has
been the discrete Fresnel transform where the approximation of spherical Huygens
wavelet by a parabolic surface allows the calculation of diffraction integral using a single

Fourier transform[6].
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In the convolution method, the diffraction integral is calculated without such
approximation using three Fourier transforms through the convolution theorem [41]. On
the other hand, the angular spectrum method involves two Fourier transforms, plus

simple filtering of the angular spectrum[32]. Here we review these methods.

3.2.1 Reconstruction by Fresnel Transform method.

If the wave-field is known in one plane, it can be calculated in any other plane in
the 3D space. The Rayleigh—Sommerfeld diffraction theory is a precise mathematical
form of this statement. Referring to Figure 3.2, the Rayleigh-Sommefield diffraction
formula in this coordinate system for the reconstruction of the holographic image in the

image plane is
oo 1 exp(ik p)
b'(X,y) == [[h(&mr(&m———cosOd&dr (3.6)
i1 yo,

whereb (X, y')is the reconstructed image in the image plane, h(&,7)is the hologram
recorded by the CCD sensor array, r(&,7)is the reference wave-field and o is the

distance between a point in the hologram plane and a point in the reconstruction plane

defined as

p= > +(e=x ) +(n-y ) 67)

d'is the reconstruction distance i.e. the distance between the hologram and image plane.
Due to the small angles between the hologram normal and the rays from the hologram to
the image points, the obliquity factor can be set tocos® =1 in Equation (3.6).

The expression in Equation (3.7) can be expanded to a Taylor series so that
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v gy 1€y )]
=d'+(§2_dx,) +(77;d¥) —% E +... (3.8)

P

The fourth term can be neglected if it is small compared to the wavelength and so

(E-x)" (1=y)" (3.9)

~d +
r 2d 2d

With the additional approximation of replacing the factor p by the reconstruction

distance d' in the denominator of Equation (3.6) then
0.y = 220D (1 yremexs L (£-x) +(n-y) Jdgdn (3.10)
iid Ad
Further multiplication in the argument of the exponential yields
oo exp(ikd) dzr . 27,
.y = S T mr (€ mexel | () +(n)' ]

eXp[%{(X')Z+(y')2}]e><p[—%[(><'§)+(y'f7)}]d§df7 (3.11)

Defining the impulse response function of the optical system as

_exp(ikd) iz oo o 12
[€3%/)) d exp[id'((f +17)] (3.12)

the reconstructed wavefield is then
50y = [[hEmrEmacmesi| (x) () Jlewl-217 [ (x2)+(vn) Jagdn (3-13)

This equation is known as the Fresnel approximation. This approximation states

that the size of the aperture is small in comparison to the distance to the viewing plane.
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Fresnel diffraction is essentially the Fourier transform of the aperture multiplied
by the phase factor of the light at the aperture. When the reconstruction distance z (d or
d”) is sufficiently large for this approximation to be an accurate one, the observer is said
to be in the region of Fresnel diffraction. For the Fresnel approximation to remain valid,
it is only necessary that the higher order terms of the expansion do not change the value
of the integral in Equation (3.13).

The intensity is calculated by
D T
10, y) =[b'(<,y) (3.14)
and the phase by

hnh(x)yﬂ

¢(X',yv):arctan —
Reb(x,yﬂ

(3.15)

For digitization of the Fresnel transform then the following spatial frequency terms are

introduced
v:% and ,u:L, (3.16)

Equation (3.13) then becomes
b'(v, 1) = [[ &, mr(&,ma(& mexplizad | v + 42 lexpl-2ix [ (vE) +(un) ld&dy — (3.17)

Comparison of Equation (3.17) with the definition of the two dimensional Fourier

transform
SU(F(E )} =] F(&mexpl-2im(vE + pm)ldédn (3.18)

with (£,7) =h(&,mr(&,ma.n),
then Equation (3.17) becomes
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b'(v, ) = explizad [ v? + 1> IS (&)} (3.19)

The function b (v, 1) can be digitized if the hologram, h(&,7) is sampled on a
M x N pixel array on the CCD sensor, with steps A& and A7 along the coordinates.
Therefore A& and Ar represent the distances between neighboring pixels in the horizontal
and vertical directions and so

exp(lkd D)

b'(m,n) = explizid [m NGNS ]] [h(k,l)r(k,l)exp[%(széz+I2A772)] (3.20)

where k, |, m, n are integers defined in the range from (-M /2 <k,I <M /2)and
(-N/2<m,n<N/2).
The pixel sizes of the CCD array (A&, An) located at the hologram plane are

different to those in the image plane (AX ,Ay') . The discrete Fourier transform theorem

tells us the maximum frequency is determined by the sampling interval in the spatial
domain and so

I
and Ay=— 3.21
MAZ "= Nan (3-21)

Av =

substitution of these terms provides the relations between the hologram and image plane

A& = a4 and Ap = d A (3.22)
M AX Nay' Ay
this gives the reconstructed wave-field as
_ exp(ikd) 2 iz 2 3.23
b'(m,n) v xp[/wI [m?ax? +n*ay? [ISth(k,Dr(k, I)exp[ (k AE +1PA) (3.23)
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This is the discrete Fresnel transform. The calculation in Equation (3.23) can be made
more efficient by applying the Fast Fourier Transform (FFT) so that Equation (3.23)

becomes

b'(m,n) = %idk,d)exp[%[mzAxlz +n’Ay? [IFFTIhG,Dr(k, 1) exp[%(szﬁz Pa),, 324

The pixel resolution Ax and Ay of the reconstructed images which is determined
directly from the Fresnel transform will vary as a function of the reconstruction distance
d’ as

ad ad’

AX =2~ and Ay = 2— 3.25
X T Mg Y = Nan (3-25)

Therefore the reconstructed image changes in size according to the reconstruction
distance. This is an inconvenient limitation of this method. Equation (3.25) is also the
horizontal and vertical diameters of the Airy disk in the image plane and sets the
diffraction limited resolution of the optical system.

Although the Fresnel diffraction formula can still give an accurate reconstruction
for smooth and slowly varying objects where the Fresnel approximation is not strictly
satisfied, it cannot correctly reconstruct near wave-fields for more diffractive objects,
where the higher-order terms in the Taylor expansion of the Fresnel approximation in
Equation (3.8) are more significant.

