
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2007

Modulation of adult neural plasticity by proteolytic
catabolism of lecticans
Joanne Mayer
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Mayer, Joanne, "Modulation of adult neural plasticity by proteolytic catabolism of lecticans" (2007). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2281

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

Modulation of Adult Neural Plasticity by Proteolytic Catabolism of Lecticans 

 

by 

 

Joanne Mayer 

 

 
 
 

A dissertation in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Molecular Pharmacology & Physiology 

College of Medicine 
University of South Florida 

 

 

 
 

Major Professor: Paul E. Gottschall, Ph.D. 
John R. Hassell, Ph.D. 
Dave G. Morgan, Ph.D. 

Keith R. Pennypacker, Ph.D. 
Alison E. Willing, Ph.D.  

 

 
Date of Approval: 
March 30, 2007 

 

 

Keywords: proteoglycan, brevican, plasticity, ADAMTS, extracellular matrix 

© Copyright 2007, Joanne Mayer 



 

 

 

 

 

 

 

 

 

 

Note to reader:  The original of this document contains color that is necessary for 

understanding the data.  The original dissertation is on file with the USF library in 

Tampa, Florida.   



 

 

 

 

 

 

 

 

 

DEDICATION 

 This dissertation is dedicated to the late Henry W. Mayer, who always 

wanted to see his little girl go to college.   

  



 
 
 

ACKNOWLEDGEMENTS 

 Although this is an individual work, I could never have completed this 

endeavor without the help, support and guidance of many people.   I would like to 

first and foremost thank my major professor, Dr. Paul Gottschall, for taking me 

into his laboratory and providing me with years of supplies, support and writing 

reviews along with my dissertation committee, who saw me through many 

meetings, seminars, project discussions and provided ideas and suggestions 

along the way.  I could not have done this without the support of my family, my 

mother, Monika Mayer and my siblings, Luther C. James, Diane A. Remail and 

Laura R. Sosnowski and their loving families.  I also thank my fiancé, Craig “Ted” 

Ajmo Jr. for always being there and his continued love and support.  I also 

extend my gratitude to Dr. Pennypacker for the use of the Zeiss Axioscope, Drs. 

Morgan and Gordon for providing APPsw breeder mice, Dr. Carl Flannery from 

Wyeth-Ayerst for providing the human recombinant ADAMTS4, and Drs. 

Thirunavukkarasu from Eli Lilly Co., for making the ADAMTS1 knockout mice 

available to us.  Autumn Eakin was instrumental in her help and involvement in 

these experiments, thank you.  I would like to thank my colleagues and many 

lifetime friends I have made during my time here at USF for their unconditional 

friendship and support and finally, thank you to all of my professors and the office 

staff of the Department of Molecular Pharmacology & Physiology who have 

helped more than they realize.  



 i

 
 
 
 
 
 

TABLE OF CONTENTS 
 
 

LIST OF TABLES          iv 
 
LIST OF FIGURES          v 
 
ABSTRACT                  viii 
 
INTRODUCTION 
 Proteoglycans        1 
 Neural plasticity and CSPGs      3 
 Distribution of brevican in the ECM     4 
 The “substrate – protease pair”      6 
 The entorhinal cortex, perforant pathway, and neural plasticity 9 
 ECL model of neural plasticity              10 
 Alzheimer’s disease & CSPGs              12 
 The current study                13 
 References                 17 
 
CHAPTER 1:  Discordance in the localization of wisteria floribunda  
agglutinin and brevican immunoreactivity in the central nervous  
system of the rodent brain                                            23 
 Abstract                 24 
 Introduction                 25 
 Materials & Methods                28 
  Animals                28 
  Western blotting               29 
  Isolation of membrane fractions             30 
  Immunohistochemistry                      31  
  Cleavage of PGs with hRecADAMTS4            32 
  Microscopy and image acquisition            34 

Results                 34 
 Discussion                 41 
 References                 66  
 
CHAPTER 2:  Evidence for proteolytic cleavage of brevican by the  
ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse  
entorhinal cortex                          72 
 Abstract                 73 



 ii

 Introduction                 74 
 Materials & Methods               77 
  Animals                77 
  Surgical procedures – the entorhinal cortex lesion (ECL)      78 
  Region isolation method              79 
  Immunohistochemistry              81 
  Western blotting               82 
  Antibody generation               82 

Results                 83 
  Expression of ADAMTS-derived, brevican fragment          83 
  Deafferentation and neural plasticity in the dentate gyrus     84 
  Abundance and proteolysis of brevican after ECL          86 

Discussion                 87 
References               108 

 
CHAPTER 3:  Brevican processing and associated levels of synaptic 
markers in APPsw mice              113 
 Abstract               114 
 Introduction               115 
 Materials & Methods             117 
  Animals              117 
  Western blotting             117 
  Immunohistochemistry            118 
  ELISA               119 
  Antibody generation             121 
  Microscopy and image acquisition          121 
 Results               122 
 Discussion               126 
 References               141 
   
CHAPTER 4:  Characterization of lectican processing and synaptic  
markers in the brain of a mutant mouse deficient for the proteoglycanse, 
ADAMTS1                       148 
 Abstract               149 
 Introduction               150 
 Materials & Methods             152 
  Animals              152 
  Surgical procedures – the entorhinal cortex lesion (ECL)    153 
  Tissue preparation             154 
  Western blotting             154 
  ELISA               155 
 Results               157 
 Discussion               160 
 References               178 
 
 



 iii

CONCLUSIONS               175 
 References               192 
 
ABOUT THE AUTHOR           END PAGE 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv

 
 
 
 
 

LIST OF TABLES 
 

CHAPTER 1: 
 
Table 1 Relative reactivity of Wisteria floribunda agglutinin  
  (WFA), brevican, and the neoepitope of the ADAMTS- 
  derived fragment of brevican, anti-EAVESE, in the  
  adult rat.        62 
 
Table 2  Relative reactivity of Wisteria floribunda agglutinin  
  (WFA), brevican, and the neoepitope of the ADAMTS- 
  derived fragment of brevican, anti-EAMESE, in the  
  adult mouse.        64 
 
CHAPTER 3: 
 
Table 3 Relative immunoreactivity of brevican isoforms in brain 
  regions of APPsw transgenic (+) mouse brain compared 
  to littermate control (-).              136 
 
 
CHAPTER 4:   
 
Table 4 Relative immunoreactivity of brevican isoforms in brain 
  regions of ADAMTS1 knockout (-/-) mouse brain  
  compared to wild-type (+/+).                  167 
 
Table 5 Relative immunoreactivity of versican isoforms in brain 
  regions of ADAMTS1 knockout (-/-) mouse brain  
  compared to wild-type (+/+).                                170 
 
Table 6 Relative synaptophysin, SNAP-25 and PSD-95 levels  
  as measured by ELISA in regions of ADAMTS1 
  knockout mice and (-/-) and wild-type (+/+) brain tissue.       171 
 
 
CONCLUSIONS 
 
Table 7 Summary of evidence found for models investigated,  
  supporting proteolytic degradation of lecticans in ECM  
  influence neural plasticity.                        197 



 v

 
 
 
 

 
LIST OF FIGURES 

 
INTRODUCTION 
 
Figure 1 “HLT (hyaluronan, lectican, and tenascin) complex” in the 

extracellular matrix of the central nervous system  16 
 
CHAPTER 1:  
 
Figure 2 Schematic representation of brevican isoforms in brain  
  ECM and their ADAMTS-derived proteolytic cleavage  
  fragments.        47 
 
Figure 3 Degradation assay of brevican by human recombinant  
  ADAMTS4.        49 
 
Figure 4 Western blot of brevican, EAV(M)ESE, and Wisteria  
  Floribunda agglutinin (WFA) in rodent brain extracts  
  before and after chondroitinase digestion.   51 
 
Figure 5 Western blot of brevican, EAMESE, and Wisteria 
   floribunda agglutinin (WFA) in extracts from  
  various regions of mouse brain before and after  
  chondroitinase digestion.      53 
 
Figure 6 Binding of Wisteria floribunda agglutinin (WFA) lectin  
  to fixed tissue sections of rodent brain: effect of  
  chondroitinase ABC.      55 
 
Figure 7 Localization of Wisteria floribunda agglutinin (WFA)  
  and ADAMTS-derived fragment of brevican reactivity  
  in rat and mouse brain.      57 
 
Figure 8 Localization of WFA and the ADAMTS-derived  
  fragment of brevican reactivity in perineuronal nets.  59 
 
Figure 9 Localization of WFA and brevican reactivity in peri- 
  neuronal nets.       61 
 
 
 



 vi

CHAPTER 2: 
 
Figure 10 Schematic representation of the micro-dissection of  
  dentate gyrus and entorhinal cortex.    95 
 
Figure 11 Schematic representation of brevican cleavage by the  
  glutamyl-endopeptidases, the ADAMTSs.   97 
 
Figure 12 Brevican and EAMESE Western blotting in regions of  
  mouse brain.        99 
 
Figure 13 Alterations in brevican levels in lesioned entorhinal  
  cortex.                101 
 
Figure 14 Denervation of the outer molecular layer of the dentate 
   gyrus after entorhinal cortex lesion.            103 
 
Figure 15 Brevican immunoreactivity in the dentate gyrus after  
  entorhinal cortex lesion.              105 
 
Figure 16 Apparent ADAMTS activity.             107 
 
 
 
CHAPTER 3: 
 
Figure 17 Detection of brevican isoforms and proteolytic  
  degradation by endogenous proteases at specific 
  cleavage sites.                133 
 
Figure 18 Relative immunoreactivity of brevican isoforms in the  
  hippocampus of APPsw transgenic mice compared  
  to littermate non-transgenic mice.              135 
 
Figure 19 Immunohistochemical localization of brevican, the  
  proteolytically cleaved fragment of brevican and Aβ 
  plaques in APPsw transgenic mice.             138 
 
Figure 20 Synaptic markers as measured by ELISA in brain 
  regions of APPsw and non-transgenic animals.            140 
 
 
CHAPTER 4: 
 
Figure 21 Brevican processing in the ADAMTS1 knockout  
  compared to littermate control.              166 



 vii

 
Figure 22 Versican processing in the ADAMTS1 knockout  
  compared to littermate control.              169 
 
Figure 23 Brevican immunoreactivity in the dentate gyrus of  
  ADAMTS1 knockout and control animals after  
  entorhinal cortex lesion.               173 
 
Figure 24 Apparent ADAMTS activity seven and twenty-one  
  days after ECL.                175 
 
Figure 25 Synaptic marker levels as measured by ELISA seven 
  and twenty-one days after ECL.              177 
 
 
 
CONCLUSIONS 
 
Figure 26 Summary schematic of the tertiary complex in the brain  
  between a pre-synaptic neuron and a post-synaptic  

neuron (or glial cell) as it relates to  the inhibition (-) of  
neural plasticity and the ability (+) to undergo neural  
plasticity.                         196 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii

 

 

 

Modulation of Adult Neural Plasticity by Proteolytic Catabolism of Lecticans 

Joanne Mayer 

ABSTRACT 

 

The extracellular environment of the central nervous system (CNS) 

through which neuritic processes must traverse during development or after 

injury is complex, and may vary from stabile conditions to a milieu favorable for 

neural plasticity and growth.  The extracellular space in the CNS accounts for 

about 20% of brain volume and is composed of aggregating complexes of 

several different extracellular matrix (ECM) molecules.  The ECM supports neural 

networks and acts as a barrier for neurite extention, depending on the type of 

molecules involved and the various signals they induce.  One mechansim that 

may produce an environment favoring plasticity is the proteolytic cleavage of 

ECM.  Brevican belongs to the lectican family of aggregating, chondroitin sulfate-

containing proteoglycans (CSPGs) and is abundant in brain ECM complexes.  It 

is localized peri-synaptically, inhibits neurite outgrowth, and is thought to stabilize 

synaptic networks in the adult.  Interestingly, a significant proportion of brevican 

in the CNS is observed as a fragment of the protein core formed by proteolytic 

cleavage.  Endogenous matrix-degrading proteinases, such as the MMPs (matrix 

metalloproteinases) and ADAMTS (a disintegrin and metalloproteinase with 



 ix

thrombospondin motifs), cleave brevican and other lecticans potentially 

promoting neural plasticity.  Cleavage of brevican and similar lectican family 

members may "loosen" the aggregated complexes and change the extracellular 

environment to one that is more permissive toward neural plasticity.  After injury, 

during inflammation or with disease, alterations in the ECM may influence 

development and/or progression of neurological disease.  The purpose of these 

studies was to investigate the catabolism of brevican in the ECM and its potential 

role in neural plasticity under each of these influences, taking an in depth look at 

how brevican is processed after (1) undergoing a classical model of neural 

plasticity, the entorhinal cortex lesion (ECL); (2) a disease state that is thought to 

have dysregulated neural and synaptic plasticity; and (3) how brevican 

catabolism and neural plasticity is effected by deleting the protease responsible 

for the cleavage of lecticans in a mouse model.  Overall, these experiments 

provide evidence that the proteolytic cleavage of brevican, and lecticans in 

general, may play an important role in the regulation of neural plasticity. 
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INTRODUCTION 

 Extracellular matrix (ECM) that surrounds neurons has become 

recognized as increasingly important as a modulator of neural plasticity that 

occurs after injury, with inflammation, prior to the end of developmental critical 

periods, and with aging and disease.  Interactions between neurons (or glia) and 

molecules in the extracellular milieu initiate signals to regulate neurite outgrowth, 

neural migration, synaptogenesis, axonal guidance, and topographical mapping 

during development, after which the CNS loses its ability to rearrange synaptic 

networks in the healthy adult.  Although it is clear that soluble signals in the 

extracellular space can induce signaling in neurons, it is becoming increasingly 

evident that extracellular matrix macromolecules impinge on this signaling 

process (Bruckner et al., 2003).  Proteoglycans are a main component of brain 

ECM and may be involved in the modulation of adult neural plasticity. 

 

Proteoglycans 

 The ECM is an interlocking network of aggregating macromolecules that 

are secreted by individual cells and composes the extracellular space.  ECM is 

important for nutrition, support, stability, serves as a medium for cell-to-cell 

communication, acts as a biochemical barrier, and may be important in the 

repositioning of neurite outgrowth and synaptogenesis during cell development, 
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neural plasticity, and wound repair.  Varieties of proteins in the ECM contain high 

molecular weight sugars.  Proteoglycans are glycoproteins that are heavily 

glycosylated and found throughout the ECM forming complexes with hyaluronan 

and other matrix proteins.   

 These molecules contain one or more negatively charged long, linear 

chains of repeating disaccharides called glycosaminoglycan (GAG) chains 

attached to the core protein of proteoglycans.  These GAG chains are covalently 

attached to the core protein in the endoplasmic reticulum by adding the reducing 

end of xylose to the serine residue of the core protein (Grebner et al., 1966; 

Kjellen and Lindahl, 1991).  Next, via a series of transferases, two galactose 

molecules are added and then a glucuronic acid is transferred by glucuronyl-

transferase (Helting and Roden, 1969).  This pattern of reactions is the general 

structure of linkage region in chondroitin sulfate that helps make up the GAG 

attachments to proteoglycans.  For the production of chondroitin sulfate 

proteoglycans (CSPGs), the long GAG chains are formed by the addition of one 

monosaccharide at a time in the Golgi apparatus, producing repeating 

disaccharide chains of glucuronic acid and N-acetylgalactosamine.  The highly 

negative charge found in CSPGs comes from the sulfate and uronic acid groups 

within the GAG chains.  These CS-containing chains can be enzymatically 

removed via degradation by a bacterial enzyme from proteus vulgaris, which can 

cleave all three isomeric forms of chondroitin sulfate and is commercially 

available as Chondroitinase ABC.  The chondroitin sulfate (CS) chain additions 

are thought to be the main inhibitory / stability component of proteoglycans in the 
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ECM and may play a major role in the permissibility of neural plasticity in the 

brain. 

 

Neural plasticity and CSPGs  

 This research refers to neural plasticity as changes in neurite outgrowth, 

guidance and synapse formation that occur in response to injury.  A more 

encompassing, broader definition is the growth and neuronal alterations which 

occur throughout brain development, in learning and memory, and with recovery 

from injury.  Neurites must extend and synapses form in an extracellular milieu 

that consists of soluble molecules in addition to the ECM.  Chondroitin sulfate 

(CS) containing proteoglycans (PGs) are abundant ECM molecules in the brain 

and are thought to confer diverse functions on neural plasticity (for review see 

(Viapiano and Matthews, 2006).  CSPGs inhibit neural plasticity in various 

models and a number of mechanisms have been proposed to explain these 

effects, such as 1) an increase in intracellular calcium when neurons contact CS 

(Snow et al., 1994); 2) inhibition of neurite extension due to binding highly 

negatively charged GAG side chains (Dillon et al., 2000); and 3) an inhibition of 

proteolysis of local ECM molecules (Reeves et al., 2003).   

The ECM undergoes cell-dependent remodeling during development and 

after injury by structural organization and reorganization (Lander, 1993; Deller et 

al., 2000; Thon et al., 2000).  After injury, axonal processes must penetrate the 

altered extracellular environment to facilitate reinnervation.  More specifically, 

after injury in the CNS, new axons and dendrites must traverse a stable, 
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inhibitory extracellular environment in order to repair damaged neural circuits.  

The glial scar is formed by the induction of reactive microglia and astrocytes at 

different times after injury, making it an “evolving structure” (Fawcett and Asher, 

1999).  The failure of injured axons to regenerate within the CNS may be 

attributed to the presence of the glial scar, particularly its makeup of growth 

inhibitory, astrocyte-derived CS-containing PGs (Reier and Houle, 1988; Maxwell 

et al., 1990; Properzi et al., 2003).  The most active component within this 

“barrier” appears to be the CS side chain, which can block advancing axons 

(Snow et al., 1990; Oakley and Tosney, 1991; Brittis et al., 1992).  The presence 

of CS chains has been reported to be responsible for the neurite growth inhibitory 

action in the ECM (Yamada et al., 1997) and these chains create a net-like 

complex that prevents neurite outgrowth and other plastic changes in this 

environment.  One of the most abundant CS-containing PGs in the brain is 

brevican. 

 

Distribution of brevican in the ECM 

 One CS-containing PG up regulated in areas of brain damage, as well as 

areas denervated by a lesion, is brevican.  This up regulation suggests a 

prominent role in reactive gliosis and possibly neural plasticity.  In fact, in the rat, 

brevican expression is markedly increased in astrocytes after entorhinal cortex 

lesion (Thon et al., 2000).  Brevican is the most abundant CSPG in the brain and, 

along with aggrecan, versican, and neurocan, is a member of the lectican family 

of aggregating PGs.  Lecticans are a family of CS-containing PGs, which bear a 
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hyaluronan-binding domain and a C-type lectin domain in their core proteins, 

which enable interactions with carbohydrate and protein ligands in the 

extracellular matrix and act as linkers of these ECM molecules. Brevican is one 

component of a complex of brain ECM that is found in perineuronal nets (PNNs) 

and throughout the neuropil (Celio and Blumcke, 1994; Cahal, 1995; Yamaguchi, 

2002).  PNNs and matrix complexes are thought to stabilize or maintain 

synapses in neural networks (Hockfield et al., 1990; Yamaguchi, 1996, 2000) in 

addition to inhibiting neural plasticity.   

 It is less likely that neuritic or synaptic remodeling would occur in regions 

with intact and abundant matrix complexes because of the inhibitory environment 

that these molecules produce.  When the matrix is broken down and interactions 

between these complexed molecules are disrupted, the matrix becomes “loose” 

or unfastened and moveable, producing a favorable environment for cell 

migration, axonal growth and synaptogenesis.  The core proteins of the lecticans 

in the ECM have a common domain structure.  In each case the N-terminal 

globular region (G1) binds to hyaluronate in a ternary complex with core protein.  

The central domain of brevican is short relative to the lecticans but does contain 

two other serine residues that can be substituted with chondroitin sulfate. The C-

terminal, G3 region, contains a domain region (the complement binding 

regulatory) that binds another ECM protein called tenascin-R.  These three ECM 

components form an “HLT complex” (hyaluronan, lectican and tenascin) in the 

matrix and therefore form the lattice in which soluble molecules must diffuse 

(figure 1, A).  Proteolytic cleavage of brevican’s core protein would therefore be 
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expected to disrupt this lattice and promote plasticity (figure 1, B).  Versican is a 

large CS-containing member of the lectican family and has been shown to play a 

role in cell adhesion, migration, and proliferation.  Versican has been implicated 

in inflammation (Wight and Merrilees, 2004; Toeda et al., 2005) and is highly 

expressed in tumors (Paulus et al., 1996; Zheng et al., 2004; Miquel-Serra et al., 

2006).  Like brevican, versican can also inhibit axonal growth following an injury 

in the CNS (Morgenstern et al., 2002).  These lecticans can be catabolized by 

endogenous proteases within the ECM. 

 

The “substrate – protease pair” 

Brevican is selectively expressed in the CNS and localized peri-

synaptically, where it surrounds, but is not on or over the active site of the 

synapse (Hagihara et al., 1999).  The secreted form of brevican that bears 

chondroitin sulfate, likely attaches to the cell surface via ECM aggregates and 

has a molecular weight of more than 145 kD, depending upon the number and 

length of CS chains (brevican = up to 3).  A significant amount of brevican does 

not bear CS chains and exists as the core protein alone (MW 145 kD).  Most 

interesting is that a 55 kD form of brevican representing the G1 domain only, is 

as abundant in the normal brain as the intact forms.  This fragment is generated 

by specific proteases that are secreted into the extracellular space of brain.  

These proteinases are members of the family of the matrix metalloproteinase 

(MMPs, specifically MMP-1, -2, -3, -7, -8, -10, -13) and a related family called the 

ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs; 
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specifically ADAMTS-1, -4 -5 & -9) which can bind to matrix and are active in the 

brain, both of which are responsible for lectican catabolism in the brain. 

The MMPs are a class of zinc-dependent proteases that have the capacity 

to cleave ECM proteins.  They are secreted as zymogens that are inactive and 

the pro-peptide domain must be cleaved for activation to occur.  They have three 

homologous domains that include the pro-peptide domain, the catalytic domain 

and a haemopexin-like C-terminal domain.   The pro-peptide domain contains the 

“cysteine-switch” (Van Wart and Birkedal-Hansen, 1990) that interacts with a zinc 

in the active zone and initially prevents binding to and the proteolysis of a 

substrate in its inactive form.  The activated MMPs have been implicated in many 

processes including development, cell proliferation, cell migration and adhesion, 

angiogenesis, apoptosis, wound healing, and tumor progression.   

The ADAMTSs, rather than the MMPs, are thought to be the prominent 

proteases involved in the cleavage of lecticans, particularly brevican, and are a 

relatively new family of ECM-degrading, zinc-dependent, metalloproteinases.  

They consist of a pre-pro-protease domain that contains a signal peptide for 

secretion as well as a pro-domain, that must be cleaved for the molecule to 

become activated.  In addition, there is catalytic domain, a disintegrin domain 

that may have some adhesion properties and, unlike MMPs, the TS type 1 motif, 

a cysteine-rich domain and a Spacer region – most of which show significant 

homology among the family members.  There is variability in the number of 

thrombospondin motifs associated with each of the members of this family, and 

the thrombospondin domain is thought to be crucial for binding to the ECM prior 
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to proteolytic action (for review see: Adams and Tucker, 2000; Bornstein et al., 

2004). 

ADAMTS4 is highly expressed in brain and is synthesized as a latent pro-

protease.  In this conformation, an unpaired cysteine in the pro-domain binds to 

zinc in the catalytic site causing the enzyme to fold back upon itself.  This 

structure maintains the protease in its inactive form.  A variety of mechanisms 

including cleavage of the pro-domain by glycoylated protease furin activates the 

protease resulting in the 68 kD isoform of ADAMTS4, a form that is further 

processed by C-terminal truncations to 53kD and 40kD activated isoforms.  The 

subgroup including ADAMTSs, -1, -4, -5, -8, -9 & -15 are also known as the 

aggrecanases due to their ability to cleave the major cartilage proteoglycan (& 

lectican) aggrecan.  They have also been shown to cleave other lectican family 

members (e.g., brevican and versican).  

ADAMTS4 (Tortorella et al., 1999) is synthesized as a latent 100kD 

protein that is intracellularly processed by pro-protease convertases such as furin 

and further C-terminally truncated (Gao et al., 2002; Kashiwagi et al., 2004) into 

68kD, 53kD and 40kD fragments (Flannery et al., 2002).  ADAMTS4 is secreted 

by astrocytes and neurons (Yuan et al., 2002) and the little data that is available 

suggests that, in vivo, ADAMTS-1 and –4 are most highly expressed of the four 

ADAMTSs found in brain (Nakamura et al., 2000).  ADAMTSs cleave brevican 

and results in the appearance of the 55 kD N-terminal and 80 kD C- fragments.  

The ADAMTS-derived N-terminal fragment can be distinguished from other small 

fragments by its unique C-terminal neoepitope, EAMESE.  Antiserum that 
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selectively recognizes the neoepitope (EAMESE) that is formed after ADAMTS 

activity can be used to detect brevican catabolism.  Brevican cleavage can also 

be detected with antiserum that selectively recognizes the neoepitope (SAHPSA) 

that is formed after MMP cleavage.   

The development of an ADAMTS1 knockout animal has helped in the 

understanding of its role in matrix modulation.  The ADAMTS1 deficient mouse 

undergoes abnormal growth and development, as well as matrix irregularities in 

ovulation, urogenital function and angiogenesis (Kuno et al., 1997; Shindo et al., 

2000).  There is no current literature that examines the CNS of the ADAMTS1 

null mouse.  These findings here suggest that ADAMTS1 may play an important 

role in matrix maintenance and regulation in the brain as well.  In this knockout 

animal, it appears that versican, rather than brevican, processing is hindered, 

suggesting a preference for ADAMTS1 to cleave versican, ultimately suggesting 

a “protease-substrate pair”. 

