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� A new model-free kinetic function is proposed: Scaled Incremental Conversion (SIC).
� The profiles of SIC differences show an extreme value at a particular time point.
� For the linear mechanism A¢ B ¢ C, ratios of SIC differences are time-invariants.
� For some initial conditions the invariants are functions of equilibrium constants.
� In other cases, they are function also of a parametric ratio of kinetic coefficients.
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For the two-step chemical reaction A ¢ B ¢ C, invariant dependences of a new type have been found.
These invariants relate concentration dependences which are started from the single component
(single-component-dependences). For constructing the invariants, a three-stage procedure is used:

1. Scaled Incremental Conversion (SIC), v, is determined for any substance as v ¼ XðtÞ�Xo
Xeq�Xo

, where Xeq and

Xo are equilibrium and initial concentrations for any substance, A, B, or C, respectively; X(t) is the con-
centration at any moment of time.

2. Differences of SIC terms Dv are determined for different pairs of substances. SIC terms are calculated
in experiments with symmetrical initial conditions.

3. A generating function of invariants is constructed which produces invariants as ratios of different Dv.
These ratios remain constant at any time during the non-steady-state reaction.

It is demonstrated that the variety of invariants obtained depends on the initial conditions used in the pro-
cedure. Explicit analytical expressions have been found assuming the same initial conditions, two, and
three different initial conditions, respectively.
All invariants are functions of three independent parameters which are ratios of kinetic coefficients.

Two of them are equilibrium reaction constants, and the third one is the ratio of kinetic coefficients
belonging to different reactions.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Searching for invariants is one of the most important goals of
many sciences such as chemical kinetics and chemical engineering.
Invariants are considered functions of the state variables that
remain constant during non-steady-state complex
transformations.

There are two well-known linear invariances that are widely
used in chemistry and chemical engineering:

� Linear element conservation laws.
� Linear stoichiometric relationships.

Linear element conservation laws are valid regardless of the
kinetic and thermodynamic properties of the reaction mechanism,
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Nomenclature

List of symbols
A, B, C... chemical species A, B, C...
Ao, Bo, Co... dimensionless initial/inlet concentrations of A, B, C...
Aeq, Beq, Ceq dimensionless equilibrium concentrations of A, B, C...
A(t), B(t), C(t)... dimensionless concentration vs time curve of A,

B, C...
Ai(t), Bi(t), Ci(t)... dimensionless concentration vs time curve of A,

B, C... starting from the pure chemical species i
k+ kinetic coefficient of the forward reaction in A ¢ B

[s�1]
k� kinetic coefficient of the backward reaction in A ¢ B

[s�1]
ki+ kinetic coefficient of the forward i-th reaction [s�1]

ki� kinetic coefficient of the backward i-th reaction [s�1]
j ratio of kinetic coeficcients, equal to k1+/k2�

Ki pure equilibrium constant of the i-th reaction
K12 apparent equilibrium constant, equal to K1K2

t time [s]
text time at the extreme value of the SIC expression[s]
s space time [s]
sext space time at the extreme value of the SIC expression

[s]
vA;vB;vC Scaled Incremental Conversion (SIC) of the chemical

species A, B, C...
vAi

;vBi
;vCi

Scaled Incremental Conversion (SIC) of the chemical
species A, B, C... starting from the pure chemical spe-
cies i
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as well as the way the chemical reactions are carried out. These
laws are determined only by the list of chemical substances. As
for linear stoichiometric relationships, they can but should not
necessarily correspond to the detailed mechanism of a complex
chemical reaction. The up to date mathematical framework of
application of these linear invariants is presented in recent mono-
graphs, (Marin and Yablonsky, 2011, Constales et al., 2017).
Fig. 1. Concentration profiles of A (black) and B (blue), starting from pure A (solid)
and from pure B (dashed), assuming a single step reversible reaction A ¢ B with k+

= 2, k� = 1 s�1. The ratio between BA(t) (solid blue) and AB(t) (black dashed) is the
equilibrium constant. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
1.1. Thermodynamic invariants for non-equilibrium reactions

Since 2011 new types of chemical invariants were described
(Yablonsky et al., 2011a, 2011b, Constales et al., 2012). These
invariants of thermodynamic origin are closely related to Onsager’s
famous reciprocal relations (Onsager, 1931a, 1931b). The experi-
mental procedure, real or computational, consists of two symmet-
ric experiments performed from different initial conditions of the
reacting mixture, called the ‘‘dual experiments”. The simplest of
these invariants is related to the single reversible reaction A¢ B,
in a batch reactor:

� The first experiment is performed in a reactor primed with sub-
stance A only.

� The second experiment is performed in a reactor primed with
substance B only.

In both cases, the time-dependent concentrations of A and B are
measured, A(t) and B(t), respectively. A special attention was paid
to symmetric concentration profiles: the dependences ‘‘B produced
from pure A”, BA(t), from the first experiment, and ‘‘A produced
from pure B”, AB(t), from the second experiment. The notation of
the concentration profiles is as follows: the first capital letter
denotes the chemical species, whereas the subscript letter denotes
the single component primed in the reactor, in this case: pure A or
pure B. Examples of these concentration profiles are shown in Fig. 1.

