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Quantitative Biological Microscopy by Digital Holography 

Christopher J. Mann 

ABSTRACT 

 In this dissertation, improved techniques in digital holography, that have produced 

high-resolution, high-fidelity images, are discussed. In particular, the angular spectrum 

method of calculating holographic optical field is noted to have several advantages over 

the more commonly used Fresnel transformation or Huygens convolution method. It is 

observed that spurious noise and interference components can be tightly controlled 

through the analysis and filtering of the angular spectrum. In the angular spectrum 

method, the reconstruction distance does not have a lower limit, and the off-axis angle 

between the object and reference waves can be lower than that of the Fresnel 

requirement, while still allowing the zero-order background to be cleanly separated.  

Holographic phase images are largely immune from the coherent noise commonly found 

in amplitude images. With the use of a miniature pulsed laser, the resulting images have 

0.5µm diffraction-limited lateral resolution and the phase profile is accurate to about 

several nanometers of optical path length. Samples such as ovarian cancer cells (SKOV-

3) and mouse-embryo fibroblast cells have been imaged.  These images display intra-

cellular and intra-nuclear organelles with clarity and quantitative accuracy. This 

technique clearly exceeds currently available methods in phase-contrast optical  

 



 

xii

microscopy in both resolution and detail and provides a new modality for imaging 

morphology of cellular and intracellular structures that is not currently available.  

 Furthermore, we also demonstrate that phase imaging digital holographic movies 

provide a novel method of non-invasive quantitative viewing of living cells and other 

objects.  This technique is shown to have significant advantages over conventional 

microscopy. 
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Chapter 1 

Introduction 

Holography, formed from the Greek words Holo (whole), and graphe (write), is a 

method of recording both the intensity and phase information of a wave-field.  It was first 

suggested by Dennis Gabor in 1948 while working to improve upon the resolution of 

electron microscopy [1], which suffers from limiting aberrations. Since its discovery, 

holography has become an active field of research in modern optics and is now an 

established tool for scientific and engineering studies. 

This chapter presents an introduction to digital holography and the motivations 

behind our research, in the following order: Section 1.1 discusses the foundations of 

holography and its development in a historical context. Section 1.2 describes the advent 

of digital holography, which has seen rapid progression due to advances in computers and 

technology. Its applications to microscopy are investigated in Section 1.3. Section 1.4 

summarizes research contributions and motivations. Finally Section 1.5 outlines the 

organisation of this thesis. 

 
1.1 Foundations of holography 
 

An object illuminated with a coherent light source reflects or transmits the light 

wave, which consequently carries information about the object’s physical and optical 

properties.  The intensity or amplitude information of the wave is associated with the 

reflectance or attenuation property of the object while the phase information is related to 
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the topography or thickness. Recording devices such as Charged-Coupled Device (CCD) 

cameras and photographic plates are able to capture the intensity of the incoming light, 

but not the phase information.  As an inherent three-dimensional technique, holography 

presents a means of encoding the phase information as an intensity variation termed a 

“hologram”, which can then be recorded by devices sensitive only to the intensity component 

of light.  

A hologram is defined as the recorded interference pattern between a coherent 

object wave transmitted or reflected by an object and a reference wave which interferes 

directly with this wave at the recording medium. The hologram contains information 

about the entire three-dimensional wave-field (amplitude and phase) which is encoded in 

the form of interference lines at high spatial frequencies. In conventional holography the 

recorded object wave is reconstructed optically by illuminating the chemically processed 

hologram with an optical replica of the reference wave. This produces a reconstructed 

object which is indistinguishable from the original object and contains the 3D 

information, both amplitude and phase. 

In the original experimental set-up of Gabor, both the object wave and reference 

wave are located along the optical axis normal to the recording medium. This leads to a 

reconstructed image superimposed by the bright reconstruction wave called the dc term 

or zero order and a second component, the so-called ‘twin or conjugate image’. These 

unwanted components obscure the true amplitude and phase of the reconstructed object 

wave.  

While the basic foundations of holography were laid down by Gabor, it was not 

until the 1960s, that holography gained widespread interest and practical use. This was 
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due to the availability of the laser and the introduction of the off-axis technique by Leith 

and Uptanieks [2], in which the twin images and the dc term are spatially separated by 

the introduction of an angle between the object and reference waves. In the late 1960`s 

the first paper on Holographic Interferometry (HI) was published by Stetson, Powell et al 

[3]. Holographic Interferometry, was designed as a non-contact optical test tool for 

deformation studies of strains, vibrations and heating, and enabled non-destructive 

measurement of surfaces with an accuracy of less than a micron.  

Other significant advances in holography made around the same time were the 

creation of computer generated holograms using Fraunhofer diffraction. Numerical 

methods for reconstruction of the hologram were initially proposed by Goodman et al [4] 

and Kronrod et al [5]. These methods included digitizing holograms recorded on 

photographic plates which were then reconstructed numerically. 

 

1.2 Digital holography 

The conventional process of performing holography using photographic plates is 

time consuming and cumbersome. This has precluded the widespread use of conventional 

holography except in the case where measurements are considered important enough to 

justify the time and expense involved. Also real time processing of a conventional 

hologram is not feasible unless one uses photo-refractives and other nonlinear optical 

materials. The advances in digital imaging and computation technologies have now made 

it feasible and advantageous to replace the photochemical processing of conventional 

holography with CCD arrays and numerical computation [6, 7]. With the development of 

higher performance CCD and computational techniques, digital holography is fast 
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becoming an increasingly attractive alternative to conventional film-based holography. It 

offers a number of significant advantages, such as simple, fast image acquisition and the 

availability of many powerful digital processing algorithms. By calculating the complex 

optical field of an image volume, the amplitude and phase of the optical field are 

simultaneously available for direct manipulation [8-12].  

There are numerous digital processing techniques for manipulating the optical 

field information in ways that are difficult or impossible in real space processing. For 

example, optical system aberration can be numerically corrected [13,14] and holographic 

interferometry can be performed between remotely situated objects through 

telecommunication links [15].  

Figure 1.1 illustrates the digital holography process. A digital hologram is created 

by the interference between a coherent object and a reference beam which is recorded by 

a CCD camera and digitally transferred to a computer, where it is processed by 

computational methods to obtain the holographic images. The digital hologram contains 

not only amplitude information of the object, but also phase.  

Moreover, the ability of the CCD camera to quantify the recorded light gives rise 

to a number of post processing methods that can for instance be used to obtain 

quantitative three-dimensional topography of an object surface from the phase 

information.  The fact that quantities such as the phase of the wave cannot be measured 

directly with conventional detectors, which are only sensitive to the wave-field’s 

intensity, makes digital holography a particularly attractive technique for measuring 

morphological properties of an object. 
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1.3. Applications to microscopy 

Digital holography has been applied in diverse fields, including metrology [16], 

deformation measurement [17], vibrational analysis [18], art conservation [19], 

microstructures [20, 21] and more recently biological microscopy [22-27].  

The applications to microscopy are particularly appealing due to a number of 

technical advantages. 

 

1.3.1 Three-Dimensional Microscopy 

One of the main drawbacks in conventional optical microscopy is the small depth 

of focus at higher spatial resolution, due to the objective’s large numerical aperture and 

magnification. Only two dimensional information of an object can be obtained. More 

specifically the diffraction-limited depth of focus is given by 

2focus
nz

NA
λ

Δ =                     (1.1) 

where  is the index of refraction of the medium surrounding the object, n λ  is the 

illumination wavelength, and  is the numerical aperture of the focusing lens or the 

microscope objective.  

NA

Common ways to circumvent the problem of the low depth of focus in 

conventional microscopy include sectioning of the sample or a mechanical motion along 

the optical axis to scan the complete experimental volume. However, physical sectioning 

of a biological sample is invasive and the mechanical operation of scanning increases the 

time for acquisition of three-dimensional images. These are constraints for three-

dimensional imaging of a live sample.  

 6
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This problem can be resolved using digital holographic microscopy. The 

information on a complete volume can be recorded in just a single hologram and optically 

reconstructed with visual 3-D observation.   

 

1.3.2 Phase Contrast Microscopy 

As well as the limited depth of focus, conventional bright-field microscopes have 

difficulty in observing transparent samples such as living biological cells which exhibit 

little intensity contrast. The conventionally applied phase contrast techniques of Zernike 

and differential interference contrast (DIC) microscopy of Nomarksi that have been 

developed for visualization of unstained transparent specimens do not offer direct 

quantitative evaluation of the phase information.  

The unavailability of quantitative phase information in these techniques presents a 

difficulty in observing and interpreting morphological changes and properties of a 

sample. Quantitative phase imaging is particularly important in microscopy because it 

enables determination of either the refractive index or optical thickness variations from 

the measured optical path length with an accuracy of a few nanometers.  

Unlike the above-mentioned conventional phase-contrast microscopic techniques, 

interferometric techniques allows for quantitative measurement of the phase information 

produced by the object. In addition, digital holography as an interferometric technique 

offers quantitative phase information and high fidelity and high resolution images with a 

precision of optical thickness in the order of tens of nanometers [28]. While other 

interferometric configurations such as interference microscopy are commonly used in 

metrology, very few applications have been reported in biological microscopy. These 
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techniques often require the phase to be measured through the process of multiple image 

acquisition and phase modulation.  Digital holography on the other hand requires only a 

single image (hologram) and no phase modifying devices in order to obtain phase 

information. This is a significant advantage for real-time sample analysis.  

A common presumption is that coherent imaging suffers from the image 

degrading effect of coherent noise; however, through careful control of laser beam and 

other optics quality, remarkably clean images can be obtained. This is especially true 

with phase imaging in digital holography because of its relative immunity to the 

amplitude or phase noise of the laser profile. 

 

1.3.3 Numerical Focusing 

Another unique capability of digital holography is numerical focusing, which 

emulates the focusing control of conventional microscopes. As the focusing can be 

adjusted in the reconstruction process, digital holography is free from the process of 

mechanical focusing and can be used to monitor the dynamic change of objects.  

A number of algorithms have been developed for use in the reconstruction of a 

hologram such as the Fresnel transform, convolution and angular spectrum methods [28-

31]. In particular, the use of the angular spectrum reconstruction algorithm provides a 

significant advantage in focusing and reconstruction [32]. It has no minimum distance 

requirement from the object plane to the hologram plane, and allows for flexible and 

effective filtering and control of the dc term and spurious noise components from sources 

such as stray reflections within the experiment.  
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1.3.4 Phase Unwrapping 

From a computational point of view, phase images are directly determined from 

the computed field. However, the phase images are required to be unwrapped in order to 

simplify their interpretation. Of particular significance is the 2π-discontunuity problem in 

phase-imaging. A conventional approach is to apply one of many phase-unwrapping 

algorithms [33, 34], but often these require substantial user intervention and strict 

requirements on the level of phase noise and phase discontinuity.  

It has long been recognized that the range of unambiguous phase measurement 

can be extended beyond a single wavelength by synthesizing a beat wavelength between 

two wavelengths [35, 36].  The 2π-discontunuities inherent in the wrapped phase image 

can be effectively removed without the addition of any noise, by using a multi-

wavelength digital holographic approach in a microscope configuration [37]. This 

technique, unlike the mathematically challenging and often time consuming processes of 

conventional phase unwrapping algorithms, makes real time processing much simpler to 

perform because any calibration for removing 2π-discontinuities can be made prior to any 

image capture. The drawback with this method lies in the increased technical effort 

required for optical alignment of more than one laser (unless the same laser produces the 

required wavelengths) along the same optical path. 

 

1.4 Research Contributions 

  As a recently developed technique, digital holography has yet to be firmly 

established in the microscopy world and many of its technical advantages are yet to be 

fully explored and examined. The motivation behind this work has been to improve and 
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develop techniques of digital holography in order to obtain images which effectively 

provide more information and clarity than images produced by other comparable 

microscopy techniques. 

 In this thesis, techniques of digital holography have been vastly improved to 

obtain high-resolution, high-fidelity, quantitative phase-contrast images of microscopic 

samples. The level of resolution and details in these images clearly exceed currently 

available techniques in phase-contrast optical microscopy and provides a new modality 

for imaging the morphology of cellular, intracellular and intra-nuclear structures that is 

not currently available with non-invasive optical methods. Furthermore for the first time 

to our knowledge, quantitative, dynamic effects have been measured on living biological 

samples using digital holography [38].  

This research will help with precise measurements of such properties as the 

physical thickness of a cell, to a vertical resolution of just a few nanometers. This might 

be of significance to biologists who can then accurately investigate the physical 

morphology of specimens like cancer cells, which are known to have different thickness 

and other morphological properties as compared to healthy cells [39].  

We also demonstrate the use of the angular spectrum reconstruction method for 

digital holography, which is seen to solve some of the significant problems that have so 

far prevented the wider use of digital holography in biomedical imaging applications. 

Spurious noise components can be easily controlled and there is no minimum 

reconstruction distance as with other methods for numerical reconstruction. Also the dc 

term of diffraction and the conjugate image can be eliminated by an appropriate selection 

of spatial frequencies in the angular spectrum of an off-axis hologram. 
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Finally we show that multi-wavelength phase imaging digital holography is an 

effective and efficient technique for removal of 2π-discontunuities in the phase image by 

the extension of the axial range and also overcomes many                         

of the limitations imposed by conventional, mathematical based phase unwrapping 

techniques. 

  

1.5 Thesis organization 

This thesis is organized into seven chapters and four appendices. The main body 

of content in this dissertation is contained in Chapters 2, 3, 4, 5, and 6. Chapter 2 presents 

some of the basic optical concepts and principles of holography, beginning with an 

analysis of the wave theory of light and later describing the properties and roles of effects 

such as interference, coherence, diffraction, and speckle in holographic recording and 

reconstruction. Chapter 3 presents the technique of recording digital holograms and 

discusses the reconstruction of the recorded optical wave field by the Fresnel transform, 

the convolution approach and the angular spectrum. In Chapter 4, digital Gabor 

holography is described and experimental results are presented which show the 

capabilities for microscopy. Chapter 5 describes methods of determining quantitative 

phase information and demonstrates the high quality results achievable by digital off-axis 

holography. Chapter 6 describes phase imaging digital holography using two or more 

wavelengths that achieves unambiguous phase unwrapping by an optical method. Future 

works and conclusions are presented in Chapter 7. 

 



      
 
 
 
 

Chapter 2 

Principles of Holography 

This chapter introduces a number of fundamental optical principles which 

together form the conceptual and mathematical foundations of holography. Section 2.1 

discusses the wave theory of light, in which both the intensity and phase information 

form the three-dimensional nature of the light wave. Section 2.2 describes the phenomena 

of interference which stems directly from the wave theory of light. Section 2.3 examines 

different aspects of coherence. Section 2.4 includes a detailed analysis of the 

development of models of diffraction, which provide the foundations of wave-field 

propagation in holography. Finally Section 2.5 introduces the theoretical background and 

underlying principles of holography.  

 

2.1 Wave Theory of Light  

A light wave can produce both diffraction and interference effects which form the 

basis of holographic recording and reconstruction. Light is an electromagnetic wave and 

the theory used to explain its motion is described by the wave model. The propagation of 

a light wave in a vacuum can be described by 

2
2

2 2
1 0EE
c t

∂∇ − =
∂

          (2.1)            

E
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where is the electric field and  is the Laplace operator defined as  2∇



2 2
2

2 2

2

2x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂

           (2.2) 

EThe electric field  is a vector quantity and therefore has direction associated with it. It 

can oscillate in any direction perpendicular to the light waves’ propagation direction. 

However, it frequently oscillates only within a single plane. In such cases we say that the 

light is linearly polarized and so the scalar wave equation can be considered where the 

light propagates in one direction. If the light is propagating in the z-direction, then 

2 2

2 2 2
1 0E E

z c t
∂ ∂− =
∂ ∂

        (2.3) 

The electromagnetic wave can be considered in terms of two components, namely the 

real part and the imaginary part of a complex quantity.  

A sinusoidal time-varying signal,ψ , at a time t and at a point z of a wave 

propagating in the z direction can be represented by 

(( , ) i kz tz t Ae ωψ −= )

)

)

        (2.4) 

where A is the amplitude, ω is the angular frequency and k is the wave number. The 

 term is the absolute phase and is dimensionless. The real part of Equation (2.4) 

is taken to be that of the measurable signal E, 

(kz tω−

( )[ ] cos(i kz tE Ae A kz tω ω−=ℜ = −        (2.5) 

Equation (2.4) can be rewritten as  

( )( , ) ( )i z i t i tz t Ae e u z eφ ωψ − −= = ω

z

       (2.6) 

where is the complex amplitude of the signal and is the phase.  ( )( ) i zu z Ae φ= ( )z kφ =

 13



The only directly measurable quantity is intensity, which is proportional to the time 

average of the square of the electric field. 

2
0 0

1lim
2

T

t T
T

2I c E c E dt
T

ε ε
→∞

−

= = ∫        (2.7) 

The intensity is calculated by taking the square of the modulus of the complex amplitude. 

The intensity at a point z is then defined as 

2* 2( ) ( ) ( ) ( )I z u z u z u z A= = =        (2.8) 

 

2.2 Interference 

The concept of interference was first introduced by Thomas Young in 1804. He 

noted that under appropriate conditions, light could be combined with light to create 

darkness.  

Interference is, in essence, the superposition of two or more waves in space. The 

result of adding two waves of the same frequency depends on the value of the phase of 

the wave at the point in which the waves are added.  For two sources of electromagnetic 

waves to interfere they must be coherent, have the same frequency and polarization, and 

the superposition principle must apply.  

( , )jE r tIf we consider each individual wave of the form , which is a solution to 

the wave equation, the superposition of the waves is found by 

( , ) ( , )j
j

E r t E r t=∑   j=1, 2          (2.9) 

For two monochromatic waves with the same polarization direction and 

frequency, the complex amplitude of the waves are 

 14
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1
1( )

1( , , ) iA x y z a e φ=       (2.10) 

      2( )
2 2( , , ) iA x y z a e φ=

The scalar approach can be considered in this case because the waves have the same 

polarization. The addition of each single wave in Equation (2.10) creates a new resultant 

wave with complex amplitude A, 

1A A A= + 2        (2.11) 

From Equation (2.8), then 

2 *
1 2 1 2 1 2( )( )I A A A A A A= + = + +      (2.12) 

    2 2
1 2 1 2 1 22 cos(a a a a φ φ= + + − )

1 2 1 22 cosI I I I φ= + + Δ    

1I 2Iwhere  and are the individual intensities and the phase difference between the 

sources of the two waves is 

1φ φ φΔ = − 2

2

2

       (2.13) 

If the phase difference  is constant, the two sources are mutually coherent. If the 

sources are mutually incoherent, then  varies randomly with time. If this latter 

condition occurs, it signifies that the average value of the  term is zero and 

therefore no interference exists. In effect, this explains why no interference occurs 

between two incoherent sources.  

1φ φ−

1φ φ−

cos φΔ

In Equation (2.12) the total intensity is calculated by the sum of the individual 

intensities 1I 2I 1 22 cosI I φΔ and  plus the addition of the last term .  



This last term depends on the phase difference between the waves as seen from Equation 

(2.13). The intensity reaches its maximum at points for which 
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π

π

  for n = 0,1,2……   (2.14)  2nφΔ =

which represents the condition for constructive interference.  

The intensity is a minimum where 

           for n = 0,1,2…..   (2.15) (2 1)nφΔ = +

This is the condition for destructive interference. n represents the interference order and 

is an integer. On examination of an interference pattern, one sees bright and dark fringes 

as a consequence of the constructive and destructive interference of the light waves.  

Consider the superposition of two plane waves E1 (dashed lines) and E2 (solid 

lines) which creates an interference pattern with equidistant spacing d as illustrated in 

Figure 2.1.  

 

 

Figure 2.1: The Interference between two plane waves. (Adapted from “Digital 
Holography” by U. Schnars, W. Jueptner). 



The distance between the interference maxima formed at points P  and P1 2 is 

defined by the fringe spacing d. By geometry the following relations are true  

    1
1sin l

d
δφ = 2

2sin l
d
δφ =                  (2.16)  and 

where  and  represent the angles between the vertical plane and the propagation 

direction of each individual wave-front.  is the path difference between the wave-front 

E

1φ 2φ

2lδ

2 with respect to that of the second wave-front E1, which is located at the position of the 

interference maximum P
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1 . In addition  is the path difference between the wave-front 

E

1lδ−

 with respect to E2 1. 

One notices in the Figure that E  travels a longer distance to P  than E2 1 1 and 

conversely at P2, the opposite is also true with E1 traveling a further distance than E2. It 

follow that the path differences between the maxima at points P  and P1 2 is  

                          (2.17) 1 2l lδ δ+

This path difference is equal to one wavelength so that  

          (2.18) 1 2l lδ δ+ =λ

By combination of equations and substitution then 

1 2 1 21 2sin sin 2sin cos
2 2

d λ λ
φ φ φ φφ φ

= = + −+
    (2.19) 

By substitution of the approximation of  and  we obtain 

the fringe spacing 

1 2cos( ) / 2 1φ φ− ≈ 21φ φ φ= +

2sin
2

d λ
φ=        (2.20) 



2.3 Coherence 

Coherence is the measure of the ability of light to interfere. The coherence of two 

waves follows from how well correlated the waves are as quantified by the cross-

correlation function and is derived from the phase relationship between two points, 

separated in either time or space, along a wave-train.  

Consider two points along the train that are spatially separated and moving with 

the train. If the phase relationship between the waves at these points remains constant in 

time, then the waves between these points are coherent. On the other hand, if the phase 

relationship is random or rapidly changing, the waves at these two points are incoherent.  

 

2.3.1 Temporal Coherence 

Temporal coherence describes the correlation of a wave with itself at different 

instances in time and is related to the finite bandwidth of the source . If light were 

strictly monochromatic then the following conditions would apply: and .  

This is not practically attainable. However, over a shorter period of time , a wave can 

behave like it’s monochromatic. The temporal coherence length is the greatest distance 

between two points for which there is a phase difference that remains constant in time. 

For points separated by a distance greater than the coherence length, there is no phase 

correlation. The coherence time  is defined as the temporal interval required for the 

train to traverse the coherence length when traveling in vacuum. In optics, temporal 

coherence is measured by combining beams from the same source but having a known 

path length difference, and observing the interference pattern produced.  

νΔ

ctΔ =∞0νΔ =

ctΔ

ctΔ
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2.3.2 Spatial Coherence 

 Like temporal coherence where a source is considered to be never strictly 

monochromatic, spatial coherence derives from the fact that a source is never truly a 

point source. Spatial coherence depicts the mutual correlation of different parts of the 

same wave-front. Thus, for two laterally displaced points residing on the same wave-front 

at a given time, the fields are spatially coherent.  

 

2.4 Diffraction Theory 

A mathematical description of the propagation of light waves must recognize 

diffraction effects. Diffraction is broadly defined as the spreading out of light from its 

geometrically defined path. Figure 2.2 illustrates the problem posed by diffraction. Light 

emitted by a source at a location Q falls on an opaque plate containing an aperture. The 

problem is then to describe the light field that will be received at point R to the right of 

the aperture. One of the earliest solutions was put forward by Huygens, whose principle 

underlies the idea that each point on a wave-front acts as a source of secondary wavelets. 

In terms of Figure 2.2 this means that that the illuminated aperture can be replaced by an 

array of point sources.  

Huygens theory was mathematically described by Fresnel, who integrated the 

appropriate contributions and Kirchhoff, who put in place all the correct multiplying 

terms. The problem was later solved by Fresnel and Fraunhofer in the form established 

by Huygens, and was later solved in more detail by Köttler and Sommerfield. Köttler 

considered the vectorial nature of light, and Sommerfield presented a rigorous scalar 

derivation.  



 

 

 

Figure 2.2: Diffraction from an aperture 
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2.4.1 Huygens-Fresnel Principle 

Diffraction is a phenomenon by which wave-fronts of propagating waves bend in 

the neighborhood of obstacles. It can be described qualitatively by Huygens principle as 

depicted in Figure 2.3. Every point on a primary wave front serves as the source of 

spherical secondary wavelets, such that the primary wave front at some later time is the 

‘envelope’ of these wavelets. Moreover, the wavelets advance with a speed and 

frequency equal to that of the primary wave at each point in space. By simple 

assumptions about the amplitude and phase of the secondary waves that form the 

envelopes, Huygens principle was able to accurately determine the light distribution of 

diffraction patterns. 

 

 

Figure 2.3: Huygens’s principle. The construction of envelopes, propagating from a 
point source. 
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Huygens principle accounted satisfactorily for the reflection and refraction of 

light waves. However, his theory did not explain why there is no backward propagation 

of the waves. Furthermore, even though it predicts diffraction, it does not explain 

quantitatively the results obtained from diffraction experiments.  

Fresnel made changes to Huygens's principle to account for the deficiency in the 

back wave propagation. He introduced a new term,  known as the obliquity or 

inclination factor, in order to solve this problem. 

( )K χ

Figure 2.4 illustrates a geometrical representation of a spherical wave-front, 

arising from a point source P0. In the figure, S represents the instantaneous position of the 

wave-front with a radius r
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0 and a frequency . P is a point at which the light disturbance 

is to be determined. Omitting the periodic factor , the disturbance at point T on the 

wave-front may be represented by

ω

i te ω−

0
0/ikrAe r , where A is the amplitude at a unit distance 

from the source. 