 

The entorhinal cortex, perforant pathway, and neural plasticity 

 The entorhinal cortex (EC) provides input from the cerebral cortex to the 

dentate gyrus, and indirectly, it is the main source of afferents to the hippocampal 

formation.  The EC neurons are unique because they send unilateral axonal 

projections to the outer two-thirds of the molecular layer of the dentate gyrus 

(Scheff, 1989) where they synapse on granule cell dendrites.  The lateral EC 

neurons innervate the septal portion of the hippocampus, whereas medial EC 

neurons project to the temporal region of the dentate gyrus.  This is the initial 
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synapse of a tri-synaptic pathway called the perforant path which begins with EC 

projection to the dentate gyrus – through the CA3 region (mossy fibers), into the 

CA1 region (Schaefer collaterals) eventually projecting from the subiculum, the 

major source of hippocampal output.   The perforant path is believed to be crucial 

in learning and memory and involved in long-term potentiation (LTP) within the 

hippocampus.  Interruption of the input to the dentate results in a sprouting of the 

remaining viable cells and has been used as a model of neural plasticity for many 

years. 

Increased ADAMTS cleavage of brevican occurs early and is sustained in 

several brain regions after excitotoxin-induced lesion, mainly the outer molecular 

layer of the dentate gyrus, therefore, implicating this process in the initial loss of 

synapses or the regenerative response that occurs after injury (Yuan et al., 

2002).  Thus, in these experiments, a more selective lesion of the input into the 

molecular layer of the dentate is employed called the classical ECL model of 

neural plasticity.  Others have shown that brevican remains elevated in the outer 

molecular layer for up to six months after such a lesion (Deller et al., 2000).  

Thus, brevican expression is altered in models of neuronal plasticity and this 

provides the basis for the investigation into the role of brevican-degrading 

proteases in the same process. 

 

The ECL model of neural plasticity 

Some experiments in this thesis will utilize an animal model of synaptic 

plasticity called the entorhinal cortex lesion (ECL) model.  The entorhinal cortex 
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sends its axons to the septal portion of the hippocampus, innervating the outer 

molecular layer (OML) of the dentate gyrus (Scheff, 1989).  By lesioning the 

entorhinal cortex with injected excitotoxin, one can explore the effect of the 

denervation of synapses in the outer molecular layer of the dentate gyrus.  

Surviving neurons sprout and regenerate in the entorhinal cortex along with 

neuritic growth and sprouting of contralateral neurons into the ipsilateral outer 

molecular layer.  The three surviving afferent fiber systems that contribute to the 

reorganization of the OML of the dentate after ECL are: 1) crossed entorhinal-

dentate fibers; 2) commissural and associational fibers to the inner molecular 

layer (IML); and 3) septo-hippocampal fibers (Deller and Frotscher, 1997).  With 

this injury model, we can further investigate ECM molecules during reinnervation 

and repair. 

 The ECL is a classical model for denervation of the molecular layer of the 

dentate gyrus (Matthews et al., 1976; Steward et al., 1977; Ramirez and Stein, 

1984; Deller and Frotscher, 1997).  Temporal changes in the loss and 

reinnervation of the OML, as measured by the level of synaptic input, are well 

defined in this model in the rat.  The ability to completely lesion the targeted area 

has also been intricately documented (Matthews et al., 1976; Phinney et al., 

2004).  Most importantly, this is a lesion of the initial synapse of the perforant 

path and is unidirectional in its projections; therefore, it allows investigation of 

effects that occur without a secondary input-output.  As with any model there are 

a few disadvantages, for example the extent of and recovery from the lesion is 

often measured using relative optical density of an immunohistochemical signal, 
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which is not very quantitative, especially in mice, as we are dealing with a much 

smaller region than the rat.  In addition, good behavioral correlates in animals 

that have undergone this procedure in the literature (pertaining to the mouse) are 

lacking.  Nonetheless, the ECL has proven to be an efficient and well-

characterized model of neural plasticity.   

 

Alzheimer’s’ disease and CS-containing PGs. 

 One hallmark of Alzheimer’s disease is the formation of Aβ-containing 

amyloid plaques in the extracellular space in the brain.  Aβ is thought to interfere 

with neuronal function due to its stimulatory effect on free radical production 

resulting in oxidative stress and neuronal cell death as well as inducing the 

inflammatory response (McGeer et al., 1989; Giulian et al., 1995).  Amyloid 

plaques consist of largely insoluble deposits of Aβ and various forms of Aβ may 

activate astrocytes and may be toxic to neurons.  Aβ is a 39-42 amino acid 

peptide that is formed by the proteolytic cleavage of β-amyloid precursor protein 

(APP).  APP has been shown to be anterogradely transported from the entorhinal 

cortex neuron cell body to axonal endings in the dentate gyrus via projections of 

the perforant path (Sheng et al., 2002).  When these projections are severed by 

ECL, there is a reduction in amyloid burden in the dentate gyrus (Lazarov et al., 

2002), suggesting that amyloid is deposited at the nerve terminal.  Interestingly, 

one gene induced by Aβ in cultured rat astrocytes is ADAMTS4 (Satoh et al., 

2000), indicating that in reactive astrocytes, that may be reactive due to the 

presence of Aβ, there is an increase in ADAMTS4 expression in the culture.  In 
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addition, we have found that Aβ binds to and inhibits ADAMTS4 activity 

(unpublished observations, (Gottschall et al., 2003).  Thus, this provides 

evidence that the inhibition of ADAMTSs by Aβ in the brain may be involved in 

the lack of injury response, further supporting a role of the ADAMTSs, and other 

endogenous proteases, in neural plasticity.   

 Transgenic mouse models of Alzheimer's disease, that over expresses 

human mutant APP, have been developed and mimic several aspects of human 

disease especially deposition of Aβ.  Here, we investigate brevican processing by 

ADAMTSs and MMPs in a transgenic mouse model of AD that over expresses 

human mutant β-amyloid precursor protein (Hsiao et al., 1996) to examine 

expression of brevican and it catabolic fragments.  This model is the most 

prevalent Aβ producing AD mouse model in the literature and has been shown to 

have the same characteristics as Aβ deposits in human AD (Terai et al., 2001). 

  

The current study 

 The overall hypothesis is that the catabolism of brevican is prominent and 

facilitates plasticity.  Evidence from the literature and data is presented, which 

supports the theory that CS containing ECM, especially brevican and its lectican 

relatives are effective inhibitors of neural plasticity.  The data presented here a) 

defines the proteolytic fragment of brevican is abundant in regions capable of 

undergoing neural plasticity, b) increased ADAMTS activity in a classical model 

of neural plasticity, c) in a model thought to have dysregulated plasticity, such as 

Alzheimer’s disease, brevican processing is altered, and d) by altering one of the 
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proteases responsible for the catabolism of brevican, pronounced changes in the 

levels of synaptic markers in regions involved in plasticity can be observed.  

Here, it is proposed that the proteolysis of the brevican core protein in the matrix, 

by endogenous proteases such as the ADAMTSs and the MMPs, allows and 

promotes neurite outgrowth and synaptogenesis to occur more readily in the 

brain in response to injury and during recovery.  These experiments test this 

hypothesis in mouse models of neural plasticity. 
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Figure 1.  “HLT (hyaluronan, lectican, and tenascin) complex” in the extracellular 

matrix of the central nervous system.  ECM between a neuron or glial cell is 

stabile and inhibitory toward neurite outgrowth via the N-terminus of the lectican, 

brevican, binding to hyaluronan and the C-terminus of brevican binding to 

tenascin (A).  Proteolytic modulation of the core protein by endogenous 

proteases, such as the MMPs and ADAMTSs, may allow for neural plasticity to 

occur.  Modified and adapted from Yamaguchi, 2000. 
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ABSTRACT  

The extracellular environment of the central nervous system (CNS) 

through which neuritic processes must traverse during development or after 

trauma or injury is complex, and may vary from conditions favorable for plasticity 

and growth to a milieu favorable for stabilization.  The extracellular matrix (ECM) 

may act as a barrier for neurite extention in a growth tract, depending on the type 

of molecules involved, and the various signals they induce.  One mechansim that 

may produce an environment that favors plasticity is the proteolytic cleavage of 

ECM.  Brevican, a proteoglycan abundantly expressed in the adult CNS, belongs 

to the lectican family of aggregating chondroitin sulfate (CS)-bearing 

proteoglycans that can modulate neurite outgrowth and synaptogenesis.  The 

ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family 

proteolytically cleave brevican, and could promote neural plasticity.  The purpose 

of these studies was to compare the localization and abundance of the ADAMTS-

derived fragment of brevican in the CNS, which would potentially identify regions 

of plasticty, with that of Wisteria floribunda agglutin (WFA) reactivity, a common 

method used to detect "perineuronal nets" (PNNs) of intact matrix which would 

identify stable regions.  Although WFA reactivity was found primarily as PNNs, 

brevican and the ADAMTS-derived fragment of brevican were more broadly 

distributed to neuropil, yet in particular regions, they were also localzed to PNNs.  

In general, a discordance was observed between WFA and brevican or the N-

terminal fragment of brevican.  Functionally, this difference may correspond to 

regions of low and high neural plasticity, respectively.   
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INTRODUCTION 

Extracellular matrix (ECM) in the central nervous system (CNS) is 

deposited in the extracellular space of the neuropil and around a subset of 

neurons in the form of distinctive structures termed perineuronal nets (PNNs), 

coverings of matrix that ensheath perikarya, proximal dendrites and axon initial 

segments.  The components of this matrix are aggregating proteoglycans (PGs), 

termed lecticans, that interact with tenascin and hyaluronan, to form complexes 

which maintain an anionic environment in the extracellular milieu of the CNS 

(Herndon and Lander, 1990; Lundell et al., 2004) (Fig. 2D).  The core proteins of 

lecticans bear covalently-linked, highly negatively-charged, linear chondroitin 

sulfate (CS) chains that consist of glucuronic acid / N-acetylgalactosamine 

repeats, sulfated to varying extents at the 4 and 6 positions (Yamaguchi, 2000).  

Methods developed to detect the lecticans in fixed brain sections have employed: 

1) antibodies that recognize CS epitopes of the lecticans, 2) antibodies that 

recognize initial disaccharides of CS chains exposed on the core protein after 

digestion with chondroitinase ABC (Ch'ase), and 3) labeled lectins derived from 

plants that recognize "selective" monosaccharide components of CS.   
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 Wisteria floribunda agglutinin (WFA) is a lectin that binds to terminal N-

acetylgalactosamine-containing residues (Young and Williams, 1985) and can 

decorate various structures in the CNS, especially PNNs where its reactivity has 

been well-documented (Brauer et al., 1993; Bruckner et al., 1994; Bruckner et al., 

1996).  Various layers of rostral-caudal rat cerebral cortex, and particularly the 

retrosplenial cortex, thalamus, cerebellum and brain stem are regions that 

contain numerous PNNs prominently labeled by WFA (Bruckner et al., 1996).  In 

rat neocortex, several types of morphology are associated with WFA-reactive 

PNNs, (Brauer et al., 1993; Wegner et al., 2003).  Other data indicate that the 

reactivity seen with WFA may be independent of the perineuronal proteoglycan, 

and that lectin binding identifies terminal N-acetylgalatosamines present on 

neuronal cell surface glycoproteins (Murakami et al., 1999).  Importantly, WFA 

binding in nervous tissue co-localizes with signal from antibodies raised against 

CSs (Bruckner et al., 1998), and signal is lost when tissue sections are pre-

treated with chondroitinase ABC (Koppe et al., 1997a), suggesting that WFA 

binds indirectly or directly to CS.  Thus, WFA reactivity has become a standard 

method of identifying CS-containing subsets of neurons in the CNS that are 

surrounded by PNNs.   

 Brevican is a lectican highly expressed in the adult brain along with 

aggrecan and the V2 isoform of versican.  The deposition of these lecticans is 

heterogeneous in the complex ECM of PNNs and in the neuropil (Yamaguchi, 

2000) (Fig. 1D).  Functionally, CS side chains of the lecticans inhibit neural 

plasticity and neurite extension and even may stabilize synapses in neural 
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networks (Hockfield et al., 1990; Bandtlow and Zimmermann, 2000; Yamaguchi, 

2000).  Various isoforms of brevican are found in the adult brain including > 145 

kD molecule that carries 1-3 CS chains (Fig. 2A), the core 145 kD protein without 

CS, a 120 kD glycosylphosphatidylinositol-linked membrane bound form, and 55 

kD N-terminal, and 80 kD C-terminal fragments (Fig. 2C) that are the result of 

endopeptidase action on the holoprotein.  The proteases mainly responsible for 

cleavage of brevican are glutamyl endopeptidases, the ADAMTSs (a disintegrin 

and metalloproteinase with thrombospondin motifs) (Fig. 2D, E).  Several of 

these multi-domain proteases (Porter et al., 2005) (ADAMTS-1, 4, 5, and 9) are 

expressed in brain (Sasaki et al., 2001; Yuan et al., 2002; Cross et al., 2006) (our 

unpublished observations) and are potent in cleaving aggrecan (Tortorella et al., 

1999), versican (Westling et al., 2004) and brevican (Matthews et al., 2000) (for 

review, see Gottschall et al., 2005).  ADAMTS-cleaved fragments of each 

lectican are found in untreated nervous tissue extracts (Matthews et al., 2000; 

Lemons et al., 2001; Yuan et al., 2002; Westling et al., 2004; Hamel et al., 2005; 

Mayer et al., 2005), indicating that ADAMTSs are active proteases capable of 

cleaving lecticans in a "normal" nervous system.  The fragments of lecticans may 

be localized in brain tissue sections by using antibodies raised against the 

terminal, neoepitope sequences of the core protein that are exposed after 

ADAMTS cleavage (Gao et al., 2002; Westling et al., 2002; Gottschall et al., 

2005).  Using one of these antibodies that recognizes the C-terminal sequence of 

the N-terminal fragment of brevican that is uncovered after ADAMTS cleavage 

(Matthews et al., 2000), we noted that the distribution of this immunoreactivity in 



 28

rat hippocampus was markedly different from WFA reactivity in the same region.  

We expected that the distribution of the signal from both reagents would be 

similar, since fragments of brevican are stable after cleavage (Yamaguchi, 2000), 

and the preponderance of the C-terminal fragments bear CS chains.  Thus, the 

purpose of this study was to describe the distribution and characteristic 

immunoreactivity for the ADAMTS-cleaved fragment of brevican, and compare 

this with WFA binding in the rodent CNS.  The results show a marked 

discordance between the two, with the breadth of distribution of the ADAMTS-

derived brevican fragment much greater than that of WFA reactivity.  

 

MATERIALS & METHODS 

Animals  

  All animal procedures described in this manuscript were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of South 

Florida.  Adult male C57BL/6 mice (23 g - 27 g; Harlan, Indianapolis, IN) and 

adult male Sprauge-Dawley rats (250 g - 300 g; Harlan, Indianapolis, IN) were 

housed under a 12 hour light cycle with regulated temperature and humidity.  

Mice were housed 3 to 4 per cage and rats were housed individually with both 

having free access to food and water.  Brain tissue was collected from animals 

between 3 and 4 months of age: biochemical analysis n=4 and 

immunohistochemistry n=6. 
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Western Blotting  

For collection of tissue for blotting with antibodies and biotin-WFA, animals 

were euthanatized by exposure to excess CO2 until death and immediately 

decapitated.  Various brain regions were rapidly dissected and extracted with a 

teflon-glass homogenizer in 5 volumes of Triton-X-100-containing buffer (20 mM 

Tris-HCl at pH 7.4, 10 mM EDTA, 1% Triton-X-100, and 1:100 protease inhibitor 

cocktail [Calbiochem type III, LaJolla, CA]) for 2 minutes.  The homogenate was 

centrifuged in a microcentrifuge at 6800 x g for 5 minutes, and the isolated 

supernatant collected and stored at –80oC.  

In some experiments, brain tissue extract was treated with Ch'ase prior to 

Western blot to determine whether WFA recognized CS-containing proteins.  

Thus, 25 µl of sodium acetate buffer (50 mM sodium acetate, 1 M Tris, 10 mM 

EDTA) containing 10 mU of chondroitinase ABC (Sigma-Aldrich, St. Louis, MO) 

was added to 25 µl of brain tissue extract and incubated for 1.5 h at 37oC.  To 

determine whether there was protease contamination in the Ch'ase preparation, 

samples underwent Ch'ase digestion in the presence of a protease inhibitor 

cocktail.  All samples were reduced (mercaptoethanol-containing, SDS-PAGE 

sample buffer), denatured for 4 minutes at 95oC, and subjected to SDS-PAGE. 

Tissue extracts were loaded (equal amounts of protein) onto pre-cast, 1.5 

mm, 4-20% gradient SDS-PAGE gels (Novex gels, Invitrogen, Carlsbad, CA).  

Separated proteins were electrophoretically transferred to a polyvinylidine 

difluoride membrane (PVDF, Immobilon, Millipore, Billerica, MA).  For brevican 

and EAV(M)ESE immunoblotting, the membranes were washed with Buffer B (10 
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mM phosphate buffered saline, pH 7.4 containing 0.05% Tween 20) for 5 

minutes, blocked for 1 h in 5% non-fat dry milk diluted in Buffer B and probed for 

2 hours using primary antibodies against mouse anti-brevican (1:1000, BD 

Transduction Labs, San Jose, CA), rabbit anti-EAMESE (1:1000) (Mayer et al., 

2005), or rabbit anti-EAVESE (1:500) (Aya-ay et al., 2005; Hamel et al., 2005).  

For WFA blotting, the membranes were washed with Buffer B for 5 minutes, 

blocked in 1% bovine serum albumin diluted in Buffer B for 1 hour and probed for 

2 hours using biotinylated Wisteria floribunda lectin (1:10,000 in 1% BSA, Vector 

Laboratories, Burlingame, CA) as the primary binding reagent.  Primary 

antibodies and biotinylated Wisteria floribunda lectin were detected with 

corresponding secondary antibodies including anti-mouse, anti-rabbit and 

streptavidin conjugated to horse radish peroxidase (Chemicon, Temecula, CA), 

respectively.  Antigens were visualized using a chemiluminescence developing 

system (SuperSignal, Pierce, Rockford, IL).  It should be noted that ADAMTS-

derived fragment antibodies were raised against the species-specific 

neoepitopes for rat and mouse, since they show limited cross-reactivity with one 

another, ie. anti-EAVESE (rat sequence) does not recognize the C-terminus of 

the N-terminal, ADAMTS-cleaved fragment EAMESE (murine sequence) of 

mouse brevican.   

 

Isolation of Membrane Fractions 

Whole rat brain was collected as descibed above and homogenized for 

one minute with a Glas-Col (Terre Haute, IN) motorized (low speed, 333 rpm), 
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teflon-glass homogenizer in 10 volumes of 50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 

containing 1:100 protease inhibitor cocktail (Calbiochem type III, LaJolla, CA).  

The homogenate was centrifuged at 500 x g for 5 minutes and then the isolated 

supernatant was centrifuged at 40,000 x g to obtain soluble and insoluble 

fractions.  The supernatant, "soluble" fraction, was removed immediately, 

aliquoted and stored at -80oC.  The insoluble "membrane” fraction was 

resuspended with buffer, centrifuged (40,000 x g for 30 min) and reconstituted in 

detergent-containing RIPA buffer (50mM Tris base, 150mM NaCl, 1mM EDTA, 

1mM EGTA, 1% Triton-X-100, 1% sodium deoxycholate, 1% SDS, pH = 7.4), 

aliquoted and stored at -80oC . 

 

Immunohistochemistry 

Rats and mice were euthanatized with excess Nembutal, and the brains 

fixed via cardiac perfusion as described (Aya-ay et al., 2005).  The brains of the 

animals were cleared using phosphate buffered saline (PBS; pH 7.4), fixed with 

fresh 4% paraformaldehyde in 0.1M phosphate buffer (PB; pH 7.4), collected, 

post-fixed overnight in 4% paraformaldehyde and cryoprotected with 15% and 

30% sucrose (in PBS) for 24 hours each.  The individual brains were mounted on 

a cryostat chuck at –20oC and sectioned at 30 µm.  Sections were stored freely 

floating in antifreeze solution at –20oC.   

For Ch'ase treated tissue, matched sections were selected, washed three 

times with PBS and incubated in 500 mU of Ch'ase in 0.5 ml of sodium acetate 

buffer for 1.5 hours at 37oC.  Selected sections to be used for 
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immunohistochemistry were washed in PBS for 15 minutes, blocked and 

permeabilized in 10% normal goat serum, 3% 1 M lysine and 3% Triton-X-100 for 

1h and incubated overnight in primary antibodies anti-EAMESE (1:1000) (Mayer 

et al., 2005), EAVESE (1:500) (Yuan et al., 2002; Aya-ay et al., 2005), brevican 

(1:1000, N-terminal (G1); Transduction Labs, San Jose, CA) and 1:500, C-

terminal (G3) RB18, generous gift from Yu Yamaguchi, Burnham Institute, La 

Jolla, CA, (an antibody that recognizes a C-terminal region epitope of rat 

brevican) and Wisteria floribunda lectin (1:1000) at 4oC.  Doubly probed sections 

were washed and incubated in anti-rabbit IgG conjugated to Alexa-Fluor 488 

(Molecular Probes, Eugene, OR) and streptavidin conjugated to Alexa-Fluor 594 

(Molecular Probes, Eugene, OR) for 1 hr at room temperature.  The sections 

were washed for 15 minutes, wet mounted on glass slides, and coverslipped with 

VectaShield mounting medium (Vector Labs, Burlingame, CA).  

 

Cleavage of PGs with human recombinant ADAMTS4 

 PGs present in whole rat brain extracts were bound to and eluted from a 

DEAE Sepharose Fast Flow cation exchange matrix (Pharmacia, Pfizer, New 

York, NY) as described (Yamada et al., 1994) with modifications.  All procedures 

were carried out at 4oC unless otherwise stated.  Briefly, rat brain tissue (1g) was 

placed in 10 ml, ice cold, 4 mM HEPES pH 8.0, 0.15 mM NaCl, 0.1% Triton-X-

100 containing 2 mM 1,10 phenanthroline (Sigma, St. Louis, MO) and protease 

inhibitor cocktail (set III, Calbiochem, San Diego, CA).  The tissue was disrupted 

in a Teflon-glass homogenizer and the extract centrifuged at 30,000 x g for 30 
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min.  The supernatant was removed, diluted 1:1 with 50 mM Tris-HCl, 0.15 M 

NaCl, 0.1% Triton-X-100, and applied to a DEAE column pre-equilibrated with 

the same buffer at a flow rate of less than 0.5 ml per minute.  The flow through 

was collected, passed over the column again, and bound proteins were eluted 

with 5 column volumes of consecutive buffers containing 50 mM Tris-HCl pH 8.2, 

0.15 M NaCl, 0.1% Triton-X-100, then 50 mM Tris-HCl pH 8.2, 0.25 M NaCl, 6 M 

urea, 0.1% Triton-X-100, and fractions containing PGs were eluted with 50 mM 

Tris-HCl pH 8.2, 1.0 M NaCl.  PG (protein)-containing fractions were dialyzed 

against water for 24 h in SpectraPor 6000-8000 MWCO (Millipore, Billerica, MA) 

membrane at 4oC, the samples concentrated on a speed-vac and aliquoted.  

Total protein was measured in the samples (1.3 µg/µl).  DEAE-purified PG 

samples were incubated with 25 nM human recombinant ADAMTS4, (a gift of 

Carl Flannery, Wyeth Pharmaceuticals, Collegeville, PA) diluted in 10 mM Tris-

HCl, 0.15 M NaCl, and 10mM CaCl2 for two hours at 37oC.  After the incubation 

period, beta-mercaptoethanol-containing, SDS-PAGE sample buffer was added 

to the samples, the samples were heated at 95˚C for 4 minutes, subjected to 

SDS-PAGE, and electrically transferred to Immobilon PVDF membrane 

(Millipore, Bedford, MA).  Membranes were probed with mouse anti-brevican (BD 

Biosciences, San Jose, CA) at 1:1000 primary antibody detected with anti-mouse 

conjugated to horse-radish peroxidase (Chemicon, Temecula, CA), and signal 

detected using SuperSignal chemiluminescence substrate (Pierce, Rockford, IL).  

The membrane was probed a second time with anti-EAVESE (1:100) (Hamel et 

al., 2005), as described under the Western blot section above. 
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Microscopy and image acquisition 

Single and multi-labeled, epifluorescent tissue sections were viewed using 

a Zeiss Axioskop microscope, interfaced with an Axiocam and images acquired 

with Openlab software.  Confocal images (Fig. 8) were attained using a Leica 

SP-2 confocal microscope and Leica LCS software.  Controls for each 

immunomarker included secondary antibody in the absence of a primary 

antibody, in which the staning in control sections was minimal to absent.  

Exposure times and aperture opening were constant for each magnification and 

antibody used.  Some images were minimally and equally modified (contrast and 

brightness) using Abobe photoshop.   

 

RESULTS 

 Brevican exists in rodent brain ECM as a holoprotein, in part, with a 

central region that bears CS chains and globular terminal domains which do not.  

When brevican is detected on Western blot using an N-terminal region antibody, 

a 55 kD, N-terminal fragment of brevican is prominent.  The predominant 

protease activity responsible for this cleavage is ADAMTS-derived, glutamyl-

endopeptidase activity.  The neoepitope antibody(s) used in these experiments, 

anti-EAV(M)ESE, represents the C-terminal sequence exposed on the N-

terminal, 55 kD fragment of brevican after ADAMTS cleavage (Matthews et al., 

2000).  To verify that this antibody recognizes ADAMTS-cleaved brevican, the 

CS-bearing form of brevican was partially purified on a DEAE anion exchange 

matrix, and the PG-containing eluant was incubated with active human 
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recombinant ADAMTS4.  As shown in Fig. 3, when a Western blot of the DEAE 

extract was probed using an N-terminal region monoclonal, anti-brevican 

antibody, a smear >145 kD was observed (Fig. 3A).  After digestion by 

ADAMTS4, the abundance of the holoprotein was markedly reduced with the 

appearance of a 55 kD N-terminal fragment (Fig. 3C).  When probed with 

polyclonal anti-EAVESE, little or no anti-EAVESE immunoreactive fragment was 

present in the DEAE extract prior to digestion (since the fragment does not bind 

the column) (Fig. 3B), however, after cleavage of brevican by human 

recombinant ADAMTS4, the same 55 kD fragment was apparent (Fig. 3D).  This 

indicates that ADAMTS-cleaved brevican is recognized by anti-EAVESE, as a 55 

kD, N-terminal fragment, the same fragment detected using an N-terminal region 

anti-brevican antibody.   