Assuming both the forward and backward reaction as first-
order, monomolecular reactions, with kinetic coefficients k+ and
k-, respectively, it was found that the ratio of the symmetric con-
centration profiles BA(t)/AB(t) is constant, equal to the equilibrium
constant of the reversible reaction Keq, Keq = k+/k�. The equality
BA(t)/AB(t) = Keq is valid for t > 0, i.e., throughout the course of
the reaction. The same result is valid also for a steady-state plug
flow reactor (PFR) and a steady-state continuously stirred tank
reactor (CSTR), if the astronomic time t is replaced by the space
time s, defined as the reactor volume divided by the volumetric
flow rate (Yablonsky et al., 2011a, 2011b, Constales et al., 2012).

This type of invariant can be observed in more complicated,
reversible linear mechanisms, calculated from the ratio of concen-
tration profiles of any arbitrary chemical species connected via any
number of reversible reactions, as long as these concentration pro-
files are obtained from dual experiments (Yablonsky et al., 2011b).
The thermodynamic invariants obtained for complex multi-step
mechanisms are twofold:

� Pure equilibrium constants, obtained from the ratio of concen-
tration profiles of chemical species connected via a single step
reaction within a complex chemical mechanism.

� Apparent equilibrium constants, consisting of products of equi-
librium constants of elementary reactions, obtained from the
ratio of concentration profiles of chemical species connected
via multiple step reactions in a complex chemical mechanism.

A formal demonstration of this feature is given elsewhere, along
with experimental evidence using the water gas shift reaction in a
Temporal Analysis of Products (TAP) reactor (Yablonsky et al.,
2011b). Even some simple non-linear mechanisms may show sim-
ilar invariants, calculated from the ratio of selected concentration
profiles (Yablonsky et al., 2011a, 2011b, Constales et al., 2012).

1.2. Examples of thermodynamic invariants

Consider the two-step consecutive mechanism:

A ¢
kþ1

k�1
B ¢ k�

2
kþ2 C ð1Þ
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The mathematical solution of this mechanism is shown in detail
in the Appendix A. The thermodynamic invariants of this two-step
mechanism are shown in Table 1, obtained from symmetric initial
conditions and assuming all reactions are linear. Notice that the
invariant involving the ratio of the concentration profiles of C
and A, CA(t) and AC(t), respectively, yields the apparent equilibrium
constant K12 of the global reversible reaction A ¢ C. The invariants
shown in Table 1 are valid in a batch reactor and both the steady-
state PFR and CSTR.

1.3. Applications of the invariants

A general dogma in chemical kinetics states that it is not possi-
ble to describe the temporal evolution of a reacting system based
exclusively on its description under equilibrium conditions. Never-
theless, the thermodynamic, equilibrium-like invariants presented
and described in this paper, valid also far from equilibrium, in non-
steady-state conditions, show that equilibrium thermodynamic
relationships not only describe the final point of the reacting sys-
tem, but also its temporal evolution. Of course, only the informa-
tion obtained from equilibrium is not sufficient; some kinetic
information is also needed to describe the reacting system
(Yablonsky et al., 2011a).

If the equilibrium constant is already known, the invariant
expressions can be used to predict kinetic behavior. For the case
of a single reversible reaction, if a concentration profile obtained
from a given initial condition is known in addition to the equilib-
rium constant, it is possible to predict kinetic behavior from the
symmetric initial condition, as these concentration profiles are
proportional by the equilibrium constant. The prediction of kinetic
behavior for the Wei-Prater triangular mechanism was done in
Constales et al. (2015), using thermodynamic invariants.

1.4. Goal of this paper

The goal of this paper is to present new thermodynamic and
non-thermodynamic invariants. These invariants will be obtained
using a new kinetic function, closely related to the conversion of
reactants. The invariants are calculated from the ratio of the differ-
ences of this special kinetic function. Rigorously speaking, the new
invariants presented in this paper are valid exclusively for a two-
step consecutive mechanism and a triangular mechanism.

2. Scaled Incremental Conversion and its properties

The function that will be used to calculate the invariants is clo-
sely related to the widely used term ‘‘conversion”. For the chemical
species A, the Scaled Incremental Conversion (SIC) of A, vA, is
defined as follows:

vA ¼ AðtÞ � Ao

Aeq � Ao
ð2Þ

where Aeq is the equilibrium concentration of A.
At the beginning of the reaction, at time t = 0, A(0) = Ao, so the

SIC value v is zero. On the other hand, at the end of the reaction or
at equilibrium, Aðt ! 1) = Aeq, and the SIC value v is equal to one.
Table 1
Thermodynamic invariants in a two-step consecutive mechanism.