The Fresnel transform also requires that the distance between the object and the
hologram plane be sufficiently large in comparison to the size of the object or the

hologram. This sets the minimum reconstruction distance z requirement so that

7 . =X (3.26)



where a, is the image size and N is the number of pixels. At too close a distance, the

spatial frequency of the pixelated hologram is not high enough to reproduce a large
angular size of the object without aliasing.

3.2.2 Reconstruction by Fresnel Convolution method
The Rayleigh-Sommerfield diffraction formula in Equation (3.4) can be rewritten

as a superposition integral so that
b'(x,y) = [[9(&mh(&mr(& ndédy (3.27)

where the Fresnel impulse response function is

exp(ikd") i .,
=0 exp[— 3.28
9(&.m) - exp[/ld.(f +177)] (3.28)

The linear system is space invariant so that for the impulse response function

9(X.y.&m=g(x =&y ~n) (3.29)
The superposition integral in (3.27) can be expressed as a convolution
b(x, y) = I I[N, mr(&mIg(&,m]} (3.30)
3[9((&,7)] is the Fourier transform of the impulse response function. From Equation

3.16 the definition for the Fourier transform of the impulse response function is
9 m1= [[ 9, m)expl-i2z(vé + pm)lddr
= exp(ikd ) exp[-izld (v + )] (3.31)

The reconstructed wave-field is then
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b(X,y) =3 {I[h(&,mr (&, m]exp(ikd Yexp[-izad (v’ + u)]}  (3.32)
The convolution approach gives an image with constant pixel dimensions between the
hologram and image plane.
AX =A¢& and Ay =Ap (3.33)
However, due to the more complex algorithm, the convolution approach is slower than
the Fresnel transform approach. The whole process requires three Fourier transforms,
which are carried out using the FFT algorithm for more effective calculation.

The sampling requirements in the Fresnel and convolution algorithm are the same
and therefore this method is also subject to the minimum reconstruction distance set by
Equation (3.26). At too close a distance, the spatial frequency of the hologram is too low
and aliasing occurs. Normally the object is placed just outside this minimum distance

found from Equation (3.26).

3.2.3 Reconstruction by Huygens Convolution method

The Fresnel approximation in convolution is not wholly justified for all z-values.
The Huygens convolution method often yields better quality images, especially when the
hologram and image plane are close [31]. The Rayleigh-Sommerfield diffraction formula

in Equation 3.4 is again rewritten as a superposition integral®
Co 1 exp(ik
b'(<,y) =] E% h(E,mr(Emdédn (3.34)

where the impulse response function is

1 exp(ikp) (3.35)

g(faﬂ,XaY):a 0
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The Huygens impulse response function is approximated by
. D 2 N2
exp| ik,/d +(§—X) +(77—y)
. 2 N2
o (ex) +(0-)
:_L,exp(ik\/d'z X2+ y'2) (3.37)

iid

(3.36)

v 1
g(vaaésn)—a

Finally

b(x,y) =3I, mr(&mI39(&m]} (3.38)

The final inverse Fourier transform brings the convolution result back to the
spatial domain, whereby the reconstructed pixel size becomes independent of Z and one
can conveniently focus the reconstruction at different reconstruction distances without re-
scaling issues as in the Fresnel transform.

The whole process requires three Fourier transforms, which are carried out using
the FFT algorithm for a more efficient calculation. The pixel sizes of the images
reconstructed by the convolution approach are equal to that of the hologram as in the
Fresnel convolution. The minimum distance for reconstruction of the image by this

method is given by Equation (3.26).

3.2.4 Reconstruction by Angular Spectrum method
Suppose that, due to some unspecified system of monochromatic sources, a plane

wave is incident on the X,Y, plane of Figure 3.3, traveling in the positive z direction. Let

the complex field across that plane be represented by Eo(X; y; 0). The objective is to
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calculate the consequent field E(x; y; z) that appears at a second point with coordinates

(x; y; z). By use of the generalized form of the two-dimensional Fourier transform
J{f(x,y)=Fu,v)= j“’ j“’ f (X, y)exp{—i2z(ux + vy)dxdy (3.39)
Across the XY, plane, the function Eq has a two-dimensional Fourier transform which is

then given by
At £.00= [ [ By, Yo 0)expl—i2m(fox+ fy)ldxdy,  (3.40)

where A(f,, f,;0)is the angular spectrum. With the substitution of

y>
fo=k. /27 and f =k /27 (3.41)
then we obtain

Aky,ky;0) = j. J.jow Eo (X0 Yo, 0)exp[—i(ky, Xy + Ky Yo)ldX,dy, (3.42)

where k, and k, are corresponding spatial frequencies of X and y.

Eo(X0.Y0) E(x.y)

Figure 3.3: Coordinate system for reconstruction of the hologram in the
angular spectrum method.
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Fourier-domain filtering can be applied to the spectrum to block unwanted spectral terms
in the hologram and select a region of interest corresponding only to the object spectrum.

A modified wave-field E;(X,,Y,;0) can be written as the inverse Fourier transform of the

filtered angular spectrum A(k,,k,;0) . The operation of a Fourier transform may be

regarded as a decomposition of a complicated function into a collection of more simple
complex-exponential functions. So we can write Eg as an inverse transform of its

spectrum

Eo0: Y000 = [ [ Al ks 0)eliCh g + Ky Yooy (3.43)

Propagating plane waves are of the form, (writing the dot product of vectors k and r out

fully, r being position vector)
b(x,y,z) =exp[i(k,x+k,y+k,2) (3.44)
Where
k* =k’ +k,*+k,’ (3.45)
The new angular spectrum at plane z, A(ky,k,;2) is calculated from A(k,,k,;0) as
Akyky:2) = A(ky, ky;0)explik,z] (3.46)

The spatial frequency diffraction kernel is the z-portion from Equation (3.44) and

substitution of Equation (3.45) gives

explik,z] = exp[i/k* -k’ —ky2 z] (3.47)

This can be written by substitution of terms in Equation (3.41) as

eXp[ikZZ]=eXp[i\/(27ﬁj ~(2xt,) ~(271,) 2] (3.48)
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Removing the 27 term from square root bracket in Equation (3.48) then the angular

spectrum diffraction kernel or optical transfer function is

) 1Y 2 2
H(fx,fy):exp[|27z\/(zj —(f) =(f,) 1] (3.49)

The reconstructed complex wave-field of any plane perpendicular to the propagating z

axis is found by
E(x,y;2) = H Ak, .k, 5 2) expli(k,x + k, y)]dk, dk, (3.50)

Therefore by substitution of Equations (3.48) and (3.49) then

2
E(x,y;z)=ﬂA(kX,ky;0)exp[i2z\/Gj —(fx)2—(fy)z]exp[i(kxx+kyy)]dkxdky (3.51)

2
E(x,y;z) =3 {filter[3{U (Xo» yo,O)}]exp[i2n\/£%j —( f, )2 _( fy)2 I (3.52)

Here ‘filter’ represents filtering in the spectral domain.

