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Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterized by a

diaphragmatic defect, pulmonary hypertension (PH) and lung hypoplasia (LH). It has a

worldwide incidence of approximately 1 in 3000 live births [1, 2] and mortality varies from

20-40% [3], leading parents and treatment teams to termination of pregnancy or to consider

ongoing therapy as futile. In some cases chromosomal aberrations have been found, but the

etiology of CDH is largely unknown [4–6]. Approximately 60% of all cases are isolated, showing

no additional congenital defects [6]. The high mortality and morbidity rates may depend on the

presence of associated malformations and/or genetic abnormalities, but are mostly due to the

concomitant PH. PH is the result of the altered development of the pulmonary vasculature, the

unpredictable vascular reactivity and the disordered process of pulmonary vascular remodeling

[7, 8]. Nowadays, at least in large parts of Europe and the USA, CDH is usually diagnosed

at 20 weeks of gestation by ultrasound and/or Magnetic Resonance Imaging (MRI). Despite

the significant improved management and survival in CDH over the last decade, potentially

due to the release of and compliance to international guidelines initiated by the CDH EURO

consortium [9, 10], PH in these patients remains a significant challenge.

Pulmonary development

Human lung development can be divided into different stages, starting with the embryonic

stage at 4 weeks of gestation, followed by the pseudoglandular stage in which branching of the

lung buds continues. During the canalicular stage, starting around 16 weeks of gestation, gas

exchange regions will be formed. From 24 weeks of gestation until term, the saccular stage,

airspaces will widen and alveoli are formed. During the alveolar stage, which persists into the

postnatal period, maturation of the airways occurs [11]. In contrast to previous thoughts, our

group and others showed that pulmonary vasculature develops in close relation with the airways

already during the embryonic stage and might even be a rate limiting factor in the branching

morphogenesis [12–14]. This implies that the pulmonary vasculature plays an important role

in lung development. The formation of new blood vessels primarily occurs through distal

angiogenesis where new capillaries are formed from preexisting vessels. This has been shown in

lungs of mice with intact blood circulation to maintain vascular tone and integrity [14].

Normally, pulmonary vascular resistance is high during gestation and decreases rapidly after

birth under the influence of both the increased ventilation and oxygenation and the release of

different factors of the three major vasoactive pathways; the endothelin (ET), nitric oxide (NO)

and prostacyclin (PGI2) pathways [15–17] (Figure 1.1). Over the last decades research has

shown changes in several molecular pathways involving the pulmonary vascular development

in patients with PH. In different animal models abnormal retinoic acid (RA) signaling has

been found to be involved in the etiology of CDH [18–21]. RA signaling has been shown

to be important in lung development [22]. Active RA is formed from vitamin A through

several enzymatic reactions. Subsequently it can form a complex with one of the retinoic

acid receptors (RAR) which can bind to a retinoic acid responsive element (RARE) and can

modulate transcription of target genes [23]. As described previously in a mouse model, lower

levels of RA can cause an increase in Transforming Growth Factor β (TGFβ), which plays an

important role in airway branching and muscularization of the pulmonary vasculature [24].

Important pathways involved in the etiology of pulmonary
vascular defects in CDH

Current treatment of PH in CDH is based on targeting one of the three major vasoactive

pathways involved in vasoconstriction and vasodilation of the pulmonary vasculature. The



General introduction

∣

∣ 9

C
h
a
p
te
r
1

Endothelin Nitric Oxide Prostacyclin

Endothelin-1 Nitric Oxide

PGI2

ETA
receptor

ETB
receptor

Phospholipase C

Vasoconstriction Vasodilation Vasodilation

cGMP

cAMP

IP
receptor

Big Endothelin-1 L-arginine Arachidonic acid

ET-B
receptor

ECE-1 eNOS

PGIS

GTP

ATP

sGC

AC

En
do

th
el

ia
l c

el
ls

Sm
oo

th
 m

us
cl

e 
ce

lls

Endothelin-1

Cyclo-
endoperoxides

COX

TXA2

TBXAS1

TP
receptor

Vasoconstriction

Platelet 
aggregation

Figure 1.1: Overview of the vasoactive pathways. ECE-1 = endothelin converting enzyme 1, ETA =

endothelin A, ETB = endothelin B, eNOS = endothelial nitric oxide synthase, sGC =

soluble guanylate cyclase, COX = cyclooxygenase, PGIS = prostaglandin synthase, PGI2 =

prostaglandin I2, AC = adenylate cyclase, TBXAS1 = thromboxane synthase, TXA2 =

thromboxane.

ET pathway is activated by three ligands: ET-1, ET-2 and ET-3, of which ET-1 is the most

common isoform [25, 26]. The ET-1 precursor protein, Prepro-ET-1 is cleaved by furin into

the Big-ET-1, which is subsequently processed to its active form by the endothelin converting

enzyme (ECE-1) and binds and activates two different G-protein coupled receptors, ETA and

ETB, with equal affinity. The ETA receptor is located at the cell surface of vascular smooth

muscle cells and induces vasoconstriction and cell proliferation by activating phospholipase

C, whereas the ETB receptor is located mainly in the cell membrane of the endothelium and

induces vasodilation by regulating the release of NO and PGI2 [27, 26]. Furthermore, ET-1

promotes cell growth, cell adhesion and thrombosis and is increased in lung tissue of patients

with pulmonary hypertension. A negative feedback loop is triggered by NO that reduces the

affinity of the ETA receptor for ET-1 and can therefore prevent ET-1 mediated signaling [27].

NO can be synthesized by one of three different NO synthases (NOS), of which endothelial

NOS (eNOS) is the most important synthase involved in the regulation of the pulmonary

vascular tone and is highly expressed in the endothelial cells [28]. NO can bind to its receptor,

soluble guanylyl cyclase (sGC), which can synthesize the second messenger cyclic guanosine

monophosphate (cGMP), thereby inducing vasodilation. The third important pathway involves

prostaglandins and thromboxanes that act on prostanoid receptors which can be divided in

receptors that cause relaxation (IP (PTGIR), EP2, EP4 and DP) or contraction (TP, EP1 and

FP) of the vascular tone [29]. PGI2 is an important mediator of vasodilation which binds and

activates the prostaglandin-I2 receptor (PTGIR) [30, 31]. This activation results in vasodilation

through the release of cyclic adenosine monophosphate (cAMP).

The alveolar formation starts late in development and continues into the first years of life to

expand the gas exchanging capacity of the lung. Concomitant with the expansion of the airways

is the adaptation of the microvasculature to optimize the transport of oxygen and carbon

dioxide from the blood to the airways and vice versa. This process is partly regulated by TGFβ.
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Figure 1.2: Overview of the TGFβ and BMP pathways. TGFβ = transforming growth factor β,

BMP = bone morphogenetic protein, ZEB2 = zinc finger E-box binding homeobox 2, P =

phosphorylation.

There are two main branches in the TGFβ superfamily; the TGFβ/activin family and the bone

morphogenetic protein (BMP) family. All proteins of the TGFβ superfamily act through two

classes of receptor serine/threonine kinases; type 1 and type 2. Active TGFβ or BMP can be

bound to a specific type 2 receptor, which phosphorylates and activates a type 1 receptor. The

activated type 1 receptor subsequently phosphorylates a set of receptor-regulated Smads, which

form a complex with co-Smad (Smad4). TGFβ is responsible for the phosphorylation of Smad2

and Smad 3, where BMP phosphorylates Smad 1, 5 and 8. Eventually, the R-Smad/co-Smad

complex modulates the transcription of target genes in the nucleus [32] (Figure 1.2). TGFβ is a

negative regulator of airway branching in early lung development. However, TGFβ signaling is

necessary in vascular and airway smooth muscle cells, and in alveolar and airway epithelial cells

during late lung development [33]. Previous studies in rodents showed an arrest in alveolarization

both in animals with upregulated TGFβ signaling [34] as well as after a complete blockade of

TGFβ signaling [35], indicating the important differences in TGFβ signaling between early and

late lung development.

Current treatment options of pulmonary hypertension
pre- and postnatally

The significance of PH in the mortality and morbidity of patients with CDH has been increasingly

recognized since 1971 [36, 37]. The first vasodilators used in these neonatal patients with PH,

tolazoline [38], an α-adrenergic receptor antagonist, and prostacyclin [39], a prostaglandin-I2
(PGI2) agonist, resulted in variable results. Tolazoline infusion showed a response in 21 of 36

neonatal patients with lung disease, where systemic hypotension and bleeding tendency were

seen as a side effect in several patients [38]. Treatment with PGI2 improved pulmonary arterial

pressure and oxygenation in 2 of 3 neonatal patients with idiopathic PH and PH caused by

meconium aspiration. However, it had no beneficial effect in 2 patients with CDH, whereas
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systemic hypotension was seen as a side effect in one of these patients [39]. Currently, patients

with CDH still respond unpredictable to the available vasodilator therapy due to the lack of

understanding of the underlying mechanisms which can be different in individual patients.

Inhaled nitric oxide (iNO) is most commonly used, but studies have failed to show its efficacy

in this specific group of patients [40–43]. Apart from iNO, sildenafil and some prostaglandin

analogues are used as rescue therapy in a compassionate way in the most severe cases, but with

variable results [44–48]. No appropriate trials have been performed on these drugs and, with a

few exceptions, no data on pharmacokinetics are available for CDH neonates.

Currently, the only prenatal intervention used in CDH in the form of a clinical trial is

Fetoscopic Endoluminal Tracheal Occlusion (FETO), where a small balloon will be inserted

in the fetal trachea to temporarily block the airway for a period of 4-6 weeks (TOTAL;

NCT02875860 (clinicaltrials.gov)) [49]. As a result, fluid will be trapped in the lungs, creating

internal pressure which forces the lung to grow. This idea of blocking the airway emerged

from the enlargement of the lungs seen in patients with congenital high airway obstruction

syndrome (CHAOS) [50]. Previous research has shown that tracheal occlusion can indeed cause

an increase in lung growth [51, 52] and removing the balloon before birth has shown to be

necessary for a better maturation of the lung by decreasing the apoptosis of the alveolar type 2

cells which produce surfactant, an essential compound for lung function [53]. So far, FETO has

shown to improve survival rate in high risk CDH patients but at the cost of increased morbidity

and premature delivery [54–56]. As a consequence, the results of the FETO trial have to be

awaited which will take another 1-2 years (personal communication J. Deprest).

At the moment treatment with vasodilators in patients with CDH is only used postnatally,

where previous research has shown already major differences in the pulmonary vasculature

early during development [57]. Over the last years some studies have been performed on the

antenatal use of the phosphodiesterase-5 inhibitor sildenafil in different animal models of CDH,

showing improvement in alveolarization and pulmonary vascular development [58–62]. However,

treatment in these studies was already initiated very early during pregnancy, at the start of

lung development and before CDH symptoms and pathology develop. At this time human CDH

would not yet be detectable. Furthermore, pulmonary pathology in these treated animals was

not totally reversed.

The absence of an integrated analysis of TGFβ signaling and of the pathways regulating

vascular tone as well as the ineffective postnatal treatment in individual patients with CDH

makes it essential to obtain more insight into these pathways during development to optimize

targeting and timing of administration of these drugs. Furthermore, adequate prenatal treatment

could be beneficial for the pulmonary development in CDH.

Experimental animal model

Different animal models have been developed to evaluate the abnormalities in CDH of which

the nitrofen rat model is one of the best studied. In this model, pregnant Sprague-Dawley rats

receive the herbicide nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether) by gavage on gestational

age day E9.5, which induces a developmental defect in the diaphragm of the fetuses and

pathological signs of PH and LH. Nitrofen inhibits retinal dehydrogenase (RALDH-2), an

enzyme that normally synthesizes RA, which, as described above, plays an important role

in lung development [20, 63]. The first indication of abnormal RA signaling in CDH came

from a study where 25-40% of pups born to rat dams with a vitamin A deficient diet had

a diaphragmatic hernia [18]. Furthermore, administration of large amounts of vitamin A to

nitrofen-treated animals has shown to reduce the incidence of CDH in the offspring [64]. These

observations in animal models were strengthened by decreased retinol and retinol binding

protein plasma levels in a small number of newborn CDH patients [65] and the discovery of
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deregulated RA signaling genes in human CDH patients [66]. Additionally to the diaphragmatic

defect, cardiovascular and skeletal defects, similar to those found in human CDH patients, have

been seen in nitrofen-treated rat fetuses, which makes it a useful model for the research of the

underlying pathology of this disease [63].

Aims and outline of this thesis

The aim of this thesis is to evaluate the expression of important factors in the different vasoactive

pathways in CDH and to develop a potential prenatal intervention for the altered pulmonary

vascular development.

In the first place important factors in the TGFβ pathway and the major vasoactive pathways,

the endothelin, prostacyclin and nitric oxide pathways, were evaluated in human CDH patients

and the well-established nitrofen rat model for CDH. Second, prenatal intervention using

treatment with the phosphodiesterase-5 inhibitor sildenafil and/or prostaglandin-I2 agonist

NS-304 is implemented in this rat model.

Chapter 2 gives an overview of current knowledge on pulmonary vascular development in

health and disease, describing aberrant expression of factors in both CDH and some other

neonatal diseases. Chapter 3 describes the alterations in the TGFβ pathway in CDH. In

Chapter 4 the three major vasoactive pathways are examined in exclusive material of human

CDH patients and the well-established nitrofen rat model. Chapter 5 and 6 describe two

experimental animal studies on the antenatal use of the phosphodiesterase-5 inhibitor sildenafil

and the prostaglandin-I2 receptor agonist NS-304 in the nitrofen rat model. At last, in Chapter

7 the results of these studies are placed in a broader perspective and future possibilities are

discussed.
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Abstract

Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions

with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial

hypertension (PH) is characterized by persistent increased resistance of the vasculature and

abnormal vascular response. The classification of PH is primarily based on clinical parameters

instead of morphology and distinguishes five groups of PH. Congenital lung anomalies such as

alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia

(CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three.

Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal

lung development. Human and animal model systems have increased our knowledge and make it

possible to identify and characterize affected pathways and study pivotal genes. Understanding

of the normal development of the pulmonary vasculature will give new insights in the origin of

the spectrum of rare diseases such as CDH, ACD and BPD, which render a significant clinical

problem in neonatal intensive care units around the world.

In this review we will describe the normal pulmonary vascular development and we will focus

on four diseases of the newborn in which abnormal pulmonary vascular development play a

critical role in the morbidity and mortality. In the future perspective we indicate the lines of

research that seems to be very promising for elucidating the molecular pathways involved in

the origin of congenital pulmonary vascular disease.
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The morphological development of pulmonary vasculature

In mammals, blood is transported through the cardiovascular system that can be divided in the

systemic and the pulmonary circulation. These two types of circulations have histological

similarities but differ in their physiological function and anatomic position to the heart.

Oxygenated blood is transported and distributed throughout the body by the systemic

circulation, whereas oxygen-depleted blood is transported to the lungs by the pulmonary

circulation. The blood supply in the lung can be divided into the bronchial circulation and

the pulmonary circulation. The bronchial circulation is mainly separated from the pulmonary

circulation, although some overlap exists in the pre-capillary region. The bronchial circulation

comprises arteries, which align with the bronchial tree. A third of the blood in the bronchial

circulation returns to the right atrium through the bronchial vein. The pulmonary circulation

transports oxygen-deprived blood to the gas exchange areas and oxygen-rich blood back to the

left atrium. The bronchial circulation is part of the systemic circulation and delivers oxygen-rich

blood to the cells of the lung at high systemic pressure.

The pulmonary vasculature comprises anatomically and functionally different compartments:

the arterial tree, the capillary bed and the venular tree. The pulmonary arteries also support the

intrapulmonary structure and ultimately regulate gas exchange via the capillary bed. Prenatally,

the pulmonary circulation is characterized by high pulmonary vascular resistance (PVR) and

low blood flow (compared to the ventricular output). The thick wall and high vasomotor tone

contribute to the high PVR. The majority of the blood flow of the cardiac output is diverted to

other organs than the lung through the foramen ovale and the ductus arteriosus. This process is

facilitated by the relative high resistance in the pulmonary circulation compared to the systemic

circulation. After birth, there is a large transition from relative hypoxic conditions to normoxic

condition. This transition induces dramatic changes in the PVR leading to physiological

adaptations in the lung. This adaption of the lung is required to exert its important function:

exchange gas and oxygenate the blood.

The cellular composition of the pulmonary vascular wall varies depending on the functionality

of the vessel. The outer layer of the pulmonary arteries, the adventitia, is a loosely organized

structure consisting of an extracellular matrix with fibroblasts, vasa vasorum and a neuronal

network [1, 2]. There is gradual change in structure from the proximal to distal end of the

lung, which corresponds with the maturation of the developing airways. The large pulmonary

arteries at the proximal end of the lung have a media consisting of a layer of smooth muscle

cells in between the lamina elastic interna and externa. Towards the distal area of the lung, the

arteries have a smaller lumen with a thinner smooth muscle cell layer and no lamina elastica.

The smooth muscle cells in the tunica media form a heterogeneous population, ranging from

cuboidal, synthetic cells to the characteristic elongated contractile cells. The contractile smooth

muscle cells have more contractile fibers, have less proliferation and less migration activity

compared to the synthetic phenotype [3, 4]. The pulmonary capillaries are the most distal

compartment of the pulmonary vasculature and are the site where gas exchange takes place.

Capillaries exist of a monolayer of endothelial cells, which are in direct contact with perivascular

cells. The structure of the pulmonary veins is comparable to the structure of small arteries.

Pulmonary veins consist of a thin intima, smooth muscle cell containing media in the larger

veins and an adventitia containing a vaso vasorum, nerves and bundles of collagen and elastin

fibers [2].

The development of the pulmonary vasculature

Understanding the process of normal pulmonary vascular development is a prerequisite to

comprehend the origin of pulmonary hypertension (PH) and its associated diseases of the
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Table 2.1: Overview of Stages in Lung Development in Mouse and Human

Stage I Embryonic II Pseudoglandular III Canalicular IV Saccular V Alveolar

Mouse E9–11.5 E11.5–16.5 E16.5–17.5 E17.5–PN5 PN5–30

Human Wk 3–7 Wk 5–17 Wk 16–26 Wk 26–36 Wk 36–3 years

newborn. The pulmonary vasculature develops in close relation with the airways and has

extensively been studied in rodent models. In mice, the first molecular sign of lung development

is around embryonic day 8 (E8) when the expression of Nkx2-1 starts in the ventral wall of the

anterior foregut (see table 2.1 for lung developmental stages of human and mouse). At E9.5

in the mouse, a primitive bud evaginates from the ventral side of the foregut and invades the

surrounding mesenchyme [5]. This bud splits into two buds, which will form the right and left

lung, but this embryonic phase is very short and rapidly turns into the pseudoglandular phase

when the primary buds expand into the mesenchyme and start budding and branching until

E16.5. After E16.5, when the bronchial tree is formed, development of the lung goes into a

new stage, the canalicular phase. In mice it is very short (E16.5-E17.5) and during this period

the terminal buds narrow. From E17.5 until postnatal day 5 (P5) lung development goes into

the saccular stage and the precursors of the alveoli are formed. And finally from postnatal

life onwards alveolarization starts and ends around P14. In humans, lung development follows

a similar sequence of stages, but with a different timetable. Budding starts at 4 weeks of

gestation, the pseudoglandular stage ends around week 6, followed by the canalicular (week

16-26), saccular (week 26-36) and alveolarisation (postnatal until 3 years of age) stages (Table

2.1).

The lung endoderm and mesoderm are interacting during all these developmental stages via

multiple molecular pathways. These molecular pathways controlling these stages have been

discussed in extensively in two recent reviews [6, 5]. In this review we focus on congenital

diseases associated with pulmonary abnormalities and only describe the molecular players that

have been associated with these diseases.

The past two decades new insights into the development of the pulmonary vasculature have

been obtained. It was suggested that pulmonary vasculature in mice developed through two

main mechanisms: the central vasculature through angiogenesis and the distal vasculature

through vasculogenesis and either angioblasts from the mesenchyme or blood lakes would provide

endothelial cells for vessel development [7]. These two structures would fuse around E13/E14

through a lytic process and circulation would start [8]. A histological and morphological study

seemed to confirm this hypothesis and the same processes would underlie pulmonary vascular

development in human [9]. The results from these studies were mainly obtained by histological

analysis. However, fixation artifacts have led to inappropriate conclusion and analysis of lung

development using transgenic mice expressing a lacZ reporter gene under the control of an

early marker for endothelial cells (fetal liver kinase 1 (FLK1)) [10], showed that the proximal

and distal pulmonary vasculature was already connected at E10.5 [11]. In addition, detailed

analysis of lung samples of transgenic mice expressing the lacZ reporter under the control of the

endothelium specific Tie2 promoter showed that already at day E9.5 the presence of a vascular

network surrounded the primitive lung bud connected to the systemic circulation. This network

mainly expands as the lung develops through angiogenesis, a process called distal angiogenesis

[12]. It is still not completely understood how the pulmonary vasculature develops and where

progenitor cells involved in angiogenesis in the lung come from. Lineage trace experiments,

instrumental in deciphering the origin and the fate of early precursor cells in the lung, indicate

that specific, cardiopulmonary, progenitor cells differentiate into both cardiac and pulmonary
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mesenchymal cells. Moreover, these progenitor cells can differentiate into vascular smooth

muscle cells and pericyte-like cells, but were only observed in the proximal end of the lung [13].

It remains unclear what the progenitors are for the perivascular cells and endothelial cells in the

distal end of the lung. Proper lineage trace studies throughout pulmonary vascular development

could serve to answer these questions.

Important molecular players in pulmonary vascular

development

Normal pulmonary vascular development requires tight regulation of cell migration, proliferation

and differentiation. The family of Vascular endothelial growth factors (VEGF), and their

receptors Fetal liver kinase1 (KDL1 or VEGFr1) and Kinase domain receptor (Kdr or VEGFr2),

are one of the most potent angiogenic factor signaling cascades and are required for vascular

growth and endothelial cell proliferation [14, 15]. Early during lung development, VEGF is

expressed by the epithelium and mesenchyme, but later its expression is restricted to the

epithelium [16] where it is required for epithelial branching and morphogenesis [17]. In response

to hypoxic conditions, as in the prenatal lung, VEGF expression is induced by Hypoxia-

inducible transcription factor-1 and 2 (HIF1/HIF2). HIF1 and HIF2 are heterodimers existing

of an oxygen-sensitive subunit, HIF1α or HIF2α, and a constitutive Arnt/HIF1β subunit.

At normoxic conditions, specific prolyl hydroxylases (Phd) hydroxylate the HIFα subunit,

which is subsequently ubiquitinated and targeted for degradation via the Von-Hippel-Lindau

tumour suppressor protein pathway [18–20]. Under hypoxic conditions, the HIFα subunit is not

hydroxylated and the HIFα/HIFβ complex translocates to the nucleus where it binds to hypoxic

responsive elements in the regulatory unit of target genes to induce the transcription of these

genes. Among the genes that are activated under hypoxic conditions are several angiogenic

genes, such as VEGF, which results in the growth and expansion of the vasculature.

Vascular development consists of vasculogenesis and angiogenesis: vasculogenesis is the

process where the vascular plexus is formed de novo from mesodermal progenitor cells [21], and

angiogenesis is the process where endothelial cells sprout from preexisting vessels to form new

tubes. There is constant competition between the leading cell, the tip cell, and the trailing

cell, the stalk cell, to become or to stay on the tip of the sprout. Endothelial cells of the

newly formed tubes recruit pericytes in a Platelet-derived growth factorβ (PDGFβ) depended

manner (Figure 2.1). Pericytes wrap around the newly formed endothelial tubes and induce

stabilization and maturation [22, 23] and the interaction between these two cells is crucial for

normal vascular development. This interaction is regulated by different growth factors and

their receptors, such as PDGF(r) and TGFβ(r) [24]. Tight regulation of this interaction is

required for normal vascular development and disruption of this process may lead to pathological

conditions. However, pericytes comprise a very heterogenic population in the lung and therefore

they are rather difficult to identify. New, specific markers are required to better understand the

interaction of pericytes and endothelial cells in both health and disease.

The specification of arteries and veins is one of the first events that take place in the

development of the circulatory system. Arteries and veins can be distinguished from each other

by the expression of members of a tyrosine kinase family Ephrin2 and Eph4 [25]. However, the

specification of the pulmonary network occurs relatively late and the expression of Ephrin2 and

Eph4 is not restricted to artery endothelial or vein endothelial cells, respectively until late in

the pseudoglandular stage (Figure 2.1). In mice, at E13.5 endothelial cells still express both

Ephrin2 and Eph4, but from E15.5 onwards the endothelial cells express either Ephrin2 or Eph4

when they become committed to arteries or veins, respectively. Furthermore, Ephrin expression

in the lung is not restricted to endothelial cells but is also highly expressed by mural cells

[26]. Modulation of the Notch pathway results in arterial defects and can lead, depending on
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Figure 2.1: Simplified scheme of pulmonary vascular compartments. Schematic overview of pulmonary
vasculature, with veins (A), arteries (B), and capillaries (C). Endothelial cells recruit pericytes
in a PDGFβ dependent manner in the distal end of the lung (C). The pulmonary arteries are
characterized by the expression of Eph2 and Notch family member Dll4 (A). Specification of the
pulmonary veins includes expression of Ephrin4 and CouptfII (B).
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which member of the pathway is affected, to early prenatal death. For example, heterozygous

Dll4 embryos suffer from remodeling defects in the yolk sac and have a smaller dorsal aorta

[27] while the full Dll4 -deficient embryos die due to early lethal loss of arterial identity at

E9.5 [28]. To study the lung developmental phenotype, tissue specific inhibition of the Notch

pathway is necessary and may give new insights in the specification of pulmonary arteries

and veins. Specification of venous endothelium includes expression of the nuclear receptor

Chicken ovalbumin upstream transcription factor II (CouptfII), which is expressed in venous and

lymphatic endothelium (Figure 2.1). CouptfII is highly expressed in the foregut mesenchyme

at the site where later in development the lung will be formed. CouptfII knock-out mice die

at E10 from heart defects and loss of venous identity in the vasculature [29]. Lung-specific

deficient CouptfII mice show a Bochdalek-type congenital diaphragmatic hernia (CDH) [30],

lung hypoplasia associated with CDH indicates the importance of CouptfII in normal lung

development.

Fibroblast growth factors (FGF) belong to a family of mitogens that are identified as regulators

of lung development [31]. Early during lung development FGF10 is expressed in the mesoderm

around the budding lung endoderm, which expresses its receptor FGFr2. Knockout mice

of FGF10 [32] or FGFr2 [33] resulted in mice without lungs, indicating the crucial role for

this signaling pathway in the development of the lung [34]. However, recently it was shown

that FGF10 is not just inducing budding and branching of the lung during development,

but that expression of FGF10 is also important for the maintenance of epithelial progenitor

cells by preventing these cells to differentiate [35]. Another member of the fibroblast growth

family, FGF9, is important for lung mesenchyme growth and proliferation [36]. More specific,

FGF9 stimulates proliferation of mesenchymal cells and regulates mesenchymal Sonic hedgehog

signaling (SHH) [37]. Furthermore, it is also shown that FGF9 and SHH regulate VEGFa

expression what is required for capillary development in the distal end of the lung [17].

Retinoic acid (RA) signaling has been shown to be of high importance for lung development

[38]. Vitamin A in the blood plasma is transported by Retinol binding protein 4 (RBP4), it

binds to the extracellular receptor stimulated by retinoic acid 6 (STRA6) and then through

several enzymatic reactions it is converted into its active form RA. Active RA is secreted and

taken up by retinoic acid responsive cells. In the cytoplasm RA binds to one of the three

Retinoic Acid Receptors (RAR), RARα, RARβ or RARγ [39]. These complexes bind to a

Retinoic Acid active Responsive Element (RARE) in the regulatory elements of their target

genes and modulate transcription of these genes [40, 41]. Targeted deletions of members of

RAR and Rxr family have different effects. Double knockouts of RARα and RARβ result

in failure to separate the esophagus and trachea and hypoplasia of the left and right lung.

However, deletion of other members of the RAR and RXR family did not result in an obvious

lung phenotype [42]. Binding of retinoic acid to its receptor directly affects the target genes

either by inducing or repressing gene expression. Many genes regulated by the RA pathway

are involved in embryogenesis [39]. However, it is possible that still many target genes have

yet to be discovered. Tracing the activity of RARE’s in embryonic development revealed high

activity of the RA pathway in multiple developing organs, for example in heart, hindbrain

and diaphragm [43, 44]. Activity of the retinoic acid receptors is important for proper lung

development and at E9 in mice, when the first lung buds start to develop from the foregut,

RA signaling is highly active [38]. Furthermore, in absence of retinoic acid, levels of FGF10

decrease and levels of TGFβ increase, and there is reduced budding and branching of the lung

[45]. More specific, molecular processes required for formation of the lung primordium from

the foregut are controlled by RA receptor activity. RA is a major regulator of Wnt signaling

and the TGFβ pathway and thereby controls FGF10 expression, early in lung development

[46]. The role of RA signaling in vascular development has so far only been shown in the

development of the systemic blood circulation. In RA-deficient embryos endothelial cell growth

and proliferation is uncontrolled, indicating a role for RA in suppression of endothelial cells
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during vasculogenesis [47]. Although there is no direct evidence yet that the RA pathway is

involved in the development of the pulmonary vasculature, it may be that this pathway is

involved based on the intimate relation between the airways and the vasculature.

Abnormal pulmonary vascular development

Perturbations of the described molecular pathways in the pulmonary vascular development may

cause congenital anomalies, like PH, in newborns, infants and children [48]. PH is characterized

by persistent increased resistance of the vasculature and abnormal vascular tone, which is

regulated by the contraction of smooth muscle cells. Five groups of PH can be distinguished:

pulmonary arterial hypertension, PH due to left heart disease, PH due to lung diseases and/or

hypoxia, chronic thromboembolic PH (CTEPH) and PH with unclear multifactorial mechanisms

[49, 50] (Table 2.2). Normally the PVR is high antenatally and decreases immediately after

birth, reaching levels that are comparable to adult values within 2 months after birth. PH

has an incidence of approximately 63.7 per million children [51] and can be idiopathic or

associated with other diseases. It can cause significant morbidity and mortality. In children,

idiopathic pulmonary arterial hypertension (iPAH) and PH due to congenital heart disease

comprise the majority of cases. Other important causes include persistent PH of the newborn

(PPHN), bronchopulmonary dysplasia (BPD) and developmental lung diseases, like CDH,

alveolar capillary dysplasia (ACD) and lung hypoplasia and surfactant protein abnormalities

[48, 49]. Mutations in specific genes have been reported (Table 2.3), but PH in children can also

be associated with genetic syndromes, like Down syndrome, DiGeorge syndrome, VACTERL

syndrome, CHARGE syndrome and Noonan syndrome [52]. Perinatal care and prognosis in

pediatric PH has improved over the last years, but despite the fact that there are significant

differences in pulmonary vascularity between adults and children, most treatment is based on

experimental research or trials in adults [53]. We will focus on iPAH, CDH, ACD and BPD

which are all characterized by an abnormal pulmonary vascular development and in which PH

plays an important role in the mortality and morbidity.

Idiopathic pulmonary arterial hypertension

iPAH is characterized by restricted blood flow through the pulmonary arterial circulation,

elevated pulmonary vascular resistance and progressive right heart failure [66]. iPAH, previously

known as primary PH, has an incidence of approximately 0.7 per million [49] with hypertensive

vasculopathy exclusively in the pulmonary circulation without a demonstrable cause. Young

children have a reduction in arterial number and a failure of the vasculature to relax, whereas in

older children intimal hyperplasia, occlusive changes and plexiform lesions are found (Figure 2.2).

In contrast to adults, children with iPAH have more pulmonary vascular medial hypertrophy

and less intimal fibrosis and fewer plexiform lesions [67, 68]. Younger children have a more

reactive pulmonary vascular bed with an increased prevalence of acute pulmonary hypertensive

crises [69, 68]. Possible mechanisms that play a role in PAH development are endothelial cell

dysfunction, smooth muscle cell migration and dysfunction, and abnormal apoptosis. In adult

iPAH, in-vitro studies showed increased expression of endogenous vasoconstrictors and decreased

expression of vasodilators [70–73]. The same vasoactive factors could play a role in pediatric

iPAH. An increased expression of thromboxane and endothelin-1 (ET-1), both vasoconstrictive

and proliferative mediators, are elevated in both adults and children [69, 74, 75]. However,

besides these two factors, this might also be the case for other vasoactive factors.

Heritable forms of PH are caused by mutations in several genes. Point mutations and deletions

in the bone morphogenetic protein receptor 2 (BMPR2 ) have been identified in approximately

10-40% of all patients with iPAH and are the major cause of heritable PAH [76]. Both pediatric

and adult patients with BMPR2 mutations appeared to have more severe disease compared to
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Table 2.2: Classification of pulmonary hypertension

Pulmonary arterial hypertension
Idiopathic PAH (iPAH)
Heritable PAH

BMPR2
ALK-1, ENG, SMAD9, CAV1, KCNK3
Unknown

Drug- and toxin-induced
Associated with other diseases

Connective tissue disease
HIV infection
Portal hypertension
Congenital heart diseases

Schistosomiasis
Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis
Persistent pulmonary hypertension of the newborn (PPHN)

Pulmonary hypertension due to left heart disease
Left ventricular systolic dysfunction
Left ventricular diastolic dysfunction
Valvular disease
Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies

Pulmonary hypertension due to lung diseases and/or hypoxia
Chronic obstructive pulmonary disease (COPD)
Interstitial lung disease
Other pulmonary diseases with mixed restrictive and obstructive pattern
Sleep-disordered breathing
Alveolar hypoventilation disorders
Chronic exposure to high altitude
Developmental lung diseases

Congenital diaphragmatic hernia (CDH)
Bronchopulmonary dysplasia (BPD)
Alveolar capillary disease (ACD)
Lung hypoplasia
Surfactant protein abnormalities
Pulmonary interstitial glycogenosis
Pulmonary alveolar proteinosis
Pulmonary lymphangiectasia

Chronic thromboembolic pulmonary hypertension (CTEPH)

Pulmonary hypertension with unclear multifactorial mechanisms
Hematologic disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy
Systemic disorders: sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, segmental PH

Adapted from the updated Dana point classification [50]
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Table 2.3: Genes involved in pulmonary hypertension in children

Disease Gene Chromosome Reference

iPAH BMPR2 2q33 [54–56]
ACVRL1 12q13 [55, 56]
ENG 9q34.11 [55]
5HTT 17q11.2 [57]
BMPR1B 4q22.3 [58]

CDH FOG2 8q22.3–23.1 [59]
COUP-TFII 15q26.1–26.2 [60]
STRA6 15q23–25.1 [61]
FREM1 9p22.3 [62]
WT1 11p12–15.1 [63]

ACD FOXF1 16q24.1 [64, 65]

iPAH = idiopathic pulmonary arterial hypertension, CDH = congenital diaphragmatic hernia, ACD =

alveolar capillary dysplasia

those without this mutation [69]. Pfarr et al. found mutations in BMPR2 and two receptors

of the TGFβ/BMP pathway, activin receptor-like kinase 1 (ACVRL1 ) and endoglin (ENG),

in 8/29 (27.6%) of the pediatric iPAH patients [55]. A genetic polymorphism detected in the

serotonin 5-hydroxy tryptamine transporter (5HTT ) gene is associated with iPAH in adults

and might also play a role in iPAH in children. This polymorphism leads to elevated levels

of 5HT and results in increased smooth muscle cell proliferation [57]. Most of the genetic

mutations in iPAH are only studied in adults and in contrast to adults, PAH in children is often

associated with genetic syndromes. However, not all patients with a mutation in the same gene

will develop severe PAH, suggesting that modifiers and or epigenetic regulation of expression

could also play a role.

