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Abstract: The artificial pancreas (AP) system is designed to regulate blood glucose in subjects with
type 1 diabetes using a continuous glucose monitor informed controller that adjusts insulin infusion
via an insulin pump. However, current AP developments are mainly hybrid closed-loop systems
that include feed-forward actions triggered by the announcement of meals or exercise. The first
step to fully closing the loop in the AP requires removing meal announcement, which is currently
the most effective way to alleviate postprandial hyperglycemia due to the delay in insulin action.
Here, a novel approach to meal detection in the AP is presented using a sliding window and
computing the normalized cross-covariance between measured glucose and the forward difference of
a disturbance term, estimated from an augmented minimal model using an Unscented Kalman Filter.
Three different tunings were applied to the same meal detection algorithm: (1) a high sensitivity tuning,
(2) a trade-off tuning that has a high amount of meals detected and a low amount of false positives
(FP), and (3) a low FP tuning. For the three tunings sensitivities 99 ± 2%, 93 ± 5%, and 47 ± 12% were
achieved, respectively. A sensitivity analysis was also performed and found that higher carbohydrate
quantities and faster rates of glucose appearance result in favorable meal detection outcomes.

Keywords: meal detection; artificial pancreas; unannounced meals; type 1 diabetes; physiological
models; Unscented Kalman Filter

1. Introduction

Closed-loop systems intended for blood glucose (BG) control in people with type 1 diabetes
(T1D), i.e. artificial pancreas (AP) systems, are still dependent on feed-forward actions such as meal
announcements to achieve effective control. However, many studies have reported that a high number
of missed meal boluses occur, especially in adolescents during insulin pump therapy. Several studies
have reported a link between glycated hemoglobin (HbA1c) levels and missed meal boluses [1–3]
showing an average increase in HbA1c of 4 mmol/mol (0.3%) during a 2-week period due to missed
meal boluses [1]. These findings have been further compounded by Patton et al. [4] who found a higher
correlation between poor HbA1c levels and missed meal boluses compared to frequency of daily BG
measures. Increases in HbA1c lead to an increased risk of long-term complications such as retinopathy,
nephropathy, neuropathy, heart disease, and stroke. It is predicted that this missed-meal-bolus behavior
will carry over to AP therapy and, therefore, a means to reduce poor outcomes due to unannounced
meals must be implemented.
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An AP system regulates BG levels using a continuous glucose monitor (CGM) informed controller
that adjusts insulin infusion via an insulin pump. In healthy subjects, hypo- and hyperglycemia are
counteracted by a physiological control system that includes pancreatic hormones such as insulin,
glucagon, and amylin [5]. In T1D, this control system is lacking, which is especially evident after a
meal when a large postprandial increase in BG is experienced. Meals are difficult for the AP to mitigate
due to the delayed onset of current rapid-acting insulin formulations and the 5–15 min time lag in the
interstitial space experienced by CGM readings [6–8].

A few studies have used unannounced meals simply as a challenge to see how well their controller
works when a premeal bolus is not given [9,10] and have found that their controller is able to overcome
small unannounced meals but have difficulty with larger meals [10]. Larger unannounced meals
therefore require meal detection systems and strategies to combat postprandial hyperglycemia.

Dassau et al. [11] designed a meal detection system that uses binary detection that is triggered by
a voting scheme. This system was trained with a MiniMed CGMS Gold dataset and tested in clinic
using Freestyle Navigator CGM readings. Lee and Bequette [12] detected a meal based on certain
logical conditions of first and second derivatives of glucose levels, and then a finite impulse response
filter was applied to estimate the meal size. Then, Lee et al. [13] refined the logical conditions and
generated a series of meal impulses, a moderately sized bolus was then given according to the meal
impulses. Cameron et al. [14] developed a probabilistic detection algorithm based on a set of meal
shapes with the meal start time and postprandial glucose appearance estimated at the same time.
Later on, Cameron and Niemeyer [15] came up with a multi-model method to detect and estimate
unannounced meals. The method is also probabilistic based but assumes a constant meal absorption
shape. Chen et al. [16] and Weimer et al. [17] are able to detect meals utilizing a bin-counting heuristic
that counts the number of decisions generated using a dual parameter-invariant statistics leveraged
from a linearized physiological model. Xie and Wang [18] use a multi-model approach to detect meals,
meal start time, and meals size using a Variable State Dimension method, which uses a switching
criteria to switch between models with different state dimensions. Turksoy et al. [19] propose a method
for meal detection and bolus estimation based on an estimated rate of glucose appearance (Ra). Finally,
Mahmoudi et al. [20] use an adaptive Unscented Kalman Filter (UKF) and two redundant CGM sensors
to detect meals based on glucose predicted by a model and CGM values. A meal is detected when
CGM values of both sensors fall outside the 95% confidence interval of the predicted model.

Lee et al. [13] and Cameron et al. [14] have achieved remarkable in silico results in an adult
cohort in terms of postprandial hyperglycemia mitigation with a time in range (70–180 mg/dL) of
90% and 89%, respectively. However, these results have not been translated into a clinical setting
where detection modules are still unable to prevent a large majority of postprandial hyperglycemia
and in turn result in many hypoglycemic events as seen in Turksoy et al. [21] and Cameron et al. [22].
The idea behind this work was to build a meal detection algorithm in the context of an AP system in a
way that it can be used to trigger automatic feed-forward actions that safely and effectively mitigate
postprandial hyperglycemia. Therefore, we hypothesize that the proposed approach to meal detection
provides sufficient sensitivity and reliability to be effectively used within an AP system.

The main advantages of this work are: (1) the use of both meal size and composition as points of
interest during the evaluation of the proposed algorithm and (2) the use of multiple tunings to assess
algorithm usefulness when introducing meal mitigation actions.