 In an effort to identify the molecular species in rodent brain detected by 

the N-terminal region anti-brevican antibody, those detected by anti-EAV(M)ESE, 

and by biotin-WFA, cortical homogenates from rat and mouse brain that were 

either pre-treated with Ch'ase or were left untreated were subjected to SDS-

PAGE and probed with the reagents (Fig. 4).  When membranes containing 

soluble brain extract were probed with the N-terminal region anti-brevican 

antibody, the pattern of brevican immunoreactivity included a smear of 

immunoreactivity found at >145 kD, a distinct 145 kD band, and a 55 kD, N-

terminal fragment of brevican (Fig. 4A).  Ch’ase treatment eliminated the smear 

in the mouse sample with an associated marked increase in the 145 kD 

holoprotein without CS in both the mouse and rat samples (Fig 4A).  Ch’ase 
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treatment did not alter the intensity of the 55 kD fragment, and this same N-

terminal fragment was identified (alone) when the membrane was probed with 

anti-EAVESE (rat) or anti-EAMESE (mouse) (Fig. 4B).  Interestingly, those 

signals observed with streptavidin-HRP to identify proteins that bind to biotin-

WFA did not correspond to the molecular weight of any isoform of brevican (Fig. 

4C).  In fact, only the very high molecular weight smear observed in mouse 

cortical extract was diminished after incubation with Ch'ase.  Two of the major 

bands seen in this blot, however, were non-specific binding signals that were 

present when membrane was probed with streptavidin-HRP alone (Fig. 4C, right 

lane, Ms).  In addition, when brain homogenates were differentially centrifuged to 

obtain "membrane" and "soluble" fractions, the majority of brevican 

immunoreactivity was found in the soluble fraction (Fig. 4D, left panel, S), 

whereas, the major signals observed after probing with biotin-WFA were 

observed mainly in the “insoluble”, membrane fraction (Fig. 4D, right panel, I).  

These results suggest that few or none of the brevican isoforms are detected 

when probed with biotinylated WFA on membranes.  To verify that the effect of 

Ch'ase on the high molecular weight, WFA reactive smear was due solely to 

degradation of polysaccharides (and not to proteolytic activity in the Ch'ase 

preparation), the samples were treated with Ch'ase in the absence and presence 

of protease inhibitor cocktail (Fig. 4E, left panel).  In both rat and mouse samples, 

the pattern of WFA reactivity was identical, whether or not the samples contained 

protease inhibitor cocktail.  These results suggest that WFA does indeed bind to 

a high molecular weight, CS moiety that is removed after Ch'ase treatment; 
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however the results suggest it may be a different CS-containing molecule other 

than brevican.  To verify the effectiveness of Ch'ase digestion, the same 

membrane was probed with brevican and there was a complete removal of CS 

chains and a marked increase in the abundance of the core protein in Ch'ase-

treated samples (Fig. 4E, right panel, rat only, mouse not shown) with no change 

in the abundance of fragment.   

 This discordance between biotin-WFA and anti-brevican reactivity was not 

region specific, because when cerebellum, brain stem, temporal lobe and 

diencephalon extracts were probed with anti-brevican, anti-EAMESE and biotin-

WFA, similar results were observed (Fig. 4).  Nonetheless, biotin-WFA was 

highly effective at identifying neurons in the CNS that were surrounded by PNNs, 

and minor reactivity was also found in the neuropil in both rat and mouse tissue 

sections (Fig. 6A, B).  Note the abundant PNNs in retrosplenial cortex (arrows) 

and scattered PNNs in parietal cortex.  The intense signal was nearly abolished 

by pre-incubating the tissue section with high concentrations of Ch'ase (Fig. 6 C, 

D).  When streptavidin-Alexa 594 alone was used, the section was completely 

blank (not shown).  In addition, immunoreactivity for anti-EAV(M)ESE was not 

influenced by Ch'ase pre-treatment of tissue (not shown).  These results suggest 

that whatever moiety is bound by WFA is released upon treatment with Ch'ase, 

yet the N-terminal brevican fragment that does not bear CS chains is unaffected 

by Ch'ase.   

 There are several regions of the brain where there is distinctive and 

discordant reactivity between WFA and the ADAMTS-derived N-terminal 
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fragment of brevican.  Particularly, the reticular thalamic nucleus shows 

prominent staining with WFA in both the rat and mouse (Fig. 7A, 7C, and 7D, 7F) 

whereas the barrels of the ventral posteriolateral and posteriomedial thalamic 

nuclei are most evident in the rat, compared to the mouse (Fig. 7A and 7C with 

7D and 7F).  In contrast, anti-EAV(M)ESE immunoreactivity is weak in the 

reticular thalamus, but highly prominent between the barrels in the posteriolateral 

and medial nuclei (Fig. 7B, 7C, 7E and 7F).  There were striking differences seen 

in the hippocampus and surrounding cortex as well.  Mostly the neuropil layers of 

the dorsal hippocampus contain weak to absent staining with WFA, the 

exceptions being the CA2-CA3 transition region, the molecular layer of the lateral 

blade and the polymorphic layer (especially in the mouse) of the dentate gyrus 

and the fasciaola cinera (Fig. 7G).  However, clear PNNs were found in and just 

adjacent to the pyramidal cell layer in the stratum oriens in Ammon’s horn 

(Bruckner et al., 2003).  These hippocampal neurons containing PNNs appeared 

to be markedly more abundant in the mouse compared to the rat (Fig. 7G, 7J).  

The white matter regions of the corpus callosum, external capsule and alveus 

were all intensely stained by WFA; however, at least a portion of this staining 

was not eliminated after Ch'ase treatment of the sections.  Staining by anti-

EAV(M)ESE showed comparatively intense immunoreactivity in the hippocampal 

neuropil, especially the stratum oriens, and this staining reached the pyramidal 

cell layer (Fig. 7H, 7K) where there was a cobblestone appearance of this layer 

(not shown).  Scattered PNNs were noted in and around the pyramidal cell layer, 

similar to WFA staining, and some of these appeared to co-localize with WFA 
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reactivity in the mouse (Fig. 7J, K, L).  In the cerebellum, the lobular molecular 

layer was weakly stained by WFA, the granular layer contained heavily labeled 

neuropil and PNNs and lobule white matter (Fig. 7M, 7P).  The white matter was 

completely negative for reaction product to EAV(M)ESE, however, marked 

immunoreactivity was observed in the granular layer, but especially as PNNs 

surrounding the aligned Purkinjie cells that make up the molecular-granular layer 

interface (Fig. 7N, 7O, 7Q, 7R).  Interestingly, these aligned Purkinjie neurons 

have previously been shown to be labeled with parvalbumin but not by WFA 

(Corvetti and Rossi, 2005).   

 Neurons with PNNs that contain EAV(M)ESE are not quite as abundant as 

those identified by WFA, but they appear to have a broad distribution.  PNNs and 

intense fiber-like staining were found in the horizontal limb of the diagonal band 

(Fig. 8A), the medial septum (Fig. 8B) and in piriform cortex (Fig. 8C).  In 

addition, they were broadly distributed in cerebral cortex in layers distinct from 

PNNs surrounded by WFA reactivity, (Fig. 8D – 8F), and there was a low percent 

of cells that co-localize with WFA.  In murine cerebral cortex, anti-EAMESE 

immunoreactivity was found mostly in deep cortical layer IV where sporadic 

neurons containing WFA-reactive PNNs were located.  For WFA reactivity, an 

intensely-stained region was primary somatosensory cortex (Fig. 8E - 8F).  

However, most neurons with WFA reactive PNNs were found in layer III, and the 

superficial region of layer IV lacks many PNNs positive for WFA or anti-EAMESE 

(Fig. 8F).  Both reagents show a similar distribution in the rat (data not shown).  

Another region of cortex that is intensely labeled by both WFA and anti-
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EAV(M)ESE was retrosplenial cortex (not shown; at high magnification, see Fig. 

7, G-L).   

 Immunoreactivity for brevican holoprotein, and not its proteolytic fragment, 

was distributed throughout the CNS neuropil and in PNNs as has been identified 

by others.  Neurons with PNNs that contain brevican immunoreactivity are clearly 

more abundant than those identified by WFA.  Brevican immunoreactivity was 

broadly distributed in cerebral cortex in layers distinct from PNNs surrounded by 

WFA reactivity, (Fig. 9A – 9C), although there was a higher percentage of 

brevican immunoreactive cells that co-localize with WFA compared to that of 

EAV(M)ESE immunoreactivity.  In murine cerebral cortex, anti-brevican 

immunoreactivity was found in neuropil and PNNs of cortical layers II, III and 

deep layer IV and V, whereas the most abundant distribution of neurons 

containing WFA-reactive PNNs were found in layer III.  Both reagents showed a 

similar distribution in the rat (data not shown).  A higher magnification of cortex 

reveals PNNs that are positive for brevican and WFA reactivity (Fig. 9D - 9F).  A 

confocal micrograph of retrosplenial cortex stained with anti-brevican, biotin-WFA 

and DAPI, demonstrated that there are clearly PNNs that co-localize and are 

reactive for both reagents (Fig. 9, G - denoted by arrows).  While many PNNs 

were immunoreactive for brevican, other PNNs were reactive toward WFA alone, 

(Fig. 9, G - denoted by asterisk).  PNNs reactive with WFA and not brevican, 

expressed other CS-containing PGs or N-acetylgalactosamine containing 

molecules.  A complete localization of anti-brevican, anti-EAV(M)ESE, and 

biotinylated WFA PNNs and their reactivity in the neuropil of the CNS, with semi-
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quantitation for both reagents may be found in supplemental Tables 1 (rat) and 2 

(mouse).  

 

DISCUSSION 

 Interactions between neurons and molecules in the extracellular milieu 

initiate signals that may regulate neurite outgrowth and targeting, neural 

migration and synaptogenesis, collectively a morphological measure of neural 

plasticity.  Increasing evidence supports the concept that ECM molecules are 

important regulators of  neural plasticity.  The lectican brevican is abundant in 

brain ECM, is localized perisynaptically, inhibits neurite outgrowth (Yamada et 

al., 1997) and is thought to stabilize neural networks in the adult (Hockfield et al., 

1990), whereas conditions that augment the proteolytic cleavage of brevican are 

associated with neural plasticity (Yuan et al., 2002; Phillips et al., 2004; Mayer et 

al., 2005)  Here, we intended to compare the distribution of PNNs and neuropil 

stained by the classical reagent WFA and an antibody against a proteolytic 

cleavage fragment of brevican.  We found a discordance in the deposition of 

classical PNNs and regions where the proteolytic fragment of brevican was 

observed.  In particular, there appeared to be an association between regions 

with significant deposition of this fragment and areas known to be involved in 

neural plasticity, supporting the involvement of ADAMTSs in neural plasticity 

mechanisms (Yuan et al., 2002; Mayer et al., 200;, Gottschall et al., 2005). 

 Interestingly, a significant proportion of total brevican immunoreactivity in 

brain extracts was observed as a fragment formed by proteolytic cleavage of the 
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intact core protein.  Proteolysis of lecticans may be an important mechanism by 

which the nervous system overcomes the inhibition exerted by PGs during 

periods of neural plasticity.  After systemic injection of the excitotoxin, kainic acid 

(Yuan et al., 2002) or after targeted unilateral lesion of the entorhinal cortex 

(Mayer et al., 2005), there was an increase in the abundance of an ADAMTS-

derived brevican fragment in the dentate gyrus terminals, a region where 

sprouting occurs in response to the lesion.  Thus, proteolytic cleavage of PGs 

may be a key mechanism involved in neural plasticity, whereas intact PGs 

promote neural stabilization.  Here we compared the localization of an ADAMTS-

derived proteolytic fragment of brevican to the distribution of classically identified 

PNNs, as recognized by WFA reactivity.  Assuming that WFA detected the N-

aceylgalactosamine residue in the CS chains of brevican, the hypothesis was 

that areas of high PG deposition, as marked by WFA, may stabilize neural 

networks and provide an environment resistant to neural plasticity.  Indeed, areas 

deficient in the proteolytically-derived fragment of brevican tended to have 

significant reactivity with WFA.   

Localization of brevican with CNS immunohistochemistry (Yamaguchi, 

1996; Bruckner et al., 2003) and in situ hybridization (Seidenbecher et al., 1998; 

Jaworski et al., 1999), revealed that brevican is highly expressed in cerebellar 

and cerebral cortex, hippocampus and thalamic nuclei and abundant in brain 

stem PNNs.  Since molecular complexes that contain tenascin, hyaluronic acid 

and a lectican such as brevican are presumed to form the aggregates of 

deposited ECM, then the CS chains of the lecticans, whether the core protein is 
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cleaved or not, should exist in close proximity to each other (Fig. 2), and thus, we 

expected to observe co-localized reactivity between WFA and anti-EAV(M)ESE.  

In contrast to this notion, we observed marked differences in the distribution 

between these labels.  In general, regions where the ADAMTS-derived fragment 

of brevican is abundant, maybe 20% of the neurons appear to co-localize with 

WFA.  Where PNNs of WFA predominate, there was marked regional variability 

and co-localization with brevican and fragment immunoreactivity.   

 Since there is debate in the literature about which molecules in the CNS 

are labeled by WFA, we were interested in determining whether brevican, and its 

CS chains, was a binding partner for this lectin.  WFA is a lectin that binds to N-

acetylgalactosamine-linked α or β to the 3 or 6 position of galactose (Goldstein 

and Poretz, 1986).  Often WFA is used as marker for PNNs that contain CS 

chains, and some believe that WFA binds directly to CS.  Our data show that 

WFA clearly did not recognize CS-containing brevican on Western blot, although 

there was at least one high molecular weight WFA reactive band.  No 

corresponding bands were seen at the molecular weights representing the 

isoforms of brevican.  In addition, the preponderance of brevican was found in 

the soluble fraction of brain extract, whereas WFA reactivity was mainly located 

in the particulate, insoluble fraction after differential centrifugation of brain 

extract.  As seen in whole rat tissue, none of the brevican isoforms corresponded 

to bands recognized by WFA lectin in the insoluble fraction.  These results 

support the notion that WFA binds molecules that differ from the lectican, 

brevican.  Significant evidence supports the concept that WFA-binding proteins 
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are cell surface glycoproteins as reported by Murakami et al.  This group 

demonstrated (Murakami et al., 1999; Murakami et al., 2001) that terminal N-

acetylgalactosamine residues, which are present on neuronal cell surface 

glycoproteins, are responsible for the PNN reactivity seen with WFA lectin 

binding.  Based on a series of studies using degradative enzymes to define the 

presence or absence of polysaccharides bound to ECM proteins, their model 

suggests that perineuronal proteoglycans, such as brevican, bind to these cell 

surface glycoproteins.  Ch'ase treatment removes the terminal N-

acetylgalactosamine from these proteoglycans, thereby releasing the lectican 

from its binding partner on the cell surface.  It is not surprising that 

polysaccharides contained within PNNs differ from those found in the more 

diffuse ECM neuropil (Deepa et al., 2006), since lecticans may bind to cell 

surface glycoproteins.  This may, in part, account for the discordance in reactivity 

seen here between brevican and WFA.   

 High molecular weight isoforms of brevican, abundant on Western blot in 

all regions examined, contained CS chains since there was a marked reduction 

in molecular weight after enzymatic treatment of the brain extract with Ch'ase.  

Surprisingly, all bands that were reactive for biotin-WFA were unchanged after 

Ch'ase treatment, with the exception of a reduction in a high molecular weight 

smear found in brain extract.  This, along with the discrepancies seen in 

histochemistry, prompted us to question whether WFA recognizes N-

acetylgalactosamine residues present in the CS chains of brevican.  To our 

knowledge, there is no direct evidence of WFA binding to any specific CS-
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containing PG, including the lecticans. The most supportive data of such a 

concept is that reactivity observed with WFA and antibodies generated against 

CS chains are similarly distributed in rat brain (Wegner et al., 2003), such as in 

PNNs, although there may be a host of proteins present in these ECM 

complexes.  In addition, many groups have shown that after Ch'ase digestion of 

fixed brain sections, binding of WFA is diminished (Bertolotto et al., 1995; Koppe 

et al., 1997b).  However, it is possible, in fact likely, that WFA binds to a molecule 

that may be indirectly bound to CS.  In any case, no biochemical evidence is 

available to show that WFA binds to large polymeric chains of repeating 

disaccharides that contain N-acetylgalactosamine.   

 Although WFA may not recognize brevican, the data presented here only 

begins to uncover the intricate molecular environment around individual neurons 

that may modulate its function and structure.  The discordant distribution 

between these molecules may relate to the functional environment, i.e. more 

abundance of CS chains stained with WFA (defining a more stable environment) 

whereas an increase in proteolytic cleavage of ECM, stained with the fragement 

neoepitope (defining a more permissive environment), in regions that are capable 

of undergoing neural plasticity.  These findings are intriguing since we observe 

intense immunoreactivity for the ADAMTS-derived brevican fragment in areas 

thought to be highly plastic such as the hippocampus.  Therefore, the relative 

abundance of cleaved proteoglycans, such as brevican, in a particular region 

suggest a functional change in surrounding ECM complexes which may 

contribute to overall neural plasticity.   
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Figure2.  Schematic representation of brevican isoforms in brain ECM and their 

ADAMTS-derived proteolytic cleavage fragments: Secreted brevican core protein 

that bears 1-3 chondroitin sulfate chains (A, MW > 145 kD).  Secreted brevican 

core protein without chondroitin sulfate side chains (B, MW = 145 kD).  When 

cleaved by extracellular glutamylendopeptidases, the ADAMTSs (denoted by 

arrows), a C-terminal fragment is formed together with a N-terminal, 55 kD 

fragment of brevican (C) that contains a unique C-terminal epitope murine (ms) 

sequence "EAMESE", homologous to the rat (rt) "EAVESE". Indicated here are 

the anti-EAV(M)ESE antibody recognition sites (C). The >145 kD and 145 kD 

isoforms of brevican or other lecticans in matrix form a tertiary complex with 

hyaluronan and tenascin (D) and when cleaved by ADAMTSs, the proteolytic 

degradation of brevican loosens the ECM complex and may promote plasticity 

(E). 
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Figure 3.  Degradation assay of brevican by human recombinant ADAMTS4:  

Purified rat brain proteoglycan, isolated on a DEAE cation exchange matrix, and 

probed with anti-brevican (A).  Purified proteoglycan was probed for anti-

EAVESE, an antibody raised against the C-terminal sequence of the ADAMTS-

cleaved N-terminal fragment of brevican (B).  Proteoglycan extract after 

incubation with human recombinant ADAMTS4 and probed with anti-brevican (C) 

and anti-EAVESE (D).  After incubation with human recombinant ADAMTS4, 

brevican was proteolytically cleaved resulting in diminished full length brevican 

and the appearance of a 55 kD isoform. 
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Figure 4.  Western blot of brevican, EAV(M)ESE, and Wisteria floribunda 

agglutinin (WFA) in rodent brain extracts before and after chondroitinase 

digestion:  Rat (rt) and mouse (ms) extracts were probed for anti-brevican (A), 

anti-EAVESE (B, left column) and anti-EAMESE (B, right column), and with 

biotinylated WFA (C):  Samples were treated with (+) and without (-) 

chondroitinase (Ch’ase) ABC.  The 145 kD core protein of brevican increased 

after chondroitinase treatment (A+ lanes), the proteolytic fragment remained 

unchanged (B+ lanes), and WFA was only slightly affected by this enzymatic 

process (C+ lanes).  After probing with WFA, multiple unknown lower molecular 

weight bands were observed along with the classical high molecular weight 

sugar-containing moieties. The third column in (C) was probed with secondary, 

HRP-conjugated streptavidin alone, which revealed two, major non-specific 

bands.  After differential centrifugation of rat brain tissue (D), brevican 

immunoreactivity (left panel) was predominately found in the soluble fraction (S), 

whereas most of the WFA reactivity (right panel) was observed in the membrane 

“insoluble” fraction (I) and EAVESE was evident in both fractions (middle panel).  

Rat and mouse samples were enzymatically-treated with chondroitinase (Ch’ase) 

in the absence or presence of a protease inhibitor cocktail (E, left panel).  The 

high molecular weight smear is eliminated after treatment with chondroitinase. 

The same membrane was probed with anti-brevican where a complete removal 

of CS chains led to an increase in abundance of the core protein (E, right panel) 

with no change in the abundance of fragment.   
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Figure 5.  Western blot of brevican, EAMESE, and Wisteria floribunda agglutinin 

(WFA) in extracts from various regions of mouse brain before and after 

chondroitinase digestion:  Several mouse brain regions (cerebellum (CB), 

hippocampus (HC), brain stem (BS), temporal lobe (TL) and diencephalon (DE) 

were probed for anti-brevican (A), anti-EAMESE (B) and WFA (C).  Samples 

were treated with (+) and without (-) chondroitinase ABC.  The 145 kD core 

protein of mouse brevican increased after chondroitinase treatment (A, +lanes), 

the proteolytic fragment remained unchanged (B, +lanes), and high molecular 

weight bands after biotinylated WFA were only slightly affected by this enzymatic 

process (C, +lanes).  These effects were consistent in most regions examined.    
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Figure 6.  Binding of Wisteria floribunda agglutinin (WFA) lectin to fixed tissue 

sections of rodent brain: effect of chondroitinase ABC:  Rat and mouse 

hippocampal fixed tissue sections reactive for biotinylated WFA before (A and B) 

and after (C and D) chondroitinase treatment.  Arrow = retrosplenial cortex; arrow 

head = parietal cortex.  Note the near elimination of reactivity after digestion.  All 

images were captured at 25x magnification.  Marker represents 100um.   
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Figure 7.  Localization of Wisteria floribunda agglutinin (WFA) and ADAMTS-

derived fragment of brevican reactivity in rat and mouse brain:  Reticular thalamic 

nuclei (A-F); Hippocampus (G-L); Cerebellum (M-R).  Epifluorescent micrographs 

of WFA reactivity (A, D, G, J, M, and P), anti-EAVESE (rat) immunoreactivity (B, 

H, N), anti-EAMESE (mouse) immunoreactivity (E, K, Q) and merged composites 

of WFA and anti-EAVESE (C, I O), and WFA and anti-EAMESE (F, L, R) in fixed 

brain sections.  Images A-L were captured at 25x magnification and M-R were 

captured at 100x magnification.  Marker represents 100 µm.   
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Figure 8.  Localization of WFA and the ADAMTS-derived fragment of brevican 

reactivity in perineuronal nets:   PNNs immunoreactive for the ADAMTS-derived 

fragment of brevican distinguished with anti-EAVESE were found in the 

horizontal limb of the diagonal band (A), the medial septum (B), and in piriform 

cortex (C).  Immunoreactivity for anti-EAMESE in cerebral cortex (D) is broadly 

distributed, but especially prominent deep in cortical layer IV, which differs from 

the distinct pattern of WFA staining of PNNs (E).  The most intense region of 

WFA reactivity appears in cortical layer III of primary somatosensory cortex (D-

F).  Scattered WFA positive PNNs are also found in layer V.  Images A and C 

were captured at 400x magnification, B was captured at 200x magnification and 

D-F were captured at 100x magnification.  Marker represents 100 µm.   
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Figure 9.  Localization of WFA and brevican reactivity in perineuronal nets:  

Brevican immunoreactivity was found in neuropil and PNNs of cortical layers II, 

III, deep layer IV and V (A and C).  WFA immunoreactivity is predominant in 

PNNs of cortical layer III (B and C).  A higher magnification of cortex reveals 

PNNs that are positive for brevican (D) and WFA reactivity (E). A confocal 

micrograph of retrosplenial cortex stained with anti-brevican, biotin-WFA and 

DAPI (G) demonstrates that there are clearly PNNs that co-localize and are 

reactive for both reagents (denoted by arrows).  While the majority of these 

neurons appear PNN positive solely for brevican, it seems that neurons can also 

react with WFA binding moieties alone (denoted by asterisk).  Images A-C were 

captured at 100x magnification, D-F were captured at 200x magnification and 

confocal image G was captured at 630x.  Marker represents 100µm. 
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Table 1. Relative reactivity of Wisteria floribunda agglutinin (WFA), brevican, and the neoepitope of 
The ADAMTS-derived fragment of brevican, anti-EAVESE, in the adult rat § †. 