Congenital diaphragmatic hernia

Congenital diaphragmatic hernia (CDH) has an incidence of approximately 1 in 2500-3000

live births. Beside a diaphragmatic defect, CDH is characterized by pulmonary hypoplasia

and PH, which may be due to an altered development of the pulmonary vasculature and a

disordered process of pulmonary vascular remodeling [77, 78]. Previous studies showed excessive

muscularization of the pulmonary arteries and maladaptive pulmonary vascular remodeling in

CDH patients [79, 77, 78, 4, 80] (Figure 2.2). In contrast to the positive effect of inhaled nitric

oxide (iNO) in preterms with PH, the effectiveness of this treatment is only around 30-40% of

patients with CDH.

Over the last years several factors involved in the abnormal pulmonary vascular development

in CDH have been identified. Expression levels of these factors have been analyzed both in

lung tissue of CDH patients and experimental animal models. We studied the role of the Von

Hippel-Lindau protein (pVHL) and HIF1α and found a decrease of pVHL and HIF1α expression

in the arterial endothelium and an elevated expression of pVHL in the pulmonary arterial media

of human CDH cases compared to age-matched controls [81]. Shehata et al. showed increased

VEGF expression in the bronchial epithelium and medial smooth muscle cells and positive

VEGF staining in endothelial cells, which were negative in age-matched controls [82]. However,

we have found lower expression of VEGF mRNA in the alveolar stage in CDH patients [83]. In

the process of normal remodeling of the pulmonary vasculature, extracellular matrix membrane

proteins (MMPs) are of fundamental importance. Altered expression of certain MMPs and
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Figure 2.2: Characteristic histology of four pulmonary vascular disease samples. Hematoxylin- and eosin-
staining of human lungs: control, alveolar capillary dysplasia (ACD), congenital diaphrag-
matic hernia (CDH), idiopathic pulmonary arterial hypertension (iPAH) and bronchopulmonary
dysplasia (BPD). Scale bars 100 mm. ACD: medial hypertrophy and muscularization (#),
malpositioning of the pulmonary veins (*) and central positioning of the capillaries in the alveolar
septa, CDH: excessive muscularization of the arteries (arrows), iPAH: thickening of the arteries
(arrows), BPD: fibrosis with widening of the alveolar septa.
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tissue inhibitors of MMPs (TIMPs) was found in human CDH lungs compared to controls

[84]. Decreased expression of VEGF and its receptors is also seen in the nitrofen rat model of

CDH [85, 86]. In summary, an increase in pVHL may downregulate HIFα, leading to decreased

expression of VEGF and a disturbance of vascular growth and endothelial cell proliferation

during development. It would be interesting to investigate the oxygen concentration during the

development of the (CDH) lung, to evaluate whether this may contribute, through HIFα, to

the structural changes that contribute to PH.

Abnormal RA signaling contributes to the etiology of CDH, and the first evidence of its

involvement in CDH came from observations of pups born to rat dams with vitamin A deficient

diets. In 25-40% of these pups a diaphragmatic hernia was present [87]. This finding is supported

by the development of a diaphragmatic defect, pulmonary hypoplasia and pulmonary vascular

abnormalities after disruption of the retinoid signaling pathway by nitrofen [88]. Furthermore,

RAR α/β double knock-out mice were found to have offspring with a diaphragmatic hernia

[89]. In addition to the animal models, measurements of the levels of retinol and retinol-binding

protein (RBP) in the first hours after birth in human CDH newborns showed a significant

reduction compared to matched controls, independent of maternal retinol status [90, 91]. As

described above, Chen et al. showed that lower levels of RA could cause an increase in TGFβ

and a decrease in FGF10 [45]. Increased expression of TGFβ1 with immunostaining at the

midpseudoglandular, late pseudoglandular and saccular stage of lung development is detected

in the nitrofen rat model of CDH [92]. Also increased mRNA levels of TGFβ and TGFβRII

are observed in the same model [93]. Teramoto et al. described a decrease in gene expression of

FGF10 in the nitrofen rat model [94]. Since TGFβ plays a role in the airway branching and

muscularization of the pulmonary vasculature and FGF10 was thought to regulate lung budding

and branching, this might implicate that the neomuscularization and reduced branching in

CDH may be caused by disturbances in the RA-TGFβ-FGF10 interactions.

Over 450 chromosomal aberrations have been reported in CDH [95]. Some of the recurrent

genetic changes are found in retinoid-related genes. In autosomal recessive conditions as Matthew-

Wood syndrome (Microophthalmia syndromic 9 (MCOPS9) or Donnai-Barrow syndrome; OMIM

#222448 mutations in the STRA6 and LRP2 genes have been reported. STRA6 is the membrane

receptor for retinol binding protein (RBP1) and mutations of the LRP2 gene lead to proteinuria

with spillage of retinol-binding proteins. Deletions of COUP-TFII on chromosome 15q26.1-26.2

[60], and of FOG2 (ZFPM2; chromosome 8q23.1) or SOX7 (8p23.1) lead to an autosomal

dominant form of CDH with variable penetrance [96, 97]. Beck et al. showed that a deletion

of the FRAS1-related extracellular matrix 1 (FREM1 ) gene, which encodes an extracellular

matrix protein, can cause CDH in both human and mice [62].

Several CDH animal models have been developed, such as the surgical models in lambs and

rabbits, several knockout models in mice and teratogenic models in rats [88, 98]. Surgical animal

models are useful for the investigation of interventional therapies, but are less informative in

studying the etiology and pathogenesis of CDH [98]. The nitrofen model is the most commonly

used teratogenic model for CDH. When administered to pregnant rat dams at gestational

day 9.5, the herbicide nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether) causes diaphragmatic

defects, lung hypoplasia and PH in pups, strikingly similar to the human condition [99, 98].

Alveolar capillary dysplasia

Alveolar capillary dysplasia (ACD) is a rare lethal developmental lung disorder with failure of

alveolar capillary formation, often accompanied by misalignment of the pulmonary veins. This

results in abnormal gas exchange, severe hypoxemia and PH. The prevalence and incidence

is not known, but the mortality rate approaches 100%. ACD is characterized by premature

growth arrest with immature lobular development, reduced capillary density, thickened alveolar

septa, medial hypertrophy and muscularization of small pulmonary arteries and distal arterioles
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and malposition of pulmonary veins (Figure 2.2). In 50-80% of patients, ACD is associated

with other congenital anomalies. Although at the moment a definitive diagnose can only be

obtained by histological examination of lung tissue [100], the detection of genetic changes of

the Forkhead Box F1(FOXF1 ) locus on chromosome 16q24 can aid in the diagnosis of ACD.

Mutations of FOXF1 and deletions of the 5’ regulatory region of this transcription factor

gene have been reported in most patients with ACD [65, 64]. FOXF1 deficiency is associated

with reduced numbers of pulmonary capillaries in patients with ACD and similar observations

have been made studying Foxf1 heterozygous knockout mice. Conditional deficient Foxf1 mouse

models showed that loss of Foxf1 in the endothelial lineages resulted in an impaired angiogenesis,

endothelial proliferation and VEGF signaling [101]. Involvement of the FOXF1 protein in SHH

signaling has been shown both in vitro and in vivo in human and mice [100, 101, 65]. Mahlapuu

et al. showed that SHH induces the transcriptional activation of Foxf1 [102]. This may imply

that other genes from this pathway are involved in the etiology of ACD. In addition to the

large phenotypic overlap between human ACD and the mouse Foxf1-mutant mice, overlapping

expression profiles of lung specimens indicate that the Foxf1 mouse model is an excellent animal

model for ACD.

In addition to the Foxf1 ACD mouse model other knock-out models show similarities to

ACD and may potentially be used to study ACD. For example, the pulmonary phenotype and

associated congenital defects observed in endothelial nitric oxide synthase (eNOS)-deficient mice

are strikingly similar to the pathological features seen in ACD [103]. NO plays a role in the

downstream signaling of angiogenic factors and the regulation of angiogenic gene expression in

the developing lung. Furthermore, mice lacking the phosphatase and tensin homologue deleted

from chromosome 10 (Pten) showed defects in the pulmonary microvasculature similar to those

seen in ACD. Pten inactivation caused increased expression of FGF9, FGF10 and FGF7 and

decreased expression of SHH, PTCH1 and GLI1. They also found a decreased expression of

FOXF1 in these mice [104], which might indicate a role for Pten in the regulation of FOXF1.

As described above, FGF9 signaling, SHH signaling and VEGFa expression in lung mes-

enchyme are required for the pulmonary capillary formation. In an in vitro study in mice it

was observed that FGF9 and SHH regulate each other and the expression of angiogenic factors

such as VEGFa [17]. FGF9 and SHH might play a possible role in the development of ACD.

It is important to improve our knowledge of the pathology of ACD. The discovery of mutations

in the FOXF1 gene locus has been a great improvement in the research on ACD. However not in

all patients with ACD a mutation in this gene locus can be found, indicating that there might

be other genetic or etiological factors involved in the genesis of this disease. Since the HIF1 and

HIF2 complexes are involved in vascular expansion during development of the lung, alterations

in HIF1/HIF2 may play a role in the premature growth arrest and vascular abnormalities in

ACD. However, no altered expression of HIF1α in lungs of human ACD patients has been

observed [105], but other genes in this pathway like HIF2α could play a role.

Bronchopulmonary dysplasia

Bronchopulmonary dysplasia (BPD) is a chronic lung disease associated with preterm newborns

that weigh <1000g and receive respiratory support with mechanical ventilation and/or prolonged

oxygenation [106]. More than 30% of preterm infants born before 30 weeks of gestation develop

BPD and the incidence is still rising [107]. It is characterized by decreased or arrested

alveolarization and pulmonary microvascular development (Figure 2.2). The definition of BPD

changed over the past 50 years. It was last redefined in 2000 by the National Institute of Child

Health and Human Development (NICHD) [108]. The current definition is graduated by the

severity of the disease, where mild BPD is defined as the need for supplemental oxygen at ≥28

days but not at 36 weeks of gestation, moderate BPD as the need for supplemental oxygen

at 28 days in addition to supplemental oxygen at ≤30% at 36 weeks of gestation, and severe
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BPD as the need for supplemental oxygen at 28 days and the need for mechanical ventilation

and/or oxygen >30% at 36 weeks of gestation [109]. Since the alveolar and distal vascular

development in premature born infants are still in a crucial state, BPD results from the need

for the lung to develop while continued injury and repair are occurring [109, 110]. The vascular

pathology in BPD shows immature vessels with a dysmorphic structural configuration of the

distal microvasculature and an abnormal distribution of alveolar capillaries with more distance

from the air surface [111]. Just like in CDH, intrapulmonary shunting through precapillary

arteriovenous anastomotic vessels was found in the lungs of patients with severe BPD [112].

This dysmorphic growth and impaired function of the pulmonary vasculature can be caused by

various prenatal and postnatal factors and can result in PH [113].

Mechanical ventilation and oxygen therapy in preterm infants can result in impaired angiogenic

signaling with an increased expression of antiangiogenic genes and a decreased expression of

proangiogenic genes [113]. After short periods of ventilation fewer arteries and endothelial

cells are seen, whereas longer periods of ventilation can cause decreased vessel branches and

increased endothelial cell proliferation [114]. Changes in VEGF expression are observed in

lungs of human BPD patients and in an experimental animal model. Where most of the in

vitro studies in humans and animals showed a decrease in VEGF expression [115–117], one in

vitro study in a baboon model of BPD showed an increase in VEGF protein [118]. Levels of

soluble VEGFR1 (sVEGFR1), an endogenous antagonist of VEGF, were found to be elevated

in amniotic fluid and maternal blood in preeclampsia and intra-amniotic administration of

sVEGFR1 to pregnant rats resulted in pups with blunted alveolarization and reduced lung vessel

density [119, 120]. This implicates a role for preeclampsia by perturbations in VEGF levels

in the development of BPD. During fetal lung development, levels of HIF1α are high and are

important for the expression of VEGF and other angiogenic factors. In premature born children,

levels of HIFα decline rapidly [118], possibly because of the absence of a hypoxic environment

or even because of the use of oxygen therapy. This may cause a decrease in angiogenic factors

resulting in less vascular expansion. Also HIF2α is a regulator of VEGF and is critical for fetal

lung maturation. However, it plays a more important role in the alveolar epithelial cells than in

the vascular cells [121]. We showed earlier that HIF2α is a key regulator in the maturation of

type II pneumocytes and that ectopic expression of an oxygen-insensitive, constitutive active

form of HIF2α leads to a severe surfactant deficiency in the newborn [122], which is also seen

in BPD patients. In contrast to the downregulated angiogenic factors found by others, Paepe et

al. found an upregulation of endoglin mRNA and protein levels in ventilated preterm infants.

Endoglin is a hypoxia-inducible TGFβ coreceptor and is an important regulator of angiogenesis.

They speculated that there might be a shift in angiogenic regulators which contributes to the

dysangiogenesis in BPD. Furthermore, the upregulated endoglin possibly modulates vascular

permeability resulting in interstitial edema, which is a morphological feature of early BPD [123].

As such BPD forms an interesting model of postnatal injury and repair showing similarities in

expression profiles of a number of transcription factors involved in normal development. This

disease can thus be used to gain knowledge on these processes and can be implemented in our

developmental studies.

Besides the angiogenic factors, there may be a possible role for the retinoid signaling pathway

in the development of BPD. As already shown in CDH, a shortage in vitamin A can disrupt the

retinoid signaling pathway. Preterm infants have low vitamin A levels at birth and supplementing

very low birth weight infants with vitamin A was found to be associated with a reduction

in incidence of BPD [124]. The shortage in vitamin A could possibly be a cause of impaired

pulmonary vascular development and PH in BPD.

Many genes with a putative role in the development of BPD have been investigated in

genotype association studies. These genes have been described in a recent review [125]. Many

of these studies have tested polymorphisms in potential candidate genes such as surfactant

proteins or cytokines but only weak associations implicating susceptibility to the disease have
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been reported [126].

Over the last decades many animal models have been developed to study the impairments in

lung development in BPD. These models are based on hyperoxia, mechanical ventilation and

inflammation. Since newborn rodents are born during the saccular stage of lung development,

they are well suited to model BPD. The hyperoxia animal model is most commonly used

and results in acute lung injury, disrupted lung structure and impaired alveolarization and

vascularization, resembling the pathology seen in BPD. However, in contrast to the used

animal models, preterm infants normally receive lower concentrations of oxygen with a lot of

fluctuations, possibly resulting in differences in molecular signaling. Over the last years animal

models gave us a better insight in the pathogenesis of BPD and resulted in the development

of new therapies [107]. Since HIF1α and its expression of angiogenic factors seem to play an

important role in the development of BPD, this may be a good target for the treatment of

BPD.

Conclusion and future perspectives

Over the past decades, human studies focusing on abnormal pulmonary vascular development

have primarily been descriptive and molecular players have been investigated in archival and

resection material. Human cell cultures have been instrumental in describing molecular pathways

that may contribute to specific aspects of these congenital anomalies. Although these studies

have been very valuable for generating hypotheses about the origin of congenital pulmonary

diseases, the majority of the studies fail to identify the underlying mechanisms. Human studies

linking molecular mechanisms to diseases remain rare, because the limited number and quality

of human material prevents the initiation of large-scale studies. The combination of human

studies with animal models facilitates the analysis of molecular mechanisms and pathways,

although the different animal models only partly reflect and phenocopy the human pathology.

For instance, the mouse model for BPD is induced by exposing mice to much higher levels

of oxygen than the levels that are used in the clinical situation. The surgical CDH rabbit

model is sufficient to explore surgical techniques, but cannot be used to study the etiology and

pathogenesis of the disease.

The -omics era has opened new ways to generate and analyze large data sets, which facilitated

discovery and characterization of specific chromosomal locations, SNPs, associated with specific

diseases by Genome Wide Association Studies (GWAS). However, it remains unclear in the

majority of cases how the identified loci or SNP are involved in the origin of diseases. In the

near future, it will be interesting to investigate whether these SNPs harbor specific binding sites

for transcription factors or other DNA associating proteins, like DNA methylases. Alterations

in binding efficiency may have a huge impact on downstream processes, such as transcription,

leading to changes in developmental processes. It may also be that these loci SNPs are involved

in spatial and or temporal long-range chromosomal interactions, which may be investigated

with specific techniques, such as 3C-Seq [127].

Another putative approach is to investigate the interaction network between proteins, which

may identify specific partners that are involved in developmental processes. Searching for SOX2

binding partners in neural stem cells, we recently showed that SOX2 interacts with CHD7.

Mutations in SOX2 cause Anophthalmia-Esophageal-Genital (AEG) syndrome and mutations

in CDH7 are associated with CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia

of the nasal choanae, Retardation of growth and/or development, Genital and/or urinary

abnormalities, and Ear abnormalities and deafness). AEG and CHARGE have overlapping

clinical features, and disturbing the interaction between SOX2 and CHD7, or other members

of this cascade, may cause a variety of clinical symptoms. Moreover, several genes that are

implicated in related syndromes, like JAG1 (Alagille) and GLI3 (Pallister-Hall), were shown

to be activated by SOX2/CHD7. In addition, we showed that the HMG domain of SOX2 and
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SRY contains a binding site for the nuclear-cytoplasmic shuttling protein Exportin4. Several

mutations have been described in the human SRY gene, which were shown to be involved in XY

sex reversal. These mutations prevented SRY from associating with EXP4, leading to a block

in its translocation to the nucleus and thus its transcriptional activity [128]. So, the study of

protein-protein interactions may provide mechanistic insights in specific disease.

Aside from (familial) genetic studies, epigenetics has become a major field of interest, and

encompasses three classes: chromatin modifications (DNA methylation), histone modifications

(methylation, acetylation, phosphorylation) and noncoding RNA molecules (lncRNA, miRNA).

Recently, microRNA-206 (miR-206) was found as a possible triggering factor of early stage

hypoxia-induced PH by targeting the HIF-1α/Fhl-1 pathway [129]. Others have identified

epigenetic changes in adult patients suffering from chronic obstructive pulmonary disease

(COPD), asthma and interstitial lung disease (reviewed by Yang and Schwartz, 2011 [130]),

and it would be interesting to analyze pulmonary vascular diseases with these whole genome

epigenetics techniques to establish the full methyl-Cap-RNA Sequence, miRNA or lncRNA

profiles of the congenital pulmonary vascular diseases.

Fetal lung explants have been studied for a long time, and have generated ample evidence

for branching morphogenesis in the developing lung. Human lung explants have been used,

but these cultures also suffer from technical limitations [131]. As human samples are very

scarcely available, and mostly derived from end-stage disease, it is mandatory to investigate

alternative ways of setting up culture systems beyond the classical cell culture. Currently,

several emerging 3-D culture systems, such as tracheospheres [132], alveolar spheres [133], lung

organoids [134], decellularized lungs [135], bioartificial lung [136] and lung on a chip [137, 138],

are being employed to address specific developmental mechanisms or to optimize systems for

regenerative medicine (for reviews, see Brouwer et al., 2013 [139]; Lancaster and Knoblich,

2014 [140]; Nichols et al., 2014 [141]). Moreover, the generation of hiPS cells has become a

standard technique in most institutes, and the use of patient-specific cells in combination with

protocols to differentiate these cells into cells representing the three germ layers has provided new

ways to explore human (pulmonary vascular) diseases [142–147]. Especially the development

and employment of bioartificial lungs, such as the lung on a chip and related cultures, with

patient derived hiPS cells will contribute significantly to the understanding of how different cell

layers interact during development and disease. We believe that the use of these systems in

combination with patient-specific hiPS cells will also benefit the testing of putative therapeutic

agents.

In summary, understanding lung development and the molecular pathways leading to the

mature gas exchanging organ is necessary to decipher the underlying causes of congenital

pulmonary vascular diseases. It is obvious from the above perspectives that the interaction

between different scientific disciplines, such as development, cell science, genetics, bioengineering,

bioinformatics, will be a prerequisite to take the next steps in this process.
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Abstract

Background: Pulmonary hypertension is the major cause of mortality and morbidity in

congenital diaphragmatic hernia (CDH). Mutations in different genes of the transforming

growth factor β (TGFβ) and bone morphogenetic protein (BMP) pathways have previously been

described in both adult and pediatric patients with different forms of pulmonary hypertension.

Since studies on the activation of these pathways in CDH are scarce and show inconsistent

results, we analyzed the downstream activity of both pathways in the nitrofen-CDH rat model.

Methods and results: Pregnant Sprague-Dawley rats were treated with nitrofen at day 9.5

of gestation (E9.5) to induce CDH in the offspring. At E21 the whole lungs were analyzed at

RNA and protein level for the expression of important factors of both pathways. Subsequently,

we focused on the pulmonary vasculature, which showed increased phosphorylation of the

receptor-regulated Smad2 and decreased phosphorylation of Smad5 in the muscular wall of the

small pulmonary vessels using immunostaining. This was accompanied by increased proliferation

of the smooth muscle layer of these vessels.

Conclusions: We showed increased activation of the TGFβ pathway and decreased activation

of the BMP pathway in combination with increased proliferation in the pulmonary vasculature

of CDH rats, possibly indicating an important role of these pathways in the development of

pulmonary hypertension in this disease.
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Introduction

Congenital diaphragmatic hernia (CDH) is a severe developmental anomaly characterized by a

diaphragmatic defect and a variable extent of bilateral pulmonary hypoplasia and pulmonary

hypertension (PH). The concomitant PH can cause major problems in the newborn and is

responsible for the high mortality and morbidity in these patients. Although the morphology

of the pulmonary vessels is well described and consist of increased muscularization of the

pulmonary vessels in CDH [1], the molecular mechanisms and pathways involved in PH in these

patients are still largely unknown. Mutations in different genes involved in the transforming

growth factor β (TGFβ) and bone morphogenetic protein (BMP) pathways have been described

in both adult and pediatric patients with familial, heritable and idiopathic pulmonary arterial

hypertension (PAH). Of these genes the BMP receptor 2 (BMPr2) is most commonly affected

[2].

TGFβ is a negative regulator of airway branching in early lung development. However, TGFβ

signaling is also active in the vascular and airway smooth muscle and alveolar and airway

epithelium during late lung development. Both up- and down-regulation of TGFβ signaling

impairs the alveolarization process [3, 4], depending on a time dependent manner. Both TGFβ

and BMP have shown to influence proliferation of endothelial and smooth muscle cells and

control apoptosis and extracellular matrix secretion and deposition [5]. Studies on the TGFβ

pathway in CDH failed to show consistent results. Decreased expression of TGFβ1 was found

at mRNA level in the hearts of the nitrofen-CDH rat pups [6], where increased expression of

this factor was shown on immunostaining of the lung in the same animal model [7]. Others

even showed no differences at all in TGFβ and its activity on the phosphorylation of Smad2/3

in both human samples and the nitrofen-CDH rat model [8]. A study performed in pregnant

women carrying CDH fetuses showed decreased TGFβ in the amniotic fluid, but no differences

in expression of this factor in the lungs of these children after birth [9]. Both the TGFβ receptor

(TGFβr) 1 and 2 as well as endoglin, an auxiliary receptor of TGFβ, were found to be decreased

in nitrofen-CDH rat pups [10].

In contrast to the TGFβ pathway, results on factors of the BMP pathway in CDH seem to be

more consistent. Reduced expression of BMPr2 [11, 12] and BMP4 [13, 12] were found in the

lungs of different animal models of CDH. Furthermore, apelin, a target gene of BMPr2 which

can have a hypotensive effect, has shown to be decreased in nitrofen-CDH rat pups [14] and

activin receptor-like kinase 1 (ALK1), another receptor in this pathway, was upregulated in the

same animal model [15]. However, others did not find any differences in signaling downstream of

the BMPr [16] and so far no mutations were found in the BMPr2 gene in human CDH patients

[17]. Literature data on the TGFβ and BMP pathways in CDH is summarized in Table 3.1 and

an overview of both pathways is displayed in Figure 3.1.

Since most of the research has been done on the receptors in both pathways and not much is

known about the actual activation of these pathways, we analyzed the effect of downstream

signaling in the well-established nitrofen-CDH rat model.

Methods

Animal Model

Pregnant Sprague-Dawley rats received either 100 mg nitrofen dissolved in 1 ml olive oil or just

1 ml olive oil by gavage on gestational age day E9.5. Nitrofen induces CDH in approximately

70% of the offspring, while all pups have pulmonary hypertension [18]. At day E21 pups were

delivered by caesarean section and euthanized by lethal injection of pentobarbital.

All animal experiments were approved by an independent animal ethical committee and

according to national guidelines.
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Table 3.1: Overview of studies in TGFβ in CDH

Factor Animal Human

TGFβ Decreased [6] Decreased [9]
Increased [7] No difference [8]
No difference [8]

TGFβ receptor Decreased [10]

BMPr2 Decreased [12] No difference [17]
Decreased [11]

BMP4 Decreased [13]
Decreased [12]

ALK1 Increased [15]

pSmad 1/5/8 No difference [16]

Apelin Decreased [14]
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Figure 3.1: Overview of the TGFβ and BMP pathways. TGFβ = transforming growth factor β,
BMP = bone morphogenetic protein, ZEB2 = zinc finger E-box binding homeobox 2, P =
phosphorylation.
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Table 3.2: Primer sequences

Gene Sequence (forward 5’- 3’) Sequence (reverse 5’- 3’)

Tgfβ1 AACCAAGGAGACGGAATACAG GACTGATCCCATTGATTTCCA

Tgfβr1 CCATTGGCGGAATCCACGAAGAC CGCAAAGCTGTCAGCCTAGCTG

Tgfβr2 CGTGACACTGTCCACTTGTGAC GACGCACGTGGGAGAAGTGGCATC

Bmp4 CCATCACGAAGAACATCTGG GGATGCTGCTGAGGTTAAAGA

Bmpr1b ATGTGTTTCTGGAGGTATAGTGG CTCATGTCCTCATAAGAAGGGTC

Bmpr2 ATTGAGGGTGGGGTGGTAGT GTGAAACAAGGGTGCTGGTC

Alk1 GTCAAGAAGCCTCCAGCAAC CTCAACTCAGGCTTCGGG

Smad1 TCAATAGAGGAGATGTTCAAGCAGT GAAACCATCCACCAACACGC

Smad2 AGAATACCGGAGGCAGACAG GTTAATACTTTGTCCAACCACTGC

Smad3 GCTGTCTACCAGTTGACTCG TCACTGTCTGTCTCCTGTACTC

Smad4 TCATCCTGCTCCTGAATATTGGT AGTTACAATAGGACAGCTTGAAGG

Smad5 CAATAACAAGAGCCGCTTCTG ATAGATGGACACCTTTCCCG

Smad6 GTCCGATTCTACATTGTCTTACAC TGCTGGCATCTGAGAATTCAC

Smad7 AAACCAACTGCAGACTGTCC AGAAGAAGTTGGGAATCTGAAAGC

Zeb2 CCTATACCTACCCAACGGGA AGCAATTCTCCCTGAAATCCT

Actb AGATGACCCAGATCATGTTTGAG GTACGACCAGAGGCATACAG

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA isolation, cDNA synthesis and subsequent qPCR analysis was performed as previously

[19]. The gene-specific primers used are listed in 6.2.

Immunohistochemistry and Immunofluorescence Staining

Immunohistochemistry (IHC) was performed on 5 µm paraffin sections of lungs of both rats

and humans according to standard protocols, using the EnvisionTM detection system (Dako

Cytomatic, Glostrup, Denmark) [19]. Primary antibody used for IHC was ZEB2 (Sip1; 1:400,

[20]). Primary antibodies used for IF were smooth muscle actin (α-SMA; MS-113-P1; 1:500,

Thermo Scientific, Fremont, CA, USA), phosphorylated SMAD 2 (pSMAD2; 1:250, Cell

Signaling, Danvers, MA, USA), phosphorylated SMAD 1/5/8 (pSMAD1/5/8; 1:500, Kerafast,

Boston, MA, USA) and Ki-67 (1:100, Abcam, Cambridge, UK). Secondary antibodies against

mouse (α-SMA) and rabbit (pSMAD2, pSMAD1/5/8 and Ki-67) were used. Negative controls

were performed by omitting the primary antibody. Antigen retrieval with Citric Acid buffer

(pH 6.0) was used. Negative controls were performed by omitting the primary antibody.

Immunoblotting

Snap frozen lungs were homogenized on ice in Carin buffer, containing protease inhibitor

Complete (Roche, Basel, Switzerland). Samples were centrifuged at 14.200 RPM for 15

min and protein concentration in the supernatant was measured using the Bradford method.

Subsequently 50 microgram of protein per lane was loaded on SDS-PAGE and transferred to

nitrocellulose membranes using wetblotting. Blots were labeled with TGFβ (1:1000, Abcam),

pSMAD2 (1:1000, Cell Signaling), SMAD2 (1:1000, Cell Signaling), pSMAD5 (1:1000, Abcam),

SMAD5 (1:1000, Cell Signaling) and Sip1 (1:1000, [20]). Cofilin (1:400, Abcam) and β-actin

(1:1000, Cell Signaling) were used for loading control.
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Statistical Analyses

Data are presented as percentages, means (SD) for normally distributed variables. Univariate

analyses were performed using independent samples t-tests for normally distributed variables.

The analyses were performed using SPSS 21.0 for Windows (Armonk, NY, USA: IBM Corp.).

All statistical tests were two-sided and used a significance level of 0.05.

Results

TGFβ activation is upregulated in CDH

We first checked the expression of important factors in the TGFβ pathway in whole lung

homogenates at mRNA level, which showed an increase in both the Tgfβr1 and Tgfβr2, but

no differences in the ligand Tgfβ1. Both the receptor-activated Smads, Smad2 and Smad3, as

well as the co-Smad, Smad4, which form together an important complex for the translocation

into the cell nucleus, were increased in CDH (Figure 3.2A). No differences were found in

expression of the ligand Tgfβ1 at protein level (Figure 3.2B). For the activation of this pathway,

receptor-activated Smads are phosphorylated. The amount of phosphorylation of Smad2 was

not different in whole lung homogenates of CDH pups compared to control (Figure 3.2C).

Since the major problems in CDH are based on abnormalities in the pulmonary vasculature,

we focused on changes in the small pulmonary vessels (25-50 µm) using immunofluorescence

staining. This showed an increased number of SMA positive cells in the small vessels of CDH

pups expressing phosphorylated Smad2 (pSmad2), which points to an increased activation of

this pathway in the pulmonary vasculature (Figure 3.2D).

BMP activation is reduced in CDH

In contrast to the TGFβ receptors, we found a decrease in Bmpr1b in CDH and no differences

in the well-studied Bmpr2 between both groups at mRNA level in whole lung homogenates.

Activin receptor-like kinase 1 (Alk1), another receptor in the BMP/TGFβ pathway, was slightly

increased in CDH. Bmp4, one of the important ligands in this pathway, and the receptor-

activated Smad1 and Smad5 showed an increase in CDH (Figure 3.3A). Western blot on whole

lung homogenates showed a decreased expression of Smad5 in CDH with no differences in

relative phosphorylation (Figure 3.3B). However, when focusing on the pulmonary vasculature

in detail, the number of SMA positive cells expressing phosphorylated Smad1/5/8 (pSmad158)

Figure 3.2 (following page): TGFβ activation is upregulated in CDH. (A) Quantitative PCR shows a
significant increase in Tgfβr1 and Tgfβr2 in CDH (respectively p < 0.001 and
p = 0.033), but no difference in Tgfβ1. Smad2, Smad3 and Smad4 are all
significantly higher in CDH (respectively p = 0.001, p = 0.002 and p = 0.002).
N = 6 for both groups. (B) Western blot on whole lung homogenates shows
no differences in Tgfβ1 between control and CDH when corrected for total
protein amount, using β-actin as a loading control. N = 5 for both groups.
(C) pSmad2 protein expression related to the total Smad2 protein expression
is not different between control and CDH in whole lung homogenates. Cofilin
was used as a loading control. N = 5 for both groups. (D) Representative
images of immunofluorescence staining show an increase of pSmad2/Sma
double positive cells in small pulmonary vessels in CDH (p = 0.049). N = 3

samples for both groups. Per sample 6 vessels were counted. Scale bars
represent 10 µm.
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.
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was reduced in CDH on immunofluorescence staining, indicating decreased activation of this

pathway in the pulmonary vasculature (Figure 3.3C).

Downstream effects of TGFβ and BMP signaling

Both the TGFβ and BMP pathways can be inhibited by the inhibitory Smads, Smad6 and

Smad7. These proteins compete with Smad4 in the formation of complexes and can therefore

prevent transcription of genes. We found no differences in expression of Smad6 at mRNA

level, but Smad7 was slightly increased in CDH. Zeb2, a transcriptional corepressor of the

activated pathway, showed an increase in CDH at mRNA level (Figure 3.4A). However, no

significant differences in protein level of ZEB2 were found on western blot using whole lung

homogenates (Figure 3.4B) and no clear changes were seen in expression in the small vessels

with immunohistochemistry staining (Figure 3.4C). Since increased activation of the TGFβ

pathway can induce proliferation of pulmonary artery smooth muscle cells, we checked the

expression of Ki-67, a marker for proliferation. In small pulmonary vessels in CDH more SMA

positive cells expressed Ki-67 (Figure 3.5A,B).

Discussion

In this paper we show the upregulated activation of the TGFβ pathway and downregulated

activation of the BMP pathway in small pulmonary vessels in the nitrofen-CDH rat model.

No differences were observed in the amount of phosphorylation of the ligand TGFβ1 and both

Smad2 and Smad5 at protein level in whole lung homogenates. Striking is that the total amount

of Smad5 and pSmad5 were both less expressed at protein level in whole lung homogenates

of CDH pups, but no changes were present in the relative phosphorylation in the total lung.

However, the important pulmonary vessels of nitrofen-CDH pups showed increased expression

of pSmad2 and decreased expression of pSmad1/5/8 in the smooth muscle layer specifically.