2. Materials and Methods

The meal detection algorithm presented in this paper was tuned and validated using a 14-day
in silico simulation. A sensitivity analysis is also presented for meals over a 500-day period in ten adult
subjects. The algorithm collects glucose and insulin infusion rate values and computes a disturbance
parameter from an augmented minimal model (Figure 1) using an UKF. The cross-covariance between
the glucose data and the forward difference of computed disturbance parameter is then calculated
over three different sliding windows. A threshold is then applied, different for each sliding window.
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One threshold is applied to obtain a detection that has a high true positive (TP) value, the second is
a trade-off tuning, which has both a high TP value and a low false positive (FP) value, and the third
tuning has a very low FP value.

Gp Gsc

X I

S1 S2

Disturbance Parameter, D

g/τ

1/tmax, I

1/τ

1/tmax, I

kep2

p1

Insulin Infusion, u

p2SI

Figure 1. Compartmental model of glucose-insulin system. Gp and Gsc represent glucose concentrations
in the accessible (plasma) and non-accessible (subcutaneous) compartments, I represents plasma insulin,
and X represents a remote insulin compartment that accelerates glucose disappearance [23].

2.1. Minimal Model

A minimal model was employed for the use in state estimations for meal detection. The equations
are provided in the following subsections.

2.1.1. Glucose Subsystem

The model is comprised of the Bergman equations (see [23]):

dGp(t)
dt

= −
(

p1 + X(t)
)
Gp(t) + p1Gb +

D(t)
VG

, (1)

dX(t)
dt

= −p2X(t) + p2SI I(t), (2)

where Gp is plasma glucose concentration, X is proportional to insulin in the remote compartment,
and Gb is basal glucose. p1 represents the rate at which glucose is removed from the plasma space
independent of the influence of insulin. VG is the distribution volume, p2 is the rate of disappearance
of remote insulin from the remote insulin compartment, and SI = p3/p2 is the insulin sensitivity.
D, identified using an UKF (Equation (9)), is a lumped signal used to describe plasma glucose variations
due to meals, exercise, and other various disturbances that are not described by the other parameters
of the model.

The blood to interstitial glucose dynamics is described as a first-order linear system [24]:

dGsc(t)
dt

= − 1
τ

Gsc(t) +
g
τ

Gp(t), (3)

where Gsc represents subcutaneous glucose, τ represents the time constant of the system and g is the
static gain of the system.
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2.1.2. Insulin Subsystem

Insulin absorption [25] is described as:

dS1(t)
dt

= u(t)− S1(t)
tmax,I

, (4)

dS2(t)
dt

=
S1(t)− S2(t)

tmax,I
. (5)

S1 and S2 are a two compartment chain representing the subcutaneous absorption of rapid-acting
(e.g., Lispro) insulin and u(t) (µU/kg/min) represents administration (bolus and infusion) of insulin.

The plasma insulin concentration [25] is given by:

dI(t)
dt

= −ke I(t) +
1

VI
· S2(t)

tmax,I
, (6)

where ke is the fractional elimination rate, VI is the distribution volume, and tmax,I is the
time-to-maximum insulin absorption.

The T1D subject model was discretised using a first forward difference derivative approximation
(1 min step size) [26]. The mean population values found in Table 1 are utilized in this model.

Table 1. Mean population parameter values.

Symbol Quantity Value Units Reference

p1 Glucose removal rate from the plasma space
independent of the influence of insulin

0.035 1/min [27]

p2 Disappearance rate of remote insulin from the
remote insulin compartment

0.05 1/min [27]

p3 Appearance rate of remote insulin into the remote
insulin compartment

0.000028 mL/µU · min2 [27]

Gb Basal plasma glucose 100 mg/dL [23]

VG Volume distribution of glucose compartment 1.6 dL/kg [25]

VI Volume distribution of insulin compartment 120 mL/kg [25]

ke First-order decay rate of insulin in plasma 0.138 1/min [25]

tmax,I Time-to-maximum insulin absorption 55 min [25]

τ Time constant of the system 8.2237 min [24]

g Static gain of the system 1 unitless [24]

2.2. Unscented Kalman Filter

The UKF proposed by [28] is a powerful technique used in nonlinear estimation and machine
learning applications. Its foundation lies in the intuition that it is easier to approximate a probability
distribution than it is to approximate an arbitrary nonlinear function or transformation [29]. Using the
discretized model of Equations (1)–(6) and the inputs of glucose and insulin infusion rate obtained
from a CGM and an insulin pump, respectively, a nonlinear state space model is derived:

x(k + 1) = f (x(k), u(k)) + w(k), (7)

y(k) = g(x(k)) + v(k), (8)
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where x(k) is the state vector, which has been augmented by D(t), with state equation:

dD(k)
dt

= 0. (9)

u(k) is the input and w(k) and v(k) are defined to be process and measurement noises, respectively.
The nonlinear functions f (·) and g(·) are defined from Equations (1)–(6). The state estimations are
used for meal detection as described in Section 2.3.

