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Chapter 1

Introduction

1.1 Motivation and previous work

The modeling and analysis of chemical reaction networks has been the subject of
intensive research since its foundation in the 1970s, see (Horn and Jackson 1972),
(Horn 1972) and (Feinberg 1972), due to the widespread application of large-scale
chemical reaction networks in various application areas. For example, in (Nemes
et al. 1977), a possible construction of a complex chemical reaction network is intro-
duced base on the fact that we can define the kinetic communication as a transfer
of atoms between the species and determine all the kinetic communications occur-
ring in the possible mechanism of a complex chemical process; in (Feinberg 1987),
the dynamics of complex isothermal reactors are studied in general terms with spe-
cial focus on connections between reaction network structure and the capacity of
the corresponding differential equations to admit unstable behavior; in (Polettini
et al. 2015), the effect of intrinsic noise on the thermodynamic balance of complex
chemical reaction networks has been studied; in (Rao and Esposito 2016), the non-
equilibrium thermodynamic description has been built for open chemical reaction
networks which is driven by time-dependent chemostats. However, even though
many advances have been made for the modeling and analysis of the isothermal
chemical reaction networks, the study of non-isothermal chemical reaction networks
still poses fundamental challenges.

In order to model the chemical reaction networks, in this dissertation, we will
make use of one of the most basic laws prescribing the dynamics of the the concen-
trations of the various species, called the law of mass action. This provides the foun-
dation of a structural theory of isothermal chemical reaction networks governed by
mass action kinetics. Since this mathematical structure is a good way to get insight
into the dynamical properties of isothermal chemical reaction networks, a series
of papers about the modeling and analysis of mass action kinetics chemical reac-
tion networks arose, see for example (Rao et al. 2014), (Jayawardhana et al. 2012),
(Balabanian and Bickart 1981), (Varma and Palsson 1994).
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In this dissertation, we will use different approaches to the modeling and anal-
ysis of the non-isothermal mass action kinetics chemical reaction networks. Gener-
ally speaking, these approaches can be divided into two classes: one based on the
port-Hamiltonian system theory in Chapters 2, 3, and 4, and the other based on the
theory of contact systems in Chapter 5. In the modeling of non-isothermal chemical
reaction networks, we need to take more variables into the consideration, which are
related to the thermodynamic process occurring in the reactor, such as the tempera-
ture, the entropy, the internal energy and the chemical potentials, etc..

Port-Hamiltonian system theory, as a powerful tool for the control of multi-
physics systems, has been intensively employed in the modeling and control since
its foundation in 1990s, see (Maschke and van der Schaft 1991), (van der Schaft and
Maschke 1995) and (van der Schaft 2006). More recently, a quasi port-Hamiltonian
modeling, namely Irreversible port-Hamiltonian System (IPHS), was introduced in
(Ramirez, Maschke and Sbarbaro 2013b). Thanks to its formulation which is directly
related with the energy and entropy functions, this quasi port-Hamiltonian formu-
lation provides a nature way to model thermodynamic processes. Therefore we are
interested in applying it to non-isothermal chemical reaction networks. Moreover,
we will see that the quasi port-Hamiltonian formulation of non-isothermal chemical
reaction networks is not only important for modeling, but for dynamical analysis as
well. Furthermore, we will study the interconnection of the chemical reaction net-
works which is an interesting subject. So far, as we know, most of the previous work
analyze the interconnection of the chemical reaction networks from the experimen-
tal perspective, see for example (Papachristodoulou and Recht 2007) and (Prior and
Rosseinsky 2003). In this dissertation, we get the inspiration from (van der Schaft
et al. 2013a) and use the port-Hamiltonian theory for the modeling of interconnected
chemical reaction networks.

Another approach that will be studied in this dissertation, is the theory of con-
tact systems, continuing on previous work. The contact structure is defined as a
canonical differential-geometric structure underlying Gibbs’ relation and the input-
output contact systems are defined as one of the geometric representations of those
thermodynamic systems in (Arnold 1989), (Eberard et al. 2007), (Libermann and
Marle 1987). Necessary conditions for the stability of the linearisation of contact
vector fields were given in (Favache et al. 2009). More recently, a new framework
of conservative contact systems, together with a class of structure-preserving feed-
backs, has been proposed in (Ramirez, Maschke and Sbarbaro 2013a). With respect
to a specific modified contact form, it is possible to render the controlled contact sys-
tem again a contact system. Moreover, due to its contact geometry directly related to
Gibbs’ relation, it has been proved that the theory of contact systems is also a good
approach for the modeling and analysis of thermodynamic process, such as the con-
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tinuous stirred tank reactor (CSTR). Hence, in this part, we have two challenges. One
is to study the conditions under which the structure-preserving feedback can be
formalized as expected, and another is to apply the theory of contact systems with
structure-preserving feedback to non-isothermal chemical reaction networks.

1.2 Contribution of the thesis

The main contributions of each chapter can be summarized as follows.

• Chapter 2: The stability of the irreversible port-Hamiltonian, introduced in
(Ramirez, Maschke and Sbarbaro 2013b), is studied in this chapter. Especially
for modeling of non-isothermal chemical reaction networks, this irreversible
port-Hamiltonian system, expressing the laws of thermodynamics, offer us an
approach to study the thermodynamic properties of non-isothermal chemical
reactions. This chapter is based on (Wang et al. 2016).

• Chapter 3: First, based on mass balance and energy balance equations, a port-
Hamiltonian formulation for non-isothermal mass action kinetics chemical
reaction networks which are detailed balanced is developed. This formula-
tion directly extends the port-Hamiltonian formulation of isothermal chem-
ical reaction networks of (van der Schaft et al. 2013a) and (van der Schaft
et al. 2013b), in contrast with the irreversible port-Hamiltonian formulation in
Chapter 2. It exhibits the energy balance and the thermodynamic principles in
an explicit way. Based on the obtained port-Hamiltonian formulation, we pro-
vide a thermodynamic analysis of the existence and characterization of ther-
modynamic equilibria and their asymptotic stability. Being directly related
with the energy and entropy functions, this port-Hamiltonian formulation is
easily applicable to chemical and biological systems. The second contribution
of this chapter is the extension of the port-Hamiltonian formulation and the
thermodynamic analysis to non-isothermal chemical reaction networks with
external ports. This chapter is based on (Wang et al. 2018).

• Chapter 4: Based on the quasi port-Hamiltonian formulation developed in
Chapter 3 and making use of different approaches to interconnection, it is
proved that we can develop two different classes of port-Hamiltonian systems
to model interconnected chemical reaction networks. Moreover, it is proved
as well that through the elimination of mass action kinetics and power port
constraints, the two modeling approaches are equivalent. This provides flexi-
bility for the modeling of chemical reaction networks, depending on the spe-
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cific physical structure of systems. This chapter is based on (Wang et al. n.d.)
(to be submitted).

• Chapter 5: The main contribution of this chapter is the stabilization of the con-
trolled contact system by means of structure-preserving feedback. It is shown
in this chapter how to formalize the structure-preserving feedback, the modi-
fied contact Hamiltonian and the invariant stable Legendre submanifold. This
chapter is based on (Wang et al. 2015).