Phosphorylation of the receptor-activated Smads is necessary for the activation of downstream

mediators and plays therefore an important role in this pathway. The increased expression of

the inhibitory Smad7 and corepressor Zeb2 at mRNA level might point to increased production

of these inhibitors in order to inhibit the increased activity of the TGFβ pathway. The absence

of changes in Smad6, which only inhibits the BMP pathway, strengthens this idea. However,

the expression of ZEB2 at protein level in whole lungs only showed a trend to increase and

no clear differences were seen on immunostaining of the pulmonary vessels. Both TGFβ and

BMP can regulate proliferation of the vascular cells and previous studies have shown increased

proliferation of pulmonary artery vascular smooth muscle cells from patients with PAH without

CDH in response to TGFβ1 [21, 22]. We showed increased proliferation of the smooth muscle

layer of small pulmonary vessels in the nitrofen-CDH pups as well, which might indicate an

abnormal response of these cells to the increased TGFβ activity.

TGFβ has found to be a target candidate of retinoic acid (RA) [23]. Increased activity of

the TGFβ pathway with higher levels of pSmad2 has been described in RA deficient foreguts

and a mouse model with RA deficiency. In that study lung agenesis was observed both by

decreasing RA levels as well as by increasing TGFβ levels, indicating the interaction between

both pathways early in development [24]. Furthermore, a study in rats with alveolar hypoplasia

caused by caloric restriction showed improvement of the alveolar formation after treatment

with RA, accompanied by a decrease in TGFβ activity at postnatal day 21 [25]. These findings

strengthen our results of increased TGFβ activity in the nitrofen treated rat model, where

nitrofen has been shown to disrupt the retinoid signaling pathway [26]. Since a reduction

in retinol and retinol binding protein (RBP) has been found in human newborns with CDH

as well [27, 28], the increased activity of the TGFβ pathway might play an important role
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Figure 3.3: BMP activation is reduced in CDH. (A) Quantitative PCR shows a significantly decreased

expression of Bmpr1b (p = 0.016), no differences in Bmpr2 and an increased expression of Alk1
(p = 0.003) in CDH. Bmp4, Smad1 and Smad5 are all significantly higher in CDH (respectively
p < 0.001, p = 0.009 and p < 0.001). N = 3 (Alk1 and Bmp4) or 6 (rest) for both groups. (B)
pSmad5 protein expression related to the total Smad5 protein expression is not different between
control and CDH in whole lung homogenates. Cofilin was used as a loading control. N = 5

for both groups. (C) Representative images of immunofluorescence staining show a decrease of
pSmd158/Sma double positive cells in small pulmonary vessels in CDH (p = 0.016). N = 3

samples for both groups. Per sample 6 vessels were counted. Scale bars represent 10 µm.
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.
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Figure 3.4: No clear differences in inhibitors of TGFβ in CDH (A) Quantitative PCR shows no difference
in the inhibitory Smad6, but increased expression of inhibitory Smad7 and Zeb2 (respectively
p < 0.001 and p = 0.003). N = 3 (Zeb2) or 6 (rest) per group. (B) Western blot of whole lung
homogenates shows no differences of Zeb2 between both groups. β-actin was used as a loading
control. N = 5 for both groups. (C) Representative images of immunohistochemistry staining
show no differences in expression of Zeb2 in the small vessels of all lungs. N = 3 samples for
both groups. Scale bars represent 100µm (low power) and 20µm (high power).
**p < 0.01, ***p < 0.001. Error bars represent SD.
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pulmonary vessels in CDH (p = 0.001). N = 3 samples for both groups. Per sample 4 vessels
were counted. Scale bars represent 10µm.
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.

in this disease. The previous described involvement of TGFβ and BMP in the proliferation

of pulmonary vascular cells [21, 22] in combination with our results on the relation between

proliferation and TGFβ/BMP activation in the pulmonary vasculature possibly indicate a role

of these pathways in the development of the pulmonary vasculature and pulmonary hypertension

in particular.

The inconsistent results found in the literature on the expression of different factors in this

pathway might possibly be explained by the large differences during gestation. In this study

we found some variability between samples as well, showing that only small differences in age

might already have large consequences.

In conclusion, we found increased phosphorylation of Smad2 and decreased phosphorylation

of Smad5 in the vessel wall of small pulmonary vessels of nitrofen-CDH pups, indicating an

increased activation of the TGFβ pathway and a decreased activation of the BMP pathway in

the pulmonary vasculature of these animals at day 21 of gestation, possibly leading to increased

proliferation of the muscularized vessel wall. Since the different factors in these pathways

are differently expressed during gestation and might differ from the human situation, further

research has to be done at different developmental stages and most importantly in material of

human patients.
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Abstract

Background: Patients with congenital diaphragmatic hernia (CDH) have structural and

functional different pulmonary vessels, leading to pulmonary hypertension. They often fail to

respond to standard vasodilator therapy targeting the major vasoactive pathways, causing a

high morbidity and mortality. We analyzed whether the expression of crucial members of these

vasoactive pathways could explain the lack of responsiveness to therapy in CDH patients.

Methods: The expression of direct targets of current vasodilator therapy in the endothelin

and prostacyclin pathway was analyzed in human lung specimens of control and CDH patients.

Results: CDH lungs showed increased expression of both ETA and ETB endothelin receptors

and the rate-limiting Endothelin Converting Enzyme (ECE-1), and a decreased expression of

the prostaglandin-I2 receptor (PTGIR). These data were supported by increased expression

of both endothelin receptors and ECE-1, endothelial nitric oxide synthase and PTGIR in the

well-established nitrofen-CDH rodent model.

Conclusions: Together, these data demonstrate aberrant expression of targeted receptors

in the endothelin and prostacyclin pathway in CDH already early during development. The

analysis of this unique patient material may explain why a significant number of patients do

not respond to vasodilator therapy. This knowledge could have important implications for the

choice of drugs and the design of future clinical trials internationally.
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Background

Pulmonary hypertension (PH) is the leading cause of morbidity and mortality in patients

with congenital diaphragmatic hernia (CDH) [1]. The altered development of the pulmonary

vasculature and the disordered pulmonary vascular remodeling [2] in combination with the

imbalance of vasoactive mediators caused by endothelial dysfunction result in the arrest of

pulmonary vascular growth in these patients. Current treatment of CDH patients is not evidence

based [3] and is derived from studies in adults, leading mainly to off-label and unlicensed use of

drugs. Current knowledge is based on compassionate use and case reports, while some patients

with CDH were included in trials that were underpowered for definitive conclusions. Even

international therapy guidelines are based on consensus only (level 3 evidence) [4]. In 2012,

experts evaluated the current antenatal and postnatal management of CDH and emphasized the

importance of optimal management of PH in these patients [5]. Worldwide, PH treatment is

mainly directed against the receptors of the endothelin (ET) and prostacyclin (PGI2) pathways

or the conversion of cyclic guanosine monophosphate (cGMP) in the nitric oxide (NO) pathway

(Figure 4.1A). In spite of these targeted treatments, it is still largely unknown how the different

components of these pathways are expressed in lungs of unaffected individuals and CDH patients.

Previous studies reported increased levels of both the endothelin A (ETA) and B (ETB)

receptors in human CDH as well as in the nitrofen rat model [6, 7]. Endothelin-1 (ET-1) is a

potent vasoconstrictor [8] and is increased in lung tissue of patients with pulmonary hypertension.

Moreover, high plasma levels of circulating ET-1 associated with the severity of PH in human

CDH [9]. NO reduces the affinity of the ETA receptor for ET-1 and may therefore terminate

the ET-1 mediated signaling [10]. NO is synthesized by different NO synthases (NOS), of

which endothelial NOS (eNOS) was decreased in some human and rat CDH studies [11–13].

However, we and others showed no differences or even an increased expression of eNOS in both

human and rat CDH [14–17]. PGI2 is an important mediator of vasodilation, acting through

the prostaglandin-I2 receptor (PTGIR) [18]. Several prostacyclin receptor agonists have been

used in the treatment of persistent pulmonary hypertension of the newborn with variable effects

[19–21]. Limited data are available about the use of these drugs in patients with CDH, but the

few case reports show contrasting results [22–24]. An overview of the current data for human

and the rat model is provided (Table 4.1 and 4.2).

Since CDH patients respond poorly to current treatment strategies, we analyzed for the first

time the expression of the direct targets of the most commonly used vasodilator drugs, as well

as some of the important members of all three major pathways. Using unique patient lung

material, we show an increased expression of both endothelin receptors and the rate-limiting

endothelin converting enzyme (ECE-1), as well as a decreased expression of the prostaglandin-I2
receptor in human CDH. Moreover, we found changes in the expression of these and other

important factors of the pathways in rat CDH (Figure 4.1B).

Methods

Human Lung Samples

Human lung samples were retrieved from the archives of the Department of Pathology of

the Erasmus Medical Center, Rotterdam. In our high-volume, leading center of the EURO

consortium [4], approximately 15 to 20 CDH patients a year are born, which ensures a large

experience in the treatment of this disease. Paraffin-embedded lung samples, which did not

show severe hemorrhage or necrosis, were selected of control and CDH patients and of patients

with lung hypoplasia or pulmonary hypertension with other cause than CDH. Only the most

extreme cases of left-sided CDH with a survival of less than 7 hours were selected to prevent

secondary sequelae. Patient characteristics are described in Table 4.3.
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Figure 4.1: Pathways in vasodilation and vasoconstriction Overview of the major pathways involved in
vasodilation and vasoconstriction (A) and the aberrant expression in both human and rat
congenital diaphragmatic hernia (CDH) (B).
Solid arrows represent up- or downregulation in human CDH, dashed arrows represent up- or
downregulation in rat CDH. ECE-1 = endothelin converting enzyme 1, ETA = endothelin A, ETB
= endothelin B, eNOS = endothelial nitric oxide synthase, sGC = soluble guanylate cyclase, COX
= cyclooxygenase, PGIS = prostaglandin synthase, PGI2 = prostaglandin-I2, AC = adenylate
cyclase, TBXAS1 = thromboxane synthase, TXA2 = thromboxane.
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Table 4.1: Overview of studies in human CDH

Our group Others

Increased expression of ETA and ETB (protein
level), Increased expression of ECE-1 (protein level)

Increased ET-1 (plasma levels and protein level)
[25], Increased ET-1 (plasma levels) [9], Increased
expression of ETA and ETB (RNA and protein
level) [6]

No differences in eNOS expression [15] Increased expression of eNOS in arteriolar endothe-
lium and alveolar epithelium (protein level) [16],
No differences in eNOS expression (protein level)
[12], Decreased expression of eNOS (protein and
RNA level) [13]

Decreased expression of Ptgir (protein level) No information about prostaglandin-I2

Table 4.2: Overview of studies in experimental rat CDH

Our group Others

Increased expression of ETA (RNA and protein
level) and ETB (RNA level), Increased expression
of ECE-1 (RNA level)

Increased expression of ETA and ETB (RNA and
protein level) [7], Increased expression of ET-1
after 1 and 6 hours of ventilation (RNA level) [17],
Increased response of arterioles to ET-1 [26]

Increased expression of eNOS (RNA and protein
level)

Increased expression of eNOS (RNA and protein
level) [14], Increased expression of eNOS after 1
hour of ventilation (RNA level) [17], Decreased
expression of eNOS (RNA and protein level) [11]

Increased expression of Ptgir (RNA level) and
decreased expression of Tbxas1 (RNA level)

Increased levels of prostaglandin-I2 and an in-
creased ratio of prostaglandin-I2 and thromboxane
(protein level) [27]
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Table 4.3: Patient characteristics

Disease GA Sex Age of death Cause of death

Control 18+0 Male - Abortion

24+6 Female Minutes Prematurity

26+5 Female 1 hour Prematurity

33+0 Male Minutes Developmental delay

38+3 Male Minutes Asphyxia

38+5 Male 1.5 hours Anencephaly

40+0 Female 18 hours Asphyxia

CDH 17+6 Male - Abortion

21+4 Male - Abortion

36+2 Male Some hours Respiratory failure

36+2 Female Some hours Respiratory failure

37+2 Male 7 hours Respiratory failure

38+0 Male 2 hours Respiratory failure

40+0 Female Some hours Respiratory failure

LH 22+3 Male - Abortion

28+5 Female 15 minutes Respiratory failure

41+0 Male 30 minutes Respiratory failure

PH 34+3 Female 4 days PPHN

37+1 Male 4 days Respiratory failure

GA = gestational age (weeks + days), CDH = congenital diaphragmatic hernia, LH = lung hypoplasia,
PH = pulmonary hypertension, PPHN = persistent pulmonary hypertension of the newborn.

Animal Model

The well-established animal model was used, where in short pregnant Sprague-Dawley rats

received either 100 mg nitrofen dissolved in 1 ml olive oil or just 1 ml olive oil by gavage on

gestational age day E9.5. Nitrofen induces left-sided CDH in approximately 70% of the offspring,

while all pups have pulmonary hypertension. At day E21 pups were delivered by caesarean

section and euthanized by lethal injection of pentobarbital.

All animal experiments were approved by an independent animal ethical committee and

according to national guidelines.

Immunohistochemistry and Immunofluorescence Staining

Immunohistochemistry (IHC) was performed on 5 µm paraffin sections of lungs of both rats

and humans according to standard protocols, using the EnvisionTM detection system (Dako

Cytomatic, Glostrup, Denmark) [28]. Primary antibodies used for IHC were Endothelin receptor

A (ETA; 1:5000 (rat) 1:100 (human); Alamone, Jerusalem, Israel), Endothelin receptor B (ETB;

1:2500 (rat) 1:500 (human); Alamone), Endothelin Converting Enzyme (ECE-1; 1:500 (human);

Abcam, Cambridge, MA, USA), endothelial nitric oxide synthase (eNOS; 1:400 (rat); Thermo

Fisher Scientific, Waltham, MA, USA) and prostaglandin-I2 receptor (Ptgir; 1:1000 (rat) 1:500

(human); Cayman Chemical, Ann Arbor, Michigan, USA). Antigen retrieval with Tris-EDTA

buffer (pH 9.0) was used. Negative controls were performed by omitting the primary antibody.
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Table 4.4: Primer sequences

Gene Sequence (forward 5’- 3’) Sequence (reverse 5’- 3’)

Eta AACCTGGCAACCATGAACTC ATGAGGCTTTTGGACTGGTG

Etb CAGGATTCTGAAGCTCACCCTTT TCCAAAACCAGCAAAAAACTCA

Et-1 TGTGCTCACCAAAAAGACAAGAA GGTACTTTGGGCTCGGAGTTC

Ece-1 GCAAGAACATAGCCAGCGAG CTCCGAGTATCTTCATCCATCC

eNos CATACTTGAGGATGTGGCTG CCACGTTAATTTCCACTGCT

Sma TGACCCAGATTATGTTTGAGAC AGAGTCCAGCACAATACCAG

Ptgis CATCAAACAGTTTGTGGTCCT CAAAGCCATATCTGCTAAGGT

Ptgir CACGAGAGGATGAAGTTTACCA AATCCTCTGATCGTGAGAGGC

Tbxas1 AGACTCAGGTTCCACTTCAG TCACACCTGCCTTCTATGTC

Tbxa2r ACTGTGAGGTGGAGATGATGG CAGGATGAAGACCAGCAAGG

Actb AGATGACCCAGATCATGTTTGAG GTACGACCAGAGGCATACAG

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA isolation of whole lungs of rat pups, cDNA synthesis and subsequent qPCR analysis was

performed as previously described [28]. The gene-specific primers used are listed in Table 4.4.

Actb was used as housekeeping gene.

Statistical Analyses

Data are presented as percentages, means (SD) for normally distributed variables. Univariate

analyses were performed using independent samples t-tests for normally distributed variables.

The analyses were performed using SPSS 21.0 for Windows (Armonk, NY, USA: IBM Corp.).

All statistical tests were two-sided and used a significance level of 0.05.

Results

In order to identify a possible explanation for the unresponsiveness of CDH patients to different

vasodilator therapies, the expression of receptors which are currently targeted during treatment

as well as other critical factors of the different vasoactive pathways were analyzed. Therefore, a

unique set of lungs from CDH patients were used and these data were verified using the more

dynamical nitrofen rat model.

Human

Since current treatment is, besides the use of inhaled NO (iNO), based on targeting the

receptors in both the prostacyclin and endothelin pathway, we started by analyzing the

expression of the critical proteins of both pathways in human lungs of control and CDH

patients. Previously, we and others already showed no apparent differences in the NO pathway

[12, 15]. Immunohistochemistry was used to determine the expression pattern of the receptors in

lung samples of CDH patients and age-matched controls. Human control lung samples showed

little expression of the main target of the prostacyclin therapy, the important prostacyclin

receptor PTGIR, in the fetal period, which sharply increased later during gestation at the

preterm and term age (Figure 4.2A). However this significant increase was absent in CDH

(Figure 4.2B). The ETA receptor, which induces vasoconstriction and cell proliferation, was

expressed in the small (25-50 µm) and larger (> 50µm) vessels as well as in the very small

capillaries < 25µm) in CDH, contrasting the control lungs in which only the small and larger
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Figure 4.2: Suppressed progression of prostaglandin-I2 receptors during gestation in human CDH

Representative images show progressive expression of PTGIR in the vessels during gestation
in human control patients (A). In human CDH patients there is only progression to a lesser
extent (B).
Scale bars represent 20µm. Patients: GA 18+0, 33+0 and 38+0 (control), GA 21+4, 36+2
and 37+2 (CDH).

vessels expressed this receptor (Arrowheads in Figure 4.3A,B). The ETB receptor, involved

in vasodilation through the release of NO and PGI2 (Figure 4.1), was expressed both in the

bronchial epithelium and in some of the larger vessels (> 50µm) in CDH (Arrowheads in Figure

4.3A,B), whereas in control lungs expression of ETB was found only in the bronchial epithelium

(Figure 4.3B). Since ECE-1, a membrane-bound metalloprotease that converts big-endothelin

into the biologically active compound, is the rate-limiting factor in the ET pathway, we analyzed

this enzyme as well in the human samples. Early during gestation, in the fetal period, ECE-1

is minimally expressed in the vessels of the human control lung samples, with an increase

at preterm and term age (Figure 4.3C). Increased expression of this enzyme at both fetal,

preterm and term age was observed in CDH (Figure 4.3D), indicating a potential increased

bio-availability of active ET-1.

To exclude that the differences in expression patterns of the crucial prostacyclin and endothelin

receptors and the rate-limiting factor ECE-1 was solely an effect of lung hypoplasia (LH) or PH,

we performed immunohistochemistry on lungs of patients with LH and PH with other cause

than CDH. The PTGIR receptor expression was reduced in both LH and PH (Figure 4.4A).

Increased expression of ETA was detected in the smallest vessels in lungs of both LH and PH

(Arrowheads in Figure 4.4B), whereas increased expression of ETB was only observed in both

small and very small vessels of lungs of PH patients (Arrowheads in Figure 4.4C). ECE-1 was

not expressed differently in both LH and PH lung samples (Figure 4.4D).

Rat

In order to validate these interesting human data, we evaluated the expression patterns of the

proteins of these three pathways in the nitrofen rat model, which was supplemented with RNA

and protein expression analysis of related factors. Real-time qPCR showed that the mRNA

expression of both the Eta and Etb receptors was significantly higher in lungs of E21 pups with

CDH compared to those of control pups. We also analyzed the expression of the ETA and

ETB ligand, Et-1, but no significant differences were found between the groups. However, the

mRNA encoding the rate-limiting factor Ece-1 was significantly increased in CDH compared to

control, confirming the human data (Figure 4.5A). Next, we analyzed the protein expression

pattern of the ET receptors with immunohistochemistry. The ETA receptor was expressed
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Figure 4.3: Increased expression of both the ETA and ETB receptor and endothelin converting enzyme in

human CDH. Representative images show expression of the ETA receptor in the larger vessels
and no expression of ETB in control (A), where there is increased expression of ETA in the
smaller vessels in CDH patients and expression of the ETB receptor in some of the vessels
in CDH (B). ECE-1 is progressively expressed in the vessels in human control patients during
gestation (C), where this expression is decreased in CDH patients at both fetal, preterm and
term age (D).
Arrows indicate vessels, A indicates airways. Scale bars represent 100 µm (low power) and 20
µm (high power). Patients: GA 38+3 (control), GA 38+0 and 37+2 (CDH) (A+B). Patients:
GA 18+0, 26+5 and 38+0 (control), GA 21+4, 36+2 and 37+2 (CDH) (C+D).
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Figure 4.4: Expression of prostaglandin and endothelin factors in human LH and PH patients Represen-
tative images show decreased expression of PTGIR in both patients with LH and PH (A). The
expression of ETA is increased in the smaller vessels of patients with lung hypoplasia (LH) and
pulmonary hypertension (PH) with other cause than CDH (B) and the expression of ETB is
only increased in the vessels of patients with PH (C). ECE-1 is not differently expressed in the
vessels both LH and PH lung samples (D).
Scale bars represent 20 µm. Arrows indicate very small vessels. Patients: GA 38+3 (control),
GA 41+0 (LH), GA 34+3 (PH).
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in the small capillaries of both groups at E15 until E21 with a stronger expression level in

CDH (Figure 4.5B). At E21 only CDH lungs showed expression of the ETA receptor in the

larger vessels (> 50µm) (Arrowheads in Figure 4.5C). The ETB receptor was expressed in the

bronchial epithelium of all lungs without significant differences between control and CDH at all

ages (Figure 4.5D-E). There was a significant higher mRNA expression of eNos in CDH rats

compared to control in relation to all cells as well as in relation to only the smooth muscles

cells (Figure 4.6A) or endothelial cells (data not shown). This increased expression was clearly

detectable with immunostaining in the larger and smaller (< 50µm) vessels at E21 (Arrowheads

in Figure 4.6B). However, no obvious differences were noted earlier during development (E15 till

E19) (Figure 4.6C). Although there was no difference in expression of prostaglandin-I2 synthase

(Ptgis) between control and CDH rat pups, there was a slight increase in the expression of

Ptgir and the prostaglandin-E1 receptor (Ptger1 ) in CDH at the mRNA level in both the whole

lung as well as compared to the number of smooth muscle cells. In contrast, thromboxane

synthase (Tbxas1 ), a contractile ligand in the prostanoid pathway, was clearly lower expressed in

CDH, whereas the thromboxane receptor (Tbxa2r) did not show significant differences (Figure

4.7A). However immunostaining showed no clear differences in the vessels between both groups

(Arrowheads in Figure 4.7B).

Discussion

This is the first study showing the aberrant expression of different important factors in the

endothelin, NO and PGI2 pathways all combined together in CDH patients (Figure 4.1B) and

human patients with LH or PH with other cause, possibly explaining why a large number of

patients do not respond to the current vasodilator therapy. We focused our research on direct

targets of the most frequent used drugs to investigate the effectiveness of the current approach

and combined this with the analysis of some key factors of the different pathways.

Since our unique human CDH material is scarce and a limiting factor, because only specimens

of newborns who lived for a short period were analyzed to prevent secondary morphological

changes, supplemental analyses were done on lung tissue of the dynamical nitrofen rat model.

In line with previous results in both human and rat studies, we found a significant increased

expression of the ETA and ETB receptor, important targets of vasodilator therapy, in human

CDH patients and the nitrofen rat model [6, 7, 29]. However, we are the first to show an

increased expression of the crucial ECE-1 enzyme in both human pulmonary vessels of CDH

patients and whole lung homogenates of nitrofen treated rat pups. ECE-1 converts big ET-1 into

the active form of ET-1 and is the rate-limiting step in the production of ET-1 [30]. Although

there was no apparent difference in total ET-1 in CDH pups, the higher expression of ECE-1 in

lungs of CDH pups may lead to an increase in the active form of ET-1.

In contrast to other studies [11–13, 29], we found an increased expression of eNOS in CDH

rats. The increased eNOS expression in CDH may be explained by activation of eNOS because

of the decreased NO availability, or the process of eNOS uncoupling. In case of decreased

bioavailability of the cofactor tetrahydrobiopterin (BH4), eNOS produces superoxide instead of

NO [31]. This superoxide leads to oxidative stress, which has been observed in vessels of patients

with PH [32]. The enhanced activation of the ETA receptor might lead to the increase in

superoxide production through the induction of reactive oxygen species (ROS) and can thereby

induce SMC proliferation and vasoconstriction. Thus, eNOS uncoupling leads to a reduction

in NO bioavailability without a necessary change in the amount of eNOS [31]. Previously, we

showed a slight increase in expression of the cGMP-specific phosphodiesterase 5 (Pde5) in

nitrofen treated rat pups. However, no differences were found in its phosphorylation or its

downstream targets, protein kinase G1 (Prkg1) and Prkg2 [33].

The increased expression of PTGIR in control lungs during gestation could be expected since
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Figure 4.5: Upregulation of ET-receptors in CDH rat pups. RNA expression of the ETA receptor (Eta)
and ETB receptor (Etb) shows a significant increase in rat CDH pups (p < 0.001 and p < 0.05,
respectively). RNA expression of ET-1 shows no differences between control and CDH, where
Ece-1 is significantly increased (p < 0.05) (A). Representative images show increased expression
of the ETA receptor in the parenchyma of CDH pups at all ages during development (E15-E21)
(B) and in the larger vessels at E21 (C). Representative images show expression of the ETB
receptor in only the bronchial epithelium in both control and CDH pups at all ages during
development (E15-E21) (D,E).
*p < 0.05, ***p < 0.001. Error bars represent SD. Arrows indicate vessels, A indicates airways.
Scale bars represent 100µm (low power) and 20µm (high power).
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Figure 4.6: eNOS expression is increased at the end of gestation in CDH rat pups. RNA expression of
eNOS is increased in rat CDH in all cells (p < 0.01) and in the smooth muscle cells (Sma) only
(p < 0.001) (A). Representative images show increased expression of eNOS in the vessels of
CDH pups at E21 (B), but not at other ages during gestation (C).
**p < 0.01, ***p < 0.001. Error bars represent SD. Arrows indicate vessels, A indicates airways.
Scale bars represent 100µm (low power) and 20µm (high power) (B) and 50µm (C).

it has been shown that the placental PGI2 increases gradually toward term [34]. The decreased

expression in CDH could be a sign of less activation of this pathway. In contrast to our human

results, we found no differences in the expression of Ptgir in CDH rat pups and an increase

of this receptor on mRNA level. Since PGI2 is a potent vasodilator and thromboxane A2

(TXA2) a potent vasoconstrictor, the increased expression of Ptgir and decreased expression of

Tbxas1 was unexpected. However, this aberrant balance between PGI2 and TXA2 in CDH was

already previously described by our group [27]. We showed an increased level of 6-keto-PGF1α,

the stable metabolite of PGI2, and an increased ratio of 6-keto-PGF1α and TXA2 in both

lung homogenates and broncho-alveolar lavage (BAL) fluid of nitrofen treated rat pups. The

discrepancy between the increased mRNA expression of Ptgir in CDH lungs and the absence of

differences at the protein level, may be explained by a negative feedback because of a decreased

activation of downstream targets of prostacyclin signaling. This may lead to an enhanced

degradation of the Ptgir, or a decreased translation of the mRNA.

Current treatment of CDH patients with PH is not evidence based [3] and most patients

respond poorly to the used medication. Inhaled NO (iNO) is most commonly used as a first line

drug, but its use varies significantly among different centers internationally [35]. In contrast to

the promising results of iNO in patients with persistent pulmonary hypertension of the newborn

[36], in CDH studies have failed to show its efficacy [35, 37], as no trials have been performed

to evaluate the potential role of iNO specifically in CDH patients. Apart from iNO therapy

there are some case reports on the use of sildenafil and prostacyclins in CDH patients with

variable results [23, 24, 38, 39]. However, administration of enteral sildenafil in neonates leads to

highly variable plasma concentrations because of variable gut absorption and/or limited hepatic

clearance [40]. The recent availability of intravenous sildenafil may change its application [41],

but solid pharmacokinetic data on optimal dosage are still to be published. Treatment with

endothelin receptor antagonists is even a bigger problem since these drugs are only available in

oral form, while data of its use in newborns are virtually absent concerning dosage absorption

and safety. The fact that the current therapy should be considered mainly as ”trial and error”

and is effective in the minority of patients with CDH strengthens our results that there are



68
∣

∣ Chapter 4

A

B Control CDH

A

A A

Control CDH

***

Control CDH

**

Control CDH

NS

Control CDH

NS

Control CDH

**

Tbxas1Ptgis Ptger1

Ptgir Tbxa2r

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

Figure 4.7: Prostacyclin expression in rat pups. RNA expression of the prostaglandin-I synthase (Ptgis)
did not show any differences between control and CDH rat pups, but there was a significant
increased expression of the prostaglandin-I2 receptor (Ptgir) (p < 0.001) and the prostaglandin-
E1 receptor (Ptger1) (p < 0.01) in CDH rat pups. In contrast, thromboxane synthase (Tbxas1)
was significantly decreased in CDH (p < 0.01) with no differences in the thromboxane receptor
(Tbxa2r) (A). Representative images do not show clear differences of PTGIR expression in the
pulmonary vessels between both groups (B).
**p < 0.01, ***p < 0.001. Error bars represent SD. Arrows indicate vessels, A indicates airways.
Scale bars represent 100µm (low power) and 20µm (high power).



Vasoactive pathways in congenital diaphragmatic hernia
∣

∣ 69

C
h
a
p
te
r
4

more pathways affected. Furthermore, the severity of PH in CDH patients has been known as

an important predictor of the outcome and further evaluation of current therapies has been

recommended by experts in the field [5]. Future treatment should become more personalized in

this group of patients using pathway directed clinical trials and risk stratification [42].

Ideally, we would like to be able to directly correlate the findings of aberrant expression of

the different vasoactive pathways with the individual response of patients to specific vasoactive

drugs. However, given the overall limitations of these types of studies and the lack of material of

patients who did respond to one of the three therapies, this remains impossible as repeated lung

biopsies would be needed to accomplish this. This approach is unethical for obvious reasons

and no IRB would ever approve such an approach.

In conclusion, our study shows the aberrant expression of specific vasodilator drug targets and

crucial, rate-limiting factors in human CDH and the nitrofen rat model in both the endothelin,

NO and PGI2 pathway already early during development. Since PH is still a major problem

and the most important cause of morbidity and mortality in CDH patients nowadays while

current treatment strategies are disappointing, a good insight in these pathways is needed for

specific and patient directed targeting of pharmacotherapy.
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Abstract

Patients with congenital diaphragmatic hernia (CDH) suffer from severe pulmonary hypertension

due to altered development of the pulmonary vasculature, which is often resistant to vasodilator

therapy. Current treatment starts postnatally even though significant differences in the

pulmonary vasculature are already present early during pregnancy. We examined the effects

of prenatal treatment with the phosphodiesterase-5 inhibitor sildenafil on pulmonary vascular

development in experimental CDH starting at a clinical relevant time. The well-established,

nitrofen induced CDH rodent model was treated daily with 100 mg/kg sildenafil from day

17.5 until day 20.5 of gestation (E17.5-20.5). Importantly, this timing perfectly corresponds to

the developmental stage of the lung at 20 weeks of human gestation, when CDH is detectable

by 2D-ultrasonography and/or MRI. At E21.5 pups were delivered by caesarean section and

euthanized by lethal injection of pentobarbital. The lungs were isolated and subsequently

analyzed using immunostaining, real-time PCR and volume measurements. Prenatal treatment

with sildenafil improved lung morphology and attenuated vascular remodeling with reduced

muscularization of the smaller vessels. Pulmonary vascular volume was not affected by sildenafil

treatment. We show that prenatal treatment with sildenafil within a clinically relevant period

improves pulmonary vascular development in an experimental CDH model. This may have

important implications for the management of this disease and related pulmonary vascular

diseases in human.
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Introduction

Congenital diaphragmatic hernia (CDH) is a developmental defect characterized by an incomplete

diaphragm and lung hypoplasia [1]. CDH patients have a high risk of mortality and morbidity

due to the associated pulmonary hypertension, which is the result of altered development of the

pulmonary vasculature and disordered pulmonary vascular remodeling [2–4]. Advancement in

medicine has resulted in early detection of CDH by ultrasonography at 20 weeks of gestation,

but the severity of clinical symptoms postnatally remains poorly predictable at this stage due

to significant differences in pulmonary vascular resistance and flow after birth. In addition, the

pulmonary hypertension in CDH is often unaffected by standard vasodilator therapy and the

lack of randomized controlled trials prevents the implementation of alternative drugs. Trials

with Nitric Oxide (NO), one of the most commonly used drugs in newborns, failed to show

consistently positive effects in CDH patients [5]. The impaired responsiveness to NO may be due

to rapid degradation of the intracellular messenger cyclic guanosine monophosphate (cGMP) by

phosphodiesterase-5 (PDE5) [6]. Binding of cGMP to PDE5 stimulates the phosphorylation and

activation of PDE5 by cGMP dependent protein kinase G (PKG), which results in the conversion

of cGMP into GMP [7]. Sildenafil is a potent PDE5 inhibitor, leading to an accumulation of

cGMP and thus the continuous activation of PKG. PKG has several physiological substrates,

which are involved in smooth muscle cell (SMC) relaxation by lowering intracellular calcium [8, 9].

Sildenafil also reduces inflammation, improves early postnatal survival and prevents pulmonary

vascular remodeling in different experimental animal models of pulmonary hypertension without

CDH [10–12] and prolongs survival and improves lung structure in a neonatal hyperoxia rat

model [13]. It has been successfully used in the postnatal treatment of persistent pulmonary

hypertension of the newborn (PPHN) [14–19] and pulmonary hypertension in patients with

congenital heart disease [20]. There are no randomized controlled trials of sildenafil in CDH

patients, but there are case reports showing positive effects after postnatal treatment [21, 22].

Previously, we showed thickening of the smooth muscle cell layer in arterioles, neomuscularization

of small capillaries and phenotypic changes of the smooth muscle cells in the vascular wall

in lungs of CDH patients at 30 weeks of gestation, indicating that significant differences in

vascular structure are already present in unborn children that will develop PH after birth [23].

The premature differentiation of vascular smooth muscle cells and the early structural changes

in pulmonary vascular development suggest that antenatal treatment of CDH patients could

be beneficial. Recently, Luong et al. showed a reduced pathology in experimental CDH after

prolonged antenatal treatment with sildenafil [24]. However, they started the daily treatment

with sildenafil already at day 10.5 of gestation, when the lung bud is just emerging from the

primitive foregut. At this embryonic phase of lung development there are no signs of CDH

pathology, yet. Therefore, it is unclear whether the prophylactic treatment prevented the

development of pathological features, or that the sildenafil indeed regressed the clinical signs.