The nonlinear function, y = f (x) of variable x (dimension L) is applied to each point, in turn,
to yield a cloud of transformed sigma points, Xi in the form of matrix X (dimension 2L + 1) according
to the following:

X0(k − 1) = x̂(k − 1), (10)

Xi(k − 1) = x̂(k − 1) +
(√

(L + λ)P(k − 1)
)

i
i = 1, . . . , L, (11)

Xi(k − 1) = x̂(k − 1)−
(√

(L + λ)P(k − 1)
)

i−L
i = L + 1, . . . , 2L, (12)

with scalar weights Wi defined as:

Wm
0 =

λ

L + λ
, (13)

Wc
0 =

λ

L + λ
+ (1 − α2 + β), (14)

Wm
i = Wc

i =
1

2(L + λ)
i = 1, . . . , 2L, (15)

where λ = α2(L + κ)− L is a scaling parameter, α determines the spread of the sigma points around x̂,
κ is a secondary scaling parameter, and β is used to incorporate prior knowledge of the distribution of

x. P(k − 1) is the covariance matrix and
(√

(L + λ)P(k − 1)
)

i
is the ith column of the matrix square

root, i.e., lower triangle Cholesky factorization.
The sigma vectors, Xi(k − 1) are then propagated through the nonlinear function, f (·) as follows:

X−
i (k) = f [Xi(k − 1), u(k)] i = 0, . . . , 2L. (16)

The statistics of the transformed points can then be calculated to form an estimate of the
nonlinearly transformed mean (x̂) and covariance (P(k)):

x̂−(k) =
2L

∑
i=0

Wm
i X̂−

i (k − 1), (17)

P−(k) =
2L

∑
i=0

Wc
i (X−

i (k − 1)− x̂−(k))(X−
i (k − 1)− x̂−(k))T + Qp, (18)

where Qp is the covariance matrix of the process noise. The sigma points X−
i are propagated through

the nonlinear function g(·) for the calculation of Y−
i :

Y−
i (k) = g[X−

i (k), u(k)] i = 0, . . . , 2L. (19)

The measurement estimations are obtained from X−
i as:

ŷ−(k) =
2L

∑
i=0

Wm
i Y−

i (k). (20)
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The innovation and cross-covariance matrices are then calculated as:

Pyy(k) =
2L

∑
i=0

Wc
i [Y

−
i (k)− ŷ−(k)][Y−

i (k)− ŷ−(k)]T + Qm, (21)

Pxy(k) =
2L

∑
i=0

Wc
i [X

−
i (k)− x̂−(k)][Y−

i (k)− ŷ−(k)]T , (22)

where Qm represents the covariance of measurement noise. Lastly, the Kalman filter gain and the
updated state vector estimation and covariance matrix are calculated:

K(k) = Pxy(k)(Pyy(k))−1, (23)

x̂(k) = x̂−(k) + K(k)(y(k)− ŷ−(k)), (24)

P(k) = P−(k)− K(k)Pyy(k)(K(k))T . (25)

The UKF requires the definition of initial conditions and tuning parameters, which in our case
were selected as:

x̂(0) =



Gp(0)
X(0)
I(0)

S1(0)
S2(0)
Gsc(0)
D(0)


=



BG(0)
0
0

u(0)
0

BG(0)
0


,

q = 0.6103 r = 8.9614,

Qp = diag
[
q2 0 0 0 0 q2 q2

]
,

P(0) = I7×7 Qm = r2,

α = 10−3 κ = 0 β = 2,

where Gsc(0) is the first measured glucose value from a CGM, q is the standard deviation of the process
noise, and r is the standard deviation of the measurement noise.

2.3. Meal Detection

After the states in Equations (1)–(6) are estimated using the UKF, the values of Gsc(k) from
the CGM simulated data and Ddi f f (k), which is the forward difference of D(k), are scaled between
−1 and 1 using minimum and maximum values determined a priori through simulation. Then,
the biased estimate of the cross-covariance between the two sequences is calculated during windows
of a specified length.

The true cross-covariance sequence of two jointly stationary random processes, Gscn and Ddi f fn ,
is the cross-correlation of mean-removed sequences [30],

ΦGsc ,D(m) = E
{
(Gsc(n + m)− µGsc)(Ddi f f (n)− µDdi f f )

∗)
}

, (26)

where µGsc and µDdi f f are the mean values of the two stationary random processes and E is the expected
value operator. The asterisk denotes complex conjugation.
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The raw cross-covariances are computed as:

cGsc ,Ddi f f (m) =



(
N−m−1

∑
n=0

(
Gsc(n + m)− 1

N

N−1
∑

i=0
Gsc(i)

)(
D∗

di f f (n)−
1
N

N−1
∑

i=0
D∗

di f f (n)
))

/N, m ≥ 0,

(
c∗Ddi f f ,Gsc

(−m)
)

/N, m < 0,

(27)

where Gsc(n) and Ddi f f (n) are indexed from 0 to N − 1, and cGsc ,Ddi f f (m) from −(N − 1) to N − 1,
where N is the number of samples. The raw cross-covariance are normalized by scaling by 1/N.

A meal is then detected as follows:

Meal =


True, i f cGsc ,Ddi f f (m) ≥ threshold,

and Ddi f f (k) > 0,

and Gsc(k)− Gsc(k − 3) > 0,

False, otherwise.

(28)

A meal was assumed to have been consumed if the cross-covariance between the Gsc(n)
and Ddi f f (n) signals exceeded a pre-specified threshold and the last unscaled value of Ddi f f
and the slope of Gsc with respect to the measurement 15 min ago (three samples) were positive
(see Figures 2 and 3). It should be noted that meals are not detected during the nighttime period
(23 h–6 h) as a safety precaution.

Start

Estimate States
Using UKF

Calculate
Cross-Covariance

Between Ddi f f
and Gsc Value

Cross-
Covariance
Threshold
Crossed?

Is Ddi f f (k) &
Gsc(k − 3)-Gsc(k)

Positive?

Is it
Daytime?

Meal
Detected

yes yes yes

no no
no

Figure 2. Flow chart of the meal detection algorithm. First, the states of a minimal model are estimated
using an Unscented Kalman filter (UKF) and then the cross-covariance is found between the state
estimation for the forward difference of the disturbance parameter (Ddi f f ) and the glucose value Gsc

obtained from a continuous glucose monitor (CGM). A threshold is applied to the cross-covariance,
and, once crossed, the last unscaled value of Ddi f f and the slope with respect to the measurement
15 min ago (3 samples) of Gsc are checked, if both are positive and it is daytime, a meal is detected.
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Figure 3. Illustration of the meal detection algorithm showing subcutaneous glucose (Gsc) values from
a continuous glucose monitor values (top graph), cross-covariance (middle graph) and the forward
difference of the disturbance parameter, Ddi f f (bottom graph).