 

 

Figure 2.4: Huygens-Fresnel Principle. (Adapted from M. Born, E. Wolf, “Principles of 
Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light”). 



From Huygens-Fresnel principle, each point on the wave-front is the source for a 

secondary disturbance which propagates as a spherical wave. For an element of dS at T 

the contribution to du(P) is found by 

0

0
( ) ( )

ikr ikrAe edu P K dS
r r

χ=       (2.21) 

where , and the obliquity factor  is introduced to describe the variation in 

the propagation direction of the amplitudes of the secondary waves. χ  is the angle 

between the normal to S at T and the direction TP.  

r TP= ( )K χ

Fresnel made the assumption that was a maximum in the original direction 

of propagation, i.e. for and that it rapidly decreases with increasing , eventually 

being zero when TP is tangential to the wave-front, i.e. when . The total 

disturbance at P is then found by 

( )K χ

χ0χ=

/ 2χ π=

0

0
( ) ( )

ikr ikr

S

Ae eu P K dS
r r

χ= ∫∫      (2.22)  

The Huygens-Fresnel principle is a superposition integral, or alternatively it can be 

regarded as a convolution integral.  

 

2.4.2 Integral Theorem of Kirchhoff and Helmholtz 

The Huygens-Fresnel principle contained certain inconsistencies which were 

remedied by Kirchhoff. He established that the results and theory could be directly 

derived from the wave equation. The scalar wave equation in three-dimensions is 

2
2 2

2
( , ) ( , )x t c x
t

ψ ψ∂ = ∇
∂

t       (2.23)       
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where ( , )x tψ is the wave-field at the point x = (x; y; z)T at time t and c is the speed of 

light in vacuum. 

For a monochromatic scalar wave then 

( , ) ( ) i tx t u x e ωψ −=       (2.24) 

Using separation of variables, then u(x) satisfies the time-independent wave equation 

2 2( )k u∇ + = 0       (2.25) 

Equation (2.25) is known as the Helmholtz equation. 

Referring to Figure 2.5, if V is the volume bounded by a closed surface S, and P is 

a point within it, we can assume that u(x) possesses continuous first and second order 

partial derivatives within and on S.  

If f and g are defined as scalar functions, are continuous and integrable in V, and 

bounded by S, then we have the general form of Greens theorem 

 
( ) ( )2 2

S V

g f f g d g f f g dVS∇ − ∇ • = ∇ − ∇∫ ∫      (2.26) 

  
 

V
P

S

S'

ρ

 

 

 

 

 

 

Figure 2.5: Integration surface in Green’s Theorem. 

 



If v(x) is another function which satisfies the same continuity requirements as u(x), we 

have by substitution into Green's theorem in Equation (2.26) 

' '
3 ' ' 2 ' ' 2 ' 2 ' ' '( ) ( )[ ( ) ( ) ( ) ( )] [ ( ) ( ) ]

V S

v x u xd x u x v x v x u x d x u x v x
n n

∂ ∂∇ − ∇ = −
∂ ∂∫∫∫ ∫∫    (2.27) 

ˆ.n
n
∂ = ∇
∂
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where is the directional derivative along the inward normal to S.  n̂

 One now chooses a Green function of the Helmholtz Equation in (2.25) so 

that . This function describes the disturbance at a point 'x'( ) ( . )v x G x x=  on the surface S 

due to a spherical point source at a position x. 

Within the volume the disturbance, satisfies '( . )G x x

'
2 2 '

2'

( )
( ) ( , )

4

x x
k G x x

x x

δ

π

−
∇ + =

−
                 (2.28) 

The equation in (2.28) contains spherical symmetry, and , 

where

'( , ) ( )G x x G r=

'r x x= − . By spherical coordinates relations 

2
2

2 2
1 ( )r
r r

∂∇ =
∂

                  (2.29)         

and subsequent substitution into Equation (2.28) yields 

2
2

2
1 ( ( ) ( ))

4
rrG k rG

r r r
δ
π

∂ + =
∂ 2

( )        (2.30) 

For , then 0r>

2
2

2 ( ) ( ) 0rG k rG
r
∂ + =
∂

                       (2.31) 
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This implies the condition that where ' 'ikr ikrrG Ae B e−= + 'A 'B and  are arbitrary 

constants. From the Helmholtz equation 

4 4
ikr ikrA BG e e

r rπ π
−= +           (2.32) 

with and . To avoid back waves, when , then ' / 4A A π= ' / 4B B π= 0B=

4
ikrAG e

rπ
=    for    (2.33)  0r>

Now, extending G to all values of r then  

0

( )lim( )
4

ikrA rG
rε

ε
π→

Θ −= e                (2.34) 

Where  if x>0, and for all other x. ( ) 1xΘ = ( ) 0xΘ = ( )xΘ is the Heaviside function. 

Then  

2 2
20

1 (lim[ ( ( ))]
4

ikrA rG r
r r rrε

ε
π→

∂ ∂ Θ −∇ =
∂ ∂

) e           (2.35) 

20

1lim[ ( ( ) ( ) ( ))]
4

ikr ikr ikrrAe r rAike Ae r
rrε

δ ε ε
π→

∂= − + − Θ −
∂

  

20

1
4π

lim[ ( ( ) ( ) ( ))]ik ikr ikrAe r rAike Ae r
rr

ε
ε

ε δ ε ε
→

∂= − + − Θ −
∂

 

'
20

1lim[ ( ( ) ( )
4

ik ik ikAe r Aike Ae
r

ε ε
ε

ε δ ε ε
π→

= − + − ⋅ε

]]

 

        2( ) ( ) (ikx ikx ikxr rk Ae ikAe ikAe rδ ε ε− + − + − Θ −

2
3 '( )

4

ikrAk e A x x
r

δ
π

−= − −       

and so 

2 2 ' 3 '( ) ( , ) (k G x x A x xδ∇ + =− − )      (2.36) 



Choosing A=-1 to agree with Greens theorem, then 

'

'
'

( , )
4

ik x x
eG x x

x xπ

−
−=

−
      (2.37) 

Substituting the Helmholtz equations for u(x) and , ((2.25) and (2.36)) into the 

volume integral in Green's theorem (2.27), we obtain 

'( , )G x x

' '
'

2 ' '
' '

1 (( ) [ ( ) ( ]
4

ik x x ik x x

S

e e uu x d x u x
n nx x x xπ

− −
∂= −
∂ ∂− −∫∫ )x∂             (2.38) 

This is the integral theorem of Helmholtz and Kirchhoff.  

 

2.4.3 Fresnel-Kirchhoff Diffraction 

 Consider a monochromatic wave, propagating from a point source, Q, to an 

opening in a plane opaque screen as depicted in Figure 2.6. The problem is to find the 

light disturbance at a point R. The disturbance can be found by taking Kirchhoff’s 

integral over a surface S formed by the opening A, a portion of the non-illuminated side 

of the screen, B , and a portion of a large sphere of radius R0, centered at R, C, which, 

together with A and B, form a closed surface. 

Using Equation (2.38), we obtain the total disturbance at point R, , as ( )u R

' '
'

2 ' '
' '

1 (( ) [ ] [ ( ) ( ) ]
4

ik x x ik x x

A B C

e e uu R d x u x
n nx x x xπ

− −
∂= + + −
∂ ∂− −∫∫ ∫∫ ∫∫ )x∂    (2.39) 
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where, 'r x x= − / n n∂ ∂ = ∇. is the distance of the element dS from R and  denotes 

differentiation along the inward normal to the surface of integration. 

 



 

Figure 2.6: Fresnel-Kirchoff Diffraction. (Adapted from M. Born, E. Wolf, “Principles 
of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of 

Light”). 
 

The values of the function of  and  on A, B, and C are not known 

accurately, which presents a difficulty. On the other hand, by the assumption that at A, u  

and  will not differ significantly from the values obtained in the absence of the 

screen, and that at B these quantities are approximately zero, then the boundary 

conditions are 

u /u n∂ ∂

/u n∂ ∂
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( )iu u
n n

∂ ∂=
∂ ∂

on A:   ,  ( )iu u=       (2.40) 

0u
n

∂ =
∂

on B:   ,  0u=  

The conditions in Equation (2.40) are known Kirchhoff’s boundary conditions and these 

allow for substantial simplification of the results. If the aperture is large compared to the 

wavelength, then the boundary conditions can yield very accurate results. 

For the incident field then 

0
( )

0
0 0

1[ ]cos( ,
4

i
ikru A e ik n r

n r rπ
∂ = −
∂

0( )

04
ikri Au

rπ
=
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e ,  )  

where A is a constant and  is the cosine of the angle between n and  in Figure 

2.6.  

0cos( , )n r 0r

 Finally, one considers the point C. The field at this point is produced by a source 

that emits at a time . At a later time,  the wave propagates outward from the 

source. However, the field’s outer boundary is at distance not greater than  from 

Q. Therefore, if one chooses the radius R

it t= it t>

( )ic t t−

0 to be large enough, so that at the time when the 

disturbance at R is considered no contributions from C have reached R, the integral over 

C will vanish. 

Thus, on substituting the above conditions into Equation (2.39), we obtain 

0( )
2 '

0
0

( ) [cos( , ) cos( , )]
2

ik r r

A

iA eu R d x n r n r
rrλ

+
=− −∫∫           (2.41) 

Equation (2.41) is the Fresnel-Kirchhoff diffraction formula.  

 



2.4.4 Rayleigh-Somerfield Diffraction 

The Fresnel-Kirchhoff diffraction theory has limitations; it has attached boundary 

conditions which make it mathematically inconsistent. The difference between the 

Rayleigh-Sommerfield theorem and the Fresnel-Kirchhoff theorem is in the inclination 

factor. 

For Kirchhoff, the obliquity factor can be written as 

( ) ( )0cos , cos ,
( )

2
n r n r

K χ
−

=

)n r

     (2.42) 

In the Rayleigh-Sommerfield approach the obliquity factor is  

(( ) cos ,K χ =       (2.43) 

A drawback of Kirchhoff’s theory lies in the attached boundary conditions which 

are required for the field and its derivative. If a two-dimensional potential function and its 

normal derivative vanish together along any finite curve segment, then that potential 

function must vanish over the entire plane. Similarly, if a solution of the three 

dimensional wave equation vanishes on any finite surface element; it must vanish in all 

space. The two Kirchhoff boundary conditions together imply that the field is identically 

zero everywhere behind the aperture, a result which contradicts the known physical 

situation. From the integral theorem of Helmholtz and Kirchhoff, Equation (2.38), then 

' '
2 ' ' '1 ( , )( ) [ ( ) ( , ) ]

4
S

G x x u xu x d x u x G x x
n nπ

∂= −
∂ ∂∫∫ ( )∂           (2.44) 

By making adjustments to the Greens function in Equation (2.44), G, or its derivative, 

, disappears at the aperture A and the non-illuminated portion B. In both cases, 

the necessity of imposing simultaneous boundary conditions on u and  is 

/G n∂ ∂

/u n∂ ∂
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removed. Using the former case in which G vanished over the aperture, the integral 

theorem is 

2 ' '( ) [ ( ) cos( , )]
ikr

A

i eu x d x u x n r
rλ

=− ∫∫                 (2.45)       

and the Rayleigh-Somerfield diffraction formula is 

0( )
2 '

0
( ) [ cos( , )]

ik r r

A

iA eu x d x n r
rrλ

+
=− ∫∫                 (2.46)         

The derivation is more self consistent than Kirchhoff’s derivation. 

 

2.5 Speckles 

 Holography uses coherent light sources to form the interference pattern which 

creates the hologram. However, a significant issue with using a coherent source is the 

degradation in image quality due to a phenomenon called speckle.  

A rough, uneven surface illuminated with a coherent light source produces a 

coarse indeterminate pattern as displayed in Figure 2.7. The coherent light which 

illuminates the surface is scattered by the surface and produces randomly oriented bright 

and dark patches.  

 

Figure 2.7: A typical speckle pattern formed by coherent illumination of a rough surface. 
(Obtained from http://www.polytec.com/) 
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The occurrence of speckle is a result of the interference between different scattered 

beams from the surface. This kind of speckle pattern is created if the height variations of 

the rough surface are larger than the wavelength of the light. The coherent noise of 

speckle effectively disturbs the image quality to a particularly high degree and makes 

identification of features in highly scattering structures difficult. This has been a major 

barrier for widespread coherent imaging and in particular, microscopy. 

 The probability density function for the intensity in a speckle pattern is given by 

1( )
I
IP I dI e

I

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎜ ⎟⎟⎜⎝= ⎠        (2.47)     

where  is the probability that the intensity at a certain point is lying between 

and . 

( )P I dI

I IdI  is the mean intensity of the entire speckle field. The most probable intensity 

value of a speckle is therefore zero, which is why most speckles, in fact, appear black.  

The standard deviation is found by  

       (2.48) I Iσ =

That means the intensity variations are in the same order as the mean value. The contrast 

is given by 

IV
I
σ=        (2.49) 

The contrast of the speckle pattern is unity. 

 

2.6 Holography Recording and Reconstruction 

In conventional imaging techniques, such as photography, what is recorded is 

simply the intensity distribution of the original object. As a result all information about 
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the relative optical paths to the different parts of the object is lost. The unique 

characteristic of holography is the recording of both intensity and phase information of 

the light wave reflected or transmitted by an object. As recording media respond only to 

the intensity, it is necessary to convert the phase information into variations in intensity. 

This is performed by using coherent illumination.  

The general principle of conventional holography is shown in Figure 2.8, one 

wave illuminates the object and is scattered onto the recording medium. This is called the 

object beam. The second wave, the reference beam, illuminates the recording medium 

directly. Both waves interfere and the pattern is recorded onto the photographic plate. 

This recorded interference pattern is termed a ‘Hologram’.  

Let the complex amplitude object and reference waves at the photographic plate 

be denoted by and , respectively. oU rU

The complex amplitude of the object wave is described by 

0 ( , ) ( , ) exp( ( , ))o oU x y a x y x yφ=                 (2.50)  

with real amplitude  and phase   oa oφ

The reference wave is described by 

( , ) ( , ) exp( ( , ))r r rU x y a x y x yφ=      (2.51) 

with real amplitude  and phase .  ra rφ

Both waves interfere at the recording medium and the intensity may be written as 

2( , ) ( , ) ( , ) ( ( , ) ( , ))( ( , ) ( , ))o r o r o rI x y U x y U x y U x y U x y U x y U x y ∗= + = + +    (2.52) 

           ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )o o r r o r o rU x y U x y U x y U x y U x y U x y U x y U x y∗ ∗ ∗ ∗= + + +
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Figure 2.8: Recording a hologram 
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The amplitude transmission of the developed photographic plate is proportional to the 

intensity and can be represented by 

 35

y0 ( , )t I xα α= + =            (2.53) 

   0 [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )]o o r r o r o rU x y U x y U x y U x y U x y U x y U x y U x yα α ∗ ∗ ∗ ∗= + + + +

where and are constants determined by the recording medium type.  α0α

The original object wave is reconstructed by illuminating the recorded hologram 

at the photographic plate with the reference beam as shown in Figure 2.9. The observer 

sees the virtual image, which is indistinguishable from the image of the original object.  

When the plate is illuminated by the reference beam for reconstruction 

0 [ ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )]r r o o r r r r o r r o r rU t U U x y U x y U U x y U x y U U x y U x y U x y U x y U x y U x yα α ∗ ∗ ∗ ∗= + + + +  

2 2 2 * 2
0 0 0 0[r r r r rU U U U U U U U Uα α= + + + +      ]r        (2.54) 

The first term on the right hand side of Equation (2.54) is usually called the ambiguity 

term, and is the product between the object wave’s intensity and the reference wave. 

Since 2
oU  is generally non-uniform, it produces a wave that propagates along the 

direction of the illuminating plane wave within a cone, the angular aperture of which 

depends on the spatial spectrum of the object wave.  The second term on the right-hand 

side is the product of the intensity of the reference wave the illumination wave. Since the 

reference wave is a plane wave, 2
rU is uniform, this term represents a plane wave 

propagating along the direction of the illuminating plane wave. Together, these first two 

terms on the right-hand side of Equation (2.54) form the zero order of diffraction also 

known as the dc term. 

 



 

 

 

Figure 2.9: Reconstruction of a hologram 
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The third and the fourth terms in Equation (2.54) are produced by the holographic 

interference terms, and each of them generates an image of the object. The third term is 

the reconstructed object wave forming the virtual image located at the position initially 

occupied by the object. The fourth term produces a real image located on the other side of 

the hologram. Since this term is formed by the conjugate of the object wave  the 

depth is inverted. Points on the virtual image and real image are located at equal distances 

from the hologram plane but in opposite directions. The real image, therefore, appears 

inside out and is called a pseudoscopic image. 

*
oU
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Chapter 3 

Digital Holography 

This chapter discusses principles of digital holography. Section 3.1 examines the 

physical and mathematical aspects of recording holograms onto a CCD camera. Section 

3.2 analyses numerical diffraction methods for reconstructing the digital hologram in the 

diffractive planes of the holographic terms. Section 3.3 describes methods of separating 

the dc and holographic terms. In Section 3.4, the use of CCD cameras for holographic 

recording is discussed. Finally, Section 3.5 examines resolution and calibration issues in 

the holographic optical system. 

 
 
3.1 Digital Recording of Holograms 
 

The method of recording digital holograms is illustrated in Figure 3.1. A coherent 

object wave reflected or transmitted from an object and a reference wave interfere at the 

surface of a CCD camera. The holographic interference pattern formed at the CCD is 

electronically recorded and stored.  

In digital holography this recorded hologram is subsequently reconstructed 

computationally by using numerical algorithms to provide direct access to amplitude and 

phase information of the object.  

 



 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 3.1: Recording of a digital hologram. 
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In the numerical reconstruction of the hologram, the holographic terms, the virtual 

image and real image are formed at distances, d and d’ respectively from the hologram 

plane which is assumed to be in the  plane as displayed in Figure 3.2, which 

illustrates the coordinate system for hologram reconstruction. In classical holography, the 

hologram is reconstructed by illumination with an optical replica of the wave-field. In 

digital holography reconstruction takes place by multiplication with the numerical model 

of the reference wavefield. The interference between the object wave 

' 0d d= =

( , )o ξ η transmitted 

by the object located at the object plane and the reference wave ( , )r ξ η  is recorded in the 

hologram plane ( , )ξ η .  The complex object wave at the hologram plane is 

2 2
0( , ) exp{ ( ) ( ) }

2
iko o x y
d

ξ η ξ η= − + −        (3.1) 

where  is the amplitude of the object wave. The complex amplitude of the reference 

wave diverging from a point 

0o

( , , )r r rx y d  is  

2 2
0( , ) exp{ ( ) ( ) }

2 r r
r

ikr r x y
d

ξ η ξ η= − + −        (3.2) 

where  is the amplitude of the reference wave. The complex amplitude of the 

interference pattern at the hologram plane is 

0r

( , ) ( , ) ( , )U o rξ η ξ η ξ η= +         (3.3) 

A CCD sensor records this interference pattern in the form of the intensity distribution 

*( , ) ( , ). ( , )h U Uξ η ξ η ξ= η         (3.4) 

which is stored in the computer as the digital hologram. 
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The interference pattern is then mathematically described by 

2 2 * *( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )h o r o r o rξ η ξ η ξ η ξ η ξ η ξ η ξ= + + + η      (3.5) 

 

3.2 Numerical diffraction 

Once the hologram has been captured, the optically diffracted field is numerically 

propagated by the use of reconstruction algorithms. The diffraction pattern is calculated 

at a distance d’ behind the CCD focal plane (hologram plane), which means, it 

reconstructs the complex amplitude in the plane of the real image. Note however, that one 

can focus on either the real or virtual image located a respective distances d’ and d from 

the hologram plane. The magnitude of the distances is the same but the signs are 

opposite. In this thesis we define the general expression for the reconstruction distance 

for either of the holographic images as z.  

Mathematically, the reconstruction process reduces to the calculation of the 

Rayleigh-Sommerfeld diffraction integral. If one treats the digital holographic system as 

a coherent imaging system, then the reconstruction algorithm functions like the lens in an 

optical system. All computer calculations can be performed based on the Rayleigh-

Sommerfeld diffraction formula, however, using this formula directly is often time 

consuming. There are a number of computationally efficient numerical methods available 

to calculate the holographic diffraction[40]. The most commonly applied method has 

been the discrete Fresnel transform where the approximation of spherical Huygens 

wavelet by a parabolic surface allows the calculation of diffraction integral using a single 

Fourier transform[6].  
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In the convolution method, the diffraction integral is calculated without such 

approximation using three Fourier transforms through the convolution theorem [41]. On 

the other hand, the angular spectrum method involves two Fourier transforms, plus 

simple filtering of the angular spectrum[32]. Here we review these methods. 

 

3.2.1 Reconstruction by Fresnel Transform method. 

If the wave-field is known in one plane, it can be calculated in any other plane in 

the 3D space. The Rayleigh–Sommerfeld diffraction theory is a precise mathematical 

form of this statement. Referring to Figure 3.2, the Rayleigh-Sommefield diffraction 

formula in this coordinate system for the reconstruction of the holographic image in the 

image plane is 

' ' ' 1 exp( )( , ) ( , ) ( , ) cosikb x y h r d d
i

ρξ η ξ η ξ η
λ ρ

= Θ∫∫       (3.6) 

where is the reconstructed image in the image plane, ' ' '( , )b x y ( , )h ξ η is the hologram 

recorded by the CCD sensor array, ( , )r ξ η is the reference wave-field and ρ  is the 

distance between a point in the hologram plane and a point in the reconstruction plane 

defined as  

 ( ) ( )2 2'2 ' 'd x yρ ξ η= + − + −              (3.7) 

'd is the reconstruction distance i.e. the distance between the hologram and image plane. 

Due to the small angles between the hologram normal and the rays from the hologram to 

the image points, the obliquity factor can be set to cos 1Θ =  in Equation (3.6). 

The expression in Equation (3.7) can be expanded to a Taylor series so that 
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( ) ( )
22 2' '

' 2 ' 2
'

' ' '3
( ) ( ) 1 ...

82 2

x yx yd
d d d

ξ ηξ ηρ

⎡ ⎤− + −⎢ ⎥− − ⎣= + + − +⎦      (3.8) 

The fourth term can be neglected if it is small compared to the wavelength and so 

' 2 ' 2
'

' '
( ) ( )

2 2
x yd

d d
ξ ηρ − −

≈ + +         (3.9) 

With the additional approximation of replacing the factor ρ  by the reconstruction 

distance  in the denominator of Equation (3.6) then 'd

( ) ( )
'

2 2' ' '
' '

exp( )( , ) ( , ) ( , ) exp[ ]ikd ib x y h r x y d d
i d d

πξ η ξ η ξ η ξ η
λ λ

⎡ ⎤= −⎣ ⎦∫∫ + −    (3.10) 

Further multiplication in the argument of the exponential yields 

( ) ( )
'

2 2' ' '
' '

exp( )( , ) ( , ) ( , )exp[ ]ikd ib x y h r
i d d

πξ η ξ η ξ η
λ λ

⎡ ⎤= + ⋅
⎣ ⎦∫∫  

( ) ( ) ( ) ( )2 2' ' ' '
' '

2exp[ ]exp[ ]i ix y x y
d d
π π d dξ η ξ
λ λ

⎡ ⎤ ⎡ ⎤+ − +⎢ ⎥ ⎣ ⎦⎣ ⎦
η   (3.11) 

          

Defining the impulse response function of the optical system as 

'
2 2

' '
exp( )( , ) exp[ ( )]ikd ig

i d d
πξ η ξ η

λ λ
= +      (3.12) 

the reconstructed wavefield is then 

          ( ) ( ) ( ) ( )2 2' ' ' ' ' ' '
' '

2( , ) ( , ) ( , ) ( , ) exp[ ]exp[ ]i ib x y h r g x y x y d d
d d
π πξ η ξ η ξ η ξ η ξ η
λ λ

⎡ ⎤ ⎡ ⎤= + −⎢ ⎥ ⎣ ⎦⎣ ⎦∫∫ +    (3.13) 

This equation is known as the Fresnel approximation. This approximation states 

that the size of the aperture is small in comparison to the distance to the viewing plane.  
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Fresnel diffraction is essentially the Fourier transform of the aperture multiplied 

by the phase factor of the light at the aperture. When the reconstruction distance z (d or 

d’) is sufficiently large for this approximation to be an accurate one, the observer is said  

to be in the region of Fresnel diffraction. For the Fresnel approximation to remain valid, 

it is only necessary that the higher order terms of the expansion do not change the value 

of the integral in Equation (3.13). 