Ratio Invariant

BAðtÞ
ABðtÞ K1 ¼ kþ1

k�1
CBðtÞ
BCðtÞ K2 ¼ kþ2

k�2
CAðtÞ
ACðtÞ K12 ¼ K1K2 ¼ kþ1 k

þ
2

k�1 k
�
2

For both irreversible and reversible reactions, the SIC values go
from zero to one, at the beginning of the chemical reaction and
at chemical equilibrium, respectively.

Notice that the SIC expression can be evaluated for any chemi-
cal species involved in the reaction. For an irreversible reaction, the
equilibrium concentration of the reactant A is zero, Aeq = 0, and the
SIC and the conversion coincide. In Fig. 2 are shown several SIC
plots as a function of time, for different chemical species evaluated
at different initial conditions, assuming the linear two-step model
shown in Eq. (1). As seen in Fig. 2, the SIC value can be larger than
one during the chemical reactions; this behavior can be observed
for intermediate chemical species, when its concentration value
is momentarily equal to its corresponding equilibrium concentra-
tion. If the concentration profile of a chemical species shows a
maximum, their SIC profile will also show a maximum, both occur-
ring at the same value of time or space time.

2.1. Scaled Incremental Conversion in dual experiments

The time-dependent concentration profile in the SIC definition,
see Eq. (2), can be evaluated from different starting reactants. In
Table 2 are shown the SIC values of A and B, for two symmetric ini-
tial conditions, assuming a single reversible reaction A ¢ B.

Let us focus our attention to the SIC expressions where the con-
centration profiles of the dual experiments appear, vAB

and vBA
. At

the beginning of the reaction, at time t = 0, both AB(0) and BA(0) are
zero, as seen in Fig. 1, and so are vAB

and vBA
. At the limit t ! 1, it

is straightforward to check that these last values are both equal to
1. More interestingly, we can demonstrate that these two SIC
expressions are equal at any value of time, due to the fact that
the ratio of the concentration profiles BA(t) and AB(t) is invariant
and equal to the equilibrium constant, as shown in Section 1.1:

BAðtÞ
ABðtÞ ¼

kþ

k� ¼ Keq ¼ Beq

Aeq
ð3Þ

Rearranging Eq. (3), and from Table 2, we have:

vBA
¼ BAðtÞ

Beq
¼ ABðtÞ

Aeq
¼ vAB

ð4Þ

Without loss of generality, we can conclude that the SIC expres-
sions of two chemical species from symmetric initial conditions are
always equal.

In a single reversible reaction, the invariant stoichiometric bal-
ances of the dual experiments are:
Fig. 2. From top to bottom, the SIC plots of CB, BB, BA and CA, assuming the two-step
mechanism shown in Eq. (1). k1+ = 4.5, k1� = 10, k2+ = 6.5, k2� = 12 s�1.



Table 2
SIC expressions for a single reversible reaction, from symmetric initial conditions.

Normalized Conversion
of . . .

Starting from pure A
Bo ¼ 0

Starting from pure B
Ao ¼ 0

:::A vAA
¼ AAðtÞ�Ao

Aeq�Ao
vAB

¼ ABðtÞ
Aeq

:::B vBA
¼ BAðtÞ

Beq
vBB

¼ BBðtÞ�Bo
Beq�Bo
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Starting from pure A :
AAðtÞ þ BAðtÞ ¼ Ao

Aeq þ Beq ¼ Ao

�

Starting from pure B :
ABðtÞ þ BBðtÞ ¼ Bo

Aeq þ Beq ¼ Bo

�
8>>><
>>>:

ð5Þ

Using the stoichiometric balances shown in Eq. (5) for a single
reversible reaction, it can be demonstrated that the SIC expressions
of A and B in a single experiment, shown in columns in Table 2, are
always equal. For instance, starting from pure A, we have:

vAA
¼ AAðtÞ � Ao

Aeq � Ao
¼ �BAðtÞ

�Beq
¼ BAðtÞ

Beq
¼ vBA

ð6Þ

This property is only valid for a single reversible reaction, and
cannot be extended to other more complex mechanisms. Thus,
all SIC expressions shown in Table 2 for a single reversible reaction
are equal, at any value of time.

The new invariants presented in the next sections are based on
a simple function of four SIC expressions.
3. The invariant generator function

The new thermodynamic and non-thermodynamic invariants
are calculated using the invariant generator function F shown in
Eq. (7). This function uses four concentration profiles Ci as
arguments:

FðC1;C2;C3;C4Þ ¼ Dv12

Dv34
¼ v1 � v2

v3 � v4
ð7Þ

where vi denotes the SIC of the chemical species i, evaluated at a
given initial condition.