2.4. Performance Metrics

Seven performance metrics were used: sensitivity, true positive (TP), false positive (FP),
false negative (FN), false positive per day (FP/day), detection time, and ∆ glucose. True negatives
(TN) and specificity were not able to be determined in this framework due to the fact that one TP
can span multiple time points depending on meal duration; however, a TN can be counted for each
time sample that a negative occurrence is correctly identified. This skews the specificity to the higher
end of the spectrum. Therefore, sensitivity and FP were used as measures of performance. Sensitivity
measures the percentage of positive results that are correctly identified. Correct detection or a TP is
when the algorithm has detected a meal from the beginning of the meal to 120 min after the time of the
commencement of the meal. An FP is when detection is positive without a meal. Negative detection
or an FN is when a meal has not been detected up to 120 min after ingestion. To compare the FP
values between the two scenarios, the FP/day is used. Detection time reflects the time at which a TP is
detected with respect to meal time and ∆ glucose reflects the change in glucose from the start of the
meal to the time when the meal was detected. All values are reported as mean ± standard deviation
and median (5th%, 95th%).

2.5. Diabetes Simulation Scenario

The University of Virgina/Padova (UVA/Padova) Simulator [31] was used to build two different
types of scenarios: (1) a meal detection tuning and validation scenario and (2) a meal detection
sensitivity analysis scenario. Meal absorption rate and subcutaneous insulin absorption rate were
varied at each meal according to a uniform distribution of ±10% and ±30%, respectively. Circadian
insulin sensitivity variation (sinusoidal type with 24 h period) was implemented with random
amplitude according to a uniform distribution of ±30% and random phase. Finally, CGM error
was according to the default model available in the UVA/Padova simulator.
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2.5.1. Meal Detection Tuning and Validation Scenario

Two challenging 14-day scenarios were built: one scenario was used for tuning and the other was
used for validation. These scenarios included: three meals per day with varying carbohydrate content
and meal time following a normal distribution with mean 30 g at 8:30 h (breakfast), 60 grams at 13:00 h
(lunch), and 50 g at 19:00 h (dinner). Coefficient of variance for the meal size was ±20%, and the
standard deviation for meal time was ±10 min. For each meal, a meal absorption profile was selected
randomly from a meal library of 11 meals, which are the meals of the 10 adults and the average adult
provided by the UVA/Padova Simulator. There were 420 meals in total for all 10 subjects over the
14-day period.

2.5.2. Meal Detection Sensitivity Analysis Scenario

A 500-day scenario with 10 adult subjects was built for a sensitivity analysis of the meal detection
algorithm. Meals were uniformly distributed and ranged from 20 to 120 g of carbohydrates with meal
time following a normal distribution with a standard deviation of ±10 min at 8:30 a.m. (breakfast),
1:00 p.m. (lunch), and 7:00 p.m. (dinner). For each meal, a meal absorption profile was selected
randomly from a meal library of 49 meals. The meal library consisted of 31 fast absorption meals
(over 60% of the ingested carbohydrates are absorbed within the first 2 h after meal time), three slow
absorption meals (less than 80% of the ingested carbohydrates are absorbed within the first 4 h after
meal time), and 15 medium absorption meals (otherwise). There were 15,000 meals in total for all
10 subjects over the 500-day period.

3. Results

3.1. UKF State Estimations

The in silico state estimations of the UKF were compared to the model states of the UVA/Padova
Simulator and the populational values are shown in Figure 4. The root mean squared error (RMSE)
between the UVA/Padova Simulator and the UKF was calculated for each of the states over a
14-day period. The RMSE values of the mean populational values for Gp, Gsc, Ip, X, S1, S2,
and Ra were found as 5.8 mg/dL, 0 mg/dL, 3.7 pmol/L, 25.6 pmol/L, 43.2 pmol/L, 60.1 pmol/L,
and 2.8 mg/dL/min, respectively.

3.2. Meal Detection Algorithm

Three different tunings of the same detection algorithm were analyzed, one had the highest
sensitivity, the second had a trade-off between the number of TP and FP, and the third had the lowest
number of FP. These tunings were used to decipher the usefulness of the detection algorithms for the
purpose of postprandial hyperglycemia mitigation during unannounced meals. Here, the results for the
scenarios where the algorithms were first tuned and validated, and then a sensitivity analysis scenario
where the algorithm is analyzed in depth to determine factors that affect detection performance
are presented.
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Figure 4. Population state estimations of the University of Virginia/Padova (UVA/Padova) Simulator
versus the Unscented Kalman Filter over a 24 h period in silico. States shown are plasma glucose (GP),
subcutaneous glucose (GSC), plasma insulin (Ip), remote insulin (X), insulin in the first subcutaneous
compartment (S1), insulin in the second subcutaneous compartment (S2), and rate of glucose appearance
(Ra) equated to the disturbance parameter, D. Graph reported as mean (bold lines) ± standard deviation
(lightly shaded area), minimum (thin lower line), and maximum values (thin upper line).