The intensity is calculated by 

       
2' ' ' ' '( , ) ( , )I x y b x y=       (3.14) 

and the phase by 

    
' ' '

' '
' ' '

Im ( , )
( , ) arctan

Re ( , )

b x y
x y

b x y
φ =                  (3.15) 

For digitization of the Fresnel transform then the following spatial frequency terms are 

introduced 

'

'
x
d

ν
λ

=  and 
'

'
y
d

μ
λ

=       (3.16) 

Equation (3.13) then becomes 

( ) ( )' ' 2 2( , ) ( , ) ( , ) ( , ) exp[ ]exp[ 2 ]b h r g i d i d dν μ ξ η ξ η ξ η πλ ν μ π νξ μη ξ η⎡ ⎤= + − ⎡ ⎤⎣ ⎦⎣ ⎦∫∫ +        (3.17) 

Comparison of Equation (3.17) with the definition of the two dimensional Fourier 

transform 

{( ( , )} ( , ) exp[ 2 ( )]f f i d dξ η ξ η π νξ μηℑ = − + ξ η∫∫     (3.18) 

with ( , ) ( , ) ( , ) ( , )f h r gξ η ξ η ξ η ξ= η ,  

then Equation (3.17) becomes 
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' ' 2 2( , ) exp[ ] { ( , )}b i d fν μ πλ ν μ ξ η⎡ ⎤= + ℑ⎣ ⎦      (3.19) 

The function ' ( , )b ν μ can be digitized if the hologram, ( , )h ξ η is sampled on a 

M N× pixel array on the CCD sensor, with steps ξΔ and ηΔ along the coordinates. 

Therefore ξΔ and ηΔ represent the distances between neighboring pixels in the horizontal 

and vertical directions and so 

     
'

' ' 2 2 2 2 2
' '

exp( )( , ) exp[ ] [ ( , ) ( , ) exp[ ( )]ikd ib m n i d m n h k l r k l k l
i d d

π 2 2 2πλ ν μ ξ η
λ λ

⎡ ⎤= Δ + Δ ℑ Δ⎣ ⎦ + Δ     (3.20) 

where k, l, m, n are integers defined in the range from ( / 2 , / 2)M k l M− ≤ ≤ and 

.  ( / 2 , / 2N m n N− ≤ ≤ )

The pixel sizes of the CCD array ( , )ξ ηΔ Δ located at the hologram plane are 

different to those in the image plane ' '( , )x yΔ Δ . The discrete Fourier transform theorem 

tells us the maximum frequency is determined by the sampling interval in the spatial 

domain and so 

       1
M

ν
ξ

Δ =
Δ

  and 1
N

μ
η

Δ =
Δ

     (3.21) 

substitution of these terms provides the relations between the hologram and image plane  
 

        
'

'
d

M x
λξΔ =
Δ

 and 
'

'
d

N y
ληΔ =
Δ

     (3.22) 

this gives the reconstructed wave-field as 

'
' 2 '2 2 '2 2

,' ' '
exp( )( , ) exp[ ] [ ( , ) ( , ) exp[ ( )]m n

ikd i ib m n m x n y h k l r k l k l
i d d d

π π ξ η
λ λ λ

⎡ ⎤= Δ + Δ ℑ Δ +⎣ ⎦
2 2 2Δ            (3.23) 
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This is the discrete Fresnel transform. The calculation in Equation (3.23) can be made 

more efficient by applying the Fast Fourier Transform (FFT) so that Equation (3.23) 

becomes 

'
' 2 '2 2 '2 2

,' ' '
exp( )( , ) exp[ ] [ ( , ) ( , ) exp[ ( )]m n

ikd i ib m n m x n y FFT h k l r k l k l
i d d d

π π ξ η
λ λ λ

⎡ ⎤= Δ + Δ Δ +⎣ ⎦
2 2 2Δ    (3.24) 

The pixel resolution 'xΔ and 'yΔ of the reconstructed images which is determined 

directly from the Fresnel transform will vary as a function of the reconstruction distance 

d’ as 

    
'

' dx
M
λ

ξ
Δ =

Δ
 and 

'
' dy

N
λ

η
Δ =

Δ
     (3.25) 

Therefore the reconstructed image changes in size according to the reconstruction 

distance. This is an inconvenient limitation of this method. Equation (3.25) is also the 

horizontal and vertical diameters of the Airy disk in the image plane and sets the 

diffraction limited resolution of the optical system.  

Although the Fresnel diffraction formula can still give an accurate reconstruction 

for smooth and slowly varying objects where the Fresnel approximation is not strictly 

satisfied, it cannot correctly reconstruct near wave-fields for more diffractive objects, 

where the higher-order terms in the Taylor expansion of the Fresnel approximation in 

Equation (3.8) are more significant.  

The Fresnel transform also requires that the distance between the object and the 

hologram plane be sufficiently large in comparison to the size of the object or the 

hologram. This sets the minimum reconstruction distance z requirement so that 

2

min
xaz

Nλ
=                   (3.26) 
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where xa is the image size and N is the number of pixels. At too close a distance, the 

spatial frequency of the pixelated hologram is not high enough to reproduce a large  

 

angular size of the object without aliasing. 

 

3.2.2 Reconstruction by Fresnel Convolution method 

The Rayleigh-Sommerfield diffraction formula in Equation (3.4) can be rewritten 

as a superposition integral so that 

       ' ' '( , ) ( , ) ( , ) ( , )b x y g h r d dξ η ξ η ξ η ξ η= ∫∫      (3.27) 

where the Fresnel impulse response function is 

'
2 2

' '
exp( )( , ) exp[ ( )]ikd ig

i d d
πξ η ξ η

λ λ
= +      (3.28) 

 

The linear system is space invariant so that for the impulse response function 

' ' ' '( , , , ) ( , )g x y g x yξ η ξ η= − −      (3.29) 

The superposition integral in (3.27) can be expressed as a convolution  

' ' 1( , ) { [ ( , ) ( , )] [ (( , )]}b x y h r gξ η ξ η ξ η−= ℑ ℑ ℑ      (3.30) 

[ (( , )]g ξ ηℑ  is the Fourier transform of the impulse response function. From Equation 

3.16 the definition for the Fourier transform of the impulse response function is 

[ ( , )] ( , ) exp[ 2 ( )]g g i d dξ η ξ η π νξ μη ξℑ = − + η∫∫  

      ' ' 2exp( )exp[ ( )]ikd i d 2πλ ν μ= − +      (3.31) 

The reconstructed wave-field is then 

 48



' ' 1 ' ' 2 2( , ) { [ ( , ) ( , )]exp( )exp[ ( )]}b x y h r ikd i dξ η ξ η πλ ν μ−= ℑ ℑ − +    (3.32) 

The convolution approach gives an image with constant pixel dimensions between the 

hologram and image plane. 

   'x ξΔ = Δ  and 'y ηΔ = Δ                  (3.33) 

However, due to the more complex algorithm, the convolution approach is slower than 

the Fresnel transform approach. The whole process requires three Fourier transforms, 

which are carried out using the FFT algorithm for more effective calculation.  

The sampling requirements in the Fresnel and convolution algorithm are the same 

and therefore this method is also subject to the minimum reconstruction distance set by   

Equation (3.26). At too close a distance, the spatial frequency of the hologram is too low 

and aliasing occurs. Normally the object is placed just outside this minimum distance 

found from Equation (3.26). 

 

3.2.3 Reconstruction by Huygens Convolution method 

The Fresnel approximation in convolution is not wholly justified for all z-values. 

The Huygens convolution method often yields better quality images, especially when the 

hologram and image plane are close [31]. The Rayleigh-Sommerfield diffraction formula 

in Equation 3.4 is again rewritten as a superposition integral` 

' ' ' 1 exp( )( , ) ( , ) ( , )ikb x y h r d d
i

ρ ξ η ξ η ξ η
λ ρ

= ∫∫     (3.34) 

where the impulse response function is 

 ' ' 1 exp( )( , , , ) ikg x y
i

ρξ η
λ ρ

=       (3.35) 
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The Huygens impulse response function is approximated by 

( ) ( )

( ) ( )

2 2'2 ' '

' '
2 2'2 ' '

exp
1( , , , )

ik d x y
g x y

i d x y

ξ η
ξ η

λ ξ η

⎛ ⎞
+ − + −⎜ ⎟

⎝ ⎠=
+ − + −

    (3.36) 

          ( )'2 '2 '2
'

1 exp ik d x y
i dλ

= + +       (3.37) 

Finally  

' ' 1( , ) { [ ( , ) ( , )] [ (( , )]}b x y h r gξ η ξ η ξ η−= ℑ ℑ ℑ      (3.38) 

The final inverse Fourier transform brings the convolution result back to the 

spatial domain, whereby the reconstructed pixel size becomes independent of z and one 

can conveniently focus the reconstruction at different reconstruction distances without re-

scaling issues as in the Fresnel transform.                                            

The whole process requires three Fourier transforms, which are carried out using 

the FFT algorithm for a more efficient calculation. The pixel sizes of the images 

reconstructed by the convolution approach are equal to that of the hologram as in the 

Fresnel convolution. The minimum distance for reconstruction of the image by this 

method is given by Equation (3.26).  

 

3.2.4 Reconstruction by Angular Spectrum method 

Suppose that, due to some unspecified system of monochromatic sources, a plane 

wave is incident on the 0 0x y  plane of Figure 3.3, traveling in the positive z direction. Let 

the complex field across that plane be represented by E0(x; y; 0). The objective is to 
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calculate the consequent field E(x; y; z) that appears at a second point with coordinates 

(x; y; z). By use of the generalized form of the two-dimensional Fourier transform  

{ ( , ) ( , ) ( , ) exp{ 2 ( )f x y F u v f x y i ux vy dxdyπ
∞ ∞

−∞ −∞
ℑ = = − +∫ ∫     (3.39) 

Across the 0 0x y  plane, the function E0 has a two-dimensional Fourier transform which is 

then given by 

  0 0 0 0 0( , ,0) ( , ,0)exp[ 2 ( )]x y x yA f f E x y i f x f y dx dyπ
∞

−∞
= − +∫ ∫    (3.40) 

where is the angular spectrum. With the substitution of ( , ;0)x yA f f

/ 2x xf k π=     and  / 2y yf k π=      (3.41) 

then we obtain 

0 0 0 0 0 0 0( , ;0) ( , ,0)exp[ ( )]x y x yA k k E x y i k x k y dx dy
∞

−∞
= − +∫ ∫     (3.42) 

where xk  and  are corresponding spatial frequencies of x and y. yk

 
 
 

Figure 3.3: Coordinate system for reconstruction of the hologram in the 
angular spectrum method. 
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Fourier-domain filtering can be applied to the spectrum to block unwanted spectral terms 

in the hologram and select a region of interest corresponding only to the object spectrum. 

A modified wave-field  can be written as the inverse Fourier transform of the 

filtered angular spectrum . The operation of a Fourier transform may be 

regarded as a decomposition of a complicated function into a collection of more simple 

complex-exponential functions. So we can write E

0 0 0( , ;0)E x y

( , ;0)x yA k k

0 as an inverse transform of its 

spectrum  

    0 0 0 0 0 0 0( , ,0) ( , ;0) [ ( )]x y x yE x y A k k e i k x k y dx dy
∞

−∞
= +∫ ∫    (3.43) 

Propagating plane waves are of the form, (writing the dot product of vectors k and r out 

fully, r being position vector) 

( , , ) exp[ ( )x y zb x y z i k x k y k z= + +      (3.44) 

Where  

2 2 2 2
x yk k k kz= + +       (3.45) 

The new angular spectrum at plane z,  is calculated from  as ( , ; )x yA k k z ( , ;0)x yA k k

                                               [ ]( , ; ) ( , ;0)expx y x y zA k k z A k k ik z=                                    (3.46) 

The spatial frequency diffraction kernel is the z-portion from Equation (3.44) and 

substitution of Equation (3.45) gives 

    2 2 2exp[ ] exp[ ]z xik z i k k k z= − − y      (3.47) 

This can be written by substitution of terms in Equation (3.41) as 

( ) ( )
2

222exp[ ] exp[ 2 2 ]z xik z i f f zπ π π
λ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

y     (3.48) 
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Removing the 2π  term from square root bracket in Equation (3.48) then the angular 

spectrum diffraction kernel or optical transfer function is 

( ) ( )
2

221( , ) exp[ 2 ]x y x yH f f i f fπ
λ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

     (3.49) 

The reconstructed complex wave-field of any plane perpendicular to the propagating z 

axis is found by 

( , ; ) ( , ; )exp[ ( )]x y x y x yE x y z A k k z i k x k y dk dk= +∫∫     (3.50) 

Therefore by substitution of Equations (3.48) and (3.49) then 

       ( ) ( )
2 221( , ; ) ( , ;0)exp[ 2 ]exp[ ( )]x y x y x y x yE x y z A k k i f f i k x k y dk dkπ

λ
⎛ ⎞= − −⎜ ⎟
⎝ ⎠∫∫ +     (3.51) 

              ( ) ( )
2 221

0 0
1( , ; ) { [ { ( , ,0)}]exp[ 2 ]}x yE x y z filter U x y i f fπ
λ

− ⎛ ⎞= ℑ ℑ − −⎜ ⎟
⎝ ⎠

   (3.52) 

Here ‘filter’ represents filtering in the spectral domain. 

The effect of propagation over a distance z is simply a change in the relative 

phases of the various components of the angular spectrum. Since each plane wave 

component propagates at a different angle, each travels a different distance to reach a 

given observation point and relative phase delays are thus introduced. 

In the calculation in Equation (3.52) two Fourier transforms are needed for the 

calculation in comparison to the one needed by the Fresnel transform. However once the 

field is known at any one plane, only one additional Fourier transform is needed to 

calculate the field at different values of z. This method allows frequency-domain 

spectrum filtering to be applied, which for example can be used to block or remove the  
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disturbance of the dc term and twin image components. The angular spectrum method of 

calculating the holographic optical field is seen to have several advantages over the more 

commonly used Fresnel transformation or Huygens convolution method. Spurious noise 

and interference components can be tightly controlled through the analysis and filtering 

of the angular spectrum. The reconstruction distance does not have a lower limit and the 

off-axis angle between the object and reference can be lower that the Fresnel requirement 

and still be able to cleanly separate out the zero-order background.  

 

3.3 Separation of the Virtual Image, Real Image and dc term 

In Gabor (in-line) holography, the virtual image, real image and dc term are 

superimposed thus creating difficulties for the acquisition of the object wave information. 

There have been numerous ideas and suggestions proposed as solutions to this problem, 

including some by Gabor himself, however most of these require extra technical effort 

and are not efficient procedures [42]. 

Off-axis holography, as first devised by Leith and Upatnieks provides both an 

effective and simple means of laterally separating the dc and holographic terms by the 

introduction of a sufficiently large angle between the object and reference beams. The 

increase in the angle between the beams increases the spatial distance between the dc and 

holographic terms which is desired so that one can easily extract the relevant frequency 

information for the holographic image. However there is a limitation associated with this 

increased spatial distance due to the low spatial resolution of CCD cameras which means 

that often these terms may still partially overlap. In this section we explore the ‘anatomy’ 

of a digital hologram. 



3.3.1 Suppression of the DC term 
 

Figure 3.4 displays a digital hologram, Fig.3.4 (a), recorded in an off-axis 

configuration and its associated Fourier transform Fig.3.4 (b). The bright area at the 

centre of the image is the un-diffracted reconstruction wave known as the dc term or zero 

order. This term holds most of the energy in the image. The holographic terms, the 

virtual image and real image are located slightly shifted to the top left and bottom right of 

the dc term. The spatial frequencies of the interference terms are located symmetrically 

with respect to the center of the image. This shift is caused by the angle introduced 

between the object and reference beams. Higher order holographic terms are also present 

to the extreme top left and bottom right of the figure. Also one can see spurious noise 

components whose source is from the CCD camera. The energy is concentrated around 

three main frequencies: (0,0) for the dc term, (−kx ,−ky ) for the image and (kx ,ky ) for 

the conjugate image. 

 
Figure 3.4: Absolute value of the Fourier transform of the hologram. The frequency 

origin is in the center. 
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As the reconstruction distance increases, the dc term stays located in the central 

part of the image, while the holographic terms move away from the center. Either of the 

holographic terms contains the entire information of the object wave and so in the 

numerical reconstruction one focuses either on the virtual or real image located at the 

object and image planes respectively. The objective is then to remove the dc term, 

conjugate image and any residual noise in the hologram or alternatively one can simply 

‘cut’ out the relevant frequency information of the holographic image and discard the rest 

via a band-pass filtering procedure. This procedure can be implemented in either the 

spatial or frequency domain. A combination of windows of various shapes and sizes can 

be used to filter the undesired spatial frequencies while keeping intact the contributions 

of the interference terms.  Inserting, a mask into the image spectrum in Fourier space 

allows the holographic term to be isolated and cut out. On the other hand, one notices in 

Fig. 3.4b) that if either holographic term were to be cut out then there would still be weak 

frequency components of the dc term that still would disturb either of the selected 

holographic images and as a consequence would degrade the quality of the reconstructed 

image. These components cannot be removed by filtering in either domain, unlike the 

easily recognizable spurious noise components.  

A simple method for suppression of the dc term is to subtract the average intensity 

from the hologram before reconstruction. A similar effect can be achieved by the 

subtraction of two holograms. This provides a particular effective way of dc suppression 

by experiment. However a disadvantage of either of these methods is the increased 

experimental effort. 

 



 57

3.4 Recording of Digital Holograms 

3.4.1 CCD Cameras for Digital Holography 

Digital holography is very different to conventional holography in terms of the 

recording medium and the way in which the hologram is stored. In conventional 

holography the hologram is recorded on a photographic plate, typically made of silver 

halide which is then chemically processed. The original object wave is subsequently 

obtained by illuminating the recorded hologram with original reference wave.  

In digital holography, the hologram is directly recorded onto the CCD and 

digitally stored in a computer where the object wave is reconstructed numerically on the 

computer. The exposure time of a CCD camera recording a hologram is significantly 

shorter than that of the photographic plate, so it relaxes the stability requirement on the 

recording system, and as a result, moving objects can be recorded with a short pulse of 

light.  

The elimination of the need for chemical processes, quantitative information, easy 

data storage, and the fast recording of holograms are just some of the important 

advantages of using a CCD camera in digital holography. CCD cameras are an essential 

component of exploring the many advantages of digital holography and should be 

carefully selected dependant upon the specific application. There are a number of CCD 

cameras which can be used effectively in digital holography with differing architectures.  

In a full frame CCD, the entire detector surface is first exposed to light and then 

the light is externally blocked off so that readout can occur without further charge 

accumulation during the readout process and in an interline transfer CCD, alternate 

columns of the detector array are masked off with opaque material. To read out the 



image, the charge in each column of “light” pixels is simultaneously shifted into the 

adjacent “dark” column, which is blocked off from light. The drawback of full frame 

CCDs is that they require an external means of controlling exposure, typically a 

mechanical shutter. This increases camera cost, size and weight. Readout speed, which 

influences image noise, is also slower than for interline transfer CCDs.  

 

3.4.2 Spatial Frequency Requirements for Hologram Recording 

For a hologram to be effectively recorded, the CCD camera must be able to record 

all of the interference fringes in the hologram. From signal sampling theory, the Shannon 

criterion requires the sampling frequency be at least twice the highest signal frequency. 

This means that every interferometric fringe of the hologram has to be sampled by at 

least two pixels of the CCD array to resolve the fringe frequency. This requires that the 

angle between the object and reference waves must be sufficiently small.  

The low spatial resolution of a CCD camera means that the maximum angle 

between the reference wave and the object wave is limited to just a few degrees. The 

maximum spatial frequency maxf which needs to be resolved, for the wavelengthλ , is 

determined by the maximum angle maxφ  between the reference and the object beams as 

max
max

2 sin
2

f φ
λ

=       (3.53) 

or 

max
1

2
f

x
=

Δ
       (3.54) 

where xΔ  is the spacing between the pixel elements on the CCD sensor.  
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As the maximum spatial frequency maxf  recorded on the CCD is limited by the 

pixel size of CCD, the angle between the reference and the object wave at any point of 

CCD must not exceed the maximum value maxf . If however the angle between the 

reference and the object wave at some region of the CCD exceeds the maximum 

value maxf , the interference fringe becomes under sampled, this often results in a decrease 

in the resolution of the reconstructed and therefore image aliasing appears in the recorded 

image of the fringe. Hence the distance between neighboring pixels is what limits the 

maximum angle between the object and reference wave. In digital holography, the angle 

between the reference and the object wave must be less than the maximum value maxφ . 

The poor resolution of CCD cameras available today compares rather poorly to 

that of photographic plates. This creates a limitation on the maximum angle between 

object and reference beams and hence the spatial distance that can occur between the real 

and virtual image as shown earlier in Figure 3.4. As a consequence, the three diffracted 

waves often partially overlap during reconstruction. With the introduction of better CCD 

cameras this restriction will be less of a problem. 

 

3.4.3 Lateral Resolution of the Optical System 

The resolution of the reconstructed image depends on the information recorded in 

the hologram. However, this information is influenced by the size and the spatial 

resolution of the recording material. For digital holography the information recorded in 

the hologram is determined by the number of pixels and the pixel size and dynamic range 

of CCD [43,44].  

 59



In particular, the lateral resolution in digital holography is restricted by the pixel 

size of the CCD sensor and therefore the resolution of the reconstructed image is 

determined by the highest spatial frequency maximum of the object wave recorded by the 

CCD camera. For this reason, microscope lenses have to be applied for magnification of 

the object.  

 

3.4.4 Calibration of Optical System in Digital Holography 

The USAF 1951 Test Target shown in Figure 3.5 is one of the most commonly 

used resolution targets in optics. It allows one to determine the lateral resolution of the 

optical system. Table 1 displays the chart for the 1951 resolution target that specifies the 

frequency and line width for each group and element. This standard test object contains 

horizontal and vertical three-bar patterns in the form of a reflecting chromium coating set 

on a glass substrate. The vertical bars are used to calculate horizontal resolution and the 

horizontal bars are used to calculate vertical resolution.  

 

 

Figure 3.5: USAF1951 resolution test target pattern (see www.sinepatterns.com). 
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1951 USAF Resolution Target Data 

Group Element Frequency Line Width 
(um)  Group Element Frequency Line Width 

(um) 
  

-2 1 0.2500 2000   4 1 16.00 31.3 

  2 0.2806 1782     2 17.96 27.8 
  3 0.3150 1587     3 20.16 24.8 
  4 0.3536 1414     4 22.63 22.1 
  5 0.3969 1260     5 25.40 19.7 
  6 0.4454 1122     6 28.51 .17.5 

  
-1 1 0.5000 100   5 1 32.00 15.6 
  2 0.5612 891     2 35.92 13.9 
  3 0.6300 794     3 40.32 12.4 
  4 0.7071 707     4 45.25 11.0 
  5 0.7937 630     5 50.80 9.84 
  6 0.8909 561     6 57.02 8.77 

  
0 1 1.00 500   6 1 64.00 7.81 
  2 1.122 445     2 71.84 6.96 
  3 1.260 397     3 80.63 6.20 
  4 1.414 354     4 90.51 5.52 
  5 1.587 315     5 101.6 4.92 
  6 1.782 281     6 114.0 4.38 

  
1 1 2.000 250   7 1 128.0 3.91 
  2 2.245 223     2 143.7 3.48 
  3 2.520 198     3 161.3 3.10 
  4 2.828 177     4 181.0 2.76 
  5 3.174 157     5 203.2 2.46 
  6 3.564 140     6 228.1 2.19 

  
2 1 4.00 125   8 1 256.0 1.95 
 
 

Table 3.1:  Specification data for the groups and elements of a 1951 USAF resolution 
test target. 
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The resolution target is a vital instrument in the calibration of the holographic 

optical system. It allows determination of parameters such as the image size, number of 

pixels and the lateral resolution of the hologram and reconstructed image. The 

methodology to obtain the correct image size and number of pixels is conducted as 

follows: One calculates the number of pixels on the CCD camera required to draw a 

square box around a specific element made up of 2.5 line pairs. From Table 1 we are then 

able to calculate the physical dimensions of the square box corresponding to the number 

of pixels on the camera. One then increases the required image size to use the highest 

number of square pixels on the camera. 

 



 
 
 
 
 

Chapter 4 

Digital Gabor Holography for Microscopy 

The structure of this chapter is as follows: Section 4.1 introduces the background 

of Gabor holography and the theoretical basis for recording and reconstruction of the 

hologram. Section 4.2 presents a simulation of digital Gabor holography using a 

theoretical object. Section 4.3 examines some of the main applications and limitations of 

the Gabor holographic technique. In Section 4.4 technical details about the experiment 

are discussed. Section 4.5 presents a host of applications of digital Gabor holography in 

microscopy. Section 4.6 looks at the use of digital Gabor holographic movies for 

microscopy and demonstrates some of the technical advantages over conventional 

microscopy. Finally Section 4.7 summarizes and concludes the chapter. 

 

4.1 Introduction to Digital Gabor Holography 

Gabor or ‘in-line’ holography as it is commonly known provides a simple method 

of high-resolution imaging that routinely achieves both micron level, lateral and depth 

resolution in three-dimensional imaging. The same beam serves as the reference wave 

and illuminates the object; no mirrors or beam splitters are strictly needed, but can add 

more capabilities to the holographic optical system.  