The plot of the differences of two SIC terms starts at zero at time
t = 0, and ends also in zero at the limit t ! 1. In Fig. 3 are shown
the differences of some of the SIC plots shown in Fig. 2. The Dv
plots show an extreme value, i.e., a maximum or a minimum. As
seen in Fig. 3, the time value when the extremum occurs, text, is
the same for any difference of SIC terms, and it depends exclusively
Fig. 3. Difference of SIC plots shown in Fig. 2. From top to bottom, (vBB
� vCA

),
(vBB

� vBA
) and (vCA

� vCB
).
on the values of the kinetic coefficients. In a batch reactor and
steady-state PFR, this value of time is:

text ¼ lnðkp=kmÞ
kp � km

ð8Þ

whereas in a CSTR, the space time value sext when the extremum
occurs is:

sext ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
kpkm

p ð9Þ

The expressions of both kp and km can be found in the Appendix
A.

We have found Eqs. (8) and (9) in studies of perturbed equilib-
rium in the linear two-step mechanism shown in Eq. (1), as the
(space-)time when the extreme value occurs, between the initial
perturbation and the final equilibrium state, in batch reactor and
CSTR, respectively (Branco et al., 2016).
4. Variety of invariant expressions

The ratios of Dv such as those shown in Fig. 3 yield invariant
expressions that depend exclusively on the kinetic coefficients.
As the mechanisms studied in this paper have three chemical spe-
cies A, B and C, and also three single component initial conditions,
(Ao, Bo, Co) = (Ao, 0, 0), (0, Bo, 0) and (0, 0, Co), there are 9 different
concentration profiles, which start from single component initial
conditions: AA, BA, CA, from pure A; AB, BB, CB, from pure B, and
AC, BC and CC from pure C, arranged in a 3x3 matrix in Eq. (10).

AA AB AC

BA BB BC

CA CB CC

0
B@

1
CA ð10Þ

Each of these 9 concentration profiles can be used as arguments
of the invariant generator function, Eq. (7). From 9 SIC terms, 9 �
8/2 = 36 combinations of differences of SIC terms exist, and 36 �
35/2 = 630 combinations of ratios of differences of SIC terms exist.
However, this number can be greatly reduced taking advantage of
the symmetry of the mechanisms studied, as will be seen in the
next sections.

All the new invariant expressions can be calculated from differ-
ent choices of arguments for the invariant generator function F.
This variety arises because the SIC expressions of two chemical
species from symmetric initial conditions are always equal. Con-
sidering the concentration profiles shown in Eq. (10), only those
in the main diagonal, AA, BB and CC, have a unique SIC expression.
The other six off-diagonal concentration profiles are proportional
by equilibrium constants, as seen in Table 1, and are related as
follows:

vBA
¼ vAB

vCA
¼ vAC

vCB
¼ vBC

8><
>: ð11Þ

These useful symmetry relationships allow us to reduce the
number of invariants; these features will be explained with more
detail in the next sections.
5. Invariants in a two-step consecutive mechanism

The new invariants obtained for the two-step consecutive
mechanism shown in Eq. (1) will be divided threefold, according
to the number of initial conditions involved in the four arguments
of the invariant generator function F:



Table 4
Non-thermodynamic invariants for a two-step consecutive mechanism, calculated
from two initial conditions: A and B.