The effect of propagation over a distance z is simply a change in the relative
phases of the various components of the angular spectrum. Since each plane wave
component propagates at a different angle, each travels a different distance to reach a
given observation point and relative phase delays are thus introduced.

In the calculation in Equation (3.52) two Fourier transforms are needed for the
calculation in comparison to the one needed by the Fresnel transform. However once the
field is known at any one plane, only one additional Fourier transform is needed to
calculate the field at different values of z. This method allows frequency-domain

spectrum filtering to be applied, which for example can be used to block or remove the
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disturbance of the dc term and twin image components. The angular spectrum method of
calculating the holographic optical field is seen to have several advantages over the more
commonly used Fresnel transformation or Huygens convolution method. Spurious noise
and interference components can be tightly controlled through the analysis and filtering
of the angular spectrum. The reconstruction distance does not have a lower limit and the
off-axis angle between the object and reference can be lower that the Fresnel requirement

and still be able to cleanly separate out the zero-order background.

3.3 Separation of the Virtual Image, Real Image and dc term

In Gabor (in-line) holography, the virtual image, real image and dc term are
superimposed thus creating difficulties for the acquisition of the object wave information.
There have been numerous ideas and suggestions proposed as solutions to this problem,
including some by Gabor himself, however most of these require extra technical effort
and are not efficient procedures [42].

Off-axis holography, as first devised by Leith and Upatnieks provides both an
effective and simple means of laterally separating the dc and holographic terms by the
introduction of a sufficiently large angle between the object and reference beams. The
increase in the angle between the beams increases the spatial distance between the dc and
holographic terms which is desired so that one can easily extract the relevant frequency
information for the holographic image. However there is a limitation associated with this
increased spatial distance due to the low spatial resolution of CCD cameras which means
that often these terms may still partially overlap. In this section we explore the ‘anatomy’
of a digital hologram.
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3.3.1 Suppression of the DC term

Figure 3.4 displays a digital hologram, Fig.3.4 (a), recorded in an off-axis
configuration and its associated Fourier transform Fig.3.4 (b). The bright area at the
centre of the image is the un-diffracted reconstruction wave known as the dc term or zero
order. This term holds most of the energy in the image. The holographic terms, the
virtual image and real image are located slightly shifted to the top left and bottom right of
the dc term. The spatial frequencies of the interference terms are located symmetrically
with respect to the center of the image. This shift is caused by the angle introduced
between the object and reference beams. Higher order holographic terms are also present
to the extreme top left and bottom right of the figure. Also one can see spurious noise
components whose source is from the CCD camera. The energy is concentrated around
three main frequencies: (0,0) for the dc term, (—kx ,—ky ) for the image and (kx ,ky ) for

the conjugate image.

Higher Order Terms Virtual Image

DC Term

Real Image

a) b) Spuricus MNoise Components
Figure 3.4: Absolute value of the Fourier transform of the hologram. The frequency

origin is in the center.
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As the reconstruction distance increases, the dc term stays located in the central
part of the image, while the holographic terms move away from the center. Either of the
holographic terms contains the entire information of the object wave and so in the
numerical reconstruction one focuses either on the virtual or real image located at the
object and image planes respectively. The objective is then to remove the dc term,
conjugate image and any residual noise in the hologram or alternatively one can simply
‘cut’ out the relevant frequency information of the holographic image and discard the rest
via a band-pass filtering procedure. This procedure can be implemented in either the
spatial or frequency domain. A combination of windows of various shapes and sizes can
be used to filter the undesired spatial frequencies while keeping intact the contributions
of the interference terms. Inserting, a mask into the image spectrum in Fourier space
allows the holographic term to be isolated and cut out. On the other hand, one notices in
Fig. 3.4b) that if either holographic term were to be cut out then there would still be weak
frequency components of the dc term that still would disturb either of the selected
holographic images and as a consequence would degrade the quality of the reconstructed
image. These components cannot be removed by filtering in either domain, unlike the
easily recognizable spurious noise components.

A simple method for suppression of the dc term is to subtract the average intensity
from the hologram before reconstruction. A similar effect can be achieved by the
subtraction of two holograms. This provides a particular effective way of dc suppression
by experiment. However a disadvantage of either of these methods is the increased

experimental effort.
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3.4 Recording of Digital Holograms
3.4.1 CCD Cameras for Digital Holography

Digital holography is very different to conventional holography in terms of the
recording medium and the way in which the hologram is stored. In conventional
holography the hologram is recorded on a photographic plate, typically made of silver
halide which is then chemically processed. The original object wave is subsequently
obtained by illuminating the recorded hologram with original reference wave.

In digital holography, the hologram is directly recorded onto the CCD and
digitally stored in a computer where the object wave is reconstructed numerically on the
computer. The exposure time of a CCD camera recording a hologram is significantly
shorter than that of the photographic plate, so it relaxes the stability requirement on the
recording system, and as a result, moving objects can be recorded with a short pulse of
light.

The elimination of the need for chemical processes, quantitative information, easy
data storage, and the fast recording of holograms are just some of the important
advantages of using a CCD camera in digital holography. CCD cameras are an essential
component of exploring the many advantages of digital holography and should be
carefully selected dependant upon the specific application. There are a number of CCD
cameras which can be used effectively in digital holography with differing architectures.

In a full frame CCD, the entire detector surface is first exposed to light and then
the light is externally blocked off so that readout can occur without further charge
accumulation during the readout process and in an interline transfer CCD, alternate

columns of the detector array are masked off with opaque material. To read out the
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image, the charge in each column of “light” pixels is simultaneously shifted into the
adjacent “dark” column, which is blocked off from light. The drawback of full frame
CCD:s is that they require an external means of controlling exposure, typically a
mechanical shutter. This increases camera cost, size and weight. Readout speed, which

influences image noise, is also slower than for interline transfer CCDs.