Since human CDH can be diagnosed at 20 weeks of gestation, the canalicular phase of lung

development, we analyzed the therapeutic effects of sildenafil in the nitrofen induced rat CDH

model starting at the corresponding gestational age (E17.5). In rat, the CDH pathology is

already noticeable from E13.5 on with a defective diaphragm and affected lungs [25–29]. We

show that starting the treatment of the CDH rat model with sildenafil at the clinical relevant

time point improved lung morphology and attenuated or reversed the vascular remodeling of

the smaller vessels. These findings may directly be valuable for future treatment modalities of

severe CDH patients.
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Methods

Animal Model

Pregnant Sprague-Dawley rats received either 100 mg nitrofen dissolved in 1 ml olive oil or just

1 ml olive oil by gavage on gestational age day E9.5. Nitrofen induces CDH in approximately

70% of the offspring, while all pups have pulmonary hypertension. Administration of nitrofen at

exactly this time point results in mainly left sided hernias [30]. Pregnant rats were divided into

4 groups: control, nitrofen (CDH), control+sildenafil and nitrofen+sildenafil (CDH + sildenafil).

Sildenafil (100 mg/kg/day, Pfizer, New York, USA) dissolved in water was administered via oral

gavage for 4 consecutive days from day E17.5 to day E20.5. At day E21 pups were delivered by

caesarean section and euthanized by lethal injection of pentobarbital. All animal experiments

were approved by an independent animal ethical committee and according to national guidelines.

Plasma Sildenafil Concentration

Maternal and fetal rat blood samples were collected directly after caesarian section. Fetal blood

samples were pooled, and plasma (50 µl) from 6 maternal and 9 fetal samples was isolated

by centrifugation (10.000 RPM, 15 minutes) and sildenafil and its metabolite N-desmethyl-

sildenafil (DMS) concentrations were analyzed using ultra-performance liquid chromatography

with tandem mass spectrometry (UPLC-MS/MS).

Lung Morphology

Fetal rat lungs were isolated, fixed overnight in 4% PFA and embedded in paraffin. Serial 5 µm

thick sections were made through the middle of the left lobe and stained with haematoxylin and

eosin (HE). Sections were imaged at 40x magnification using a BX41 research stereomicroscope

system (Olympus; Tokyo, Japan). Four non-overlapping images in different parts of each lung

were acquired. Major airways and vessels were excluded from the analysis. The airspace size

was automatically quantified using an index (D2-score) that is based on the alveolar airspace

diameter and takes into account the first three central moments of the airspace size distribution.

This measurement is designed to account for airspaces of different sizes by assigning them

different weights. Compared to the well-known mean linear intercept (Lm), this method is more

reliable in the presence of a large variability in airspace sizes [31, 32].

Immunohistochemistry and Immunofluorescence Staining

Immunohistochemistry (IHC) was performed on 5 µm paraffin sections of the lungs according to

standard protocols, using the Envision detection system (Dako Cytomatic, Glostrup, Denmark)

[33]. Primary antibodies used for IHC were smooth muscle actin (α-SMA; MS-113-P1; 1:1200,

Thermo Scientific, Fremont, CA, USA), phosphodiesterase-5 (PDE5A; PD5A-101AP; 1:300,

Fabgennix, Frisco, TX, USA) and phosphorylated phosphodiesterase-5 (phospho-PDE5; PPD5-

140AP; 1:100, Fabgennix). Antigen retrieval with Tris-EDTA buffer (pH 9.0) was used for

α-SMA. Primary antibodies used for immunofluorescence (IF) staining on 5 µm paraffin sections

were smooth muscle actin (α-SMA; MS-113-P1; 1:500, Thermo Scientific), smooth muscle actin

(clone 1a4) (α-SMA direct labelled FITC; 1:200, Sigma, The Netherlands) and platelet derived

growth factor β (PDGFrβ; 1:100). Secondary antibodies against mouse (α-SMA) and rabbit

(PDGFrβ) were used. Negative controls were performed by omitting the primary antibody.
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Table 5.1: Primer sequences

Gene Sequence (forward 5’–3’) Sequence (reverse 5’–3’)

Pde5 TCAACAACGGATAGCAGAACTC CCCTGTTCATTAGATCAGCGG

Prkg1 AACTATGCAGGGACAACCCA CCTTCCCAGTTAAAGCCCTC

Prkg2 ACTAGGCATTATCTACAGAGACC TCCAAAGTCAACCAACTTAAGG

Sma TGACCCAGATTATGTTTGAGAC AGAGTCCAGCACAATACCAG

Pdgfr-β AACGACCAGTTCTACAATGCC CATGATCTCATAGATCTCGTCGG

Pecam-1 GCAGTCCCACTTCTGAACTC GTTCTGGGAGTCGTAATGGC

Actb AGATGACCCAGATCATGTTTGAG GTACGACCAGAGGCATACAG

Hprt AGACTGAAGAGCTACTGTAATGAC CAACAATCAAGACGTTCTTTCCAG

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA isolation, cDNA synthesis and subsequent qPCR analysis was performed as previously

described [33]. The gene-specific primers were custom designed using PerlPrimer 1.1.21 [34]

and all sequences were blasted using Ensembl (RLS 84) [35]. The primer combinations for the

qPCR reactions are listed in Table 6.2. Both Actb and Hprt were used as housekeeping genes

and all represented data are based on Actb.

Volume Measurements Pulmonary Vascularity

Lungs of pups were perfused through the right ventricle with Microfil contrast agent (Microfil,

Flow Tech; Carver, MA, USA) and imaged with a micro Computed Tomography (micro-CT)

scanner (Quantum FX, PerkinElmer; Waltham, MA, USA; pixel size 10-295 µm). Subsequently,

the images were analyzed with the I-Space (Barco, Kortrijk, Belgium), a CAVETM-like Virtual

Reality system in which 3D holograms can be viewed with depth perception by wearing a pair

of stereo glasses with polarizing lenses. Volumes were calculated by semi-automatic region

growing using the V-Scope volume-rendering software (Department of Bioinformatics, Erasmus

MC, Rotterdam, The Netherlands) as previously described [36, 37]. Volume of the pulmonary

vasculature was measured in relation to the total lung volume. Results obtained with the

I-Space were validated using Analyze Direct software (Kansas City, US).

Statistical Analyses

Data are presented as percentages, means (SD) and univariate analyses were performed using

two-way ANOVA tests for normally distributed variables. The analyses were performed using

SPSS 21.0 for Windows (Armonk, NY, USA: IBM Corp.). All statistical tests were two-sided

and used a significance level of 0.05.

Results

Sildenafil Effectively Crosses the Placental Barrier

In order to investigate potential effects of oral sildenafil on fetuses, we first analyzed the levels

of sildenafil and its major metabolite N-desmethyl-sildenafil (DMS) in blood plasma of the

mothers and pups approximately 24 hours after the last dose of sildenafil. These measurements

showed that the oral application facilitated efficient uptake of sildenafil in the bloodstream and

subsequent passage through the placental barrier into the fetal circulation (Table 5.2, Figure

5.1A).
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Table 5.2: Plasma level of sildenafil and N-desmehtyl-sildenafil (DMS)

Mothers Pups

Sildenafil (ng/ml) DMS (ng/ml) Sildenafil (ng/ml) DMS (ng/ml)

7.00 14.30 15.00 1.80

1.60 4.40 19.80 1.60

1.30 2.70 4.60 1.50

2.70 3.70 4.70 1.90

0.90 2.80 13.20 1.40

1.30 10.80 7.70 0.90

5.00 1.20

6.70 3.10

5.20 1.70
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Figure 5.1: Effects of maternal sildenafil on pups. (A) Levels of sildenafil and its metabolite desmethyl-
sildenafil (DMS) measured in plasma of mother rats and her fetuses indicate effective placental
passage of sildenafil, median (IQR), n = 6 (mothers), n = 9 (pups). (B) The incidence of CDH
is not affected by sildenafil treatment (63% vs 59%, p = 0.665); n = 5 for all groups. (C)
Bodyweight is decreased in pups with CDH (3.0 gr vs 3.8 gr, p < 0.001), which is reversed by
treatment with sildenafil (3.5 gr, p < 0.001). Sildenafil also caused an increase in bodyweight in
control pups (4.0 gr, p < 0.05); n = 13 (control), n = 23 (CDH), n = 16 (control + sildenafil),
n = 24 (CDH + sildenafil). (D) LW/KW is decreased in CDH (3.0 vs 4.4, p < 0.001), and
slightly improves after sildenafil treatment in CDH (3.5, p < 0.001). Sildenafil caused a decrease
in the ratio in controls (3.9, p < 0.001); n = 33 (control), n = 38 (CDH), n = 23 (control +
sildenafil), n = 28 (CDH + sildenafil).
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error (SD). LW Lung
Weight, KW Kidney Weight.
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Since the administration of sildenafil to the rats was started late in gestation after the

development of the diaphragm, we did not observe a reduction in the incidence of CDH after

treatment (Figure 5.1B). The effect of sildenafil on the general development of the fetuses

was analyzed by assessing the body weight. Fetuses of nitrofen treated mothers (CDH) had a

significantly lower body weight compared to control at E21.5, but antenatal treatment with

sildenafil resulted in a significant increase in body weight in control and CDH fetuses (Figure

5.1C). The lung weight-to-kidney weight ratio (LW/KW) was used as an indicator for lung

hypoplasia, since the kidney weight is less affected by treatment with sildenafil than the body

weight. This LW/KW ratio was significantly reduced in CDH fetuses compared to control,

indicating severe lung hypoplasia in the CDH fetuses. Antenatal sildenafil treatment reduced

the hypoplasia as indicated by the significant improvement of the LW/KW ratio in CDH fetuses.

However, sildenafil induced a mild hypoplasia in control fetuses (Figure 5.1D).

Sildenafil inhibits PDE5, so we analyzed if sildenafil had an effect on the expression of its

target. RNA expression of Pde5 was increased in fetal CDH lungs, but sildenafil did not reduce

this elevated expression. In addition, the downstream targets of Pde5, Prkg1 and Prkg2, were

not affected in any of the groups (Figure 5.2A). Since we did not find differences in expression

level, we analyzed the distribution of Pde5 in the lungs of the fetuses. The expression pattern of

Pde5 was primarily in the very large (> 100µm) vessels in some of the control samples, but this

pattern was expanded in the CDH lungs to a number of small (< 50µm) and larger (50−100µm)

vessels (Figure 5.2B). Remarkably, treatment with sildenafil resulted in a reduction of the

number of Pde5 positive vessels in CDH, and the staining pattern was comparable to control

lungs, being primarily around some of the larger vessels. The activated, phosphorylated Pde5

was detected in part of both small and larger vessels of all samples with no clear differences

between all groups.

Sildenafil Improves Lung Morphology and Attenuates Pulmonary Vascular

Remodeling in CDH

We analyzed the histology of the lungs of the different treated pups, which clearly showed

differences in cellular density of the lung structure, with thicker septa and smaller alveolar

airspaces in CDH (Figure 5.3A). The alveolar airspace diameter (D2-score) was used to quantify

the alveolar airspaces. Both alveolar density and the number of alveoli were significantly

increased in CDH rats compared to control and returned to normal after treatment with

sildenafil (Figure 5.3B,C).

We and others have previously shown that the nitrofen rat model phenocopies the vascular

defects observed in human CDH patients with increased muscularization of the arterioles [23].

To analyze whether nitrofen and/or sildenafil would affect the development of the vascular tree,

we measured the total pulmonary vascular volume. Three dimensional volume measurements

done in the I-Space showed a significant decrease in total lung volume (LV), in pulmonary

vascular volume (PVV) and in the ratio of PVV to LV in CDH fetuses compared to controls.

We observed no significant improvement of the vascular volume in CDH fetuses treated with

sildenafil, but antenatal sildenafil decreased pulmonary vascular volume and PVV/LV in control

fetuses (Table 5.3, Figure 5.4A,B). This indicates that starting sildenafil treatment at a clinical

relevant time point did not improve the vascular tree.

Previously, we showed a thickening of the smooth muscle cell layer in small capillaries in rats

with PH [38], and a more extensive peripheral distribution of contractile vascular smooth muscle

cells in human CDH [23]. Based on these results, we analyzed gene and protein expression

of several vascular-associated markers to study the effects of sildenafil treatment on vascular

remodeling. Gene expression analysis of α-Smooth Muscle Actin (α-Sma) and Platelet-Derived

Growth Factor receptor β (Pdgfr-β, pericyte marker) in relation to endothelial cells (Pecam-

1/CD31) showed a significant increase of Pdgfr-β in CDH lungs compared to control, indicative
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Figure 5.2: Expression of phosphodiesterase-5 (Pde5) in the lungs of rat fetuses. (A) Expression of Pde5,
Prkg1 and Prkg2 RNA show no significant differences. For all groups 6 independent lung samples
were used. Error bars represent SE. (B) Representative images of immunohistochemistry staining
show expression of Pde5 around the vessels of CDH lungs (top) and phosphorylated Pde5around
the vessels in all groups (bottom). Arrows indicate vessels, A indicates airways. Scale bars
represent 20 µm. For all groups 3 independent lung samples were used.
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Figure 5.3: Prenatal sildenafil improves alveolar development in CDH. (A) Representative images of HE
stained sections show a significant decreased mean alveolar airspace diameter in CDH rats
compared to control. Scale bars represent 50µm. (B) Quantification of alveolar development
in control and CDH using the D2-score (49.3µm (7.8) and 25.9 µm (2.2), respectively, p =

0.002). Sildenafil clearly showed an increase in alveolar airspace diameter in CDH (52.9µm
(17.6), p = 0.001), taking into account the D2-score (in µm) that incorporates the first three
central moments of airspace distribution. (C) The number of alveoli is significantly increased in
CDH (p = 0.003), while treatment with sildenafil reverted the alveolar abnormality to normal
(p = 0.001). For all groups 4 non-overlapping images were used of 5 independent lung samples.
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.

for an increase of differentiating perivascular cells in the CDH lungs. Treatment with sildenafil

significantly reduced these markers, suggesting a restoration of normal pulmonary vascular

development. However, the expression of Pdgfr-β did not revert completely to the control

levels (Figure 5.5A,B). Analysis of the distribution pattern showed an increased thickening of

the α-Sma+ smooth muscle cell layer in small pulmonary vessels (< 50µm) in CDH fetuses.

Sildenafil treatment reduced this thickening of the media in CDH lungs, corresponding with

the RNA expression data. Remarkably, sildenafil slightly increased the media in control rats

(Figure 5.5C,D).

Immunofluorescence staining of control lungs showed expression of α-Sma almost exclusively

in the media of the large vessels and in the subepithelial layer of the airways, and a peripheral,

parenchymal staining of Pdgfr-β (Figure 5.6). Interestingly, α-Sma and Pdgfr-β co-localized

around the smallest vessels in CDH lungs, most likely staining differentiating perivascular

cells. Thus, in contrast to control lungs, the small capillaries are muscularized in CDH fetuses.

Table 5.3: Pulmonary vasculature volume in rat fetuses

Control (n = 7) CDH (n = 5) Control + sildenafil

(n = 9)

CDH + sildenafil

(n = 8)

Lung volume mm3 (SD) 134.0 (22.8) 95.2 (22.3)* 110.4 (22.8) 93.4 (8.3)***

Vasculature volume mm3 (SD) 11.3 (3.3) 4.8 (2.3)** 6.9 (3.1)* 3.6 (0.5)***

Ratio vasculature/lung 0.084 (0.019) 0.048 (0.019)** 0.060 (0.017)* 0.039 (0.005)***

Results are shown as mean (SD). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to control.
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Figure 5.4: Sildenafil does not affect vasculature volume. (A) Representative images of computed
tomography scans of microfil-injected pulmonary vessels analyzed with the I-Space. Scale bars
represent 2 mm. (B) The ratio of the pulmonary vasculature volume to total lung volume is
significantly decreased in CDH rats (0.048 vs 0.084, p = 0.001) and control rats treated with
sildenafil (0.060, p = 0.005); n = 7 (control), n = 5 (CDH), n = 9 (control + sildenafil), n = 8

(CDH + sildenafil).
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.

Sildenafil treatment of CDH fetuses resulted in a reversion of the staining pattern of α-Sma

and Pdgfr-β to the control situation, indicating that sildenafil may reduce the pulmonary

hypertension. This would suggest a beneficial effect of sildenafil on reducing the pulmonary

hypertension at the cellular level (Figure 5.6).

Discussion

Our study shows that antenatal treatment of CDH pups with the PDE5 inhibitor sildenafil

starting at the clinical relevant time point results in reduced lung hypoplasia and reduced

vascular abnormalities. Administration of sildenafil was started at the canalicular stage of

lung development in the rat, which corresponds with the time point when human CDH can be

detected by routine ultrasound at 20 weeks of gestation. The diaphragm of the rat is already

formed and the major pulmonary vessels are already developed at the time the administration

of sildenafil was started. Therefore we did not observe a reduction in the incidence of CDH or

an improvement of the pulmonary vascular volume in the major branches of the vascular tree.

However, sildenafil improved the body weight and LW/KW ratio, indicating a better lung growth

development compared to untreated CDH pups. Furthermore, the alveolar airspaces increased

in diameter, which could be related to the formation of the primary and secondary septa later

in prenatal lung development. Moreover, sildenafil reduced the thickening of the smooth muscle

cell layer in arterioles normally present in CDH, and prevented the frequently observed aberrant

differentiation of pericytes in CDH as indicated by the loss of the co-localization of α-Sma and

Pdgfr-β in capillaries [23, 38].

In this study we proved the placental crossing of sildenafil into the fetal circulation with

higher levels of plasma sildenafil and lower levels of plasma DMS in the pups compared to the

mother. Sildenafil is known to be catalyzed by hepatic CYP3A4 and CYP2C9. Prenatal and

early postnatal CYP-mediated N-demethylation is less prominent compared to adults, which

causes less clearance of sildenafil. This reduced clearance in fetuses results in a longer terminal
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Figure 5.5: Sildenafil decreases pathological muscularization in CDH. (A) RNA expression of smooth
muscle actin (Sma) in relation to platelet endothelial cell adhesion molecule (Pecam1) shows no
significant changes between the groups. (B) RNA expression of platelet derived growth factor
β (Pdgfr-β) in relation to Pecam1 shows a significant increase in CDH (p < 0.001), which is
slightly improved after treatment with sildenafil (p = 0.009). (C,D) Representative images of
immunohistochemistry staining (C) and quantitation (D) show increased expression of Sma and
a significant thickening of the vessel wall of small pulmonary vessels (<50 µm) in CDH (12.96
µm vs 6.55 µm, p < 0.001), which is completely reversed by antenatal treatment with sildenafil
in CDH (6.91 µm, p < 0.001) and thickened in control (9.21 µm, p = 0.030). Arrows indicate
vessels, A indicates airways. Scale bars represent 20 µm. For all groups 15 to 20 vessels of 3
independent lung samples were measured.
*p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.
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Figure 5.6: Abnormal smooth muscle cells surround arterioles in CDH. Representative immunofluorescence
staining images of all 4 groups show colocalization of Sma (red) and platelet derived growth
factor β (Pdgfr-β; green) in the parenchyma of CDH lungs. Arrowheads indicate examples of
capillaries with colocalization, A indicates airways, V indicates vessels. Scale bars represent 20
µm.
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half-life [39]. The dose of sildenafil chosen for this study was 100 mg/kg/d, which was based on

a previous study on the pharmacokinetics of sildenafil in rats. Since the metabolism in rats is

tremendously faster than in human, this dose is a lot higher than the normal dose used in the

clinical setting. Although the oral bioavailability of sildenafil in female rats is only 44%, which

is comparable to humans (38%), it remains the preferred method over other methods keeping

in mind the potential translation to a clinical application [40].

Luong et al had previously shown that antenatal sildenafil crosses the placenta without

affecting the PDE5-expressing organs of the pups in the nitrofen-rat model. Consistent with

our study, they show improvement in lung structure in the nitrofen-induced rat model after

antenatal sildenafil. However, Luong et al treated rats for 10 days, starting already at day

10.5 of gestation, which is only one day after the start of lung development in rats and can

therefore be seen as prophylactic [24]. Furthermore, an increase in the number of arterioles [41],

a decrease in vascular remodeling [42], a decrease in medial wall thickness and improvement in

alveolar density [43] and improvement in pulmonary vascular response and lung growth [44] were

shown after antenatal treatment with sildenafil of different duration in the nitrofen rat model.

Improvement in parenchymal and lung abnormalities after antenatal sildenafil was shown in

a rabbit model of CDH [45] and in a lamb model, downregulation of eNOS was shown to be

normalized after antenatal treatment with tadalafil, another PDE-5 inhibitor [46]. However, the

treatment strategies in all these studies were already initiated very early during pregnancy, at a

time when human CDH would not yet be detectable and before CDH symptoms and pathology

develop. A summary of the relevant sildenafil studies in the nitrofen rat model is shown in

Table 5.4.

We found that sildenafil caused a decreased LW/KW ratio, increased muscularization of the

arterioles and decreased pulmonary vascular volume in healthy control rats, contrasting the

earlier results of Luong et al. This difference may be caused by several different aspects. First

of all, the oral treatment may provide a sudden increase of sildenafil in the plasma, which is not

achieved by the more steady delivery by subcutaneous treatment. Secondly, our treatment may

be more efficient than the treatment by Luong et al. Thirdly, the long treatment of animals with

sildenafil may induce some kind of adaptation to sildenafil which reduces its effects. Differences

in lung structure in control rats and rabbits treated with sildenafil were also reported by Luong

et al [24] and Russo et al [45]. The pathophysiology of these side-effects is still not clear, but

might involve the increase in cGMP after PDE-5 inhibition, since increased cGMP can also

lead to toxicity and interfere with normal cellular proliferation [47]. Extreme vasodilation

caused by increased cGMP might also have a deleterious effect on the development of the

pulmonary vasculature. However, sildenafil has been used as a treatment for preeclampsia in

pregnant women with no significant adverse effects in both mother and fetus during follow up

of 30 days post-delivery [48]. Furthermore, recently a trial has started for the antenatal use of

sildenafil in pregnancies complicated by early-onset extreme fetal growth restriction (STRIDER;

NCT02277132 (clinicaltrials.gov)) [49].

In the present study we focused on pulmonary vascular development, since pulmonary

hypertension in CDH is the major cause of morbidity and mortality. The major strength of this

study is the timing of the sildenafil treatment at day 17.5 of gestation, which corresponds to 20

weeks of gestation in human pregnancy, when CDH is detectable by routine ultrasound in many

countries. Sildenafil has never been tested in a clinical trial as an antenatal treatment to target

the pulmonary vascular growth. However, the possibility of prenatal diagnosis of CDH offers a

unique opportunity to treat fetuses antenatally. So far, sildenafil is only used postnatally as a

treatment for severe pulmonary hypertension and in some of the most severe CDH patients

who are resistant to current therapies, in an attempt to prevent extracorporeal membrane

oxygenation (ECMO). Therefore, it is not possible to directly compare the pathological changes

seen in these patients with the effects of the antenatal sildenafil treatment in the CDH rat

model.
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Table 5.4: Overview of studies with antenatal sildenafil treatment in the nitrofen rat model

Our study Luong et al [24] Kattan et al

[41]

Lemus-Varela et

al [42]

Yamamoto et al

[44]

100 mg/kg 100 mg/kg 45 mg/kg 100 mg/kg 100 mg/kg

oral 24h subcutaneous

24h

oral 12h oral 24h subcutaneous

24h

E17.5 – E20.5 E10.5 – E20.5 E14 – E22 E16 – E20 E11.5 – E20.5

Fetal body weight CDH significantly

decreased

significantly

decreased

CDHsil significant

improvement

no improvement

Lung weight CDH decreased

lung/kidney

weight

decreased

lung/body

weight

decreased

lung/body

weight

CDHsil significant

improvement

no improvement significant

improvement

Cosil decreased

lung/kidney

weight

no significant

differences

Morphology CDH decreased

alveolar

airspaces

increased mean

linear intercept

decreased

alveolar

airspaces

decreased

alveolar

airspaces

CDHsil significant

improvement

significant

improvement

no improvement significant

improvement

Cosil No significant

differences

no significant

differences

Vasculature CDH decreased

vascular volume

less pulmonary

vessels

less arterioles

CDHsil No improvement significant

improvement

significant

improvement

Cosil decreased

vascular volume

less pulmonary

vessels

Vessel wall CDH increased SMC§

layer

no significant

differences

increased SMC§

layer

CDHsil significant

improvement

no significant

differences

significant

improvement

Cosil increased SMC§

layer

no significant

differences

§ SMC = smooth muscle cell
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The potential to treat CDH already antenatally might be a big improvement in the manage-

ment of this disease in humans. So far the approach for antenatal modulation of the severity of

pulmonary hypoplasia is through mechanical interference with pulmonary fluid drainage. To

this effect antenatal tracheal plugging has been advocated [50, 51]. An alternative approach can

be the provision of antenatal sildenafil in selected high risk prenatally diagnosed CDH fetuses.

However, even for postnatal sildenafil no solid safety data are available [52]. Even more for

antenatal sildenafil (STRIDER; NCT02277132 (clinicaltrials.gov)) questions remain on safety,

dosage as well as repeated prescription and optimal timing of the drug.

In conclusion, our study demonstrates that antenatal treatment with sildenafil started at a

clinical relevant time point improves bodyweight, decreases lung hypoplasia and attenuates

vascular remodeling in nitrofen-induced CDH in rats. Antenatal use of sildenafil might improve

morbidity and mortality in CDH patients by improving lung structure. However, it is important

to determine the optimum dosage for this therapy in a potential phase I trial.
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Abstract

Rationale: Patients with congenital diaphragmatic hernia (CDH) often suffer from severe

pulmonary hypertension and the choice of current vasodilator therapy is based on trial and

error.

Objectives: Since pulmonary vascular alterations are already present early during development,

we performed a study to modulate the pulmonary vascular abnormalities at an early stage

during gestation.

Methods: Pregnant Sprague-Dawley rats were treated with nitrofen at day 9.5 of gestation

(E9.5) to induce CDH in the offspring and subsequently the phosphodiesterase-5 inhibitor

sildenafil and/or the novel prostaglandin-I receptor agonist selexipag (NS-304) were administered

at E17.5 until E20.5. This time point of start of treatment corresponds to week 20 of gestation

in human, when CDH is usually detected, making it clinically relevant.

Measurements and main results: CDH pups showed increased density of air saccules which

was reverted after the use of sildenafil solely. The pulmonary vascular wall was thickened and

right ventricular hypertrophy was present in the CDH group and improved both after treatment

with sildenafil and selexipag alone, where combination therapy with both compounds did not

have additive value.

Conclusions: In conclusion, antenatal treatment with sildenafil improved airway morphogenesis

and pulmonary vascular development, while selexipag only acted positively on pulmonary

vascular development. The combination of both compounds did not act synergistically, probably

because of a decreased efficiency of both compounds caused by CYP interaction. These new

insights create important possibilities for future treatment of pulmonary vascular abnormalities

in CDH patients already in the antenatal period of life.



Prenatal sildenafil and selexipag improve pulmonary vascularity in CDH
∣

∣ 95

C
h
a
p
te
r
6

Introduction

Congenital diaphragmatic hernia (CDH) is a rare developmental anomaly characterized by

an incomplete diaphragm, lung hypoplasia and pulmonary hypertension (PH), which is often

unresponsive to current vasodilator therapy [1]. Although the postnatal therapeutic approach

is highly protocolized nowadays [2] the pharmacotherapy of PH in CDH is mainly trial and

error and is based on the modulation of three major vasoactive pathways: the nitric oxide

(NO), endothelin (ET) and prostacyclin (PGI2) pathways. Inhaled NO (iNO) is the most

frequently used drug followed by (i.v.) sildenafil, a phosphodiesterase-5 (PDE5) inhibitor acting

on the same pathway by inhibiting the conversion of cyclic guanosine monophosphate (cGMP).

Currently drugs acting on the PGI2 pathway are used only in a compassionate way, showing

contradicting results [3–5]. Although the ET pathway has shown to be affected in patients with

CDH [6, 7], targeting this pathway is even more challenging because of the clinical availability

of oral formulation only. A recent Cochrane review showed no improvement in patients with

CDH after iNO treatment [8]. However, properly designed trials are lacking while no systematic

research has been performed into the different pathways involved. An overview of all studies

performed in humans using postnatal vasodilator therapy in CDH is presented in Table 6.1.

Furthermore, changes in the pulmonary vasculature, leading to PH, have previously been shown

to be present already early during gestation [9], while treatment is only offered postnatally.

Over the last years we and others showed improvement in lung development after antenatal

treatment with sildenafil in different animal models of CDH [10–12]. However, the pulmonary

pathology in these animals was not totally reversed. Since CDH-associated abnormalities may

not be limited to only one pathway, antenatal targeting of more pathways could possibly provide

new approaches for therapeutic strategies. Antenatal use of all endothelin receptor antagonists

have shown to be teratogenic [13, 14]. However, prenatal monotherapy with a slow-release

synthetic prostacyclin agonist in a rat model of CDH showed improvement of the diminished

development of alveolar and capillary networks [15]. Until recently most available prostacyclin

analogues could only be administered by continuous intravenous infusion or inhalation, and had

limited stability and a very short half-life [16]. Selexipag is a novel highly selective long-acting

oral PGI2 receptor agonist that has recently been approved for the treatment of PH in adults.

The active compound of selexipag, NS-304, is hydrolyzed by the liver to its active metabolite

ACT-333679, which has an even higher affinity for the PGI2 receptor [17, 18].

Table 6.1: Studies on vasodilatory drugs in CDH

Compound Pathway Patients Effect Reference

Inhaled NO Nitric Oxide 34 No effect [19]
53 No effect in mortality and ECMO [20]
31 No effect in mortality and ECMO [21]
84 No effect in mortality and ECMO [22]

Sildenafil Nitric Oxide 9 Improved oxygenation index [23]
7 Improved cardiac output, Reduced PVR [24]

Milrinone Prostacyclin 6 Improved RV function, Improved oxygenation
index, No effect on PVR

[25]

Prostacyclin Prostacyclin 9 Improved oxygenation index [26]

Bosentan Endothelin No studies performed

ECMO = extracorporeal membrane oxygenation, PVR = pulmonary vascular resistance, RV = right
ventricle.
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Here, we analyzed for the first time the effects of antenatal treatment targeting both the NO

pathway and the PGI2 pathway in the nitrofen-CDH rat model, starting at a clinically relevant

time point.

Methods

Animal Model

Pregnant Sprague-Dawley rats received either 100 mg nitrofen dissolved in 1 ml olive oil or just

olive oil by gavage on gestational age day E9.5. Administration of nitrofen at exactly this time

point induces mainly left sided CDH in approximately 70% of the offspring, while all pups have

PH [27]. This study included only pups with an observable diaphragmatic defect. Pregnant

rats were divided into 8 groups: control, nitrofen (CDH), control+sildenafil, nitrofen+sildenafil

(CDH+sildenafil), control+NS-304, nitrofen+NS-304 (CDH+NS-304), control+sildenafil/NS-304

and nitrofen+sildenafil/NS-304 (CDH+sildenafil/NS-304). Sildenafil (100 mg/kg/day, Pfizer,

New York, NY, USA) and NS-304 (1 mg/kg/day, MedChem Express, Monmouth Junction, NJ,

USA) were dissolved in 0.8% ethanol in water and administered via oral gavage for 4 consecutive

days from E17.5 to E20.5. At E21 pups were delivered by caesarean section and euthanized by

lethal injection of pentobarbital (Figure 6.1).

All animal experiments were approved by an independent animal ethical committee and

according to national guidelines.

Olive oil or
Nitrofen

0 9.5 17.5 18.5 19.5 20.5 21.5

Treatment

Figure 6.1: Schematic overview of the study design Overview of study design showing interventions at
different time points. X-axis shows days during gestation. Flashes indicate time point of
intervention, cross indicates time point of termination. The different treatments are placebo,
sildenafil, NS-304 and sildenafil + NS-304. n = 2 litters for control and nitrofen with placebo
(n = 26 and 24 pups, respectively) or sildenafil (n = 15 and 24 pups, respectively), n = 3 litters
for control and nitrofen with NS-304 (n = 35 and 37 pups, respectively) or sildenafil+NS-304
(n = 36 and 37 pups, respectively).

Lung Morphology

Fetal rat lungs were isolated, fixed overnight in 4% PFA and embedded in paraffin. Serial 5 µm

thick sections were made through the middle of the left lobe and stained with haematoxylin and

eosin (HE). Sections were imaged at 40x magnification using a BX41 research stereomicroscope

system (Olympus; Tokyo, Japan). Four non-overlapping images in three different sections

of each lung were acquired. Major airways and vessels were excluded from analysis. The

airspace size was automatically quantified using the two following measures: the D2-score, as

previously described [10], and the mean linear intercept Lm. Approximate value of the latter

was calculated as proposed by Muñoz-Barrutia et al. [28], using both horizontal and vertical

test lines. However, previous comparisons between both methods have shown a higher accuracy

of the D2-score [29].

Immunohistochemistry and Immunofluorescence Staining

Immunohistochemistry (IHC) was performed on 5 µm paraffin sections of lungs according

to standard protocols, using the EnvisionTM detection system (Dako Cytomatic, Glostrup,
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Table 6.2: Primer sequences

Gene Sequence (forward 5’- 3’) Sequence (reverse 5’- 3’)

Ptgir CACGAGAGGATGAAGTTTACCA AATCCTCTGATCGTGAGAGGC
Ptgis CATCAAACAGTTTGTGGTCCT CAAAGCCATATCTGCTAAGGT
eNos CATACTTGAGGATGTGGCTG CCACGTTAATTTCCACTGCT
Pde3 CCAGCAACCGAATATTGACCA AATCTGAAAGTTCCAGTTGCTC
Pde5 TCAACAACGGATAGCAGAACTC CCCTGTTCATTAGATCAGCGG
Prkg2 ACTAGGCATTATCTACAGAGACC TCCAAAGTCAACCAACTTAAGG
Sma TGACCCAGATTATGTTTGAGAC AGAGTCCAGCACAATACCAG
Pdgfr-β AACGACCAGTTCTACAATGCC CATGATCTCATAGATCTCGTCGG
Actb AGATGACCCAGATCATGTTTGAG GTACGACCAGAGGCATACAG

Denmark) [30]. Primary antibody used for IHC was smooth muscle actin (α-SMA; MS-113-P1;

1:1200, Thermo Scientific, Fremont, CA, USA). Antigen retrieval with Tris-EDTA buffer (10

mmol Tris, 1 mmol EDTA; pH 9.0) was used.

Primary antibodies used for immunofluorescence staining were smooth muscle actin (α-SMA;

MS-113-P1; 1:500, Thermo Scientific) and Ki-67 (1:100, Abcam, Cambridge, UK). Secondary

antibodies against mouse (α-SMA) and rabbit (Ki-67) were used. Negative controls were

performed by omitting the primary antibody. Antigen retrieval with Citric Acid buffer (11.2

mmol; pH 6.0) was used.

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA isolation of whole lungs, cDNA synthesis and subsequent qPCR analysis were performed

as previously described [30]. Primer combinations for the qPCR reactions are listed in Table

6.2. Actb was used as housekeeping gene.

Cardiovascular measurements

Lungs and heart of pups were perfused through the right ventricle with Microfil contrast agent

(Microfil, Flow Tech; Carver, MA, USA) and imaged with a micro Computed Tomography

(micro-CT) scanner (Quantum FX, PerkinElmer; Waltham, MA, USA; pixel size 10-295 µm).