Arguments of the F function Invariant

fAA;BA;AA;BBg jð1þK12Þ
jþð1�jÞK1þK12

fAA;BA;BA;BBg � jð1þK12Þ
ð�1þjÞðK1þK12Þ

fAA;BA;AA;CBg jK2
1�jþK2

fAA;BA;BA;CBg � jK2
ð�1þjÞð1þK2Þ

fAA;BA;BB;CAg � jK2ð1þK12 Þ
ð1þK2ÞðjþK12Þ

fAA;BA;BB;CBg � jK2ð1þK12Þ
ð�1þjÞð1þK2Þ

fAA;BA;CA;CBg jK2
1þK2

fAA;BB;BA;BBg � jþð1�jÞK1þK12
ð�1þjÞðK1þK12Þ

fAA;BB;AA;CAg � K2ðjþð1�jÞK1þK12Þ
jð1þK12Þ

fAA;BB;AA;CBg � K2ðjþð1�jÞK1þK12Þ
ð�1þj�K2Þð1þK12Þ

fAA;BB;BA;CAg � K2ðjþð1�jÞK1þK12Þ
jð1þK2Þð1þK12Þ

fAA;BB;BA;CBg � K2ðjþð1�jÞK1þK12Þ
ð�1þjÞð1þK2Þð1þK12Þ

fBA;BB;AA;CAg ð�1þjÞð1þK2ÞK12
jð1þK12Þ

fBA;BB;AA;CBg ð�1þjÞð1þK2ÞK12
ð�1þj�K2Þð1þK12Þ

fBA;BB;BA;CAg ð�1þjÞK12
jð1þK12 Þ

fAA;BB;BB;CAg � K2ðjþð1�jÞK1þK12Þ
ð1þK2ÞðjþK12Þ

fAA;BB;BB;CBg � K2ðjþð1�jÞK1þK12Þ
ð�1þjÞð1þK2Þ

fBA;BB;BB;CAg ð�1þjÞK12
jþK12

fAA;BB;CA;CBg K2ðjþð1�jÞK1þK12Þ
ð1þK2Þð1þK12 Þ

fBA;BB;CA;CBg � ð�1þjÞK12
1þK12

fAA;CA;AA;CBg j
ð�1þj�K2

fAA;CA;BA;CBg j
ð�1þjÞð1þK2Þ

fAA;CB;BA;CAg � 1�jþK2
jþjK2

fAA;CB;BA;CBg �1þj�K2
ð�1þjÞð1þK2Þ

fBA;CA;BA;CBg j
�1þj

fAA;CA;BB;CAg jð1þK12Þ
ð1þK2ÞðjþK12 Þ

fAA;CA;BB;CBg jð1þK12 Þ
ð�1þjÞð1þK2Þ

fAA;CB;BB;CAg ð�1þj�K2Þð1þK12Þ
ð1þK2ÞðjþK12Þ
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� Thermodynamic invariants, calculated from the same initial
condition.

� Non-thermodynamic invariants calculated from two different
initial conditions.

� Non-thermodynamic invariants calculated from three different
initial conditions.

We define the invariant which depends on only equilibrium
constants as ‘‘thermodynamic invariant”. In this paper, a ‘‘non-
thermodynamic invariant” is the invariant which is a function of
both equilibrium constants and parameter j, the ratio of kinetic
coefficients belonging to different reactions.

5.1. Thermodynamic invariants from the same initial condition

If the four concentration profiles used as arguments in the
invariant generator function F are obtained from the same initial
condition, only three independent invariant expressions exist;
the three arguments are: {A, B, A, C}, {A, B, B, C} and {A, C, B, C}.
The invariants obtained from these combinations are shown in
Table 3, for two different initial conditions. The invariants in Table 3
depend on two independent parameters: the equilibrium con-
stants K1 and K2, so only two of those invariants are independent.

To facilitate the reading of the tables of invariants, we will break
down the last of the invariant expressions listed in Table 3. The
arguments of this invariant are {AB, CB, BB, CB}; these concentration
profiles are the four arguments of the function F. The invariant
expression is obtained evaluating SIC expressions of these concen-
tration profiles, and relating them according to Eq. (7), as follows:

FðAB;CB;BB;CBÞ ¼
vAB

� vCB

vBB
� vCB

¼
AðtÞ�Ao
Aeq�Ao

���
ðAo ;Bo ;CoÞ¼ð0;Bo ;0Þ

� CðtÞ�Co
Ceq�Co

���
ðAo ;Bo ;CoÞ¼ð0;Bo ;0Þ

BðtÞ�Bo
Beq�Bo

���
ðAo ;Bo ;CoÞ¼ð0;Bo ;0Þ

� CðtÞ�Co
Ceq�Co

���
ðAo ;Bo ;CoÞ¼ð0;Bo ;0Þ

¼
ABðtÞ
Aeq

� CBðtÞ
Ceq

BBðtÞ�Bo
Beq�Bo

� CBðtÞ
Ceq

¼ 1þ kþ
1

k�
1

kþ
2

k�
2
¼ 1þ K1K2

¼ 1þ K12 ð12Þ
Due to variety, see Section 4, this invariant expression, Eq. (12),

can also be obtained from the following combinations of
arguments:

FðAB;CB;BB;CBÞ ¼ FðBA;CB;BB;CBÞ ¼ FðAB;BC;BB;BCÞ
¼ FðBA;BC;BB;BCÞ ¼ 1þ K12 ð13Þ

For simplicity, in the subsequent tables only one argument will
be shown.

The invariant expressions shown in Table 3 can be written as
simple functions of dimensionless pure or apparent equilibrium
constants. The first three invariant expressions, calculated starting
from pure A, are functions of the equilibrium constant K2; these
invariants are useful to obtain the invariant expressions calculated
Table 3
Thermodynamic invariants for a two-step consecutive mechanism, calculated from
the same initial condition.

Arguments of the F function Invariant

fAA;BA;AA;CAg �K2

fAA;BA;BA;CAg � K2
1þK2

fAA;CA;BA;CAg 1
1þK2

fAB;BB;AB;CBg K12
1þK12

fAB;BB;BB;CBg K12

fAB;CB;BB;CBg 1þ K12
from pure C, due to the symmetry of the mechanism, just by
switching the identification of A and C as chemical species, and
also the kinetic coefficients, correspondingly.

Notice that for the two-step mechanism, in contrast to the sin-
gle reversible reaction, the thermodynamic invariants shown in
Table 3 can be calculated from the same initial condition in a single
experiment, as long as that the time profile of the concentrations of
the three chemical species A, B and C is recorded.

5.2. Non-thermodynamic invariants from two initial conditions

In Table 4 are shown the non-thermodynamic invariants of the
two-step consecutive mechanism, using the concentration profiles
from two initial conditions: pure A and pure B. These concentration
profiles are five: AA, BA, CA, BB and CB.