3.4.2 Spatial Frequency Requirements for Hologram Recording

For a hologram to be effectively recorded, the CCD camera must be able to record
all of the interference fringes in the hologram. From signal sampling theory, the Shannon
criterion requires the sampling frequency be at least twice the highest signal frequency.
This means that every interferometric fringe of the hologram has to be sampled by at
least two pixels of the CCD array to resolve the fringe frequency. This requires that the
angle between the object and reference waves must be sufficiently small.

The low spatial resolution of a CCD camera means that the maximum angle
between the reference wave and the object wave is limited to just a few degrees. The

maximum spatial frequency f_, which needs to be resolved, for the wavelength 4 , is

determined by the maximum angle ¢

max

between the reference and the object beams as

foox = zsin% (3.53)
A 2
or
foo b (3.54)
max ZAX *

where AX is the spacing between the pixel elements on the CCD sensor.
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As the maximum spatial frequency f,_ . recorded on the CCD is limited by the

pixel size of CCD, the angle between the reference and the object wave at any point of

CCD must not exceed the maximum value f_ . . If however the angle between the

reference and the object wave at some region of the CCD exceeds the maximum

value f the interference fringe becomes under sampled, this often results in a decrease

max »
in the resolution of the reconstructed and therefore image aliasing appears in the recorded
image of the fringe. Hence the distance between neighboring pixels is what limits the
maximum angle between the object and reference wave. In digital holography, the angle

between the reference and the object wave must be less than the maximum value ¢

max -
The poor resolution of CCD cameras available today compares rather poorly to
that of photographic plates. This creates a limitation on the maximum angle between
object and reference beams and hence the spatial distance that can occur between the real
and virtual image as shown earlier in Figure 3.4. As a consequence, the three diffracted
waves often partially overlap during reconstruction. With the introduction of better CCD

cameras this restriction will be less of a problem.

3.4.3 Lateral Resolution of the Optical System

The resolution of the reconstructed image depends on the information recorded in
the hologram. However, this information is influenced by the size and the spatial
resolution of the recording material. For digital holography the information recorded in
the hologram is determined by the number of pixels and the pixel size and dynamic range

of CCD [43,44].
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In particular, the lateral resolution in digital holography is restricted by the pixel
size of the CCD sensor and therefore the resolution of the reconstructed image is
determined by the highest spatial frequency maximum of the object wave recorded by the
CCD camera. For this reason, microscope lenses have to be applied for magnification of

the object.

3.4.4 Calibration of Optical System in Digital Holography

The USAF 1951 Test Target shown in Figure 3.5 is one of the most commonly
used resolution targets in optics. It allows one to determine the lateral resolution of the
optical system. Table 1 displays the chart for the 1951 resolution target that specifies the
frequency and line width for each group and element. This standard test object contains
horizontal and vertical three-bar patterns in the form of a reflecting chromium coating set
on a glass substrate. The vertical bars are used to calculate horizontal resolution and the

horizontal bars are used to calculate vertical resolution.
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Figure 3.5: USAF1951 resolution test target pattern (see www.sinepatterns.com).
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1951 USAF Resolution Target Data

Line Width Line Width
Group Element Frequency Group Element Frequency
(um) (um)
-2 1 0.2500 2000 4 1 16.00 31.3
2 0.2806 1782 2 17.96 27.8
3 0.3150 1587 3 20.16 24.8
4 0.3536 1414 4 22.63 221
5 0.3969 1260 5 25.40 19.7
6 0.4454 1122 6 28.51 .17.5
-1 1 0.5000 100 5 1 32.00 15.6
2 0.5612 891 2 35.92 13.9
3 0.6300 794 3 40.32 12.4
4 0.7071 707 4 45.25 11.0
5 0.7937 630 5 50.80 9.84
6 0.8909 561 6 57.02 8.77
0 1 1.00 500 6 1 64.00 7.81
2 1.122 445 2 71.84 6.96
3 1.260 397 3 80.63 6.20
4 1.414 354 4 90.51 5.52
5 1.587 315 5 101.6 4.92
6 1.782 281 6 114.0 4.38
1 1 2.000 250 7 1 128.0 3.91
2 2.245 223 2 143.7 3.48
3 2.520 198 3 161.3 3.10
4 2.828 177 4 181.0 2.76
5 3.174 157 5 203.2 2.46
6 3.564 140 6 228.1 2.19
2 1 4.00 125 8 1 256.0 1.95

Table 3.1: Specification data for the groups and elements of a 1951 USAF resolution
test target.
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The resolution target is a vital instrument in the calibration of the holographic
optical system. It allows determination of parameters such as the image size, number of
pixels and the lateral resolution of the hologram and reconstructed image. The
methodology to obtain the correct image size and number of pixels is conducted as
follows: One calculates the number of pixels on the CCD camera required to draw a
square box around a specific element made up of 2.5 line pairs. From Table 1 we are then
able to calculate the physical dimensions of the square box corresponding to the number
of pixels on the camera. One then increases the required image size to use the highest

number of square pixels on the camera.
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Chapter 4
Digital Gabor Holography for Microscopy

The structure of this chapter is as follows: Section 4.1 introduces the background
of Gabor holography and the theoretical basis for recording and reconstruction of the
hologram. Section 4.2 presents a simulation of digital Gabor holography using a
theoretical object. Section 4.3 examines some of the main applications and limitations of
the Gabor holographic technique. In Section 4.4 technical details about the experiment
are discussed. Section 4.5 presents a host of applications of digital Gabor holography in
microscopy. Section 4.6 looks at the use of digital Gabor holographic movies for
microscopy and demonstrates some of the technical advantages over conventional

microscopy. Finally Section 4.7 summarizes and concludes the chapter.

4.1 Introduction to Digital Gabor Holography

Gabor or ‘in-line’ holography as it is commonly known provides a simple method
of high-resolution imaging that routinely achieves both micron level, lateral and depth
resolution in three-dimensional imaging. The same beam serves as the reference wave
and illuminates the object; no mirrors or beam splitters are strictly needed, but can add
more capabilities to the holographic optical system.