1.3 Outline of the thesis

The thesis is divided into four chapters.
In Chapter 2 we start by introducing port-Hamiltonian systems and a class of

quasi port-Hamiltonian system generated by the total internal energy, so called
irreversible port-Hamiltonian system. We apply the concept of irreversible port-
Hamiltonian systems to the modeling of non-isothermal chemical reaction networks,
which are governed by mass action kinetics. We perform its stability analysis, in-
cluding the conditions for existence of a thermodynamic equilibrium and their asymp-
totic stability.

In Chapter 3 we aim to develop a new class of port-Hamiltonian system which
can be used for the modeling of non-isothermal mass action kinetics chemical reac-
tion networks. This quasi port-Hamiltonian system is generated by the total entropy.
As did in the previous chapter, a thermodynamic analysis is carried out, including
the characterization of equilibria and the asymptotic stability. This chapter ends
with the extension of this quasi port-Hamiltonian formulation to non-isothermal
chemical reaction networks with external ports.

In Chapter 4 we extend the study of the quasi port-Hamiltonian system in Chap-
ter 3 to the modeling of the interconnection of two chemical reaction networks gov-
erned by mass action kinetics. Here we offer two different modeling approaches
for the interconnection of chemical reaction networks in quasi port-Hamiltonian
form of interconnected chemical reaction networks. The difference between this
two modeling approaches is due to the different assumption of the way of intercon-
nection.

In Chapter 5 we analyze the controlled contact system with the structure-
preserving feedback. A series of control synthesis will be studied in order to add
some constraints while choosing the structure-preserving state feedback. First, some
studies of local stability is carried out to determine the structure-preserving state
feedback, through the equilibrium conditions for the closed-loop contact system and
the Jacobian matrix of the closed-loop contact vector field. Second, conditions for lo-
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cal and partial stability on closed-loop invariant Legendre submanifold are given, in
order to determine the controlled contact Hamiltonian and to verify the correctness
of the structure-preserving feedback.

In Chapter 6 a general conclusion and recommendations for future research are
given.

1.4 Notation

The following notations are used throughout the text.

• The element-wise product of two vectors xz P Rm is defined as pxzqi :“ xizi,
i “ 1, . . . ,m.

• The element-wise quotient of two vectors x
z P Rm is defined as px

z qi “ xi

zi
,

i “ 1, . . . ,m.

• The element-wise natural logarithm Ln : Rm
` Ñ Rm, x ÞÑ Lnpxq, is defined as

the mapping whose ith component is given as pLnpxqqi :“ lnpxiq. Lnpxzq “

Lnpxq ` Lnpzq, and Lnpx
z q “ Lnpxq ´ Lnpzq.

• The element-wise natural exponential Exp : Rm
` Ñ Rm, x ÞÑ Exppxq, is the

mapping whose ith component is given as pExppxqqi :“ exppxiq. Exppx` zq “

ExppxqExppzq.

• The mapping Diag : Rm Ñ Rmˆm, v ÞÑ Diagpvq, where Diagpvq is the diagonal
matrix with pDiagpvqqii “ vi.





Chapter 2

Irreversible port-
Hamiltonian formulation generated by
the internal energy

2.1 Introduction

With its great potential in various application domains, the analysis of the dynam-
ics of chemical reaction networks has been a popular subject in recent years, see
(Craciun and Pantea 2008) and (Conradi et al. 2005). For example, much progress
has been made on the mathematical structure of isothermal chemical reaction net-
works governed by mass action kinetics, see (van der Schaft et al. 2013a), (van der
Schaft et al. 2015) and (Rao et al. 2013); the feasibility conditions to identify admis-
sible equilibria for weakly reversible mass action law systems has been studied in
(Alonso and Szederkényi 2016) and Wegsheider conditions that restrict the possible
set of equilibrium under a detailed balance condition has been discussed in (Alonso
and Otero-Muras 2017). Nevertheless, for the non-isothermal case there remain ma-
jor challenges. As we know, in the non-isothermal case, the thermodynamic prin-
ciples of chemical reaction networks should be taken into consideration when we
investigate its modeling and stability analysis.

Port-Hamiltonian systems (PHS), which is a very powerful tool for the con-
trol of multi-physics systems, has been intensively employed in modeling and for
passivity-based control (PBC) of electrical, mechanical and electromechanical do-
mains (Maschke and van der Schaft 1991), (van der Schaft and Maschke 1995) and
(van der Schaft 2006). More recently, a quasi PHS model, namely Irreversible port-
Hamiltonian System, was proposed (Ramirez, Maschke and Sbarbaro 2013b). Thanks
to its formulation which is directly related with the energy and entropy functions,
IPHS could be easily utilized for thermodynamic, chemical and biological systems.
Therefore we are naturally inspired to apply it to non-isothermal chemical reaction
networks.
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In this chapter, we implement some results of the theory of IPHS and its sta-
bility analysis to a non-isothermal chemical reaction network. Beginning with the
mathematical structure of chemical reaction networks in the non-isothermal case,
we establish its IPHS formulation and then investigate the set of equilibria and their
asymptotic stability.

The chapter is organized as follows. Sect. 2.2 presents the mathematical structure
of non-isothermal chemical reaction networks. Sect. 2.3 deals with the framework
of IPHS and its specialization to non-isothermal chemical reaction networks, and
Sect. 2.4 with the analysis of the property of detailed balance, including the set of
equilibria and the energy based availability function generated by the internal energy.
In Sect. 2.5, we demonstrate the effectiveness of our proposed approach by applying
it on a simple non-isothermal chemical reaction network.

2.2 Chemical reaction network structure

In this section, we first survey some definitions about chemical reaction networks
discussed in (Ramirez, Maschke and Sbarbaro 2013b), (Couenne et al. 2006) and
(van der Schaft et al. 2013a) which will be used in the following paragraphs.

The basis of chemical reaction network theory, originated in the 1970s, can be de-
scribed as follows. Consider a chemical reaction network composed by r chemical
reactions, m chemical species and c complexes with r,m, c P N. Such chemical reaction
network can be represented by the following reversible reaction scheme:

m
ÿ

i“1

αijXi
j

é

m
ÿ

i“1

βijXi, j “ 1...r (2.1)

with αij , βij being the constant stoichiometric coefficients for chemical species Xi of
the jth chemical reaction. The graph-theoretic formulation, according to (Feinberg
1987), (Feinberg 1995), and (Horn and Jackson 1972), is to consider the chemical
complexes defined by the left-hand and the right-hand sides of the chemical reac-
tions, and to associate to each complex a vertex of a graph, while each reaction from
left-hand to right-hand complex corresponds to a directed edge.

Remark 2.1. In (2.1), we use the symbol ”é”, which means that the chemical re-
action networks considered in this dissertation are assumed to consist of reversible
chemical reactions.