In Gabor holography, the object is required to be mostly transparent with small 

thin obstructions, which diffract and scatter the illuminating beam. The light wave 
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arriving at the detector plane consists of the un-diffracted plane wave, the reference (R) 

and the diffracted object wave (O), which interfere to give the holographic interference 

pattern, 2H at the CCD camera 

    
2 2 2 2 * *H R O R O R O RO= + = + + +   (4.1) 

The reference term 2R on the right side of Equation (4.1) is removed by exposing another 

frame with the object removed, whereas the 2O term cannot be removed. However, by 

assuming that the object is mostly transparent then this term contributes only a small 

amount of background noise. The two remaining terms are the virtual image R O∗  and the 

real image RO∗ . These terms are spatially superimposed in the reconstructed field, which 

results in the loss of phase information. Therefore when performing numerical focusing 

in the reconstruction of the hologram, the defocused blur from the conjugate image 

although weak, is problematic as the superposition of these terms effectively blurs the 

details and structures of the reconstructed object wave. This effect combined with the 

need for a mostly transparent object to minimize the 2O term is the main limitation of 

Gabor holography.  

 

4.2 Gabor Holography Simulation 

Figure 4.1 shows a simulation of Gabor holography using a cross and circle as the 

theoretical object. For a mostly transparent object (Fig.4.1a), this results in a positive 

image against dark background (Fig.4.1b). On the other hand, if one uses a Michelson 

interferometer set up, with a separate reference wave, as in off-axis, then both of the first 
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two terms on the right side of Equation (4.1) can be subtracted, and the object – and the 

holographic image – is dark against light background (Fig.4.1c). For a mostly opaque 

object (Fig.4.1d), there is not enough un-diffracted reference in Gabor holography to 

generate image correctly (Fig.4.1e), where as the Michelson holography generates a 

correct image (Fig.4.1f).  

 

 

                        a)                  b)                    c) 

 

                                   d)              e)               f) 

 
Figure 4.1: Gabor and Michelson holography of mostly transparent 
object: a) mostly transparent object; b) Gabor holographic image; c) 

Michelson holographic image.; 
Gabor and Michelson holography of mostly opaque object: d) mostly 
opaque object; e) Gabor holographic image; f) Michelson holographic 

image. 
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4.3 Limitations of Gabor Holography 

Gabor holography is seen to suffer from certain limitations which restrict the 

extent of its applicability. From the simulation in Figure 4.1 one can see that Gabor 

holography is best suited towards the imaging of low density, small discrete opaque 

objects such as particle fields or larger but highly transparent objects such as biological 

cells. This type of object requirement minimizes the amount of noise from the disturbing 

2O term. Besides being limited to specific types of objects, a second limitation of Gabor 

holography is the overlapping conjugate image as depicted in Figure 4.2. The problem 

lies with the fact that they are not spatially separable as is the case in off-axis holography. 

When the real image is brought into focus it is accompanied by the out of focus virtual 

image. Alternately, an observer looking at a focused virtual image also sees a defocused 

real image. The conjugate image however is generally not considered to be a significant 

problem in Gabor holography because its effect at large enough recording distances 

appears as the background signal in the reconstructed image which is often negligibly 

small.  The in-focus image amplitude to out-of-focus conjugate image amplitude ratio is 

proportional to the inverse of the recording distance z. At small recording distances, the 

contrast between the image and its conjugate image is low and both images merge. 

Therefore, the recording distance must be sufficiently large for adequate suppression of 

the disturbing conjugate image.  

A number of methods have been developed for removal of the conjugate image 

and recovery of the phase information [45,46]. If the phase distribution in the hologram 

plane is recovered then it is possible to reconstruct the whole wave field exactly.  
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Figure 4.2: Formation of the conjugate image in a Gabor hologram. 
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Phase-shifting digital holography is one technique in particular which has 

attracted widespread interest [47]. In the phase-shifting technique, the dc term and 

conjugate image are removed through multi-exposure holographic recording while 

shifting the phase of the reference field by an integer fraction of 2π. While this method 

has the disadvantage of increasing the experimental effort; a more serious limitation for 

practical use in microscopy is the requirement of multiple exposures, therefore hindering 

the investigation of dynamic objects.  

Although Gabor holography does not record the phase, it is still very useful for 

the study of suitable objects at high resolution. By taking advantage of the large depth of 

field and the plane-to-plane numerical reconstruction capability of digital holography, 

one can produce 4-D representations of the paths followed by micron-sized objects such 

as biological samples and particles [48]. 

 

4.4 Recording of Digital Gabor Holograms 

Figures 4.3 and 4.4 depict the optical setup for hologram recording in the digital 

Gabor holographic optical system in transmission geometry. The 532nm coherent light 

from a frequency doubled Q-switched Nd:YAG laser (Continuum Minilite II, shown 

schematically with specifications in Figures 4.5 and 4.6), operating at a power of 

~2mJ/pulse is used for hologram recording.  

The main advantage of using a pulsed laser is that it can record an object field at 

selected times and so is able to serve as a useful tool in studying the dynamics of fast 

phenomena. To ensure proper timing in the experiment, a digital delay/pulse generator 

(Stanford DG535) is used to synchronize the pulsed laser and digital camera. 



 

 

 

 

Figure 4.3: Experiment setup for recording of digital Gabor holograms.
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Figure 4.4: Birds-eye photograph of experimental setup for digital Gabor holography.
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Figure 4.5: Optical layout of the Contiuum Nd:Yag Minilite pulsed laser. 

 

 

 

Figure 4.6: Continuum Minilite laser optical layout and specifications. 
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Three channels on the delay/pulse generator are used for triggering, channels T0, A and B 

as displayed in Figure 4.7. Channel T0 is used for triggering of the flash-lamp and 

Channel A is used to trigger the Q-switch on the pulsed laser. Channel B is used to 

trigger the CCD camera to capture a frame. In triggering each channel a TTL pulse is 

used. A delay of 250μs between Channels T0 and A fires the pulsed laser at maximum 

output. Channel B is delayed for 80ns with respect to Channel A. The main purpose of 

this type of triggering is that it allows the speed of frame capture on the CCD to 

synchronize with the dynamics of the object. The CCD camera is a Sony DFW-V500 

YUV/Monochrome, 640x480 pixels with pixel size 7.4μm x 7.4μm. The camera can 

switch between frame rates of 3.75, 7.5, 15, 30 frames per second and also one shot.  

A pulse fired from the laser is reflected from mirrors M1 and M2 of quality . 

The spatial filter effectively brings the beam into sharp focus by means of a 20x 

microscope objective with focal length 9.0mm. A 5μm pinhole placed at the focal plane 

of the microscope objective constitutes the filter. This acts to remove the unwanted 

multiple-order energy peaks and pass only the central maximum of the diffraction 

pattern. This is a diffraction plane in itself. A lens of focal length f = 3.0cm is used to 

collimate the beam from the spatial filter. The coherent plane wave then propagates 

through the object in the setup which is located a distance z from the focal plane of the 

CCD detector, H. The light scattered by the object serves as the object wave and the un-

scattered light serves as the reference wave. The interference between these two waves 

forms a geometrically magnified diffraction pattern on the CCD sensor using a 20x lens 

(L1). Only a small amount of spherical aberration is introduced to the image since both 

reference and object beam angles are normal to the recording plane. The role of 

/10λ
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reconstruction is to obtain the 3-D structure of the object from the 2-D hologram on the 

screen or, in physical terms, to reconstruct the wave front at the object. In the 

reconstruction stage the same plane wave is diffracted numerically. A number of 

LabView and Matlab programs are used for control of the experiment for numerical 

computations and for presentation of the resulting images. 

 

 

 

 

 

 

Figure 4.7: Triggering the system using the pulsed laser in order to capture dynamic 

events on the CCD. 
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4.5 Experimental Results of Gabor holography 

Figures 4.8(a) and 4.8(b) are the hologram and the reconstructed amplitude image 

of a U.S. Air Force (USAF) 1951 positive resolution test target recorded with the 

experimental setup in Figure 4.3. The image area is 250 x 250 μm2, recorded with 464 x 

464 pixels and the image is reconstructed using the Huygens convolution algorithm at z = 

1.30mm from the hologram. The determination of the best focus for the reconstructed 

image is performed by observation alone.  

After image capture of the hologram and digital transfer to the computer, the 

object is removed from the experiment setup and twenty consecutive images of the 

reference beam are captured. The reference beam images are then digitally transferred to 

the computer and averaged to facilitate the removal of the 2R term from the holographic 

interference in Equation (4.1). This in turn leaves  

2 2 * *
r

H O R O R
−

= + + O        (4.2) 

The dc term is mainly made up by the contribution of the reference wave, and therefore 

this term is largely eliminated by this subtraction of the average intensity of the 

hologram. Note however, that this method does not fully remove the dc term. The 

contribution of the 2O term remains and cannot be removed. 

The smallest observable reconstructed vertical three-bar pattern of the resolution 

target in the reconstructed amplitude image is that of the third element of group 7 which 

corresponds to a spatial frequency of 161 line pairs per mm, a line width of 3.1μm and a 

line length of 0.0155mm (see Table 3.1 in Chapter 3). The details of this element are  
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Figure 4.8: The hologram (a), the reconstructed amplitude image (b), and the direct 
image (c), of groups 6 and 7 of USAF 1951 positive resolution Target 

(Area =250μm x 250μm2, Pixels = 464 x 464, z = 1.30mm) 
 

clearly observable in the reconstructed amplitude image. This agrees well with the 

predicted resolution limit of around 2μm using; 

          ~ 2z m
N x
λξ μΔ =
Δ

                 (4.3) 

where ξΔ is the lateral resolution, λ is the wavelength =532nm, z is the distance between 

the object and the CCD array and xΔ is the CCD pixel size = 7.4 mμ .  
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Comparing the reconstructed amplitude image to the direct image as displayed in 

Fig. 4.8(c), one sees that the image quality of the reconstructed amplitude image is 

degraded. The opaque bars of the resolution target occupy a significant portion of the 

image area thus reducing the overall image transparency and as a result there is not 

enough un-diffracted light to reconstruct the image correctly. In addition, the localized 

presence of the defocused conjugate image in the reconstructed image plane creates a 

blur around the bars in the image.  

Figures 4.9(a) and 4.9(b) are the hologram and reconstructed amplitude image of 

groups 6 and 7 of the resolution target. The image area is 250 x 250 μm2, recorded with 

464 x 464 pixels and the image is reconstructed using the Huygens convolution algorithm 

at z = 2.20mm from the hologram. Note the relatively higher image quality of the 

amplitude reconstruction compared to that shown in Figure 4.8(b). This could be because 

of the larger recording distance used in this example. However, the image is still largely 

degraded due to the reduction in overall transparency of the image.  

 

 

Figure 4.9: The hologram (a) and reconstructed amplitude image (b), of groups 6 and 7 
of the USAF 1951 positive resolution Target. 

(Area =250μm x 250μm2, Pixels = 464 x 464, z = 2.20mm) 
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Figure 4.10 displays the Fourier transform of the hologram in Fig.4.9a). The overlap of 

the dc and holographic terms are seen. Most of the energy in the image is concentrated at 

low frequencies from the dc term, most of which can be removed by subtracting the 

average of the reference beam. 

 

 

Figure 4.10: Fourier Transform of the digital Gabor hologram in Fig.4.9 (a). 

 

Figures 4.11(a) and 4.11(b) are the hologram and the reconstructed amplitude 

image of an assembly of onion cells displaying an area of 400μm x 400μm2, recorded at 

456 x 456 pixels, and reconstructed using the Huygens convolution algorithm at a 

distance of 2.50z mm= . The onion cells size and structure are well established, easily 

identifiable and range from 0.25 to 0.4 millimeters in length. The samples were mounted 

by cutting into the surface of the fresh onion material, and peeling off a layer of the 

outermost cells with a razor blade. The sample was then moistened, and applied directly 

between the cover-slip and microscope slide.  
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Figure 4.11: The hologram (a), the reconstructed amplitude image (b), and the direct 
image (c) of a collection of onion cells 

(Area =400μm x 400μm2, Pixels = 456 x 456, z = 2.50mm) 

 

The amplitude reconstruction is able to partially reconstruct the conspicuous cell 

walls of the cells. Nonetheless, when compared to the direct image in Figure 4.11(c) one 

can see that the image quality is again rather poor. There is the presence of large scale 

residual features in the interior of the cell, which suggest that the cells may be dead or 

dying and this introduces a significant amount of coherent noise into the image. These 

residual features also reduce the overall transparency of the cell, and in turn generate  
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adverse effects on the Gabor reconstruction due to the disturbing 2O  term.  

The large depth of field of digital Gabor holographic microscopy with numerical 

reconstruction provides an ideal tool for the study of small discrete objects at different 

focal planes. The hologram and the reconstructed amplitude image of copolymer 

microspheres with a mean diameter of 9.6μm are shown in Figures 4.12(a) and (b) 

respectively, each displaying an area of 300μm x 300μm2, recorded at 364 x 364 pixels, 

and reconstructed at a distance of z = 5.20mm using the Huygens convolution method. 

The microspheres were prepared by mounting in a thin layer of deionized water between 

a microscope slide and a glass cover-slip. The diffraction rings of each particle are 

recognizable from the hologram. When the distance between the particles and the CCD 

sensor is increased, the spacing between concentric rings belonging to an individual 

particle also increases. Figure 4.12(c) shows the direct image of the microspheres.  

In comparison with the direct image the reconstructed amplitude image clearly 

resolved all isolated spheres as well as the two spheres that appear to be in direct contact. 

The fact that the overall transparency of the hologram is increased minimizes the 

degrading effect of the 2O term and results in a higher quality image reconstruction 

when compared to that of the previous examples of the resolution target and onion cells. 

Figures 4.13(a) and Figure 4.13(b) are the hologram and the reconstructed 

amplitude image of a particle field containing differing densities of copolymer 

microspheres within the image. The image area is 300 x 300 μm2, recorded with 364 x 

364 pixels and the image is reconstructed using the Huygens convolution algorithm at z =  
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Figure 4.12: The hologram (a), the reconstructed amplitude image (b), and the direct 
image (c) of copolymer microspheres. 

(Area =300μm x 300μm2, Pixels = 364 x 364, z = 5.20mm) 
 

 
Figure 4.13: The hologram (a) and the reconstructed amplitude image (b) showing 

differing densities of copolymer microspheres 
(Area =300μm x 300μm2, Pixels = 364 x 364, z = 5.60mm) 

 

 

5.60mm from the hologram. The speckle noise in the image increases with the particle 

density. Therefore for a large group of small objects such as the microscopheres clustered 
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together as in the bottom part of the images in Fig. 4.13 the speckle intensity may 

actually be comparable to the focused particle intensity and this makes individual particle 

detection complicated. One may see this effect in Fig.4.13 in the amplitude 

reconstruction  

Figures 4.14(a) and Figure 4.14(b) are the hologram and the reconstructed 

amplitude image of a paramecium, a small unicellular organism that is found in 

freshwater ponds. The image area is 250μm x 250μm2, recorded with 464 x 464 pixels, 

and reconstructed at a distance of using the Huygens convolution method.  0.90mm z=

 

 

Figure 4.14: The hologram (a), the reconstructed amplitude image (b), and the direct 
image (c) of a paramecium 

(Area =250μm x 250μm, Pixels = 464 x 464, z = 0.90mm) 
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Paramecium belong to the protozoa family and range in size from approximately 

100-300μm in length. These organisms contain many complex and interesting features 

within a single cell as shown in the anatomical diagram presented in Figure 4.15 [49].  

In the reconstructed amplitude image it is difficult to identify specific intra-

cellular features as depicted in the anatomical diagram. However, when one makes a 

comparison with the direct image in Fig. 4.14(c) it becomes clear that the paramecium 

contains a number of unresolved intracellular particles with a large range of structural 

scales which effectively increase the speckle noise and simultaneously reduces the 

transparency of the paramecium.  

 

   

 

Figure 4.15: Anatomy of Paramecium. 
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4.6 Digital Gabor Holographic Movies 

Gabor holography offers both a rapid and efficient approach in recording digital 

holograms. This property is particular useful in capturing the motion of moving objects in 

depth. A digital hologram contains information of the whole optical field in a three-

dimensional image volume, which allows for calculation of the image field in any focal 

plane. A time series of digital holograms then provides complete four-dimensional 

information of the object's three-dimensional spatial images as well as the time evolution 

of those images. Once a movie of digital holograms are recorded, one can reconstruct the 

images of the object and be able to focus on any focal plane as a specimen under 

observation moves up and down in the image space. This is the most unique capability of 

digital holographic movie in contrast to conventional video microscopy, where only the 

images of the specific focal plane that was used in recording are preserved and the 

information of all the other planes is lost. This is a critical advantage especially in the 

microscopic recording of animated microbes that are constantly swimming in and out of a 

large range of focal distances. In conventional video microscopy, it is not feasible to track 

the focal distances of rapidly moving microbes, whereas in digital holography a series of 

holograms can be recorded at a fixed distance and the images are later numerically 

focused at leisure and one is able to track the rapidly moving microbes as needed. 

To demonstrate these technical advantages for the creation of holographic movies, 

Figure 4.16 displays a time series of twelve holograms showing a microbe moving 

progressively through pond water between each of the hologram frames. The image area 

of each frame is 100x100μm2, recorded at 428 x 428 pixels and each frame is captured 

with an interval of apart. 0.40t s=
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Figure 4.16: Time-series of holograms of a microbe moving progressively in pond water. 
(Area =100μm x 100μm2, Pixels = 428 x 428) 

  
The holograms are recorded by synchronizing the camera with the laser pulses under the 

control of the digital delay generator. The time-series amplitude images in Figure 4.17 

corresponding to the holograms in Figure 4.15 are reconstructed using the Huygens 

convolution method adjusting image distances in the range z = 0.352-0.354mm for best 

focus of the microbe (highlighted in circle) under observation. The images show the track 

of the specimen to demonstrate 

 84



 
 
 
 

Figure 4.17: Time-series of reconstructed amplitude images of a microbe moving in 
pond water. 

(Area =100μm x 100μm2, Pixels = 428 x 428, z = 0.352-0.354mm) 
 
 
that time resolution is achieved. The reconstructed amplitude images are then composed 

into AVI files to produce the holographic movie in with the microbe is consistently in 

focus even though it is moving through focal planes in depth. This is not possible with 

conventional microscopy. 
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The next biological example concerns euglena, a single-celled organism with 

spindle-shaped bodies ranging in size from 0.025 to 0.050mm in length. Figure 4.18 (a-d) 

shows a time series of holograms recorded 0.40s apart, displaying a number of euglenas 

at different focal depths swimming in pond water. Figures 4.18 (e-h) are the 

corresponding amplitude images, reconstructed using the Huygens convolution method 

adjusting image distances in the range z = 0.464-0.471mm for best focus of the individual 

euglenas. Reconstruction at different depths throughout the volume brings different 

individuals of euglena into focus. One can see how we have focused on one particular 

euglena moving between frames. Note how the other euglenas one of which appears to be 

in focus in the holograms now appear out of focus in the reconstructed amplitude frames 

as they are located at different depths to the plane of focus. In addition, one may observe 

smaller objects swimming about. Closer examination reveals it to be algae of about 10μm 

in diameter.  

 
 

Figure 4.18: Time-series of holograms (a-d) and their corresponding reconstructed 
amplitude images (e-h) of a number of euglenas swimming in different focal planes. 

(Area =200μm x 200μm2, Pixels = 400 x 400, z = 0.464-0.471mm) 
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Any of the individual euglenas can focused throughout the entire movie. This is a 

significant advantage for a biologist interested in a number of objects moving in depth 

during a time sequence. In comparison to a frame captured from conventional video 

microscopy in Figure 4.19, the information of euglenas at different focal planes to the one 

viewed in the figure are effectively lost. 

 

 

Figure 4.19: A single frame of euglenas in pond water captured by a conventional 
video microscope 

 

4.6.1 Automatic Focusing for Digital Gabor Movies 

 After a number of holograms have been recorded, it remains to reconstruct each 

of the holograms. If an object recorded in the holograms is moving in depth, then the 

reconstruction distance is required to be changed between each holographic frame. For a 

user to reconstruct for example hundreds of holograms for the objects best focus by 

observation alone, then this becomes a time consuming and tedious procedure.  
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An interesting property about Gabor holograms is that in the reconstructed 

amplitude image the object appears bright against a mostly dark background. Coupled 

with the fact that only specific objects with certain characteristics are suitable for imaging 

with Gabor holography it is possible to construct auto-focusing algorithms that use the 

contrast and other properties of the image to find the best focus of the object. Upon 

examining the frequency components of an unfocused image, one will find that there are 

relatively few high frequency components. As the image comes into focus, high 

frequency components increase. 

An example of the use of an auto-focus program is illustrated in Figure 4.20. The 

figure displays the hologram and the reconstructed amplitude image of the resolution 

target. The program uses two approaches. The first one uses frequency content to 

determine edge sharpness. The other method uses an edge detector and measures the 

standard deviation of the intensity of the edges, the larger the value, the better the focus. 

The program works by iteratively changing the reconstruction distance starting from a 

user specified value to find the largest numerical values of contrast and therefore find the 

best focus.  

The program algorithm is not able to find the correct best focus in the figure. The 

starting z value was already fairly close to the actual reconstruction plane for best focus. 

The methodology is also probably made more difficult because of how the noise effects 

different parts of the image and the sheer number of objects involved may also cause 

problems.  

There are a number of other approaches that require investigation and other  



contrast methods such as squared gradient, absolute variation, or Laplacian methods 

which may yield better results. The successful integration of a program that automatically 

identifies the correct focus of an object will create a significant improvement for the 

application of this technique in holographic movies. This is a subject of future study. 

 

 
 

Figure 4.20: Auto-focusing of the resolution target. 
 
 
 
4.7 Conclusions of Digital Gabor Holography 

In this chapter, we have described digital Gabor holography for applications to 

biological microscopy. The holographic optical system records Gabor holograms directly 

from an object onto a CCD camera and then reconstructs the object wave-field 

numerically by use of the Huygens convolution method. Although there is a minimum 

reconstruction distance requirement associated with the Huygens convolution method, 

this is insignificant since large recording distances are usually required in order to  
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minimize the merging of the holographic terms. The superposition between the focused 

holographic image and the unfocused conjugate image cannot be avoided and there is, 

inevitably, some noise introduced into the image that cannot be avoided. However, by 

increasing the recording distance, it is possible to partially suppress the conjugate image 

so that it does not disturb the image to a significant degree.  

The microscopic capability of the Gabor holographic system is demonstrated 

through the experimental results of reconstructed amplitude images of diverse objects 

such as a resolution target, copolymer microspheres, onion cells, and protozoa. The 

simulation and experimental results clearly show that only specific types of objects with 

certain physical characteristics are suitable for imaging with Gabor holography. These 

objects are required to be either discrete, small opaque objects, or larger but mostly 

transparent objects. In either case the overall transparency of the image must be 

significant enough so that the 2O term approximates a small amount of background 

noise.  

Biological samples such as paramecium and onion cells, which are considered by 

microscopy terms to be mostly transparent, actually contain a large range of intracellular 

features which create speckle noise in the coherent imaging system. Also, these features, 

in turn, reduce the transparency and cause further degradation in image quality. 

Digital Gabor holographic movies are seen to offer a rapid and efficient approach 

for image capture of a time-series of holograms. In the experimental results, we have 

demonstrated that high-resolution tracking of many objects in 4-D from a single 

hologram data set can be performed. High lateral resolution is achievable, and, thus,  
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tracking of organisms as small as bacteria may be possible. By the use of numerical 

focusing, each single hologram in the data set can be reconstructed at selected depths so 

that the trajectory and speed of a collection of objects can be captured as 3D data sets by 

stacking of the 2D reconstructions. The results show that the digital Gabor holographic 

system outperforms traditional conventional microscopic methods and can accurately 

calculate the object’s position in the z-direction. Other advantages of digital Gabor 

holography are the simplicity of sample preparation, particularly for biological samples 

where neither sectioning nor staining is required, which means that living cells which are 

largely transparent can also be viewed.  

Outside of biological microcopy, there are many other applications for 4-D Gabor 

holographic movies, including particle tracking. 
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Chapter 5 

Quantitative Digital Holographic Microscopy 

This chapter presents the results of digital holography experiments conducted in 

an off-axis configuration. Section 5.1 begins the chapter with an introduction to phase-

contrast microscopy and reviews some of the commonly used techniques in this field. 

Section 5.2 examines how phase information from an object is produced and how one 

may employ this information in order to obtain quantitative evaluation. Section 5.3 

compares the use of the different reconstruction methods to a standard resolution test 

target. Section 5.4 studies the differences between phase and amplitude information in 

biological objects. Section 5.5 presents examples of quantitative phase images obtained 

from digital holography experiments that examine the resolution of the optical system 

and demonstrate the quantitative and qualitative capabilities of digital holography for 

biological microscopy. Section 5.6 discusses the use of quantitative digital holographic 

movies in microscopy and demonstrates the advantages over conventional techniques. 

Finally Section 5.7 ends this chapter with a conclusion and discussion. 

 

5.1 Introduction 

Many microscopic biological specimens, such as living cells and their 

intracellular constituents, are mostly transparent, and therefore are problematic for 

conventional bright-field microscopy. There have been developed a number of techniques 
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for rendering transparent phase objects visible that have played very important roles in 

the development of modern biology and medicine[50], and these include dark field, 

Zernike phase-contrast, and Nomarski differential interference contrast (DIC) 

microscopies.  