In Gabor holography, the object is required to be mostly transparent with small

thin obstructions, which diffract and scatter the illuminating beam. The light wave

63



arriving at the detector plane consists of the un-diffracted plane wave, the reference (R)

and the diffracted object wave (O), which interfere to give the holographic interference

pattern, |H |2 at the CCD camera

IH[ =|R+0O|" =|R[ +|0| +R"O + RO’ @.1)
The reference term| R|2 on the right side of Equation (4.1) is removed by exposing another

frame with the object removed, whereas the |O|2 term cannot be removed. However, by

assuming that the object is mostly transparent then this term contributes only a small
amount of background noise. The two remaining terms are the virtual image RO and the

real image RO™. These terms are spatially superimposed in the reconstructed field, which
results in the loss of phase information. Therefore when performing numerical focusing
in the reconstruction of the hologram, the defocused blur from the conjugate image
although weak, is problematic as the superposition of these terms effectively blurs the

details and structures of the reconstructed object wave. This effect combined with the
need for a mostly transparent object to minimize the |O|2 term is the main limitation of

Gabor holography.

4.2 Gabor Holography Simulation

Figure 4.1 shows a simulation of Gabor holography using a cross and circle as the
theoretical object. For a mostly transparent object (Fig.4.1a), this results in a positive
image against dark background (Fig.4.1b). On the other hand, if one uses a Michelson

interferometer set up, with a separate reference wave, as in off-axis, then both of the first
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two terms on the right side of Equation (4.1) can be subtracted, and the object — and the
holographic image — is dark against light background (Fig.4.1c). For a mostly opaque
object (Fig.4.1d), there is not enough un-diffracted reference in Gabor holography to
generate image correctly (Fig.4.1e), where as the Michelson holography generates a

correct image (Fig.4.11).

o

a) b) c)

O

e) f)

d)

Figure 4.1: Gabor and Michelson holography of mostly transparent
object: a) mostly transparent object; b) Gabor holographic image; c)
Michelson holographic image.;

Gabor and Michelson holography of mostly opaque object: d) mostly
opaque object; ) Gabor holographic image; f) Michelson holographic
image.
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4.3 Limitations of Gabor Holography

Gabor holography is seen to suffer from certain limitations which restrict the
extent of its applicability. From the simulation in Figure 4.1 one can see that Gabor
holography is best suited towards the imaging of low density, small discrete opaque
objects such as particle fields or larger but highly transparent objects such as biological

cells. This type of object requirement minimizes the amount of noise from the disturbing
|O|2 term. Besides being limited to specific types of objects, a second limitation of Gabor

holography is the overlapping conjugate image as depicted in Figure 4.2. The problem
lies with the fact that they are not spatially separable as is the case in off-axis holography.
When the real image is brought into focus it is accompanied by the out of focus virtual
image. Alternately, an observer looking at a focused virtual image also sees a defocused
real image. The conjugate image however is generally not considered to be a significant
problem in Gabor holography because its effect at large enough recording distances
appears as the background signal in the reconstructed image which is often negligibly
small. The in-focus image amplitude to out-of-focus conjugate image amplitude ratio is
proportional to the inverse of the recording distance z. At small recording distances, the
contrast between the image and its conjugate image is low and both images merge.
Therefore, the recording distance must be sufficiently large for adequate suppression of
the disturbing conjugate image.

A number of methods have been developed for removal of the conjugate image
and recovery of the phase information [45,46]. If the phase distribution in the hologram

plane is recovered then it is possible to reconstruct the whole wave field exactly.
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Figure 4.2: Formation of the conjugate image in a Gabor hologram.
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Phase-shifting digital holography is one technique in particular which has
attracted widespread interest [47]. In the phase-shifting technique, the dc term and
conjugate image are removed through multi-exposure holographic recording while
shifting the phase of the reference field by an integer fraction of 2n. While this method
has the disadvantage of increasing the experimental effort; a more serious limitation for
practical use in microscopy is the requirement of multiple exposures, therefore hindering
the investigation of dynamic objects.

Although Gabor holography does not record the phase, it is still very useful for
the study of suitable objects at high resolution. By taking advantage of the large depth of
field and the plane-to-plane numerical reconstruction capability of digital holography,
one can produce 4-D representations of the paths followed by micron-sized objects such

as biological samples and particles [48].

4.4 Recording of Digital Gabor Holograms

Figures 4.3 and 4.4 depict the optical setup for hologram recording in the digital
Gabor holographic optical system in transmission geometry. The 532nm coherent light
from a frequency doubled Q-switched Nd:YAG laser (Continuum Minilite I, shown
schematically with specifications in Figures 4.5 and 4.6), operating at a power of
~2mlJ/pulse is used for hologram recording.

The main advantage of using a pulsed laser is that it can record an object field at
selected times and so is able to serve as a useful tool in studying the dynamics of fast
phenomena. To ensure proper timing in the experiment, a digital delay/pulse generator
(Stanford DG535) is used to synchronize the pulsed laser and digital camera.
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Figure 4.3: Experiment setup for recording of digital Gabor holograms.
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Figure 4.4: Birds-eye photograph of experimental setup for digital Gabor holography.
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MINILITE™ OPTICAL LAYOUT
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3. 1/4 Wave Plate

4. Dielectric Polarizer

5. Rod

6. Output Coupler

7. IR Mirror

8. Attenuator

9, Second Harmonic Generator
10. Third or Fourth Harmonic Generators
11. 532, 355 or 266 nm Mirrors

Figure 4.5: Optical layout of the Contiuum Nd:Yag Minilite pulsed laser.
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Figure 4.6: Continuum Minilite laser optical layout and specifications.
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Three channels on the delay/pulse generator are used for triggering, channels Ty, A and B
as displayed in Figure 4.7. Channel Ty is used for triggering of the flash-lamp and
Channel A is used to trigger the Q-switch on the pulsed laser. Channel B is used to
trigger the CCD camera to capture a frame. In triggering each channel a TTL pulse is
used. A delay of 250us between Channels Ty and A fires the pulsed laser at maximum
output. Channel B is delayed for 80ns with respect to Channel A. The main purpose of
this type of triggering is that it allows the speed of frame capture on the CCD to
synchronize with the dynamics of the object. The CCD camera is a Sony DFW-V500
YUV/Monochrome, 640x480 pixels with pixel size 7.4um x 7.4um. The camera can
switch between frame rates of 3.75, 7.5, 15, 30 frames per second and also one shot.