    
         

Wisteria floribunda  
        

anti-  EAVESE       anti-    brevican 
    PNNs neuropil  PNNs neuropil  PNNs neuropil 
Thalamus          
    Reticular nuc ++++ ++++  - +  + +++ 
    Ventral 
posterolateral         
nuc +++ +++  + +  + +++ 
    Ventral 
posteromedial nuc +++ +++  ++ ++  + ++ 
    Mammillo-tract-
zona incerta   + ++++  + ++  + ++ 
    Zona incerta - ++  + +  + ++ 
    Lateral habenular 
nuc - ++++  - +  + + 
Hypothalamus         
    Anterior 
hypothalamic area + +  - -  - ++ 
    Lateral 
hypothalamic area - +  - +  + ++ 
    Median eminence NA ++  NA +  NA + 
    Anterior 
commissure NA ++++  NA +  

NA 
+ 

    Fornix  NA ++++  NA +  NA ++ 
    Optic tract NA +++  NA +++  NA ++ 
    Dorsomedial nuc ++ +  + +  + + 
    Ventromedial nuc ++ ++  + +  + + 
Striatum          
    Caudate putamen 
(striatal) - +++  + +++  + +++ 
    Caudate putamen 
(hippocampal) - ++  + ++  + +++ 
    Lateral globus 
pallidus - +  + ++  + ++ 
    Medial globus 
pallidus - ++  + ++  + +++ 
    Entopeduncular 
nuc + ++++  - +  - + 
    Stria terminalis - +  - -  - + 

Septal region         
    Ventral limb of 
diag. band ++ +++  ++ +  + ++ 
    Medial septum - -  - -  ++ + 
    Lateral septum 
(dorsal) + ++  ++ +++  + ++ 
    Lateral septum 
(intermediate) +++ ++  ++ +  + ++ 
    Lateral septum 
(ventral) + ++  ++ +++  + ++ 
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Hippocampus 

    Stratum oriens - ++  ++ +++  +++ + 
    CA1 pyramidal 
layer + NA  + NA  +++ NA 
    CA2 pyramidal 
layer ++++ NA  ++ NA  ++ NA 
    CA3 pyramidal 
layer ++ NA  + NA  + NA 
    Stratum radiatum - -  + ++  + + 
    Stratum 
lacunosum mol. - ++  - ++  + ++ 
    Dentate gyrus         
        Outer molec. 
layer - +++  + +  ++ ++ 
        Middle molec. 
Layer - +  + +  + + 
        Inner molec. 
Layer - +++  + ++  - + 
        Hilar 
interneurons + +  + ++  ++ + 
        Granule 
neurons ++ NA  ++ NA  + 

NA 

        Hippocmapal 
fimbria NA +++  NA -  NA ++ 

Cortex          
    Retrospenial  ++++ +  ++ +++  +++ +++ 
    Primary motor +++ +  + +  + ++ 
    Somatosensory 
(parietal) +++ ++  ++ +++  ++ ++ 
    Piriform  - +  - ++  + ++ 
    Temporal  +++ +++  + +  + ++ 
    Perirhinial  + +  - +  + ++ 
    Perirhinial (layer 
1) - ++++  + -  + ++ 
    Amygdala         
        basolateral nuc + ++  - +  - ++ 
        medial nuc + -  + +++  + + 
        lateral nuc - -  - +  - + 
        bed nuc-strial 
terminalis + ++++  + +++  + + 
    entorhinal  + ++  + +  ++ ++ 
    corpus collosum NA ++++  NA -  NA - 
Cerebellum         
    Folium          
        Molecular Layer NA +  NA +  NA + 
        Purkinje cell 
layer - -  + +++  + ++ 
        Granule cell 
layer ++ +  +++ +  ++ + 
        Deep white 
matter NA ++++  NA -  NA + 
    Cerebellar 
Commissure         
        Interposed nuc + +  ++ ++  ++ ++ 
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        Lateral 
(dentate) nuc + +  ++ ++  ++ ++ 
        Medial 
(fastigial) nuc  + +  ++ +   ++ ++ 
          
§ All interpretations are within each individual reagent: [+] = 0-25%, [++] 
= 26-50%, [+++] = 51-75%, and [++++] = 76-100%.      
† Brevican data is the result of the combined detection by the C-terminal and N-terminal 
globular domain recognizing antibodies.     
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    Ventral limb of diag. 
band + ++  - +  + + 
    Medial septum - -  - -  + + 
    Lateral septum 
(dorsal) + -  + -  ++ + 
    Lateral septum 
(intermediate) +++ +  + -  ++ + 
    Lateral septum 
(ventral) + -  - -  ++ + 
Hippocampus         
    Stratum oriens - ++  - -  - + 
    CA1 pyramidal layer ++++ NA  - NA  + NA 
    CA2 pyramidal layer +++ NA  + NA  ++ NA 
    CA3 pyramidal layer + NA  ++ NA  + NA 
    Stratum radiatum + +++  - +  - + 
    Stratum lacunosum 
mol. - +  - +  - ++ 
    Dentate gyrus         
        Outer molec. 
layer + ++  - +  + ++ 
        Middle molec. 
Layer + +  - +  + ++ 
        Inner molec. 
Layer + +  + ++  - + 
        Hilar interneurons ++ ++  ++ +  + ++ 
        Granule neurons + NA  +++ NA  - NA 
        Hippocmapal 
fimbria NA +  NA +  NA ++ 
 
Cortex          
    Retrospenial  ++++ ++  ++ +++  ++ +++ 
    Primary motor + -  - +  - + 
    Somatosensory 
(parietal) ++++ +++  +++ ++  +++ ++ 
    Piriform  + ++  - -  + - 
    Temporal  +++ -  ++ +  - - 
    Perirhinial  + -  - +  + ++ 
    Perirhinial (layer 1) + -  + +  + ++ 
    Amygdala         
        basolateral nuc - +  - +  - + 
        medial nuc ++ +++  - +  - - 
        lateral nuc - -  - -  - + 
        bed nuc-strial 
terminalis 

- ++ 
 

- - 
 

- + 

    Entorhinal  + +  + ++  ++ ++ 
    Corpus collosum NA +++  NA +++  NA + 
Cerebellum         
    Folium          
        Molecular Layer NA +  NA +  NA + 
        Purkinje cell layer + ++  + ++  + + 
        Granule cell layer ++ +  +++ +  ++ + 
        Deep white 
matter NA ++++  NA -  NA - 
    Cerebellar 
Commissure         
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        Interposed nuc + +  ++ ++  ++ + 
        Lateral (dentate)     
nuc + +  ++ ++  + + 
        Medial (fastigial) 
nuc  + +  ++ +   + + 
          
§ All interpretations are within each individual reagent: [+] = 0-25%, [++] = 
26-50%, [+++] = 51-75%, and [++++] = 76-100%.      
† Brevican data is the result of the combined detection by the C-terminal 
and N-terminal globular domain recognizing antibodies.    
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ABSTRACT 

Background:  Brevican is a member of the lectican family of aggregating 

extracellular matrix (ECM) proteoglycans that bear chondroitin sulfate (CS) 

chains.  It is highly expressed in the central nervous system (CNS) and is thought 

to stabilize synapses and inhibit neural plasticity and as such, neuritic or synaptic 

remodeling would be less likely to occur in regions with intact and abundant, 

lectican-containing, ECM complexes.  Neural plasticity may occur more readily 

when these ECM complexes are broken down by endogenous proteases, the 

ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs), that 

selectively cleave the lecticans.  The purpose of these experiments was to 

determine whether the production of brevican or the ADAMTS-cleaved fragments 

of brevican were altered after deafferentation and reinnervation of the dentate 

gyrus via entorhinal cortex lesion (ECL).  Results: In the C57Bl6J mouse, 

synaptic density in the molecular layer of the dentate gyrus, as measured by 

synaptophysin levels in ELISA, was significantly attenuated 2 days (nearly 50% 

of contralateral) and 7 days after lesion and returned to levels not different from 

the contralateral region at 30 days.  Immunoreactive brevican in immunoblot was 

elevated 2 days after lesion, whereas there was a significant increase in the 

proteolytic product at 7, but not 30 days post-lesion.  ADAMTS activity, estimated 

using the ratio of the specific ADAMTS-derived brevican fragment and intact 

brevican levels was increased at 7 days, but was not different from the 

contralateral side at 2 or 30 days after deafferentation.  Conclusion: These 

findings indicate that ADAMTS activity in the dentate outer molecular layer (OML) 
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is elevated during the initial synaptic reinnervation period (7 days after lesion).  

Therefore, proteolytic processing of brevican appears to be a significant 

extracellular event in the remodeling of the dentate after EC lesion, and may 

modulate the process of sprouting and/or synaptogenesis. 

 

Key words : extracellular matrix, synaptic plasticity, proteoglycan, ADAMTS, 

perineuronal nets 

 

INTRODUCTION 

 Neurons of the entorhinal cortex (EC) send unidirectional, afferent 

projections to the hippocampus, where terminals synapse on granule cell 

dendrites in the outer molecular layer (OML) of the dentate gyrus (van Groen et 

al., 2003).  Interruption of entorhinal input to the dentate gyrus, by chemical 

lesion or severing the afferent fibers, causes anterograde degeneration of the 

axon terminals and stimulates sprouting of viable fibers from this and other 

neuronal circuits (Steward, 1994; Frotscher et al., 1996; Deller et al., 2001; Del 

Turco et al., 2003).  The entorhinal cortex lesion (ECL) has been used as a 

model of neural plasticity for more than three decades (Lynch et al., 1972).  To 

identify and innervate a target after injury or during development, growing neuron 

terminals must traverse through a complex extracellular milieu that consists of 

soluble factors, cell surface adhesive ligands and an extracellular matrix (ECM) 

along the way toward its target. The growing terminal samples this milieu, and 

appropriate protein-protein binding and activation regulates the direction and 
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extent of growth, terminal sprouting, and likely synaptogenesis.  For example, 

certain ECM molecules such as laminin are permissive toward neurite outgrowth, 

whereas others, such as the highly negatively charged, proteoglycans (PGs) 

substituted with chondroitin sulfate (CS) (ie. versican, neurocan, aggrecan and 

brevican, in general, lecticans), inhibit neurite outgrowth on permissive 

substrates (Snow et al., 1990; Bandtlow and Zimmermann, 2000; Rauch, 2004).  

Interestingly, the expression of several lecticans, including brevican is markedly 

up-regulated during the neural plasticity response that occurs following ECL 

(Thon et al., 2000). 

 The lectican PGs are the most abundant ECM molecules in the adult, 

uninjured central nervous system (CNS) and of these brevican is the most highly 

expressed (Yamaguchi, 1996; Bruckner et al., 2003).  Brevican and other 

lecticans are found in perineuronal nets and throughout the neuropil and are 

components of ECM aggregate complexes that are thought to stabilize synapses 

in neural networks and inhibit neurite outgrowth (Hockfield et al., 1990; 

Yamaguchi, 2000).  Most evidence suggests that the CS component in these 

complexes provides the inhibitory signal toward neurite outgrowth, although the 

protein core plays a role as well (Snow and Letourneau, 1992; Bandtlow and 

Zimmermann, 2000).  However, proteolytic cleavage of the brevican core protein 

may "loosen" the aggregated complexes and change the extracellular 

environment to one that is more permissive for neural plasticity to occur 

(Yamaguchi, 2000; Yuan et al., 2002; Gottschall et al., 2005).  A significant 

proportion of brevican in the adult CNS exists as a fragment formed by 
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proteolytic cleavage of the protein core, suggesting that this mechanism may 

play a role in experience-dependent and other forms of neural plasticity in the 

uninjured, adult.  In addition, in disorders such as Alzheimer’s disease, 

alterations in the ECM may be related to diminished synaptic plasticity and 

therefore play a role in cognitive dysfunction. 

 The metalloproteinases responsible for cleavage of lectican core proteins 

and the generation of fragments of aggrecan, brevican, and versican have been 

cloned and belong to a family of proteins, termed the ADAMTSs (a disintegrin 

and metalloproteinase with thrombospondin motifs), that include glutamyl 

endopeptidases.  ADAMTS1 and ADAMTS4 are prominently expressed in rat 

brain (Yuan et al., 2002) and cleave the 145 kD intact core protein of brevican 

into a 55 kD N-terminal, and an 80 kD C-terminal fragment  (Matthews et al., 

2000; Nakamura et al., 2000) (see Fig. 2).  The ADAMTS-derived 55 kD 

fragment may be distinguished from total cleaved fragment (cleaved by other 

proteinases) using a neoepitope antibody raised against the distinctive C-

terminal sequence (EAMESE, murine sequence) of the N-terminal, 55 kD 

fragment (see Fig. 2, "C") that is generated by glutamyl endopeptidase cleavage.  

Using this antibody, in vivo ADAMTS activity may be estimated by expressing the 

amount of ADAMTS-derived brevican fragment as a proportion of total intact 

brevican.   

 Others have demonstrated changes in the levels and activity of matrix 

metalloproteinases (MMPs) in the deafferented neuropil after various lesions, 

however in these experiments, the substrate proteolytically processed by the 
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MMPs was not identified (Phillips and Reeves, 2001; Szklarczyk et al., 2002).  

Nonetheless, changes in structure and function that were associated with lesion-

induced sprouting were reversed by MMP inhibitors (Reeves et al., 2003).  

Lesions produced by systemic injection of kainic acid produce wide-spread 

neuronal degeneration in the CNS, including the EC and stimulate expression of 

the MMPs and the ADAMTSs (Zhang et al., 1997; Yuan et al., 2002).  In 

response to this lesion, the abundance of the neoepitope fragment generated by 

ADAMTS-cleavage of brevican was markedly elevated in the OML of the dentate 

gyrus.  This increase was preceded by elevated ADAMTS1 and ADAMTS4 

mRNA expression in dentate granule neurons (Yuan et al., 2002).  Although 

these results suggest that proteolytic processing of brevican appears to be a 

significant extracellular event in the remodeling of the dentate after ECL, 

because of the widespread neuronal death, it was difficult to associate these two 

particular endpoints as individual, yet associated events involved in neural 

plasticity.  Thus, we decided to employ the classical ECL model in the C57Bl6 

mouse, thereby discretely disrupting synaptic innervation of the molecular layer 

of the dentate gyrus.  Our intention was to observe any altered expression of 

brevican and the ADAMTSs that may be associated with reinnervation of the 

injured area 2, 7 and 30 days after lesion.   

 

MATERIALS & METHODS 

Animals 

 All animal procedures described here were approved by the Institutional 
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Animal Care and Use Committee at the University of South Florida.  Sixty-two 

adult male C57Bl6 mice (23 g - 27 g; Harlan, Indianapolis, IN), 12 weeks of age 

were housed under a 12 h light cycle with regulated temperature and humidity.  

Mice were housed 3 to 4 per cage and had free access to food and water.  

Following ECL surgery, the animals were housed individually.  Brains from 

control mice (n=4) and lesioned mice surviving for 2 days (n=6), 7 days (n=5) and 

30 days (n=5) after the lesion were perfusion fixed and collected for 

immunohistochemistry.  Tissue extracts of dentate gyrus and EC lesioned 

animals collected 2 days (n=6), 7 days (n=5) and 30 days (n=6) after surgery 

were used in Western blot and biochemical immunoassays.  For those animals 

that received a unilateral ECL, the contralateral, non-lesioned hemisphere was 

considered the control for immunohistochemistry and biochemical analysis.   

 

Surgical procedures - the entorhinal cortex lesion (ECL)  

Surgeries were performed using isofluorane /oxygen mixed gas 

anesthesia.  Once deeply anesthetized, animals were placed into the stereotaxic 

apparatus.  A hole was drilled in the skull of the right hemisphere to allow for 

needle penetration.  The right, lateral EC of mice was unilaterally lesioned by 

lowering a needle attached to a Hamilton syringe (#701N) filled with ibotenic acid 

through the hole in the skull to the coordinates AP = 4.72 mm, L = 3.75 mm and 

DV = 4.70 mm using bregma as a reference and oriented 17o rostral-caudal 

(White et al., 2001).  One µl of the neurotoxin, ibotenic acid ((±) α-Amino-3-

hydroxy-5-isoxazoleacetic acid, 10 µg/µl) was injected into the lateral EC at a 
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rate of 0.1 µl every 30 seconds, with the needle remaining in place for an 

additional minute at the end of the 5 min injection period to allow for complete 

diffusion of the drug into the lateral EC.  Neurons of the lateral EC project 

preferentially to the septal dentate gyrus.  The needle was removed, bone wax 

used to cover the skull hole, and the animal was allowed to recover on a heating 

pad after which the animal was returned to a new cage and housed individually.  

At 2, 7 and 30 days after lesion, mice were injected with an overdose of 

Nembutal (pentobarbital) for deep anesthesia, perfused transcardially with cold 

phosphate-buffered saline (pH 7.4) followed by cold 4% paraformaldehyde 

fixative diluted in 0.1 M phosphate buffer (pH 7.4).  The brain was dissected from 

the skull, post-fixed in 4% paraformaldehyde overnight at 4oC, cryoprotected with 

consecutive solutions of 15 and 30% sucrose until completely infused, and the 

cryoprotected brain was sectioned on a cryostat at 30 µm.  The extent and 

magnitude of the lesion in the EC was verified by cresyl violet and brevican 

staining.  Synaptophysin and GFAP immunohistochemistry, using horseradish 

peroxidase amplification and diaminobenzidine as a chromogen, verified the loss 

of terminals in the molecular layer of the dentate gyrus. 

 

Region isolation method 

A method was developed to isolate dentate gyrus and EC tissue in mouse 

brain.  This method eliminates the collection of much of the surrounding tissue 

that was unaffected by ECL.  The dentate gyrus was subjected to synaptophysin 

ELISA as a measure of synaptic loss in the molecular layer.  The EC underwent 
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Western blot for PSD-95 (post-synaptic density-95) to quantitate the magnitude 

of the lesion.  In addition, brevican and EAMESE Western blot was conducted on 

dentate gyrus tissue.  Animals were completely anesthetized with a lethal dose of 

Nembutal (pentobarbital, Abbott Laboratories, North Chicago, IL), the brain was 

quickly removed and placed on a glass microscope slide, and a millimeter ruler 

was placed adjacent to the brain to assist in measuring the thickness of slices.  

Whole brain was dissected and frozen on a flat slab of dry ice for about 5 

minutes (a point at which the brain surface is no longer shiny), being careful not 

to over-freeze the tissue, but to reach a temperature at which the tissue can be 

easily and efficiently cut into 2 mm coronal slabs.  Two 2 mm coronal slabs are 

cut by referencing the most caudal of cerebral cortex as a land mark, making a 

coronal cut, moving rostrally 2 mm and making another cut to obtain the first slab 

for the EC isolation.  A third cut was made 2 mm rostral from the previous slice 

and this slab contained the septal hippocampus and was used to isolate the 

dentate gyrus.  The 2 mm hippocampal slab (outlined in Fig. 10 C) was placed on 

a glass slide, and the dentate gyrus was localized using a stereomicroscope.  

The dentate was punctured with a blunt-ended 22 gauge needle (Fig. 10 A) using 

the medial point of the wings as a landmark.  A blunt-ended 18 gauge needle 

was used in the same manner to puncture and collect the EC from a 2 mm slab 

caudal to the slab used to collect the dentate gyrus (Fig. 10 B).  The frozen 

tissues were immediately expelled from the needle by attaching an air-loaded 

syringe to the needle and forcing the tissue into the bottom of a microfuge tube.  

The dentate gyrus and EC tissues were then homogenized in extraction buffer 
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(20nM Tris-HCL pH=7.4, 5mM EDTA, 1% Triton-X-100, & 1:100 protease 

inhibitor; 20 µl for dentate gyrus and 40 µl for EC) using three cycles of 2 min of 

4oC incubation and 30 sec of vortex.  The solubilized extract was centrifuged at 

8000 rpm in a refrigerated microfuge for 3 min, the supernatant collected and 

frozen for later use in Western blotting and ELISA analysis. 

 

Immunohistochemistry 

Mice were anesthetized with an overdose of Nembutal (pentobarbital, 

Abbott Laboratories, North Chicago, IL) and their brains were fixed via standard 

cardiac perfusion methods.  Briefly, the animal was cleared with phosphate 

buffered saline (PBS; pH 7.4) and fixed with 4% paraformaldehyde in 0.1M 

phosphate buffer (PB; pH 7.4).  The brains were post-fixed overnight in the same 

fixative; cryoprotected with 15% sucrose (in 0.1M PB) followed by a 30% sucrose 

solution for 24 h each.  Whole brain was frozen with mounting medium and cut 

into 30 µm coronal sections using a cryostat.  Free-floating sections were 

washed with PBS, placed in a blocking / permeabilization solution (10% normal 

goat serum; 3% 1 M Lysine, 3% Triton-X) for 1 h, washed with PBS and 

incubated with primary antibody overnight at 4oC.  For detection of the antigen, 

sections were washed and incubated in secondary antibody solution (anti-rabbit 

or anti-mouse IgG conjugated to Alexa-Fluor 488 or 594, Molecular Probes, 

Eugene, OR) for 1 h. The sections were washed for 15 minutes, wet mounted 

onto Fisher SuperFrost Plus glass sides and coverslipped with VectaShield 

mounting medium (Vector Labs, Burlingame, CA).  The primary antibodies or 



 82

probes used in these experiments were:  mouse anti-brevican, raised against the 

G1 domain of brevican (BD Transduction Labs, San Jose, CA); rabbit anti-

EAMESE, the ADAMTS-derived neoepitope of brevican developed in our lab; 

rabbit anti-glial fibrillary acidic protein (GFAP, DAKO, Carpinteria, CA); and rabbit 

anti-synaptophysin (DAKO). 

 

Western blotting  

Dentate gryus or EC extracts were loaded (equal amounts of protein and 

2x sample buffer) on to 4-20% polyacrylamide gels (Invitrogen, Carlsbad, CA) 

and subjected to SDS-PAGE.   Protein was transferred to a polyvinylidine 

difluoride membrane (PVDF, Immobilon, Millipore, Billerica, MA) and the 

membrane was blocked with 5% milk in PBS.  Membranes were probed with 

primary antibodies against brevican (1:1000), EAM (1:500), and secondary anti-

rabbit or anti-mouse IgG conjugated to horse radish peroxidase (Chemicon, 

Temecula, CA).   Antigens were visualized using a chemiluminescence 

developing system (SuperSignal, Pierce, Rockford, IL). 

 

Antibody generation 

 A rabbit antibody raised against the brevican neoepitope on the 55 kD N-

terminal fragment derived from glutamyl endopeptidase activity of the ADAMTSs 

was generated by Sigma-Genosys (St. Louis, MO) and purified in our laboratory.  

The novel C-terminal sequence "QEAMESE" from the mouse was the 

neoepitope and the peptide used for antibody generation contained a glycine 
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spacer "GGGQEAMESE".  This peptide was synthesized by Sigma-Genosys, 

conjugated to keyhole limpet hemocyanin at the N-terminus, and rabbits were 

subjected to standard immunization protocols.  Serum collected after the 5th 

booster was titered against the peptide using a solid-phase system and specific 

antibody was purified using peptide affinity chromatography.  Interestingly, 

antibody raised against the rat epitope "QEAVESE" did not recognize the mouse, 

ADAMTS-derived, "QEAMESE" epitope.  On Western blot, the antibody against 

the mouse fragment recognized a single band at 55 kD in extracts from mouse 

brain and did not cross react with the intact brevican core protein.   

 

RESULTS 

Expression of ADAMTS-derived, brevican fragment 

Brevican is an abundantly expressed PG in the CNS that is secreted from 

astrocytes and neurons as a 145 kD core protein that bears up to three, 

covalently-linked, CS chains (Fig. 11A).  It is also is secreted as a 145 kD core 

protein without CS chains (Fig. 11B).  When cleaved by extracellular glutamyl 

endopeptidases, the ADAMTSs, a 55 kD N-terminal fragment is formed that 

contains the unique C-terminal epitope EAMESE (Fig. 11C).  Each of these 

isoforms of brevican was expressed in numerous regions of the CNS.  Figure 

12A shows a brevican immunoblot of several brain regions from an untreated 

C57Bl6 mouse.  The >145 kD (brevican core plus CS) intact isoform, the 145 kD 

(brevican core) intact core protein and the generalized 55 kD N-terminal fragment 

were easily differentiated from one another on Western blot (Fig. 12A) using an 
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antibody that recognizes an epitope in the N-terminal globular domain (Fig. 11).  

In the mouse, all isoforms of brevican appeared to be more abundant in brain 

stem and cerebellum compared to other regions that were measured.  Panel B 

shows a blot with the same extracts and probed using the anti-neoepitope 

EAMESE antibody.  This antibody recognized the ADAMTS-derived, C-terminally 

truncated, 55 kD fragment with the novel C-terminal epitope EAMESE and did 

not recognize any of the intact, core brevican proteins (Fig. 12B).  Thus, given 

the ability to quantitate the ADAMTS-derived brevican fragment and its intact 

substrates using immunoblot, regional in vivo ADAMTS activity may be 

estimated. 

 

Deafferentation and neural plasticity in the dentate gyrus 

 To validate a complete deafferentation of synapses of the perforant path 

from the EC to the molecular layer of the dentate gyrus, animals were injected 

with ibotenic acid into the lateral EC, perfused with fixative, the brain sectioned, 

and immunostained for brevican.  Brevican is a marker expressed by reactive 

glia in response to brain injury (Jaworski et al., 1999).  Thus, after lesion, 

increased deposition of brevican would be expected in the ipsilateral EC.  

Brevican immunoreactivity was elevated at the lesion site (Figure 13B) compared 

to the contralateral, non-lesioned EC (Figure 13A).   

 Since an endpoint in this experiment is the reinnervation and sprouting of 

neurites and the formation of new synapses in the OML of the dentate gyrus, 

synaptophysin immunoreactivity, a vesicular pre-synaptic marker, was examined 
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two, seven, and thirty days post-lesion.  On the contralateral side and in 

unlesioned mice, a tri-laminar synaptophysin staining pattern was observed that 

outlines the inner, middle and OMLs (Fig. 14B) of the dentate gyrus.  Two days 

after ECL, there was a marked decline in synaptophysin immunoreactivity in the 

OML on the ipsilateral side of the dentate (Fig. 14A), that was reflected by a loss 

of the typical tri-laminar pattern of synaptophysin staining (Fig. 14B) with only the 

inner molecular layer clearly distinguishable.  Seven days after ECL, 

synaptophysin immunoreactivity in the OML remained markedly reduced, 

although the pattern was similar to the contralateral side at 30 days (data not 

shown).   

In response to injury and the deafferentation of synapses, there is an 

activation of astrocytes in the OML (Eng and Ghirnikar, 1994).  Tissue 

immunostained with the astrocytic marker GFAP (glial fibrillary astrocytic protein), 

showed increased staining selectively in the OML of the dentate seven days after 

ECL (Fig. 14C) compared to the contralateral side (Fig. 14D).  Although these 

markers may be sufficient to identify some level of diminished innervation to the 

OML, a synaptophysin ELISA and a specific method to isolate the tissue of the 

dentate gyrus (Fig. 10) was developed to better quantitate this loss.   

Two days after lesion, synaptophysin levels as detected by ELISA, 

declined by 46% in the ipsilateral dentate compared to the contralateral side 

(p=0.039) (Fig. 14E).  This trend was sustained at seven days post-lesion when 

synaptophysin levels were 41% of the contralateral value (p=0.033) (Fig. 14E).  

However, when tissue was examined thirty days post-lesion, synaptophysin 
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concentrations were not different from the control side.  This observation shows 

there is a reinnervation of the OML after ECL (Fig. 14E). 