Then, we define a state vector, denoted as x “ rx1, x2..., xmstr P Rm
` where xi

denotes the concentration of the ith species (denoted as Xi in (2.1)). By the mass
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balance laws, the basic structure of the dynamics of x can be written as

9x “ Cv (2.2)

where C is an m ˆ r matrix, called the stoichiometric matrix, whose pi, jqth element
is the signed stoichiometric coefficient of the ith species in the jth reaction. Clearly,
all elements of the stoichiometric matrix C are integers. If the ith species appears in
the left-side of the jth reaction,the pi, jqth element of C is negative. On the contrary,
if it is in the right-side of the jth reaction, the pi, jqth element of C is positive. Thus
the stoichiometric matrix C expresses structure of the chemical reactions network.
In fact, the stoichiometric matrix C can be decomposed as

C “ ZB (2.3)

where Z is an mˆc matrix, called the complex composition matrix and B is the incidence
matrix of the directed graph of complexes. Here we introduce the space of complexes
as done in (Feinberg 1987), (Feinberg 1995), (Horn and Jackson 1972) and (Horn
1972). The space of complexes consists of the union of the left-hand or the right-hand
sides of the chemical reactions in the network. The complex composition matrix,
whose iρth element captures the expression of the ρth complex in the ith chemical
species, is used to describe directly the relation between the space of complexes and
the space of species. Clearly, all elements of the complex composition matrix Z are
non-negative integers.

Remark 2.2. Complexes may show up in more than one reaction, and may appear
as left-hand side in one chemical reaction and right-hand side in another chemical
reaction.

The matrix B in (2.3) is an cˆr matrix, called the incidence matrix of the graph of
complexes. The incidence matrix B characterizes the directed graph of the chemical
reaction network, and is defined as follows. The columns of B correspond to edges
with a `1 at the position of the head vertex (the right side of the chemical reaction)
and ´1 at the position of the tail vertex (the left side of the chemical reaction), and 0

everywhere else.
For example, consider a chemical reaction network composed of three chemical

reactions, involving the chemical species X1,X2, X3 and X4, given as

X1 ` 2X2 é X3

X3 é 2X1 ` X2

X3 ` X4 é X2

(2.4)
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The stoichiometric matrix C of this network is

C “

»

—

—

–

´1 2 0

´2 1 1

1 ´1 ´1

0 0 ´1

fi

ffi

ffi

fl

The complex composition matrix Z (with columns expressing the composition of
each complex in the chemical species) is

Z “

»

—

—

–

1 0 2 0 0

2 0 1 0 1

0 1 0 1 0

0 0 0 1 0

fi

ffi

ffi

fl

The incidence matrix B is

B “

»

—

—

—

—

—

–

´1 0 0

1 ´1 0

0 1 0

0 0 ´1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

Clearly, we have C “ ZB.
Moreover, for the jth chemical reaction, let ZSj and ZPj denote the columns of

the complex composition matrix Z corresponding to the substrate complex Sj and
the product complex Pj (the left-hand and right-hand side of the jth reaction). Note
that in this notation we have αij “ ZiSj and βij “ ZiPj . For the chemical reaction
network (2.4), we have

ZS1 “ r 1 2 0 0 str

ZP1 “ r 0 0 1 0 str

ZS2 “ r 0 0 1 0 str

ZP2 “ r 2 1 0 0 str

ZS3 “ r 0 0 1 1 str

ZP3 “ r 0 1 0 0 str

The vector v P Rr in (2.2), called the chemical reaction fluxes, denotes the vector of
chemical reaction rates. Let vj be the jth element of v which denotes the chemical
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reaction rate of the jth chemical reaction of the chemical reaction network. Then vj is
a combination of the forward chemical reaction and the backward chemical reaction,
i.e., vj “ vfj ´ vbj . The forward and backward chemical reactions are assumed to
satisfy the hypothesis of mass action kinetics. This means that the forward reaction
rate is equal to

vfj “ kfj pT q

m
ź

i“1

xi
αij

and the backward reaction rate is given as

vbj “ kbjpT q

m
ź

i“1

xi
βij

where the coefficients kfj pT q and kbjpT q follow the Arrhenius equations

kfj pT q “ kfj expp´
Ef

j

RT
q (2.5)

kbjpT q “ kbj expp´
Eb

j

RT
q, (2.6)

where Ef
j , Eb

j are the activity energies, kfj and kbj the non-negative forward and back-
ward rate constants, R the ideal gas constant (or the Boltzmann constant), and T is the
temperature, see (Couenne et al. 2006).

As a consequence, the reaction rate of the jth chemical reaction of a chemical
reaction network, can be written as

vjpx, T q “ vfj px, T q ´ vbjpx, T q

“ kfj pT q
m
ś

i“1

x
αij

i ´ kbjpT q
m
ś

i“1

x
βij

i

“ kfj expp´
Ef

j

RT q
m
ś

i“1

x
αij

i ´ kbj expp´
Eb

j

RT q
m
ś

i“1

x
βij

i

(2.7)

where it is assumed that the forward and backward rate constants kfj and kbj , j “

1, ¨ ¨ ¨ , r, are both different from zero (all chemical reactions are assumed to be re-
versible).
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Introducing ZSj and ZPj , and using the mapping Ln : Rm
` Ñ Rm as defined in

Sect. 1.4, the reaction rate of the jth reaction of a chemical reaction network can be
written as

vjpx, T q “ kfj pT q exppZtr
Sj
Lnpxqq ´ kbjpT q exppZtr

Pj
Lnpxqq

“ kfj exppZtr
Sj
Lnpxq ´

Ef
j

RT q ´ kbj exppZtr
Pj
Lnpxq ´

Eb
j

RT q

(2.8)

Remark 2.3. For an isothermal chemical reaction network, the rate coefficients kfj
and kbj can be considered to be constant, and in the Arrhenius equations, Ef

j “ 0

and Eb
j “ 0, for j “ 1, . . . , r. Then the reaction rate of the jth chemical reaction

simplifies to

vjpxq “ vfj pxq ´ vbjpxq

“ kfj
m
ś

i“1

x
αij

i ´ kbj
m
ś

i“1

x
βij

i

“ kfj exppZtr
Sj
Lnpxqq ´ kbj exppZtr

Pj
Lnpxqq

(2.9)

2.3 Irreversible port-Hamiltonian formulation

In this section, we apply the irreversible port-Hamiltonian formulation of thermo-
dynamical systems (Ramirez et al. 2014) and (Ramırez, Le Gorrec, Maschke and
Couenne 2013), to the modeling of non-isothermal chemical reaction networks. This
section has been published in (Wang et al. 2016).

We begin by recalling some notations and definitions from the theory of port-
Hamiltonian as can be found in (van der Schaft et al. 2014), (Maschke and van der
Schaft 1991) and (van der Schaft and Maschke 2011). The aim of the theory of port-
Hamiltonian systems (PHS) is to provide a unified mathematical framework for the
modeling of physical systems from different physical domains, such as mechanical
systems, electrical systems, chemical systems, biological systems, etc..