A pulse fired from the laser is reflected from mirrors M1 and M2 of quality A/10.
The spatial filter effectively brings the beam into sharp focus by means of a 20x
microscope objective with focal length 9.0mm. A Sum pinhole placed at the focal plane
of the microscope objective constitutes the filter. This acts to remove the unwanted
multiple-order energy peaks and pass only the central maximum of the diffraction
pattern. This is a diffraction plane in itself. A lens of focal length f=3.0cm is used to
collimate the beam from the spatial filter. The coherent plane wave then propagates
through the object in the setup which is located a distance z from the focal plane of the
CCD detector, H. The light scattered by the object serves as the object wave and the un-
scattered light serves as the reference wave. The interference between these two waves
forms a geometrically magnified diffraction pattern on the CCD sensor using a 20x lens
(L1). Only a small amount of spherical aberration is introduced to the image since both

reference and object beam angles are normal to the recording plane. The role of
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reconstruction is to obtain the 3-D structure of the object from the 2-D hologram on the
screen or, in physical terms, to reconstruct the wave front at the object. In the
reconstruction stage the same plane wave is diffracted numerically. A number of
LabView and Matlab programs are used for control of the experiment for numerical

computations and for presentation of the resulting images.

Pulsed Laser ‘ CCD camera

A B

Digital Delay Generator
DG335

Figure 4.7: Triggering the system using the pulsed laser in order to capture dynamic

events on the CCD.
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4.5 Experimental Results of Gabor holography

Figures 4.8(a) and 4.8(b) are the hologram and the reconstructed amplitude image
of'a U.S. Air Force (USAF) 1951 positive resolution test target recorded with the
experimental setup in Figure 4.3. The image area is 250 x 250 pm®, recorded with 464 x
464 pixels and the image is reconstructed using the Huygens convolution algorithm at z =
1.30mm from the hologram. The determination of the best focus for the reconstructed
image is performed by observation alone.

After image capture of the hologram and digital transfer to the computer, the
object is removed from the experiment setup and twenty consecutive images of the

reference beam are captured. The reference beam images are then digitally transferred to
the computer and averaged to facilitate the removal of the |R|2 term from the holographic
interference in Equation (4.1). This in turn leaves

H|.” =|0] +R'O+RO’ 4.2)
The dc term is mainly made up by the contribution of the reference wave, and therefore

this term is largely eliminated by this subtraction of the average intensity of the

hologram. Note however, that this method does not fully remove the dc term. The
contribution of the |O|2 term remains and cannot be removed.

The smallest observable reconstructed vertical three-bar pattern of the resolution
target in the reconstructed amplitude image is that of the third element of group 7 which
corresponds to a spatial frequency of 161 line pairs per mm, a line width of 3.1pm and a

line length of 0.0155mm (see Table 3.1 in Chapter 3). The details of this element are
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Figure 4.8: The hologram (a), the reconstructed amplitude image (b), and the direct
image (c), of groups 6 and 7 of USAF 1951 positive resolution Target
(Area =250pum x 250um?, Pixels = 464 x 464, z = 1.30mm)

clearly observable in the reconstructed amplitude image. This agrees well with the

predicted resolution limit of around 2um using;

Az
AE=—"~2um 4.3
4 Ay M (4.3)

where A¢ is the lateral resolution, A is the wavelength =532nm, z is the distance between

the object and the CCD array and AX is the CCD pixel size =7.4um.
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Comparing the reconstructed amplitude image to the direct image as displayed in
Fig. 4.8(c), one sees that the image quality of the reconstructed amplitude image is
degraded. The opaque bars of the resolution target occupy a significant portion of the
image area thus reducing the overall image transparency and as a result there is not
enough un-diffracted light to reconstruct the image correctly. In addition, the localized
presence of the defocused conjugate image in the reconstructed image plane creates a
blur around the bars in the image.

Figures 4.9(a) and 4.9(b) are the hologram and reconstructed amplitude image of
groups 6 and 7 of the resolution target. The image area is 250 x 250 um?, recorded with
464 x 464 pixels and the image is reconstructed using the Huygens convolution algorithm
at z =2.20mm from the hologram. Note the relatively higher image quality of the
amplitude reconstruction compared to that shown in Figure 4.8(b). This could be because
of the larger recording distance used in this example. However, the image is still largely

degraded due to the reduction in overall transparency of the image.

Figure 4.9: The hologram (a) and reconstructed amplitude image (b), of groups 6 and 7
of the USAF 1951 positive resolution Target.
(Area =250pm x 250um’, Pixels = 464 x 464, z = 2.20mm)

76



Figure 4.10 displays the Fourier transform of the hologram in Fig.4.9a). The overlap of
the dc and holographic terms are seen. Most of the energy in the image is concentrated at
low frequencies from the dc term, most of which can be removed by subtracting the

average of the reference beam.

Figure 4.10: Fourier Transform of the digital Gabor hologram in Fig.4.9 (a).

Figures 4.11(a) and 4.11(b) are the hologram and the reconstructed amplitude
image of an assembly of onion cells displaying an area of 400pum x 400pum?, recorded at
456 x 456 pixels, and reconstructed using the Huygens convolution algorithm at a
distance of z = 2.50mm. The onion cells size and structure are well established, easily
identifiable and range from 0.25 to 0.4 millimeters in length. The samples were mounted
by cutting into the surface of the fresh onion material, and peeling off a layer of the
outermost cells with a razor blade. The sample was then moistened, and applied directly

between the cover-slip and microscope slide.
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c)

Figure 4.11: The hologram (a), the reconstructed amplitude image (b), and the direct
image (c) of a collection of onion cells
(Area =400pm x 400pum?, Pixels = 456 x 456, z = 2.50mm)

The amplitude reconstruction is able to partially reconstruct the conspicuous cell
walls of the cells. Nonetheless, when compared to the direct image in Figure 4.11(c) one
can see that the image quality is again rather poor. There is the presence of large scale
residual features in the interior of the cell, which suggest that the cells may be dead or
dying and this introduces a significant amount of coherent noise into the image. These

residual features also reduce the overall transparency of the cell, and in turn generate
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adverse effects on the Gabor reconstruction due to the disturbing|0|2 term.

The large depth of field of digital Gabor holographic microscopy with numerical
reconstruction provides an ideal tool for the study of small discrete objects at different
focal planes. The hologram and the reconstructed amplitude image of copolymer
microspheres with a mean diameter of 9.6um are shown in Figures 4.12(a) and (b)
respectively, each displaying an area of 300pm x 300pm?, recorded at 364 x 364 pixels,
and reconstructed at a distance of z = 5.20mm using the Huygens convolution method.
The microspheres were prepared by mounting in a thin layer of deionized water between
a microscope slide and a glass cover-slip. The diffraction rings of each particle are
recognizable from the hologram. When the distance between the particles and the CCD
sensor is increased, the spacing between concentric rings belonging to an individual
particle also increases. Figure 4.12(c) shows the direct image of the microspheres.