The decline in the level of synaptophysin concentrations in the tissue from 

the "dentate punch" on the ipsilateral side compared to the contralateral side 

indicates that there was denervation of cortical input to the dentate molecular 

layer.  The question of interest was, however, were there associated changes in 

the abundance and proteolysis of brevican in this region of neural plasticity?   

 

Abundance and proteolysis of brevican after ECL 

Brevican and its various isoforms were identified in immunoblots from 

isolated dentate gyrus tissue obtained from mice two, seven and thirty days after 

ECL.  At two days post-lesion (Figure 15A), there was a 3-fold increase in the 

glycosaminoglycan (GAG)-containing form of brevican (p=0.047) in the dentate 

on the denervated side, and a trend for an increase in all the isoforms of brevican 

on this side.  At seven days after insult, a time thought to be the initial synaptic 

reorganization period after ECL (Steward and Loesche, 1977), intact brevican 

had returned to contralateral levels, but there was a significant, almost 2-fold 

elevation in the ADAMTS-derived fragment of brevican in the dentate (p=0.030).  

In addition, there was a trend for an increase in the generalized 55 kD fragment 

of brevican (Fig. 15B) at this time point.  Thirty days after undergoing surgery, all 

of the forms of brevican had returned to levels not different from the contralateral 

side; however, a slight increase in the GAG-containing, intact isoform was seen 

at this time point (Fig. 15C).   
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To estimate apparent ADAMTS activity in vivo, the density of the EAMESE 

(55 kD) immunoreactive fragment in Western blot was divided by the 

densitometric level of intact full-length and core protein brevican isoforms (>145 

kD + 145 kD) (Fig. 16).  Two days post-ECL there was a decrease in apparent 

ADAMTS activity in the ipsilateral dentate gyrus, however, at the seven day 

critical reinnervation period, ADAMTS activity was increased almost 50%.  This 

observation is supported by the significant increase in the ADAMTS-derived, 55 

kD fragment at this time point.  By thirty days post-lesion, the activity was not 

different from the contralateral side.  Thus, this data suggests that the ADAMTSs 

and the catabolism of brevican may play a prominent role in neural plasticity in 

the dentate gyrus after lesion of the EC in mice.   

 

DISCUSSION 

 The purpose of this study was to determine whether the catabolism of 

brevican is involved in mechanisms of neural plasticity in the hippocampus, and 

to accomplish this, synaptic input to the OML of the dentate gyrus was 

denervated by excitotoxic lesion in the lateral EC.  Two days after lesion, synaptic 

input into the OML was significantly reduced and this was accompanied by an 

increase in the production of full length, intact brevican.  At seven days, while 

brevican levels returned to baseline, a significant increase in the ADAMTS-

derived, C-terminally truncated, brevican fragment was observed during this 

initial, sprouting and reinnervation period.  This implies that there was an 

increase in ADAMTS activity in the OML during the highly plastic, regenerative 
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phase.  However at thirty days post-lesion, there was complete reinnervation of 

the OML on the ipsilateral side, as synaptic density, brevican and ADAMTS 

activity were not different from the contralateral side at this time point.  These 

results indicate that the ADAMTSs and their substrate, brevican, that is abundant 

in the CNS, have a regulatory function in neural plasticity and support earlier data 

that had demonstrated important actions for the ADAMTSs in plasticity after 

seizure-induced hippocampal lesion (Yuan et al., 2002). 

Previous studies have examined the role of matrix-altering proteases in 

synaptic plasticity after CNS lesion.  The expression of the matrix 

metalloproteinases (MMPs), MMP-9 and MMP-2, have been shown to be 

increased in various regions of the hippocampus after seizure-induced lesion 

(Zhang et al., 1997; Zhang et al., 2000; Szklarczyk et al., 2002; Jourquin et al., 

2003).  MMP-3 concentrations were elevated in the molecular layer of the 

dentate after traumatic brain injury (Kim et al., 2005).  More specifically after 

ECL, administration of a non-selective MMP inhibitor was able to diminish 

sprouting and synaptogenesis in the dentate OML (Reeves et al., 2003), 

suggesting a direct proteolytic role for the MMPs in this process.  In adults, most 

MMP expression and activity is low and maintained throughout adulthood.  After 

injury and during the recovery and regenerative phase, however, there is 

increased activity of MMPs derived from glia and neurons that is thought to 

facilitate axonal reinnervation, sprouting and/or synaptogenesis.  Nonetheless, 

the mechanism(s) of action of the MMPs and the potential substrates on which 

they act to promote neural plasticity have yet to be determined in these models.  
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More recently, the activity and expression of the PG-degrading, ADAMTSs have 

been shown to be elevated in the OML after kainate-induced lesion.  In contrast 

to the absence of a defined substrate for the MMPs, a selective ADAMTS-

derived, brevican fragment was localized to the OML after seizure-induced lesion 

in the rat (Yuan et al., 2002).  In the present study, a similar ADAMTS-derived 

brevican fragment was localized to the OML of the mouse after discrete 

denervation of the perforant path, suggesting a critical role in neural plasticity for 

the proteolytic turnover of brevican.  Thus, the ability to localize and quantitate 

the ADAMTS specific, proteolytic product of brevican provides a means to 

indirectly estimate ADAMTS activity during times of neural plasticity and 

synaptogenesis. 

The expression of brevican was shown previously to be up-regulated in 

the OML, the area of denervation after ECL in the rat (Thon et al., 2000), 

however, in contrast to the transient production observed here in the mouse, 

expression of immunoreactive brevican remained elevated compared to the non-

lesioned side for almost 6 months after injury.  Neurocan is a lectican that is 

expressed at high levels during early development but it was found to be up-

regulated and synthesized by astrocytes in the OML after ECL.  It was suggested 

that neurocan and possibly brevican may act to maintain the boundary of the 

denervated dentate after ECL (Haas et al., 1999), yet these complex molecules 

may be multifunctional during periods of neural plasticity.  Each of the lecticans, 

exhibit a characteristic pattern of expression during development, with neurocan 

and versican V1 highly expressed in the brain of the fetus and neonate, whereas 
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aggrecan, versican V2 and brevican increase expression during the period of 

synaptic stabilization in the adult and expression remains high throughout 

adulthood (Hockfield et al., 1990; Milev et al., 1998).  Each of the lecticans is 

thought to bind to tenascin R and hyaluronic acid (with varying affinities) forming 

a multi-molecular lattice of ECM (Yamaguchi, 2000).  It may be that proteolytic 

cleavage of the lectican loosens the lattice to promote neurite growth and 

synaptogenesis.  Classically, the highly negatively charged CS chains on the 

lecticans inhibits neurite outgrowth, but proteolytic cleavage of the core protein 

may allow more movement of these chains and actually promote plasticity of 

neurons.  This is a testable notion and preliminary data indicates that the 

ADAMTSs promote neurite outgrowth and other measures of neural plasticity in 

vitro (our unpublished observations).    

 The projection from the EC to the hippocampus is called the perforant 

path (Hjorth-Simonsen and Jeune, 1972), and is thought to be involved in long-

term potentiation and learning and memory (Ruthrich et al., 1987; Sutula and 

Steward, 1987; Liu and Bilkey, 1996).  The ECL model to study neural and 

synaptic plasticity denervates up to 80% of the input to the outer two-thirds of the 

molecular layer of the dentate gyrus (Scheff and Dekosky, 1989), and due to 

sprouting of surviving fiber systems will reinnervate nearly fully.  This model was 

developed more than thirty years ago in the rat (Steward et al., 1973), yet it has 

been only relatively recently that the technique was employed in mice to take 

advantage of transgenic models (Destrade et al., 1985; Shi and Stanfield, 1996).  

Surprisingly, there are some differences in the projections from the EC to the 
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hippocampal formation between rats and mice (van Groen et al., 2002).  For 

example, input to the dentate molecular layer from the contralateral EC is absent 

in the mouse, yet these contralateral fibers are responsible for much of the 

sprouting after ECL in the rat.  In addition, the width of the inner molecular layer, 

that contains associational-commissural fibers, is thinner in the mouse than in the 

rat, causing an increase in the relative width occupied by the middle and OMLs, 

layers innervated mainly by EC fibers.  In the mouse, the middle and OML 

occupy closer to four-fifths of the total, rather than two-thirds as seen in the rat.  

Moreover, three layers can be clearly differentiated in an untreated mouse, but 

not in a rat, using synaptophysin immunohistochemistry (van Groen et al., 2002), 

and following ECL this laminar feature is lost (Fig. 14B).  Synaptophysin 

immunochemistry has been one of the more common techniques, among many, 

to quantitate the loss and reinnervation of input into the ipsilateral molecular layer 

of the dentate gyrus after unilateral ECL (Deller and Frotscher, 1997).  Optical 

density of the synaptophysin signal in the contralateral OML is measured using 

the sum (or average) of the gray levels of the pixels in this region, and this value 

is used as a “normal” value to the ipsilateral side.  However, with this technique, 

the ipsilateral dentate usually shows only a 10-30% reduction in signal compared 

to the contralateral side at seven days after lesion, a time when sprouting has 

begun (Wilson, 1981).  Clearly this absolute value does not reflect the extent to 

which fibers are actually lost in the OML after ECL.  Thus, we decided to develop 

a fresh tissue, needle punch dissection technique that could be limited to the 

dentate gyrus in the mouse.  This way, biochemical assays could be conducted 



 92

on the tissue to measure overall synaptophysin immunoreactivity by ELISA.  

Using this method, at two and seven days after lesion, there was greater than a 

40% reduction in synaptophysin levels in the OML, a value which at least may 

closer reflect the absolute loss of fibers after ECL.  The major disadvantage of 

this method is that the dissected tissue also includes the granule layer and the 

hilus of the dentate, regions where input is not lost after ECL.  At the same time 

using this technique, tissue containing the lesion itself may be collected and 

assayed biochemically or processed for histochemistry to monitor the extent of 

the lesion in the EC.   

 The present results suggest that the lecticans and the proteases that 

cleave the lecticans play a regulatory role in neural plasticity after ECL.  There 

are several potential mechanisms by which this substrate--protease pair may 

modulate neural plasticity, one of which was described above.  Significant 

changes were observed in the abundance of the different isoforms of brevican 

including the expression of the C-terminally-truncated ADAMTS-derived brevican 

fragment during plastic events in the hippocampus.  A genetic approach to study 

the individual lecticans and ADAMTSs could reveal the individual contributions 

for each of the molecules involved in neural plasticity after ECL, however, there 

is considerable redundancy among these molecules.  For example, there 

appears to be a compensatory increase in the expression of neurocan in the 

brain of the brevican null mouse (Brakebusch et al., 2002).  In addition, several of 

the ADAMTSs exhibit proteoglycanase activity, and of these, at least ADAMTS1, 

4 and 9 appear to be expressed in the nervous system (unpublished 
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observations).  Whether there are compensatory changes in the expression of 

any of these molecules in the brain in ADAMTS null mice remains to be 

determined.  Nonetheless, significant protective effects toward arthritic changes 

were demonstrated just recently in a single mutant, the ADAMTS5 null mouse 

(Stanton et al., 2005).  Should it turn out that these proteases play a significant 

role in plasticity related mechanisms in the nervous system, it will be interesting 

to examine how removing this regulatory action will impact development, 

sprouting after lesion, learning and memory and other plasticity related 

mechanisms in the adult.  
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Figure 10.  Schematic representation of the micro-dissection of dentate gyrus 

and entorhinal cortex: This procedure was developed to isolate dentate gyrus 

and entorhinal cortex tissue from different rostral-caudal slabs in fresh-frozen 

mouse brain.  A: Coronal section of mouse brain showing bore holes left from 

blunt-ended, 22 gauge needle punch (green) in the ipsilateral and contralateral 

dentate gyrus.  B: Coronal section of mouse brain (2 mm caudal from section in 

"A") showing bore holes left from blunt-ended, 18 gauge needle punch (green) in 

the ipsilateral and contralateral entorhinal cortex.  C: Sagittal view of 2 mm slices 

used for the collection of dentate gyrus (A) and entorhinal cortex (B).  Diagrams 

adapted from ‘The Mouse Brain’ (Paxinos & Franklin, 2001). 
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Figure 11.  Schematic representation of brevican cleavage by the glutamyl-

endopeptidases, the ADAMTSs: A: Secreted brevican core protein that bears 

chondroitin sulfate chains (MW > 145 kD). B: Secreted brevican core protein 

without chondroitin sulfate side chains (MW = 145 kD). C: When cleaved by 

extracellular glutamyl endopeptidases, the ADAMTSs, an N-terminal fragment of 

brevican (MW = 55 kD) is formed that contains the unique C-terminal epitope 

EAMESE.  The anti-brevican antibody recognizes all three isoforms of brevican, 

whereas anti-EAMESE antibody selectively recognizes the ADAMTS-derived 

proteolytic fragment of brevican and not the parent protein or other isoforms. 
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Figure 12.  Brevican and EAMESE Western blotting in regions of mouse brain: 

Panel A shows an immunoblot containing extracts from various regions of mouse 

brain and probed with anti-brevican antibody.  Immunoreactive bands are present 

at >145 kD (high molecular weight smear), 145 kD core protein, and the 

generalized 55 kD fragment.  Panel B contains a membrane with the same 

samples probed with anti-EAMESE.  This antibody recognized the specific 

ADAMTS-derived 55 kD fragment of brevican.  CB = cerebellum, BS = brain 

stem, DE = diencephalon, HC = hippocampus, FC = frontal cortex, TL = temporal 

lobe, and OT = olfactory tubercle. 
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Figure 13.  Alterations in brevican levels in lesioned entorhinal cortex: Horizontal 

sections of entorhinal cortex immunostained with anti-brevican antibody collected 

two days after entorhinal cortex lesion.  A: Contralateral entorhinal cortex showed 

little immunoreactive signal.  B: Ipsilateral entorhinal cortex showed abundant 

anti-brevican staining in the lateral region.   
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Figure 14.  Denervation of the outer molecular layer of the dentate gyrus after 

entorhinal cortex lesion: A and B: Synaptophysin immunoreactivity in the 

molecular layer of the dentate gyrus two days after ECL.  A: ipsilateral dentate, 

B: contralateral dentate.  Note diminished immunostaining and loss of tri-laminar 

pattern in the OML after ECL.  C and D: GFAP immunoreactivity in the molecular 

layer of the dentate gyrus seven days after ECL.  Note increased astroglial 

expression of GFAP observed after deafferentation of the ipsilateral (C), but not 

contralateral (D), OML.  E: Synaptophysin levels in extracts from fresh micro-

dissected (needle punch, see Fig. 1) dentate gyrus tissue as measured by 

ELISA.  Synaptophysin immunoreactivity was reduced two and seven days post-

lesion.  The ipsilateral side was not different from contralateral dentate thirty days 

after lesion.  oml = outer molecular layer, mml = middle molecular layer, iml = 

inner molecular layer, and gcl = granule cell layer.    
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Figure 15.  Brevican immunoreactivity in the dentate gyrus after entorhinal cortex 

lesion: Brevican immunoreactivity in the contralateral (CL) and ipsilateral (IL) 

dentate gyrus of mice that had undergone ECL two, seven, and thirty days 

earlier.  Optical density was measured on the Western blots and data from the 

ipsilateral side was expressed as a fraction of the contralateral dentate.  A: At 

two days, the CS-containing, >145 kD brevican was significantly elevated on the 

lesion side compared to the contralateral side although all fragments showed a 

trend for increase.  B: At seven days, there was a significant elevation of the 

ADAMTS-derived EAMESE fragment of brevican and a trend for an increase in 

55 kD fragment.  C: At thirty days, brevican isoforms were not different from the 

control side, except that the >145 kD core protein was slightly elevated.  
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Figure 16.  Apparent ADAMTS activity:  Apparent activity in the dentate gyrus of 

mice after entorhinal cortex lesion as measured by the ratio of the optical density 

of the ADAMTS-derived EAMESE fragment and the sum of the densities of the 

brevican core protein isoforms (>145 kD + 145 kD).  Mean level of apparent 

activity was calculated at two, seven and thirty days after lesion.  At two days 

after lesion, ADAMTS activity declined, whereas at seven days a significant 47% 

increase in ADAMTS activity was observed compared to the contralateral 

ADAMTS activity.  Levels on the lesioned side were not different from the non-

lesioned dentate in tissue collected thirty days after lesion.  
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ABSTRACT 

Deposition of Aβ into the extracellular matrix (ECM) may be involved in the 

disruption of matrix processing and alter extracellular molecular events that 

modulate synaptic plasticity.  To test the hypothesis that disruption of ECM 

processing by the accumulation of Aβ can alter synaptic plasticity via modification 

of ECM, we examined whether the expression and processing of brevican, an 

abundant extracellular chondroitin sulfate-bearing proteoglycan, was altered in 

the brains of Aβ-depositing APPsw mice.  The abundance of a major catabolic, 

proteolytic fragment of brevican was consistently decreased in several 

telencephalic regions in the brains of plaque-bearing mice, an effect that 

appeared to be due to diminished matrix metalloproteinase (MMP) activity.  In 

association with the region selective decline in MMP activity, we observed a 

marked increase in the expression of the synaptic SNARE protein, SNAP-25 in 

APPsw mice compared to littermate controls.  These results suggest that over-

expression of Aβ may exert inhibitory effects on the activity of the proteases 

responsible for the processing of brevican, other proteoglycans and various other 

substrates.  Intact proteoglycan may stabilize synaptic structures, thereby 

inhibiting synaptic plasticity.  

 

 

Keywords: amyloid β protein, amyloid precursor protein, extracellular matrix, 

brevican, proteoglycan, Alzheimer’s disease, synaptophysin, SNAP-25, PSD-95, 

synapse 
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INTRODUCTION 

 One hallmark of Alzheimer’s disease (AD) is the deposition of insoluble Aβ 

peptides into amyloid plaques in the extracellular space in the brain (Glenner and 

Wong, 1984; Selkoe, 1991).  Various aggregate forms of Aβ induce oxidative 

stress and a glial-mediated inflammatory response (McGeer et al., 1989; Hardy 

and Higgins, 1992; Giulian et al., 1995; Sastre et al., 2006) including the 

expression of matrix-degrading proteases (Satoh et al., 2000; Deb et al., 2003).  

Exactly how these pathological responses affect the progression of AD is not 

clear, however, they likely influence molecular mechanisms involved in neural 

and synaptic plasticity.  Transgenic mouse models that over express the human 

APP gene bearing the Swedish mutation (APPsw) mimic several characteristics 

of AD, such as the deposition of amyloid and diminished cognitive function, but 

certainly not all aspects (Hsiao et al., 1996; Terai et al., 2001) because they lack 

neuronal loss.  Little is known about synaptic changes that occur in these mice.   

Brevican is a chondroitin sulfate (CS)-containing, aggregating, 

extracellular matrix (ECM) proteoglycan that is abundantly expressed in the 

central nervous system.  It inhibits neurite outgrowth and is thought to stabilize 

synapses (Hockfield et al., 1990; Bandtlow and Zimmermann, 2000; Yamaguchi, 

2000).  Recent data from seizure-induced and perforant-pathway lesion models 

indicate that the turnover of brevican contributes to injury-related reinnervation of 

the dentate gyrus in these models. (Yuan et al., 2002; Mayer et al., 2005).  

Neurons, astrocytes and microglia express particular members of the MMP 

(matrix metalloproteinase) and ADAMTS (a disintegrin and metalloproteinase 
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with thrombospondin motifs) subgroups of metalloproteinases that potently 

cleave proteoglycans of the ECM, including brevican.  Emerging evidence 

suggests that AD may be a disease of dysregulated plasticity (Mesulam, 1999; 

Selkoe, 2002), and aggregating PGs play a key repair and regenerative role in 

neural plasticity, suggesting a potential link between, deposited Aβ and PGs.   

Levels of a 55 kD, ADAMTS-derived, brevican cleavage fragment were reduced 

by 64% in AD hippocampus, compared to age-matched control subjects, 

suggesting that the proteolytic activity of the ADAMTSs was diminished in AD, an 

effect that was positively correlated with decreased levels of the pre-synaptic, 

vesicular marker, synaptophysin (Gottschall, 2001).  To further investigate this 

relationship, and to identify additional synaptic pathology that correlates with 

alterations in PG processing (i.e., Aβ depositing), APPsw mice were examined 

for changes in proteolytic-derived brevican isoforms.  With the development of 

ADAMTS-specific and MMP-specific neoepitope antibodies that correspond to 

the respective cleaved fragments of brevican, the amount of brevican degraded 

by each of these protease families may be quantitated, and related to the activity 

of the protease itself.  In this study, the activity of each protease, as defined by its 

involvement in brevican turnover, was related to the potential disturbances in 

synaptic plasticity, as indicated by levels of the synaptic vesicular protein, 

synaptophysin, the SNARE protein SNAP-25, and the post-synaptic scaffolding 

protein PSD-95.   
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MATERIALS & METHODS 

Animals 

 15 month old adult APPsw (Tg2576) mice (23 g - 27 g) from the colony 

maintained at USF were housed under a 12 hour light cycle with regulated 

temperature and humidity.  Mice were housed 3 to 4 per cage and had free 

access to food and water.  Brain tissue was collected from animals between 15 

and 16 mos of age: biochemical analysis n=6, APP (+) tg and n=4, APP (-) non-

tg; immunohistochemistry n=6, APP (+) tg and n=6 APP (-) non-tg.  Genotyping 

as described previously by Hsiao et al., (Hsiao et al., 1995; Hsiao et al., 1996). 

 

Western Blotting  

For collection of tissue for blotting with antibodies, animals were 

euthanatized with an exposure to excess CO2 until death and immediately 

decapitated.  Various brain regions were rapidly dissected and extracted with a 

teflon-glass homogenizer in about 5 volumes of Triton-X-100-containing buffer 

(20 mM Tris-HCl at pH 7.4, 10 mM EDTA, 1% Triton-X-100, and 1:100 protease 

inhibitor cocktail [Calbiochem type III, LaJolla, CA]).  The homogenate was 

centrifuged in a microcentrifuge at 6800 x g for 5 minutes, and the isolated 

supernatant collected and stored at –80oC.  

Tissue extracts were loaded with equal amounts of protein and 2x 

reducing sample buffer onto pre-cast 4-20% gradient SDS-PAGE gels (Novex 

gels, Invitrogen, Carlsbad, CA).  Protein was electrophoretically transferred to a 

polyvinylidine difluoride membrane (PVDF, Immobilon, Millipore, Billerica, MA).  
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For anti-brevican, anti-EAMESE, and anti-SAHPSA immunoblotting, the 

membranes were washed with Buffer B (10 mM phosphate buffered saline, pH 

7.4 containing 0.05% Tween 20) for 5 minutes, blocked in 5% milk diluted in 

Buffer B for 1 hour and probed for 2 hours using primary antibodies against 

mouse anti-brevican (1:1000, BD Transduction Labs, San Jose, CA), rabbit anti-

EAMESE (1:1000) (Mayer et al., 2005), or rabbit anti-SAHPSA (1:500).  Primary 

antibodies were detected with corresponding secondary antibodies of anti-mouse 

and anti-rabbit conjugated to horse radish peroxidase (Chemicon, Temecula, 

CA).  Antigens were visualized using a chemiluminescence developing system 

(SuperSignal, Pierce, Rockford, IL).  This is the first use of the neoepitope 

specific antibody anti-SAHPSA.  The antibody was affinity purified on a solid 

phase column linked to SAHPSA peptide, prior to use (see methods below).  It 

should be noted that ADAMTS-derived and MMP-derived fragment antibodies 

were raised against the species-specific neoepitopes for mouse.  

 

Immunohistochemistry 

Mice were euthanatized with excess Nembutal, and the brains cleared 

using phosphate buffered saline (PBS; pH 7.4), via cardiac perfusion as 

described (Aya-ay et al., 2005).  The brain was removed and dissected into two 

hemispheres.  One hemisphere was extracted as above and used for 

biochemical analysis and the other hemisphere was post-fixed with fresh 4% 

paraformaldehyde in 0.1M phosphate buffer (PB; pH 7.4) overnight and 

cryoprotected with 15% and 30% sucrose (in PBS) for 24 hours each.  The 
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individual brains were mounted on a cryostat chuck at –20oC and sectioned at 30 

µm.  Sections were stored freely floating in antifreeze solution at –20oC. 

Selected sections to be used for immunohistochemistry were washed in 

PBS for 15 minutes, blocked and permeabilized in 10% normal goat serum, 3% 1 

M lysine and 3% Triton-X for 1h and incubated overnight in primary antibodies 

against brevican (1:1000, N-terminal (G1); Transduction Labs, San Jose, CA and 

1:500, C-terminal (G3) RB18 (Yu Yamaguchi, Burnham Institute, La Jolla, CA), 

EAMESE (1:1000), SAHPSA (1:500), 4G8 (1:250, AbD Serotec, Raleigh, NC), 

and Aβ-95-2-2 (“Total Aβ” raised against Aβ1-40 and recognizes both Aβ1-42 

and Aβ 1-40; for charaterization see (Morgan et al., 2000; Wilcock et al., 2001) at 

4oC.  Doubly probed sections were washed and incubated in anti-rabbit IgG 

conjugated to Alexa-Fluor 488 (Molecular Probes, Eugene, OR) and streptavidin 

conjugated to Alexa-Fluor 594 (Molecular Probes, Eugene, OR) for 1 hr at room 

temperature.  The sections were washed for 15 minutes, wet mounted on glass 

slides, and coverslipped with VectaShield mounting medium (Vector Labs, 

Burlingame, CA).  