In dark field microscopy, only the scattering centers and boundaries contribute to 

the image signal against a zero background. In the phase contrast microscope, the phase 

variation is converted into amplitude variation, and in DIC, the interference of two 

sheared polarization components result in images that have shadow effect and thus give a 

three-dimensional perception of the object. In any of these techniques, the phase to 

amplitude conversion is nonlinear and there are significant artifacts in the images, such as 

the halo in phase contrast and the disappearance of contrast along the direction 

perpendicular to shear in DIC. Quantitative phase imaging is not feasible with these 

techniques. Quantitative phase imaging is important because it allows the determination 

of the optical thickness profile of a transparent object with sub-wavelength accuracy. The 

optical thickness profile depends on the physical thickness as well as the optical index 

variation, and thus one can extract this information with great accuracy [51].   

White-light interference microscopy [22] and optical coherence microscopy [52] 

have been used to generate quantitative phase images but these require multiple 

exposures or mechanical scanning.  

Digital holography offers an excellent approach for quantitative phase imaging. A 

hologram that consists of the interference between the object and the reference beams is 

recorded by a CCD camera and the holographic image is numerically reconstructed inside 

a computer using the results of diffraction theory. Calculation of the complex optical field 
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allows direct access to both the amplitude and the phase information of the optical field, 

and by numerical focusing the images can be obtained at any distance from a single 

recorded hologram.  

 

5.2 Quantitative Evaluation by Digital Holography 

Amplitude objects change only the amplitude component of the light, leaving the 

phase unchanged. On the other hand, phase objects change the phase of the light passing 

through them, leaving the amplitude unaltered as illustrated in Figure 5.1. As each wave-

front passes through the specimen, it is deformed and retarded (or advanced) according to 

the geometry, refractive index differential, and the thickness of the specimen. An incident 

wave-front present divides into two different components upon passing through a phase 

specimen. The first component is the un-diffracted, zero-order wave-front that passes 

through and around the specimen, but does not interact with it. In addition, a second 

component is the deviated or diffracted wave-front, which becomes scattered in many 

directions and increases with specimen size. This scattering is essentially caused by 

discontinuities in the specimen’s refractive index. A non-absorbing substance with a 

homogeneous refractive index is transparent.  

Biological tissue, however, often contains many refractive index discontinuities. 

A refractive index change in a transparent medium leads to a change of the optical path 

length, which is proportional to the product of the refractive index and the optical 

thickness. This optical path length change can be formulated mathematically in a phase 

change in the wave-front. 

 



 

 

 

 

Figure 5.1: A phase shift is produced when a wave-field impinges on an object with a 
refractive index different to the surrounding medium. The phase shift is a product of the 

variation of the relative index of refraction and the optical thickness of the object. 
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This corresponding change in the interference phase is 

       0
2( , ) [ ( , , ) ]x y n x y z n dzπφ
λ

Δ = −∫        (5.1) 

where  is the refractive index of the medium under observation in its initial, 

unperturbed state and n(x, y, z) is the final refractive index distribution.  

0n

From Equation (5.1) the physical thickness of the object can be expressed as  
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λ φ
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Δ
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        (5.2) 

where  represents the physical thickness of the object, objd objφΔ  is the optical path length 

change of the object with refractive index  and is the refractive index of the 

surrounding medium. Once the phase information 

objn 0n

objφΔ  is obtained from the 

reconstruction of the hologram, knowledge of the physical thickness of the sample allows 

calculation of the refractive index or vice versa. This method can be applied for the shape 

measurement of transparent microscopic samples, such as living cells.  

 

5.3 Experimental Setup for Off-Axis Digital Holography 

The digital holography experiments are performed using the apparatus 

schematically depicted in Figure 5.2. In Figure 5.3, we show a birds-eye view of the 

setup by a photograph. A miniature pulsed Nd:YAG laser (Continuum Minilite) operates 

at 532nm, with an energy of 2 mJ per 10ns Q-switched pulse. The pulse repetition rate is 

15Hz. The laser output, which is spatially-filtered and collimated, is split into a reference 

and object beam in a transmissive interferometer setup based on the Mach- 
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Zehnder configuration.  The benefit of this type of interferometer is that the path length in 

both arms is equal due to the symmetry of the setup. Therefore it can be used to measure 

the amount of phase modulation caused by an object placed in one arm of the 

interferometer. 

The object specimen, mounted on a xyz-translation stage, is placed at a distance z 

from the hologram plane H, whose magnified image is projected on the CCD camera, 

along with the reference beam. A pair of similar microscope objectives, either 20X, 

0.4NA, or 40X, 0.65NA depending on the desired lateral magnification, is used in the 

two optical branches to match the curvatures of the two wave-fronts. A slight angle is 

introduced between the object and the reference beams by tilting the beam splitter BS2 

for off-axis holography. The camera (Sony DFW-V500) has an array of 640 x 480 pixels 

on a 4.7 x 3.6 mm2 active area, with 8-bit gray scale output. A digital delay generator 

(Stanford Research DG535) triggers both the laser and the camera at a repetition rate of 

15 Hz.  

The microscope objectives L1 and L2 and the beam splitter BS2 are adjusted in 

the experimental setup so that the interference fringes are straight and so avoiding the 

need to perform any digital correction due to spherical aberration introduced by the 

microscope objectives. Another parameter that characterizes the interference fringes is 

the spacing between them.  

An IEEE1394 cable connects the camera to the desktop computer, which 

processes the acquired images and calculates the holographic diffraction using a number 

of programs based on LabVIEW® and MatLab®.  
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The Labview programs allow the user to view the amplitude, the phase, and the 

real and imaginary parts of the reproduced object. The program can also change the angle 

of the plane at which the object is recreated. This is equivalent to viewing the object from 

a different angle. This is a very useful feature for flat objects because the off-axis 

hologram reproduces the image as having a horizontal tilt equal to the angle of the 

reference mirror. This would generate phase maps that exceed the repeat distance and 

cause wrap around. The angle is selected so that the phase maps have the least number of 

fringes. This can also compensate for any tilt the object may have originally had. 

 

5.3.1 Optical alignment 

An important factor in the experimental methodology is to quickly observe 

whether the hologram produced at the CCD camera is of a sufficiently good quality. It is 

very difficult to know whether hologram will be able to provide a high quality 

reconstruction of the amplitude and phase image just by simply looking at the 

holographic image. Furthermore the high sensitivity of the hologram to minute changes 

in alignment in the experiment also makes a substantial difference to the quality of the 

image reconstruction.  

An efficient methodology that allows for efficient and accurate alignment of the 

holographic optical system is to look at the angular spectrum (Fourier transform) of the 

hologram recorded by the CCD camera in real time. Any changes that are made in the 

experiment are registered in the angular spectrum in real time. This allows one to make 

subtle changes in the experiment to obtain the best possible spectrum that will be able to 



produce a good reconstruction. Factors to consider are sufficient angular separation of the 

dc and holographic terms and any spurious noise. 

Particular attention must be paid to the adjustment of the angle between object 

and reference beams, which must not exceed a maximum value.  

 

5.4 Phase Unwrapping 

 Once the hologram has been reconstructed, both the amplitude and the phase 

information of the object are available. The phase information, however, contains 

2π discontinuities wherever the extreme value of φΔ corresponding to either π− or π  are 

reached. In general, the true phase may range over an interval greater than 2π , in which 

case the phase contains artificial discontinuities. To improve interpretation of the 

reconstructed phase image the process of phase unwrapping ensures that all appropriate 

multiples of 2π  phase errors are removed from the image. Unwrapping these 

discontinuities is a matter of adding an appropriate integer multiple of 2π  to each pixel 

element of the wrapped phase map. In practice, however, the presence of noise and 

residues complicates effective phase unwrapping.  

Figure 5.4 displays the problem of the 2π discontinuity. The theoretical object is 

a tilted ramp of arbitrary height. Wherever a phase variation of 2π  exists, a phase 

discontinuity occurs. The true unwrapped phase image can be expressed as 

( ) ( ) 2 ( )uwap wrapr rφ φ π= + n r         (5.3) 

where is the unwrapped phase, is the wrapped phase in the phase range 

of 

( )uwap rφ ( )wrap rφ

π− to π , r represents the pixel position and n(r)is an integer factor to be determined.  
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Figure 5.4: The phase variation of a tilted ramp displaying discontinuities wherever the 

object height is greater than the phase variation of 2π . 

 

Figure 5.5 presents the unwrapped phase data for the tilted object in Figure 5.4 

with the implementation of Equation (5.3). The discontinuities are removed by the 

addition of integer values of 2π . 

 

 

Figure 5.5: Removal of 2π discontinuities for the tilted object in Figure 5.3 by addition 
of integer multiples of 2π . 
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A number of phase unwrapping algorithms have been developed, each with 

varying complexity and requirements [53,54]. The simplest algorithm checks adjacent 

pixels in the wrapped phase and, when it exceeds some threshold value, takes this 

difference as the phase jump and adds 2π±. However depending on the initial start 

position and thereby the unwrapping path chosen, one may get different unwrapped phase 

fields, depending on the unwrapping path chosen. As phase unwrapping is an integrated 

process, an error on the previous point can propagate along the unwrapping path. 

Therefore, determining an optimized path is a critical step toward completely reliable 

phase unwrapping. Other issues in phase unwrapping include the presence of speckle 

noise and also complex surfaces which may cause an acute change in the fringe 

distribution, or even fringe discontinuity. Therefore the process is not as simplistic as 

may first seem. 

In this thesis the phase images are all processed by the use of a flood-fill 

algorithm to perform computational phase unwrapping as outlined in Appendix C. Like 

many other phase unwrapping algorithms, it starts from a defined position and calculates 

the difference of neighboring pixels in the wrapped phase and, when it exceeds some 

threshold value, takes this difference as the phase jump. The algorithm also makes use of 

edge detection before unwrapping to determine features in the image which may cause 

errors.  

The main drawback of this algorithm is the rather long time it requires for 

processing. The average time to unwrap an image is approximately three minutes and this 

creates a serious limitation for obtaining real time processing of dynamic effects. 

 



5.5 Comparison of numerical reconstruction methods 

Figure 5.6 shows the application of the Fresnel, convolution and angular spectrum 

methods to the reconstruction of the image of a resolution target. A 25 x 25μm2 area of 

the USAF resolution target is imaged containing the group 7 element 6 using 452 x 452 

pixels. Figure 5.6(a) shows the holographic interference pattern recorded by the CCD 

camera, and its Fourier transform in Fig. 5.6(b) is the angular spectrum. It contains three 

main peaks that correspond to the spectra of the zero-order and the two twin-images. One 

of these peaks – the highlighted rectangular area – is selected, a propagation phase factor 

(z = 7μm) is multiplied, and inverse-Fourier transformed to obtain the amplitude image in 

Fig. 5.6(c) and the phase image in Fig. 5.6(d).  

Any further filtering may be carried out in the selected rectangular area 

highlighted in Fig. 5.6(b) to remove spurious noise components. The noise contributions 

are clearly observable in the hologram spectrum, because they often arrive on the CCD 

with incidence angles that are distinct from the incidence angle of the object wave. In 

addition noise associated with the camera can also be removed. 

The individual bars displayed in the figure are 2.2μm wide, and are clearly 

resolved and consistent with the diffraction-limited resolution of 0.5μm for a 0.65 NA 

lens. The resolution target is a positive mask with opaque chrome film pattern on 

transparent glass plate, used in transmission. From the analysis of the phase map, the 

phase step of the metal strip is ~ 52° . The physical thickness of film is given by Equation 

(5.2) where λ  is the wavelength, objφΔ   is the phase step, and  is the index 

difference between the film and air.  

0objn n−
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Using a known estimate of the film thickness of 50nm, the optical index (real part) of the 

metal film is ~2.5. The noise level of the flat area is ~ 10° , which corresponds to glass 

thickness variation of ~30 nm. (On the film-coated bar areas, the lack of light causes 

larger uncertainty in phase.) The phase map is rendered in pseudo-colored 3D perspective 

in Fig. 5.6(i). Especially notable in the phase map is the lack of the coherent noise 

conspicuous in the amplitude image and prevalent in most other holographic imaging 

methods. The amplitude and phase images obtained from the Huygens convolution 

method are shown in Fig. 5.6(e) and 5.6(f), as well as those obtained from the Fresnel 

method in Fig. 5.6(g) and 5.6(h). The main reason for the obvious degradation of these 

images is the insufficient off-axis angle to separate out the zero-order component. The 

effect is most detrimental in the Fresnel images, where part of the holographic image is 

buried in the zero order background, and its phase image is completely scrambled. The 

effect shows up as the spurious interference patterns in the convolution images. While the 

minimum off-axis angle must be strictly satisfied in order to avoid the zero-order 

intrusion in Fresnel or convolution methods, the control and removal of zero-order 

component is straightforward and flexible in the angular spectrum method. Another 

potential problem is that the Fresnel and convolution methods require minimum 

hologram distance to avoid aliasing, whereas the angular spectrum method does not have 

such minimum and the image can be calculated even at zero distance[15]. For the 

particular example shown here the minimum distance happens to be 2.6μm and therefore 

is not an issue, but the images shown below in Fig. 5.6 are obtained at 

 z = 5μm < zmin = 18μm,  

the Fresnel or convolution methods would not have worked. 



 

 
 
 

Figure 5.6: Holography of a resolution target. The image area is 25 x 25 μm2 (452 x 452 
pixels) and the image is at z = 7μm from the hologram: (a) hologram; (b) angular 

spectrum; (c) amplitude and (d) phase images by angular spectrum method; (e) amplitude 
and (f) phase images by Huygens convolution method; (g) amplitude and (h) phase 

images by Fresnel transform method; (i) 3D pseudo-color rendering of (d). The 
individual bars are 2.2μm wide. 

 

 
 106



The optical field can be calculated at any number of image planes from a single 

hologram. Figure 5.7 illustrates the use of the angular spectrum method in numerical 

focusing of a group 6 element of the resolution target. The panel shows a sequence of 

eight images calculated in the range of z = 1–15μm in steps of 2μm. Each image is a 

30×30 μm2 area of a resolution target. As the focus is scanned, one observes the bars 

move into focus as it passes through the various image planes. Note that the object comes 

into focus at around 10μm. For Huygens and Fresnel methods this distance would have 

been smaller than zmin. 

 

 
 
 

Figure 5.7: Numerical focusing in digital holography of an element of a USAF 1951 
resolution target from a single hologram. Images are of a 30 × 30μm2 area (360 × 360 

pixels) with z scanned from 1 to 15μm in steps of 2μm. 
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5.6 Phase Imaging Digital Holography 

 Coherent noise is a major problem for imaging with lasers and often leads to 

degradation of the image quality. In digital holography, the phase images tend to suffer 

from the coherent noise to a significantly lesser degree compared to the amplitude 

images. This is because the amplitude image reflects the intensity variations in the 

reference wave, whereas the phase noise mostly comes from the quality of the optical 

surfaces in the imaging system. Furthermore while amplitude measurements are 

equivalent in resolution and quality to classical optical microscopy, phase measurements 

can lead to images with an optical thickness resolution of a few nanometers.  

Figure 5.8 displays digital holography of a paramecium, which is a partially 

transparent. unicellular protozoan with considerable intracellular complexity. The image 

area is 250 x 250μm2, recorded at 464 x 464 pixels and the images are reconstructed at z 

= 770μm from the hologram. The most conspicuous feature in the amplitude image in 

Fig.5.8 (b) is one of the two contractile water vacuoles, which is shown as a bright spot. 

The other water vacuole and the macronucleus are not readily visible in the amplitude 

image, while there is a hint of them in the phase images. Slightly different directions of 

reconstruction reference waves are used in the phase images figures 5.8(c) and 5.8(d), 

which may be useful for emphasizing different aspects of the microscopic images. One 

may notice from these images that the paramecium is not highly transparent as 

demonstrated by the amplitude image and there exists a large number of features with 

varying indexes of refraction that produce speckle and somewhat degrade the image 

quality. 



 

Figure 5.8: Holography of a paramecium, showing a) hologram, b) amplitude, c) and d) 
phase images of a 250 x 250 μm2 (464 x 464 pixels) area with z = 770μm. 

 

Figure 5.9 presents another example of digital holography of a paramecium. Note 

the phase variations that occur on the edge of and within the paramecium itself in the 

phase image in Fig. 5.9(c). Compared to the amplitude image in Fig.5.9 (b), the phase 

image reveals more information of the intracellular features. 

 

 
 

Figure 5.9: Holography of a paramecium, showing a) hologram, b) amplitude, and c) 
phase image (Area =250μm x 250μm2, Pixels = 464 x 464, z = 0.561mm). 

 
 

Examples of digital holography of onion cells are shown in Figure 5.10. In the 

upper row, a 100 x 100 μm2 area of a layer of onion cells is shown. The cell walls are 

sharply focused in the amplitude image and the phase image shows an accurate 

representation of the optical thickness, modulo wavelength, of the cell bodies. The 
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images of 70 x 70 μm2 area in the lower row focus on the nucleus of a cell. The phase 

image is a clear view of the optical thickness variation of the nucleus in the middle of the 

bulged body of the cell. A simple quantitative analysis of the cell’s index of refraction is 

possible. By counting the number of fringes, the optical thickness of the nucleus is easily 

determined to be 3.5λ = 1.86μm thicker than the cell body. If we assume that the shape of 

the nucleus is spherical so that its thickness is the same as the 19μm diameter of the 

circular image, then the refractive index difference between the nucleus and the cell body 

is 0.093.  

 
 

 
 

Figure 5.10: Holography of a layer of onion cells. Images of a) hologram, b) amplitude, 
c) wrapped phase, and d) unwrapped phase in the upper row are a 100 x 100μm2 (416 x 

416 pixels) area with z = 174μm, while the images e), f), g), and h) in the lower row 
are a 70 x 70μm2 (464 x 464 pixels) area with z = 6μm. 
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5.7 Quantitative Phase-Contrast microscopy by Digital holography 

Quantitative phase imaging is particularly effective in digital holography – one 

only needs to plot the phase of the calculated complex optical field. Figure 5.11 displays 

digital holography of the smallest elements of group 7 on the resolution target. The panel 

displays the (a) hologram, (b) amplitude image, (c) phase image, (d) phase image 

unwrapped by software algorithm, (e) z-profile of the optical thickness cross section and 

(f) is the pseudo-color 3D rendering of the phase image unwrapped by software 

algorithm. 

The hologram is recorded at a distance z = 3µm from the focal plane of the CCD 

camera and thus is not recorded in focus. The reconstruction is performed by application 

of the angular spectrum algorithm which has no set minimum reconstruction distance and 

the determination of best focus of the image is done by observation. The smallest 

resolvable bars are that of group 7, element 6 corresponding to a line width of 2.2µm. 

The optical thickness resolution was determined quantitatively by analysis of the noise 

level in the flat area in the unwrapped phase image, which corresponds to glass thickness 

variation and is calculated to be around 8nm by the use of Equation 5.2 (On the film-

coated bar areas, the lack of light causes a larger uncertainty in phase).  

The low noise characteristics of phase imaging are further demonstrated in Figure 

5.12, which shows digital holography of group 6, element 2 of the resolution target. The 

panel displays the (a) unwrapped phase image, (b) the z-profile of the optical thickness 

cross section, and (c) the pseudo-color 3D rendering of the unwrapped phase image.  The 

quantified noise in the flat areas of the unwrapped phase image is determined to be 

around 3nm as displayed in the R.M.S cross section profile.  



 

Figure 5.11: Digital holographic images of group 6 of a resolution target with area 50 x 
50 µm

2
. The image is at z = 3μm from the hologram: (a) hologram; (b) amplitude; (c) 

wrapped phase image; (d) unwrapped phase image, (e) z-profile of cross section as 
displayed in (d) and (f) 3D pseudocolor rendering of (d). 
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Figure 5.12: Digital holography of group 6 element 2 of the resolution 
target. The images are the (a) unwrapped phase image, (b) z-profile of 

cross section as displayed in (a) and (c) the 3D pseudocolor rendering of 
(a). 
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Figure 5.13 shows another example of digital holography of a group 6 element of 

the resolution target. The panel displays the (a) hologram, (b) amplitude image, (c) phase 

image, (d) phase image unwrapped by software algorithm, and the pseudo-color 3D 

rendering of (d) is shown in (e). In Fig. 5.13(e), one may notice how there is a large 

amount of noise produced in the bars due to a lack of signal from an opaque object in a 

transmission setup. However, this noise is reduced considerably at the edges of the bars 

suggesting that there may indeed be some signal from these areas. Further evidence of 

this phenomenon is also observed when looking at the amplitude image reconstruction, 

where there is a small hole in one of the bars. In the phase image the immediate area 

around this hole appears to be fairly noiseless with respect to that of the inner parts of the 

bars. The area around the bars is again demonstrated to contain low noise as can be seen 

in the 3D profile or unwrapped phase image. 

Figure 5.14 displays higher magnification digital holographic images of groups 8 

and 9 of the resolution target, where the smallest resolvable bars are that of group 9, 

element 2, with line width of 0.87µm. This value is consistent with that of the Abbe 

criterion  

0.61 / . ~ 0.81N A mξ λ μΔ =         (5.4) 

for diffraction limited imaging of the optical system.  

Thus the lateral resolution is only restricted by the diffraction limit. In general, 

one may note that the lateral resolution of the system by Equation (5.4) can be improved 

either by use of a higher-N.A. objective or by an increase in the size of the beam incident 

onto the objective lens.  
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Figure 5.13: Digital holographic images of group 6 element of the resolution target with 
area 40 x 40 µm

2
. The image is at z = 3μm from the hologram: (a) hologram; (b) 

amplitude; (c) wrapped phase image; (d) unwrapped phase image, and (e) 3D pseudo-
color rendering of (d). 
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Figure 5.14: Digital holographic images of group 8 and 9 of a resolution 

target with area 25 x 25 µm
2 
(424 x 424pixels). The image is at z = 2μm from the 

hologram: (a) hologram; (b) amplitude; (c) wrapped phase image; (d) unwrapped phase 
image and (e) 3D pseudo-color rendering of (d). The smallest bar is that of group 9, 

element 2 and is 0.78μm wide. 
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A problem with the form of the experimental setup as depicted in Figure 5.2 is 

that the sample orientation is required to be mounted vertically instead of horizontal, as is 

the case in most conventional microscopic systems. This is fine for most samples that 

require no specific preparation and can be carried out with some sticky tape and a lens 

holder. However, it causes an inconvenience when performing imaging analysis of living 

biological cells. Furthermore, another problem is that cells require both the correct 

amount of CO2 and a temperature of around in order to be sustained over long 

periods of time. The usual methodology in conventional microscopy is to place the living 

cells horizontally in a chamber maintained at the correct temperature and CO

37.2 C°

2 gas 

concentration. With these factors in mind, adaptations were made to both the sample 

preparation and the mounting in order to satisfy the requirements for the experiments.  

The sample preparation for live cell imaging is shown schematically in Figure 

5.15. The cells were grown directly on a cover slip in a culture solution. The cover slip 

was then put inside a rectangular shaped quartz cell (STARNA Rectangular cell with path 

length 1mm) as illustrated in Figure 5.15 and DPBS, 1X w/Ca and Mg solution was 

simultaneously added into the quartz cell along with the cover slip containing the cells in 

order to keep the cells alive for periods of up to approximately 4-6 hours. The object 

beam entered the sample from the slide glass side. As the cell was attached to the cover 

slip, the focus was adjusted to the inner side of the cover slip. Although we were able to 

keep the cells alive for sustained periods of time using the DPBS, the cells were not in 

optimum conditions.  This, we believe, severely reduced both the mobility and also the 

quality of the cells. Long periods of cell analysis require a special preparation of the 

biological sample. This preparation mainly refers to the fixation of the biological sample.  
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Figure 5.15: Schematic of live sample preparation. 

 

The fixant is applied to kill the cell and to keep its form at the certain stage of 

development or change by external influence. This is particularly useful for studies of 

cells in an essentially ‘frozen’ state. 

Figure 5.16 show images of a living mouse embryo fibroblast cell. Figure 5.16(e) 

which is the pseudo-color 3D rendering of Fig. 5.16(d) shows the high quality and 

contrast of surface detail of the cell obtained with phase imaging and provides an 

accurate and qualitative profile of optical thickness. To produce the optical thickness 

profile by Equation (5.2), a refractive index estimate of 1.375 was used for the cell [55].  
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Figure 5.16: Holography of mouse embryo fibroblast cell. The image area 
is 60 x 60 µm

2
 (424 x 424 pixels) and the image is at z = 14μm from the 

hologram: (a) hologram; (b) amplitude; (c) wrapped phase image; (d) 
unwrapped phase image and (e) 3D pseudocolor rendering of (d). 
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Figure 5.17 shows digital holography of an onion nucleus. The panels display the 

(a) hologram, (b) amplitude image, (c) phase image, and (d) phase image unwrapped by a 

software algorithm. Pseudo-colour 3D rendering of (d) is shown in (e).The image size is 

30 × 30μm2 with 436 × 436 pixels and is reconstructed at z = 22μm from the hologram. 

The phase image is a clear view of the optical thickness variation of the nucleus in the 

middle of the body of the cell. 

 

 

Figure 5.17: Holography of an onion nucleus. The image area is 30 x 30μm2 (436 x 436 
pixels) and the image is at z = 22μm from the hologram: a) hologram, b) holographic 

amplitude and c) phase images; d) unwrapped phase image; e) 3D pseudocolour 
rendering of d). 
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Figure 5.18 shows another example of digital holography of an onion nucleus. 