In comparison with the direct image the reconstructed amplitude image clearly
resolved all isolated spheres as well as the two spheres that appear to be in direct contact.

The fact that the overall transparency of the hologram is increased minimizes the
degrading effect of the |O|2 term and results in a higher quality image reconstruction

when compared to that of the previous examples of the resolution target and onion cells.
Figures 4.13(a) and Figure 4.13(b) are the hologram and the reconstructed

amplitude image of a particle field containing differing densities of copolymer

microspheres within the image. The image area is 300 x 300 um?, recorded with 364 x

364 pixels and the image is reconstructed using the Huygens convolution algorithm at z =
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Figure 4.12: The hologram (a), the reconstructed amplitude image (b), and the direct
image (c) of copolymer microspheres.
(Area =300pm x 300pum?, Pixels = 364 x 364, z = 5.20mm)

a) b)
Figure 4.13: The hologram (a) and the reconstructed amplitude image (b) showing
differing densities of copolymer microspheres
(Area =300pum x 300pm?, Pixels = 364 x 364, z = 5.60mm)

5.60mm from the hologram. The speckle noise in the image increases with the particle

density. Therefore for a large group of small objects such as the microscopheres clustered
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together as in the bottom part of the images in Fig. 4.13 the speckle intensity may
actually be comparable to the focused particle intensity and this makes individual particle
detection complicated. One may see this effect in Fig.4.13 in the amplitude
reconstruction

Figures 4.14(a) and Figure 4.14(b) are the hologram and the reconstructed
amplitude image of a paramecium, a small unicellular organism that is found in
freshwater ponds. The image area is 250pum x 250pum?, recorded with 464 x 464 pixels,

and reconstructed at a distance of z =0.90mm using the Huygens convolution method.

Figure 4.14: The hologram (a), the reconstructed amplitude image (b), and the direct
image (c) of a paramecium
(Area =250um x 250pum, Pixels = 464 x 464, z = 0.90mm)

81



Paramecium belong to the protozoa family and range in size from approximately
100-300um in length. These organisms contain many complex and interesting features
within a single cell as shown in the anatomical diagram presented in Figure 4.15 [49].

In the reconstructed amplitude image it is difficult to identify specific intra-
cellular features as depicted in the anatomical diagram. However, when one makes a
comparison with the direct image in Fig. 4.14(c) it becomes clear that the paramecium
contains a number of unresolved intracellular particles with a large range of structural
scales which effectively increase the speckle noise and simultaneously reduces the

transparency of the paramecium.

Pellicle Contractile
vacuole

Macronucleus

Food vacuole

Cilia

Micronucleus
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Anal pore Trichocysts

Figure 4.15: Anatomy of Paramecium.
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4.6 Digital Gabor Holographic Movies

Gabor holography offers both a rapid and efficient approach in recording digital
holograms. This property is particular useful in capturing the motion of moving objects in
depth. A digital hologram contains information of the whole optical field in a three-
dimensional image volume, which allows for calculation of the image field in any focal
plane. A time series of digital holograms then provides complete four-dimensional
information of the object's three-dimensional spatial images as well as the time evolution
of those images. Once a movie of digital holograms are recorded, one can reconstruct the
images of the object and be able to focus on any focal plane as a specimen under
observation moves up and down in the image space. This is the most unique capability of
digital holographic movie in contrast to conventional video microscopy, where only the
images of the specific focal plane that was used in recording are preserved and the
information of all the other planes is lost. This is a critical advantage especially in the
microscopic recording of animated microbes that are constantly swimming in and out of a
large range of focal distances. In conventional video microscopy, it is not feasible to track
the focal distances of rapidly moving microbes, whereas in digital holography a series of
holograms can be recorded at a fixed distance and the images are later numerically
focused at leisure and one is able to track the rapidly moving microbes as needed.

To demonstrate these technical advantages for the creation of holographic movies,
Figure 4.16 displays a time series of twelve holograms showing a microbe moving
progressively through pond water between each of the hologram frames. The image area
of each frame is 100x100pum?, recorded at 428 x 428 pixels and each frame is captured

with an interval of t = 0.40s apart.
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t=0ms t= 400ms t= 800ms t= 1200ms

t= 1600ms t= 2000ms ll t= 2400ms t= 2800ms

t= 3200 ms t=4000ms ~Jt= 4400ms

Figure 4.16: Time-series of holograms of a microbe moving progressively in pond water.
(Area =100pum x 100pum?, Pixels = 428 x 428)

The holograms are recorded by synchronizing the camera with the laser pulses under the

control of the digital delay generator. The time-series amplitude images in Figure 4.17

corresponding to the holograms in Figure 4.15 are reconstructed using the Huygens

convolution method adjusting image distances in the range z = 0.352-0.354mm for best

focus of the microbe (highlighted in circle) under observation. The images show the track

of the specimen to demonstrate
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t= 1600ms ) + Bt= 2800ms

t= 3200 ms

Figure 4.17: Time-series of reconstructed amplitude images of a microbe moving in
pond water.
(Area =100pm x 100pum?, Pixels = 428 x 428, z = 0.352-0.354mm)
that time resolution is achieved. The reconstructed amplitude images are then composed
into AVI files to produce the holographic movie in with the microbe is consistently in
focus even though it is moving through focal planes in depth. This is not possible with

conventional microscopy.
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The next biological example concerns euglena, a single-celled organism with
spindle-shaped bodies ranging in size from 0.025 to 0.050mm in length. Figure 4.18 (a-d)
shows a time series of holograms recorded 0.40s apart, displaying a number of euglenas
at different focal depths swimming in pond water. Figures 4.18 (e-h) are the
corresponding amplitude images, reconstructed using the Huygens convolution method
adjusting image distances in the range z = 0.464-0.471mm for best focus of the individual
euglenas. Reconstruction at different depths throughout the volume brings different
individuals of euglena into focus. One can see how we have focused on one particular
euglena moving between frames. Note how the other euglenas one of which appears to be
in focus in the holograms now appear out of focus in the reconstructed amplitude frames
as they are located at different depths to the plane of focus. In addition, one may observe
smaller objects swimming about. Closer examination reveals it to be algae of about 10um

in diameter.

t= 400ms - t= 800ms

al

Figure 4.18: Time-series of holograms (a-d) and their corresponding reconstructed
amplitude images (e-h) of a number of euglenas swimming in different focal planes.
(Area =200pm x 200pum?, Pixels = 400 x 400, z = 0.464-0.471mm)
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Any of the individual euglenas can focused throughout the entire movie. This is a
significant advantage for a biologist interested in a number of objects moving in depth
during a time sequence. In comparison to a frame captured from conventional video
microscopy in Figure 4.19, the information of euglenas at different focal planes to the one

viewed in the figure are effectively lost.