 

ELISA 

 Enzyme-Linked Immunoabsorbant assays were performed to measure 

immunoreactivity of GFAP, synaptophysin, SNAP-25 and PSD-95.  Coating 

antibodies were diluted in 0.01 M PB and let to dry overnight in a EIA/RIA high-

binding 96-well plate (Costar - Sigma; St. Louis, MO) using mouse x anti-

synaptophysin; Chemicon, Temecula, CA 1:250; mouse x anti-SNAP-25, 
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Chemicon, 1:200; mouse x PSD95, Chemicon, 1:100 and mouse x GFAP, 

Chemicon, 1:250).  The wells were washed with sample/wash buffer (PBS with 

0.05% Tween-20) one time and blocking buffer (PBS with 0.05% Tween-20 and 

5% dry milk) was added to the wells and incubated at room temperature for 1 hr 

with agitation.  The wells were washed and prepared sample was added for a 2 

hr incubation on a shaker.  After samples were washed from the well, primary 

antibody diluted in sample/wash buffer was added and allowed to incubate for 2 

hrs with agitation (rabbit anti-synaptophysin DAKO, Carpenteria, CA 1:2000; 

rabbit anti-SNAP-25 Sigma, St. Louis, MO, 1:1000; sheep anti-PSD95 ZYMED, 

San Francisco, CA, 1:100; and rabbit  anti-GFAP DAKO, 1:1000).  The wells 

were washed three times before adding secondary antibodies, allowed to 

incubate for 45 minutes on a shaker (goat anti-rabbit IgG-HRP, Chemicon, 

1:5000; anti-sheep/goat, Chemicon, 1:1000).  Next, TMB (tetramethyl benzidine, 

Sigma, St. Louis, MO) solution was applied and the color allowed to develop.  

The colormetric reaction was stopped with 1M H2SO4.  Absorbance levels were 

measured with a Wallac Victor2 1420 multilabel counter (Perkin Elmer, 

Wellesley, MA) and Workout software (version 1.5, Perkin Elmer), and the 

readings were normalized for concentration of protein in the sample added to the 

well.  The means from the experiment groups were compared using ANOVA and 

pair-wise comparisons were made with Bonferroni post-hoc test (GraphPad, San 

Diego, CA).  A p-value < 0.05 was considered significant.  
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Antibody generation 

 A rabbit antibody raised against the brevican neoepitope on the 55 kD N-

terminal fragment derived from proteoglycanase activity of the MMPs was 

generated by Sigma-Genosys (St. Louis, MO) and purified in our laboratory.  The 

novel C-terminal sequence "SAHPSA" from the mouse was the neoepitope and 

the peptide used for antibody generation contained a glycine spacer 

"GGGQSAHPSA".  Synthesized by Sigma-Genosys, this peptide was conjugated 

to keyhole limpet hemocyanin at the N-terminus and rabbits were subjected to 

standard immunization protocols.  Serum collected after the fifth booster was 

titered against the peptide using a solid-phase system and specific antibody was 

purified using peptide affinity chromatography.  On Western blot, the antibody 

against the mouse fragment recognized a single band at ~53 kD in extracts from 

mouse brain and did not cross react with the intact brevican core protein.   

 

Microscopy and image acquisition 

Single and multi-labeled, epifluorescent photomicrographs were acquired 

using a Zeiss Axioskop microscope, interfaced with an Axiocam and images 

acquired with Openlab software.  Controls for each immunomarker included 

secondary antibody in the absence of a primary antibody, in which the staining in 

control sections was minimal to absent.  Exposure times and aperture opening 

were constant for each magnification and antibody used.  All pictures were 

minimally and equally modified using Abobe photoshop.   
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RESULTS 

 Brevican is secreted as a glycosylated protein or as the holoprotein alone 

that appears on Western blot as a smear at >145 kD and a distinct band at 145 

kD, respectively (Fig. 17A-C).  There is an abundance of the 55 kD proteolytic 

fragment of brevican that is prevalent in brain and can be detected on Western 

blot with an N-terminal (G1-domain) antibody that detects all three isoforms (Fig. 

17C).  Brevican and other lecticans are selectively cleaved by endogenous 

proteases such as the ADAMTSs and MMPs at site-specific regions revealing 

novel sequences of amino acids at their termini (Fig. 17D & E).  In the mouse 

brevican sequence, the ADAMTS cleavage site (residues 395-396) is 35 amino 

acids downstream from the MMP site (residues 360-361), resulting in an N-

terminal, ADAMTS-derived fragment that should theoretically be about 4 kD 

larger than the MMP fragment (Nakamura et al., 2000).  Antibodies raised 

against the newly exposed C-termini amino acid sequences distinguish between 

the protease-specific (ADAMTS- vs. MMP-derived) N-terminal fragments of 

brevican.  Since the proteolytic degradation of brevican may play an important 

role in synaptic plasticity, the ability to detect the protease specific cleavage 

fragments of brevican is important.  The characterization of the ADAMTS-derived 

fragment, EAMESE, has been reported previously (Mayer et al., 2005) and here 

we introduce the antibody raised against the neoepitope derived from the 

cleavage of brevican by members of the MMP family, which results in the C-

terminal amino acid sequence, SAHPSA.  When probed on a Western blot, the 
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SAHPSA antibody detects a single immunoreactive band at ~53 kD (see Fig. 

18A).  

AD exhibits dysregulated plasticity, and because brevican may play a role 

in synaptic plasticity, we examined brevican immunoreactivity in the brains of 

APPsw mice.  Hippocampal tissue samples of APPsw mice and non-transgenic 

littermates were probed with anti-brevican antibody that detects an N-terminal 

region epitope.  Three immunoreactive isoforms of brevican were identified; the 

>145 kD  brevican that bears CS chains, the 145 kD core protein, which does not 

contain CS chains, and an undistinguished, general ~55 kD N-terminal fragment 

(Fig. 18A).  After densitometric analysis, in hippocampus, there was no 

significant change in the amount of CS-containing brevican at >145 kD, however, 

there was a clear shift in the molecular weights (lower) of the molecules that 

compose this isoform in APPsw mice.  There was a significant increase the 

abundance of the core protein that did not bear CS chains (145 kD band) and 

this was associated with a marked decrease in the abundance of the 55 kD, 

generalized N-terminal fragment.  To delineate the family of proteases which may 

be responsible for the decrease in the ~55 kD generalized fragment, these 

samples were probed with the ADAMTS- and MMP-specific neoepitope 

antibodies.  No changes were seen in the amount of ADAMTS-derived fragment 

(EAMESE), but interestingly a significant decrease in the abundance of the 

MMP-derived fragment (SAHPSA) was observed in the hippocampus of APPsw 

mice compared to non-transgenic littermates.  Several brain regions of APPsw 

and non-transgenic littermates were probed for the brevican isoforms using 
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generalized and protease-specific antibodies.  The results are shown in Table 3.  

Similar to hippocampus, the shift in the molecular weight of the >145 kD isoform, 

along with the increase in the amount of the 145 kD core protein and a decrease 

in the abundance of the 55 kD fragment were also found in frontal cortex and 

temporal lobe.  These brain regions are burdened with Aβ plaques.  However, 

this pattern was consistent even in a brain region that does not bear Aβ-

containing plaques, the cerebellum, where there was also an increase in core 

protein and a decline in the MMP-derived brevican fragment.  Brain stem and 

hypothalamus, both relatively lacking in plaques, revealed no changes in the 

generalized fragment of brevican even though an increase in the core protein 

was apparent in these regions. 

To localize these molecules in the APPsw mouse brain, immuno-

histochemistry revealed unique patterns of brevican-related immunoreactivity 

around the Aβ plaques.  Brevican immunoreactivity and Aβ substantially co-

localized within the plaque (Fig. 19A-C).  However, when staining for the 

neoepitope antibodies, a different pattern was apparent.  There was an increase 

of anti-EAMESE and anti-SAHPSA immunoreactivity (Fig. 19D-L) on the 

periphery of the plaque, forming a ring; that was especially evident with anti-

EAMESE immunoreactivity (Fig. 19D-F).  The same pattern was observed for 

anti-SAHPSA (Fig. 19J-L), however, the "ring" appeared to have a wider 

distribution and the diameter of the ring itself was wider than just outside the 

plaque.  Little to no immunoreactivity for the brevican fragments was found within 
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the center of the plaque, even though this region was abundant with 

immunoreactivity for brevican. 

Activated astrocytes, which secrete brevican and various ECM-degrading 

proteases, are associated with senile plaques in AD brain (Itagaki et al., 1989; 

Mrak et al., 1996) and AD pathology results from the ongoing glial-mediated 

response to the deposition of Aβ.  Brain tissue samples of APPsw and non-

transgenics were measured for glial fibrillary acidic protein (GFAP) as a measure 

of the inflammatory response generated by the presence of activated astrocytes.  

The regions heavily laden with Aβ plaques, such as the frontal cortex (p=0.0443), 

hippocampus (p=0.0163) and temporal lobe (p=0.0490) showed a marked 

increase in GFAP compared to those regions that do not bear Aβ plaques, such 

as cerebellum, hypothalamus and the brain stem (Fig. 20A).   

Since brevican may play a role in synaptic plasticity and here we have 

reported alterations in brevican isoforms within the ECM of the plaque and 

surrounding tissue, and AD presents dysregulated plasticity, we were interested 

in whether these changes in the matrix were associated with levels of synaptic 

markers.  The synaptic markers represent a measure of the density of synapses.  

The markers measured were, the vesicular pre-synaptic protein, synaptophysin, 

the pre-synaptic, membrane bound SNARE protein, SNAP25, and the post-

synaptic scaffolding protein, PSD-95 were measured via ELISA.  Synaptophysin 

(Fig. 20B) or PSD-95 (Fig. 20C) immunoreactivity were not different in any brain 

region of 15 month old APPsw animals compared to littermate non-transgenics.  

However, SNAP-25 levels were significantly increased in samples from frontal 
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cortex, hippocampus, and temporal lobe of the APPsw animals (Fig. 20D).  

Interestingly, APPsw cerebellum also showed small, but significant increases in 

SNAP-25 immunoreactivity. 

 

DISCUSSION 

 Aβ peptides and the processing of the APP protein appear critical in the 

pathogenesis of AD, yet, their functional relationship to neuronal physiology and 

synaptic modulation remain remarkably unclear (Palop et al., 2006; Schott et al., 

2006).  As Aβ plaques form within the extracellular space, there is a disruption of 

molecular complexes surrounding neurons that may contribute to the AD-

associated, dysfunctional neural plasticity.  Several ECM components, such as 

laminin-1, agrin, glypican-1, thrombospondin and integrins, bind Aβ and modulate 

Aβ aggregation and neurotoxicity (Kowalska and Badellino, 1994; Drouet et al., 

1999; Cotman et al., 2000; Watanabe et al., 2004) suggesting that ECM 

molecules produce a molecular response important in AD pathogenesis.  Here, a 

change in the abundance of all three isoforms of the ECM proteoglycan brevican 

was observed in brain samples from APPsw mice.  There was clearly a decline in 

the amount of an MMP-derived proteolytic fragment of brevican in several brain 

regions of APPsw mice that may be associated with an environment less 

permissive to neural plasticity and these alterations were accompanied by 

changes in the expression of the pre-synaptic, SNARE protein SNAP-25.   

 In brain extracts of APPsw mice, the brevican immunoreactive smear that 

was >145 kD was markedly more condensed and appeared at a lower molecular 
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weight compared to a "longer" smear found in non-transgenic animals.  The 

higher molecular weight smear represents CS-containing isoforms of brevican, 

and it may be that extracts from APPsw mice bear fewer numbers of CS chains 

bound to the core protein, i.e. one or two  in APPsw mice instead of two or three, 

shifting the smear in APPsw mice to a lower molecular weight.  In addition, the 

abundance of the brevican isoform containing no CS chains was markedly 

increased in APPsw mice.  Evidence indicates that ADAMTSs have a higher 

activity and binding affinity for lecticans bearing CS chains (Tortorella et al., 

2000; Flannery et al., 2002), compared to the holoprotein.  Thus, diminished 

cleavage of the holoprotein with no CS chains may account for the greater 

abundance of this isoform.  A reduced level of G1 proteolytic fragment is 

consistent with this notion.  In the control animals, the higher number of CS 

chains linked to the core protein makes proteolytic cleavage more efficient.  The 

cause for the lack of CS chains bound to brevican in APPsw mice brain is 

unclear and shear speculation, but may involve decreased glycosyltransferase 

activity or changes in the catabolism of these forms after interaction with Aß. 

 The abundance of the N-terminal, G1 generalized fragment of brevican is 

attenuated in APPsw mice brain, but in vitro, data suggest that Aβ can bind to 

ADAMTSs and inhibit their proteolytic action (Gottschall et al., 2003).  However, 

when brain extracts were probed with an ADAMTS-specific neoepitope antibody 

(anti-EAMESE), no difference in fragment abundance was found between the 

APPsw mice compared to non-transgenic.  However, the amount of the MMP-

derived fragment (anti-SAHPSA) was reduced in the hippocampus, suggesting 
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that the decline in the generalized fragment in this region was due to a decline in 

MMP activity in APPsw mice.  Similar results were found with extracts of 

cerebellum where plaques are predominantly of the diffuse type and fibrillar 

senile plaques are rarely observed (van Horssen et al., 2002).   

Although relatively low in normal brain, MMP-9 activity in AD brain is 

increased (Backstrom et al., 1996; Asahina et al., 2001) and is capable of 

degrading Aβ and ECM (Backstrom et al., 1996; Lorenzl et al., 2003; Lee et al., 

2005; Yan et al., 2006).  In three month old APPsw mice, before the 

accumulation of plaques, MMP immunoreactivity was reported to be absent (Lee 

et al., 2003) but elevated in astrocytes surrounding plaques in plaque-bearing 

mice (Lee et al., 2005; Yan et al., 2006).  In normal mouse brain, MMPs may 

cleave CS-containing substrate, but this activity appears to be reduced in plaque 

bearing mice.  The production of MMPs has been shown to be induced by Aβ in 

cultured rat astrocytes (Deb et al., 2003) and recent data indicates that MMP-9 

can degrade fibrillary A�, and may aid to the ongoing clearance of plaques from 

amyloid laden brains (Yin et al., 2006).  The current results suggest that in the 

presence of A� plaques in APPsw mice, the ability of MMPs to cleave brevican 

was diminished.  Thus, our data indicate that MMPs contribute to the deposition 

of Aβ rather than its clearance.  In this model, the diminished capacity for MMP to 

cleave brevican may be due to (1) the inability of MMPs to bind proteoglycan 

substrates that bear fewer number of CS chains on the core protein, (2) Aβ may 

bind to the protease in turn directly inhibiting its activity or (3) Aβ can potentially 

block protease activity by binding directly to brevican.  Further experiments are 
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required to determine the contribution of each to diminished proteolytic 

degradation of proteoglycans.  

By immunohistochemistry, brevican immunoreactivity co-localized within 

the Aβ plaque; however, a unique staining pattern was observed around the 

periphery of the Aβ plaque that represented the ADAMTS- and MMP-derived 

fragments of brevican.  The increase of immunoreactivity adjacent to and 

surrounding the plaque suggests a local increase of protease activity in the 

region of abnormal neurite growth, but diminished activity within the plaque as 

denoted by the absence of protease-specific staining.  MMP-9 immunoreactivity 

has been reported in the proximity of extracellular plaques (Backstrom et al., 

1996).  This further supports the notion that Aβ may exert inhibitory effects on the 

protease responsible for the catabolism of brevican.  MMPs and ADAMTSs may 

also play a role in dysfunctional neural plasticity by their possible involvement in 

the formation of dystrophic neurites surrounding the plaque. These proteases 

may promote neurite outgrowth and synaptogenesis after injury (Malemud, 2006; 

Pizzi and Crowe, 2006) by creating a more permissive ECM.  Change in the 

activity of the protease, due to interaction with Aβ, disrupts this recovery 

mechanism and may ultimately affect neural plasticity.  

It is possible that the catabolism of brevican is important in the modulation 

of neural plasticity, and it appears that Aβ affects the abundance of brevican 

isoforms by altering activity of the proteases, we examined the expression of 

synaptic markers as a measure of synaptic abundance and neural plasticity in 

APPsw mice.  Here, synaptophysin, SNAP-25 and PSD-95 were measured by 



 130

ELISA in extracts from several brain regions taken from APPsw and non-

transgenic animals.  The vesicular pre-synaptic protein synaptophysin has been 

to shown to decrease in AD brain terminals (Honer et al., 1992; Masliah et al., 

1994; Dickson et al., 1995; Sze et al., 1997) or remain unchanged in mouse 

models of AD (Irizarry et al., 1997; King and Arendash, 2002).  The post-synaptic 

density marker PSD-95 has been reported to decrease in the presence of Aβ in 

both AD (Love et al., 2006) and mouse models of AD (Almeida et al., 2005).  No 

changes in synaptophysin or PSD-95 were observed with ELISA, yet there were 

significant increases in the membrane bound pre-synaptic marker SNAP25 levels 

in hippocampus, frontal cortex, temporal lobe, and cerebellum compared to 

SNAP-25 concentrations in brain from non-transgenic animals.  APP is 

expressed at high levels in the pre-synaptic active zone likely in proximity to the 

SNARE protein SNAP-25, which has been implicated in neurite outgrowth and 

synaptic remodeling in vitro (Oyler et al., 1989; Catsicas et al., 1991; Lakin et al., 

1995).  This marker has been shown to decline in the presence of Aβ (Chauhan 

and Siegel, 2002).  Since APP is over-expressed in each of the four regions 

showing increased SNAP-25, high levels of APP at appropriate regionally-

selective developmental times, rather than deposition of Aβ alone, may be 

important to account for over expression of this synaptic marker.  In AD, there is 

no apparent increase in APP protein expression, but altered processing may be 

responsible for increased levels of Aβ and its deposition (Holtzman, 2004).  Thus, 

this phenomenon may be simply due to over expression of APP in the transgenic 

mouse, with little relationship to AD.  There is a significant literature describing 
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the expression of synaptic markers in AD, and in APP over-expressing 

transgenic mice, almost all with histochemical techniques and present conflicting 

data.   

Overall, the deposition of Aβ into the ECM may be involved in the 

disruption of matrix processing and alter molecular extracellular events that 

modulate neural plasticity.  The biomarker of strongest correlation with dementia 

of AD is a loss of synapses.  In correlation to the region specific-decline in MMP 

activity, we observed an increase in the expression of the membrane-bound 

synaptic SNARE protein, SNAP-25.  These results suggest that Aβ may exert 

inhibitory effects on the activity of the proteases responsible for matrix regulation 

and processing of brevican and other proteoglycans, as well as vesicle 

recruitment and synaptogenesis, effects potentially related to diminished neural 

plasticity in AD.  Of course, how these changes more broadly relate to the total 

time course of the pathology in AD, or more proximally to the pathology of the 

APPsw mouse, remain to be examined.   
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Figure 17.  Detection of brevican isoforms and proteolytic degradation by 

endogenous proteases at specific cleavage sites.  Brevican is secreted as a 

>145 kD protein bearing 1-3 CS chains (A).  Brevican can also be secreted as 

the holoprotein at 145 kD (B).  When probed on Western blot with the N-terminal 

antibody (transduction labs) three immunoreactive bands appear: a >145 smear 

(glycosylated brevican), the 145 kD core protein, and a ~55 kD proteolytic 

fragment (C).  The fragment of brevican is generated by endogenous proteases 

such as the MMPs (D) and ADAMTSs (E).  Each has a different, specific 

cleavage site on the brevican protein.  Shown here are the specific cleavage 

sites of the MMPs and ADAMTSs on the brevican protein in the mouse, rat and 

human sequences.  The MMP cleavage-site is just 35 amino acid residues 

upstream from the ADAMTS-specific site.  

 

 

 

 

 

 

 

 

 

 

 



 133

 

 

 

Chapter 3, Figure 17 

 

 

 

 

 

 

 

 

 

 

GAG binding site

G1 domain

G3 domainN >145 kD 
C

CN 
145 kD 

                                  360  361                395  396 
       rat brevican      351 CFRDSAHPSA  FSEASSPASDGLEAIVTVTEKLEELQLPQEAVESE  SRGAIYSI 403 
              360  361                395  396 
       mouse brevican    351 CFRDSAHPSA  SSEASSPASDGLEAIVTVTEKLEELQLPQEAMESE  SRGAIYSI 403 
                           361  362                400  401 
       human brevican    352 CFRDSAQPSA  IPEASNPASDGLEAIVTVTETLEELGLPQEATESE  SRGAIYSI 408   

>145 

145 

55 

TL Brevican 
Western blot

A 

B C 

D E 
N 

MMP-derived  
brevican N-terminal 
fragment 

53 kD 360 
N

ADAMTS-derived brevican 
N-terminal fragment

55 kD 395



 134

Figure 18.  Relative immunoreactivity of brevican isoforms in the hippocampus of 

APPsw transgenic mice compared to littermate non-transgenic mice.  (A) Brain 

extracts were probed for anti-brevican, anti-EAMESE and anti-SAHPSA in 15-

month-old APPsw plaque-bearing mice (+) and 15-month-old non-transgenic (-) 

littermates (IC = internal control, C57Bl/6 hippocampal tissue, used for interblot 

variation and protein migration):  There was no change in abundance of >145 kD 

protein in hippocampus, although a shift or change in glycosylation (lower 

molecular weight) was apparent.  There was a significant increase in the 

abundance of the core 145 kD brevican accompanied by a decrease in the 

generalized fragment of brevican in the APPsw plaque-bearing tissue.  No 

apparent change was observed in the ADAMTS-derived fragment, visualized by 

anti-EAMESE immunoreactivity.  However, there was a marked decrease in the 

fragment of brevican generated by MMP-mediated proteolytic cleavage, denoted 

by anti-SAHPSA immunoreactivity, in hippocampal samples of APPsw mice.  (B) 

Densitometric analysis of hippocampus tissue on Western blot. 
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Table 3.  Relative immunoreactivity of brevican isoforms in several brain regions 

of APPsw transgenic (+) mouse brain compared to littermate wild-type (-) control. 

 

                ADAMTS-derived        MMP-derived 
            G1 brevican Isoforms        fragment fragment                
             
brain region         tg >145 kD          145 kD           55kD      EAMESE SAHPSA       
 
Frontal cortex        -        28.3 ± 3.20     5.93 ± 0.43     1.87 ± 0.55     0.85 ± 0.16 0.18 ± 0.13 
                 +       17.4 ± 2.21*    7.85 ± 0.86*    1.62 ± 0.62     1.06 ± 0.14 0.08 ± 0.05 
 
Temporal lobe       -        25.1 ± 2.13      2.50 ± 0.03    1.35 ± 0.26      0.93 ± 0.28 0.59 ± 0.15 
                 +       17.2 ± 2.40*     6.31 ± 0.44*   3.18 ± 0.96*   1.02 ± 0.20 0.47 ± 0.11 
 
Cerebellum           -        11.3 ± 1.08      2.98 ± 0.23    4.53 ± 0.44     1.22 ± 0.03 0.93 ± 0.05 
                 +        8.54 ± 0.72*    6.85 ± 0.28*   2.37 ± 0.23*   1.41 ± 0.20 0.43 ± 0.12* 
 
Hypothalamus       - 11.9 ± 1.19      2.37 ± 0.56     0.75 ± 0.11     3.67 ± 0.31 0.68 ± 0.21 
                 + 7.99 ± 1.36*    4.98 ± 0.74*    1.35 ± 0.39*    3.18 ± 0.23 0.83 ± 0.30 
  
Brain Stem           - 9.64 ± 2.25     1.90 ± 0.51      5.72 ± 0.81     2.31 ± 0.31 0.79 ± 0.26 
                + 7.31 ± 1.60     4.73 ± 0.83*    5.28 ± 0.72     2.29 ± 0.24 0.73 ± 0.26 
 
*significantly different from non-transgenic; tg = transgene; APPsw = (+), n=6; and non-transgenic 
= (-), n=4. 
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Figure 19.  Immunohistochemical localization of brevican, the proteolytically 

cleaved fragment of brevican, and Aβ plaques in APPsw transgenic mice.  

Epifluorescent micrographs of brevican immunoreactivity (A, H, K), anti-EAMESE 

immunoreactivity (D, G), anti-SAHPSA immunoreactivity (J) and Aβ (B, E) in 

fixed brain sections.  Merged composites (C, F, I & L).  Brevican was co-localized 

with Aβ.  The immunoreactivity for brevican fragments revealed a ring around the 

plaque that suggests increased activity adjacent to the amyloid deposition.  All 

images captured at 40x magnification.  Marker represents 50 µm.   
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Figure 20.  Synaptic markers as measured by ELISA in brain regions of APPsw 

and non-transgenic control animals. Relative GFAP (A), synaptophysin (B), PSD-

95 (C) and SNAP-25 (D) immunoreactivity in samples of cerebellum (CB), 

hippocampus (HC), brain stem (BS), temporal lobe (TL) and hypothalamus (HT) 

from non-transgenic and APPsw mice.  GFAP levels were elevated in the FC 

(p=0.0443), HC (p=0.0163) and TL (p=0.0490) of APPsw mice compared to non-

transgenic.   No changes detected in synaptophysin and PSD-95 synaptic 

markers.  In APPsw mice, SNAP-25 immunoreactivity was elevated in the FC 

(p=0.0315), HC (p=0.0482), TL (p=0.0351) and CB (p=0.0112) compared to 

samples from non-transgenic littermates.  
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ABSTRACT 

Lecticans, a sub-family of chondroitin sulfate (CS)-containing 

proteoglycans, are expressed in aggregates in the extracellular matrix (ECM) of  

the central nervous system (CNS) where they likely stabilize synapses and inhibit 

neural plasticity.  Proteolytic cleavage of the proteoglycans by endogenous 

glutamyl endopeptidases of the ADAMTS (a disintegrin and metalloproteinase 

with thrombospondin motifs) family appears to release this inhibition and promote 

neural plasticity.  ADAMTS1 is expressed in neurons and glia in the CNS, it is 

induced under inflammatory conditions and may play a role in neuritic repair and 

regeneration.  The purpose of this study was to characterize the effects of 

deleting the ADAMTS1 gene on the processing of neural-expressed lecticans, 

and whether this deletion affected the regional expression and abundance of 

synaptic markers in the CNS.  Changes in the expression of brevican isoforms 

were limited to the temporal lobe with no changes observed in five other brain 

regions compared to wild-type CNS regions.  Marked attenuation in versican 

processing was observed especially in frontal cortex and hippocampus of 

ADAMTS1 knockout CNS compared to wild-type regions.  Enzyme-linked 

immunoabsorbant assays (ELISAs) were conducted to measure levels of 

synaptophysin, SNAP-25 and PSD-95 in brain regions.  Marked elevations (~2.5-

fold) in synaptophysin and SNAP-25 concentrations were observed in the 

hippocampus, whereas, in frontal cortex all three markers were elevated in 

ADAMTS1-deficient mice compared to their littermate controls.  The classical 

entorhinal cortex lesion model of neural plasticity was employed to investigate 
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the neural plasticity response to lesion in the protease deficient mouse.  There 

was a trend for diminished sprouting and re-innervation of the molecular layer 

target regions of ADAMTS1 deficient mice when neurons of the medial entorhinal 

cortex were lesioned.  These results suggest that endogenous proteases such as 

the ADAMTSs may play a role in synaptogenesis during development or in 

synaptic maintenance in the adult. 