Since the mechanism is described by four parameters: k1+, k1�, k2+

and k2�, the non-thermodynamic invariants are function of three
fAA;CB;BB;CBg ð�1þj�K2Þð1þK12Þ
ð�1þjÞð1þK2Þ

fBA;CA;BB;CAg jð1þK12Þ
jþK12

fBA;CA;BB;CBg jð1þK12Þ
�1þj

fBA;CB;BB;CAg ð�1þjÞð1þK12Þ
jþK12

fAA;CA;CA;CBg � j
1þK2

fAA;CB;CA;CBg 1�jþK2
1þK2

fBA;CA;CA;CBg �j
fBA;CB;CA;CBg 1� j
fBB;CA;BB;CBg jþK12

�1þj
fBB;CA;CA;CBg �jþK12

1þK12

fBB;CB;CA;CBg 1�j
1þK12



Table 6
Non-thermodynamic invariants for a two-step consecutive mechanism, calculated
from three initial conditions.

Arguments of the F function Invariant

fAA;BA;BB;CCg � jð1þK12ÞðK2þK12Þ
ð1þK2Þðjþð�1þjÞK1þK12Þ

fAA;BB;AA;CCg � ð1þK1ÞK2ðjþð1�jÞK1þK12Þ
ðjþð�1þjÞK1�K12Þð1þK12Þ

fAA;BB;BA;CCg � ð1þK1ÞK2ðjþð1�jÞK1þK12Þ
ðjþð�1þjÞK1Þð1þK2Þð1þK12Þ

fBA;BB;AA;CCg ð�1þjÞK12ð1þK1þK2þK12Þ
ðjþð�1þjÞK1�K12Þð1þK12Þ

fAA;BB;BB;CCg � ð1þK1ÞK2ðjþð1�jÞK1þK12Þ
ð1þK2Þðjþð�1þjÞK1þK12 Þ

fAA;BB;CA;CCg ð1þK1ÞK2ðjþð1�jÞK1þK12 Þ
ð1þK12ÞðK1þK12Þ

fAA;BB;BC;CCg � ð1þK1ÞK2ðjþð1�jÞK1þK12Þ
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independent dimensionless parameters: two equilibrium con-
stants K1 = k1+/k1� and

K2 = k2+/k2�, and the parametric ratio j = k1+/k2�, as seen in Table 4.
Any other ratio of kinetic coefficients can be calculated from both
the equilibrium constants and j; however, it is not possible to
resolve single kinetic coefficients using the invariants.

The invariants shown in Table 4 and subsequent tables may be
denoted as kinetic invariants, as it is not possible to write them as a
function of only thermodynamic quantities such as the equilibrium
constants. These invariants depend on three independent parame-
ters: the equilibrium constants K1 and K2 and the parametric ratio
j = k1+/k2�, so only three independent invariants exist.

Notice that the parametric ratio j can be determined directly
from the invariant with the argument {BA, CA, CA, CB}, as it is equal
to -j, as seen in Table 4. The parametric ratio j can also be deter-
mined using two other invariants, namely {BA, CA, BA, CB} and {BA,
CB, CA, CB}, that are related as follows:

FðBA;CB;CA;CBÞ ¼ 1þ FðBA;CA;CA;CBÞ ð14:1Þ

FðBA;CA;BA;CBÞ ¼ FðBA;CA;CA;CBÞ
FðBA;CB;CA;CBÞ ð14:2Þ

The three invariants described are combinations of three con-
centration profiles: BA, CA and CB, located at the lower triangular
part of the matrix shown in Eq. (10). The invariants obtained from
the off-diagonal concentration profiles lead to simple expressions
of the parametric ratio j. The rest of the invariants in Table 4 con-
tain at least one diagonal concentration profile, and depend of the
parametric ratio j and the equilibrium constants.

Some invariant expressions calculated from concentration pro-
files starting from C can be obtained using the Table 4 and the sym-
metry relationships shown in Eq. (11). Also, more invariants can be
calculated via switching A and C and the kinetic coefficients,
correspondingly.

In Table 5 are shown the non-thermodynamic invariants of the
two-step consecutive mechanism, using the concentration profiles
from two initial conditions: pure A and pure C. These concentration
profiles are five: AA, BA, CA, BC and CC. Similarly, some invariant
expressions calculated from concentration profiles starting from
Table 5
Non-thermodynamic invariants for a two-step consecutive mechanism, calculated
from two initial conditions: A and C.