Figure 4.19: A single frame of euglenas in pond water captured by a conventional
video microscope
4.6.1 Automatic Focusing for Digital Gabor Movies
After a number of holograms have been recorded, it remains to reconstruct each
of the holograms. If an object recorded in the holograms is moving in depth, then the
reconstruction distance is required to be changed between each holographic frame. For a
user to reconstruct for example hundreds of holograms for the objects best focus by

observation alone, then this becomes a time consuming and tedious procedure.
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An interesting property about Gabor holograms is that in the reconstructed
amplitude image the object appears bright against a mostly dark background. Coupled
with the fact that only specific objects with certain characteristics are suitable for imaging
with Gabor holography it is possible to construct auto-focusing algorithms that use the
contrast and other properties of the image to find the best focus of the object. Upon
examining the frequency components of an unfocused image, one will find that there are
relatively few high frequency components. As the image comes into focus, high
frequency components increase.

An example of the use of an auto-focus program is illustrated in Figure 4.20. The
figure displays the hologram and the reconstructed amplitude image of the resolution
target. The program uses two approaches. The first one uses frequency content to
determine edge sharpness. The other method uses an edge detector and measures the
standard deviation of the intensity of the edges, the larger the value, the better the focus.
The program works by iteratively changing the reconstruction distance starting from a
user specified value to find the largest numerical values of contrast and therefore find the
best focus.

The program algorithm is not able to find the correct best focus in the figure. The
starting Z value was already fairly close to the actual reconstruction plane for best focus.
The methodology is also probably made more difficult because of how the noise effects
different parts of the image and the sheer number of objects involved may also cause
problems.

There are a number of other approaches that require investigation and other
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contrast methods such as squared gradient, absolute variation, or Laplacian methods
which may yield better results. The successful integration of a program that automatically
identifies the correct focus of an object will create a significant improvement for the

application of this technique in holographic movies. This is a subject of future study.

b)

Figure 4.20: Auto-focusing of the resolution target.

4.7 Conclusions of Digital Gabor Holography

In this chapter, we have described digital Gabor holography for applications to
biological microscopy. The holographic optical system records Gabor holograms directly
from an object onto a CCD camera and then reconstructs the object wave-field
numerically by use of the Huygens convolution method. Although there is a minimum
reconstruction distance requirement associated with the Huygens convolution method,

this is insignificant since large recording distances are usually required in order to
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minimize the merging of the holographic terms. The superposition between the focused
holographic image and the unfocused conjugate image cannot be avoided and there is,
inevitably, some noise introduced into the image that cannot be avoided. However, by
increasing the recording distance, it is possible to partially suppress the conjugate image
so that it does not disturb the image to a significant degree.

The microscopic capability of the Gabor holographic system is demonstrated
through the experimental results of reconstructed amplitude images of diverse objects
such as a resolution target, copolymer microspheres, onion cells, and protozoa. The
simulation and experimental results clearly show that only specific types of objects with
certain physical characteristics are suitable for imaging with Gabor holography. These
objects are required to be either discrete, small opaque objects, or larger but mostly

transparent objects. In either case the overall transparency of the image must be
significant enough so that the |O|2 term approximates a small amount of background

noise.

Biological samples such as paramecium and onion cells, which are considered by
microscopy terms to be mostly transparent, actually contain a large range of intracellular
features which create speckle noise in the coherent imaging system. Also, these features,
in turn, reduce the transparency and cause further degradation in image quality.

Digital Gabor holographic movies are seen to offer a rapid and efficient approach
for image capture of a time-series of holograms. In the experimental results, we have
demonstrated that high-resolution tracking of many objects in 4-D from a single

hologram data set can be performed. High lateral resolution is achievable, and, thus,
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tracking of organisms as small as bacteria may be possible. By the use of numerical
focusing, each single hologram in the data set can be reconstructed at selected depths so
that the trajectory and speed of a collection of objects can be captured as 3D data sets by
stacking of the 2D reconstructions. The results show that the digital Gabor holographic
system outperforms traditional conventional microscopic methods and can accurately
calculate the object’s position in the z-direction. Other advantages of digital Gabor
holography are the simplicity of sample preparation, particularly for biological samples
where neither sectioning nor staining is required, which means that living cells which are
largely transparent can also be viewed.

Outside of biological microcopy, there are many other applications for 4-D Gabor

holographic movies, including particle tracking.
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Chapter 5
Quantitative Digital Holographic Microscopy

This chapter presents the results of digital holography experiments conducted in
an off-axis configuration. Section 5.1 begins the chapter with an introduction to phase-
contrast microscopy and reviews some of the commonly used techniques in this field.
Section 5.2 examines how phase information from an object is produced and how one
may employ this information in order to obtain quantitative evaluation. Section 5.3
compares the use of the different reconstruction methods to a standard resolution test
target. Section 5.4 studies the differences between phase and amplitude information in
biological objects. Section 5.5 presents examples of quantitative phase images obtained
from digital holography experiments that examine the resolution of the optical system
and demonstrate the quantitative and qualitative capabilities of digital holography for
biological microscopy. Section 5.6 discusses the use of quantitative digital holographic
movies in microscopy and demonstrates the advantages over conventional techniques.

Finally Section 5.7 ends this chapter with a conclusion and discussion.

5.1 Introduction
Many microscopic biological specimens, such as living cells and their
intracellular constituents, are mostly transparent, and therefore are problematic for

conventional bright-field microscopy. There have been developed a number of techniques
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for rendering transparent phase objects visible that have played very important roles in
the development of modern biology and medicine[50], and these include dark field,
Zernike phase-contrast, and Nomarski differential interference contrast (DIC)
microscopies.

In dark field microscopy, only the scattering centers and bou