 

Keywords: extracellular matrix, proteoglycan, brevican, versican, SNAP-25, 

synaptophysin, PSD-95, entorhinal cortex lesion 

 

INTRODUCTION 

 ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin 

motifs-1) was first described by Kuno et al, in 1997 and since has proven to be 

important in normal growth, fertility and the development of several tissue types 

(Kuno et al., 1997, Shindo et al., 2000).  ADAMTS1 belongs to a sub group of the 

ADAMTS glutamyl endopeptidases that are expressed in the central nervous 

system (CNS) (Yuan et al., 2002),  where they bind and cleave proteoglycans in 

the extracellular matrix (ECM).  In particular, substrates for this subgroup of 

ADAMTSs are large negatively charged aggregating, chondroitin sulfate (CS)-

containing proteoglycans, termed lecticans, which include aggrecan, brevican 

and versican (Yamaguci, 2000; Kuno et al., 2000; Sandy et al., 2001).  

Expression of ADAMTS1 is low under basal conditions, yet recent data suggest 

that it is up-regulated after injury (Sasaki et al., 2001; Yuan et al., 2002), during 
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tumor progression (Masui et al, 2001; Kuno et al., 2004), in other disease states 

(Miguel et al., 2005; Haddock et al., 2006), and accompanying inflammatory 

responses (Kuno et al., 1997; Cross et al., 2006, Ng et al., 2006).  The 

ADAMTS1 deficient mouse undergoes abnormal growth and development, as 

well as changes in matrix processing that account for irregularities in ovulation, 

urogenital function and angiogenesis (Kuno et al 1997, Kuno & Rodriguez), 

suggesting ADAMTS1 may play an important role in matrix maintenance and 

regulation. 

Lecticans form aggregate complexes in the ECM that inhibit neurite 

outgrowth (Bandtlow and Zimmermann, 2000) and stabilize synapses (Hockfield 

et al., 1990).  Our working hypothesis and that of others (Yamaguchi, 2000; Yuan 

et al., 2002; Gottschall et al., 2005a, b; Hamel et al., 2005; Mayer et al., 2005) is 

that lectican cleavage by the ADAMTSs loosens these aggregates and promotes 

neural plasticity mechanisms, i.e. neuritic growth, axonal sprouting, 

synaptogenesis.   

One goal of this study was to examine and characterize lectican 

processing in the CNS of the ADAMTS1 deficient mouse.  Interestingly, the 

turnover of aggrecan in cartilage was not altered in this mouse model (Little et 

al., 2005).  In addition, a great deal has been assumed about the role of lecticans 

and lectican turnover in neural plasticity without significant direct evidence to 

support it.  Thus, a second goal was to determine whether a deficiency of 

ADAMTS1 during development and into adulthood, influences the expression of 



 152

synaptic markers, and, secondly, in a classical model of neuritic sprouting, 

whether it affects neural reinnervation after injury.   

 

MATERIALS & METHODS 

Animals  

  All animal procedures described here were approved by the Institutional 

Animal Care and Use Committee at the University of South Florida.  Forty-six 

adult ADAMTS1 knockout mice of the 129/Sv x C57BL/6 hybrid (Shindo et al., 

2000) (23 g - 27 g; Eli Lily, Indianapolis, IN) 12 weeks of age were housed under 

a 12 h light cycle with regulated temperature and humidity.  Mice were housed 3 

to 4 per cage and had free access to food and water.  Heterozygote genotypes 

were mated since female -/- were infertile and these offspring provided both wild-

type (+/+) and knockout (-/-) mice for the experiments.  Typical of ADAMTS1 

deficient mice, litters were small and averaged about 3-4 pups per litter.  PCR for 

genotyping was performed as described by Shindo et al., 2000.  Eight wild-type 

littermates and eight knockout animals were collected for characterization and 15 

ADAMTS1 deficient mice and 15 wild-type littermates were used in the entorhinal 

cortex lesion (ECL) experiments.  Following ECL surgery, the animals were 

housed individually.  Tissue extracts of dentate gyrus collected as described 

(Mayer et al., 2005) from control mice (n=15) and lesioned mice (n=15) collected 

7 days (wild-type, n=7; knockout, n=8) and 21 (wild-type, n=7; knockout, n=8) 

days after surgery were used in biochemical immunoassays.   
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Surgical procedures - the entorhinal cortex lesion (ECL)  

Surgeries were performed using isofluorane/oxygen mixed gas 

anesthesia.  Once deeply anesthetized, animals were placed into the stereotaxic 

apparatus and a hole was drilled in the skull of the right hemisphere to allow for 

needle penetration.  The right, lateral EC of mice was unilaterally lesioned by 

lowering a needle attached to a Hamilton syringe (#701N) through the hole in the 

skull to the coordinates AP = 4.72 mm, L = 3.75 mm and DV = 4.70 mm using 

bregma as a reference and oriented 17o rostral-caudal (White et al., 2001; Mayer 

et al., 2005).  One µl of the neurotoxin, ibotenic acid ((±) α-Amino-3-hydroxy-5-

isoxazoleacetic acid, 10 µg/µl)  was injected into the lateral EC at a rate of 0.1 µl 

every 30 seconds, with the needle remaining in place for an additional minute at 

the end of the 5-minute injection period to allow for complete diffusion of the drug 

into the lateral EC.  Neurons of the lateral EC project preferentially to the septal 

(dorsal) dentate gyrus.  The needle was removed, bone wax applied to cover the 

hole, and the animal recovered on a heating pad and was returned to a new cage 

and housed individually.  At 7 and 21 days after lesion, mice were injected with 

an overdose of Nembutal (pentobarbital) for deep anesthesia, the brain was 

removed and 2 mm sections collected.  The anterior hippocampal section was 

collected with the ‘regional isolation method’ (Mayer et al., 2005) for biochemistry 

and the posterior entorhinal cortex containing 2 mm section was fixed by 

immersion with cold 4% paraformaldehyde fixative diluted in 0.1 M phosphate 

buffer (pH 7.4).  The sections was post-fixed overnight at 4oC, cryoprotected with 

consecutive solutions of 15 and 30% sucrose until completely infused, and the 
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frozen cryoprotected entorhinal cortex ‘slab’ was sectioned on a cryostat at 30 

µm.  The extent and magnitude of the lesion in the EC was verified by cresyl 

violet staining. 

 

Tissue preparation 

Various brain regions (hippocampus, frontal cortex, temporal lobe, 

hypothalamus, cerebellum and brain stem) were rapidly dissected and extracted 

with a teflon-glass homogenizer in 5 volumes of detergent-containing RIPA buffer 

(50mM Tris base, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton-X-100, 1% 

sodium deoxycholate, 1% SDS, pH = 7.4 & 1:100 protease inhibitor cocktail; 5% 

wet-weight for whole tissue for characterization experiments).  The isolated 

dentate gyrus ECL tissue was homogenized in 0.6 ml microcentrifuge tubes with 

20 µl RIPA buffer using three cycles of 2 minutes of 4oC incubation and 30 sec of 

vortex, centrifuged 6,800 x g for 1 minutes and stored at –80oC.  For the whole 

tissue regions, the homogenate was centrifuged in a microcentrifuge at 6800 x g 

for 5 minutes, and the isolated supernatant collected and stored at –80oC.  

 

Western blotting  

Whole tissue extracts and dentate gyrus extracts (collected as described 

in ‘regional isolation method’, Mayer et al., 2005) were loaded (equal amounts of 

protein and 2x sample buffer) onto 4-20% polyacrylamide gels (Invitrogen, 

Carlsbad, CA) and subjected to SDS-PAGE.  Protein was transferred to a 

polyvinylidine difluoride membrane (PVDF, Immobilon, Millipore, Billerica, MA) 
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and the membrane was blocked with 5% milk in PBS.  Membranes were probed 

with primary antibodies against brevican (1:1000), EAMESE (1:500), SAHPSA 

(1:300), 12C5 (1:500; Developmental Studies Hybridoma Bank, Iowa City, IA), 

NIVNSE (1:500) and secondary anti-rabbit or anti-mouse IgG conjugated to 

horseradish peroxidase (Chemicon, Temecula, CA).  Antigens were visualized 

using a chemiluminescence developing system (SuperSignal, Pierce, Rockford, 

IL) and CL-XPosure Film (Pierce).  In some experiments, brain tissue extract was 

treated with chondroitinase ABC prior to Western blot to detect full-length 

versican with anti-12C5.  Thus, 25 µl of sodium acetate buffer (50 mM sodium 

acetate, 1 M Tris, 10 mM EDTA) containing 10 mU of chondroitinase ABC 

(Sigma-Aldrich, St. Louis, MO) was added to 25 µl of brain tissue extract and 

incubated for 1.5 h at 37oC.  Brevican samples were reduced (mercaptoethanol-

containing, SDS-PAGE sample buffer) and versican samples probed for 12C5 

were placed in non-reducing buffer (SDS-PAGE sample buffer without 

mercaptoethanol), denatured for 4 minutes at 95oC, and subjected to SDS-

PAGE. 

 

ELISA 

 Enzyme-linked immunoabsorbant assays (ELISAs) were performed to 

measure immunoreactivity of synaptophysin, SNAP-25 and PSD-95.  Coating 

antibodies were diluted in 0.01 M PB and let to dry overnight in a EIA/RIA high-

binding 96-well plate (Costar - Sigma; St. Louis, MO) using mouse anti-

synaptophysin; Chemicon, Temecula, CA 1:250; mouse anti-SNAP-25, 
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Chemicon, 1:200; and mouse anti-PSD-95, Chemicon, 1:100).  The wells were 

washed with sample/wash buffer (PBS with 0.05% Tween-20) one time and 

blocking buffer (PBS with 0.05% Tween-20 and 5% dry milk) was added to the 

wells and incubated at room temperature for 1 hr with agitation.  The wells were 

washed, standard and samples were added for a 2 hr incubation on a shaker 

(highest standard = rat brain homogenate at 10ug/ul with serial dilutions).  After 

samples were washed from the well, primary antibody diluted in sample/wash 

buffer was added and allowed to incubate for 2 hrs with agitation (rabbit anti-

synaptophysin DAKO, Carpenteria, CA 1:2000; rabbit anti-SNAP-25 Sigma, St. 

Louis, MO, 1:1000; and sheep anti-PSD95 ZYMED, San Francisco, CA, 1:100).  

The wells were washed three times before adding secondary antibodies, allowed 

to incubate for 45 minutes on a shaker (goat anti-rabbit IgG-HRP, Chemicon, 

1:5000; anti-sheep, Chemicon, 1:1000).  Next, TMB (tetramethyl benzidine, 

Sigma, St. Louis, MO) solution was applied and the color allowed to develop.  

The colometrtic reaction was stopped with 1M H2SO4.  Absorbance levels were 

measured with a Wallac Victor2 1420 multilabel counter (Perkin Elmer, 

Wellesley, MA) and Workout software (version 1.5, Perkin Elmer), and the 

readings were normalized with concentration of protein in the sample added to 

the well.  Samples were extrapolated from the rat brain standard curve within the 

same assay.  The means from the experiments groups were compared using 

ANOVA and pair-wise comparisons were made with Bonferroni post-hoc test 

(GraphPad, San Diego, CA).  A p-value < 0.05 was considered significant.  
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RESULTS 

 To determine if the gene-deletion had any effect on lectican processing in 

the CNS, hippocampal tissue from ADAMTS1 knockout (-) and littermate wild- 

type (+) hippocampus was probed with anti-brevican antibody, that detects an 

internal epitope in the G1 globular domain of brevican  (Fig. 21A) and analyzed 

with densitomety (Fig. 21B).  No changes were observed in the molecular size of 

the isoforms, or in the abundance of the full-length brevican isoform containing 

CS chains (>145 kD), the full-length core protein without CS chains (145 kD) or 

the generalized proteolytic fragment (55 kD).  When probed with the ADAMTS-

specific (anti-EAMESE) and MMP-specific antibodies (anti-SAHPSA) (Fig. 21C),  

no changes in abundance of either fragment was observed (Fig. 21D).  The 

relative immunoreactivity of brevican isoforms in the hippocampus, frontal cortex, 

cerebellum, hypothalamus and brain stem did not show any isoform differences 

between the ADAMTS1 knockout and the control.  However, temporal lobe alone 

revealed an increase in overall 55 kD fragment generated (Table 4).  Probing 

with antibodies raised against the specific neoepitope sequences exposed after 

cleavage by proteases, an increase in the fragment generated by ADAMTSs in 

general and a decline in the MMP-derived fragment was observed.   

 Hippocampal tissue was probed for full-length versican (using the G1 

versican antibody 12C5) and the ADAMTS-derived fragment of versican (anti-

NIVNSE) (Fig. 22A).  An increase in the abundance of the full-length versican 

(245 kD) was observed in the ADAMTS1 knockout tissue, while a decrease was 

apparent in the ADAMTS-specific fragment (~66kD).  Densitometric analysis 
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suggested altered processing of versican in the ADAMTS1 knockout tissue (-/-) 

compared to wild-type (+/+) (Fig. 22B).  Relative versican immunoreactivity for 

hippocampus, frontal cortex, temporal lobe, cerebellum, hypothalamus and brain 

stem was examined (table 5).  With the exception of brain stem, a significant 

increase of full-length versican was observed in the ADAMTS1 knockout.  

Concurrent with this finding, a simultaneous decline in the proteolytic fragment 

occurred in all brain regions.   

Since altered matrix may be necessary for neural plasticity to occur, the 

vesicular, pre-synaptic marker synaptophysin, the membrane bound pre-synaptic 

SNARE protein, SNAP-25 and the post-synaptic density marker PSD-95 were 

measured by ELISA in the ADAMTS1 knockout compared to wild-type (table 6).  

The hippocampus was higher in abundance, or synaptic density, for both pre-

synaptic markers (synaptophysin, p=0.0003; SNAP-25, p=>0.0001) with a trend 

for an increase in PSD-95.  Moreover, all three markers were up regulated in the 

frontal cortex (synaptophysin, p=0.0376; SNAP-25, p=0.0449; PSD-95, 

p=0.0278).  No difference in synaptic markers was observed in the temporal lobe, 

hypothalamus, cerebellum or brain stem. 

 An abundance of brevican isoforms in the dentate gyrus was observed at 

7 and 21 days after ECL.  In the wild-type animal, there were no significant 

changes in any of the brevican isoforms compared to the contralateral side at 7 

days post-ECL (Fig. 23A) or 21 days post ECL (Fig. 23B).  However, at 7 days 

post-lesion in the ADAMTS1 knockout, there was a significant increase in the 

>145 kD core protein and the generalized 55 kD (Fig. 23C).  It appears that the 



 159

knockout animals are producing more core brevican in the dentate gyrus on the 

injured side and catabolized by endogenous proteases compared to 

contralateral.  At 21 days post-lesion, the brevican isoforms in the knockout 

animal are not different from the non-lesion side (Fig. 23D). 

To estimate apparent ADAMTS activity in vivo, the density of the EAMESE 

(55 kD) immunoreactive fragment in Western blot was divided by the 

densitometric level of intact full-length and core protein brevican isoforms (>145 

kD + 145 kD) (Fig. 24).  Seven days post-ECL there was a 40% increase in 

apparent ADAMTS activity in the ipsilateral dentate gyrus of the wild-type tissue, 

however, at the seven-day critical reinnervation period, ADAMTS activity was 

decreased by almost 25% in the ADAMTS1 knockout.  This observation is 

supported by the increase in the >145 kD and the 145 kD isoforms in the 

knockout at this time point.  By 21 days post-lesion, the activity was not different 

from the contralateral side for either wild-type or knockout.  ANOVA analysis 

revealed that the effect of genotype was significant (p=0.0298). 

Seven days after lesion, synaptophysin levels as detected by ELISA (Fig. 

25A), declined by 30% in the knockout dentate compared to the contralateral 

side and 25% in the wild-type.  However, when isolated dentate gyrus tissue was 

examined 21 days post-lesion, synaptophysin concentrations were not different 

from the control side in the wild-type.  This observation shows there is a 

reinnervation of the OML after ECL.  In the knockout, it appeared to remain at a 

20% decline in synaptophysin immunoreactivity compared to the contralateral 

side at 21 days after ECL.  This suggests that a delay may occur in the 
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reinnervation of the dentate gyrus after ECL in the knockout due the absence of 

the protease.  For SNAP-25 immunoreactivity, the wild-type and knockout 

showed similar patterns at 7 and 21 days post-lesion (Fig. 25B).  A similar 

relative pattern was observed in PSD-95 levels, yet the knockout animals 

appeared to have lower levels of immunoreactivity and a trend for a slower 

increase compared to wild-type at 7 and 21 days post lesion.  

 

DISCUSSION 

 The purpose this study was to examine lectican processing and 

associated synaptic markers levels in the CNS of the ADAMTS1 knockout 

mouse.  The ADAMTSs cleave lecticans and this process is thought to facilitate 

ECM organization and neural plasticity.  Currently, there is no literature available 

that examines the brain tissue of the ADAMTS1 deficient mouse.  Here, there 

were no changes in the abundance of brevican isoforms in any region except for 

temporal lobe, which is involved with neural plasticity associated with memory 

and language.  We observed that the temporal lobe showed an increase in the 

generalized brevican fragment in the knockout.  This increase appears to be 

attributed to the ADAMTSs since there is a concurrent increase in the fragment 

generated by the ADAMTSs and a decrease in the fragment generated by 

MMPs.  Even though this animal does not express ADAMTS1, there may be 

some compensation or a synergistic effect from other ADAMTS family members, 

such as ADAMTS4 or ADAMTS5.   

 Prominent lectican processing was found when tissue was probed for 



 161

versican isoforms, where in the ADAMTS1 knockout five out of six regions 

revealed an increase in full-length versican compared to wild-type.  The 

ADAMTS-derived fragment of versican was diminished and this effect may be 

directly caused by the deletion of the ADAMTS1 gene and an apparent decline in 

proteolytic activity.  This suggests that ADAMTS1 may have a preference in 

cleaving versican over brevican.  In this study, full-length aggrecan and the 

ADAMTS-derived fragment of aggrecan were not different from wild-type in brain 

tissue (our unpublished observations) and it has been shown that the ADAMTS1 

knockout mouse does not show abnormalities in aggrecan catabolism of cartilage 

in vitro or in vivo (Little et al., 2005).  This suggests that ADAMTS1 may be the 

prominent protease responsible for versican processing.   

 Versican has been shown to be a cue for pre-synaptic maturation 

(Yamagata and Sanes, 2005) and if altered may disrupt matrix.  Matrix 

abnormalites are thought to play a hand in altered neural plasticity, therefore, 

synaptic marker levels were examined in the ADAMTS1 knockout mouse.  The 

hippocampus had higher levels of both pre-synaptic markers, synaptophysin and 

SNAP-25 in the knockout compared to wild-type.  There were significant 

increases in synaptophysin, SNAP-25 and PSD-95 in the frontal cortex, a region 

(Burke and Barnes, 2006) associated with aspects of cognitive function and plays 

an important role in retaining long-term memories which are not task-based (for 

review, see Faw, 2003).  Up regulation of these synaptic markers may derive 

from an “abnormal” matrix in the ADAMTS1 knockout, therefore relying on an 

over abundance of specific markers to make “correct and precise” synaptic 



 162

connections during events that require neural plasticity. 

 ADAMTS1 is induced after hypoglossal nerve injury (Sasaki et al., 2001), 

the inflammatory response associated with experimental autoimmune 

encephalomyelitis (EAE), an animal model of inflammatory demyelination (Cross 

et al., 2006b) and transient middle cerebral artery occlusion (Cross et al., 2006a).  

ADAMTSs are thought to be responsible for matrix turnover after injury and have 

been shown to be up regulated almost 50% seven days after ECL in the mouse 

(Mayer et al., 2005).  Here the processing of brevican was examined after 

undergoing ECL and tissue collected at seven and twenty-one days post lesion.  

At seven days after lesion there is a slight increase in 55 kD fragment and a 

trend for an increase at twenty-one days post-lesion in the wild-type.  However, 

in the knockout tissue, there was a significant increase in the 145 kD core protein 

and the generalized fragment, and trend for the increase in abundance of >145 

core with CS chains.  It appears that the knockout animal may contain some 

compensatory changes in the expression of other essential proteases, in 

particular the MMPs since no change in the ADAMTS-derived fragment was 

observed at seven days.  When these optical densities were used to estimate 

‘apparent ADAMTS activity’, due to the decline in EAMESE in the wild-type, there 

remained nearly a 50% increase in ADAMTS activity compared to contralateral, 

as seen in basal experiments at the seven day time-point.  The apparent 

ADAMTS activity in the knockout was diminished almost 25%.  This may be due 

to the increase in full-length isoforms with no significant change in ADAMTS-

derived fragment compared to the control side.  The difference between the wild- 
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type ADAMTS activity at seven days post lesion and the knockout activity was 

significant (p=0.0298) and the effect of the genotype was considered significant 

after ANOVA analysis.  Both wild-type and knockout reach levels not different 

from control after twenty-one days.  Given a lower activity, it appears that in the 

knockout, there is a delay in ADAMTS activity to facilitate synaptic reinnervation.  

The ADAMTS activity may peak at a later time point or never reach exceed 

baseline.  After ECL, it appears that ADAMTS1 deficiency may affect brevican 

processing and ultimately the reinnervation that is required to occur after injury.  

It would be interesting in the future to examine versican processing in the 

ADAMTS1 knockout mouse after ECL. 

 Since it may be that the decline in ADAMTS activity might effect the 

reinnervation of synapses, it was noted that associated changes in 

synaptophysin.  The knockout was diminished by 25% and the knockout showed 

a decline of 30% at seven days after ECL.  The knockout was no different from 

control (equal to 1) at twenty-one days after ECL while the knockout appeared to 

have a trend for lower levels of ECL, or potentially a lower reinnervation over 

time, again lagging behind the wild-type.  There were no changes in SNAP-25 

levels and PSD-95 revealed a trend for lower levels of PSD-95 in the knockout 

animal compared to wild-type. 

 Overall, it appears that in this model, ADAMTS1 may prefer to degrade 

versican over brevican, even though temporal lobe revealed brevican processing 

in the ADAMTS1 knockout.  The deletion of ADAMTS1 protease may formulate 

an environment that is not capable of ‘keeping up’ with matrix turnover due to the 
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increase in versican full-length and the decline in the fragment.  With this, a 

tremendous increase in synaptic marker levels was observed in certain regions, 

suggesting some alteration of synaptic density at the synapse.  This phenotype 

displays a diminished capacity for apparent ADAMTS activity and associated 

synaptophysin levels after ECL.   
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Figure 21.  Brevican processing in the ADAMTS1 knockout compared to 

littermate control:  No changes in the abundance of brevican isforms (>145 kD w/ 

CS-chains; 145 kD core protein without CS-chains and 55 kD generalized 

proteolytic fragment) as detected by Western blot (A), or the ADAMTS-derived 

fragment on brevican (C, top panel), and the MMP-derived fragment of brevican 

(C, bottom panel) was observed in the hippocampus of wild-type (+/+) and 

knockout (-/-) animals.  Denitometric analysis of brevican Western blot in the 

hippocampus (B).   
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Chapter 4, Figure 21 
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Table 4.  Relative immunoreactivity of brevican isoforms in brain regions of 

ADAMTS1 knockout (-/-) mouse brain compared to wild-type (+/+). 

 
 
           ADAMTS-derived   MMP-derived 
                       G1 brevican Isoforms          fragment             fragment                
             
Brain region tg >145 kD  145 kD           55kD EAMESE  SAHPSA       
 
Hippocampus +/+ 27.9 ± 2.87 1.59 ± 0.41   0.51 ± 0.11 1.38 ± 0.25        0.99 ± 0.19 
  -/- 27.7 ± 3.45 1.26 ± 0.34   0.46 ± 0.07 1.22 ± 0.14        1.09 ± 0.22 
 
Frontal cortex        +/+ 35.5 ± 6.37 2.81 ± 0.53    2.34 ± 0.33 2.77 ± 0.34        1.29 ± 0.08 
  -/- 38.3 ± 6.67 2.53 ± 0.70    1.48 ± 0.47 4.07 ± 1.12        1.38 ± 0.11 
 
Temporal lobe       +/+ 13.9 ± 2.17 1.37 ± 0.17    0.31 ± 0.08 1.46 ± 0.29        2.34 ± 0.46 
  -/- 16.3 ± 2.99 1.92 ± 0.44    0.70 ± 0.06* 3.78 ± 0.29*       0.85 ± 0.34* 
 
Cerebellum        +/+ 6.95 ± 1.21 1.55 ± 0.31    1.98 ± 0.15 1.36 ± 0.28        1.48 ± 0.27 
  -/- 7.83 ± 1.66 1.87 ± 0.34    2.25 ± 0.19 1.92 ± 0.40        1.79 ± 0.24 
 
Hypothalamus         +/+ 0.93 ± 0.18 1.27 ± 0.34    4.06 ± 0.65 2.13 ± 0.51        0.53 ± 0.18 
  -/- 1.10 ± 0.44 1.69 ± 0.28    4.24 ± 0.75 1.81 ± 0.24        0.47 ± 0.13 
  
Brain Stem          +/+ 6.95 ± 1.21 1.55 ± 0.31    1.98 ± 0.15 1.36 ± 0.28        1.48 ± 0.27 
  -/- 7.83 ± 1.66 1.87 ± 0.34    2.25 ± 0.19 1.92 ± 0.40        1.79 ± 0.24 
 
*significantly different from wild-type, p = >0.05, wt (+/+) n=8; knockout (-/-) n=8 
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Figure 22.  Versican processing in the ADAMTS1 knockout compared to 

littermate control:  In the hippocampal brain tissue, full-length versican (anti-

12C5, ~245 kD) was increased in the knockout compared to control (A, top 

panel), while the ADAMTS-derived fragment (anti-NIVNSE, 66 kD) was 

significantly diminished (A, bottom panel).  Denitometric analysis of versican 

Western blots in the hippocampus (B).  Full-length versican was significantly 

increased (p=0.0016) in the knockout compared to wild-type as the ADAMTS-

derived fragment was signifcantly decreased (p=>0.0001). 
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Chapter 4, Figure 22 
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Table 5.  Relative immunoreactivity of versican isoforms in brain regions of 

ADAMTS1 knockout (-/-) mouse brain compared to wild-type (+/+). 