The panels display the (a) hologram, (b) amplitude image, (c) phase image, and (d) phase 

image unwrapped by a software algorithm. Pseudo-colour 3D rendering of (d) is shown  

in (e).The image size is 30 × 30μm2 with 452 × 452 pixels and is reconstructed at z = 

13μm from the hologram. The nucleus appears close to the cell wall and appears to be 

enlarged to a significant degree. 

 

 

Figure 5.18: Holography of an onion nucleus. The image area is 40 x 40μm2 (452 x 452 
pixels) and the image is at z = 13μm from the hologram: a) hologram, b) holographic 

amplitude and c) phase images; d) unwrapped phase image; e) 3D pseudocolour 
rendering of d). 
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Figure 5.19 displays digital holography of red blood cells.  The panels display the 

(a) hologram, (b) amplitude image, (c) phase image, and (d) phase image unwrapped by a 

software algorithm. Pseudo-colour 3D rendering of (d) is shown in (e).The surrounding 

medium is air and we apply a constant index of refraction estimate of n = 1.375 for the 

blood cell to produce the optical thickness scaling as seen in the pseudo-color 3D 

rendering. From the analysis of the phase map we infer the average optical thickness of 

the blood cells to be around 0.6μm. Figure 5.20 shows the 3D rendering from Fig.5.19 (e) 

where the color-map has been adjusted for better color visualization of the red blood 

cells. 

 

Figure 5.19: Digital holographic images of red blood cells of area 60 x 60 
µm

2 
(408 x 408pixels). The image is at z = 4μm from the hologram: (a) 

hologram; (b) amplitude; (c) wrapped phase image; (d) unwrapped phase 
image and (e) 3D pseudocolor rendering of (d). 
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Figure 5.20: 3D pseudo-color rendering with color-map adjustment of the 
unwrapped phase image in Fig. 5.18 (d). 
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Figure 5.21 displays digital holography of a single red blood cell.  The panels 

display the (a) hologram, (b) reconstructed amplitude image, (c) reconstructed phase 

image, and (d) phase image unwrapped by a software algorithm. (e) The Fourier 

Transform of (d) is shown in Fig. 5.21 (e) and the pseudo-color 3D rendering of (d) is 

shown in (f).  Figure 5.21 (g) is an SEM image of a red blood cell at 14,000x. The 

morphological shape of the cell in the 3D rendering clearly defines the cell as a flat disk 

with the center pushed in which provides a larger surface area for absorption of oxygen. 

The shape in the 3D rendering corresponds well to that of the SEM image. The thickness 

of the cell is again measured to be approximately 0.6μm and the diameter is 

approximately 8μm. The angular spectrum shows the clear separation of the holographic 

terms and the dc component by careful control of the optical elements in combination 

with the use of the angular spectrum in real time.  

 Figure 5.22 shows digital holography of a number of red blood cells. Some of 

which are seen to be clumped together. The panels display the (a) hologram, (b) 

reconstructed amplitude image, (c) reconstructed phase image, and (d) the phase image 

unwrapped by a software algorithm.  A pseudo-color 3D rendering of figure 5.22(d) is 

shown in figure 5.22(e). The red blood cells show the well defined central indentation in 

the form of the familiar doughnut shape. Note here, the uniformity in the shape of the 

cells but slight variations in the size. The variation in size could be due to drying over 

time, which would undoubtedly affect the morphological properties of the cell. The red 

blood cells are seen to have no internal organelles and are internally uniform and 

amorphous.  

 



 
Figure 5.21: Digital holographic images of a single red blood cell of area 

60 x 60 µm
2 

(408 x 408pixels). The image is at z = 4μm from the 
hologram: (a) hologram; (b) amplitude; (c) wrapped phase image; (d) 
unwrapped phase image, (e) angular spectrum, (f) 3D pseudo-color 

rendering of (d) and (g) SEM image at 14,000x. 
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Figure 5.22: Digital holographic images of red blood cells with area 50 x 50μm2

. The image is at z = 6μm from the hologram: (a) 
Hologram; (b) wrapped phase image; (c) unwrapped phase image and (d) 3D pseudocolor 

rendering of (c). 
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Figure 5.23 displays the reconstruction of a SKOV-3 ovarian cancer cell. The area 

in the image is 60×60μm2, recorded with 424×424 pixels. Figure 5.23(a) is the 

holographic interference pattern recorded by the CCD camera, and its Fourier transform 

in figure 5.23(b) is the angular spectrum. It contains both the zero order and twin images, 

as well as an artifact due to stray interference components. The virtual image component, 

the highlighted circular area, is selected. A propagation phase factor (z=1.0μm) is 

multiplied, and finally inverse-Fourier transformed to obtain the amplitude image in 

figure 5.23(c) and the phase image in figure 5.23(d).  

The layer of lamellipodia around the edge of the cell is found to be about 110 nm, 

assuming n = 1.375 for the cell. The phase map is rendered in pseudo-coloured 3D 

perspective in figure 5.23(h). Especially notable in the phase map is the lack of the 

coherent noise conspicuous in the amplitude image and prevalent in most other 

holographic imaging methods. The amplitude and phase images obtained from the 

Huygens convolution method are shown in figures 5.23(f) and 5.23(g), while those 

obtained from the Fresnel method are omitted because they are completely scrambled. 

The main reason for the obvious degradation of these images is the insufficient off-axis 

angle at such short z distance to separate out the zero-order component. 

In Figure 5.24 we show digital holography of a living HUVEC (Human Umbilical 

Vein Endothelial Cell). The image demonstrates high clarity and quality, displaying the 

nuclear membranes morphological structure in detail. The lamellipodia of the cell are 

seen to extend out in order to occupy a large area as it attempts to migrate. The 

improvements in the digital holographic process is achieved in part by the use of the 
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Figure 5.24: Holography of a HUVEC cell. The image area is 70 x 70 μm2 (448 x 448 
pixels) and the image is at z = 12μm from the hologram: a) hologram; b) amplitude and 

c) phase images; d) unwrapped phase image; e) 3D perspective rendering of d). 
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angular spectrum method for diffraction calculation, which has several advantages over 

the more commonly used Fresnel transformation or Huygens convolution methods. 

Spurious noise and interference components can be tightly controlled through the 

analysis and filtering of the angular spectrum. The reconstruction distance does not have 

a lower limit and the off-axis angle between the object and reference can be lower than 

the Fresnel requirement and still be able to cleanly separate out the zero-order 

background.  

Figure 5.25 presents holographic images of a confluent group of SKOV-3 ovarian 

cancer cells by angular spectrum digital holography. The panels display (a) Zernike phase 

contrast image (of similar but different portions of the sample than the holography 

images), (b) holographic amplitude and (c) phase images, and (d) phase image 

unwrapped by a software algorithm. Pseudocolor 3D rendering of (d) is shown in (e). The 

image size is 60 x 60 μm2 with 404 x 404 pixels.  

In the figure we see the phenomenon of cuboidal cells connecting together into an 

epithelial sheet and producing the grooves between cells. A gap in the confluence is also 

accurately imaged in Fig. 5.25(e), except for a few spikes due to a defect in the phase-

unwrapping algorithm.  

The comparison between the amplitude and phase images highlights the main 

differences in image quality and noise dependence. In the amplitude image many features 

of the cells are hard to distinguish from the background and significant intensity variation 

may indicate the presence of coherence noise which is not visible in the phase images. 

 

 



 

 

 

 

Figure 5.25: Holography of confluent SKOV-3 ovarian cancer cells. The image area is 
60 x 60μm2 (404 x 404 pixels) and the image is at z = 10μm from the hologram: (a) 
Zernike phase contrast image; (b) holographic amplitude and (c) phase images; (d) 

unwrapped phase image; (e) 3D pseudocolor rendering of (d). 
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Figure 5.26 is a particularly unambiguous demonstration of the level of image 

resolution and fidelity that can be obtained by the present technique, displaying the 

nuclear membranes and chromosomes. The panels display (a) Zernike phase contrast 

image (of similar but different portions of the sample than the holography images), (b) 

holographic amplitude and (c) phase images, and (d) phase image unwrapped by a 

software algorithm. Pseudocolor 3D rendering of (d) is shown in (e). The image size is 60 

x 60 μm2 with 404 x 404 pixels. The overall height of the cell is calculated to be about 

2.8μm, with the assumption of the average index of the cell to be 1.375. Thickness of the 

lamelipodium around the edge of the cell is determined to be about 320 nm. The noise 

level in the substrate area is 60 nm, which may be partly due to the residues from fixing 

of the cells. From this we infer that the corrugated texture of cellular surfaces in Fig. 

5.26(e) is not likely to be noise or artifact of holographic process. Such texture is evident 

in the Zernike phase contrast image of Fig. 5.26(a) and is known to exist in such 

confluent cells. The depth of the texture is estimated to be about 120 nm. 

Figure 5.27 presents digital holography of a single SKOV-3 ovarian cancer cell. 

The panel displays the (a) hologram, (b) holographic amplitude and (c) phase images, and 

(d) phase image unwrapped by a software algorithm. Pseudocolor 3D rendering of (d) is 

shown in (e). The image size is 60 x 60 μm2 with 404 x 404 pixels. The image shows a 

clear view of the thin but broad projections of the lamellipodia at the edge of the mobile 

cell which pushes out in front of the cell in the direction of movement as it migrates. The 

mechanical tension generated by the lamellipodia appears to stretch the cell into an 

elongated form when compared to the SKOV-3 cells as shown in Fig. 5.26. Also of 

interest here is the rather irregular shape of the lamellipodia.  



 

 

 

 

 

Figure 5.26: Holography of non-confluent SKOV-3 cells. The image area is 60 x 60 μm2 
(404 x 404 pixels) and the image is at z = 5μm from the hologram: (a) Zernike phase 

contrast image; (b) holographic amplitude and (c) phase images; (d) unwrapped phase 
image; (e) 3D pseudocolor rendering of (d). 
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Figure 5.27: Holography of a single SKOV-3 cell. The image area is 60 x 60 μm2 (404 x 
404 pixels) and the image is at z = 4μm from the hologram: (a) hologram; (b) amplitude 
and (c) phase image; (d) unwrapped phase image; (e) 3D pseudocolor rendering of (d). 
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Figure 5.28 displays images of a single human epithelial cheek cell obtained by 

quantitative phase contrast microscopy.  The image size is 60 x 60 μm2 with 404 x 404 

pixels. The cheek cell is about 50μm in diameter and again corresponds well with 

literature. The nucleus and cell membrane are clearly visible as is the mitochondria, 

distributed in the proximity of the nucleus. Also of note here is the irregular shape and 

contours of the cell membrane, with some sections of the cells showing folding. 

 

 

Figure 5.28: Digital holographic images of a Human cheek cell with area 60 x 60μm2. 
The image is at z = 9μm from the hologram: 

(a) Zernike phase contrast image; (b) amplitude; (c) wrapped phase image; (d) unwrapped 
phase image; (e) z-profile cross section and(f) 3D pseudo-color rendering of (d). 
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As well as biological applications for microscopy, digital holography can also be applied 

for accurate and high resolution shape measurement in a number of other fields including 

materials characterization.  

Figure 5.29 presents an example of quantitative digital holography from a 

fragment piece of quartz. The panel displays the (a) hologram, (b) holographic amplitude 

and (c) phase images, and (d) phase image unwrapped by a software algorithm. 

Pseudocolor 3D rendering of (d) is shown in (e). The image size is 60 x 60 μm2 with 404 

x 404 pixels. The contour of the quartz is seen to be somewhat graded and jagged in its 

thickness profile.  

 

Figure 5.29: Holography of a fragment of quartz material. The image area is 60 x 60 μm2 
(404 x 404 pixels) and the image is at z = 7μm from the hologram: (a) Zernike phase 

contrast image; (b) holographic amplitude and (c) phase images; (d) unwrapped phase 
image; (e) 3D pseudocolor rendering of (d). 
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Figure 5.30 displays digital holography of a water droplet. The shape is spherical 

and smoothed with the thickest part of the droplet occurring at the center. 

 
 

 

Figure 5.30: Holography of a water droplet. The image area is 60 x 60 μm2 (404 x 404 
pixels) and the image is at z = 12μm from the hologram: (a) hologram; (b) phase images; 

(c) unwrapped phase image; (d) 3D pseudocolor rendering of (c). 
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5.8 Off-Axis Digital Holographic Movies 

In digital holography, a series of holograms can be recorded at a fixed distance 

and the reconstructed images later numerically focused at leisure. In this way, one is able 

to track the rapidly moving object(s) quantitatively, as needed. We have recorded a series 

of holograms by synchronizing the camera with the laser pulses under the control of the 

digital delay generator. The amplitude and phase images are calculated by the angular 

spectrum method while adjusting image distances for best focus of the object under 

observation. The reconstructed images are subsequently composed into AVI files.  The 

phase movie generated is quantitative, and therefore, it is possible to make dynamic 

measurements of physical and morphological changes in the sample over time. In 

particular, this has many applications in microscopy where tracking of changes in events, 

like mitosis in cells, can be analyzed in detail.  

Figure 5.31 shows a time series of selected frames from the reconstructed 

amplitude movie of a paramecium swimming around with a number of euglenas. The 

image area of each frame is 250 x 250μm2, recorded with 464 x 464 pixels. The 

amplitude images are reconstructed from a series of holograms while adjusting the image 

distances over a 20μm range in the range of z = 850 ~ 870 μm in order to maintain the 

paramecium in focus. The time interval between each reconstructed frame is t= 800ms 

and the measured reconstruction rate of each recorded hologram is achieved in around 

300 ms.  

Figure 5.32 shows the reconstructed phase images in a time series corresponding 

to the amplitude images in Figure 5.31. Note the phase information of the paramecium’s 

intracellular structure is much more definitive than that of the amplitude information.  



 

Figure 5.31: Time series of reconstructed amplitude images of a moving paramecium. 
The image area is 250 x 250μm2 (464 x 464 pixels). The numerical focus was adjusted in 

the range of z = 850 ~ 870 μm in order to track the paramecium in focus. 
 

 

Figure 5.32: Time series of reconstructed phase images of a moving paramecium 
corresponding to the amplitude images in Fig.5.29. 

 
 

 139



 
Higher magnification time-series amplitude images, selected from an amplitude 

movie are illustrated in Figure 5.33. The image area of each frame is 80 × 80 μm2, 

recorded with 452 x 452 pixels and reconstructed at z = 123μm. The time interval 

between each reconstructed frame is t= 800ms. 

In order to maintain the paramecium within the field of view for long enough, the 

paramecium is slowed down using a drop of the thickening agent methylcellulose. In the 

amplitude images, one observes the flickering due to celial motion in the oral groove that 

forces food (bacteria) into the food vacuoles. Note the large range of intracellular 

structures and particles which cause speckle and image degradation. 

 

 

Figure 5.33: Time series of reconstructed amplitude images of a paramecium with image 
area 80 x 80 μm2 (452 x 452 pixels) with z = 123μm. 
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Figure 5.34 shows the time series of reconstructed phase images corresponding to 

the amplitude images in Figure 5.33. The phase images are reconstructed simultaneously 

to the amplitude images and either movie is available to the user at the same time.  

A notable phenomenon in the phase movie is the shrinking of the contractile 

vacuole, highlighted, as it pumps out water from the paramecium.  This feature is not 

easily observed in the amplitude frames in Fig. 5.33. The speckle noise in the 

paramecium does not appear to be as much of a problem in the phase images as it is in 

the amplitude images, in areas where the paramecium contains a large number of 

intracellular features. 

 

 

Figure 5.34: Time series of reconstructed phase images of paramecium corresponding to 
the amplitude images in Fig.5.31. 
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Figure 5.35 displays a time series of selected frames from the amplitude and 

phase movies of the migration process by living mouse-embryo fibroblast cells (3T3). 

The image area is 170 × 170 μm2, recorded with 460 x 460 pixels and the reconstruction 

distance is z = 6μm. In the upper row, Figures 5.35 (a-d) show selected frames from the 

amplitude movie and in the bottom row Figures 5.35 (e-h) are the simultaneously 

produced phase images from the phase movie. The time interval between each frame is 

one hour. Cell migration is a fundamental function of normal cellular processes and its 

understanding is very much an issue for scientific researchers.

The cells are not very mobile suggesting that the conditions for migration are not 

ideal. This is almost certainly because of the low temperature and CO2 concentration 

which inhibit the cell motion. 

 

 

Figure 5.35: Selected frames from the amplitude movie (a-d) and from the corresponding 
phase unwrapped movie (e-h) of mouse-embryo fibroblast cells in the process of 

migration. 
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Figure 5.36 presents selected frames from the 3-D optical thickness profile phase 

movie corresponding to the reconstructed amplitude and phase images presented in Fig. 

5.35. The nucleus is clearly seen in the cells as are smaller intra-nuclear characteristics. 

The cells exhibit directed migration by formation of lamellipodia extensions towards a 

specific target cell. Connections between some of the cells are also displayed. 

 

 

 

Figure 5.36: Selected frames from the 3-D optical thickness profile phase movie of 
mouse-embryo fibroblast cells in the process of migration 
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Figure 5.37 displays selected frames from the 3-D optical thickness profile phase 

movie showing the process of fibroblast cell mitosis. The study demonstrates that time 

lapse video microscopy is a simple but very useful approach to monitor the dynamics of 

movements which vary in speed and frequency during migration and mitosis of living 

cells. 

 

Figure 5.37: Twelve-hour time lapse movie of fibroblast cells undergoing mitosis, 
obtained by digital holographic microscopy. The pseudo-color 3D rendering represents 

the optical thickness profile of the cells. 
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5.9 Discussion and Conclusion 

Digital holography offers a highly sensitive and versatile means of measuring and 

monitoring optical path variations. From the recorded hologram, both amplitude and 

phase information are simultaneously available, therefore enabling digital holography to 

act essentially as both a conventional and a phase microscope. The holographic 

reconstruction is carried out by the angular spectrum method in an off-axis configuration 

so that the twin images and dc term background can be subtracted out using frequency 

domain analysis. The use of angular spectrum method is also seen to solve some of the 

significant problems that have prevented wider use of digital holography in biomedical 

imaging applications. These advantages include tight control of spurious noise 

components and no minimum recording distance. Also a combination of filtering 

windows of various shapes and sizes can be used to filter the undesired spatial 

frequencies while keeping intact the contributions of the interference terms. 

Phase imaging digital holography is particularly promising in terms of the lack of 

coherent noise and the precision with which the optical thickness can be profiled, which 

leads to images with high optical thickness resolution. Experimental results have been 

presented which demonstrate the effectiveness of digital holography for quantitative 

phase-contrast microscopic imaging of transparent objects. Quantitative knowledge of the 

structures and dynamics of a transparent specimen is of great importance in microscopy, 

particularly in cell biology. Conventional phase-contrast microscopies, such as Zernike 

and DIC, produce high-contrast qualitative images of transparent objects, but they cannot 

be directly applied to quantitative studies.  
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The experimental results display 0.5μm diffraction-limited resolution, with the 

noise level in the phase profile corresponding to several nm of optical thickness. The 

lateral and longitudinal resolutions obtained are consistent with diffraction limited 

imaging. Reconstructed images of objects such as living biological cells display 

intracellular and intra-nuclear organelles with sufficient clarity and quantitative accuracy 

for applications in biomedical research. The level of resolution and details in these 

images clearly exceeds currently available techniques in phase-contrast optical 

microscopy, and provides a new modality for imaging morphology of cellular, 

intracellular, and intranuclear structures that is not currently available with non-invasive 

optical methods. 

We have also presented experimental results that demonstrate the capabilities of 

digital holographic movies for biological microscopy. A series of holograms are recorded 

and the images are reconstructed with numerically adjustable focus so that the moving 

objects can be accurately tracked.  

On the other hand, the speckle noise of a coherent imaging system is a significant 

issue for biological microscopy where there is often a large range of structural scales. For 

example, in the presented holographic amplitude images of paramecium the intracellular 

regions contain various assortments of unresolved particles, which may be food particles 

or other organelles. These degrade the quality of images to various degrees. However, 

one also notices that the phase images tend to suffer from the coherent noise to a 

significantly lesser degree compared to the amplitude images. 

A disadvantage of the current method of producing digital holographic movies is 

the time-consuming procedure of phase unwrapping which prevents the user from 
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observing changes in an object in real time. There are other phase unwrapping procedures 

available that will require testing and this will be a subject of future study. In the next 

chapter we describe and present results of multi-wavelength digital holography which 

allows for real time phase imaging. 

 We note that in this study we have presented the images with minimal post-

processing, the goal being the demonstration of digital holography processes. Other than 

the overall brightness and contrast adjustments, we have not applied any of the numerous 

image enhancing techniques that are available which can significantly improve the 

perceived image quality for biological applications. This will be the subject of a future 

study.  

Digital holography and digital holographic movies are seen to be a useful new 

tool for biological microscopy, with noteworthy advantages over traditional microscopic 

techniques for biological imaging. As a non invasive and high resolution measurement 

technique, digital holography offers enormous advantages to the field of microscopy. The 

number of potentially useful applications is vast. Such examples include profiling of 3-D 

morphological structures of diseased cells, such as cancer cells where the nuclei are often 

enlarged and elasticity is different to healthy cells. Cell changes over time can also be 

quantitatively assessed; therefore, one may obtain high contrast 4-D movies.  

A limitation of the current experimental setup is that the sample is required to be 

vertical. For observation of living cells over long periods, under favorable conditions for 

migration and other processes, changes in the setup for axial illumination of the object 

are necessary. We are currently investigating the possibility of modifying an interference 

microscope. 
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Chapter 6 

Multi-Wavelength Phase Imaging Digital Holography (MWPIDH) 

This chapter introduces a novel optical technique for removal of 2π 

discontinuities from the phase image. Section 6.1 reviews some of the motivations 

and advantages of using an optical based approach for phase unwrapping as opposed 

to that of computational algorithms as demonstrated in the previous chapter. Section 

6.2 introduces the mathematical and theoretical principles of using multiple-

wavelengths for phase unwrapping. Section 6.3 discusses the experimental setup and 

procedure for MWPIDH. Section 6.4 presents experimental results. Section 6.5 

displays selected frames from MWPIDH movies, which demonstrate the capabilities 

and future potential for quantitative analysis of dynamic objects or samples such as 

living cells in real time. Finally section 6.6 concludes this chapter. 

 

6.1 Introduction 

Digital holography has been shown to be an effective method for performing 

high resolution quantitative phase microscopy. However the phase images contain 2π-

discontinuities for objects of an optical depth greater than the wavelength, thus 

providing a difficulty in both interferometry and phase imaging. A conventional 

approach is to apply any one of a number of phase unwrapping algorithms that have 

been developed to remove these discontinuities and improve the quality and 

interpretation of the image. On the other hand, these algorithms require both 

substantial user intervention and the level of phase noise and phase discontinuity to lie 



within strict limits. Furthermore, complex object shapes are often particularly difficult 

to unwrap correctly and may create phase errors. Another significant disadvantage is 

that often the unwrapping procedure may be time consuming and hence the capability 

for real time imaging is lost. 

It has been recognized that the phase measurement range can be extended to 

that of a longer synthetic or beat wavelength by the generation and combination of 

two phase maps using two or more separate wavelengths.  The phase discontinuities 

which exist in the image are subsequently removed in this process by the effective 

extension of the axial range. The noise in the final phase profile from the combination 

of the phase images produced by the multiple wavelengths is equal to that of the 

single wavelength. With the further extension to more wavelengths it should be 

possible to achieve even longer axial range with undiminished resolution. The 

technique can be applied to incoherent interference imaging as well as holographic 

imaging. 

  

6.2 Theory of Multi-Wavelength Phase Imaging Digital Holography 
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m

The principle of multi-wavelength phase imaging is described by referring to 

Figures 6.1 and 6.2, with numerical values that were used in generating the simulation 

plots. Suppose the object is a tilted plane of height 5.0h μ= . Figures 6.1(a) and 6(b) 

display the phase maps 1φ  and 2φ of the tilted object using wavelengths of 1 532nmλ =  

and 2 633nmλ =  respectively. The phase maps contain a 2π discontinuity wherever 

the height is a multiple of the wavelength. Subtraction of the two phase maps  1φ  and 

2φ  in Figures 6.1(a) and 6(b), results in a new phase map 12 1 2φ φ φ= − as shown in 

Figure 6.1(c) which has numerous discontinuities of 2π .  



By the addition of 2π to the phase map in Figure 6.1(c) wherever 12 0φ <  

produces a new phase map 12 12 12( ) 2 ( 0)xφ φ π φ′ ′= + ⋅ < with a longer range free of 

discontinuities and extended axial range. The new phase map is equivalent to that of a 

longer ‘beat wavelength’. Using wavelengths of 1 532nmλ = and 2 633nmλ =  the new 

axial range is defined as 

1 2
12

1 2

3.33 mλ λ μ
λ λ

Λ = =
−

                                   (6.1) 

The phase map ( )m xφ can be converted to the corresponding surface profile mZ using  

      
2
m m

mZ λ φ
π

=                (6.2) 

The corresponding surface profile of the object is the coarse map shown in Figure 

6.1.(d) which is defined by this new axial range as 

  12 12
12

( )
2

xZ φ
π

Λ′ =                          (6.3) 

By proper choice of two-wavelengths the axial range 12Λ can be adjusted to any value 

that would fit the axial size of the object being imaged.  