Subsequently, images of the hearts were analyzed with Dataviewer (Skyscan, Bruker, BioSpin,

Ettlingen, Germany).

Statistical Analyses

Data are presented as means (SD). For the results of the dose study, one-way analysis of variance

(ANOVA) was applied to compare bodyweight and lung-to-kidney weight ratio (LW/KW)

between dose levels (placebo, 0.1, 1 and 10 mg/kg), followed by Tukey’s method for post-hoc

multiple comparisons. For the data of the intervention study, two-way ANOVA with factors

disease (control versus CDH) and treatment (placebo, sildenafil, NS-304 and combination of

sildenafil and NS-304) was used to compare the results of the experiments between groups.

The interaction effect of disease and treatment was included in the model in case this effect

was statistically significant. The normality assumption of the ANOVA models was assessed

by creating histograms of the model residuals. The analyses were performed using SPSS 21.0

for Windows (Armonk, NY, USA: IBM Corp.). All statistical tests were two-sided and used a

significance level of 0.05.
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Results

Dose study

We first established an effective antenatal dose of NS-304 by analyzing the effects on the pups

and monitoring possible side-effects of this compound. Therefore we started a dose study in

control rat pups using 3 different dosages based on previous studies in adult rats [31, 32].

Pups of mothers treated with NS-304 did not show any malformations of face, palate, limbs or

other organs. Bodyweight was increased in pups treated with 1 and 10 mg/kg/day and LW/KW

was increased in all treated pups (Figure 6.2A). No differences in histology were observed in

both lungs and kidneys between all dose levels (Figure 6.2B). The livers of all pups showed

steatosis, which was resolved after adjusting the percentage of ethanol in which the compound

was dissolved from 8 to 0.8% (Figure 6.2C). Based on this dose study the optimal dosage of

NS-304 was found to be 1 mg/kg/day. The dosage of sildenafil was based on our previous study

[10].

Lung morphology

In accordance with our previous study [10], CDH pups had a decreased bodyweight, which

increased after treatment with sildenafil. Lung weight was also reduced in CDH pups, but

this did not improve after treatment with sildenafil, NS-304 or the combination of sildenafil

and NS-304 (Figure 6.3A,B). Both lung-to-bodyweight ratio (LW/BW) and LW/KW were

significantly reduced in CDH pups. LW/BW increased only after treatment with NS-304, where

LW/KW increased in all three groups receiving treatment (Figure 6.3C,D)

In correspondence with our previous results [10], the density of the air saccules was increased

in lungs of CDH pups (Figure 6.4A). Statistical analyses showed a significant positive correlation

between disease and treatment for both the D2-score, the Lm and the number of air saccules

(p = 0.005, p = 0.024 and p < 0.001, respectively). The lower D2-score and Lm in CDH were

significantly higher in the pups treated with sildenafil, while NS-304 alone or the combination of

sildenafil and NS-304 were not significantly different (Figure 6.4B,C). The number of air saccules

was increased in CDH and diminished after treatment with sildenafil or the combination of

sildenafil and NS-304 (Figure 6.4D). Combined, these results show a therapeutic effect on the

formation of air saccules after antenatal targeting mainly by sildenafil.

Since NS-304 acts on the IP-receptor (Ptgir), we checked the expression of this receptor

and its synthase at mRNA level. We found an increase in Ptgir and a decrease in Ptgis in

CDH with only a trend to improvement after treatment in case of Ptgir (Figure 6.5A,B).

The expression of endothelial NO synthase (eNos), an important enzyme in the production

of vasoactive NO, was increased in CDH and did not change after treatment (Figure 6.5C).

Phosphodiesterase-3 (Pde3 ), which hydrolyses and thus inactivates the secondary messengers

cyclic adenosine monophosphate (cAMP) and cGMP, was not differently expressed in control

and CDH, but was decreased after treatment with NS-304 in both control and CDH (Figure

6.5D). Phosphodiesterase-5 (Pde5 ), the enzyme which hydrolyses cGMP and is inhibited by

sildenafil, and its downstream target protein kinase G2 (Prkg2 ) were both increased in CDH.

Prkg2 was decreased in CDH in all treatment groups (Figure 6.5E,F). All these changes in

the expression of these factors in both therapeutic pathways confirm the importance of these

pathways in CDH.

Pulmonary vasculature

Next, we analyzed the pulmonary vascular development by whole mount imaging after infusion

of a contrast agent (Figure 6.6A). This revealed a decrease in the vascular branching and
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Figure 6.2: Dose study of NS-304 (A) Bodyweight is significantly increased after treatment with NS-304
at 1 mg/kg (p = 0.036) and 10 mg/kg (p = 0.009) (n = 12, 13, 10 and 14, respectively).
Lung-to-kidney weight ratio is significantly increased in all treated groups (p = 0.001, p = 0.005

and p < 0.001, respectively) (n = 13, 14, 11 and 15, respectively). (B) Representative images
of H&E staining on lung and kidney show no abnormalities in all groups. Representative images
of the liver show vacuoles in all samples. Scale bars represent 200µm (lung), 500µm (kidney)
and 50µm (liver). (C) Representative images of Oil-Red-O (ORO)-staining showing steatosis of
the liver after use of 8% EtOH, but not after use of 0.8% EtOH. Scale bars represent 20µm.
*p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent means (SD).
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Figure 6.3: Body and lung weight (A) Bodyweight is decreased in pups with CDH (p < 0.001). Sildenafil
increases bodyweight significantly in both control and CDH pups (both p < 0.001), where NS-
304 and the combination of both compounds only increases bodyweight in control pups (both
p < 0.001). n = 39, 37, 35 and 36 in the control groups and 19, 31, 14 and 21 in the nitrofen
groups, respectively. (B) Lung weight is significantly decreased in CDH pups (p < 0.001) with
no difference after treatment. N = 53, 50, 26 and 27 in the control groups and 24, 32, 10

and 16 in the nitrofen groups, respectively. (C) The lung-to-body weight ratio is significantly
decreased in CDH (p < 0.001) with improvement only after NS-304 (p = 0.003). n = 33, 35,
26 and 27 in the control groups and 17, 28, 10 and 16 in the nitrofen groups, respectively. (D)
Lung-to-kidney weight ratio is significantly decreased in CDH (p < 0.001) and improved in all
treatment groups (p = 0.002, p < 0.001 and p = 0.004, respectively). n = 44, 50, 24 and 27 in
the control groups and 23, 32, 10 and 15 in the nitrofen groups, respectively. Weights of pups
from our previous experiment [10] were included to enlarge the data.
* p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent means (SD). White bars represent
control pups, grey bars represent CDH pups. Sil means sildenafil, NS means NS-304.
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Figure 6.4: Disrupted lung morphogenesis is partly resolved after sildenafil treatment (A) Representative
images of H&E stained lungs. Scale bars represent 50µm. (B) Mean saccular airspace diameter
(D2-score) is significantly decreased in CDH (p < 0.001), with a significant increase after
treatment with sildenafil only (p = 0.001). (C) The mean linear intercept (Lm) is significantly
decreased in CDH (p < 0.001), with a significant increase after treatment with sildenafil only
(p = 0.048). (D) The average number of air saccules in 1 image per lung was increased in CDH
(p < 0.001) and decreased after sildenafil (p = 0.036) and combination therapy (p = 0.017).
For each group, 4 non-overlapping images on 3 different sections for 5 different animals were
used.
*p < 0.05, **p < 0.01, ***p < 0.001. Bars represent means (SD). White bars represent control
pups, grey bars represent CDH pups. Sil means sildenafil, NS means NS-304.
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Figure 6.5: RNA expression levels of relevant factors in the NO and PGI2 pathways (A) Quantitative PCR
shows a significant increase in Ptgir in CDH (p < 0.001) with no differences after treatment.
(B) Ptgis is decreased in CDH (p < 0.001) with no improvement after treatment. (C) eNos

expression is increased in CDH (p = 0.041) and shows no improvement after treatment. (D)
No differences were found in Pde3 between control and CDH pups, but treatment with NS-304
decreased Pde3 expression in both control and CDH (both p = 0.030). (E) Pde5 is increased
in CDH (p = 0.007) with no improvement after treatment. (F) Prkg2 is increased in CDH
(p = 0.013) and decreased after treatment with sildenafil, NS-304 and the combination of both
(p = 0.045, p = 0.002 and p < 0.001, respectively). n = 6 for all groups.
* p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent means (SD). White bars represent
control pups, grey bars represent CDH pups. Sil means sildenafil, NS means NS-304. No
interaction model was used for Ptgir, Ptgis, eNos, Pde3 and Pde5.
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total vasculature volume in CDH. None of the applied treatment modalities showed significant

improvement (Figure 6.6B), as we previously reported after prenatal sildenafil monotherapy [10].

However, histological analysis of the lungs revealed an increased thickening of the smooth muscle

layer of the small pulmonary vessels (25− 50µm) in CDH pups, comparable to our previous

results [10]. This augmented thickness of the vascular wall was significantly reduced after

treatment with sildenafil as well as with NS-304 alone or the combination of both. Remarkably,

all treated control groups showed an increase in thickness of the medial smooth muscle layer

(Figure 6.6C,D). Immunofluorescence staining showed an increase in Ki67/Sma double-positive

cells in the small pulmonary vessels in CDH pups, which was reversed to normal in all three

treatment groups, indicating reduced proliferation of these cells after treatment (Figure 6.6E,F).

Since we found reduced muscularization of the pulmonary vasculature in CDH lungs after

antenatal vasodilator therapy, we checked the effect of the treatment on the heart. Since

right ventricular hypertrophy is an indication for pulmonary hypertension postnatally [33], we

measured the myocardium of the right ventricle in relation to the total diameter of the heart.

This showed a significant increase in CDH with reversion to normal after treatment in all 3

groups (Figure 6.7A,B) showing a potential effect of treatment on the already higher pulmonary

vascular resistance before birth.

Discussion

In this paper we show that antenatal treatment with sildenafil, starting at a clinically relevant

time point, results in a partial reversal of the abnormal development of the lung morphology

and pulmonary vasculature in the nitrofen-induced CDH rat model, whereas the novel PGI2
receptor agonist selexipag only improves the pulmonary vasculature. Combination therapy with

both compounds did not have a synergistic effect. This is the first study combining therapies

targeting both the NO and PGI2 pathway for antenatal use in CDH.

In accordance with our previous work [10], sildenafil increased bodyweight and LW/KW

ratio and improved the lung morphogenesis in CDH pups. LW/KW ratio was even reversed

to normal after treatment with selexipag, but sildenafil did not have a synergistic effect when

combined with selexipag. This may be explained by a combined inducing effect of sildenafil

and selexipag on the activation of CYP3A4. This enzyme is involved in the clearance of both

compounds, and, therefore, the combination of these drugs may result in an increased clearance

of both compounds, thereby reducing their window of activity. This is supported by a phase 3

study on selexipag, which predicted a 30% lower exposure to the active metabolite ACT-333679

when used in combination with a PDE-5 inhibitor [34]. The saccular airspaces did not increase

after the use of selexipag and, when added together with sildenafil, it only seemed to reverse the

positive effects of sildenafil, suggesting the enhanced clearance of both compounds. In contrast

to the lung morphology, selexipag caused a decrease in muscularization and proliferation of the

smooth muscle layer and a reduced myocardial thickness of the right ventricular wall. These

effects were also observed after the use of sildenafil as well as the combined sildenafil/selexipag

therapy. The increased proliferation of Sma positive cells in CDH might relate to the pulmonary

hypertension in these pups and was previously shown by others as well [15]. Hypertrophy of the

right ventricular wall has been known to be an early sign of PH postnatally followed by right

ventricular dilatation and eventually heart failure [33]. Normally, early during gestation the

right and left cardiac ventricles are approximately identical in size, whereas later in pregnancy

the right ventricle becomes slightly more dilated [35]. However, in case of right ventricular outlet

obstruction the myocardial mass can already increase antenatally [36]. A previous study in adult

rats with monocrotaline-induced PH showed reduced hypertrophy of the pulmonary arterial

wall and less thickening of the right ventricle after the use of selexipag postnatally [31]. These

combined results indicate a potential effect of this drug on the severity of the PH. Reduced
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Figure 6.6: Both sildenafil and NS-304 reduce muscularization defects in CDH (A) Schematic image of
injection through the right ventricle. (B) Representative images of Microfil-injected pulmonary
vessels show decreased branching and volume in CDH with no improvement after treatment
with NS-304 or the combination of sildenafil and NS-304. (C+D) Representative images of
immunohistochemistry staining show increased expression of Sma and an increased thickening
of the vascular wall of small pulmonary vessels (25 − 50µm) in CDH (p < 0.001) and control
lungs treated with all compounds (all p < 0.001). In CDH this thickening is decreased after all
treatments (all p < 0.001). n = 34, 30, 33 and 34 in the control groups and 32, 33, 38 and
33 in the nitrofen groups, respectively. (E+F) Representative images of immunofluorescence
staining show an increase in Ki-67/Sma double-positive cells in small pulmonary vessels in CDH
(p < 0.001) with improvement to normal in all treated groups (p < 0.001, p < 0.001 and
p = 0.001, respectively). n = 12 for all groups. Scale bars represent 10µm.
** p < 0.01, *** p < 0.001. Bars represent means (SD).
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Figure 6.7: Prenatal treatment improves cardiovascular defects Representative images of with Microfil
filled hearts show increased thickness of the right ventricle wall in relation to the total diameter
of the heart (p < 0.001). This thickening improved after treatment with sildenafil, NS-304 and
the combination of both (p = 0.001, p = 0.023, p < 0.001, respectively). Scale bars represent
2 mm. n = 5, 3, 5 and 4 in the control groups and 2, 3, 2 and 4 in the nitrofen groups,
respectively.
* p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent means (SD).

pulmonary vascular pathology was also observed in a prophylactic study by Umeda et al., who

applied a prostacyclin agonist antenatally in CDH [15]. They showed an increased LW/BW

ratio and reduced thickening of the medial wall of pulmonary arteries, as we show as well. In

contrast to our results, they found an improvement of the alveolar and capillary networks with

an increased mean linear intercept at E21. These differences can possibly be explained by

the thromboxane inhibitory activity of their compound or the early start of treatment at day

E9.5, when development is still at an earlier stage and deviations in lung development have not

yet started. The major advantage of our approach is the start of our treatment at E17.5, a

phase of lung development comparable to 20 weeks of gestation in human when CDH can be

detected, which makes it potentially more clinically relevant. Furthermore, we used an orally

available approved medicine for our treatment, which could be extrapolated easier to clinical

use. As previously described by our group [10], pulmonary vascular volume is decreased in

CDH. Apart from sildenafil, selexipag and combination therapy with both compounds did not

increase vascular volume and branching. This may well be expected since the majority of the

pulmonary vessels is already developed at the start of treatment and treatment will therefore

mostly affect the vascular remodeling.

Confirming the results previously shown by us and others [10–12], sildenafil caused unan-

ticipated differences in lung structure in healthy controls, with a thickening of the smooth

muscle layer in the pulmonary vessels. However, selexipag induced similar effects in healthy

subjects, which strengthens the idea that inducing vasodilation in already healthy vessels might

be deleterious for the development of the pulmonary vasculature [10].

The possibility of early detection of CDH by ultrasound makes this disease suitable for

antenatal therapies. Some studies have already been performed in the nitrofen rat model on the

antenatal use of sildenafil alone [10, 11] or in combination with steroids [37, 38] or the endothelin

antagonist bosentan [39]. However, the combination with a prostacyclin agonist, which can

safely be used antenatally, has never been studied in this disease. Although antenatal treatment

with selexipag or the combination of selexipag and sildenafil did not seem advantageous over

monotherapy, at least in the nitrofen rat model, the addition of a second drug might still be of

interest because of the variable response to vasodilator therapy of CDH patients in the clinical

setting [1] (Table 6.1). The variability between patients and the altered expression of different

vasoactive factors in CDH strengthens the need for ongoing evaluation of the developmental



106
∣

∣ Chapter 6

sequences of the pathways involved and subsequently, a more precision medicine approach.

We analyzed for the first time the feasibility and effects of antenatal use of the novel PGI2-

receptor agonist selexipag in the nitrofen-induced CDH rat model. The positive effects on

the pulmonary vasculature show that the compound successfully entered the fetal circulation.

Embryotoxicity studies in rats and rabbits have shown no malformations, irregularities or

neurological differences after the use of selexipag during pregnancy [34, 40]. Indeed, no

malformations or abnormalities in histology were seen in different organs in our study.

In conclusion, this study demonstrates improvement of lung morphogenesis after antenatal

treatment with sildenafil monotherapy and a reduction in vascular remodeling after antenatal

treatment with both sildenafil and selexipag monotherapy, where no synergistic effect was

present after combination of both compounds. This knowledge creates important possibilities in

the therapy of pulmonary hypertension in CDH patients. Ideally, future research has to reveal

antenatal differences in expression of vasoactive factors in specific individual CDH patients

before clinical trials on precision medicine with these compounds can be performed.
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This thesis describes the role of important pathways in the normal and aberrant pulmonary

vascular development in patients with Congenital Diaphragmatic Hernia (CDH) and the

feasibility of antenatal treatment with vasodilator therapy in these patients. Most studies were

performed using the well-established nitrofen-treated rat model for CDH [1], supplemented by

research on exclusive human material of CDH patients. In this chapter the main findings will

be highlighted in relation to the current clinical standard of protocolized care [2, 3] and future

implications.

Pulmonary hypertension

A large group of patients with CDH suffer from severe pulmonary hypertension due to altered

vasoreactivity in combination with pulmonary vascular remodeling. Consequences of pulmonary

hypertension and pulmonary hypoplasia play a significant role in the high morbidity and

mortality of these patients [4]. Management of pulmonary hypertension in CDH patients

is still challenging. Current therapy strategies in pulmonary hypertension treatment are

mostly based on targeting the major vasoactive pathways; the Endothelin (ET), Nitric Oxide

(NO) and Prostacyclin (PGI2) pathways. However, in contrast to the promising results in

patients with persistent pulmonary hypertension of the newborn (PPHN) [5], CDH patients

are often unresponsive to current vasodilator therapy. Inhaled Nitric Oxide (iNO) is most

commonly used in the treatment of patients with CDH, but showed no benefit in risk of death

or the use of extracorporeal membrane oxygenation (ECMO) [6–9]. Sildenafil, an inhibitor of

phosphodiesterase-5 (PDE5) which normally converts cyclic guanosine monophosphate (cGMP)

into GMP causing an increase in vasoconstriction, has shown to decrease mortality in patients

with PPHN [10–15]. In CDH, some case reports on the use of sildenafil showed positive effects

on the oxygenation index and pulmonary vascular resistance [16, 17], but contained only a

small number of patients (n = 9 and n = 7, respectively). Other case reports on drugs targeting

the prostacyclin pathway, prostacyclin and the PDE3 inhibitor milrinone, also showed an

improvement of the oxygenation index, but were equally underpowered (n = 6 and n = 9,

respectively) [18, 19]. No information is available on the use of the endothelin receptor antagonist

bosentan in the early stage of treatment of CDH. Bosentan is available only orally, limiting its

application in critically ill patients taking into account the abnormal position of the stomach and

unpredictable absorption rate. Apart from these scarce case reports and some patients included

in other trials, large randomized controlled trials for the treatment of pulmonary hypertension in

CDH are still lacking. Over the last years, several factors involved in the abnormal development

of the pulmonary vasculature in CDH have been identified, including mutations in some retinoid

related genes, such as STRA6, COUP-TFII and FOG2 [20–22]. However, almost no overlap

can be found in genes expressed in CDH and other forms of pulmonary hypertension. Where

patients with idiopathic pulmonary arterial hypertension (iPAH) show mainly mutations in

genes involved in the TGFβ/BMP pathways, like the well-studied BMPr2 mutation [23], these

mutations could not be found in CDH patients. However, mutations in STRA6, the membrane

receptor for retinol binding protein (RBP1) have been found as well in CDH as in some isolated

cases of alveolar capillary dysplasia (ACD) [20], indicating a possible genetic overlap between

both rare diseases.

TGFβ/BMP pathways

Although almost no mutations in genes of the TGFβ pathway are found in CDH patients,

mutations in the retinoic acid (RA) pathway can influence TGFβ signaling. RA is a negative

regulator of TGFβ and the absence of RA has been shown to inhibit lung bud formation

through increased TGFβ activity [24]. Furthermore, rats with alveolar hypoplasia caused by
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caloric restriction showed both improvement of the alveolar formation and decreased TGFβ

activity after treatment with RA [25], indicating an interaction between RA and TGFβ in the

development of the lung morphology. RA deficiency has also been shown to play a role in the

vasculature by affecting the vasculogenesis of the systemic circulation [26]. Some studies have

shown deviations of both the TGFβ and BMP receptors in an animal model of CDH [27–34],

but the results are inconsistent and not much is known about the downstream activity of this

pathway and especially its role in the pulmonary vasculature. We showed increased activation of

the TGFβ pathway and decreased activation of the BMP pathway in the pulmonary vasculature

of nitrofen-CDH pups, as described in Chapter 3, which might indeed be caused by a relative

RA deficiency at organ level in this animal model, since nitrofen has been shown to disrupt the

retinoid signaling pathway [35]. Furthermore, we found increased proliferation of the smooth

muscle cells in pulmonary vessels, indicating a possible aberrant response to the increased TGFβ

activity. The combination of increased TGFβ activity and increased proliferation in the same

cell layer of the vessel wall, might partly explain the already known increased muscularization

of the pulmonary vasculature in CDH.

Vasoactive pathways

Even though patients with CDH are often unresponsive to vasodilator therapy, almost no

information is available on the possible aberrant expression of the targeted molecules of

current drugs in this group of patients. The different genetic background combined with the

unresponsiveness to therapy strengthens the idea that different factors might be affected in

pulmonary hypertension in CDH compared to, for instance, patients with so-called idiopathic

pulmonary hypertension. We investigated for the first time important factors in all 3 major

vasoactive pathways in both human and rat CDH, as described in Chapter 4. This study

showed an increased expression of both the endothelin A (ETA) and B (ETB) receptors and

the endothelin converting enzyme (ECE-1) in human and rat CDH. ECE-1 is a key molecule

in the endothelin pathway which converts endothelin-1 (ET-1) into its active form. Although

some previous studies have shown the increased expression of ETA and ETB in both human

and rat tissue as well [36, 37], the important ECE-1 has never been analyzed before. Apart

from the important increase in receptors and the converting enzyme, increased plasma levels of

ET-1 have been described in patients with CDH and documented PH [38, 39] and an increased

response of arterioles to ET-1 was found in the nitrofen rat model [40]. Overall these results

point to an increased activation and sensitivity of the endothelin mediated vasoconstriction.

Alterations in the NO pathway, currently the most targeted pathway in the treatment of

pulmonary hypertension, have shown contradictory results over the years. Endothelial Nitric

Oxide Synthase (eNOS), an important enzyme that produces NO, has previously been found

decreased, increased or not changed at all in patients with CDH [41–44]. This is probably due

to the investigations performed at autopsy of patients all dying under hypoxia due to therapy

resistant PH. Even animal studies could not provide a decisive answer to this indistinctness

[45, 33, 46]. This variability in results might indicate a less important role of NO in the

pathophysiology of pulmonary hypertension in CDH than expected and could be the reason of

the reduced response to iNO in these patients.

Although prostacyclin agonists are used as compassionate treatment of pulmonary hyper-

tension in CDH, no studies in these patients have been performed on this pathway at all. A

previous study performed by our group showed increased levels of PGI2 and an increased

ratio of PGI2 and thromboxane in the nitrofen rat model [47]. These observations in rat were

complemented by us, showing an increase in expression of the PGI2-receptor at RNA level, as

described in Chapter 4. We showed a gradually increase in the PGI2-receptor in human control

lungs over time which was decreased in CDH patients at both the fetal, preterm and term
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phase of lung development. This decreased expression of the important PGI2-receptor possibly

indicates a reduced activity of this pathway, making it a potential target in the treatment of

pulmonary hypertension in CDH.

All these differences in expression of important factors in the sporadically targeted prostacyclin

and endothelin pathways point to the need for well-organized randomized controlled trials

in this group of patients. However, although the ET pathway has shown to be affected in

CDH, the use of endothelin receptor antagonists in these newborn patients is complicated

by the clinical availability of oral formulation only. Recently the COdiNOS trial, where iNO

versus intravenous sildenafil will be tested, has been approved by the IRB at the Erasmus MC

Rotterdam in the Netherlands. This study will be conducted within the frame work of the

CDH-EURO Consortium.

Potential antenatal treatment modalities

In general, current treatment of pulmonary hypertension in CDH only starts postnatally.

However, as described in Chapter 4 and previously by our group [48], abnormalities in the

pulmonary vasculature and the major vasoactive pathways already develop earlier during

development. Fetoscopic Endoluminal Tracheal Occlusion (FETO), an antenatal procedure

where a small balloon device is inserted to temporarily occlude the trachea to increase

lung growth, is currently the only clinically used antenatal intervention in an international

randomized controlled trial (NCT 02875860; clinicaltrials.gov). Until now, FETO has shown

to improve survival rate in high risk CDH patients but at the cost of increased morbidity and

premature delivery as the most important and unwanted side effects [49–52]. Apart from FETO,

corticosteroids can be used as an antenatal therapy for lung hypoplasia in CDH. However, no

clear differences were seen in perinatal mortality, duration of ventilation and hospital stay in

the clinical setting [53] and different animal studies showed no increase in lung to bodyweight

ratio after antenatal corticosteroids, but some reported improvement in airway histology [54].

In the past the proposed trial on the use of antenatal corticosteroids was stopped prematurely

due to the lack of inclusion.

Antenatal use of vasodilators is not yet approved for clinical use and these drugs are therefore

only tested in various animal models of CDH. As described in Chapter 4, enhanced activation

of the endothelin pathway is present in the lungs of patients with CDH. However, both selective

and dual endothelin receptor antagonists have shown to be teratogenic, causing craniofacial

and cardiovascular malformations in the unborn fetus [55, 56] and are therefore not eligible for

antenatal therapy. On the other hand, antenatal targeting of the nitric oxide or prostacyclin

pathway are not known to induce abnormal development. We conducted a study using antenatal

sildenafil and the novel orally available prostacyclin receptor agonist selexipag (NS-304), as

described in Chapters 5 and 6. We showed improvement in lung histology, with enlargement of

the decreased alveolar airspaces, and pulmonary vascular development, with less muscularization

of the thickened pulmonary vessel wall, in nitrofen-treated rats after the use of antenatal sildenafil.

Like us, other research on the antenatal use of sildenafil in both rat and rabbit studies has

shown improvement in lung development [57–61]. However, we were the first to show positive

effects after starting the treatment at a clinically relevant time point at day 17.5 of gestation,

corresponding with 20 weeks of gestation in human when CDH is usually detected. Apart from

sildenafil, targeting of the prostacyclin pathway using selexipag (NS-304) showed improvement

in the aberrant cardio and pulmonary vascularity. These results correspond with the positive

effects seen on the pulmonary vasculature in the only other available study using an antenatal

prostacyclin agonist [62]. However, again their treatment was started early during development

when deviations in lung development have not yet started. Furthermore, the oral form and

clinical availability of our compound makes it more clinically relevant. Combination therapy of
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sildenafil and NS-304, targeting both the NO and prostacyclin pathway, did not have added value

to both compounds solely, probably because of increased clearance of the active metabolites by

inducement of the same CYP enzyme.

Although positive effects on pulmonary vascular development have now been shown after

antenatal therapies in several animal studies, clinical trials have to be conducted to test the

eligibility of this approach. To date antenatal sildenafil is administered to pregnant mothers in

a trial of severe intrauterine growth restriction to modulate vascular tone and improve growth

of the fetus [STRIDER; NCT02277132 (clinicaltrials.gov)]. The possibility to target different

pathways in the treatment of pulmonary hypertension in patients with CDH might provide

added value in the future implementation of a precision medicine approach.

Clinical implications

Since human material of CDH patients is scarce and animal models of this disease are only

comparable to the clinical situation to a limited extent, it is difficult to draw clear conclusions

from current research. However, our studies may have a considerable effect in identifying new

or better targets for pharmacological therapies and may lead eventually to a more precision

medicine approach in which antenatal targeting could even play a potential role. Currently,

clinical postnatal treatment of patients with CDH is mainly trial and error and no properly

designed studies on all used drugs have been performed in this specific group of patients. The

choice of combination therapy for individual patients is another important step to be made to

enhance the treatment results in the most severely affected patients unresponsive to the current

approaches including ECMO. Vasodilator therapy is mostly based on the major vasoactive

pathways in adults or at best on some trials in neonatal patients with persistent pulmonary

hypertension due to other causes [63]. However, the underlying pathophysiology of pulmonary

vascular defects is most likely different in CDH patients, given the poor response to current

therapies. Systematic research on the different targeted pathways in these patients is lacking,

making it difficult to use specific directed treatment. Representative material of CDH patients is

scarce, since age and therapies could cause secondary morphological changes while the patients

usually die under severe hypoxic conditions and the time to harvest material after death is not

standardized either. Therefore, our study on the expression of important target-directed factors

of all major pathways in human material of CDH patients, described in Chapter 4, could be of

great importance to future therapy. Although some studies have been performed previously on

only a few components of these pathways, we are the first to combine this important research in

all pathways in both human material and the well-established nitrofen rat model, obtaining a

clear insight of existing alterations in the pulmonary vasculature. Over the last years antenatal

treatment of congenital anomalies has become an upcoming interest in CDH research. The

possibility of early detection at 20 weeks of gestation by ultrasound, makes this disease suitable

for an antenatal approach of therapy. Our studies, described in Chapter 5 and 6, show the

feasibility of antenatal treatment with the phosphodiesterase-5 inhibitor sildenafil and the

novel prostaglandin-I2 receptor agonist selexipag (NS-304) in the nitrofen rat model. Although

further studies are needed to prove safety and efficacy in clinical use, our research might add to

a potential start of a new era in the treatment of CDH with the aim to correct or modulate

the pulmonary vasculature at an earlier stage of abnormal development instead of “damage

control”.

Future research

Before the suggested antenatal therapies can be implemented in the clinical setting, clinical trials

should be initiated to test safety and efficacy of different forms of antenatal vasodilator therapy



116

∣

∣ Chapter 7

in patients with CDH and the optimum dosage should be determined. Ideally, antenatal testing

of the expression of factors that can be targeted would be of great value for the implementation

of a precision medicine approach.

Furthermore, research should become more focused on the actual changes in the aberrant

pulmonary development between different diseases of the newborn. Patients with CDH often

develop neonatal chronic lung disease (nCLD), because of their high susceptibility for oxygen

and ventilation damage, indicating an overlap in the pathophysiology of both diseases. And

although the genetic mutations found in CDH differ from those in PPHN, both in CDH and

nCLD as well as in PPHN multiple developmental signaling pathways are affected, of which

for instance TGFβ seems to be a common factor. In Chapter 3 we described the upregulated

activation of TGFβ in the nitrofen rat model, which corresponds to the effects seen on PDGF-Rα

in a mouse model of nCLD, as described in the Appendix. Furthermore, some overlap might

exist between CDH and ACD, which are both developmental diseases associated with severe

pulmonary hypertension mostly unresponsive to current therapies. Further research in both

diseases could have important implications in the approach of treatment in both patient groups.

Conclusions

In conclusion, our work shows important alterations already early during development in

the TGFβ pathway and all three major vasoactive pathways in both human CDH and the

well-established nitrofen rat model. Furthermore, it shows the feasibility of antenatal treatment

of pulmonary vascular defects in this disease with two different vasodilators acting on the NO

and PGI2 pathway. These results indicate the importance of a precision medicine approach,

potentially even already starting antenatally. As the mortality of CDH has significantly decreased

in the last decade, still around 20-25% of patients die due to a lack of insight in the optimal

therapy for this high risk patient population so far.
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Abstract

Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving

mechanical ventilation with oxygen-rich gas (MV-O2). Regardless, the primary molecular driver

of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF-Rα

gene in preterms with nCLD and directly test the effect of PDGF-Rα haploinsufficiency on the

development of nCLD using a preclinical mouse model of MV-O2. In the context of MV-O2,

attenuated PDGF signaling independently contributes to defective septation and endothelial cell

apoptosis stemming from a PDGF-Rα dependant reduction in lung VEGF-A. TGF-β contributes

to the PDGF-Rα dependant decrease in myofibroblast function. Remarkably, endotracheal

treatment with exogenous PDGF-A rescued both the lung defects in haploinsufficient mice

undergoing MV-O2. Overall, our results establish attenuated PDGF signaling as an important

driver of nCLD pathology with provision of PDGF-A as a protective strategy for newborns

undergoing MV-O2.
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Introduction

Positive pressure mechanical ventilation with O2-rich gas (MV-O2) offers life-saving treatment

for respiratory failure due to lung immaturity and insufficient respiratory drive in preterm

infants. Unfortunately, this therapy significantly increases the risk for an important number

of preterm and a subset of newborns to develop neonatal chronic lung disease (nCLD), i.e.

Bronchopulmonary Dysplasia (BPD) [1–4]. Characterized by defective alveolar septation and

impaired vascularization, nCLD remains the most common complication of preterm birth

[2] and is associated with poor pulmonary and neurological long-term outcomes in affected

infants [5, 6]. The adverse effects of positive pressure MV-O2 on pulmonary development have

been reproduced in experimental models of the disease [7, 6, 8–10], manifesting as increased

lung apoptosis and disordered matrix elastin characteristic of nCLD. Because a myriad of

developmental signals are perturbed in the setting of active disease, it is difficult to distinguish

primary drivers of pathology from secondary effectors or compensatory responses. Yet, if a

defect in a specific signaling pathway underlies the susceptibility to developing nCLD and

orchestrates the multiple processes that execute disease pathology, it would be critical to identify

this potential therapeutic target.

An essential role for platelet-derived growth factor (PDGF) signaling in alveolar development

was established by the discovery that lungs of ‘knockout’ mice lacking PDGF-A failed to form

alveoli, with animals that survived infancy demonstrating an emphysema-like phenotype of

enlarged distal air sacs [11, 12]. This lung pathology was attributed to failure of migration of

PDGF-Rα positive alveolar smooth muscle progenitor cells (also known as myofibroblasts) into

the distal embryonic lung. Because myofibroblasts are believed to drive normal subdivision of

primitive air sacs into mature alveoli (‘secondary septation’), their absence presumably resulted

in abnormally large distal air sacs due to a failure to execute this process. Deletion of the

cognate receptor, PDGF-Rα, resulted in death in mid-gestation before air sac morphogenesis

initiated [13], but transgenic rescue of the profound craniofacial abnormalities and spina bifida

enabled survival through birth. Distal lungs in these mutants also lacked myofibroblasts and

failed to undergo secondary septation [14].