 

 
          G1      ADAMTS-derived         
             versican fragment 
             
 Brain region  tg     12C5 NIVNSE   
 
 Hippocampus +/+ 2.40 ± 0.74 1.82 ± 0.12 
    -/- 6.20 ± 1.48* 0.43 ± 0.09*  
 
 Frontal cortex         +/+ 1.07 ± 0.21 0.86 ± 0.22  
    -/- 4.70 ± 1.05* 0.44 ± 0.14*  
 
 Temporal lobe        +/+ 7.91 ± 0.70 2.99 ± 0.14  
    -/- 11.1 ± 1.29* 1.09 ± 0.12*  
 
 Cerebellum        +/+ 0.84 ± 0.25 2.40 ± 0.14  
    -/- 3.49 ± 1.07* 1.03 ± 0.36*  
 
 Hypothalamus          +/+ 2.12 ± 0.41 3.24 ± 0.50  
    -/- 5.24 ± 0.80* 1.69 ± 0.26*  
   
 Brain Stem          +/+ 3.16 ± 0.40 4.61 ± 0.46  
    -/- 3.33 ± 1.13 2.59 ± 0.44* 
   
 *significantly different from wild-type, p = >0.05,  
    wt (+/+) n=8; knockout (-/-) n=8 
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Figure 23.  Brevican immunoreactivity in the dentate gyrus of ADAMTS1 

knockout and control animals after entorhinal cortex lesion:  Brevican 

immunoreactivity in the contralateral and ipsilateral dentate gyrus of ADAMTS1 

knockout mice and wild-type littermates that had undergone ECL seven and 

twenty-one days earlier.  Optical density was measured on Western blot and data 

from the ipsilateral side was expressed as a fraction of the contralateral dentate.  

At seven and twenty-one days, no alterations in brevican isoforms were observed 

in the wild-type animals (A and B).  Seven days post-ECL in the knockout, there 

was a significant elevation of the 145 kD core protein and generalized proteolytic 

fragment of brevican and a trend for an increase in the >145 kD isoform (C).  At 

thirty days, brevican isoforms were not different from the control side in the 

knockout (D). 
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Chapter 3, Figure 23 
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Figure 24.  Apparent ADAMTS activity seven and twenty-one days after ECL:  

Apparent activity in the dentate gyrus of mice after entorhinal cortex lesion as 

measured by the ratio of the optical density of the ADAMTS-derived EAMESE 

fragment and the sum of the densities of the brevican core protein isoforms 

(>145 kD + 145 kD).  Mean level of apparent activity was calculated at seven and 

twenty-one days after lesion.  At seven days after lesion in the wild-type tissue, 

ADAMTS activity was increased about 40%, whereas at seven days in the 

knockout tissue, ADAMTS activity was lower compared to the contralateral side 

and declined about 25%.  Apparent ADAMTS activity on the lesioned side was 

not different from the non-lesioned dentate in tissue collected twenty-one days 

after lesion in both groups.  
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Chapter 4, Figure 24 
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Figure 25.  Synaptic marker levels as measured by ELISA seven and twenty-one 

days after ECL: Synaptophysin, SNAP-25 and PSD-95 levels in extracts from 

fresh micro-dissected dentate gyrus tissue of knockout and control mouse brain, 

seven and twenty-one days post ECL, as measured by ELISA.  Synaptophysin 

immunoreactivity was reduced by 25% in the wild-type at seven days post-lesion, 

while a 30% reduction in immunoreactivity was observed in the knockout (A).  

The ipsilateral side was not different from contralateral dentate twenty-one days 

after lesion in the wild-type; however, synaptophysin immunoreactivity in the 

knockout was still below contralateral side.  SNAP-25 immunoreactivity was not 

different in the knockout compared to littermate controls (B).  PSD-95 levels 

appeared lower at seven and twenty-one days post-lesion in the knockout 

compared to the wild-type (C). 
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CONCLUSIONS 

 In some regions of the brain neural plasticity can occur, an event that has 

the ability to change the organization of stable neuronal circuitry.  Neural 

plasticity can be defined in and is most studied during neuronal development and 

maturation, neurite outgrowth, synaptogenesis, recovery after injury and events 

related to memory and learning.  In order for neural plasticity to occur, neurons 

must traverse through the extracellular milieu.  The extracellular space makes up 

approximately 20% of the total volume of the brain and is composed of 

aggregating molecular complexes that provide a stable environment for neurite 

processes and synapses that help to maintain the integrity of the circuitry in the 

adult brain.  ECM molecules have been shown to limit neurite remodeling and 

regeneration in the CNS (Snow et al., 1990; Oakley and Tosney, 1991; Brittis et 

al., 1992).  This is partly due to the nature of the ECM molecules.  Many are 

highly negatively charged molecules, such as chondroitin sulfate-containing PGs, 

that bear glycosaminoglycan side chains.  The catabolism of these molecules, 

and the resulting breakdown or “loosening” of the matrix can allow neural 

plasticity to occur (Fig. 26).  Endogenous proteases are expressed in the ECM, 

exist throughout the brain, and are known to cleave CS-containing PGs (Kuno et 

al., 2000; Yamaguchi, 2000a; Sandy et al., 2001).  This is one way in which 

neural plasticity may be regulated in normal brain, and this regulation appears to 
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be altered in certain neurodegenerative disorders (Rosenberg, 2002; Levicar et 

al., 2003; Cross et al., 2005; Cross et al., 2006; Haddock et al., 2006).   These 

studies examine the proteolytic degradation of ECM complexes and how this 

modification influences neural plasticity.  First, the localization of a protease-

specific, detectable proteolytic fragment of the ECM molecule brevican was 

localized throughout the rodent brain and increases in immunoreactivity in areas 

known to undergo neural plasticity was observed.  A second study revealed 

changes in the abundance of brevican isoforms and increased proteolytic activity 

after injury, during the synaptic reinnervation period, in a classical injury model of 

neural plasticity.  In the third study, the proteolytic fragment of brevican was 

diminished in an animal model of Alzheimer’s disease, which is thought to have 

decreased capability to undergo neural plasticity.  If there is a decline in the 

mechanism of proteolysis of the ECM in general, which may correlate with an 

environment that is less permissive to neural plasticity and therefore diminished 

learning and memory function.  Alterations in brevican isoforms, a decline in 

proteolytic activity and an associated increase in synaptic marker levels was 

observed in this animal model of AD.  In the final study, characterization of 

brevican and proteolytic activity was examined in an animal model with a gene-

deletion of the protease.  It appeared that only one region showed altered 

brevican processing in this model, but the lectican family member versican 

showed marked alterations in proteolytic degradation, more specifically, a 

significant decline in the amount of proteolytic fragment generated.  This model 

also revealed associated changes in synaptic marker levels in the protease-
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deficient animal, suggesting that some regulation of neural plasticity may be 

altered, ultimately at the synapse.  Overall, these results provide evidence that 

endogenous proteases and the degradation of ECM can influence neural 

plasticity.   

 An integral part of these experiments was the development of the 

antibodies raised against cleavage sites of the lecticans that are specific to 

different families of proteases.  Antibodies raised against these neoepitopes 

formed after cleavage by the ADAMTSs have been developed for aggrecan and 

versican and previously examined in spinal cord, cartilage, aorta and ovary 

matrix (Lemons et al., 2001; Sandy et al., 2001; Russell et al., 2003).  In our 

laboratory, the proteolytic fragment of brevican generated by the ADAMTSs is 

denoted by antibodies raised against the neoepitope ‘EAMESE’ for mouse, 

(Mayer et al., 2005), ‘EAVESE’ for the rat; (Aya-ay et al., 2005), and for versican, 

‘NIVNSE’ (Yuan et al., 2002).  The MMP-specific site for mouse brevican cleaved 

by MMPs was detected with the neoepitope recently raised against, ‘SAHPSA’, 

and the antibody for the MMP-specific site for versican is currently being 

developed.  These antibodies were important in the initial localization 

experiments (chapter 1, figure 2, 3, 5, 7 & 8 and tables 1 & 2), detecting levels of 

fragment in APP and ADAMTS1 knockout mice (chapter 3, figure 18 & 19; 

chapter 4, figure 21 & 22) and the ability to estimate an apparent ‘ADAMTS 

activity’ (chapter 2, figure 15 & 16; chapter 4, figure 23 & 24) with the ratio of 

fragment to the addition of the full-length isoforms.  The fate of the fragment after 
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cleavage is yet to be discovered, it may be turned over, sequestered or may 

even proceed to promote a biochemical cascade or signaling event. 

 Interestingly there is a significant proportion of brevican fragment 

immunoreactivity formed by proteolytic cleavage of lectican core protein.  At the 

beginning of these experiments is was important to localize this fragment as well 

as full-length brevican throughout the rodent brain.  Although it appeared that 

there is more fragment expressed throughout the brain compared to brevican, 

the antibodies may have different affinities due to the steric hindrance in the 

complex matrix aggregates for full-length brevican and ‘free’ fragment in fixed 

tissue sections compared to SDS-PAGE homogenate.   However, the relative 

abundance and localization of WFA, brevican and the fragment was examined 

and documented (chapter 1, table 1 (rat), table 2 (mouse)).  

 Wisteria floribunda agglutinin (WFA) was used as a marker for CS-

containing regions, assuming that areas of the brevican fragment would co-

localize with the CS-containing core protein and regions with more WFA would 

mark areas of high CS deposition and suggest a more stable, rigid matrix 

potentially resistant to neural plasticity.  Areas with more fragment, would signify 

regions more permissive to neural plasticity.  WFA has been widely used and 

accepted as a marker for CSPG deposition (Brauer et al., 1993; Bruckner et al., 

1996; Bruckner et al., 1998) and we expected that the distribution of the signal 

from both reagents would be similar, since fragments of brevican are stable after 

cleavage (Yamaguchi, 2000a, b), and much of the C-terminal fragments bear CS 

chains.  The purpose of this study was to describe the distribution and 
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characteristic immunoreactivity for the ADAMTS-cleaved fragment of brevican, 

and compare this with WFA binding in the rodent CNS.  Even though WFA is 

supposed to label CSPGs, the results show a marked discordance between the 

two, with the extent of distribution of the ADAMTS-derived brevican fragment 

much greater than that of WFA reactivity.  This is the first report comparing 

brevican and WFA, and observed little WFA and most of brevican in the soluble 

fraction, in which no bands of WFA correspond to those immunoreactive for 

brevican (chapter 1, figure 3). 

 These markers showed a distinct discordance in certain areas, more 

specifically, areas that are thought to presently undergo neural plasticity such as 

the hippocampus, reticular thalamic nuclei and the cerebellum (chapter 1, figure 

7).  This discordance led us to question if WFA detects brevican or CS at all.  

There is debate in the literature about which molecules in the CNS are labeled by 

WFA, which is often used as a marker for PNNs that contain CS chains, and 

some believe that WFA binds directly to CS.  We determined that brevican, and 

its CS chains, was not a binding partner for this lectin (chapter 1, figure 4).  One 

explanation for the discordance in reactivity between brevican and WFA is from 

Murakami et al., whom have significant evidence that supports the concept that 

WFA-binding proteins are cell surface glycoproteins.  They demonstrated  that 

terminal N-acetylgalactosamine residues, which are present on neuronal cell 

surface glycoproteins, and may be responsible for the PNN reactivity seen with 

WFA lectin binding (Murakami et al., 1999; Murakami et al., 2001) and suggest 

that brevican, and other lecticans are bound to these glycoproteins.  If WFA 
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immunoreactivity is extinguished after chondroitinase treatment, it suggests that 

it is indeed binding to CSPGs; however, it is also possible that WFA recognizes 

the surface glycoprotein and when chondroitinased the CSPG is removed along 

with the glycoprotein.  Which may explain why WFA PNN staining is absent after 

treating with chondroitinase.  WFA may no be able to recognize brevican’s CS-

chains due to the conformation or WFA is incapable of binding to only a few 

chains, as brevican can hold only 1-3 chains.   

 One disease associated with the inability to breakdown CS-chains within 

the cell is called mucopolysaccharidosis (the former name for 

glycosaminoglycans, GAGs) in which people do not produce enough of one of 

the enzymes required to break down the sugar chains attached to proteoglycans 

into proteins and simpler molecules, or the enzymes they produce simply do not 

work properly.  There is no treatment for mucopolysaccharidosis and eventually, 

the cells, blood, and tissues collect an over abundance of glycosaminoglycans, 

which results in permanent, chronic cellular damage that effects the person’s 

appearance, physical capabilities, organ function, overall system function and 

mental development.  The large CS-containing molecules must be sequestered 

back into the cell and into lysosomes in order for the CS-chains to be removed.  

It is possible that the proteolysis of CS-containing proteoglycans by endogenous 

proteases, such as MMPs and ADAMTSs outside the cell may regulate and 

assist these molecules get back into the cell.  If this process is disrupted, it may 

ultimately effect the processing and removal of the chains needed to maintain a 

normal balance of chain removal in the lysosomes.  
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 Previous studies have showed that matrix-altering proteases, such as 

MMPs, may play a role in neural plasticity after a lesion in the CNS (Zhang et al., 

2000; Szklarczyk et al., 2002; Jourquin et al., 2003) and more recently the 

activity and expression of the ADAMTS became elevated in the outer molecular 

layer (OML) after kainite-induced lesions (Yuan et al., 2002).  A classical model 

of neural plasticity, the entorhinal cortex lesion, was employed to examine 

brevican and its fragments at several time points after lesion.  In order to localize 

the injury, and yield better sampling of the injury compared to the entire 

hippocampus, the development of the ‘regional isolation technique’ provided a 

more concentrated sample of the injury in the OML (chapter 2, figure 10) 

compared to collecting the entire region.  In this model, the injury was localized in 

a region away from the lesion site itself.  Full-length brevican isoforms were 

increased two and seven days post-lesion, whereas the generalized 55 kD 

fragment and the ADAMTS-derived fragments were increased at the seven day, 

initial synaptic reinnervation period (chapter 2, figure 15).  It is possible that the 

initial response of the brain is to create a “glial scar” after ECL injury.  A glial scar 

is formed which usually contains CSPGs, the major axon growth inhibitory 

component of the glial scar tissue that blocks successful regeneration (for 

reviews see: (Morgenstern et al., 2002; Properzi et al., 2003; Carulli et al., 2005).  

This may explain the significant increase seen in the glycosylation form (>145 

kD) of brevican two days post lesion (chapter 2, figure 15) and may be related to 

a trend for an increase in the core protein.   

 To estimate apparent ADAMTS activity, the optical density of the fragment 
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was divided by the optical density of the addition of full-length brevican isoforms.  

With this calculation, ADAMTS activity was increased 50% at the seven-day time 

point after lesion (chapter 2, figure 16).  This occurs before a complete 

reinnervation of synaptophysin levels in the OML, going from a 50% decline to 

basal levels at the thirty-day time point.  These results suggest that lecticans and 

the proteases that cleave them can play a potential role in neural plasticity after 

ECL, to prepare a path within the ECM for neurite outgrowth and eventually 

synaptogenesis.  Thus, growth, sprouting and targeting in neural plasticity of an 

ECL model may involve extracellular cues whose expression and/or secretion is 

altered following the lesion.  One of these cues is the extracellular PG, brevican.  

It would be of interest to perform this experimental model in the brevican 

knockout mouse (Brakebusch et al., 2002) and observe ADAMTS activity and the 

processing of other lecticans.  Brevican-deficient mice showed significant deficits 

in the maintenance of hippocampal long-term potentiation (LTP) although 

detailed behavioral analysis revealed no statistically significant deficits in learning 

and memory.  The knockout animal showed a compensatory increase in the 

brain specific lectican family member neurocan; this and other models with 

deficient lecticans or proteases may help in revealing the individual contribution 

of each of these molecules to neural plasticity.   Here we have demonstrated 

changes in brevican expression and turnover after ECL injury that is associated 

with the loss and time-dependent reinnervation of the outer molecular layer of the 

dentate gyrus, an event related to neural plasticity.   
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Since we observed increased brevican fragment in areas of known neural 

plasticity, and after injury during the critical synaptic reinnervation period, we 

wanted to investigate the processing of brevican in a disease model that is 

thought to have dysregulated neural plasticity.  Alzheimer’s disease (AD), the 

most common type of dementia, is a neurodegenerative disease characterized 

by progressive cognitive decline.  In human brain, the pathologies include 

neuronal loss and vesicle enlargement in response to an inflammatory response 

to the deposition of amyloid plaques and neurofibrillary tangles.  The absolute 

cause of AD is still unknown, yet many factors and hypotheses have been 

studied.  One of the most popular is the amyloid cascade hypothesis that 

suggests that the progressive neuritic and synaptic injuries are caused by the 

deposition or altered processing and accumulation of Aβ peptide (Hardy, 2002).  

Memory and learning, and ultimately neural plasticity, is impaired in this disease. 

Previous data suggests that the proteolytic cleavage of brevican is 

significantly decreased in Alzheimer’s brain compared to age-match normal and 

Parkinson’s diseased brains and Aβ may have the ability to bind and inhibit the 

activity of the ADAMTSs (Gottschall et al., 2003); our unpublished observations).  

In an animal model of AD that over expresses the human APP (Hsiao et al., 

1996), and contains learning and memory deficits associated with plaque 

pathologies (Terai et al., 2001), brevican processing was indeed altered in the 

transgenic mice (chapter 3, figure. 19).  Here, we observed an increase in core 

protein and a decline in the generalized fragment, suggesting a decline in the 

proteolytic degradation of brevican overall which may maintain a matrix less 
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permissive to neural plasticity.  However, when probed with the specific 

neoepitopes for the ADAMTS-derived fragment (EAMESE) and the MMP-derived 

fragment (SAHPSA), it appeared that the MMP-derived fragment was diminished 

in the APPsw mice and thus indicating a decline in MMP activity in this model.  

MMPs have been shown to mediate extracellular Aβ peptide catabolism (Deb et 

al., 2003; Yin et al., 2006) and may be increased in attempt to regulate the 

invasion of Aβ plaques and the lectican-rich glial activation (to break down 

brevican, etc).  It is possible, in this animal model, that MMPs are activated to 

assist with the deposition of Aβ whether it is on behalf of the inflammatory 

response and the formation of a glial scar or to attempt to break it down.  We 

propose that further experiments are required to determine the contribution of 

each metalloproteinase family to the diminished proteolytic degradation of 

proteoglycans.   

Given these lecticans and the proteases that degrade them may attribute 

to neural plasticity, we sought to examine synaptic markers and discovered 

associated changes in the APPsw mouse model.  This animal only bears Aβ 

plaques within the ECM and surprisingly, exhibits no neuronal loss like the 

human disease development.  In four out of six regions, the pre-synaptic marker 

SNAP-25 was significantly increased in the APPsw mice (chapter 3, figure 20).  

SNAP-25 undergoes changes in expression during early fetal development and 

in aging (Shimohama et al., 1997).  SNAP-25 is expressed as two isoforms, both 

of which can be induced by stimuli producing long-term potentiation (LTP) in the 

hippocampus (Roberts et al., 1998; Genoud et al., 1999) and are integral to the 
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process of Ca-sensitive, stimulus-evoked transmitter vesicle exocytosis (Mehta et 

al., 1996; Wilson et al., 1996; Ferrer et al., 1998; Washbourne et al., 2002). APP 

is known to be transported down neuronal processes to synapses by fast axonal 

transport (Koo et al., 1990) and lesioning the perforant path reduced plaques 

deposited in APPsw mice (Lazarov et al., 2002; Sheng et al., 2003).  Therefore, 

this implies that synaptic input is essential for the development of plaques.  

Axonal transport of APP may be deficient in APPsw mice and there is axonal 

swelling due to the over accumulation or altered processing of Aβ, therefore we 

get an increase in the recruitment of SNAP-25 since vesicle formation is required 

to insert Aβ into the membrane.  Changes in pre-synaptic levels of SNAP-25 may 

indicate changes in the regulation of synaptic vesicle exocytosis and transmitter 

release and if this membrane-bound synaptic protein is altered, it may disrupt 

these processes.    

Cerebellar plaques are predominantly of the diffuse type, whereas fibrillar 

senile plaques are rarely observed (van Horssen et al., 2002) and since APP 

level are over expressed in each of the four regions showing altered SNAP-25 

levels, the presence of high levels of APP, rather than deposition of Aβ may be 

important in the over expression of this synaptic marker. There is a significant 

literature describing the expression of synaptic markers in AD (Lassmann et al., 

1993; Counts et al., 2006; Ishibashi et al., 2006) and in APP over-expressing 

transgenic mice (APPsw) (Irizarry et al., 1997; King and Arendash, 2002) almost 

all with histochemical techniques and present conflicting data.  In AD, there is no 

apparent increase in APP protein expression, but altered processing is 
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responsible for increase levels of Aβ and its deposition and this event may be 

due to over expression of APP in the transgenic mouse, with little relationship to 

AD.  These results suggest that in this animal model, A� may exert inhibitory 

effects on the activity of the proteases responsible for matrix alteration and 

processing of brevican and other lecticans, an effect potentially related to 

diminished neural plasticity in AD. 

 To further investigate lectican processing and neural plasticity, a mouse 

deficient in the proteoglycanase ADAMTS1 was examined for brevican and 

versican processing along with associated levels of synaptic markers.   

As of yet, no literature is available that examines the brain tissue of the 

ADAMTS1 deficient mouse.  It was of interest to see that no regions were altered 

for the abundance of brevican isoforms (chapter 4, figure 21 and table 4), except 

for the temporal lobe, which is involved in neural plasticity associated with 

memory and language (for reviews see; Rolls, 1995; Squire and Zola, 1996).  

The increase in generalized fragment appears to be attributed by the ADAMTSs 

since there is a concurrent increase in the fragment generated by the ADAMTS 

and therefore ‘ADAMTS activity’ upon this region.  This suggests that even 

though this animal does not express ADAMTS1, there may be some 

compensation or a synergistic effect from other ADAMTS family members, such 

as ADAMTS4 or ADAMTS5.  Brevican isoforms were increased after ECL at 

seven days in the knockout, in response to the injury, along with an increase in 

‘apparent ADAMTS activity’.  The full-length isoform of brevican, compared to the 

fragments, was high in the knockout, after ECL injury suggesting a decline in 
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proteolysis.   

 It was interesting to see prominent lectican processing found when tissue 

was probed for versican isoforms, where in the ADAMTS1 knockout five out of 

six regions revealed an increase in full-length versican (12C5) and a decline in 

six regions of the ADAMTS-derived fragment (NINVSE) compared to wild-type 

(chapter 4, figure 22. and table 5).  The ADAMTS-derived fragment of versican 

was diminished and this effect may be directly caused by the deletion of the 

ADAMTS1 gene and an apparent decline in proteolytic activity exerted upon 

versican.  This suggests that ADAMTS1 may have a preference in cleaving 

versican over brevican in certain regions of the brain.  ADAMTS1 may be the 

prominent protease responsible for versican processing and provide preliminary 

evidence that these molecules form ‘protease-substrate’ pairs.  Versican was not 

examined in the ECL experiments, but future investigation may provide insight 

into versican processing or expression of versican after inury and during 

reinnervation of the OML.  

 In correlation to the lectican processing alterations, concurrent changes in 

synaptic markers were apparent in the ADAMTS1 deficient mouse.  The frontal 

cortex showed increases in all three markers and in hippocampus both of the 

pre-synaptic markers were elevated (chapter 4, table 6).  Up regulation or 

increased expression of these synaptic markers may derive from an “abnormal” 

matrix in the ADAMTS1 knockout, therefore relying on an over abundance of 

specific markers to make whatever synaptic connection can be made during 

events that require neural plasticity.  After ECL, it appeared that in the knockout 
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there was delay in ‘apparent ADAMTS activity’ (chapter 4, figure 24) to facilitate 

synaptic reinnervation and showed similar trends for synaptophysin levels during 

the reinnervation period (chapter 4, figure 25).  These results suggest that altered 

protease may affect matrix turnover and ultimately synaptic reinnervation and 

synaptogenesis.  

   The data presented here in these experiments a) defines the proteolytic 

fragment of brevican is abundant in regions capable of undergoing neural 

plasticity; b) increased ADAMTS activity in a classical model of neural plasticity, 

c) in a model thought to have dysregulated plasticity, such as Alzheimer’s 

disease, brevican processing is altered and d) by altering one of the proteases 

responsible for the catabolism of brevican, pronounced changes in the levels of 

synaptic markers are observed in regions involved in neural plasticity (table 7).  

We propose that the catabolism of brevican and lecticans in general, by 

endogenous proteases such as the ADAMTSs and the MMPs in the matrix, 

promotes neurite outgrowth and synaptogenesis to occur more readily in the 

brain in response to injury and during recovery.    
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Figure 26.  Summary schematic of the tertiary complex in the brain between a 

pre-synaptic neuron and a post-synaptic neuron (or a glial cell) as it relates to the 

inhibition (-) of neural plasticity and the ability (+) to undergo neural plasticity.   

Proteolytic cleavage of the brevican core protein by endogenous proteases, such 

as MMPs and ADAMTSs, may "loosen" the aggregated complexes and change 

the extracellular environment to one that is more permissive for neural plasticity 

to occur.  
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Table 7.  Summary of evidence found for models investigated, supporting 

proteolytic degradation of lecticans in ECM influence neural plasticity. 
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