Arguments of the F function Invariant

fAA;BA;AA;CCg � jðK2þK12Þ
jþð�1þjÞK1�K12

fAA;BA;BA;CCg � jðK2þK12Þ
ðjþð�1þjÞK1Þð1þK2Þ

fAA;BA;CA;CCg jðK2þK12Þ
K1þK12

fAA;BA;BC;CCg � jðK2þK12Þ
1þK2

fAA;CA;AA;CCg jð1þK1Þ
jþð�1þjÞK1�K12

fAA;CA;BA;CCg jð1þK1Þ
ðjþð�1þjÞK1Þð1þK2Þ

fAA;BC;AA;CCg ð1þK1Þð�1þj�K2Þ
jþð�1þjÞK1�K12

fAA;BC;BA;CCg ð1þK1Þð�1þj�K2Þ
ðjþð�1þjÞK1Þð1þK2Þ

fAA;CC;BA;CAg jþð�1þjÞK1�K12
jð1þK1Þð1þK2Þ

fAA;CC;BA;BCg jþð�1þjÞK1�K12
ð�1þjÞð1þK1Þð1þK2Þ

fAA;CC;BA;CCg jþð�1þjÞK1�K12
ðjþð�1þjÞK1Þð1þK2Þ

fAA;CA;CA;CCg � jð1þK1Þ
K1þK12

fAA;CA;BC;CCg jð1þK1Þ
1þK2

fAA;BC;CA;CCg � ð1þK1Þð�1þj�K2Þ
K1þK12

fAA;BC;BC;CCg ð1þK1Þð�1þj�K2Þ
1þK2

fAA;CC;CA;BCg �jþð1�jÞK1þK12
ð1þK1Þð1þK2Þ

fAA;CC;CA;CCg 1� ðjð1þK1Þ
K1þK12

fAA;CC;BC;CCg jþð�1þjÞK1�K12
1þK2Þ
B can be obtained using the Table 5 and the symmetry relation-
ships shown in Eq. (11). Tables 4 and 5 contain all the invariants
obtained from two different initial conditions.

5.3. Non-thermodynamic invariants from three initial conditions

In Table 6 are shown the non-thermodynamic invariants of the
two-step consecutive mechanism using concentration profiles
from the three different initial conditions. In each one of these
invariants, the diagonal concentration profiles AA, BB and CC appear
as arguments of the function F. To calculate these invariants, three
different experiments are needed.

6. Example

In Fig. 4 are shown three concentration profiles off from the
diagonal in the matrix shown in Eq. (10): AB, CB and CA, in solid
lines. Notice that the last two tend to the same equilibrium value,
independent of the initial conditions. With these off-diagonal con-
centration profiles, it is possible to calculate the invariants involv-
ing the parametric ratio j = k1+/k2�; from Table 4:

FðBA;CA;CA;CBÞ ¼ �j ð15Þ
ð1þK2Þð1þK12Þ
fAA;CA;BB;CCg jð1þK1Þð1þK12Þ

ð1þK2Þðjþð�1þjÞK1þK12Þ
fAA;BC;BB;CCg ð1þK1Þð�1þj�K2Þð1þK12 Þ

ð1þK2Þðjþð�1þjÞK1þK12Þ
fAA;CC;BB;CAg ðjþð�1þjÞK1�K12Þð1þK12Þ

ðjþK12Þð1þK1þK2þK12Þ
fAA;CC;BB;BCg ðjþð�1þjÞK1�K12Þð1þK12Þ

ð�1þjÞð1þK1Þð1þK2Þ
fAA;CC;BB;CCg ðjþð�1þjÞK1�K12Þð1þK12Þ

ð1þK2Þðjþð�1þjÞK1þK12ÞÞ

Fig. 4. From top to bottom, in solid lines, the concentration profiles AB, CB and CA.
From top to bottom, in dashed lines, the invariant values 1-j, j and j/(j-1),
assuming the two-step mechanism shown in Eq. (1). k1+ = 2.5, k1� = 8.0, k2+ = 20.0, k2� =
12 s�1.
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The first argument in Eq. (15), i.e., the concentration profile BA,
can be calculated from its symmetric concentration profile, AB, see
Eq. (3), or, equivalently, AB can be substituted directly in the invari-
ant expression in Eq. (15), as the SIC expressions of symmetric con-
centration profiles are equivalent, see Eq. (11):

FðBA;CA;CA;CBÞ ¼ FðAB;CA;CA;CBÞ ¼ �j ð16Þ
The other two invariants in Table 4 involving the parametric

ratio j can be calculated similarly. The invariants, valid at any
value of time, are shown in dashed in Fig. 4.
7. Conclusions

Explicit invariant relationships between single-component-
dependences, i.e., concentration dependences which are started
from single component conditions, have been found for the two-
step chemical reaction A¢ B¢ C. For this purpose, the three-
stage procedure was used:

1. Scaled Incremental Conversion (SIC), v, is determined for any
substance as v ¼ XðtÞ�Xo

Xeq�Xo
, where Xeq and Xo are equilibrium and

initial concentrations for any substance, A, B, or C, respectively;
X(t) is the concentration at any moment of time.

2. Differences of SIC terms Dv are determined for different pairs
of substances. SIC terms are calculated in experiments with
symmetrical initial conditions.

3. A generating function of invariants is constructed which pro-
duces invariants as ratios of different Dv. These ratios remain
constant at any time during the non-steady-state reaction.

Three scenarios were analyzed utilizing concentration depen-
dences which that started from the same, two or three different
initial conditions.