In this dissertation, only finite-dimensional port-Hamiltonian systems are taken
into consideration. On the state space Rm, a port-Hamiltonian system can be written
by the following state equation,

9x “ J pxq
BH

Bx
pxq ` gpxqu (2.10)

with m ˆ m skew-symmetric interconnection matrix J pxq “ ´J trpxq, input matrix
gpxq, input function u P Rm, and Hamiltonian function Hpxq : Rm Ñ R. For thermo-
dynamic systems, the Hamiltonian function H represents usually the total energy U
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of the system. The skew-symmetric matrix J defines a pseudo-Poisson bracket. From
(van der Schaft and Maschke 1994) and (van der Schaft 2000), we know that if the
skew-symmetric matrix J is constant in some local coordinates then it satisfies the
Jacobi identity, and it defines a true Poisson bracket. The port-Hamiltonian dynamics
(2.10) can be rewritten as

9x “ tx, UuJ ` gpxqu

“ J pxq BU
Bx pxq ` gpxqu

(2.11)

where tx,UuJ is the Poisson bracket. The Poisson bracket of two functions X and
Y is expressed as

tX,Y uJ “
BX

Bx

tr

pxqJ pxq
BY

Bx
pxq

Clearly, the features of Poisson bracket, such as skew-symmetry and the Jacobi
identities, relate to the conservation laws of the system. However, the irreversible
transformations in thermodynamic systems, such as the entropy creation, can not
be expressed in this structure. As a consequence, the port-Hamiltonian formulation
is not sufficient to deal with the modeling of non-isothermal irreversible thermody-
namic systems.

In recent works, a kind of quasi port-Hamiltonian systems, called irreversible
port-Hamiltonian systems, have been proposed to model thermodynamic systems,
thereby satisfying the first and second laws of thermodynamics. In general, the ir-
reversible port-Hamiltonian formulation for non-isothermal irreversible thermody-
namic systems, can be defined by the following equations (Ramirez 2012), (Ramirez,
Maschke and Sbarbaro 2013b):

9x “ Rpx,
BU

Bx
pxq,

BS

Bx
pxqqJ BU

Bx
pxq ` W px,

BU

Bx
pxqq ` gpx,

BU

Bx
pxq, uq (2.12)

where x P Rm is the state vector, U : Rm Ñ R is the total internal energy of the
system, and Spxq : C8pRmq Ñ R is the entropy of system. Furthermore, J “ ´J tr

is an m ˆ m constant skew-symmetric matrix and R “ Rpx, BU
Bx ,

BS
Bx q is composed of

a positive definite function and a Poisson bracket of S and U :

Rpx,
BU

Bx
pxq,

BS

Bx
pxqq “ γpx,

BU

Bx
pxqqtS,UuJ (2.13)

where finally γpx, BU
Bx pxqq “ γ̂pxq : Rm Ñ R, is a nonlinear positive function of the

state and co-state of the system. Finally, the term gpx, BU
Bx pxq, uq denotes the input

matrix of the system.
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Remark 2.4. The main feature of irreversible port-Hamiltonian dynamics expressed
by (2.12) is that the function Rpx, BU

Bx pxq, BS
Bx pxqq is dependent on the co-state vari-

ables BU
Bx pxq. That means that in comparison with PHS, the linearity of the Poisson

tensor (given by the symplectic structure) is destroyed.

In this dissertation, similar to (Ramirez, Maschke and Sbarbaro 2013b), we will
rewrite the Irreversible port-Hamiltonian formulation in (2.12), in particular for
chemical reaction networks as described in Sect. 2.2.

Theorem 2.5. The dynamical equations of a chemical reaction network given by (2.1) can
be expressed as an irreversible port-Hamiltonian system

9z “

˜

r
ř

j“1

Rjpz, BU
Bz pzq, BS

Bz pzqqJj

¸

BU
Bz pzq ` gpz, BU

Bz pzq, uq

“ JRpz, BU
Bz pzq, BS

Bz pzqq BU
Bz pzq ` gpz, BU

Bz pzq, uq

(2.14)

with the state vector z “ rx, Ss
tr

“ rx1, . . . , xm, Ss
tr

P Rm`1, the total internal energy
Upxq as Hamiltonian function, the co-state vector BU

Bz “ rµ1, . . . , µm, T s
tr

P Rm`1, with
µi the chemical potential of the ith chemical species, i “ 1, . . . ,m, and the input port of the
system given by gpz, BU

Bz , uq P Rm`1.

The dynamics (2.14) can be considered as the sum of irreversible port-Hamiltonian
dynamics of each chemical reaction in the chemical reaction network. According to
the mass balance laws given by (2.2), for the jth chemical reaction in the chemi-
cal reaction network, the constant pm ` 1q ˆ pm ` 1q skew-symmetric matrix Jj is
expressed as

Jj “

»

—

—

—

–

0 ¨ ¨ ¨ 0 C1j

...
. . .

...
...

0 ¨ ¨ ¨ 0 Cmj

´C1j ¨ ¨ ¨ ´Cmj 0

fi

ffi

ffi

ffi

fl

, (2.15)

where Cij is the pi, jqth element of the stoichiometric matrix C, i “ 1, . . . ,m. The
function Rj for the jth chemical reaction in the chemical reaction networks is ex-
pressed as

Rj “ γjpz,
BU

Bz
qtS,UuJj “ p

vj
TAj

qAj (2.16)
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with

γjpz, BU
Bx q “

vj

TAj

Aj “ tS,UuJj

“ BS
Bz

tr
pxqJj

BU
Bz pzq

“
“

0 . . . 0 1
‰

»

—

—

—

–

0 ¨ ¨ ¨ 0 C1j

...
. . .

...
...

0 ¨ ¨ ¨ 0 Cmj

´C1j ¨ ¨ ¨ ´Cmj 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

µ1

...
µm

T

fi

ffi

ffi

ffi

fl

“ ´
m
ř

i“1

Cijµi

vj “ kfj exppZtr
Sj
Lnpxq ´

Ef
j

RT q ´ kbj exppZtr
Pj
Lnpxq ´

Eb
j

RT q

(2.17)

where Aj is the chemical affinity of the jth chemical reaction, which corresponds
to the thermodynamic driving force of the chemical reaction. Furthermore, vj is
the reaction rate of the jth chemical reaction based on the equation (2.8). Based
on the definition of the chemical reaction rate vector mentioned in Sect. 2.2, v “

rv1, . . . , vrs
tr

P Rr. Let R “ rR1, . . . ,Rrs
tr

P Rr, then R “ v
T and the term JR can

be expressed as

JR “
r
ř

j“1

Rjpz, BU
Bz ,

BS
Bz qJj

“

»

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

CR

´RtrCtr 0

fi

ffi

ffi

ffi

fl

(2.18)

Furthermore, the energy and entropy balance laws can be written as

9U “ Uin ´ Uout (2.19)

9S “ Sin ´ Sout ` σ (2.20)

where Uin and Uout are respectively the energy taken into the reactor and taken out
to external environments; σ the entropy creation which is irreversible due to mass
transfer, heat transfer and the chemical processes occurring in the chemical reaction
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network, and Sin and Sout are respectively the entropy flowing into the reactor by
external sources, and flowing out of the reactor to the external environment. Then
the input of IPHS for chemical reaction network is given as

gpz,
BU

Bz
, uq “

„

Fin ´ Fout

Sin ´ Sout

ȷ

where Fin “ rF 1
in . . . , F

m
in str P Rm and Fout “ rF 1

out, . . . , F
m
outs

tr P Rm denote the
vector of inlet/outlet concentrations.