This technique provides a straightforward and efficient phase imaging method 

in a wide range of applications. On the other hand a limitation is that any phase noise 

in each single-wavelength phase map is amplified by a factor equal to the 

magnification of the wavelengths.  

Suppose the single-wavelength phase maps ( )m xφ contain phase noise of 2 mπε , 

or the corresponding surface profiles ( )mZ x contain a noise level of 

         ~ 12m m nmε λ               (6.4) 
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where we have used ~ 2%mε to simulate the noise. The noise in the difference phase 

map 12 ( )xφ is 

12 1 22 2 ( )πε π ε ε= +                   (6.5) 

and that in the surface profile 12' ( )Z x is  

    12 12 ~ 130nmε Λ                              (6.6) 

The noise has in effect been amplified approximately by a factor of 122 / mλΛ as one 

can see in the coarse map 12' ( )Z x in Fig.6.1.d) when compared to the single-

wavelength phase maps in Fig.6.1 a) or Fig.6.1.b).  

The other half of the phase imaging method consists of an algorithm to reduce 

the noise in 12' ( )Z x back to the level of the single-wavelength phase maps. This 

method is described by referring to Figure 6.2. The coarse profile, 12 ( )Z x′ shown in 

Fig.6.1d) can be divided into integer multiples of either of the wavelengths to produce 

a new coarse profile 12 ( )Z x′′  as illustrated in Fig. 6.2a). Using for example 1λ , the new 

coarse profile is defined as 

12
12 1

1

( )( ) int( )Z xZ x λ
λ
′

′′ = ⋅              (6.7) 

Pasting on the single single-wavelength coarse map 1( )Z x to the newly created coarse 

profile 12 ( )Z x′′ in Fig 6.2a), produces another coarse profile 12 ( )Z x′′′ as shown in 

Fig.6.2b) such that 

  12 12 1( ) ( )Z x Z x Z′′′ ′′= + .              (6.8) 

This almost recovers the surface profile with reduced noise, except at the boundaries 

of wavelength intervals, where the noise in the single-wavelength phase map causes 

numerous jumps of size, 1λ±  as displayed in Figure 6.2c). If the noise level is not 
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excessive, most of the spikes in the can be removed simply by the comparison of 

12 ( )Z x′′′ with the coarse map 12 ( )Z x′ to produce bZ as shown in Figure 6.2d). If the 

difference is more than 1λ , then 1λ  is either added or subtracted depending on the sign 

of the difference. Finally Fig.6.2.e) shows the final result, as the fine map 12Z where 

the noise level is approximately the same as that of 1( )Z x , the single wavelength 

profile, at around 12nm. The remaining spikes in the map are due to places where the 

coarse map is more than one half of 1λ . That is, the maximum noise level for the 

method to work properly is given approximately by  

     
12

~ 4%
4

m
m

λε <
Λ

                   (6.9) 

The phase-unwrapping technique can be further extended to an iterative 

procedure of three or more wavelengths as displayed in Figure 6.3. The object 

simulated this time is a tilted plane of height 10.0h mμ= and the noise level is 

approximated to be 5%mε = .  

First note that the axial range 12Λ  can be increased by using closer values of 

1λ and 2λ  as one can see from Equation (6.1). Figures 6.3.a) and 6.3.b), are the 

surface profiles, 1Z  and 2Z  of the object using wavelengths of 

1 620nmλ = and 2 580nmλ =  respectively. The axial range from Equation (6.1) is 

then 12 8.99 mμΛ = . From Equation (6.9) as described above, for two-wavelength 

phase imaging the noise limit is found to be 

     
12

~ 1.7%
4

m
m

λε <
Λ

           (6.10) 
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The noise limit has been effectively reduced because of the larger . Figs.6.3.c) and 

6.3.d) show the coarse map, 

12Λ

12 ( )Z x′ and the fine map, 12 ( )Z x generated from the phase 

maps of 1λ and 2λ . The noise in the coarse map 12 ( )Z x′ is displayed in Fig.6.3 j) and 

corresponds to 

    1 2 12( ) ~ 900nmε ε+ Λ            (6.11) 

which is much larger than half of 1λ , and therefore the fine map 12 ( )Z x has too many 

1λ  spikes in it, as one can see from Fig.6.3k). With the addition of a third wavelength 

at 3 500nmλ = , whose surface profile is displayed in Fig.6.3e), new coarse 

maps 13( )Z x′ and 23 ( )Z x′ are generated as shown in Figures 6.3f) and 6.3g) with beat 

wavelengths of 13 2.58 mμΛ = and 23 3.63 mμΛ = . Combining two coarse maps coarse 

maps 13( )Z x′ and 23 ( )Z x′ using the coarse map procedure, produces a new coarse map 

as seen in Figure 6.3h). Instead of pasting 13 23Z −′ 1Z to 12Z ′ which is too noisy to 

produce a useful result as shown in Fig.6.3k), we go through the following two steps. 

First paste 13Z ′ onto 13 23 12( )Z Z−′ ≡ ′ , to obtain an ‘intermediate fine map’, , as 

shown in Fig.6.3.h). The noise level in 

13 23Z −′′

13 23Z −′′  as shown in Fig.6.3 l) is 

13 1 2 13( ) (0.05 0.05)2.58 ~ 260Z m nmε ε μ′ = + Λ = +          (6.11) 

This is now smaller than one half of 1λ and we can paste 1Z to obtain the final fine 

map, Fig.6.3.i). The noise in this map is approximately the same as that of 1Z , 

1 1 ~ 31nmε λ . The maximum noise level mε in the single-wavelength phase map for 

the three-wavelength phase imaging to work is given by the smaller of  

13

12

~ 7%
4
Λ
Λ

or 1

13

~ 6%
4
λ
Λ

           (6.12) 
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Figure 6.1: Simulation of two-wavelength phase imaging digital holography. a) 
Actual height profile of object with a tilted plane of axial height 5.0h mμ= ; b) height 

profile 1( )Z x  of a 5 mμ  high incline derived from phase 1( )xφ of 1 532nmλ = ; c) 2 ( )Z x  
derived from phase 2 ( )xφ of 2 633nmλ = ; d) phase map 1( )xφ of 1 532nmλ = ; e) phase 

map 2 ( )xφ of 2 633nmλ = ; f) difference phase map 12 1 2( )xφ φ φ′ = − ; g) coarse map 

12 ( )Z x′ , with beat wavelength 12 3.33 mμΛ = . 
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Figure 6.2: Simulation of two-wavelength phase imaging digital holography for noise 
removal. a) 12 ( )Z x′′ , where 12 ( )Z x′ is divided into integer multiples of 1λ ; b) 12 ( )Z x′′′ , 

where 1( )Z x is pasted on 12 ( )Z x′′ ; c) aZ , derived from comparing 12 ( )Z x′′′ with the 
coarse map 12 ( )Z x′ ; d) bZ ,resulting from addition or subtraction of 1λ  in aZ to remove 

spikes; e) the fine map, 12 ( )Z x
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Figure 6.3: Simulation of three-wavelength phase imaging digital holography. a) height 
profile 1( )Z x  of a 10 mμ  high incline derived from phase 1( )xφ of 1 620nmλ = ; b) 2 ( )Z x  
derived from phase 2 ( )xφ of 2 580nmλ = ; c) coarse map 12 ( )Z x′ , with beat wavelength 

12 8.99 mμΛ =  ; d) fine map, 12 ( )Z x ; e) 3 ( )Z x  derived from phase 3( )xφ of 2 500nmλ = ; f) 
coarse map 13( )Z x′ , with beat wavelength 12 2.58 mμΛ = ; g) coarse map 23 ( )Z x′ , with beat 

wavelength 12 3.63 mμΛ = ; h) ‘intermediate fine map 13 23Z −′′ , where 13( )Z x′ is pasted on 

13 23 12( ) ( )Z x Z x−′ ′= ; i) final fine map 13 23 ( )Z x− , where 1( )Z x is pasted onto ; j) Noise 
in c), 

13 23Z −′′

12 ( ) ( )Z x Z x′ − ; k) Noise in d), 12 ( ) ( )Z x Z x− ; l) Noise in h), 13 23( ) ( )Z x Z x−′′ − ; m) Noise 
in i), 13 23( ) ( )Z x Z x− −
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6.3 Experimental Setup for MWPIDH 

Figure 6.4 depicts the experimental setup for MWPIDH. A Continuous Wave 

(CW) HeNe laser (633nm) is added to the experimental setup in Figure 5.2 to obtain the 

second wavelength for the MWPIDH process. The beam from the HeNe laser is 

combined with the beam from the Nd:YAG laser (532nm) using BS1 to form a two color 

beam which is then split into an object and a reference beam. The beams require highly 

accurate optical alignment in order for them to traverse the same exact optical path. 

 

 

 

Figure 6.4: Experiment setup for MWPIDH 

 

 

 

 

 

 157



6.4 Two-Wavelength Phase Imaging Digital Holography Results 

Figure 6.5 presents holographic images of a group 6 element of the resolution 

target. The procedure for MWPIDH image capture and processing is as follows. First a 

hologram is captured using only the beam emitted from the Nd:YAG laser at the green 

wavelength, 1 532nmλ = , with the HeNe laser beam simultaneously blocked off before 

BS1, so it does not enter into the holographic optical system. Once this hologram is 

captured, the Nd:YAG beam is then blocked off and a second hologram is captured using 

the beam from the HeNe laser at the red wavelength, 2 633nmλ = . The two holograms 

are then processed separately to obtain their respective reconstructed amplitude and phase 

images. 

The top row of Figure 6.5 displays the hologram (a), amplitude (b) and phase (c) 

images by the green wavelength. The bottom row of Figure 6.5 shows the hologram (d), 

amplitude (e) and phase (f) images by the red wavelength. The image size is 60x60μm2, 

recorded at 452 x 452 pixels. The 2π  discontinuities are present in both of the phase 

images. One also notices that the quality of both the hologram and the reconstructed 

amplitude and phase images in Fig.6.5 (d-f) by the red wavelength is significantly poorer 

than that those by the green wavelength in Fig.6.5 (a-c). In the amplitude image in Fig.6.5 

(e) for example, one observes faint horizontal lines suggesting a disturbing interference 

source.  

Using the technique of combining the two wavelength phase maps as outlined in 

Section 6.2, creates a longer range free of 2π discontinuities with extended axial range. 

The fine map is displayed in Fig. 6.5(h). Some discontinuities still remain in the image as 
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the bars contain a large fluctuation of phase due to the small amount of signal that is 

obtained from these areas.  

 

 

Figure 6.5: (a) The hologram, (b) amplitude, (c) and wrapped phase map by the green 
wavelength λ1 = 0.532μm and (d) the hologram, (e) amplitude, (f) wrapped phase map by 

the red wavelength at λ2 = 0.633μm; (h) is the fine map obtained by the 
phase maps shown in (c) and (f). 

(Area =60μm x 60μm2, Pixels = 452 x 452) 
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Another example of two-wavelength phase imaging digital holography is 

illustrated in Figure 6.6. The combination of the phase maps by the green wavelength, 

Fig. 6.6(a), and the red wavelength, Fig.6.6(b), produces a fine map with a new larger 

beat wavelength Λ12 = 3.33μm, Fig.6.6(c). The software implemented phase unwrapping 

algorithm in Fig.6.6(d) has a defect that propagates beyond the noisy regions. 

 

 
 
 

Figure 6.6: (a) The wrapped phase map reconstructed from the 
hologram at the green wavelength λ1 = 0.532μm and (b) the red 
wavelength at λ2 = 0.633μm; (c) the fine map obtained by the 

phase maps shown in (a) and (b); (d) is the unwrapped phase map by 
a software program. 
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Figure 6.7 displays two-wavelength phase imaging digital holography of onion 

cells. The image size is 250 x 250μm2, recorded at 452 x 452 pixels. The panels display 

the (a) hologram, (b) reconstructed amplitude image, (c) and reconstructed phase image 

by the green wavelength and the (d) hologram, (e) reconstructed amplitude image, (f) and 

reconstructed phase image, by the red wavelength. (g) is the fine map produced by 

combination of the phase maps. The onion cell walls are easily visible in the 

reconstruction and the fine phase map is of a good quality. Of note again here is the red 

wavelength reconstruction is significantly degraded compared to the green wavelength 

reconstruction. This consequently causes some image degradation in the fine map.  

 

 

Figure 6.7: (a) The hologram, (b) amplitude, (c) and wrapped phase map by the green 
wavelength λ1 = 0.532μm and (d) the hologram, (e) amplitude, (f) wrapped phase map by 

the red wavelength at λ2 = 0.633μm; (g) is the fine map obtained by the 
phase maps shown in (c) and (f). 
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6.5 MWPIDH Movies 

 Besides the numerous difficulties involved in phase unwrapping with 

computation algorithms, a significant disadvantage of their use is that most of them are 

time consuming and therefore the capability to perform real time or close to real time 

processing is lost. On the other hand the procedure of MWPIDH for phase unwrapping 

can be performed in real time. Phase images reconstructed from holograms recorded at 

two different wavelengths are simply combined in a simple way to produce a fine phase 

map without the usual 2π  discontinuities. 

 For a static object we capture holograms successively for each individual 

wavelength. However to produce multi-wavelength holographic movies of dynamic 

changes requires that the holograms corresponding to each wavelength be captured 

simultaneously on the CCD camera. The problem then becomes how to separate the 

individual holograms corresponding to each wavelength from the two color beam.  

An effective method of undertaking this is to use the spectral property of the CCD 

camera. The CCD is able to capture images in color, i.e. 24-bit, Red, Green and Blue 

(RGB), each color corresponding to 8-bit and the separate planes can be extracted. Figure 

6.8 shows the relative response of the CCD with wavelength. By choosing wavelengths 

near the CCD’s peak response for each RGB color, one effectively maximizes the 

response to that particular color plane while simultaneously minimizing the response to 

the other colors. For our specific example at approximately 1 532nmλ = , one can see that 

the relative response to the green color plane is approximately the highest, while it is 

fairly low for red and blue and the same is true for our second selected wavelength 

at 2 633nmλ = .  
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Figure 6.8: Spectral characteristics of the color CCD camera. 
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After digital capture of the two color beam holographic image corresponding to 

the selected wavelengths 1 532nmλ = and 2 633nmλ =  onto the CCD camera, the red, 

green and blue planes of the captured image are extracted. One then obtains the 

holograms specific to each wavelength. The blue extraction is subtracted as noise from 

both the red and green holograms. The two holograms are then processed separately to 

obtain the phase images. These are subsequently combined as earlier outlined in the 

theory in order to remove 2π discontinuities and extend the axial range.  

Figure 6.9 shows a time series of selected amplitude images from an amplitude 

movie illustrating the motion of a rotifer through water. The amplitude images are 

reconstructed from holograms created by the green wavelength and the image area is 

70µm x 70µm2, recorded with 460 x 460 pixels. The time interval between each image is 

t = 800ms. The frame rate on the camera for image capture is 25 frames/sec and the 

holograms are reconstructed and combined in 300ms.  

Rotifers generally have a thick cylindrical body. So, when looking at them from 

above, there will always be a problem with depth of focus with conventional light 

microscopes. Furthermore they cannot be fixed and flattened by the pressure of a cover-

glass because they would disintegrate and die at once. Digital holography as a non-

invasive technique with three-dimensional information overcomes these limitations.  

The rotifer's cilia are used to trap food and to move around through the water. A 

feature of interest in the series of images in the figure is the view of the stomach which 

appears somewhat indented in the images. Some food particles are also visible moving 

throughout the body. 
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Figure 6.9: Time-Series of reconstructed amplitude images showing a rotifer moving 
across the field of view. 

(Area =70μm x 70μm2, Pixels = 460 x 460, z = 0.253mm) 

 

Figure 6.10 presents the reconstructed time series of phase images reconstructed 

simultaneously along with the amplitude images in Figure 6.9 by the green wavelength.  

The 2π discontinuities are seen to be present in the image. 

 

 

Figure 6.10: Time-Series of reconstructed phase images showing a rotifer moving across 
the field of view 

(Area =70μm x 70μm2, Pixels = 460 x 460, z = 0.253mm) 
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Figure 6.11 shows the corresponding time series of unwrapped fine map phase 

images created by the combination of phase maps reconstructed from the hologram 

produced by the green and red wavelengths. There are some discontinuities still present 

in the images where the object thickness is greater than the new axial range at 3.3μm 

 

 
 

Figure 6.11: Time-Series of unwrapped phase images by MWPIDH showing a rotifer 
moving across the field of view. 

(Area =70μm x 70μm2, Pixels = 460 x 460) 

 
Figure 6.12 shows a time series of selected amplitude images from an amplitude 

movie showing a high magnification view of a paramecium feeding in water. The 

amplitude images are reconstructed from holograms created by the green wavelength and 

the image area is 60µm x 60µm2, recorded with 442 x 442 pixels. The time interval 

between each image is t = 800ms. In the images there are some slight variations between 

the frames but nothing particularly striking, in fact the interior of the paramecium looks 

pretty noisy and dense. 
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Figure 6.12: Time-Series of reconstructed amplitude images of a paramecium feeding in 
pond water. 

(Area =60μm x 60μm2, Pixels = 442 x 442) 

 

Figure 6.13 presents the reconstructed time series of phase images reconstructed 

simultaneously along with the amplitude images in Figure 6.12 by the green wavelength.  

The 2π discontinuities are seen to be present in the image. 

 

 

Figure 6.13: Time-Series of reconstructed phase images of a paramecium feeding in 
pond water. 

(Area =60μm x 60μm2, Pixels = 442 x 442) 
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Figure 6.14 presents the images created by the combination of phase maps by the 

green and red wavelengths. The contractile vacuole (highlighted in the second frame) is 

shown to contract as it pumps out water. This phenomenon cannot be observed in the 

amplitude images in Fig. 6.12. There are some discontinuities still present in the images 

where the paramecium’s physical thickness is greater than the axial range. 

 

 

Figure 6.14: Time-Series of unwrapped phase images by MWPIDH showing a rotifer 
moving across the field of view. 

 

6.5 Conclusions and Discussion 

 MWPIDH offers a simple and effective way of removing the discontinuities in 

the phase image. The axial range can be changed to a pre-determined value depending on 

the wavelengths selected for the procedure. Therefore one can pre-determine the axial 

range required for a specific object. If both a short wavelength and a long wavelength are 

used, it is possible to examine a larger object and still have high resolution. The object  
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would first be imaged with the long wavelength; this would provide a range of the 

object's position in space. Then the object would be imaged with the shorter wavelength 

to obtain higher resolution. The idea is to use the longer wavelength to resolve the 

degeneracy’s of the shorter wavelength. The longer wavelength is used to give 

information about which 2π discontinuity the object point is on. This requires that the 

uncertainty in distance given by the longer wavelength be less than the shorter 

wavelength. One must take care when choosing the beat wavelength. If it is too long, then 

the uncertainty in distance will be greater than the single frequency wavelength, causing 

the system to inaccurately determine the fringe number. 

 Conventional computational algorithms for phase unwrapping are limited by a 

number of factors such as the object shape, noise requirements, significant user 

intervention and as a fairly time consuming process, real time imaging is a difficulty. 

This is a serious limitation for the continued growth of digital holography for 

microscopy. MWPIDH is seen to overcome these problems. The technique can be 

performed in close to real time and is quantitative; therefore it is an ideal method for 

performing quantitative phase-contrast microscopy.  

 The presented results of test and biological samples show that the methodology 

for MWPIDH works well. However, the results also confirm that the red wavelength 

reconstruction is of an inferior quality when compared to that of the green wavelength 

reconstruction and this causes image degradation of the final fine map phase image.  

 Analysis of other recording wavelengths and CCD cameras will require further 

investigation and the use of the angular spectrum should be invaluable for this process. 
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Chapter 7 

Conclusion and Future Work 

In this research we have successfully demonstrated the improvements made in 

techniques of digital holography. Experiments conducted in both digital Gabor and off-

axis holographic configurations have revealed both of these methods to be highly 

effective for applications in biological microscopy. 

In Gabor holography there is a limitation in the method due to specific 

requirements of the object’s physical characteristics. It is required to be either highly 

transparent, or small and opaque. This condition is necessary in order to maximize the 

degree of transparency in the overall image. If this object requirement is not satisfied, 

then degradation in the reconstructed image occurs. Furthermore, phase information is 

not available in Gabor holography due to the superposition of the holographic terms.  

While these limitations tend to produce reconstructed images which are generally 

not of a high quality, the advantages of this technique when compared to that of 

conventional bright-field microscopic techniques are observed in the 3-D reconstruction 

capability. From a single hologram, numerical reconstruction can be performed in 

numerous axial planes. By contrast, in conventional bright-field microscopy the 

information is only available for one specific axial plane. Therefore, digital Gabor 

holography is able to track any object moving in depth over time within a certain field of 

view, so that it remains in focus throughout the entire time-frame. If one is interested 
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specifically in the trajectory, speed, motion, pattern, or any dynamic analysis of the 

object, digital Gabor holography is a particularly attractive technique.  

One may also produce three dimensional optical profiles of motion by stacking 

numerous 2D-reconstructions of selected depths. For this purpose, the use of algorithms 

for auto-focusing will also be of enormous advantage for the application of this method in 

the creation of holographic movies.  

 Off-Axis digital holography enables simultaneous reconstruction of both 

amplitude and phase information of the object. The dc and holographic terms can be 

spatially separated due to the introduction of an angle between the object and reference 

beams. However, due to the low spatial resolution of CCD cameras, this angle is limited. 

This in turn limits the distance of spatial separation between the terms.  There are a 

number of numerical reconstruction algorithms available for use in digital holography. In 

this thesis we have reviewed each of the methods, and their application to the 

reconstruction of a resolution test target and a biological sample. The angular spectrum 

algorithm is shown to be a particularly advantageous method for holographic 

reconstruction, since it makes it possible to filter the undesired spatial frequencies while 

keeping the contributions from the interference terms intact. Also, a significant advantage 

of the angular spectrum algorithm is the absence of a minimum reconstruction distance, 

which is a strict requirement in the more commonly used Huygens convolution and 

Fresnel transform reconstruction methods. Furthermore, in this thesis we have 

demonstrated the application of the angular spectrum method for obtaining high quality 

images of biological objects with quantitative phase analysis. The use of the angular 
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spectrum is seen to solve the problems that have so far prevented the widespread use of 

digital holography for microscopy.  

Digital holography provides amplitude images, as obtained by a conventional 

optical microscope. The advantage over conventional bright-field microscopes is in the 

3D reconstruction, which overcomes the limited depth of focus. However, the significant 

advantage of off-axis digital holography is actually seen in the phase information, which 

is simultaneously reconstructed along with the amplitude information. 

 Conventional phase-contrast microscopy techniques are unable to yield 

quantitative phase information and have other disadvantages associated with the image 

quality, such as the halo effect. Digital holography, on the other hand, offers quantitative 

phase information, and, therefore, reveals the 3D topography of an object’s optical profile 

with a resolution at the nanometer scale along the optical axis.  

Quantitative holographic movies can also be created for analysis of moving 

objects such as living cells. We have demonstrated, as shown in the experimental results, 

that digital holography is well suitable for living cell analysis, and contains many 

advantages over traditionally applied methods. However, the current experimental setup 

is required to be modified in order for horizontal mounting of the sample. 

The phase image needs to be unwrapped to improve interpretation of the image. A 

conventional approach is to apply any one of a number of computational phase 

unwrapping techniques. However, there are a number of disadvantages associated with 

their use. The main constraint for live sample imaging is the time taken for the 

unwrapping of each phase image, which essentially takes away the ability for a biologist 

to view the motion in real time or close to real time. Extensive investigation of other 
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phase unwrapping techniques is required which may produce good quality unwrapping in 

less time than the present flood-fill algorithm. 