3.2.1. Meal Detection Algorithm: Tuning

The tuning of the algorithm was done both by window size and threshold on the cross-covariance
between Ddi f f and the current CGM value. The window sizes and thresholds were empirically derived
based on the sensitivity and the FP number, which were used as indicators of performance. In general,
smaller window sizes and lower thresholds result in a higher sensitivity in the meal detection algorithm
as seen in Table 2. The amount of carbohydrates consumed per meal by the 10 adult subjects in the
tuning and validation scenarios had a mean of 47 ± 16 g and 47 ± 13 g and a median of 45 (23, 74) g
and 46 (28, 69) g, respectively. These scenarios reflect carbohydrate consumption on a typical day for
an average patient. Table 2 reports the mean, standard deviation, median, 5th percentile, and 95th
percentile values for the sensitivity, ∆ glucose, detection time, TP, FP, FN, and FP/day of each meal
detection tuning. Typically, a higher sensitivity reflects lower ∆ glucose, detection time, and FN
values with increased TP, FP, and FP/day values. The high sensitivity tuning for both the tuning and
validation scenarios had a mean sensitivity of 99 ± 1% and 99 ± 2% and a median of 99 (95, 100)% and
98 (90, 100)% and FP of mean 18 ± 6 and 20 ± 6 and median of 19 (9, 25) and 20 (11, 26). The trade-off
tuning for both the tuning and validation scenarios had a mean sensitivity of 93 ± 5% and 94 ± 5%
and median of 93 (86, 100)% and 94 (83, 100)% and FP of mean 4 ± 4 and 4 ± 3 and median 3 (0, 7) and
4 (1, 9). Finally, the low FP tuning for both the tuning and validation scenarios had a mean sensitivity
of 47 ± 10% and 47 ± 16% and median of 50 (26, 64)% and 45 (29, 71)% and mean FP of 0 ± 0 and
0.2 ± 0.4 and median of 0 (0, 0) and 0 (0, 1).
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Table 2. Population performance metrics of meal detection algorithm in tuning scenario. Total number
of meals per patient was 42.

Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Highest Sensitivity (window = 3; threshold = 0.000039)

Tuning 99 ± 2 7 ± 7 28 ± 10 41 ± 1 17 ± 5 1 ± 1 1 ± 1
99 (95, 100) 6 (−1, 17) 25 (15, 45) 42 (40, 42) 19 (9, 25) 1 (0, 2) 1 (0, 3)

Validation 98 ± 4 6 ± 8 28 ± 9 41 ± 2 18 ± 5 1 ± 2 1 ± 1
98 (90, 100) 5 (−2, 13) 25 (15, 40) 42 (38, 42) 20 (11, 26) 0 (0, 4) 1 (0, 3)

Trade-Off (window = 9; threshold = 0.00019)

Tuning 93 ± 5 19 ± 5 37 ± 9 39 ± 2 3 ± 2 3 ± 2 0.2 ± 0.5
93 (86, 100) 19 (11, 28) 35 (25, 55) 39 (36, 42) 3 (0, 7) 3 (0, 6) 0 (0, 1)

Validation 93 ± 6 19 ± 5 37 ± 83 39 ± 3 3 ± 3 3 ± 3 0 ± 0
94 (83, 100) 18.43 (11, 26) 35 (25, 50) 40 (35, 42) 4 (1, 9) 3 (0, 7) 0 (0, 0)

Lowest False Positive (window = 12; threshold = 0.00082)

Tuning 47 ± 12 45 ± 7 46 ± 8 20± 5 0 ± 0 22 ± 5 0 ± 0
50 (26, 64) 45 (36, 54) 45 (35, 60) 21 (11, 27) 0 (0, 0) 21 (15, 31) 0 (0, 0)

Validation 46 ± 16 43 ± 7 48 ± 8 19 ± 7 0.2 ± 0.4 23 ± 7 0.01 ± 0.1
45 (29, 71) 45 (35, 56) 50 (35, 60) 19 (12, 30) 0 (0, 1) 23 (12, 30) 0 (0, 0)

Values reported as mean ± standard deviation and median (5th%, 95th%). Abbreviations: TP, true positive;
FP, false positive; FN, false negative.

3.2.2. Meal Detection Algorithm: Sensitivity Analysis

A 500-day simulated scenario was used to perform a sensitivity analysis. The amount of
carbohydrates consumed per meal by the 10 adult subjects had a mean of 70 ± 29 g and a median of
70 (25, 116) g. The population performance metrics can be found in Table 3, which, when compared
to the three-meal algorithm tunings in the previous section (Section 3.2.1), shows a decrease in
sensitivity for both the high sensitivity and trade-off tunings with mean values of 92 ± 3% and
82 ± 4% and median values of 92 (87, 96)% and 83 (76, 87)%, respectively. The low FP tuning,
however, showed an increase in sensitivity with a mean value of 54 ± 9% and median value of
52 (44, 71)%. The FP/day between scenarios are roughly the same. The FP/day of the high sensitivity
scenario for the tuning and validation scenarios and the sensitivity all shared a mean of 1 ± 1 and
a median of 1 (0, 3). The FP/day in the trade-off scenario also had a similar value for the sensitivity
analysis with a mean 0.2 ± 0.5 and median 0 (0, 1) versus mean 0.2 ± 0.5 and 0 ± 0 and median 0 (0, 1)
and 0 (0, 0) of the tuning and validation scenarios. The FP/day in the low FP scenario was only slightly
higher with a mean value of 0.02 ± 0.2 and median 0 (0, 0) versus mean 0 ± 0 and 0.01 ± 0.1 and
median 0 (0, 0) and 0 (0, 0) in the tuning and validation scenarios. Figure 5 illustrates the cumulative
detection rates over change in time and ∆ glucose from the onset of meals for the three meal algorithm
tunings and further emphasizes that algorithms with higher sensitivities have a shorter detection time
and lower ∆ glucose at detection.