Consequently, the irreversible port-Hamiltonian formulation for a chemical re-
action network in (2.14) can be formulated as

»

—

—

—

–

9x1

...
9xm

9S

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

CR

´RtrCtr 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

µ1

...
µm

T

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

F 1
in ´ F 1

out
...

Fm
in ´ Fm

out

Sin ´ Sout

fi

ffi

ffi

ffi

fl

(2.21)

Remark 2.6. If gpz, BU
Bz , uq “ 0, then the skew-symmetry of the matrix Jj , j “

1, . . . , r, ensures that the total internal energy of the system is conserved. In order to
compute the entropy balance, we write

dS
dt “ BtrS

Bz 9z

“ BtrS
dz JRpz, BU

Bz ,
BS
Bz q BU

Bz pzq

“
“

0 . . . 0 1
‰

»

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

CR

´RtrCtr 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

µ1

...
µm

T

fi

ffi

ffi

ffi

fl

“ ´RtrCtrµ

“
r
ř

j“1

σj

“ σ

with µ “ rµ1, . . . , µmstr P Rm the vector of chemical potentials, σj the irreversible
entropy creation due to the jth chemical reaction in the chemical reaction network,

and σ “
r
ř

j“1

σj the irreversible entropy creation already mentioned in (2.20). This

shows that the total entropy creation is the sum of the creations of entropy of each
chemical reaction in the chemical reaction network.
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Remark 2.7. Comparing with the original irreversible port-Hamiltonian dynamics
given by (2.12), the main common point is that the dynamics (2.14, or equivalently
2.21), maintains the skew-symmetric structure of the matrix J and uses the total
internal energy U as the Hamiltonian function. The main difference is that there is
one more dimension added to the state vector. In (2.12) the state vector is x P Rm,
while in (2.14, or equivalently 2.21), the state vector is z “ rx, Ss P Rm`1. By adding
the entropy S to the state vector, the variation of energy (or entropy) during the
chemical reaction process, which is in line with the Gibbs’ fundamental equation
and follows the first and second laws of thermodynamics, can be expressed more
clearly in the dynamical equation (2.14), or equivalently (2.21).

Remark 2.8. For a single chemical reaction, the irreversible port-Hamiltonian sys-
tem given by (2.14), or equally in (2.21), takes the following formulation. In this
case, C is an m ˆ 1 stoichiometric vector and R is a scalar. The dynamics become

9z “ JR
BU

Bz
` gpz,

BU

Bz
, uq

with JR “ RJ “

»

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

CR

´RCtr 0

fi

ffi

ffi

ffi

fl

.

2.4 Thermodynamic analysis

In this section, we apply the results of stability analysis to the irreversible port-
Hamiltonian formulation given by (2.14) or (2.21), as described in Sect. 2.2. Note
that in this section, only isolated chemical reaction networks are considered. That
means that there is no mass or heat exchange between the chemical reaction net-
work and external environment, i.e., in (2.14) or (2.21), gpz, BU

Bz pzq, uq “ 0. Since the
chemical reaction network is non-isothermal, the temperature T P R` is common to
all chemical reactions in the network but not constant. Furthermore, the influence
of volume and pressure will be neglected in this section.

2.4.1 Equilibrium for closed non-isothermal IPHS

First, we need to introduce the definition of equilibria, thermodynamic equilibria,
and detailed balanced equations to the dynamics given by (2.14) or (2.21).

Definition 2.9. For an irreversible port-Hamiltonian system with dynamics given
by (2.14) or (2.21), a vector z˚ is called an equilibrium if 9z˚ “ Cvpz˚q “ 0, and a
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Figure 2.1: Set of equilibria Σ˚ and set of thermodynamic equilibria Σ˚
th.

thermodynamic equilibrium if vpz˚q “ 0, or equivalently Rpz˚q “ 0. A chemical
reaction network is called detailed balanced if it admits a thermodynamic equilibrium
z˚ satisfying vpz˚q “ 0. The equations vpz˚q “ 0 are called the detailed balanced
equations.

Remark 2.10. Clearly, if z˚ is a thermodynamic equilibrium, then z˚ is an equilib-
rium. Let Σ˚

th be the set of thermodynamic equilibria and Σ˚ be the set of equilibria.
Thus Σ˚

th Ď Σ˚; see Figure 2.1. The converse inclusion holds if the stoichiometric
matrix C is injective.

Let z˚ be a thermodynamic equilibrium. Then, for a closed irreversible port-
Hamiltonian system given by (2.14) or (2.21), vpz˚q “ 0 means that, for j “ 1, . . . , r,

kfj exp

˜

Ztr
Sj
Lnpx˚q ´

Ef
j

RT˚

¸

´ kbj exp

˜

Ztr
Pj
Lnpx˚q ´

Eb
j

RT˚

¸

“ 0 (2.22)

Assuming that kbj ‰ 0, for j “ 1, . . . , r, we define the vectors Ef P Rr, Eb P Rr

and Keq P Rr as follows.

Ef “

»

—

–

Ef
1
...

Ef
r

fi

ffi

fl

(2.23)

Eb “

»

—

–

Eb
1

...
Eb

r

fi

ffi

fl

(2.24)
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Keq “

»

—

–

K1
eq
...

Kr
eq

fi

ffi

fl

“

»

—

—

—

–

kf
1

kb
1

...
kf
r

kb
r

fi

ffi

ffi

ffi

fl

(2.25)

Then the equations (2.22), for j “ 1, . . . , r, are seen to be equivalent to

kfj exp

˜

Ztr
Sj
Lnpx˚q ´

Ef
j

RT˚

¸

“ kbj exp

˜

Ztr
Pj
Lnpx˚q ´

Eb
j

RT˚

¸

(2.26)

kfj
kbj

“ exprpZtr
Pj

´ Ztr
Sj

qLnpx˚q `
Ef

j ´ Eb
j

RT˚
s (2.27)

Kj
eq “ exprpZtr

Pj
´ Ztr

Sj
qLnpx˚q `

Ef
j ´ Eb

j

RT˚
s (2.28)

Collecting all reactions in (2.28) and making use of the incidence matrix B of the
complex graph, this can be rewritten as

Keq “ Exp

„

CtrLnpx˚q `
1

RT˚
pEf ´ Ebq

ȷ

(2.29)

or

LnKeq “ CtrLnpx˚q `
1

RT˚
pEf ´ Ebq (2.30)

For a chemical reaction network described in Sect. 2.2, the stoichiometric matrix
C defined in (2.2) and (2.3), the vectors Ef , Eb and Keq defined in (2.24), (2.23) and
(2.25) are all constant, and R is the Boltzmann constant. Therefore, (2.30) constitutes
a set of r linear equations in m ` 1 variables (the m elements in the equilibrium
concentration vector x˚ P Rm and the equilibrium temperature T˚). Assume that
among the r equations, there are r1 independent equations and r1 ď r. Clearly, for
any chemical reaction network, we have r1 ď m ` 1. If r1 “ m ` 1, there is a unique
thermodynamic equilibrium z˚ at temperature T˚. If r1 ă m ` 1, then there exists a
set of thermodynamic equilibria at temperature T˚ (denoted as ΣT˚ , see Proposition
2.13).
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Proposition 2.11. Consider an irreversible port-Hamiltonian system given by (2.21). Then
for a given T˚, z˚ “ rx˚, S˚str is a thermodynamic equilibrium if and only if the concen-
tration vector x˚ and the entropy S˚ satisfy

LnKeq ´
1

RT˚
pEf ´ Ebq “ CtrLn px˚q (2.31)

BU

BS
|S“S˚ “ T˚ (2.32)

Proof. We know that the stoichiometric matrix C, the vectors Keq , Ef and Eb are all
constant. For a certain equilibrium temperature T˚, the existence of Lnpx˚q, x˚ P

Rm
` , satisfying (2.31) is obviously equivalent to (2.30).