When the PDGF signaling pathway was examined in the lungs of animal models of nCLD

employing mechanical ventilation (MV-O2), reduced abundance of PDGF-A and PDGF-Rα

proteins or mRNA was observed [15, 7, 16], similar to the lungs of neonatal rats exposed to

hyperoxia [17] and preterm infants developing nCLD [18]. These findings suggest that reduced

PDGF signaling may be involved in the air sac morphogenesis defect of nCLD, but a causal role

has not yet been demonstrated. Furthermore, since microvascular defects were not reported in

the lungs of PDGF mouse mutants that failed to undergo secondary septation, the position

of this pathway in the hierarchy of perturbed signaling in nCLD is uncertain. Here, in a

case-control study of infants with nCLD, we discover significant enrichment for SNPs in the

PDGF-Rα gene associated with reduced PDGF-R levels and diminished migration of lung

fibroblasts suggesting that impairment of this pathway might be a primary driver of disease.

We confirm this model using gene-targeted mice haploinsufficient for PDGF-Rα, showing an

interaction with an established model of MV-O2 that reproduces the multiple pathologies of

nCLD, all of which are ameliorated by exogenous administration of PDGF-A protein during

MV-O2. We also dissect the molecular crosstalk that mediate nCLD pathology, showing that

attenuated PDGF-Rα signaling results in a reduction of VEGF-A expression, likely responsible

for the vasculature phenotype through increased endothelial cell apoptosis. We also find that

increased TGF-β and mechanical stretch, driving lung injury in the newborn lung, to act in

concert to reduce PDGF-Rα signaling, exacerbating the underlying basal reduction in PDGF-Rα

to a level sufficient to result in disease. Our work implicating attenuated PDGF signaling

as driving the air sac and vasculature defects of nCLD, along with our demonstration that

both pathologies can be ameliorated by exogenous PDGF-A protein, provide a strong rationale
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for pursuing augmentation of PDGF signaling as a potential targeted therapy for this serious

disease.

Materials and methods

All the antibodies used in the manuscript could be found in 1DegreeBio database. Study design

for the manuscript experiments is described in Supplemental methods.

Human studies

Patient characteristics

Two study cohorts comprising of 1061 preterm infants at or less than 32 weeks of gestational

age (GA) with and without nCLD, i.e. BPD grade 2 or 3 according to Jobe et al. [19]

(Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of

Severe Sepsis (PROGRESS); German Neonatal Network (GNN)) were included in the SNP

analysis (Ethics Approval #65/07, Homburg, University of Saarland; #145-07, Munich, Ludwig

Maximillians University of Munich and #File 79/01, Giessen, University of Giessen, Germany).

Detailed patient characteristics are in Supplemental methods. 9 patients out of this cohort were

subjected to PDGF-Rα transcriptome analysis in association with presence of single nucleotide

polymorphism (SNPs). Patient characteristics of this cohort are in Supplemental Table A.3A. A

separate study cohort was obtained from Perinatal Center of the Ludwig-Maximilians-University,

Campus Grosshadern (Ethics Approval #195-07, Munich, Ludwig Maximillians University of

Munich, Germany) for SNP and protein analysis uring SOMAscan (n = 13). The patient

characteristics are in Supplemental Table A.3B. Tracheal aspirates of few patients from this

patient cohort were used to isolate primary fibroblasts (n = 6). Patient characteristics of this

cohort are in Supplemental Table A.3C. Sections from human lung were available through

the Department of Pediatric Surgery at the Erasmus Medical Center. Lung samples were

retrieved from the archives of the Department of Pathology of the Erasmus MC, Rotterdam,

following approval by the Erasmus MC Medical Ethical Committee. Patient characteristics

of this cohort are in Supplemental Table A.3D. According to Dutch law following consent to

perform autopsy, no separate consent is needed from the parents to perform additional staining

of tissues. A group of 20 preterm infants from Giessen was subjected to microarray analysis

(Ethics Approval #File 79/01, Giessen, University of Giessen, Germany). The clinical course of

all infants was comprehensively monitored. Approval of the local ethics committee and written

informed parental consent was obtained for all samples studied. All the experiments conformed

to the principles set out in the WMA declaration of Helsinki and Department of Health and

Human Services Belmount Report. The limitation of human material to be tested in case

of neonatal chronic lung disease is well known hence, analysis was performed with samples

available in maximum capacity. Samples were collected from patients randomly. Our datasets

were obtained from subjects who have consented to the use of their individual genetic data for

biomedical research, but not for unlimited public data release. Therefore, we submitted it to

the European Genome-phenome Archive (accession number- EGAS00001002586, study unique

name- ena-STUDY-IMI-24-07- 2017-10:03:30:362-576), through which researchers can apply for

access of the raw data.

SNP and protein analysis

Cord blood samples of 1061 preterm infants at or below 32 weeks of gestational age (n = 492

BPD cases) were collected in Ethylenediaminetetraacetic acid (EDTA) neonatal collection tubes.

Genotypes of this patient cohort for PDGF-Rα SNPs (single nucleotide polymorphisms) were
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determined using Affymetrix Axiom microarrays based on the Axiom CEU array supplemented

with some custom content. Matched controls were selected according to gender, GA, birth

weight < 10th percentile, and country of maternal origin. Case-control analysis adjusted for

relatedness. 117 SNPs were measured in or near the PDGF-Rα. Whole blood samples collected

from a separate patient cohort (n = 13) that were analyzed for 3 significant SNPs by Eurofins

Geomics was subjected to proteomic screening for PDGF-R and VEGF-A (SOMAscan TM,

SomaLogic, Boulder, USA). For a detailed description please refer to Supplemental methods.

Human primary lung fibroblasts

Human primary lung fibroblasts were extracted from serial tracheal aspirate samples obtained

from ventilated preterm infants (mean GA 24.9±1 weeks, n = 6) later developing nCLD, at

4.7±1 and 21.7±8 day of life (Ethics Approval #195-07, Munich, Ludwig Maximillians university

of Munich, Germany). Human lung fibroblasts were cultured until 80% confluency in DMEM

medium with 2mM L-glutamine, Pen/Strep and 20% FCS (PAN Biotech GmbH). Purity of cell

cultures was > 95% and FACS verified expression of CD11b (< 3%) (eBiosciences #48-0112-80),

CD11c (< 3%) (BD Biosciences #557401), CD14 (< 5%) (BD Biosciences #09475A), CD45

(< 5%) (BD Biosciences #552848), CD90 (> 95%) (eBiosciences #48-0900-80), and CD105

(> 95%) (Miltenyi Biolabs #130-092-930), differences between patient samples were < 5%

(Supplemental Figure A.13A). All fibroblast cultures expressed α-SMA as detected in cytosolic

cell lysates by immunoblot analysis. This section is further described in Supplemental methods.

Gene expression microarray analysis

250 − 300µl of whole cord blood was obtained from 20 preterm infants 72 hours after birth

and directly transferred to 750 − 900µl of the PAXgene Blood RNA System (PreAnalytiX,

Heidelberg, Germany). RNA was isolated using PAXgene Blood RNA System (PreAnalytiX,

Heidelberg, Germany) and was subjected to CodeLink Human Whole Genome Bioarrays

(GE Healthcare). PDGF-Rα gene expression in GWAS patient cohort was measured by the

expression of NM 006206 on the human whole genome bioarray and human 10 k I bioarray

by Codelink. For details of blood sampling and RNA analysis please refer to Supplemental

methods.

Human lung slides

Human slides were obtained from paraformaldehyde fixed and paraffin embedded autopsy

lungs from preterm infants with different BPD grades (n = 7) and an infant that died from

a non-pulmonary cause. Tissue sections were stained for PDGF-Rα, and TGF-β for further

quantification. Please refer to Supplemental methods for details of patient characteristics.

In vivo studies

All the studies were performed as per ARRIVE guidelines.

Gene-targeted mice

Gene-targeted mice (B6.129S4-Pdgfratm11(EGFP )Sor/J) referred to in manuscript as PDGF-

Rα+/− or PDGF-Rα happloinsufficient mice, were purchased from Jackson laboratories (Bar

Harbor, Maine, USA). Heterozygous mice are healthy and viable and reported to have no lung

abnormalities [8]. Co-staining for PDGF-Rα and α-SMA showed a reduction in myofibroblasts

(double-positive), and mRNA and immunoblot analysis confirmed the reduced abundance of

pulmonary PDGF-Rα expression in unventilated PDGF-Rα+/− mice when compared to WT
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Figure A.1: Reduced PDGF-R-α abundance in PDGF-Rα happloinsufficient mice (A) Double staining for
PDGF-Rα (red) and α-SMA (green) showed a co-localization of these two proteins as well as a
reduced number of double positive cells (white arrows) in 6-7d old PDGF-Rα+/− mice (right
panel) when compared to PDGF-Rα+/+ (WT) littermates (left panel). * represents alveolar
air space. (B) Quantitative RT-PCR and (C) Immunoblot analysis showing reduced PDGF-Rα
protein and mRNA expression in lungs of PDGF-Rα+/− newborn mice when compared to WT
littermates. n = 4/group. (D) Reduced PDGF-Rα transcript in newborn PDGF-Rα+/− mice
upon MV-O2 for 8h when compared to wildtype littermates. (n = 3 mice/group). In (B-C) the
data is presented as Mean ± SD. *p < 0.05. Statistical test in (B-D) is Two-tailed unpaired
Student’s t test or Mann Whitney test.

littermates (Figure A.1A-C). For the study day 5-8 old neonatal mice both males and females

were used. The experimental protocols were approved by the Bavarian government (TVA no.

55.2-1-54-2532-117-2010). The mice were kept under specified pathogen-free (SPF) conditions

in a 12/12 hour light cycle in the fully-climate controlled rooms having set points to the new

conventions 2007/526 EC in our central mouse facility. Mice had a two-week adaptation phase

to their new environment and a handling by new nurses before putting them into the experiment.

For each experiment, appropriate sample size (n = 6− 12) was estimated considering the effect

of MV-O2 on viability of newborn mice.

Mechanical ventilation

We used 5-8 day-old (newborn/neonatal) C57B6 wild type (PDGF-Rα+/+) and PDGF-Rα

haploinsufficient (PDGF-Rα+/−) mice, all born at term gestation weighing 4g (WT 3.98±0.55g;

PDGF-Rα+/− 3.93± 0.66g bodyweight (bw)) to perform experiments in four groups of mice

(14-16 mice per group). WT and PDGF-Rα+/− pups received mechanical ventilation with

oxygen-rich gas (40% O2) (MV-O2) for 8h at 180 breaths/min (MicroVent 848; Harvard

Apparatus) after tracheotomy under sedation with ketamine and xylazine (60 and 12µg/g bw),

as previously described [9]. The ventilator setting mimicked the clinical setting to avoid severe

lung injury (mean tidal volume 8µl/g bw; mean airway pressure (11-12 cmH2O)). Tidal volumes

were similar between the MV-O2 groups (WT 8.3± 0.5µl/g bw; PDGF-Rα+/− 7.9± 0.3µl/g

bw). The ventilation protocol was designed to avoid severe lung injury typically occuring in

response to MV with very high inflation pressures and extreme hyperoxia. Hence, we used

modest tidal volumes (mean 8.7µl/g bw) and airway pressures (peak 12-13 cmH2O, mean 11-12

cmH2O), and limited the FiO2 to 40%, thereby simulating the MV strategy of choice for preterm
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Figure A.2: (A) Immunoblot analysis showing similar pSMAD levels in whole lung homogenate of newborn
WT as well as PDGF-Rα+/− mice. (n = 3 mice/group). (B) Representative immunofluo-
rescence image showing similar pSMAD levels (red) in both newborn WT (upper panel) and
PDGF-Rα+/− mice (lower panel). α-SMA is in green and nucleus is stained with DAPI (blue).
Quantification of the image showing pSMAD-2 area to 100 nuclei. (n = 3 − 4 mice/group,
4 sections/mice, 10 images/section). (C) Increased apoptosis quantified by cleaved caspase-3
nuclei to 100 nuclei in newborn PDGF-Rα+/− compared to WT mice. (n = 4 mice/group).
In (A-C) data is presented as Mean ± SD. *p < 0.05. Statistical test is Two-tailed unpaired
Student’s t test (p = 0.0159).

infants with respiratory failure. Respective controls spontaneously breathed 40% O2 for 8h after

receiving sham surgery (superficial neck incision) under mild sedation. During MV-O2, mice

were maintained at neutral thermal environment; sedation with ketamine and xylazine (10µg/g

bw, and 2µg/g bw, respectively) was repeated as needed to minimize spontaneous movement

and assure comfort. At the end of each study, pups were euthanized with an intraperitoneal

overdose of sodium pentobarbital, ∼150µg/g bw, and lungs were excised for various studies

as described below including histological analysis, as well as protein measurement and RNA

expression analysis from frozen lung tissue. For PDGF-A treatment, 10µl/g bw of sterile saline

containing 25ng/ml PDGF-A was administered through the endotracheal tube immediately

before the onset of MV-O2 as described previously. In a subgroup of mice with or without

PDGF-A treatment, tidal volume and maximum tracheal pressure (Ptramax) was measured by

whole body plethysmography (Pulmodyn, Harvard Apparatus). Stepwise increase of the tidal

volume allowed to assess quasi-static compliance [9].

All animals were viable with response to tactile stimulation and adequate perfusion at the end

of each experiment. All surgical and animal care procedures were reviewed and approved by the

Institutional Animal Care and Use Committee (Bavarian Government). Upon ventilation both

the mouse strains showed similar activation of pSMAD-2 while neonatal PDGF-Rα+/− mice

displayed increased apoptosis when compared to wildtype mice (Figure A.2A-C). Allocation of

the newborn mice to the groups was performed on the basis of similarity in weight and age.

When newborn mice from more than one cage were used for the experiments, all pups were

randomized before distribution in the groups. Investigators were blinded for the sex of mice

during allocation. Further the analysis of lungs were performed based on internal serial numbers

allotted to mice blinding the investigator for genetic background and treatment (example

controls or ventilated). All experimental procedures were carried out in a laboratory-controlled

environment during day time.

Quantitative histology and immunostaining

Lungs (n = 6− 11/group) were fixed intra-tracheally with 4% paraformaldehyde overnight at

20 cmH2O, as previously described [7]. Fixed lungs were then excised and their volume was

measured by fluid displacement [10]. Lungs were embedded in paraffin for isotropic uniform
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random (IUR) sectioning, as described previously [10]. Tissue sections (4µm) were stained

with hematoxylin and eosin (H&E) for quantitative assessment of alveolar area and number

of incomplete and complete alveolar walls (septal density) in 2-3 independent random tissue

sections per animal using the CAST image analysis system (CAST-Grid 2.1.5; Olympus,

Ballerup, Denmark). Alveolar area, number of incomplete and complete alveolar walls (septal

density) and radial alveolar counts providing an index of alveolar number and were assessed in

a minimum number of 30 fields of view were quantitatively assessed in 2-3 independent random

4µm H&E tissue sections per animal (CAST-Grid 2.1.5; Olympus) [20]. Tissue sections were

stained for PDGF-Rα, VEGF-A, cleaved caspase-3, CD31 and αSMA for further quantification

(see Supplemental methods for detailed description).

Quantification of micro-vessels (20− 100µm).

20 − 100µm diameter blood vessels were assessed in H&E (normalized to 100 alveoli) and

CD-31 stained slides obtained from 8h studies (n = 6 − 8/group) applying a previously

described immunohistochemical and morphometric approach [9] in 30 fields of view in the distal

lung/animal (400X magnification).

Protein extraction and immunoblot analysis

After 8h MV-O2, protein extraction from snap-frozen total lungs was done using high urea buffer

(KPO4, Urea, AppliChem) with Halt Protease Inhibitor (#1861280, Thermo Fisher Scientific).

Primary lung fibroblasts were lysed with RIPA buffer with Halt Protease Inhibitor (mouse)

or sodium vanedate (human) (#S6508, Sigma) and complete mini (#11836170001, Roche)

followed by sonication. After measurement of protein concentrations (BCA, #23227, Pierce

Scientific), immunoblots were performed using a Bis-Tris or a Tris-Acetate gel (#NP0321BOX,

#EA0375BOX, Life Technologies) using the following antibodies: PDGF-Rα (C-20, Santa Cruz

Biotechnology #338), VEGF-A (147, Santa Cruz Biotechnology #507), VEGF-R2 (Abcam,

Cambridge, USA #Ab2349), VE-Cadherin (H-72, Santa Cruz Biotechnology #28644), cleaved

caspase-3 (Cell Signalling Technology #9661), cleaved caspase-9 (Cell Signaling Technologies

#7237), eNOS (Cell Signaling Technologies #5880), phospho-ERK (Cell Signalling Technologies

#4370), total ERK (Cell Signalling Technologies #4695), RAS (Cell Signalling Technologies

#8955), PI3K (Cell Signaling Technologies #13666), JAK-2 (Cell Signaling Technologies #3230),

STAT-3 (Cell Signaling Technologies #9139). Images were detected by chemiluminescence

(#RPN2232, GE Healthcare) and quantified by densitometry (Bio Rad). Details of immunoblot

analysis could be found in Supplemental methods.

In vitro experiments

Mouse primary pulmonary myofibroblasts

Mouse myofibroblasts (MFBs) were extracted by excising lungs of 5-7 day old C57BL6 wild type

mice after intraperitoneal overdose of sodium pentobarbital (∼150µg/g bodyweight). Under

sterile conditions lungs were flushed with PBS after cannulation of the right ventricle. Flushed

lungs were then excised, diced into 1 mm pieces and distributed on a petridish (Corning

#430167, Tewksbury MA, USA). Attachment to the dish was accomplished by incubation

for 15 to 20 min at 37◦C. Afterwards the tissue pieces were gently submerged in media

(Gibco #41966-029, Darmstadt, Germany) containing Pen/Strep (Gibco, #15140-122) and

Gentamycin (Lonza #BE02-012E, Basel, Switzerland) for 48 hours before changing to fresh

media. Experiments were started at 70-80% confluency. Myofibroblasts were characterized with

fluorescence activated cell sorter (FACS LSRII) using multicolor staining technique. Briefly
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myofibroblasts were resuspended in FACS buffer (PBS+2% FCS+ 10mM HEPES+0.1% Na-

Azide) and stained with CD90.2 APC FITC (BD Pharmingen, Heidelberg, Germany #561974),

CD 105 PE (BD Pharmingen, Heidelberg, Germany #562759), CD45 FITC (BD Pharmingen,

Heidelberg, Germany #553080), CD11b V450 (BD horizon, Heidelberg, Germany #560455),

CD11c PerCpCy5.5 (Biolegend, Fell, Germany #117328). For detection of internal markers,

Myofibroblasts were fixed with 4% PFA (Alpha Aesar GmbH, Germany #43368) followed by

permeabilization with 0.2% TritonX-100 (Carl Roth GmbH + Co.KG, Karlsruhe, Germany

#3051.2) and blocking with 1% BSA (Sigma) in PBS. Myofibroblasts were then stained in

blocking solution with PDGF-Rα APC (eBiosciences #17-1401-81), α-Smooth Muscle Actin

PE (R & D systems, Minneapolis, MN, USA #IC1420P) and Vimentin Alexa 488. Stained

myofibroblasts were then acquired through BDTMLSR II utilizing BD FACSDivaTMsoftware

version 6.0 and analyzed using Flowjo version 9.6.1. As displayed in Supplemental Figure

A.13B Myofibroblast culture constituted leukocytes (0.6±0.5% CD45+), mesenchymal-like cells

(8.5±4.5% CD105+, 32±8.6% CD90+), myofibroblasts (77.2±14% PDGF-Rα+/Vimentin+,

16.7±12% Vimentin+ and 77.6±27% αSMA+). Antibodies used were CD45 (BD Pharming

#553080), CD105 (BD Pharming #562759), CD90 (BD Pharming Vimentin (Cell Signaling

#561974), PDGF-Rα (eBiosciences #17-1401), #9854) and α-SMA (R&D systems #IC1420P).

Mechanical stretch

Myofibroblasts were seeded on flexible-bottomed laminin-coated culture plates (#BF-3001L,

Flex Cell International Corporation) and stretched at 70-80% confluency (shape/sine; elongation

min 0%, max 8%; frequency 2Hz; duty cycle 50%; cycles 43216) for 24h. A detailed description

of mechanical stretch expriment is available in the Supplemental methods.

Protein analysis

Cells were lysed with RIPA buffer including Halt Protease Inhibitor Cocktail (mouse myofi-

broblasts) or sodium vanedate (catalog #S6508, Sigma) and complete mini (Roche, Penzberg,

Germany #11836170001; human lung fibroblasts). After storage at −80◦C, cell lysates were

sonicated and processed for immunoblot analysis (as described in ‘in vivo’ methods).

siRNA transfection of pulmonary mouse myofibroblasts

Primary neonatal mouse myofibroblasts were transfected with either 100nM specific siRNA

against PDGF-Rα (Santa Cruz Biotechnology, Inc., Germany #sc-29444) or 100nM control

siRNA B (Santa Cruz Biotechnology #sc-44230) suspended in TurboFect (Thermo Fisher

Scientific, Waltham, MA #R0531) or remained untreated controls in siRNA transfection media

(Santa Cruz Biotechnology, Inc., Germany #sc-36868). Transfection with siRNA was repeated

after 17 hours.

Caspase activity and immunoblot analysis in human umbilical vein endothelial cells

Mycoplasma tested Human umbilical vein endothelial cells (HUVECs) (Commercially obtained

from Lonza #CC-2935) were cultured in EBM-2 Basal Media (#00190860, #cc-4176, Lonza,

mycoplasma free) with EGM-2 Single Quots supplements (Lonza #cc-4176) on 0.2% gelatin

(Sigma Aldrich #G1393) coated 96-well plates (5000 cells/well) or 6-well plates (150,000

cells/well). After obtaining stable culture conditions, HUVECs were incubated with culture

supernatants collected from three groups of mouse myofibroblasts: I) untreated myofibroblasts

(TurboFect), II) control siRNA treated myofibroblasts and III) myofibroblasts treated with

siRNA against PDGF-Rα. For caspase activity assay, incubation with 40µg/ml anti-VEGF

(C-1) antibody (#sc-7269, Santa Cruz) served as a positive control. Caspase activity was
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assessed after 6 hours using the Caspase-Glo 3/7 assay kit (#G8091, Promega). After 6h of

incubation, caspase activity was assessed using the Caspase-Glo 3/7 assay kit (Promega GmbH,

Germany #G8091) according to the manufacturer’s instructions. Cells plated in 6-well plate

were lysed after 6h incubation and lysate was processed for immunoblot analysis with cleaved

caspase 9 (Cell Signaling Technologies #9509) and eNOS (Cell Signaling Technologies #880)

protein.

Luciferase assay

PDGF-Rα promoter inserted in a reporter plasmid was transfected in CCL206 stimulated

with TGF-β1. Luciferase activity was assessed the next day using Dual Luciferase assay. For

generation of reporter please refer to Supplemental methods.

Functional assays for myofibroblasts

Mouse and human myofibroblasts or lung fibroblasts were subjected to analysis of proliferation

(Cell titer Glo assay and manual counting) and migration (Boyden chamber assay and scratch

migration assay) followed by the application of stretch and TGF-β as shown in Supplemental

Figure A.13C. Proliferation assays and scratch migration assay were performed after 48h of

application while migration assay was done after 8h. For detailed description of proliferation,

boyden chamber and scratch migration assays please refer to Supplemental methods.

Statistical analysis

All datasets are presented as mean ± SD. Statistical analysis was performed using Prism 5 and

6 software package (GraphPad, San Diego, CA). Two-way analysis of variance (ANOVA) and

post-hoc test with Bonferroni correction was performed to compare controls and mechanically

ventilated WT (PDGF-Rα+/+) and haploinsufficient (PDGF-Rα+/−) newborn mice. For

in vitro experiments, One-way ANOVA and post-hoc test with Bonferroni correction was

performed to compare more than two groups of Myofibroblasts (immunoblot, migration and

proliferation analysis). For analysis of caspase activity to HUVECs non-parametric Kuskal

Wallis test was performed. To compare datasets from two groups of either WT or PDGF-Rα+/−

mice (immunoblot, migration and proliferation analysis, reporter assays), parametric unpaired

student’s t-test with Welchs correction or the non-parametric Mann-Whitney test (for datasets

with a skewed distribution) was performed with two-tailed or one-tailed analysis. Test groups

were always compared to control group. Differences were considered statistically significant

when the p value was < 0.05. For microarray, data was analyzed in a target gene approach

using the Pearsons correlation coefficient to correlate expression of PDGF-Rα and TGF-β in

preterm infants with and without BPD. Correlation coefficients in preterm infants with and

without BPD were tested using the R-packages psych. Statistical methods applied for the SNP

analysis are outlined above.

Results

Enrichment of PDGF-Rα SNPs associated with reduced protein levels and

migration of lung fibroblasts from ventilated preterm infants developing

nCLD

We confirm reduced PDGF-Rα expression in lung fibroblasts isolated from ventilated preterm

infants. This reduction in PDGF-Rα expression was correlated with increased duration of

MV-O2, as quantified by immunofluorescence and immunoblot analysis (Figure A.3A). Further,
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a case-control analysis of PDGF-Rα in 1061 newborns (n = 492 with moderate or severe BPD)

identified 14 SNPs out of 117 with nominal significance (p <= 0.05) (Figure A.3B). Three

of these SNPs were highly statistically significant, with p-values below 0.001 (Supplemental

Table A.1). The presence of at least one SNP at these 3 positions (rs12506783) was associated

with reduced PDGF-Rα gene expression and PDGF-R as well as VEGF-A protein levels in

blood from ventilated preterm inants (Figure A.3C-E, Supplemental Figure A.11). In human

lung fibroblast this SNP is associated with reduced PDGF-Rα protein level in accordance

with reduced migration (Figure A.3F-G). Analysis of SNPs cis-regulating gene expression for

genes in the PDGF-pathway and its downstream pathways showed enrichment of low p-values

for SNPs linked to the MAPKKK-cascade, JAK/STAT-cascade, apoptosis, cell cycle, DNA

metabolism, lipid metabolism, protein metabolism, and actin and calcium ion homeostasis

(Supplemental Table A.2). Together, these experiments indicate that MV-O2 in humans results

in a reduction of PDGF-Rα expression by alveolar fibroblasts, and suggests that genetic risk

factors for reduced PDGF signaling in human infants is associated with an increased risk of

developing nCLD.

PDGF-Rα haploinsufficiency drives the air sac pathology of nCLD in

neonatal mice undergoing MV-O2

In order to test whether attenuated PDGF signaling was indeed a risk factor for the development

of nCLD as suggested by our human SNP data and not restricted to the air sac component, we

obtained gene-targeted mice lacking one allele of PDGF-Rα and subjected them to MV-O2 using

a unique preclinical mouse model. We found that lungs of PDGF-Rα haploinsufficient newborn

mice undergoing MV-O2 for 8h showed a significant increase in distal airspace size and decrease in

radial alveolar counts resembling nCLD pathology as assessed by quantitative morphometry when

compared to unventilated controls (Figure A.4A-C), whereas their ventilated WT littermates

were unaffected. As expected with this phenotype, there were fewer secondary septae in PDGF-

Rα+/− neonatal mice after MV-O2 for 8h as compared to WT mice (Figure A.4D), with no

significant difference in lung volumes between the groups (WT control 55.3±7.0µl/g bw; WT

MV-O2 56.2±14.2µl/g bw; PDGF-Rα+/− control 59.7±11.9µl/g bw; PDGF- Rα+/− MV-O2

57.6±23.7µl/g bw; mean and SD each). Atelectasis, as analyzed using ImageJ, involved 14-18%

of the total lung in both groups undergoing MV-O2 (WT MV-O2 17.2±9.6%; PDGF-Rα+/−

MV-O2 22.8±10.4%; p = 0.61).

Immunoblot and mRNA analysis confirmed reduced pulmonary PDGF-Rα level (Figure A.4G,

Figure A.1D), reflected by the reduced number of myofibroblasts localized on septal crests in

ventilated PDGF-Rα+/− mice lungs compared to WT littermates (Figure A.4E-F). Diminished

JAK-2 and STAT-3 in ventilated PDGF-Rα+/− mice reflects reduced PDGF-Rα downstream

signaling (Figure A.4H-I).

PDGF-Rα haploinsufficiency drives reduced pulmonary micro-vessel density

with increased endothelial cell apoptosis in neonatal mice undergoing

MV-O2

We next asked whether attenuated PDGF signaling would also reproduce the vascular defect

of nCLD. Indeed, we demonstrated by histological analysis of PDGF-Rα+/− mice undergoing

MV-O2, a significant reduction in the number of alveolar micro-vessels (20− 100µm), notably

exceeding the effect observed in WT pups (Figure A.5A). This finding was corroborated by

immunoblot analysis showing reduced lung protein levels of the endothelial cell markers, VEGF-

R2 (Figure A.5B), and VE-Cadherin (Figure A.5C) in ventilated neonatal PDGF-Rα+/− mice,

suggesting a net loss of endothelial cells. Co-staining for apoptosis and endothelial cell markers
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Figure A.3: Enrichment of PDGF-Rα SNPs associated with reduced protein levels and migration of

lung fibroblasts from ventilated preterm infants developing nCLD (A) Decreased PDGF-Rα
expression in human lung fibroblasts (hMFBs) from preterms undergoing MV-O2 (21.7±8 vs
4.7±1 days of life; serial samples 2&5, 3&6) (n = 3 patients/group). (B) Regional association
plot showing -log10 p-values (y-axis) of SNPs according to chromosomal positions (x-axis).
Light blue: Estimated recombination rate (cM/Mb, HapMap CEU population); blue: most
significant SNP (rs12506783); red: r2≥0.8, white: r2≥0.2. (C) Levels of PDGF-Rα gene
expression in patients (n = 9) which are carrying at least one SNP (minor allele) compared
to patients with no SNPs (major allele). Major alleles are given in the figure labels. Minor
alleles of rs10022540 is A, in rs11133311 is T, and in rs12506783 is C. (D-E): PDGF-R (D)
and VEGF-A (E) protein levels in separate patient cohort (n = 13) carrying at least one
SNP (minor allele) at position rs12506783 compared to patients with no SNPs (major allele).
Protein levels were quantified using SOMAlogic technique. Two-tailed unpaired Student’s t test
(p = 0.0281−0.0863). #p = 0.0863. (F-G): Representative PDGF-Rα levels (F) and migratory
potential assessed by boyden chamber assay (G) in fibroblasts isolated from tracheal aspirates
of patients with nCLD. The fibroblast carrying SNP at both alleles (homozygote minor allele)
displayed reduced PDGF-Rα levels and migration when compared to fibroblasts from patients
carrying SNP at one allele (heterozygote minor allele). (n = 3/4 replicates). In (D-G) data is
presented as Mean ± SD. *p < 0.05
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Figure A.4: PDGF-Rα haploinsufficiency drives the air sac pathology of nCLD in neonatal mice

undergoing MV-O2 (A) Representative lung tissue sections (200X) from 5-8d-old PDGF-Rα+/+

(WT) and PDGF-Rα+/− mice after 8h MV-O2 showing increased air space size compared to
respective controls (O2-control) spontaneously breathing 40% O2 for 8h. (B) Quantitative
analysis of lung tissue sections showed increased alveolar area after 8h MV-O2 in PDGF-
Rα+/− mice, whereas no significant change was observed in WT mice when compared to
respective controls (n = 6 − 11 mice/group). (C) Radial alveolar counts (alveolar number)
in lung tissue sections from WT and PDGF-Rα+/− mice were reduced after 8h MV-O2

when compared to respective controls (n = 6 − 11 mice/group). (D) Septal density was
significantly reduced in PDGF-Rα+/− mice when compared to WT littermates after 8h MVO2

(n = 6− 8 mice/group). (E) Immunofluorescence staining (400X, merged) for PDGF-Rα (red,
white arrows; blue: DAPI) with decreased stain from the septal crests in lungs of ventilated
PDGF-Rα+/− (lower panel) and WT (upper panel) mice undergoing MV-O2. (F) Quantitative
analysis of the immunofluorescence images (200X) showed reduced number of PDGF-Rα+
myofibroblasts located at the septal crests (presented myofibroblasts number per 100 septal
crests; 10 fields of view in PDGF-Rα and α-smooth muscle actin co-stained sections/animal,
4 animals/group). (G-I) Immunoblot analysis of PDGF-Rα (G) and its downstream proteins
JAK-2 (H) and STAT-3 (I) showing a significant reduction of protein level in PDGF-Rα+/−

neonatal mice in contrast to WT mice after MV-O2 for 8h(n = 3 mice/group). PDGF-Rα
levels are displayed as fold change of control. H and I are from same blot hence having same
β-actin bands. In (B-D) and (F-I) data is presented as Mean ± SD. ***p < 0.001, **p < 0.01,
*p < 0.05. Statistical analysis for (B-D) is Ordinary one way anova with Bonferroni’s correction
(p = 0.0001 − 0.029) and (F-I) is Two-tailed unpaired Student’s t test or Mann Whitney test
(p = 0.024− 0.028).



134
∣

∣ Appendix

demonstrated significantly increased vascular endothelial cell death in the lung periphery of

ventilated neonatal PDGF-Rα+/− mice compared with WT littermates (Figure A.5E-F).

To further explore the link between reduced PDGF signaling and endothelial cell apoptosis,

we focused on VEGF-A, a critical regulator of pulmonary microvascular development [21–25]

With MV-O2, pulmonary VEGF-A protein level was significantly reduced in PDGF-Rα+/−

mice compared to WT littermates (Figure A.5D). Interestingly, vessel number did not differ

compared to unventilated PDGF-Rα+/− mice (Supplemental Figure A.12).

In order to determine if this reduction was a direct consequence of reduced PDGF-Rα signaling

in myofibroblasts, we isolated primary lung myofibroblasts from WT mice and measured their

production of VEGF-A at baseline as well as following siRNA mediated knock-down of PDGF-

Rα expression in vitro (Figure A.5H, I). We also administered conditioned supernatant from

PDGF-Rα siRNA treated mouse myofibroblasts to human umbilical vein endothelial cells

(HUVECs) in culture, and found reduced endothelial cell survival due to an increase in apoptosis

(Figure A.5G, J) and a reduction in the permeability factor eNOS (Figure A.5K), comparable to

the effect seen with an anti-VEGF-A antibody. These experiments together with Figure A.4G-I

indicate that PDGF-Rα signaling in the myofibroblasts promotes VEGF-A expression, and

corroborates that the microvascular phenotype is downstream of attenuated PDGF signaling.