An analysis of the effect of carbohydrate quantity (Table 4) on detection performance was
performed. Carbohydrate quantities of 20–40 g have the longest detection time followed by 40–80 g
and then 80–120 g. However, carbohydrate quantities of 20–40 g had the lowest ∆ glucose at detection
followed by 40–80 g and then 80–120 g. The meal detection sensitivity increased with increasing
amounts of carbohydrates. The sensitivity for the highest sensitivity tuning was mean 74 ± 6%
and median 72 (67, 87)% for 20–40 g of carbohydrates, mean 93 ± 3% and median 94 (87, 96)% for
40-80 g of carbohydrates, and mean 99 ± 1% and median 99 (97, 100)% for 80–120 g of carbohydrates.
The sensitivity for the trade-off tuning was mean 49 ± 9% and median 47 (39, 64)% for 20–40 g of
carbohydrates, mean 84 ± 4% and median 86 (76, 89)% for 40–80 g of carbohydrates, and mean 96 ± 2%
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and median 97 (94, 98)% for 80–120 g of carbohydrates. The sensitivity for the lowest FP tuning
was mean 8 ± 7% and median 6 (2, 26)% for 20–40 g of carbohydrates, mean 49 ± 12% and median
45 (36, 71)% for 40–80 g of carbohydrates, and mean 83 ± 7% and median 82 (73, 93)% for 80–120 g of
carbohydrates.

Table 3. Population performance metrics of meal detection algorithm in sensitivity analysis scenario.
Total number of meals per patient was 1500.

Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Highest Sensitivity (window = 3; threshold = 0.000039)

92 ± 3 6 ± 13 31 ± 16 1375 ± 38 719 ± 111 126 ± 38 1 ± 1
92 (87, 96) 5 (−8, 17) 25 (10, 60) 1374 (1306, 1433) 716 (561, 897) 126 (67, 194) 1 (0, 3)

Trade-Off (window = 9; threshold = 0.00019)

82 ± 4 19 ± 9 38 ± 14 1232 ± 56 100 ± 23 268 ± 56 0.2 ± 0.5
83 (76, 87) 19 (6, 31) 35 (25, 65) 1242 (1139, 1310) 96 (72, 154) 259 (190, 361) 0 (0, 1)

Low False Positive (window = 12; threshold = 0.00082)

54 ± 9 42 ± 18 43 ± 11 813 ± 130 11 ± 9 687 ± 130 0.02 ± 0.2
52 (44, 71) 45 (10, 56) 40 (30, 65) 776 (663, 1060) 10 (5, 34) 724 (440, 837) 0 (0, 0)

Values reported as mean ± standard deviation and median (5th%, 95th%). Abbreviation: TP, true positive; FP,
false positive; FN, false negative.

Table 4. Analysis of the effect of carbohydrate quantity on detection time, ∆ glucose, and sensitivity.

Carbohydrates (grams)

20–40 40–80 80–120

High
Sensitivity

window = 3
threshold = 0.000039

Detection
Time (min)

Mean 39 ± 22 31 ± 16 25 ± 13
Median 30 (10, 90) 30 (10, 60) 25 (0, 50)

∆ Glucose
(mg/dL)

Mean 5 ± 14 5 ± 10 7 ± 15
Median 5 (−13, 23) 5 (−7, 16) 6 (−6, 15)

Sensitivity
(%)

Mean 74 ± 6 93 ± 3 99 ± 1
Median 72 (67, 87) 94 (87,96) 99 (97, 100)

Trade-Off
window = 9

threshold = 0.00019

Detection
Time (min)

Mean 46 ± 18 40 ± 16 32± 15
Median 45 (25, 80) 35 (25, 65) 30 (0, 55)

∆ Glucose
(mg/dL)

Mean 18 ± 11 17 ± 9 20 ± 9
Median 19 (0, 32) 18 (0, 28) 20 (8, 32)

Sensitivity
(%)

Mean 49 ± 9 84 ± 4 96 ± 2
Median 47 (39, 64) 86 (76, 89) 97 (94, 98)

Low False
Positive

window = 12
threshold = 0.00082

Detection
Time (min)

Mean 45 ± 11 44 ± 8 41 ± 11
Median 50 (14, 71) 45 (30, 65) 40 (30, 60)

∆ Glucose
(mg/dL)

Mean 29 ± 42 42 ± 18 42 ± 16
Median 43 (−46, 57) 45 (12, 57) 44 (16, 56)

Sensitivity
(%)

Mean 8 ± 7 49 ± 12 83 ± 7
Median 6 (2, 26) 45 (36, 71) 82 (73, 93)

Values reported as mean ± standard deviation and median (5th%, 95th%).

The effect of Ra on meal detection performance was also analyzed (Table 5). Meals with faster
Ra values have a shorter detection time but a greater ∆ glucose, while meals with slower Ra values
take longer to detect but result in a lower ∆ glucose before detection. The meal detection sensitivity
increased with faster Ra values. The sensitivity for the highest sensitivity tuning was mean 77 ± 9%
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and median 77 (62, 92)% for meals with slow Ra values, mean 87 ± 4% and median 88 (81, 95)%
for meals with medium Ra values, and mean 95 ± 1% and median 95 (92, 97)% for meals with fast
Ra values. The sensitivity for the trade-off tuning was mean 54 ± 10% and median 57 (38, 71)% for
meals with slow Ra values, mean 73 ± 6% and median 73 (65, 81)% for meals with medium Ra values,
and mean 89 ± 3% and median 89 (84, 92)% for meals with fast Ra values. The sensitivity for the lowest
FP tuning was mean 10 ± 8% and median 6 (2, 29)% for meals with slow Ra values, mean 33 ± 12%
and median 29 (18, 57)% for meals with medium Ra values, and mean 68 ± 7% and median 67 (59, 81)%
for meals with fast Ra values.

Table 5. Analysis of the effect of rate of glucose appearance on detection time, ∆ glucose, and sensitivity.