Remark 2.12. (2.31) and (2.32) show us the relations between the concentrations x,
the entropy S and the temperature T at equilibrium. Equivalently, for a given S˚,
z˚ “ rx˚, S˚str is a thermodynamic equilibrium if and only if the concentration
vector x˚ and the temperature T˚ satisfy (2.31) and (2.32).

Proposition 2.13. Let z˚ “ rx˚, S˚str P Rm`1 be a thermodynamic equilibrium under a
certain equilibrium temperature T˚, then the set of thermodynamic equilibria ΣT˚ is given
as

ΣT˚ :“ tz˚ P Rm`1 | LnKeq “ CtrLnpx˚q`
1

RT˚
pEf´Ebq, and S˚ “

BU

BT
px˚, T˚qu

(2.33)

Thus, once a thermodynamic equilibrium is given, the set of thermodynamic equilibria
ΣT˚ is equal to

ΣT˚ :“ tx˚˚ | x˚˚ P Rm
` , CtrLnpx˚˚q “ CtrLnpx˚qu (2.34)

Furthermore, the set of all thermodynamic equilibria for different temperatures is given
by

Σ˚
th “

ď

T˚

ΣT˚ (2.35)

Lemma 2.14. If T1 ‰ T2, then ΣT1 X ΣT2 “ H



2.4. Thermodynamic analysis 21

Proof. If there exists a thermodynamic equilibrium z˚ “ rx˚, S˚str P ΣT1 XΣT2 , then

1

RT1
pEf ´ Ebq “ LnKeq ´ CtrLnpx˚q (2.36)

1

RT2
pEf ´ Ebq “ LnKeq ´ CtrLnpx˚q (2.37)

Since the stoichiometric matrix C, the vectors Keq , Ef and Eb are constant, and the
R is constant, this implies

1

T1
“

1

T2
(2.38)

which means T1 “ T2.

2.4.2 Asymptotic stability

In this section, instead of using the total energy as generating function, see (Alonso
and Ydstie 1996), (Alonso and Ydstie 2001), (Ydstie 2002), (Jillson and Ydstie 2007),
(Hoang, Couenne, Jallut and Le Gorrec 2011) and (Hoang, Couenne, Jallut and
Le Gorrec 2012), we use the internal energy to define an energy based availability func-
tion as the Lyapunov function candidate. We begin with some general properties of
thermodynamic systems, see (Callen 2006), (Sandler et al. 2006), and show how this
suggests a Lyapunov function.

The variation of the internal energy of a homogeneous system is defined by

dU “ TdS ´ PdV `

m
ÿ

i“1

µidni (2.39)

where the extensive variables are the internal energy U , the entropy S, the volume
V and the mole number vector n P Rm

` with ni “ xiV, i “ 1, ...,m, and the intensive
variables are the temperature T , the pressure P and the chemical potentials µ P Rm

with µi the chemical potential of the ith species, i “ 1, . . . ,m. Recall the expression
of the Gibbs’ free energy (Couenne et al. 2006)

GpT, P, nq “

m
ÿ

i“1

niµi (2.40)
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with

µi “ µ̃ipP, T q ` RT lnp ni
m
ř

i“1
ni

q

“ h̃i ´ T s̃i ` RT lnp ni
m
ř

i“1
ni

q

“ cpipT ´ Tref q ` hiref ´ T rcpi lnp T
Tref

q ´ R lnp P
Pref

q ` siref s ` RT lnp ni
m
ř

i“1
ni

q

(2.41)

with the heat capacities cpi of the ith species, a reference temperature Tref , a molar
reference enthalpy hiref , a reference pressure Pref , and a reference entropy siref of
the ith species. Note that cpi, Tref , hiref , Pref and siref are constant.

Applying the Legendre transformation to (2.40), we obtain the following expres-
sion of the total internal energy

UpS, V, nq “
m
ř

i“1

nirhiref ´ cpiTref ` pcpi ´ siref ` cpi lnTref ` R ln

m
ř

i“1

niR

V

`R ln ni
m
ř

i“1

ni

qT pξq ` pR ´ cpiqT pξq lnT pξqs ` pS ´ R
m
ř

i“1

niqT pξq

(2.42)

with n “
m
ř

i“1

ni and

T pξq “ Tref exp

¨

˚

˚

˚

˚

˝

m
ř

i“1

nir´siref ` R ln P
Pref

` R ln ni
m
ř

i“1

ni

s ´ S

m
ř

i“1

nicpi

˛

‹

‹

‹

‹

‚

(2.43)

We know, see (Callen 2006), (Alonso and Ydstie 2001), (Evans 2008) and (Jillson
and Ydstie 2007), that for homogeneous systems, as a consequence of the second law
of thermodynamics, the internal energy U is homogeneous of degree 1, and strictly
convex with respect to the extensive variables. This allows us to define the positive
definite availability function

Apωq “ Upωq ´ Upω˚q ´
BtrU

Bω
pω˚q ¨ pω ´ ω˚q (2.44)
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with ω “ pS, V, nq.
Since in this chapter, the influence of the volume V and pressure P are not con-

sidered, we assume that V “ 1 and ni “ xiV “ xi, for i “ 1, . . . ,m. Therefore,
the internal energy UpS, V, nq can be rewritten as Upzq where z “ rx1, . . . , xm, Ss

tr
P

Rm`1 is composed by concentrations xi, i “ 1, ...,m and entropy S, which is the
state vector for the dynamics of the irreversible port-Hamiltonian system (2.14).

Thus, the energy based availability function is defined as

Apzq “ Upzq ´ Upz˚q ´
BtrU

Bz
pz˚q ¨ pz ´ z˚q (2.45)

with z˚ a thermodynamic equilibrium at temperature T˚. Then the time-derivative
of Apzq equals

dA

dt
“ p

BU

Bz
pzq ´

BU

Bz
pz˚qqtr

dz

dt
(2.46)

This leads to the following proposition.