We show the use of a novel, optically based approach for unwrapping the phase 

by use of multiple wavelengths. This technique offers a convenient and attractive 

alternative to using a software-based phase unwrapping algorithm. The advantage of the 

multi-wavelength imaging technique is clearly demonstrated when un-wrapping an object 

that does not fulfill the strict requirements of the conventional unwrapping algorithms. As 

shown in the experimental results, this method is effective and able to perform 

unwrapping in close to real time. Although the reconstructed image is shown to be of a 

fairly good quality with the current set up, it could be significantly enhanced by 

improving the quality of the red reconstructed image from the red hologram. We are 

currently performing investigations to pinpoint the cause of the poor outcome of the 

reconstructed images using the red wavelength.  The angular spectrum has been 

invaluable in so far eliminating the possible causes. However, the reason for this 

degradation is as yet still unknown, although we suspect that the camera itself may be the 

main cause. This will be the subject of future investigations. 
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Appendix A 

Theorems 

A.1. The Fourier Transform 
The one-dimensional Fourier transform of a reasonably well-behaved function f(x) is 

{ ( )} ( ) ( ) exp[ 2 ]f x F u f x i ux dxπ
∞

−∞

ℑ = = −∫  

The inverse is then found by 

1{ ( )} ( ) ( )exp[ 2 ]F u f x F u i ux duπ
∞

−

−∞

ℑ = = ∫  

where and are Fourier transform pairs. ( )f x ( )F u

The two-dimensional Fourier transform of f(x) is 

{ ( )} ( , ) ( , ) exp[ 2 ( )]f x F u v f x y i ux vy dxdyπ
∞ ∞

−∞ −∞

ℑ = = − +∫ ∫  

The inverse is then 

1{ ( )} ( , ) ( , ) exp[ 2 ( )]F u f x y F u v i ux vy dudvπ
∞ ∞

−

−∞ −∞

ℑ = = +∫ ∫  

( , )x y are the spatial coordinates and are the corresponding spatial frequencies. ( , )u v

 

A.2. Theorems of Fourier Transforms 

A.2.1 Convolution:   

( ) ( ) (( ) , , , )f g x y dx dy f x y g x x y y′ ′ ′ ′ ′ ′⊕ ≡ − −∫  
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where the convolution operation is defined by ⊕  

A.2.2 Correlation: 

    

f ⊗ g x( ) ≡ d ′ x f ′ x ( )g* ′ x − x( )∫
= g ⊗ f[ ]* −x( )
= f x( )⊕ g* −x( )

 

A.2.3 Auto-Correlation: 

     
f ⊗ f x( ) ≡ d ′ x f ′ x ( ) f * ′ x − x( )∫

= f x( )⊕ f * − x( )

A.2.4 Other useful convolution theorems: 

   

  

F f ⊕ g{ } = 2π F ⋅G F f ⋅ g{ } = 1
2π

F ⊕ G

F f ⊗ g{ } = 2π F ⋅G* F f ⋅ g*{ }=
1
2π

F ⊗ G

F f ⊗ f{ }= 2π F 2 F f 2{ }=
1
2π

F ⊗ F

 

 

 

f ⊕ g ⊗ h( ) = f ⊕ g( )⊗ h ≡ f ⊕ g ⊗ h

f ⊕ g ⊗ h = h * ⊕ f ⊗ g * = g ⊕ h * ⊗ f *

F f ⊕ g ⊗ h{ } = 2πF ⋅ G ⋅ H*

   

  f x( ) ≡ f − x( )[ ] 

 

f ⊕ g x( ) = g ⊕ f x( )
f ⊗ g x( ) = g* ⊗ f * x( )
f ⊗ g x( ) = f ⊕ g * x( )
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f x( )⊕ δ x − a( ) = δ x − a( )⊕ f x( ) = f x − a( )
f x( )⊗ δ x − a( ) = f x + a( )
δ x − a( )⊗ f x( ) = f * a − x( )

 

 

f x − a( )⊗ f x − b( ) = ′ δ x − a + b( ) 

 

A.3. Imaging with a coherent light source 

A.3.1 Impulse Response Function, h: 

δ x0 − X0( )δ y0 − Y0( ) Optical
System

⎯ → ⎯ ⎯  h x1 − X1, y1 − Y1( )

X1 = mX0;   Y1 = mY0 ;    Let m =1[ ]
 

Then 

E1 x1, y1( )= dx0dy0 E0 x0, y0( )h x1 − x0, y1 − y0( )∫∫  

E1 x1, y1( )= E0 x1, y1( )⊕ h x1,y1( )  

 

A coherent imaging system is linear in complex amplitude. 

A.3.2 Coherent Transfer Function (CTF), H: 

  

F E0{ }≡ F0; F E1{ }≡ F1; F h{ } ≡ H

κ x ≡ k
x1

z1

; κ y ≡ k
y1

z1

 

 

Then 

F1 κ x ,κ y( )= F0 ⋅ H κ x ,κ y( ) 

For a coherently illuminated object, the image intensity pattern is: 
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I1 x1, y1( )= E1 x1, y1( )2
= E0 ⊕ h x1, y1( )2

 

 

A.3.3 Transfer function, H: 

Fourier decomposition of the fields, with k = (kx, ky) = (kx/z, ky/z): 

  F f0{ }≡ F0 k( ); F f1{ }≡ F1 k( ); F h{ } ≡ H k( ) 

Then 

F1 k( ) = F0 ⋅ H k( )  

For an invariant system, the effect of the imaging system to a sinusoidal input is limited 

to amplitude change and phase shift. The transfer function approach is valid only in an 

invariant system. 

 

A.4. Discrete Fourier Transform 

A.4.1 Fourier Series 

If f(x) is a periodic function of period L, then 

f x( ) = Fn exp inKx( )
n= −∞

∞

∑

Fn =
1
Λ

f x( )exp −inKx( )dx
0

Λ

∫
 

where K ≡
2π
Λ

 is the fundamental frequency. 

 

A.4.2 Cosine and Sine series: 
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f x( ) = 1
2 C0 + Cn cos nKx( )

n=1

∞

∑ + Sn sin nKx( )
n=1

∞

∑

Cn =
2
Λ

f x( )cos nKx( )dx
0

Λ

∫

Sn = 2
Λ

f x( )sin nKx( )dx
0

Λ

∫
Fn = 1

2 Cn − iSn[ ]

 

 

A.4.3 Discrete Fourier Transform 

 

f(x) defined in [-X/2, X/2]:  

 f x( ) = 0 for  x ∉ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

f(x)

x

X/2-X/2 0dx

F(k)

k

K/2-K/2 0dk

 

fs(x) sampled at dx intervals: 

 fs x( ) = f x( )⋅ comb
x

δx
⎛ 
⎝ 

⎞ 
⎠  

 

i.e., fs xi( )= f xi( )  for  xi ∈ −
X
2

:δx:
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 

Fourier transform Fs(k): 

  

Fs k( ) = F fs x( ){ } k[ ]= F f x( )⋅ comb
x

δx
⎛ 
⎝ 

⎞ 
⎠ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= F k( )⊕
2π

δx
comb

k
2π / δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

2π
δx

F k − n
2π
δx

⎛ 
⎝ 

⎞ 
⎠ 

n= −∞

∞

∑
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Therefore, if F k( ) = 0  for  k ∉ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , where K =

2π
δx

,  then  

Fs k( ) = F k( )  for  k ∈ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

Conversely: 

F(k) defined in [-K/2, K/2]:  F k( )= 0  for  k ∉ −
K
2

,
K
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

Fs(k) sampled at dk intervals:  Fs k( )= F k( )⋅ comb
k
δk

⎛ 
⎝ 

⎞ 
⎠  

Fourier transform fs(x):  fs x( ) = f x( )⊕
2π
δk

comb
x

2π / δk
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟  

Therefore, if f x( ) = 0  for  x ∉ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
  
, where X =

2π
δk

,  then  
⎦⎥

fs x( ) = f x( )  for  x ∈ −
X
2

,
X
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

Therefore, if both f(x) and F(k) are discretized with N+1 points, then: 

K = Nδk = N 2π
X

= 2π
δx

δk = K
N

= 2π
Nδx

= 2π
X

X = Nδx = N
2π
K

=
2π
δk

δx =
X
N

=
2π
Nδk

=
2π
K

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 
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Appendix B  

Listing of Labview Programs 

This appendix contains a listing of the computer programs written in Labview 

which are used to acquire holograms from the firewire CCD camera and perform 

numerical reconstruction of the hologram. 

 
 
 
 
 
 
 
 
 
 
 



B.1 Calibration of data parameters and optical alignment via the angular spectrum 
(Firecamera.vi) 
 
B.1.1 Front Panel 
 

 
 
B.1.2 Block Diagram 
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B.2 Image capture of holograms (ExperimentalHolo.vi) 

B.2.1 Front Panel 

 

B.2.2 Block Diagram 
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B.3 Reconstruction of the hologram (Holodiffract.vi) 
 
B.3.1 Front Panel 
 

 
 
 
B.3.2 Block Diagram- Reading hologram into reconstruction program 
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B.3.3 Block Diagram- Performing frequency domain analysis 
 
 

 
 
 

B.3.4 Block Diagram- Calculating Angular Spectrum 
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B.3.5 Block Diagram- Saving images 
 

 
 
B.4 Calculating Huygens diffraction 
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B.5 Calculating Fresnel diffraction 
 

 
 
 
B.6 Multi-Wavelength Phase imaging 
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Appendix C  

Listing of Matlab programs 

This appendix contains a listing of the computer programs written in Matlab 

which are used to numerically reconstruct the hologram and un-wrap the reconstructed 

phase image. These algorithms can be integrated into the Labview environment one may 

observe in the block diagrams displayed in Appendix B. 

 
 
C.1 Numerical Reconstruction in Matlab 
 
C.1.1 Huygens Algorithm 
 
function E1= Huygens(E0,ax0,ax1,nx1,zz,lam,xth,yth) 
% function E2= Huygens(E0,ax0,ax2,nx2,zz,lam,xth,yth) 
% xth and yth are horizontal and vertical angular shift of object  
% in degrees relative to reference for off-axis hologram. 
% 
% 3/10/2005 mkk 
% 
  
if zz==0; E1= E0; return; end 
  
pi2= pi*2; 
kk= pi2/(lam*1e-6); 
  
nx0= size(E0,1);  
dx0= ax0/nx0; 
dx1= ax1/nx1; 
  
XX0= [-ax0/2:dx0:ax0/2-dx0]; 
[X0,Y0]= meshgrid(XX0,XX0); 
XX1= [-ax1/2:dx1:ax1/2-dx1];  
[X1,Y1]= meshgrid(XX1,XX1); 
  
xth= pi*xth/180; yth= pi*yth/180; 
E0= E0.*exp(i*kk*(xth*X0+yth*Y0)); 
  
Eo= reframe(E0,'n',ax0,nx0,ax1,nx1); 
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%SS= pi2*(-i*kk/(pi2*zz))*exp(i*kk*sqrt(X1.^2+Y1.^2+zz^2)); 
SS= exp(i*kk*sqrt(X1.^2+Y1.^2+zz^2)); 
  
Eo= fft2(Eo)/nx1; 
SS= fft2(SS)/nx1; 
E1= fft2(Eo.*SS)/nx1; 
E1= fftshift(E1); 
E1= flipud(fliplr(E1)); 
 
 
 
C.1.2 Fresnel Algorithm 
 
function E2= Fresnel(E0,ax0,ax2,nx2,zz,lam,xsh,ysh) 
% function E2= Fresnel(E0,ax0,ax2,nx2,zz,lam,xsh,ysh) 
% xsh and ysh are horizontal and vertical shift of object  
% relative to reference for off-axis hologram. 
% 
% 6/24/01 mkk 
% 
  
if zz==0; E2= E0; return; end 
  
pi2= pi*2; 
kk= pi2/(lam*1e-6);  
  
nx0= size(E0,1);  
dx0= ax0/nx0; 
ax1= axbx(ax0,nx0,zz,kk); 
nx1= nx0; 
dx1= ax1/nx1; 
  
XX0= [-ax0/2:dx0:ax0/2-dx0]; 
[X0,Y0]= meshgrid(XX0,XX0); 
XX1= [-ax1/2:dx1:ax1/2-dx1];  
[X1,Y1]= meshgrid(XX1,XX1); 
  
thx= xsh/zz; thy= ysh/zz; 
E0= E0.*exp(i*kk*(thx*X0+thy*Y0)); 
  
S0= exp((i*kk/(2*zz))*(X0.^2+Y0.^2)); 
%SS= pi2*(-i*kk/(pi2*zz))*exp(i*kk*(zz+(X1.^2+Y1.^2)/(2*zz))); 
SS= exp(i*kk*(zz+(X1.^2+Y1.^2)/(2*zz))); 
  
E1= fft2(E0.*S0)/nx0;  
E1= SS.*E1; 
E1= fftshift(E1); 
  
E2= reframe(E1,'n',ax1,nx1,ax2,nx2); 
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C.1.3 Angular Spectrum Algorithm 
 
function [E2,SO]= Angspc(E0,ax0,ax2,nx2,zz,lam,xsh,ysh); 
% function E2= Angspc(E0,ax0,ax2,nx2,zz,lam,xsh,ysh); 
% xsh and ysh are horizontal and vertical shift of object  
% relative to reference for off-axis hologram. 
% 
  
[M,N]=size(E0); 
  
I1=fftshift(fft2(double(E0))); 
%figure(1); imshow(mat2gray(abs(I1))/0.003); 
  
%========================================================Fresnel 
Diffraction 
wlength=lam*1e-9;%594e-9; 
x=ax0*1e-3; 
y=ax0*1e-3; 
d=1e-3*zz; 
  
%============================================filtering 
  
I2=zeros(M,N); 
%I2(:,1:70)=I1(:,1:70); 
I2(1:M,1:100)=I1(1:M,1:100); 
%layer102=shiftxy(I2,xsh,ysh); 
nx=xsh*100; 
ny=ysh*100; 
F00=zeros(M,N); 
F00(1:M-nx,1:N-ny)=I2(nx+1:M,ny+1:N); 
F00(M-nx+1:M,1:N-ny)=I2(1:nx,ny+1:N); 
F00(1:M-nx,N-ny+1:N)=I2(nx+1:M,1:ny); 
F00(M-nx+1:M,N-ny+1:N)=I2(1:nx,1:ny); 
SO=F00; 
%========================================================Angular 
Spectrum 
  
  
F01=(conj(F00)); 
MM=M/2; 
NN=N/2; 
%----------------------------------------- 
  
%d is the position of reconstruction 
%d=1.2; 
c1=j*2*pi*d; 
c2=1/wlength^2; 
  
dk=1/x; 
dl=1/y; 
    
for k=1:M 
   for l=1:N 
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           T3(k,l)=F01(k,l)*exp(c1*sqrt(c2-((MM-k)*dk)^2-((NN-
l)*dl)^2)); 
   d en
end 
  
  
E2=ifft2(fftshift(T3));%/(j*wlength*d); 
 
 
 
C.2 Flood Fill Phase Unwrapping Programs 
 
C.2.1 Main.m - Loads a wrapped phase image 
 
a = imread('Phase1.bmp','bmp'); 
c=double(a); 
size_of_b=size(c); 
for i=1:size_of_b(1,1) 
   for j=1:size_of_b(1,1) 
      b(i,j)=c(i,j,1); %^2+c(i,j,2)^2+c(i,j,3)^2)^0.5; 
   end 
end    
       
arraydisp(b,0,255);             %display image 
theta=b*2*pi/255-pi; 
quality_map=qualitymap(b,size_of_b(1,1)); 
arraydisp(quality_map,0,0.4);   %display quality map 
ture_quality_map=rmd(quality_map,size_of_b(1,1),0.01); 
arraydisp(ture_quality_map,0,0.4);   %diplay quality map without 
discontinuity 
 
function [a1,a2]=add2list(adjoin1,adjoin2,x,y,q) 
  
 
C.2.2 add2list.m –Adds a position and quality value to adjoining x,y 
 
% x,y is the postion, q is the quality 
  
[h,long]=size(adjoin2); 
for i=1:long 
   if adjoin2(i)==0 
      adjoin1(i,1)=x; 
      adjoin1(i,2)=y; 
      adjoin2(i)=q; 
      break; 
   end 
end 
if i==long 
   adjoin1(long+1,1)=x; 
   adjoin1(long+1,2)=y; 
   adjoin2(long+1)=q; 
end 
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C.2.3 arraydisp.m – Displays the array image 
 
a1=adjoin1; 
a2=adjoin2; 
% ARRAYDISP() display the array image 
  
 
function arraydisp(array,minv,maxv) 
  
% ARRAYDISP() display the array image 
  
figure 
imshow(mat2gray(array,[minv,maxv])) 
axis on 
 
 
       
C.2.4 main2.m – Central program for phase unwrapping 
%for i=1:232 
%   for j=1:232 
%      test(i,j)=theta(i,j); 
%      test_map(i,j)=ture_quality_map(i,j); 
%   end 
%end 
uwphase=qgunwrap(theta,ture_quality_map,size_of_b(1,1),190,190); 
mdisp(uwphase,min(min(uwphase)),max(max(uwphase))); 
  
cmax=max(max(uwphase)); 
cmin=min(min(uwphase)); 
%uwph=uwphase-cmin; 
uwph=cmax-cmin-(uwphase-cmin); 
max(max(uwph)) 
value=80-uwph; 
newvalue=max(max(value)); 
uwphnew=newvalue+uwph; 
  
figure(2) 
imshow(mat2gray(uwphnew)) 
imwrite(uint8(255*mat2gray(uwphnew)/1),colormap,'Unwrapphaserr123234new
cellnewTa0.bmp') 
 
 
 
C.2.5 qmdisp.m – display for array 
 
function mdisp(map,min,max) 
%QMDISP 
  
%t=map.*mask0+mask1*max; 
arraydisp(map,min,max);                          % FIGURE 
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function uwphase=qgunwrap(theta,qmap,N,s_x,s_y) 
  
 
C.2.6 qgunwrap.m – quality guided path following method 
%QGUNWRAP.m 
%N=100; 
  
start_time=datestr(now); 
disp(['File generating begins on ' start_time ', please wait ...']) 
mphase=theta; 
uwphase=zeros(N); 
ifunwrap=zeros(N); 
  
% start to unwrap phase using quality guided plus flood-fill algorithm 
%--------------------------------------------------------------------- 
start_x=s_x; %starting point 
start_y=s_y; 
uwphase(start_x,start_y)=mphase(start_x,start_y); 
ifunwrap(start_x,start_y)=1; 
long=1; 
ifempty=1; 
adjoin1(1,1)=start_x; 
adjoin1(1,2)=start_y; 
adjoin2(1)=qmap(start_x,start_y); 
tt=0; 
  
% perform flood-fill algorithm until the ajoint list is empty 
%-------------------------------------------------------------- 
while ifempty>0          
   [t,position]=max(adjoin2);       % First find the maximun value from 
adjoin list 
   i=adjoin1(position,1); 
   j=adjoin1(position,2); 
   adjoin1(position,1)=0;           % remove the pixel being operated 
from the adjoin list 
   adjoin1(position,2)=0; 
   adjoin2(position)=0; 
   if i>1 & i<N & j>1 &j<N 
      if ifunwrap(i,j-1)==0   %if not border and unwrap pixel, perform 
phase unwrapping 
         d=unwrp(mphase(i,j),mphase(i,j-1)); 
         uwphase(i,j-1)=uwphase(i,j)+d; 
         ifunwrap(i,j-1)=1; 
         [adjoin1,adjoin2]=add2list(adjoin1,adjoin2,i,j-1,qmap(i,j-1)); 
      end 
      if ifunwrap(i-1,j)==0 %& mask0(i-1,j)==1  %if not border and 
unwrap pixel, perform phase unwrapping 
         d=unwrp(mphase(i,j),mphase(i-1,j)); 
         uwphase(i-1,j)=uwphase(i,j)+d; 
         ifunwrap(i-1,j)=1; 
         [adjoin1,adjoin2]=add2list(adjoin1,adjoin2,i-1,j,qmap(i-1,j)); 
      end 
      if ifunwrap(i,j+1)==0 %& mask0(i,j+1)==1  %if not border and 
unwrap pixel, perform phase unwrapping 
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         d=unwrp(mphase(i,j),mphase(i,j+1)); 
         uwphase(i,j+1)=uwphase(i,j)+d; 
         ifunwrap(i,j+1)=1; 
         [adjoin1,adjoin2]=add2list(adjoin1,adjoin2,i,j+1,qmap(i,j+1)); 
      end 
      if ifunwrap(i+1,j)==0 %& mask0(i+1,j)==1  %if not border and 
unwrap pixel, perform phase unwrapping 
         d=unwrp(mphase(i,j),mphase(i+1,j)); 
         uwphase(i+1,j)=uwphase(i,j)+d; 
         ifunwrap(i+1,j)=1; 
         [adjoin1,adjoin2]=add2list(adjoin1,adjoin2,i+1,j,qmap(i+1,j)); 
      end 
   end 
   ifempty=sum(adjoin2); 
   tt=tt+1       
end 
tt 
end_time=datestr(now); 
disp(['File generating ends on ' end_time '.']);  
 
 
  
function map=qualitymap(theta,s) 
  
C.2.7 qualitymap.m – 
%QUALITYMAP.m calculate the quality map of input image 
  
start_time=datestr(now); 
disp(['File generating begins on ' start_time ', please wait ...']) 
  
theta_temp=(flipud(theta))'; 
  
for i=1:2:(s-3) 
   for j=1:(s-1) 
      ma=theta_temp(i+2,j)-theta_temp(i,j); 
      mb=theta_temp(i,j+1)-theta_temp(i,j); 
      mc=theta_temp(i,j+1)-theta_temp(i+2,j+1); 
      md=theta_temp(i+2,j)-theta_temp(i+2,j+1); 
      c(i,j)=2/sqrt(ma^2+4*mb^2+4); 
      c(i+1,j)=2/sqrt(mc^2+4*md^2+4); 
   end 
end 
map=flipud(c'); 
map(:,s-1:s)=1; 
map(s,:)=1; 
  
end_time=datestr(now); 
disp(['Programe runnig ends on ' end_time '.']) 
function mapt=rmd(map,s,t) 
  
 
C.2.8 rmd.m – remove the discontinuity, s is image size. t is theshold 
%RMD.m  
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disp('Precessing ...') 
mapt=map; 
if mapt(1,1)<t            % point (1,1) 
   mapt(1,1)=t; 
end 
for j=2:s                 % first line 
   if mapt(1,j)<t 
      mapt(1,j)=mapt(1,j-1); 
   d en
end 
       
for i=2:s        % second line to end 
   if mapt(i,1)<t 
      mapt(i,1)=mapt(i-1,1); 
   end  
   for j=2:s 
      if mapt(i,j)<t 
         mapt(i,j)=max(mapt(i,j-1),mapt(i-1,j)); 
      end 
   end 
end 
 
 
C.2.9 unwrap.m - not is unfinished point; finish is finished point % d is the difference 
 
function d=unwrp(finish,not) 
  
t=not-finish; 
if t>pi 
   d=not-2*pi-finish; 
elseif t<-pi 
   d=not+2*pi-finish; 
else 
   d=not-finish; 
end 
 
 
C.2.10 view2D.m – view unwrapped phase image 
 
 
A = IMREAD('UnwraNewPhase','bmp'); 
%A= double(A)/255; 
%A=double(A)*2*pi/255; 
cmax=max(max(A)); 
cmin=min(min(A)); 
%A=(A*0.532)/(2*pi)/(0.375); 
%A=(A*0.532)/(2*pi); 
A=(double(A)/255)*(20.8700); 
A=(A*0.532)/(2*pi*0.375); 
cmax=max(max(A)); 
cmin=min(min(A)); 
A= flipud(A); 
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surf(A); 
shading fla  t;
axis tight; 
rotate3d on; 
colormap hsv; 
lighting phong; 
light; 
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Appendix D 

List of Accomplishments 

 

Journal Publications  

1. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, "High-resolution quantitative phase-contrast 

microscopy by digital holography," Opt. Express 13, 8693-8698 (2005) 

http://www.opticsexpress.org/issue.cfm?volume=13&issue=22

 

2. C.J. Mann, L. Yu, & M.K. Kim, “Movies of cellular and sub-cellular motion by digital 

holographic microscopy”, J. Biomedical Engineering 5, 21 (2006) 

http://www.biomedical-engineering-online.com/content/5/1/21/abstract. 

 

3. M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holographic 

microscopy”, J. Opt. A: Pure Appl. Opt. 8: S518–S523 (2006) 

 

Conference Papers  

 

1. C.J. Mann & M.K Kim, “Digital Gabor holography for particle field imaging”, OSA 

Biomedical Topical Meetings, Miami, FL (April 14-17, 2004) poster presentation 

 

http://www.opticsexpress.org/issue.cfm?volume=13&issue=22
http://www.biomedical-engineering-online.com/content/5/1/21/abstract
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2. C.J. Mann & M.K. Kim, “Digital Gabor holographic movie of animal microbes”, OSA. 

Annual Meeting, Rochester, NY, (October 10-14, 2004) oral presentation 

 

3. C.J. Mann & M.K. Kim “Movies of amplitude and phase images of paramecium by 

digital holographic microscopy”, poster presentation at USF Interdisciplinary Graduate 

Research Symposium (April 2005) 

 

4. C.J. Mann & M.K. Kim, “Phase Imaging Digital holographic movies of animal cells”, 

OSA, CLEO/QELS, Baltimore, MA, (May 24-26, 2005) oral presentation 

 

5. M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holographic 

microscopy”, OMS 05 Optical Microsystems, Capri, Italy (Sep.2005) oral presentation 

 

6. C.J. Mann & M.K Kim, “Quantitative phase-contrast microscopy by angular spectrum 

digital holography”, SPIE BIOS, San Jose, CA (Jan. 21-26, 2006) oral presentation. 

 

7. C.J. Mann & M.K Kim, “Quantitative biological microscopy of cells by digital 

holography”, OSA Biomedical Topical Meetings, Fort Lauderdale, FL (March 19-22, 

2006): oral presentation. 

 

8. C.J. Mann & M.K. Kim “Microscopy by digital holography”, poster presentation at 

USF Interdisciplinary Graduate Research Symposium (April 2006) 
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Book Chapters  

 

M.K. Kim, L. Yu, and C.J. Mann, “Digital holography and multi-wavelength interference 

techniques”, Chap. 2 in Digital holography and three-dimensional display, T.C. Poon, ed. 

(Springer 2006) 
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