Supplemental PDGF-A rescues both the air sac and microvascular nCLD

phenotypes induced by MV-O2 in neonatal PDGF-Rα haploinsufficient mice

As suggested by the human SNP data and our experiments above, if the attenuated PDGF

signaling drives the pathogenesis of nCLD in all its manifestations, experimentally augmenting

PDGF signaling in the lungs of ventilated haploinsufficient mice should ameliorate both the air

sac and microvascular phenotypes. To directly test this prediction, we administered exogenous

PDGF-A protein by endotracheal delivery at the onset of MV-O2. The results showed both an

increase in peripheral lung microvessel number (20− 100µm) in treated versus untreated PDGF-

Rα+/− neonatal mice undergoing MV-O2, as well as a normalization of air sac defects, with

increased alveolar and microvessel number compared with untreated controls (Figure A.6A-C).

The reduction in JAK-2, STAT-3, VE-Cadherin and VEGF-A protein expression in the lungs

of ventilated mice was also ameliorated with PDGF-A treatment, supporting reversal of the

endothelial cell apoptosis (Figure A.6E-H). PDGF-A treatment further enhanced PDGF-Rα

protein, associated with increased levels of AKT, suggesting a feed-forward mechanism where

increased endosomal internalization leads to PDGF-Rα recycling in lung myofibroblasts with

subsequent increase in receptor expression [26, 27] (Figure A.6D, I). The lung periphery of

mechanically ventilated PDGF- Rα+/− neonatal mice also exhibited an increase in (secreted)

VEGF-A protein immunolocalized near myofibroblasts, providing further support (Figure A.6J,

M upper panel). Quantification of immunofluorescent staining confirmed a pronounced reduction

in apoptotic (cleaved caspase-3 positive) surface area and individual cells, with dramatically

increased CD31 surface area in PDGF-A treated mice (Figure A.6K-L,-M lower panel). A

physiological rescue was also observed, with an improvement in quasi- static compliance by

lung function testing in neonatal mice pre-treated with PDGF-A (Figure A.6N), with no

significant difference in lung volume (PDGF-A 49.8±5.6µl/g bw vs no-PDGF-A 49.3±3.9µl/g

bw; mean±SD, p = 0.99, Two-tailed Mann Whitney test).
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Figure A.5: PDGF-Rα haploinsufficiency drives reduced pulmonary micro-vessel density with increased en-

dothelial cell apoptosis in neonatal mice undergoing MV-O2 (A-D) Histologic and Immunoblot
analysis displayed reduced small-vessel number (20−100µm diameter) normalized to 100 alveoli
as well as reduced pulmonary VEGF-R2, VE-Cadherin and VEGF-A protein levels respectively
(n = 6 − 8 mice/group). (E) Immunofluorescent images of lung tissue (400X; merged) from
neonatal PDGF-Rα+/− mice indicating increased cleaved Caspase-3 (red; white arrows; lower
panel) after 8h MV-O2 in contrast to WT mice (upper panel; green: CD31; blue: DAPI). Double
stain revealed increased cleaved Caspase-3+/CD31+ cells normalized to CD31 area in PDGF-
Rα+/− mice after 8h MV-O2 (n = 4 mice/group, 4 sections/mice and 10 images/section).
(F) Representative image confirming increased endothelial apoptosis in neonatal PDGF-Rα+/−

mice after 8h MV-O2 (lower panel; white arrows) with VE-Cadherin (red) and cleaved caspase-
3 (green) and nucleus stained with DAPI (blue) when compared to WT mice (upper panel).
(n = 2 mice/group). (G Increased caspase-3 activation in HUVECs upon incubation with
supernatants for 6h obtained from lung mouse myofibroblasts after PDGF-Rα-siRNA treatment
when compared to control-siRNA (n = 3 experiments). (H-I) In vitro application of PDGF-Rα-
siRNA to primary lung mouse myofibroblasts from WT mice diminished PDGF-Rα (H) protein
(normalized to control), associated with reduced VEGF-A protein (I). (n = 3mice/group). (J-K)
Increased cleaved caspase-9 and reduced eNOS protein levels in HUVECs upon incubation with
supernatants for 6h obtained from lung mouse myofibroblasts after PDGF-Rα-siRNA treatment
when compared to control-siRNA. (n = 3 mice/group). B and C are from same blot hence
having same β-actin bands. Data is presented as Mean ± SD. ***p < 0.001, *p < 0.05 vs
control, #p < 0.05 vs control-siRNA. Statistical test in (A-E) is Two-tailed unpaired Student’s
t test or Mann Whitney test, in (J-K) One-tailed Mann Whitney test (p = 0.02 − 0.05), in G
is Kruskal Wallis H test (p = 0.027) and in I is Ordinary one way ANOVA with Bonferronis
correction (p = 0.0481).
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Elevated TGF-β levels causally relate with reduced PDGF-Rα expression in
nCLD patients and mice undergoing MV-O2 , reducing downstream
signaling and migration in pulmonary myofibroblasts

Clinical and experimental studies have consistently demonstrated activation of pulmonary

TGF-β signaling with MV-O2 [28–35]. We therefore investigated how reduced PDGF-signaling

and its demonstrated consequences are provoked in the neonatal lung. Hence, we characterized

the two potential players mechanical stretch and TGF-β alone and in combination, with respect

to their effect on primary mouse and human lung myofibroblasts.

Immunofluorescent images of tissue sections from nCLD patients (n = 7) showed reduced

expression of PDGF-Rα associated with increased expression of pSMAD-2 compared with a

control lung, supporting the relevance of the findings to patients suffering from nCLD (Figure

A.7A). In parallel, we performed gene expression microarray analysis of blood samples obtained

from 20 preterm infants in the first 72h after birth, which similarly demonstrated an inverse

correlation between the levels of TGF-β1 and PDGF-Rα in patients who went on to develop

nCLD that was not observed in patients who did not (Figure A.7B). We next analyzed TGF-β

signaling activity in the lungs of ventilated WT mice, which demonstrated increased p-SMAD

2/3 protein with a concomitant reduction in PDGF-Rα+ alveolar myofibroblasts (Figure A.7C).

To test the impact of TGF-β on PDGF-Rα promoter activity, we conducted a luciferase

assay by transfecting CCL206 cells with a pGal vector carrying a PDGF-Rα promoter insert.

Administration of TGF-β caused a 50% reduction in luciferase activity (Figure A.7D), indicating

that TGF-β affects PDGF-Rα gene transcription, supporting the inverse relationship observed

in nCLD is causal.

Figure A.6 (following page): Supplemental PDGF-A rescues both the air sac and microvascular nCLD
phenotypes induced by MV-O2 in neonatal PDGF-Rα haploinsufficient mice
(A) Improved alveolar structure in 5-8d-old PDGF-Rα+/− mice undergoing
8h MV-O2 after intra-tracheal treatment with PDGF-A (10µl/g bw, 25ng/ml
PDGF-A) when compared to mice receiving sterile saline (200x), confirmed by
quantitative image analysis with increased alveolar counts (B) as well as vessel
number normalized to 100 alveoli (C) (20− 100µM) (n = 2− 4 mice/group).
(D-I) Immunoblot analysis of total lung homogenates showed increased PDGF-
Rα (D) together with increased JAK-2 (E), STAT-3 (F), VEGF-A protein
(G) VE-Cadherin (H) and AKT (I) protein levels in PDGF-A treated PDGF-
Rα+/− mice after 8h MV-O2 when compared to WT littermates (n = 3− 4

mice/group). (J-M) Quantitative image analysis indicated increased VEGF-A
to PDGF-Rα protein levels (K, M; upper panel) together with an increase in
CD31 expression in relation to total tissue (K, M; lower panel) and a decrease
in apoptotic (Cleaved caspase-3) CD31 expressing cells (L) in the lungs of
PDGF-A treated PDGF-Rα+/− mice when compared to saline treated controls
after 8h MV-O2 (n = 2− 4 mice/group). Upper panel in M is PDGF-Rα+/−

mice treated with NaCl (left) or PDGF-A (right) sections stained with VEGF-
A (green), PDGF-Rα (red) dual positive (orange, white arrows) and inserts
show VEGF-A stain (green). Lower panel shows PDGF-Rα+/− mice treated
with NaCl (left) or PDGF-A (right) sections stained with Cleaved-caspase 3
(green), CD31 (red) dual positive (orange, white arrows). Nucleus is stained
with DAPI (blue). (N) Treatment with PDGF-A in ventilated neonatal PDGF-
Rα+/− mice led to improved lung compliance displayed as a function of airway
pressure (Ptramax) and tidal volume when compared to untreated mice (n = 4

mice/group). D-H and E-F are from same blot hence having same β-actin
bands. In (B-L) the data is presented as Mean ± SD. ***p < 0.001, **p <
0.01, *p < 0.05, #p < 0.065. Statistical test used is One-tailed unpaired
Student’s t test (p = 0.023− 0.065), in C and G is Two-tailed Mann Whitney
and unpaired Student’s t test (p = 0.02− 0.05).
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Figure A.7: Elevated TGF-β levels causally relate with reduced PDGF-Rα expression in nCLD patients

and mice undergoing MV-O2, reducing downstream signaling and migration in pulmonary

myofibroblasts (A) Representative immunofluorescence images showing reduced expression of
PDGF-Rα (red) in the lungs of patients (n = 7) developing nCLD (lower left panel, red stain;
white arrows) together with increased pSMAD-2 expression (green; upper middle panel; green
stain; white arrows) as compared to lung sections from a non-nCLD patient (n = 1) (upper
panel) (200x). (B) Negative correlation between PDGF-Rα and TGF-β1 in transcriptome
analysis 72h after birth in preterms with nCLD (n = 11) in contrast to non nCLD (n = 9; scatter
plots log2-gene expression; linear regression (blue), CI (grey), (p = 0.05). (C) MV-O2 reduced
lung PDGF-Rα (main: red stain; white arrows) and increased pSMAD-2 levels (insert: red stain;
white arrows) in neonatal PDGF-Rα+/− (lower panel) when compared to WT mice (upper
panel); (n = 4 mice/group; 10 images/mouse; 200x). (D): Luciferase assay of CCL-206 cells
transfected with pGL4.14 containing PDGF-Rα promoter revealing reduced promoter activity
upon TGF-β application (normalized to control). (n = 3 experiments). (E-G) Immunoblot
analysis showing reduced PDGF-Rα (E), pERK/EKR (F) and VEGF-A (G) protein levels upon
TGF-β application alone in primary pulmonary myofibroblasts from 5-7d old WT mice (n = 6−9

mice/group). (H) Reduced migration of myofibroblasts (MFBs) from neonatal WT mice upon
TGF-β application alone (n = 5 mice/group, 3 technical replicates). (I-J) Translation of the
results in fibroblasts isolated from tracheal aspirates of ventilated preterm infants (hMFBs)
displayed reduced PDGF-Rα levels (I) and migration assessed by boyden chamber assay (J)
upon TGF-β application. (n = 3 − 5 patients/group). (K-M) Representative phase contrast
images (100X) of scratch migration assays in human lung fibroblasts (hMFBs) after 48h of TGF-
β incubation indicating decreased wound closure (K) quantified by reduced distance travelled
(L) and velocity (M). (n = 3 patients/group). In (E-J) and (K-M) data is presented as Mean
± SD and normalized to control. Statistical test used is Two-tailed unpaired student’s t test
or Mann Whitney test (p = 0.0002 − 0.039). ***p < 0.001, **p < 0.01, *p < 0.05; C:
un-stretched untreated control; Th1: un-stretched myofibroblasts subjected to 5ng/ml TGF-β
(24h)
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We further confirmed the effect of TGF-β on PDGF-Rα signaling in primary pulmonary

myofibroblasts isolated from WT neonatal mice and fibroblasts isolated from tracheal aspirates

of nCLD patients.This analysis showed a significant downregulation in PDGF-Rα level, its

signalling measure by pERK/ERK and impaired function displayed as reduced migration (Figure

A.7E-F, H). In accordance with the in vivo data, VEGF-A signaling associated with micro-vessel

development was also diminished by 20% in pulmonary myofibroblasts from neonatal WT

mice incubated with TGF-β (Figure A.7G). Translating this finding in human we demonstrate

diminished PDGF-Rα levels and migration of fibroblasts (Figure A.7I). Reduced migration upon

TGF-β was confirmed by boyden chamber and wound migration assays showing significantly

abrogated velocity and distance travelled by fibroblasts in comparison to untreated controls

(Figure A.7J-M).

Pronounced effect of TGF-β on pulmonary myofibroblasts from
PDGF-Rα+/− mice and in concert with mechanical stretch on both mice
and human myofibroblasts

The inhibitory effect of TGF-β on PDGF-Rα level and downstream proteins JAK-2, STAT-3

and pERK/ERK was dramatic in myofibroblasts isolated from PDGF-Rα+/− mice with more

than 30-50% reduction in the respective proteins (Figure A.8A-C, E).This was accompanied by

reduction in vascular marker VEGF-A and diminished migration (Figure A.8D, F).

Mechanical ventilation has been demonstrated to exert significant strain forces on the

developing lung in infants requiring invasive and even non-invasive respiratory support [3]. We

therefore dissected the contribution of mechanical stretch and the impact of growth factor

Figure A.8 (following page): Pronounced effect of TGF-β on pulmonary myofibroblasts from PDGF-
Rα+/− mice and in concert with mechanical stretch on both mice and
human myofibroblasts (A-E) TGF-β application (Th1) to myofibroblasts
(MFBs) isolated from neonatal PDGF-Rα+/− mice reduced PDGF-Rα (A),
JAK-2 (B), STAT-3 (C), VEGF-A (D) and pERK/ERK (E) protein levels when
compared to control. (n = 3−6mice/group). (F) Reduced migration assessed
by boyden chamber in myofibroblasts (MFBs) isolated from PDGF-Rα+/−

mice compared to WT mice. (n = 5 mice/group). (G-J): TGF-β application
in combination with mechanical stretch (S+Th1) in myofibroblasts (MFBs)
isolated from neonatal WT mice showed reduced PDGF-Rα (G) and VEGF-A
(H) protein as well as migratory RAS (I) and pERK/ERK (J) protein levels
when compared to control myofibroblsts as assessed by immunoblot assay.
(n = 6− 9 mice/group). (K) TGF-β application (Th1) as an additional dose
(Th2) on stretched myofibroblasts (MFBs) from WT mice reduced migration
as assessed by boyden chamber assay. (n = 5 mice/group). (L-M) TGF-β
application in combination with stretch (S+Th1) reduced PDGF-Rα protein
levels in fibroblasts (hMFBs) isolated from tracheal aspirates of nCLD patients
when compared to control (C) or stretched (S) myofibroblasts (L) and as
an additional dose (TH2) to stretched fibroblasts reduced migration (M).
(n = 3 − 6 patients/group). A-E and B-C are from same blot hence having
same β-actin bands. Values are normalized to the respective controls except
for B-D. Data is presented as Mean ± SD. Statistical test used in (A, D-
F) is Two-tailed and (B-C) is One-tailed student’s t test or Mann Whitney
test (p = 0.004 − 0.05) and in (G-M) is ordinary One way ANOVA with
Bonferroni’s correction (p = 0.0001 − 0.04). ***p < 0.001, **p < 0.01,
*p < 0.05. C: Un-stretched untreated control; S: stretched myofibroblasts
(24h); Th1: un-stretched myofibroblasts subjected to 5ng/ml TGF-β (24h);
S+Th1: myofibroblasts stretched in parallel to TGF-β application (5ng/ml)
(24h); Th2: re-incubation with 5ng/ml TGF-β (8h).
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Figure A.9: Effect of TGF-β in combination with mechanical stretch on PDGF-Rα signaling and

functional properties of fibroblasts (A) No change in migration of myofibroblasts (MFBs)
from newborn WT mice with mechanical stretch (n = 5 mice/group). (B-D) Analysis of
proliferation (Cell Titer Glo) exhibited no change upon TGF-β (B) or stretch (C) in mouse
myofibroblasts (MFBs) from WT mice, while an increase in proliferation observed when mouse
myofibroblasts were stretched in presence of TGF-β were subjected to an additional dose of
TGF-β (D) (n = 9 mice/group). (E-F) Immunoblot analysis showing increased proliferation
markers like PCNA (E) levels with mechanical stretch and PI3K (F) upon additional TGF-β
incubation on stretched myofibroblasts (MFBs) from newborn WT mice (n = 6 mice/group).
Values here are normalized to respective controls. Data is presented as Mean ± SD. Statistical
analysis in (A-C, E) is Two-tailed unpaired Student’s t test and in (D, F) is Ordinary one
way ANOVA with Bonferroni’s correction. **p < 0.01, *p < 0.05. (p value range =
0.0080−0.0232) C: Un-stretched untreated control; S: stretched myofibroblasts (24h); Th1: un-
stretched myofibroblasts subjected to 5ng/ml TGF-β (24h); S+Th1: myofibroblasts stretched
in parallel to TGF-β application (5ng/ml) (24h). S+Th2: myofibroblasts stretched for 24h
followed by incubation with TGF-β (5ng/ml) for 24h.

exposure on PDGF signaling in vitro. Here we found that mechanical stretch in combination with

TGF-β significantly reduced PDGF-Rα level in mouse myofibroblasts together with a matched

reduction in VEGF-A expression confirming our in vivo findings (Figure A.8G-H). With respect

to myofibroblast function, we found that mechanical stretch in the presence of single or repeat

doses of TGF-β significantly reduced migration in primary pulmonary myofibroblasts from

WT mice together with a significant reduction in RAS and downstream pERK/ERK protein

level, a signaling downstream of PDGF-Rα with a crucial role in myofibroblasts migration

(Figure A.8I-K) [36, 37]. In addition, mechanical stretch in the presence of TGF-β increased

myofibroblast proliferation, together with proteins associated with proliferation PI3K and

PCNA level (Figure A.9B-F). Whereas TGF-β in the absence of mechanical stretch was able to

achieve comparable effects on myofibroblast migration, PDGF-Rα and VEGF-A protein level

(Figure A.7E, G, H), mechanical stretch alone did not alter the migratory behaviour or protein

expression in the lung myofibroblasts but did increase their proliferative behaviour (Figure

A.8G, H, and Figure A.9A, C).

Translating these effects to primary human fibroblasts obtained from tracheal aspirates

of preterm nCLD patients, we found a significant reduction in PDGF-Rα protein level and

migration by TGF-β in combination with stretch (Figure A.8L-M). In line with this, repeated
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application of TGF-β in combination with stretch markedly reduced the migration of human

lung fibroblasts (Figure A.8M).

Taken together, these results indicate that elevated TGF-β signaling in the setting of MV-O2

contributes to the development of nCLD, exacerbating the deficiency in PDGF signaling by

inhibiting expression of PDGF-Rα on lung myofibroblasts.

The central role of the PDGF signaling cascade closely intertwined with upstream effectors

and downstream effects with critical consequences for cellular functions in the injured neonatal

lung as well as its recue with administration of PDGF-A is depicted in Figure A.10.

Discussion

Neonatal chronic lung disease (nCLD), formerly known as Bronchopulmonary Dysplasia, has

long-term health consequences not only for lung but also neurologic function. Invasive and

non-invasive mechanical ventilation with oxygen-rich gas (MV-O2) is necessary for the survival

of preterm babies suffering from respiratory failure due to lung immaturity and insufficient

respiratory drive after birth. Nontheless, both treatments are known to contribute to adverse

pulmonary outcome, i.e. the development of nCLD [3]. Hence it is critical to pursue medical

treatments that can prevent or treat nCLD in neonatals requiring ventilatory support. Here, we

provide causal evidence supporting a surprising cellular and molecular model for the development

of nCLD. As shown in mouse and human, PDGF signaling not only affects secondary septation

but significantly impacts on the micro-vascular structure in close relation with the omnipresent

TGF-β in the injured neonatal lung (Figure A.10A). This close intertwinement of growth factor

signalling in nCLD pathology with PDGF as a central driver holds promising potential for

therapeutic approaches.

The integration of PDGF-Rα haploinsufficient mice with a unique pre-clinical model of nCLD,

together with tailored biochemical and in vitro assays of human and mouse primary lung cells,

allowed us to elucidate the molecular pathogenesis of this disease to an unprecedented level of

understanding. Building upon previous observations suggesting a role for reduced PDGF-Rα

signaling in lung pathology [13, 11, 38, 39, 12, 18], we dissected upstream and downstream

molecular regulators of nCLD, including a crosstalk with VEGF-A and TGF-β with mechanical

stretch (Figure A.10A).

Our finding that impairment of the PDGF signaling pathway - previously associated only

with myofibroblast migration and secondary septation of air sacs - is capable to produce both

the alveolar structural and microvascular pathology of nCLD is surprising. Is it possible

that due to the dynamic intercellular crosstalks required to generate the highly stereotyped

and architecturally complex arrangement of alveoli, disruption of a single program indirectly

disrupts closely coordinated, but distinct, processes? There is some precedent for this model,

since inhibition of VEGF in lung development has been shown to result in reduced epithelial

proliferation and impaired sacculation [40]. However, as we show in the case of PDGF-Rα,

the causal relationship may be more direct, since VEGF-A is apparently produced not only

by lung epithelial cells, but also by myofibroblasts in response to PDGF and its down- stream

signalling through JAK and STAT [41, 42]. Perhaps this additional level of patterned VEGF-A

production is important for ensuring proper investment of newly-forming secondary septal walls

by the microvascular network. In any case, our demonstration of the therapeutic activity of

exogenously administered PDGF-A (Figure A.10B) for rescuing both the air sac septation

and microvascular defects is highly promising, particularly since previous attempts to improve

vascularization by administering exogenous VEGF-A not only failed to rescue nCLD, but

actually induced capillary leakage [43].



Attenuated PDGF signaling drives alveolar and microvascular defects in nCLD
∣

∣ 143

A
p
p
e
n
d
ix

A

B

Figure A.10: Model for how attenuated PDGF signaling and positive pressure ventilation interact to

produce the distinct phenotypic manifestations of nCLD (A) MV-O2 in vivo, a combination
of O2 i.e. oxygen and stretch (purple arrow) and/or TGF-β alone or in combination with
mechanical stretch in vitro (yellow arrow) reduce platelet derived growth factor receptor
α (PDGF-Rα) levels and its downstream signaling through JAK-2 and STAT-3 in the
pulmonary myofibroblast (MFB).This reduction in turn abrogates vascular endothelial growth
factor expression (VEGF-A and VEGF-R2), leading to increased apoptosis in pulmonary
endothelial cells (EC). Whereas myofibroblast migration is diminished through reduces RAS
and pERK/ERK signaling, stretch alone increases their proliferation, hence depicting the
differential effect of the most important denominators of nCLD development in the premature
lung undergoing MV-O2. (B) Application of PDGF-A to premature lung increases PDGF-Rα
levels in an AKT dependent manner in turn activating the downstream cascade through JAK-
2, STAT-3 signaling. This then activates VEGF-A secretion and VEGF-R2 activity reducing
apoptosis in endothelial cells (ECs).
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Supplemental methods

Study design

Preterm infants born below 32 weeks of gestational age and matched control infants with respect

to gestational age, gender, percentage of individuals considered small for GA, and country of

maternal origin were selected for the study. Exclusion criteria were oligo- or anhydramnios,

severe congenital malformations, severe metabolic disorders and prepartum treatment of the

mother with cytostatic or immunosuppressive medication other than for lung maturation.

Mice were randomly selected from each litter to undergo mechanical ventilation. 6-11 mice

were utilized per group for histological analysis as well as 3-6 mice per group for protein analysis.

Tissue sections from the respective mouse lungs were selected randomly for hematoxylin

and eosin as well as immunostainings. In vitro experiments were performed on myofibroblasts

obtained from 3-9 different mice. Functional assays on both mice myofibroblasts and human lung

fibroblasts (proliferation and migration analysis) constituted 3 biological replicates consisting of

2-3 technical replicates each resulting in a total of 5-9 samples from different mice analyzed per

condition (stretch and/or TGF-β treatment).

Human studies

SNP and protein analysis

All relevant perinatal diagnoses were provided for statistical analysis. Patients with moderate or

severe BPD according to the definition by Jobe et al. from both cohorts were considered cases

(Jobe, 2011). Exclusion criteria were oligo- or anhydramnios, severe congenital malformations,

the diagnosis of severe metabolic disorders and prepartum treatment of the mother with

cytostatic or immunosuppressive medication other than for lung maturation led to exclusion

of the neonate. Cases (controls) had a median GA of 26.6 (27.0) weeks, 42.5 (45.7) % were

female, and 28.0 (26.7) % were found to be small for GA. Duration of oxygen supplementation

was 80 (15) days in median. Genotypes of PDGF-Rα SNPs (single nucleotide polymorphisms)

were determined in neonates using Affymetrix Axiom microarrays based on the Axiom CEU

array supplemented with some custom content. Among the 1061 individuals with genetic data

passing QC, 492 developed BPD grade 2 or 3 and were considered cases. Cases and controls

were balanced for sex, gestational age at birth, status ‘small for gestational age’, and country of

origin of the mother. 117 SNPs within 100 kB upstream and downstream of PDGF-Rα, present

on the array, and passing QC were selected for analysis; case-control analysis was adjusted for

relatedness to account for multiple births. The PDGF signaling pathway and several pathways

downstream of PDGF signaling were analyzed for evidence regarding genetic regulation of

gene expression of their pathway elements. From our genome-wide dataset, genetic markers

were identified either directly or via linkage disequilibrium as corresponding to SNPs found

to contribute to genetic regulation of gene expression (i.e. eQTL SNPs) in several studies

[22, 44–47]. The distribution of p-values for these SNPs was analyzed using the R-package

snpMatrix [48] to identify pathways for which p-values in our BPD-association analysis showed

nominally more evidence for association than would be expected by chance. A part of patients

from this cohort (n = 9, Supplemental Table A.3A) were subjected to PDGF-Rα transcriptome

analysis as described in microarray methods section.

A separate patient cohort consisting infants with or without later development of BPD and

a GA < 32 weeks with excluding growth retardation was included at the Perinatal Center of

the Ludwig-Maximilians-University, Campus Grosshadern (n = 13). Patient characteristics

of this cohorts are given in Supplemental Table A.3B. Whole blood samples were collected

at days 22-58 after birth in Ethylenediaminetetraacetic acid (EDTA) neonatal collection

tubes. Generated plasma samples were stored at −80◦C and later subjected to proteomic
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screening (SOMAscanTM, SomaLogic, Boulder, USA). For the assay high quality samples

were used and protein binding to 1129 individual high affinity molecules (SOMAmerR�) was

quantified by custom Agilent hybridization array [49]. Even low amount samples (90− 160µl)

showed high reproducibility. The SNP genotyping of this samples for the most significant

SNP position rs12506783 was performed by Eurofins Genomics. Briefly, sequences forward

CAAAATACCTGGAAGCTCTGGAG and reverse CCAGCATTCAATTCATACTTGCTG

were generated using a re-sequencing approach. According to the reference sequence, the

necessary primers were defined in order to create overlapping PCR fragments and for subsequent

sequencing to have the region of interest covered in a satisfactory manner. PCR purification

was performed with 10% PolyEthylenGlycol (PEG8000) in 30% Isopropyl alcohol/1M NaCl

for precipitation and a washing step with 80% Ethanol. All sequences were generated using

BigDye terminator chemistry (version 3.1), if necessary in combination with dGTP BigDye

terminator chemistry (version 3.0) (Thermo Fisher Scientific, Waltham, MA USA) following

standard protocols. For sequencing reactions peqStar 96 HPL (PEQLAB Biotechnologie GMBH,

Erlangen, Germany) or GeneTouch (Biozym Scientific GmbH, Oldendorf, Germany) thermal

cyclers were used. Sequencing reaction cleanup was done either manually or on a Hamilton

Starlet robotic workstation (Hamilton Robotics GmbH, Martinsried, Germany) by gel-filtration

through a hydrated Sephadex matrix filled into appropriate 96 well filter plates followed

by a subsequent centrifugation step. Finally all reactions were run on ABI3730xl capillary

sequencers equipped with 50 cm capillaries and POP7 polymer (Thermo Fisher Scientific,

Waltham, MA USA). Sequencing data was generated using the original ABI Software including

the KB-basecaller, which assigns quality values to all called bases similar to PHRED [50].

Additional basecalling was performed using the PeakTrace basecaller from Nucleics Pty Ltd

(Woollahra, AUS) according to SOP SEQ PeakTrace to improve the single peak resolution and

quality values and therefore increase the reading lengths. Primer sequences used were forward

GTACTGGGATTACAGGTGTGAG and reverse ATAACATCCCAGGAGGCCTAC.

Human primary lung fibroblasts

Patients for tracheal aspirate analysis were recruited following the same in- and exclusion

criteria as outlined above. Samples from 6 patients were used. Two patients provided serial

samples; two patients were recruited with individual samples with respect to the early and later

time point for PDGF-Rα expression analysis. Tracheal aspirates were obtained from preterm

infants undergoing MV-O2 who later developed nCLD, i.e. mild, moderate or severe BPD

(gestational age 24± 1.4 weeks, birth weight 650± 80.2g, MV-O2 43± 24 days (mean ± SD)).

Patient characteristics are mentioned in Supplemental Table A.3C. First samples were obtained

early after the initiation of MV-O2 (4.7±1 day of life); second samples were taken during the

third week of life (21.7±8 day of life). Primary human lung fibroblasts were cultured 80%

confluent in DMEM medium with 20% FCS (PAN Biotech GmbH, Aidenbach, Germany), 2mM

L-glutamine, and penicillin/streptomycin (Thermo Fisher Life Technologies, Carlsbad, CA).

FACS analysis was performed to check the purity of the cultures as described in the manuscript.

Blood sampling, RNA isolation and microarray analysis

Briefly, blood was sampled from an indwelling umbilical artery catheter at birth. RNA isolation

was performed according to the manufacturer’s recommendations (PreAnalytiX). RNA was

hybridized on CodeLink Human Whole Genome Bioarrays (GE Healthcare) using the CodeLink

Expression Assay Kit (GE Healthcare) and samples processed using CodeLink Expression

Software V4.1 (GE Healthcare). The dataset was initially prepared using the manufacturer

recommended subtract background correction and median normalization. Data was then filtered

for transcripts with high rates of missing values, low expressed values, or outlier values. Missing
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values were imputed using the sequential nearest neighbor (SeqKNN) approach [51]. The dataset

was then normalized using the quantile normalization method [52]. For data preparation the

Bioconductor packages SeqKnn and limma for quantile normalization were used.

Human lung slides

Human slides were obtained from paraformaldehyde fixed and paraffin embedded autopsy

lungs from preterm infants with different BPD grades (n = 7) and an infant that died from a

non-pulmonary cause. Median gestational age of BPD patients was 26+0 weeks (25+4 - 31+0)

and gestational age of the control infant was 26+5 weeks. All patients died between 28 and

66 days after birth and none were treated with extracorporeal membrane oxygenation. No

chromosomal or other congenital anomalies were present in all patients. Tissue sections were

stained for PDGF-Rα, and TGF-β for further quantification. The patient characteristics are

mentioned in Supplemental Table A.3D.

In vivo studies

Assessment of protein expression in distal lung

PFA-fixed lung tissue sections were stained for PDGF-Rα (C-20) (Santa Cruz Biotechnology #sc-

338), α-SMA (Sigma Aldrich #A5228), VEGF-A (C-1) (Santa Cruz Biotechnology #sc-7269),

CD31 (Dianova, Hamburg Germany #DIA-310), cleaved caspase-3 (Cell Signaling Technology

#9661S), VE-Cadherin (H-72, Santa Cruz Biotechnology #28644), pSMAD-2/3 (Santa Cruz

Biotech #SC-8828) and DAPI (Sigma Aldrich #D8417) alone or in combination. Number

of total nuclei as well cleaved caspase-3 and CD-31 positive cells were quantified in eight

different fields of view/slide (400x magnification) using Imaris Software (Zurich, Switzerland).

For cell surface or extracellular markers, areas with positive stain were quantified in separate

color channels in 10 fields of view/animal (200x magnification) using the BIOQuant Software

(BIOQUANT Image Analysis Corporation, Nashville, TN, USA).

Protein extraction and immunoblot analysis

Lungs from 8h studies (n = 5−8/group) were excised, weighed and snap-frozen in liquid N2, and

stored at −80◦C for later protein extraction. Protein extraction was performed using high urea

buffer (KPO4 , Urea, AppliChem, Darmstadt, Germany) with added Halt Protease Inhibitor

Cocktail (catalog #1861280, Thermo Fisher Scientific). Measurement of protein concentrations

was done using the bicinchoninic acid (BCA) assay (catalog #23227, Pierce Scientific Rockford,

IL, USA) and immunoblots were performed using a Bis-Tris (catalog #NP0321BOX, Life

Technologies, Darmstadt, Germany) or a Tris-Acetate (catalog #EA0375BOX, Life Technologies)

Gel according to the manufacturer’s instructions. After protein transfer (Nitrocellulose/Filter

Paper, catalog #LC2006, Life Technologies) and blocking using 5% skim milk (catalog #70166,

Sigma Aldrich) in 0,1% TBS-T buffer, the membranes were incubated with the following

antibodies at 4◦C overnight: PDGF-Rα (C-20, Santa Cruz Biotechnology #338), VEGF-A (147,

Santa Cruz Biotechnology #507), VEGF-R2 (Abcam, Cambridge, USA #Ab2349), VE-Cadherin

(H-72, Santa Cruz Biotechnology #28644), cleaved caspase-3 (Cell Signaling Technology #9661),

phospho-ERK (Cell Signaling Technologies #4370), total ERK (Cell Signaling Technologies

#4695), RAS (Cell Signaling Technologies #8955), PI3K (Cell Signaling Technologies #13666).

After washing the membranes were incubated with secondary antibodies (1:5000 dilution) as

follows: for PDGF-Rα, VEGF-A, VE-Cadherin, cleaved caspase-3, phosphor ERK, total ERK,

RAS, PI3K: goat anti-rabbit IgG (Santa Cruz Biotechnology #2301) and for VEGF-R2: donkey

anti-goat IgG-HRP (Santa Cruz Biotechnology #2020) conjugated to horseradish peroxidase for

1-2 hours at 4◦C followed by 3 washes. As an internal loading control, membranes were stripped
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and re-probed with 1:5000 dilution of a mouse polyclonal anti-β-actin antibody (Santa Cruz

Biotechnology #sc-81178) followed by 1:5000 dilution of goat anti-mouse IgG-HRP (Santa Cruz

Biotechnology #2060). Images were detected by chemiluminescence ECL prime Detection Kit

(GE Healthcare, Buckinghamshire, Great Britain #RPN2232) and quantified by densitometry

using a Gel Documentation System (Bio Rad, Munich, Germany).

RNA extraction and quantitative real-time PCR

Lungs from 8h studies (n = 4 − 5/group) were excised, weighed, snap-frozen in liquid

N2, and stored at −80◦C for subsequent two-step mRNA extraction using Roti-Quick-Kit

(Carl Roth GmbH #A979.1) and purification with peqlab-Gold Total RNA-Kit (Peqlab,

Erlangen, Germany #12-6834- 01). Quantitative real-time PCR was applied to measure

lung mRNA expression of PDGF-Rα (forward 5’-TGTGCCGTTTCTCACTTCTCCAG-3’,

reverse 5’- TACCTTTGTTTCTCACTTCTCCAG-3’) using proprietary primer-probes (Eurofins

mwg operon, Ebersberg, Germany).