It was demonstrated that the variety of invariants depends on
the initial conditions. Explicit analytical expressions have been
found assuming the same initial conditions, two, and three differ-
ent initial conditions.

At the same initial conditions, invariants are functions of two
independent parameters (equilibrium constants), and there are
only two independent invariants.

At two and three different initial conditions, invariants are func-
tions of three independent parameters. Two of them are equilib-
rium reaction constants, and the third one is the ratio of kinetic
coefficients belonging to different reactions. In this case, there
are only three independent invariants. Consequently, in all cases
the number of independent invariants is equal to the number of
independent parameters.

Among all invariants, there are three independents invariants of
special interest which can be termed simple invariants: two invari-
ants for the same- initial-conditions case:

1. {AA, BA, AA, CA}, corresponds to �K2, which is the equilibrium
constant of the second reaction B¢ C.

2. {AB, BB, BB, CB}, corresponds to K12 = K1K2, where K1 is the equi-
librium constant of the first reaction A ¢ B.

The third invariant is from the two-different-initial-conditions
case:

3. {BA, CA, CA, CB}, corresponds to the ratio of kinetic coefficients of
different reactions j = k1+/k2�.

These independent invariants are identical to independent
parameters.
Summing up, we’d like to say that finding this new class of
invariants opens new problems:

First, we need to understand what is the relationship between
these invariants and the invariants of purely thermodynamic origin
discovered previously (Yablonsky et al., 2011a, 2011b, Constales
et al., 2015), see Constales et al. (2015) as well.

Second, this result was obtained for a two-step reaction using it
as an example. However, it can be used as a prototype of ‘pseudo-
invariant’ characteristics of dynamic behavior in more complex lin-
ear chemical systems.

Third, new proposed tools of the theoretical analysis, i.e., (a)
scaled incremental conversion, v ¼ XðtÞ�Xo

Xeq�Xo
, (b) differences of SIC

terms Dv for different pairs of substances, and (c) a generating
function of invariants as a ratio of different Dv terms, can be
applied to the decoding of a complex reaction mechanism and cor-
responding model. This heuristic approach based on kinetically
model-free characteristics can provide researchers with specific
invariants, a fruitful source of information on the detailed
mechanism.
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Appendix A

Consider the two-step consecutive mechanism shown in Eq.
(1):

A ¢
kþ1

k�1
B ¢ k�

2
kþ2 C ð1Þ

The mathematical solution of this mechanism was recently
published elsewhere (Branco et al., 2016), for the batch reactor.
Assuming the initial concentrations of A, B and C as Ao, Bo and
Co, respectively, the equilibrium concentrations of the chemical
species, Aeq, Beq and Ceq are:

Aeq ¼ k�
1 k

�
2 ðAo þ Bo þ CoÞ

kpkm
ð17Þ

Beq ¼ kþ
1 k

�
2 ðAo þ Bo þ CoÞ

kpkm
ð18Þ

Ceq ¼ kþ
1 k

þ
2 ðAo þ Bo þ CoÞ

kpkm
ð19Þ

where kp and km, kp > km, are:

kp; km ¼ 1
2
ðkþ

1 þ k�
1 þ kþ

2 þ k�
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ

1 þ k�
1 þ kþ

2 þ k�
2 Þ

2 � 4ðk�
1 k

�
2 þ kþ

1 k
�
2 þ kþ

1 k
þ
2 Þ

q
Þ

ð20Þ
and

kpkm ¼ kþ
1 k

þ
2 þ kþ

1 k
�
2 þ k�

1 k
�
2 ð21:1Þ

kpkm ¼ kþ
1 þ k�

1 þ kþ
2 þ k�

2 ð21:2Þ
The concentration profile of A, A(t), can be written as follows:

AðtÞ ¼ Aeq þ ðAo � Aeq � AxÞe�kpt þ Axe�kmt ð22Þ
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where AX is a collection of terms, including the kinetic coefficients
and the initial concentrations (Branco et al., 2016). All the concen-
tration profiles can be written similarly to Eq. (22), using the corre-
sponding equilibrium concentration, initial concentration and
collection of terms; the definitions of AX, BX and CX can be consulted
elsewhere (Branco et al., 2016).

For the CSTR, the solution of the mechanism shown in Eq. (1) is:

AðsÞ ¼ Ao þ AXsþ kpkmAeqs2

1þ ðkp þ kmÞsþ kpkms2
ð23Þ

where for the CSTR, the collection of terms AX is:

AX ¼ Aoðkþ
2 þ k�

2 Þ þ ðAo þ BoÞk�
1 ð24Þ

The space-time dependent expressions B(s) and C(s) can be
written similarly to Eq. (23), substituting both the inlet and the
equilibrium concentrations, correspondingly, as well the AX

expression. The definitions of BX and CX are:

BX ¼ ðAo þ BoÞkþ
1 þ ðBo þ CoÞk�

2 ð25Þ
CX ¼ Coðkþ
1 þ k�

1 Þ þ ðBo þ CoÞkþ
2 ð26Þ
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