Proposition 2.15. Consider a chemical reaction network represented by an irreversible port-
Hamiltonian system given by (2.14) or (2.21). Let z˚ be a thermodynamic equilibrium under
a certain temperature T˚. Then z˚ is asymptotically stable if the energy based availability
function defined in (2.45) is a well-defined Lyapunov function. That means that the time-
derivative of energy based availability function (2.46) is always less than or equal to zero,
with strict equality only at z˚.

More details about the asymptotic stability of IPHS will be discussed in the ex-
ample in Sect. 2.5.

2.5 Example: a simple chemical reaction network

In this section, the results shown in this chapter will be illustrated on a simple chem-
ical reaction network.

2.5.1 IPHS Modelling

Consider the following simple non-isothermal reaction network at constant volume
V “ 1, with an input flow fe

s “ λep1 ´ T
Te

q which corresponds to the heat transfer
from the outside of the reactor, with a constant thermal conductivity λe P R`, and a
constant reference temperature Te P R`
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X1 ` 2X2

kf
1

é
kb
1

X3

X3

kf
2

é
kb
2

2X1 ` X2

The influence of the volume V and pressure P is not considered in this example.
The temperature T P R` is common to all chemical reactions in the network but not
constant. In this chemical reaction network, since there are 2 chemical reactions, 3
chemical species and 3 complexes, m “ 3, r “ 2, c “ 3. We denote the state vector
by z “ rx1, x2, x3, Ss

tr
P R4, with the concentrations of ith species xi, i “ 1, 2, 3,

and the entropy of system S. The Hamiltonian function H equals the total internal
energy U , and the co-state vector BU

Bz “ rµ1, µ2, µ3, T s
tr

P R4 consists of the chemical
potentials of ith species µi, i “ 1, 2, 3, and the temperature T . The stoichiometric
matrix C P R3ˆ2 is given as

C “

»

–

´1 2

´2 1

1 ´1

fi

fl ,

the complex composition matrix Z P R3ˆ3 is given as

Z “

»

–

1 0 2

2 0 1

0 1 0

fi

fl ,

and the incidence matrix B P R3ˆ2 is given as

B “

»

–

´1 0

1 ´1

0 1

fi

fl

For the first chemical reaction, j “ 1, the constant skew-symmetric matrix J1 P

R4ˆ4 can be written as

J1 “

»

—

—

–

0 0 0 1

0 0 0 2

0 0 0 ´1

´1 ´2 1 0

fi

ffi

ffi

fl
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and for the chemical second reaction, j “ 2, the constant skew-symmetric matrix
J2 P R4ˆ4 equals

J2 “

»

—

—

–

0 0 0 ´2

0 0 0 ´1

0 0 0 1

2 1 ´1 0

fi

ffi

ffi

fl

According to the expression of JR in (2.18), we have

JR “
2
ř

j“1

Rjpz, BU
Bz ,

BS
Bz qJj

“

»

—

—

–

0 0 0 ´R1 ` 2R2

0 0 0 ´2R1 ´ R2

0 0 0 ´R2 ` R1

R1 ´ 2R2 2R1 ` R2 R2 ´ R1 0

fi

ffi

ffi

fl

where R “ rR1,R2s
tr

“

”

p v1
TA1

qA1, p v2

TA2
qA2

ıtr

, with the reaction rate of the first
chemical reaction v1 and of the second chemical reaction v2, the chemical affinity of
the first chemical reaction A1 and of the second chemical reaction A2.

For the first chemical reaction, j “ 1, we have

A1 “ ´

3
ÿ

i

Ci1µi “ µ1 ` 2µ2 ´ µ3

v1 “ kf1 exp

˜

“

1 2 0
‰

¨ Lnpxq ´
Ef

1

RT

¸

´ kb1 exp

ˆ

“

0 0 1
‰

Lnpxq ´
Eb

1

RT

˙

where kf1 , kf1 , Ef
1 , Eb

1 are constant. For the second chemical reaction, j “ 2, we
obtain

A3 “ ´

m
ÿ

i

Ci2µi “ ´2µ1 ´ µ2 ` µ3

v2 “ kf2 exp

˜

“

0 0 1
‰

¨ Lnpxq ´
Ef

2

RT

¸

´ kb2 exp

ˆ

“

2 1 0
‰

Lnpxq ´
Eb

2

RT

˙
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where kf2 , kf2 , Ef
2 , Eb

2 are constant. For the input of system, the function gpz, BU
Bz , uq

is given by

gpz,
BU

Bz
, uq “

»

—

—

–

0

0

0

1

fi

ffi

ffi

fl

fe
s “ λep1 ´

T

Te
q

»

—

—

–

0

0

0

1

fi

ffi

ffi

fl

Finally we obtain the irreversible port-Hamiltonian formulation of this chemical
reaction network as

»

—

—

—

–

9x1

9x2

9x3

9S

fi

ffi

ffi

ffi

fl

“

»

—

—

–

0 0 0 ´R1 ` 2R2

0 0 0 ´2R1 ´ R2

0 0 0 ´R2 ` R1

R1 ´ 2R2 2R1 ` R2 ´R1 ` R2 0

fi

ffi

ffi

fl

»

—

—

–

µ1

µ2

µ3

T

fi

ffi

ffi

fl

`λep1 ´ T
Te

q

»

—

—

–

0

0

0

1

fi

ffi

ffi

fl

(2.47)

2.5.2 Equilibrium analysis

At a thermodynamic equilibrium point z˚ “ rx˚, S˚str, we have v “ rv1, v2str “ 0

and R “ rR1,R2str “ 0. Based on the equations (2.16), (2.17), (2.18), we infer that

kf1 exp

˜

Ztr
S1
Lnpx˚q ´

Ef
1

RT˚

¸

´ kb1 exp

ˆ

Ztr
P1

Lnpx˚q ´
Eb

1

RT˚

˙

“ 0 (2.48)

kf2 exp

˜

Ztr
S2
Lnpx˚q ´

Ef
2

RT˚

¸

´ kb2 exp

ˆ

Ztr
P2

Lnpx˚q ´
Eb

2

RT˚

˙

“ 0 (2.49)

We define the matrix Ef , Eb and Keq as (2.23), (2.24), (2.25):

Ef “

«

Ef
1

Ef
2

ff

(2.50)
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Eb “

„

Eb
1

Eb
2

ȷ

(2.51)

Keq “

„

K1
eq

K2
eq

ȷ

“

»

—

–

kf
1

kb
1

kf
2

kb
2

fi

ffi

fl

“

»

—

–

exp
´

pZtr
P1

´ Ztr
S1

qLnpx˚q `
Ef

1

RT˚ ´
Eb

1

RT˚

¯

exp
´

pZtr
P2

´ Ztr
S2

qLnpx˚q `
Ef

2

RT˚ ´
Eb

2

RT˚

¯

fi

ffi

fl

“ Exp
“

CtrLnpx˚q ` 1
RT˚ pEf ´ Ebq

‰

(2.52)

This leads to

LnKeq “ CtrLnpx˚q `
1

RT˚
pEf ´ Ebq (2.53)