Rate of Glucose Appearance

Slow Medium Fast

High
Sensitivity

window = 3
threshold = 0.000039

Detection
Time (min)

Mean 47 ± 22 38 ± 20 27 ± 11
Median 45 (10, 90) 35 (10, 80) 25 (10, 45)

∆ Glucose
(mg/dL)

Mean 3 ± 15 4 ± 13 6 ± 13
Median 4 (−22, 25) 4 (−14, 23) 6 (−5, 15)

Sensitivity
(%)

Mean 77 ± 9 87 ± 4 95 ± 1
Median 77 (62, 92) 88 (81, 95) 95 (92, 97)

Trade-Off
window = 9

threshold = 0.00019

Detection
Time (min)

Mean 57 ± 18 47 ± 16 34 ± 10
Median 55 (35, 90) 45 (30, 80) 30 (25, 50)

∆ Glucose
(mg/dL)

Mean 16 ± 14 18 ± 12 20 ± 7
Median 18 (−5, 36) 19 (1, 33) 19 (9, 30)

Sensitivity
(%)

Mean 54 ± 10 73 ± 6 89 ± 3
Median 57 (38, 71) 73 (65, 81) 89 (84, 92)

Low False
Positive

window = 12
threshold = 0.00082

Detection
Time (min)

Mean 63 ± 14 52 ± 13 40 ± 9
Median 65 (45, 80) 50 (35, 75) 40 (30, 55)

∆ Glucose
(mg/dL)

Mean 37 ± 44 43 ± 24 41 ± 15
Median 48 (−39, 72) 47 (−2, 63) 44 (13, 55)

Sensitivity
(%)

Mean 10 ± 8 33 ± 12 68 ± 7
Median 6 (2, 29) 29 (18, 57) 67 (59, 81)

Values reported as mean ± standard deviation and median (5th%, 95th%).
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Figure 5. Cumulative detection rates over change in time and ∆ glucose from the onset of meals
for the meal algorithm tunings of high sensitivity, trade-off, and low false positive in the sensitivity
analysis scenario.
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4. Discussion

An analysis of the states estimated by the UKF compared to the model states of the UVA/Padova
Simulator was performed in Section 3.1. It was found that all states were estimated with reasonable
precision. The states of S1 and S2 were found to have higher RMSE values, although both UKF estimated
states seem to follow a similar trend to that of the UVA/Padova Simulator model states. The Ra between
the UVA/Padova Simulator and the UKF was found to have a low RMSE of 2.8, however, the peak
time and absorption dynamics appear to be quite different (see Figure 4). These differences must be
taken into account if using this state to aid in bolus decisions.

In this study, three different tunings of the same meal detection algorithm to determine usefulness
in warding off postprandial hyperglycemia were evaluated. This first tuning obtains the highest
sensitivity possible as seen in Tables 2 and 3 where sensitivities of mean 99 ± 2% and median
99 (95, 100)% for the tuning scenario, mean 98 ± 4% and median 98 (90, 100)% for the validation
scenario, and mean 92 ± 3% and median 92 (87, 96)% for the sensitivity analysis scenario were achieved.
The purpose of this high sensitivity tuning is to allow postprandial hyperglycemia mitigation action to
be performed at the earliest possible instant. However, this tuning also contains a high FP value that
increases risk of hypoglycemia due to insulin administration without meal ingestion.

The second tuning was a trade-off tuning that has both a high sensitivity with a low FP/day
value. It obtained sensitivities of mean 93 ± 5% and median 93 (86, 100)% for the tuning scenario,
mean 93 ± 6% and median 94 (83, 100)% for the validation scenario, and mean 82 ± 4% and median
83 (76, 87)% for the sensitivity analysis scenario (see Tables 2 and 3). The FP/day values were mean
0.2 ± 0.5 and median 0 (0, 1) for the tuning scenario, mean 0 ± 0 and median 0 (0, 0) for the validation
scenario, and mean 0.2 ± 0.5 and median 0 (0, 1) for the sensitivity analysis scenario. This tuning
serves as a detection that is more reliable with less FP/day but has a longer detection time than that of
the high sensitivity tuning, which entails a greater delay in insulin delivery and action.

The final tuning was a low FP tuning, originally the fixed FP value was evaluated during tuning
but for the purposes of comparison between scenarios the FP/day values were used. The FP/day
values were mean 0 ± 0 and median 0 (0, 0) for the tuning scenario, mean 0.01 ± 0.1 and median 0 (0, 0)
for the validation scenario, and mean 0.02 ± 0.2 and median 0 (0, 0) for the sensitivity analysis scenario
(see Tables 2 and 3). This tuning allows postprandial hyperglycemia mitigation with very little risk of
hypoglycemia due to FP detections. However, it has the longest detection time of the three tunings
and its obtained sensitivities are quite low: mean 47 ± 12% and median 50 (26, 64)% for the tuning
scenario, mean 46 ± 16% and median 45 (29, 71)% for the validation scenario, and mean 54 ± 9% and
median 52 (44, 71)% for the sensitivity analysis scenario.

Several other meal detection algorithms have been created for use during unannounced meals
and their comparable metrics can be found in Table 6. Dassau et al. [11] studied 17 patients using
clinical data during a breakfast of 56 g with a range between 22 and 105 g. However, with only
meal detection time, it is difficult to compare the performance between meal detection algorithms.
Lee et al. [13] studied an in silico population of 100 patients during 72 h with an average meal
size of 47.5 ± 25 g. Their meal detection algorithm can be compared to the trade-off tuning of
this study when the sensitivity and detection time are compared. Although the sensitivities in this
study in the tuning and validation scenarios are higher and comparable for the sensitivity analysis
scenario, without an FP/day value, it is not possible to determine which meal detection algorithm
outperforms the other. Chen et al. [16] studied 10,000 patients over three days. However, with only
the sensitivity value, it is difficult to compare algorithms. Weimer et al. [17] studied 61 patients using
clinical data over a period of 17 days. Their algorithm has both a lower sensitivity of 86.9% and
high FP/day of 2.01.
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Table 6. Population performance metrics of meal detection algorithm in other studies.