In vitro experiments

Mechanical stretch experiment Human

lung fibroblasts and mouse myofibroblasts were seeded on flexible-bottomed laminin-coated

culture plates (Flex Cell International Corporation catalog no.: BF-3001L) to undergo in vitro

stretch at 70-80% confluence (cyclic strain by vacuum pressure: shape / sine; elongation min

0%, max 8%; frequency 2Hz; duty cycle 50%; cycles 43216; duration 24h) for 24h. As shown

in Supplemental Figure A.13C, one set of myofibroblasts was kept as un-stretched untreated

control (C). Myofibroblasts undergoing stretch for 24h were termed as S and those undergoing

stretch with parallel application of 5ng/ml TGF-β for 24h were termed as S+Th1. A set of

myofibroblasts was also subjected to 5ng/ml TGF-β alone i.e. without any additional application

of stretch and was termed as Th1. This step was considered as first hit on the myofibroblasts.

A part of pre-stretched myofibroblasts (S+Th1) was separated from group and re-incubated

(second hit) with 5ng/ml TGF-β (S+Th1+Th2). The dose of TGF-β and stretching parameters

caused the injury without inducing apoptosis in myofibroblasts (Supplemental Figure A.14A-B).

Apoptosis was detected using Annexin V FITC stain (BD Pharmingen #51-65874X) and

Propidium Iodide stain (Sigma Aldrich #P4864) as per manufacturer’s instructions and the

data was analyzed using fluorescence antibody cell sorting device (FACS LSRII). Viability was

determined using luminescence based Cell titer glo assay (Promega GmbH, Germany #G757)

as per manufacturer’s instructions and reading were taken with Berthold multimode microplate

reader LB 941 (Berthold Technologies GmbH, Germany)

Generation of reporter constructs and Luciferase assay

The mouse PDGF-Rα promoter construct spanning from -1074 to +280 from initiation of

transcription manufactured by gene synthesis (Life Technologies) was cloned into pGL4.14

(Promega, Madison, WI). Construct sequence was confirmed by sequencing (Supplemental

Figure A.15). CCL206 cells were stimulated with TGF-β1 1 ng/ml (Peprotech, Rocky Hill, NJ)

followed by transfection (TurboFect, ThermoFisher) with reporter plasmids (1 µg) and PGK

Renilla (50 ng, Promega). Luciferase activity was determined using the Dual Luciferase Assay

(Promega) the next day and values of Firefly Luciferase were normalized to values of Renilla

Luciferase. The baseline reporter activity of unstimulated cells was set to 1.0. α-smooth muscle

actin expression was determined as positive control read-out to prove TGF-β1 activity using

Western blot analysis 48 hours later.
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Proliferation assay

After first hit of stretch with/without TGF-β as shown in supplemental figure A.12, mouse

myofibroblasts and human lung fibroblasts were seeded in a 24 well plate (75000 cells) for

manual counting or in 96 well plates (5000 cells/well) for luminescence based Cell titer glo

assay while performing second hit of TGF-β keeping respective controls. For manual counting

myofibroblasts were trypsinized after 48h of incubation with second hit of TGF-β and counted

using Neubauer chamber. Cell titer glo assay was performed as per manufacturers instructions

after 48h of incubation with second hit of TGF-β (Cell Titer-Glo assay kit; Promega GmbH,

Germany, #G7571). Briefly, reagent equivalent to the amount of media in each well was added.

Plates were shaken gently and kept at 37◦C for 10 min followed by reading the plate using

plate reader (Berthold technologies Tristar LB 941, Bad Wildbad, Germany).

Boyden chamber or transwell migration assay

Cell culture inserts i.e. transwells (8µm pore size), were placed in wells of 24 well plates

containing media (10% FCS) either with 25ng/ml PDGF-A (control) or 25ng/ml PDGF-A and

5ng/ml TGF-β. PDGF-A acted as chemoattractant for migration of myofibroblasts. After first

hit of stretch and/or TGF-β (Supplemental Figure A.13C), myofibroblasts were seeded in the

wells as described above followed by incubation for 8h at 37◦C. After washing off the media,

myofibroblasts on the upper side of the membrane were scratched and removed. Migrated

myofibroblasts on the lower side of the membranes were then fixed in Methanol for 20 min at

−20◦C and stained with 0.5µg/ml DAPI solution (Sigma Aldrich #D8417) for 10 min. After

incubation with 4% PFA for 15 min, cut membranes were mounted with Fluorescent mounting

media (Dako North America Inc. #S3023). Images were taken with fluorescence microscope

and quantified using Imaris 8.1 software.

Scratch migration assay

Human lung fibroblasts were seeded in a 24 well plate and were grown until confluency of 90%.

A scratch was prepared in the middle of the well followed by 5ng/ml TGF-β application keeping

respective control. Images were taken every 10 min for 48h using a time lapse microscope.

Quantitative analysis of velocity and distance accumulated by the cells was performed using

ImageJ as well as chemotaxis and migration softwares.

Supplemental figures and tables

Table A.1: Genetic association results of PDGF-R related SNPs with BPD. Position information is referring
to genome build hg18.
*p≤0.05, **p≤0.001

rs-number Chr Position Allele A Allele B N homo minor N hetero N homo major N missing beta SE p-value

rs10010509 4 54851963 T G 18 245 795 3 0.1034 0.1251 0.4089

rs10022540 4 54739808 A G 174 518 369 0 -0.3038 0.0899 0.0008**

NA 4 54739883 A G 266 509 275 11 -0.2333 0.0839 0.0055*

rs1004564 4 54937382 A C 322 522 217 0 0.1206 0.0885 0.1734

rs11728027 4 54896943 A G 144 489 425 3 0.0429 0.0902 0.6348

rs11735716 4 54896828 T C 43 379 634 5 -0.1443 0.1045 0.1679

rs11737133 4 54717553 T C 152 475 433 1 0.2192 0.0894 0.0144*

rs12233727 4 54768027 T C 248 554 258 1 -0.2826 0.0898 0.0017*

rs12500279 4 54775074 T C 94 444 523 0 0.256 0.0964 0.008*

rs12511976 4 54857028 T C 893 160 7 1 -0.1854 0.1605 0.2484

rs13118725 4 54690466 T C 630 364 67 0 -0.2356 0.1018 0.0208*

rs1492769 4 54952368 A C 747 285 29 0 -0.1425 0.1195 0.2333
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rs17084051 4 54782338 A C 36 329 696 0 0.123 0.1135 0.2789

rs17084241 4 54946036 A G 9 146 905 1 0.1937 0.1586 0.2222

rs17690091 4 54924101 T C 48 380 632 1 0.1779 0.1065 0.095

rs17690232 4 54929582 C G 697 324 40 0 -0.189 0.1119 0.0917

rs17739921 4 54859623 A C 329 526 202 4 -0.1739 0.0883 0.0492*

rs17746992 4 54932752 C G 40 325 696 0 0.1951 0.1119 0.0815

rs1907814 4 54940014 A G 78 461 521 1 -0.0493 0.0994 0.6202

rs1994810 4 54924241 A G 67 435 559 0 -0.095 0.1021 0.3523

rs2412564 4 54934704 A G 248 527 286 0 0.1359 0.0881 0.1236

rs35597368 4 54834528 T C 858 191 12 0 -0.0213 0.1457 0.8839

rs4572929 4 54940498 A G 68 418 573 2 0.2292 0.1 0.0222*

rs4864510 4 54883219 T C 370 501 188 2 -0.0968 0.0881 0.2725

rs6811920 4 54945988 C G 168 505 386 2 -0.0349 0.0894 0.6964

rs6832891 4 54751401 T C 587 412 62 0 -0.1216 0.1032 0.2386

rs6840522 4 54725132 A G 795 247 19 0 -0.021 0.1297 0.8717

rs7656613 4 54836600 T C 564 423 74 0 0.2 0.1002 0.0461*

rs7659654 4 54731166 T C 536 429 95 1 -0.2163 0.0958 0.0241*

rs7660560 4 54829151 A G 17 209 833 2 0.1542 0.1323 0.2442

rs7684220 4 54893055 T C 351 517 186 7 -0.0898 0.088 0.308

rs894905 4 54916706 T C 251 539 270 1 0.0684 0.0889 0.4419

rs9991165 4 54819348 A G 791 247 23 0 -0.1153 0.1267 0.3629

rs2228230 4 54846797 T C 19 250 792 0 0.0673 0.1294 0.6032

rs3690 4 54856570 A C 798 244 19 0 -0.0888 0.1301 0.4951

rs56404781 4 54698999 T G 793 251 17 0 0.0151 0.1308 0.9081

rs7378056 4 54739260 A G 63 413 584 1 0.1423 0.1021 0.1638

rs34148754 4 54751806 A G 52 415 591 3 0.1304 0.1034 0.2075

rs12506783 4 54781154 T C 244 541 275 1 0.3076 0.0886 0.0005**

rs61320297 4 54782932 A G 37 328 695 1 0.1306 0.112 0.2438

rs7673984 4 54783518 T C 36 327 697 1 0.1073 0.1125 0.3404

NA 4 54784627 A C 871 181 9 0 0.0443 0.1519 0.7708

rs2114039 4 54787383 T C 583 403 74 1 -0.0667 0.1 0.5049

rs7678144 4 54797182 T C 696 328 37 0 -0.0953 0.1132 0.3999

NA 4 54810805 C G 0 139 915 7 -0.0824 0.1527 0.5896

rs7677751 4 54819217 T C 17 219 824 1 0.0353 0.1331 0.791

rs73252946 4 54820749 A G 22 243 796 0 0.117 0.1279 0.3605

rs58435984 4 54822747 T C 834 209 17 1 -0.113 0.1364 0.4078

rs55947416 4 54824588 T C 5 152 903 1 0.2635 0.1632 0.1067

rs67279506 4 54825439 A G 835 209 16 1 -0.0655 0.1374 0.6337

rs58727676 4 54825551 T G 837 207 17 0 -0.088 0.1372 0.5212

rs7688997 4 54826207 A C 17 209 834 1 0.1276 0.1345 0.3431

rs56145315 4 54826446 T C 17 209 835 0 0.1039 0.1369 0.4481

rs28600756 4 54826489 A C 21 205 833 2 0.0951 0.1296 0.4635

rs67600360 4 54826919 A G 834 209 17 1 -0.1168 0.1364 0.3921

rs28650939 4 54828716 T C 17 207 837 0 0.1054 0.1372 0.4424

rs28528897 4 54829096 C G 834 209 17 1 -0.0956 0.1364 0.4834

rs7691129 4 54829223 T C 835 209 17 0 -0.1039 0.1369 0.4481

rs12641563 4 54830204 C G 834 209 17 1 -0.0967 0.1364 0.4787

rs12506290 4 54830889 A T 17 210 828 6 0.0818 0.1245 0.5112

rs10028020 4 54838334 A G 11 186 862 2 0.0095 0.1423 0.947

rs4289498 4 54840189 A G 775 256 22 8 -0.1087 0.1235 0.379

rs1547905 4 54841511 A C 20 246 794 1 0.0349 0.1272 0.7838

rs2291591 4 54842526 T C 7 158 894 2 -0.0988 0.1543 0.5219

rs7677708 4 54844015 A G 784 254 22 1 -0.1039 0.1263 0.4108

rs55732997 4 54849648 T C 792 249 20 0 -0.0755 0.1287 0.5578

rs10004857 4 54850737 A G 18 244 796 3 0.0354 0.1253 0.7773

rs11133317 4 54850848 T G 20 249 792 0 0.1086 0.1287 0.3989

rs2276948 4 54851157 A G 19 245 792 5 0.1033 0.1212 0.394

rs13147194 4 54851891 T G 792 248 21 0 -0.1163 0.1281 0.3639

rs55784333 4 54854148 C G 798 245 18 0 -0.0805 0.1307 0.538

rs3733540 4 54856011 T C 792 248 21 0 -0.1163 0.1281 0.3639

rs4864878 4 54868472 T C 149 488 424 0 0.0743 0.0909 0.4138

rs6858442 4 54868690 A G 192 497 370 2 0.0849 0.0875 0.3323

rs28889275 4 54870830 A G 149 488 422 2 0.0661 0.0901 0.463

rs17084148 4 54891377 T C 146 487 427 1 0.0782 0.0907 0.3886

rs73252935 4 54710879 T C 874 180 7 0 0.004 0.155 0.9792

rs62297645 4 54732370 A G 844 190 18 9 0.0601 0.1353 0.6571

rs6852007 4 54739176 A G 11 193 856 1 0.0853 0.1436 0.5524

rs13135841 4 54740496 T C 174 515 371 1 -0.281 0.0895 0.0017*

rs13145280 4 54751622 T C 75 382 602 2 0.1935 0.0984 0.0494*

rs11133311 4 54762121 T C 158 527 373 3 -0.3007 0.0904 0.0009**

rs28622224 4 54782850 T C 74 404 582 1 0.1039 0.0995 0.2966

rs4864857 4 54784571 T C 680 326 36 19 -0.0596 0.1083 0.5819

rs7698425 4 54785413 T C 37 328 694 2 0.0793 0.1109 0.4749

rs1800810 4 54788788 C G 692 327 37 5 -0.1224 0.1117 0.2733

rs1800813 4 54789224 A G 34 330 696 1 0.0604 0.1132 0.594
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rs7689569 4 54791155 A G 35 326 698 2 0.0777 0.1118 0.4871

rs7679903 4 54792130 T C 696 328 37 0 -0.0953 0.1132 0.3999

rs6554163 4 54797316 A T 36 325 696 4 0.0678 0.1093 0.5347

rs67432867 4 54799211 A T 694 329 37 1 -0.096 0.1128 0.3947

rs73252942 4 54799361 T C 692 331 35 3 -0.0732 0.113 0.5172

rs4864864 4 54827082 T C 17 209 834 1 0.0719 0.1346 0.5931

rs41279519 4 54828988 C G 5 154 899 3 0.2559 0.1547 0.0985

rs869978 4 54834773 T C 39 316 706 0 -0.0365 0.1128 0.7466

rs73252950 4 54836257 T C 9 181 843 28 -0.0803 0.1026 0.4343

rs67388297 4 54837448 C G 859 190 12 0 -0.0103 0.1459 0.9436

rs28698464 4 54837867 A G 842 207 12 0 -0.1139 0.1423 0.4237

rs1316926 4 54838043 A G 257 516 242 46 0.1026 0.0785 0.1915

rs28374326 4 54838078 T C 5 192 859 5 -0.046 0.1397 0.7417

rs2412556 4 54840015 A G 784 253 21 3 -0.1256 0.1263 0.3203

rs2162136 4 54756155 T G 43 355 662 1 0.097 0.1088 0.3729

rs6832597 4 54770994 A C 41 351 668 1 0.0933 0.1096 0.395

rs7681399 4 54785643 T G 695 328 38 0 -0.1071 0.1127 0.3422

rs1800812 4 54789386 T G 37 328 696 0 0.0953 0.1132 0.3999

rs4864862 4 54795246 A G 37 328 696 0 0.0953 0.1132 0.3999

rs4864863 4 54795588 A G 696 328 37 0 -0.0953 0.1132 0.3999

rs2229307 4 54824835 T C 834 210 17 0 -0.1102 0.1367 0.4203

rs2307049 4 54824911 A G 18 209 834 0 0.1195 0.1359 0.3796

rs7686588 4 54829385 A G 832 210 18 1 -0.1202 0.1353 0.3746

rs12644709 4 54830337 A G 834 208 17 2 -0.0955 0.1361 0.4832

rs1547904 4 54841146 T C 20 249 792 0 0.0755 0.1287 0.5578

rs2412557 4 54844214 A C 785 254 22 0 -0.0957 0.1267 0.45

rs4864872 4 54847041 T G 20 256 782 3 0.1116 0.1227 0.3633

rs10020847 4 54847891 T C 19 250 789 3 0.0256 0.124 0.8362

rs10021728 4 54848866 T C 19 250 792 0 0.0673 0.1294 0.6032

rs11733839 4 54849284 C G 22 253 786 0 0.1029 0.1268 0.4173
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Figure A.11: Gene expression data based on SNP analysis in nCLD patients. PDGF-Rα gene expression
in patients (n = 8) that carry at least one SNP (minor allele) compared to patients with no
SNPs (homozygote major allele). Major alleles are given in the figure labels. Minor alleles of
rs10022540 is A, in rs11133311 is T, and in rs12506783 is C. 0 represents homozygote minor
allele, 1 represents heterozygote minor allele and 2 is homozygote major allele.

Figure A.12: Vessel count in wildtype and PDGF-Rα+/− mice. Histological analysis showed similar small-
vessel number (20− 100µm diameter) normalized to 100 alveoli in both unventilated wildtype
and PDGF-Rα+/− mice. (n = 10− 11 mice/group).
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Figure A.13: Characterization of human lung fibroblasts and mouse myofibroblasts and experimental

design for in vitro studies. (A-B) Quantitative analysis of characterization of (A) human
lung fibroblasts and (B) mouse myofibroblasts performed using fluorescence antibody cell
sorting (FACS) analysis indicated abundance of myofibroblast markers (CD90, CD105, PDGF-
Rα, α-SMA and Vimentin). Data is displayed as percentage positive cells. For mouse
myofibroblasts n = 6 mice/group and for human lung fibroblasts. (n = 5 samples/group). (B)
Immunofluorescence images (200X) of mouse myofibroblasts co-stained for Vimentin or α-SMA
(green), CD31 (red) and nucleus stained with DAPI (blue) are shown in figure. (C) Schematic
representation of experimental strategy used for primary pulmonary mouse myofibroblasts and
human lung fibroblasts. Briefly myofibroblasts underwent in vitro stretch with or without
additional 5ng/ml TGF-β incubation for 24h (S+Th1 and S respectively). A set with only
TGF-β application (Th1) and an un-stretched untreated control (C) was performed. This was
considered to be the first hit model. A part from S+Th1 Myofibroblasts was re-incubated with
5ng/ml TGF-β for 24h (S+Th1+Th2). This was considered to be second hit model. In (A-B)
the data is presented as mean ± SD. Statistical test is Two-tailed unpaired Student’s t test
or Mann Whitney test.
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Figure A.14: Viability of mouse myofibroblasts upon application of stretch and TGF-β. Mouse myofibrob-
lasts subjected to mechanical stretch with or without additional application of TGF-β as shown
in supplemental Figure A.13. (A) For viability analysis Cell titer Glo assay was performed as
per manufacturer’s instructions. Luminometric readings displayed approximately 80% viable
cells after all the applications for 24h-48h (n = 3 mice/group). (B) Annexin V FITC and
propidium iodide staining of mouse myofibroblasts subjected to mechanical stretch with or
without additional application of TGf-β as shown in Supplemental figure A.13, for analysis of
apoptosis. FACS analysis revealed 10-15% apoptosis upon application of stretch with/without
TGF-β application as first as well as second hit (n = 3 mice/group). In (A-B) the data is
presented as Mean ± SD.

CATTCAAAAATAGAGCGCAAGTCGAAGGCCCTCCCTTCCCCCACCCGCTCCGGGAAGTCCCGCTTCGCCCAGGTT
TGGTTCCTGGAGTGTCAGCGCCCCCTTTCCCTCGCCAGCAGGATCGCCGTGTCCCAACTGTCTCTCGCTGGGTGT
CTTGGGTTCCCTGGTTTGTGGCTCAAACGTCCTGAAAGCTTTCCTAGGGTACGTCGCGTGCGACCCACTCGGAAG
GGTGGAATTTAGGAGGATAAAAATCCTTCTGCCATCAAGATGCAGAGGGCAGGCATTTGGTAGTCACGCCTAGCC
TGAGCGTTTTCATATGAAGATAGAAGAAGCGAGGACCAGATAACCCCCGAAAACAAAGGCAGGACCAGATAAGTG
GCTCCGAAGGGATAAAGGTCGTTCTTTCCTTCTTCCGGAGAACATCCCAAAGGTACGCCGAGCAACCGTTATTTG
CACACCGCCTCACAATCCAGCCTTTCAAAAACCCATCATCTTCCTATTAGACTCCACAGTTTCCTAATCCCATTA
AAGGATTAGCAACTACACGGCACTTTCCCTTAAGACCCCCAGTTCAAAACGACGCAGCCGCGTTAGAATTTCTCC
CCAGGGCCATATTTCTAGCGAGGCCCAGACTGTCTATAGAAAGGATAATTTGAATTCTAGATTTATATTCGTTTT
AGAAATGAGCAGCAATTTTACGTGTATTTTCTTTTCGAAGAGAATACAAAACAATAGCACCCCCACCCCCAAATT
GGGAAGTCAACTCATTTTGGAAATGATGGCTGTTTGTAGTTTCCTGAAACCTCTTTCCCGGCAGAACGTCAACAC
CTCCCCCTTCGGCCCCCCACCCCACCCCATCTGGTTTGCTCCCCCCTCCTCGTTGTTGTTGAAGTCTGGGGGTTG
GGACTGGCCCCCCTGATTGCATAAGAGCAAAAAGCAAAGAAGAGGTCTTGAGCCTGAGAGAGTCAGAGAGCAAGG
AGTCCTAGGGAAACTTTTATTTTGAAGAGACCAAGGGGGGGGGGGACTTCATTTCCTGACAGCTATTTACTTTAA
GCAAATGATTAGTTTTTGGAGGACGGACTATAACATTGAATCAATTACAAAATGCGGGTTTTGAGCCCATTACTG
TTGGAGCTTGAGGGAGAGAAACAAACGGAGGAGCTGCGGGGAAGGACTGGAAGCTTGGGGCTTACTTTTCACTCC
GGGTATCGGATTTTCTTTGCAAATTGACATAGAAGGAGAAGGTAAGGGAGAGGAAAAAGTGACTTTTGTTTCTCA
AGAAGGTCCCTGATCATAACTTGGGGCTGCAAGAAGCTAAGTAACTTCAAATTTTGGGCAACGAGGAAAACAAAA
ACAA 

Figure A.15: SNPs in preterm infants with and without BPD
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Table A.2: Analysis of SNPs in PDGF-related pathways PDGF-related pathways with overrepresentation
of nominally BPD-associated cis-eQTL SNPs

Pathway Nominally

associated

genes / all

pathway genes

Nominally associated genes Best p-values of

nominally associated

genes

Reference eQTL database

JAK / STAT

Cascade

6 / 10 EPS8, GRB2, NUP62,

PPP2CA, STAT1, STAT3

0.0013 - 0.044 dixon, fehrmann, kirsten 2014, seeQTL,

zeller

MAPKKK

Cascade

7 / 14 DUSP1, DUSP6, EGF,

MAP2K1, MAPK9, PPP2CA,

PRKCA

0.00015 - 0.044 dixon, fehrmann, kirsten 2014, seeQTL,

zeller

Apoptosis 8 / 22 AKT1, LTA, NFKB1, NUP62,

PPP2CA, PRKCA, RASA1,

STAT1

0.00015 - 0.044 dixon, fehrmann, kirsten 2014, seeQTL,

zeller

Cell Cycle 5 / 19 DUSP1, DUSP6, PPP2CA,

PRKCA, STAT1

0.00015 - 0.044 dixon, fehrmann, kirsten 2014, seeQTL,

zeller

DNA

Metabolism

5 / 9 ATF2, CREB1, EGF, NUP62,

PPP2CA

0.0013 - 0.044 dixon, kirsten 2014

Lipid

Metabolism

3 / 9 PIK3R1, PPP2CA, PRKCA 0.00015 - 0.044 dixon, kirsten 2014, seeQTL, zeller

Protein

Metabolism

14 / 39 ACTR2, AKT1, ATF2, CREB1,

DUSP1, DUSP6, GSK3B,

IKBKB, MAP2K1, MAP3K2,

MAPK9, PPP2CA, PRKCA,

RPS6KA5

0.00015 - 0.044 ding, dixon, fehrmann, kirsten 2014, seeQTL,

zeller

Actin and

Calcium Ion

Homeostasis

6 / 15 ACTR2, EGF, PRKCA, RASA1,

STAT1, STAT3

0.00015 - 0.042 ding, dixon, kirsten 2014, seeQTL, zeller

Table A.3: Characteristics of patients from which the samples for (A) protein data corresponding to SNP
analysis and (B) gene expression data corresponding to SNP analysis were derived and those
which were used for (C) isolation of fibroblasts and (D) immunostaining.

A B C D

Patients n = 9 n = 13 n = 6 n = 8

BPD grades 0 (n = 1) 0/1 (n = 9) 0/1 (n = 2) 0 (n = 1)
1/2/3 (n = 7) 2/3 (n = 4) 2/3 (n = 4) 1/2/3 (n = 7)

Gestational age (weeks) 26.5±2.4 26.2±1 25±1 27.3±2

Birth weight (grams) 858.9±234 774.6±136 563±98

Mechanical ventilation (days) 56.3±14 74±23

Age of death (days) 37.75
Died of respository failure n = 6

Males/females n = 6/n = 3 n = 5/n = 8 n = 4/n = 2 n = 5/n = 3

Early onset infection n = 6

Days of culture 3− 14

Congenital infection n = 2
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Summary

Congenital diaphragmatic hernia (CDH) is a severe anomaly characterized by a diaphragmatic

defect, lung hypoplasia and pulmonary hypertension. Specific genetic abnormalities have

been identified in some afflicted children, such as deletions in FOG2, COUP-TFII and SOX7,

but in over 80% of cases the cause of CDH remains unknown. The associated pulmonary

abnormalities are responsible for the high morbidity and mortality among patients with this

disease. Vasodilator therapy often has no effect and little is known about the possibly aberrant

expressions of the targeted factors of current drugs.

Chapter 1 describes the therapeutic approaches of CDH-related pulmonary hypertension over

the years and the corresponding pathways. Both postnatally and antenatally, these approaches

are still a matter of trial and error and have not been studied in randomized controlled

trials or comparative effectiveness trials. Previous morphological studies have shown excessive

muscularization of the pulmonary arteries and abnormal pulmonary vascular remodeling in

patients with CDH, in which several pathways have found to be involved. Furthermore, a

variety of chromosomal abnormalities have been reported. Chapter 2 presents a review of the

literature on pulmonary vascular development in health and in different diseases of the newborn

associated with pulmonary vascular abnormalities, including CDH. In the study presented in

chapter 3 we focused on one of the pathways involved in CDH, transforming growth factor

β (TGFβ). This pathway is regulated by retinoic acid signaling, which has been known to

be disrupted in CDH. In the nitrofen rat model we found increased activation of TGFβ and

reduced activation of bone morphogenetic protein.

Current treatment of pulmonary hypertension typically consists of targeting receptors and

other important factors in the three major vasoactive pathways: the nitric oxide (NO), endothelin

(ET) and prostacyclin (PGI2) pathways. Although inhaled NO (iNO) is the most common

used drug in the neonatal setting, studies failed to show consistency of its efficacy in CDH

patients. Apart from iNO therapy, the phosphodiesterase-5 inhibitor sildenafil and prostacyclins

are sporadically used as rescue therapy, with variable and unpredictable results. In the study

presented in chapter 4 we analyzed the expressions of the drug related factors in all three

pathways. In human CDH lungs, we found upregulation of the endothelin A and B receptors

and of the endothelin converting enzyme. The latter is a key molecule in the endothelin pathway,

by converting endothelin-1 (ET-1) into its active form. Expression of the prostacyclin receptor

in human control lungs gradually increased over time, but was decreased in CDH lungs in the

fetal, preterm and term phases. The aberrant expressions of the above-mentioned factors could

explain why treatment of pulmonary hypertension in patients with CDH fails.

As ultrasound studies at 20 weeks of gestation can already detect CDH, fetal treatment is a

potential option. In the study presented in chapter 5, rats with nitrofen-induced CDH were

antenally given sildenafil. We found that the decreased saccular airspaces had enlarged again,

and that the pulmonary vessel wall was less muscularized. We expanded our study by analyzing

the effect of antenatal treatment with the novel prostacyclin receptor agonist selexipag (NS-304)

alone or in combination with sildenafil, as described in chapter 6. Treatment with NS-304 alone

was followed by improvement in the aberrant cardiac and pulmonary vascularity. Combination

therapy of sildenafil and NS-304 did not have added value to each of these compounds separately,

indicating a limited effect of treatment with vasodilatory therapy at this stage of development

or a different effect of activation of both pathways.

CDH is often associated with neonatal chronic lung disease (nCLD), as these patients are

highly susceptible for oxygen and ventilation damage. The pathophysiology of both diseases

seems to overlap. In both, multiple developmental signaling pathways are affected, with TGFβ,

for example, as a shared factor. In the appendix we describe that in a mouse model of nCLD

we found increased activation of TGFβ and reduced expression of platelet derived growth factor

receptor α (PDGF-Rα), which corresponds to our findings in the nitrofen-CDH rat model.
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The clinical implications of our research are discussed in chapter 7, which includes a

recommendation to develop a precision medicine approach that might even already be applied

antenatally.
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Samenvatting

Congenitale hernia diafragmatica (CHD) is een ernstige aangeboren afwijking, met als kenmerken

een gat in het middenrif, long hypoplasie en pulmonale hypertensie. Bij sommige patiënten

zijn bepaalde genetische afwijkingen aangetoond, zoals deleties in FOG2, COUP-TFII en

SOX7, maar in meer dan 80% van de gevallen blijft de oorzaak onbekend. De bijkomende

longafwijkingen zijn verantwoordelijk voor de hoge morbiditeit en mortaliteit onder kinderen

met CHD. Vaatverwijdende therapie helpt vaak niet en mogelijk vertonen de factoren waarop

de huidige medicatie is gericht een afwijkende expressie.

Hoofdstuk 1 geeft een overzicht van de therapeutische aanpak van CHD-gerelateerde

pulmonale hypertensie over de jaren en beschrijft de bijbehorende pathways. Zowel voor als na

de zwangerschap vormt het vinden van de juiste therapie nog steeds een uitdaging. Dit is nog niet

eerder onderzocht in gerandomiseerde gecontroleerde trials of vergelijkende effectiviteitsstudies.

Morfologisch onderzoek heeft aangetoond dat bij kinderen met CHD de longvaten extreem

verdikt zijn, en bij dit proces zijn verschillende pathways betrokken. Hoofdstuk 2 geeft een

overzicht van de literatuur over de normale ontwikkeling van het pulmonale vaatbed en de

ontwikkeling bij verschillende aangeboren afwijkingen waarbij het pulmonale vaatbed abnormaal

is, zoals CHD. Hoofdstuk 3 richt zich op een van deze pathways, transforming growth factor

β (TGFβ). Deze wordt gereguleerd door retinöınezuur, waarvan de expressie verstoord is in

CHD. In het nitrofen-CHD rat model vonden we een toegenomen activatie van TGFβ en een

afgenomen activatie van bone morphogenetic protein, een andere belangrijke transcriptiefactor

in dit pathway.

De huidige behandeling van pulmonale hypertensie is gericht op receptoren en andere

belangrijke factoren in de drie belangrijke vasoactieve pathways: stikstofoxide (NO), endotheline

en prostacycline. Inhaled NO (iNO) is het meest gebruikte middel onder pasgeborenen, maar

het is nog niet duidelijk of het effect heeft bij kinderen met CHD. Naast iNO worden sildenafil

en prostacylclines sporadisch gebruikt als een laatste redmiddel. Deze geven echter wisselende

en onvoorspelbare resultaten. In hoofdstuk 4 hebben we de expressie geanalyseerd van de

factoren die aan deze middelen zijn gerelateerd; dit is gedaan voor alle drie bovengenoemde

pathways. In longen van patiënten met CHD vonden we een toegenomen expressie van de type

A en B endothelinereceptoren en het endotheline-converting enzym. Dit enzym is belangrijk

omdat het de inactieve vorm van endotheline omzet naar de actieve vorm. De expressie van

de prostacyclinereceptor nam toe gedurende de zwangerschap in gezonde longen, maar in

CHD-longen was dit lager in alle zwangerschapsfasen. De afwijkende expressie van al deze

factoren zou kunnen verklaren waarom de behandeling van pulmonale hypertensie bij kinderen

met CHD niet goed aanslaat.

Omdat CHD al bij 20 weken zwangerschap ontdekt kan worden door middel van echografie, is

behandeling tijdens de zwangerschap een mogelijke optie. In de studie beschreven in hoofdstuk

5 hebben we ratten met door nitrofen gëınduceerde CHD tijdens de zwangerschap behandeld

met sildenafil. Bij deze ratten waren de longblaasjes van normale grootte en was de vaatwand

minder verdikt. In een vervolgstudie hebben we de werking geanalyseerd van een nieuw medicijn,

selexipag (NS-304), afzonderlijk en in combinatie met sildenafil, zoals beschreven in hoofdstuk

6. Behandeling met alleen NS-304 gaf een verbetering van de afwijkingen in het hart en de

longvaten. De combinatie van sildenafil en NS-304 had geen toegevoegde waarde boven elk van

de afzonderlijke medicijnen. Het ziet ernaar uit dat vaatverwijdende therapie in deze fase van

de ontwikkeling slechts een beperkt effect heeft. Ook kan het zijn dat deze twee medicijnen elk

een ander effect hebben.

Patiënten met CHD hebben vaak ook neonatale chronische longziekte (nCLD), omdat zij

gevoelig zijn voor schade door zuurstoftoediening en mechanische beademing. De onderliggende

mechanismen van beide aandoeningen lijken te overlappen. In beide gevallen tonen meerdere

pathways een abnormale ontwikkeling, waarvan TGFβ bijvoorbeeld een gezamenlijke factor is.
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In de appendix beschrijven we een muismodel van nCLD waarin er een toegenomen activatie

van TGFβ was en platelet derived growth factor receptor α (PDGF-Rα) een lagere expressie

vertoonde. Dit komt overeen met onze bevindingen in het nitrofen-CHD ratmodel.

De implicaties van ons onderzoek voor de kliniek worden besproken in hoofdstuk 7. Dit

hoofdstuk bevat tevens een aanbeveling voor een individueel gerichte behandeling die mogelijk

al voor de geboorte kan worden toegepast.
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en muzikale activiteiten!

Lieve Paul, jij bent het beste wat mij ooit is overkomen! Bedankt voor jouw eeuwige steun,

geduld en liefde! Ondanks dat jij in een hele andere branch werkt, ben je altijd gëınteresseerd

in wat ik doe en luister je naar al mijn verhalen. Verder is het heerlijk om naast het werk

samen onze (vele) hobby’s uit te voeren. Voetballen, hardlopen, duiken, muziek maken, dansen,

tennissen, dagjes sauna, midden in de nacht taarten bakken of gewoon heerlijk series kijken. Jij

bent altijd overal voor in, staat altijd voor me klaar en helpt bij alles! Ik ben ook super trots

en blij dat jij de opmaak en kaft van dit boekje hebt gemaakt! Ik hou van jou!
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