Reference Sensitivity
(%)

∆ Glucose
(mg/dL)

Detection
Time (min) TP FP FN FP/day

Dassau et al. [11] - - 30 - - - -
Lee et al. [13] 82 - 31 656 54 144 -

Chen et al. [16] 99.6 - - - - - -
Weimer et al. [17] 86.9 - - - - - 2.01
Xie and Wang [18] 95 - - - - - -
Turksoy et al. [19] 97 ± 6 16 ± 9 - 7 ± 2 0.1 ± 0.3 0.2 ± 0.4 -

Mahmoudi et al. [20] 99.5 46.3 ± 21.2 58.4 ± 18.7 - - - -

Values reported as mean ± standard deviation. Abbreviation: TP, true positive; FP, false positive; FN,
false negative.

Xie and Wang [18] studied 30 patients during two days with an average meal size of 61.7 ± 14.4 g.
However, with only a sensitivity value, it is difficult to compare algorithms. Turksoy et al. [19]
studied nine in clinic patients over 32 hours with an average meal size of 44 ± 9.4 g. This meal
detection algorithm has both a high sensitivity of 97 ± 6% and low ∆ glucose of 16 ± 9.4 mg/dL and,
out of 63 meals and snacks, there was only one FP and two FN. Although their results outperform
the results found in this study, the duration of this study was not long enough to truly reflect
meal detection capabilities. Finally, Mahmoudi et al. [20] studied 10 in silico patients over 50 days.
They achieved a high sensitivity of 99.5% however, their detection time was very long at 58.4 ± 18.7 min.
In addition, additional information about FP or FP/day is not given, making it difficult to
compare algorithms.

A sensitivity analysis was done to see the effect of carbohydrate quantity and meal composition on
meal detection performance. Meal absorption related parameters of the UVA/Padova Simulator were
varied in meals in such a way to suggest varying fat percentages, which ultimately affected Ra [32].
Although this is simulated data with a small cohort and meal variability limited to the meals included
in the meal library, it gives insight into the effect of carbohydrate quantity and meal composition on
detection capabilities. The population performance metrics (Table 3) differ from those in the tuning
and validation scenario because of the increased amount of meal variability as mentioned in Section 2.5.
In addition, meals in the sensitivity analysis scenario tended towards higher carbohydrate amounts
due to the uniform distribution of meals between 20 and 120 g. It can been seen that there is a decrease
in the sensitivities of the highest sensitivity and trade-off tunings with values of mean 92 ± 3% and
median 92 (87, 96)% and mean 82 ± 4% and median 83 (76, 87)%, respectively. There is a slight increase
in the sensitivity for the low FP tuning to mean 54 ± 9% and median 52 (44, 71)%. Interestingly,
the number of FP/day remain very similar between scenarios.

An analysis of the effect of carbohydrate quantity (Table 4) on detection performance reveals that
larger amounts of carbohydrates have a shorter detection time but a greater ∆ glucose, while smaller
quantities of carbohydrates take longer to detect but result in a lower glucose increase before detection
due to lower amounts of carbohydrate ingestion. The meal detection sensitivity decreased with decreasing
amounts of carbohydrates representing that small meals are generally more difficult to detect.

The effect of meal composition and ultimately Ra on meal detection performance was also
analyzed (see Table 5). A similar trend was found when compared to carbohydrate quantity where
just like large meals, meals with faster Ra values take less time to be detected but result in a greater
∆ glucose. The meal detection sensitivity increased with faster Ra values representing that meals
that are slowly digested or have a higher quantity of fat are generally more difficult to detect. This is
consistent with the results reported by Bell et al. [33], which state that, during high fat meals, glucose
values have a reduced area under the curve in the first 2–3 h due to a delayed gastric emptying rate.

This sensitivity analysis reveals that, fortunately, the meals of most interest, i.e., those that require
both detection and postprandial hyperglycemia mitigation due to large disturbances in glucose, such as
large and rapidly appearing meals, are able to be detected quickly with very little change in glucose at
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detection. However, meals with slow rates of glucose appearance such as those high in fat may be
more prone to late-onset postprandial hyperglycemia.

5. Conclusions

Currently, hybrid closed-loop AP systems are gradually moving towards a fully closed-loop
design. Therefore, the user of the system will be required to perform less actions and have less
responsibility for their overall T1D management. The first step to closing the loop is removing
meal announcement; however, many challenges still remain due to the insulin action lag time
and the discrepancy in postprandial hyperglycemia, which is dependent on meal composition and
intra-patient variability.

A meal detection algorithm that uses CGM values and a disturbance parameter estimated from
an adapted minimal model using an UKF has been presented. Tuning of this meal detection algorithm
is complicated by the need to administer insulin as soon as possible due to the lag in insulin action.
Therefore, three tunings that can be useful for the mitigation of postprandial hyperglycemia have been
implemented using the UVA/Padova simulator, an FDA accepted substitute for preclinical testing of
novel technologies in diabetes care and a well-established starting point for evaluating the presented
meal detection method.

Now that the algorithm and tunings have been established, future work will focus on using a
combination of meal detection and feed-forward actions to test their ability to prevent postprandial
hyperglycemia under conditions where meals have not been announced and there is a need for
postprandial hyperglycemia mitigation strategies. Preliminary work will first be performed in silico
and then, later on, these findings can be applied to a clinical setting for further testing.
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