Since m “ 3 and r “ 2, m ` 1 “ 4 and r1 ď r “ 2. Therefore, we deduce
that r1 ă m ` 1, and thus there exists a set of thermodynamic equilibria ΣT˚ at
temperature T˚. Expanding the equation (2.53), we obtain

lnK1
eq “ ´ lnx˚

1 ´ 2 lnx˚
2 ` lnx˚

3 `
Ef

1 ´ Eb
1

RT˚

lnK2
eq “ 2 lnx˚

1 ` lnx˚
2 ´ lnx˚

3 `
Ef

2 ´ Eb
2

RT˚

Hence, the set of thermodynamic equilibria ΣT˚ under the temperature T˚ can
be written as

ΣT˚ “

"

z˚ P R4 | z˚ “ rx˚, S˚str, S˚ “
BU

BT
pT˚q P R, x˚ P R3

*

(2.54)

where x˚ “

»

–

kf
1k

f
2x

˚
2

kb
1k

b
2 exp

ˆ

E
f
1 `E

f
2 ´Eb

1´Eb
2

RT˚

˙ , x˚
2 ,

pkf
1 q2kf

2x
˚
2

pkb
1q2kb

2 exp

ˆ

2E
f
1 `E

f
2 ´2Eb

1´Eb
2

RT˚

˙

fi

fl

tr

, with x˚
2 P R.
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2.5.3 Asymptotic stability

We will check if the availability function Apzq defines a valid Lyapunov function.
Clearly, we have Apz˚q “ 0. In addition, because of the strict convexity of the inter-
nal energy Upzq, it is easy to prove that also Apzq is convex, showing that A has a
minimum at z˚. Finally, we have

dA
dt “ dU

dz ¨ dz
dt

“
`

BU
Bz pzq ´ BU

Bz pz˚q
˘tr

¨ dz
dt

“
`

BU
Bz pzq ´ BU

Bz pz˚q
˘tr “

pR1J1 ` R2J2q BU
Bz pzq ` gpz, BU

Bz , uq
‰

“ ´ BU
Bz pz˚qpR1J1 ` R2J2q BU

Bz pzq `
`

BU
Bz pzq ´ BU

Bz pz˚q
˘tr

gpz, BU
Bz , uq

By using (2.13) and due to the fact that tS,UuJj “ Aj , j “ 1, 2, and BU
Bz pz˚qJj

BU
Bz pzq “

´TA˚
j ` T˚Aj , j “ 1, 2, the time-derivative of Apzq equals

dA
dt “ ´γ1

BU
Bz pz˚qJ1

BU
Bz pzqtS,UuJ1 ´ γ2

BU
Bz pz˚qJ2

BU
Bz pzqtS,UuJ2

`
`

BU
Bz pzq ´ BU

Bz pz˚q
˘tr

gpz, BU
Bz , uq

“ γ1TA˚
1A1 ´ γ1T

˚A2
1 ` γ2TA˚

2A2 ´ γ2T
˚A2

2 ` λepT ´ T˚qp1 ´ T
Te

q

(2.55)

Because at a thermodynamic equilibrium point, we have A˚
1 “ A˚

2 “ 0, we thus
obtain

dA

dt
“ ´γ1T

˚A2
1 ´ γ2T

˚A2
2 ` λepT ´ T˚qp1 ´

T

Te
q

Since the first term ´γ1T
˚A2

1 and the second term ´γ2T
˚A2

2 are always negative
and vanish at the equilibrium point, it remains to select a certain temperature T

such that the third term becomes negative and vanishes at the equilibrium point.
Expanding the third term, we obtain

λepT ´ T˚qp1 ´
T

Te
q “

λe

Te

“

´T 2 ` pTe ` T˚qT ´ T˚Te

‰

Hence, we obtain the following condition for asymptotic stability of the equilib-
rium temperature

T˚ “ Te (2.56)
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(2.56) shows that at T “ Te, the irreversible port-Hamiltonian system given in
(2.14) or (2.21) representing the chemical reaction network described in Sect. 2.2, is
asymptotically stable around the thermodynamic equilibrium point, in accordance
with Propostion 2.15. Moreover, according to (2.54), the set of thermodynamic equi-
libria ΣT˚“Te

can be written as

ΣTe
“

$

’

’

’

&

’

’

’

%

z˚ P R4 | z˚ “ rx˚, S˚str, S˚ “ BU
BT pTeq P R, x˚

2 P R

and x˚ “

»

–

kf
1k

f
2x

˚
2

kb
1k

b
2 exp

ˆ

E
f
1 `E

f
2 ´Eb

1´Eb
2

RTe

˙ , x˚
2 ,

pkf
1 q2kf

2x
˚
2

pkb
1q2kb

2 exp

ˆ

2E
f
1 `E

f
2 ´2Eb

1´Eb
2

RTe

˙

fi

fl

tr

,

/

/

/

.

/

/

/

-

2.6 Conclusion

In this chapter, an irreversible port-Hamiltonian formulation, generated by the in-
ternal energy, has been given for non-isothermal mass action kinetics chemical reac-
tion networks. This port-Hamiltonian formulation allowed us to analyze the set of
thermodynamic equilibria and the asymptotic stability of non-isothermal chemical
reaction networks. These results have been illustrated on a simple non-isothermal
chemical reaction network.





Chapter 3

Quasi port-Hamiltonian formulation
generated by the total entropy

3.1 Introduction

Modeling of chemical reaction networks has attracted much attention in the last
decades due to its wide application in systems biology and chemical engineering.
Previous work, such as (Horn and Jackson 1972), (Horn 1972) and (Feinberg 1972),
provides the foundation of a structural theory of isothermal chemical reaction net-
works governed by mass action kinetics. From then on, a series of papers about the
modeling and analysis of mass action kinetics chemical reaction networks appeared,
given in (Rao et al. 2014), (Jayawardhana et al. 2012), (Balabanian and Bickart 1981),
(Varma and Palsson 1994). In most of these papers, the chemical reactions are as-
sumed to take place under isothermal condition. Consequently, the influence of
in/outflow of heat can not be taken into account. Hence, non-isothermal chemical
reaction networks still pose fundamental challenges.

In this chapter, we aim to use the port-Hamiltonian framework for the mod-
eling of non-isothermal mass action kinetics chemical reaction networks. Port-
Hamiltonian systems theory (PHS) has been intensively employed in the modeling
and passivity-based control of electrical, mechanical and electromechanical systems,
given in (Maschke and van der Schaft 1991), (van der Schaft and Maschke 1995) and
(van der Schaft 2006). In (van der Schaft et al. 2013a) and (van der Schaft et al. 2013b),
a port-Hamiltonian formulation of isothermal mass action kinetics chemical reaction
networks was provided.

A first step to non-isothermal chemical reaction networks was taken in the pre-
vious chapter. Based on the previous works (Eberard et al. 2007), (Favache et al.
2009), (Ramırez, Le Gorrec, Maschke and Couenne 2013) and (Ramirez, Maschke
and Sbarbaro 2013b), a new quasi port-Hamiltonian formulation for non-isothermal
chemical reaction networks will be developed in this chapter. Comparing with the
IPHS in the previous chapter, this quasi port-Hamiltonian formulation is generated
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by the total entropy instead of the internal energy. Thus, not only the energy bal-
ance equations but also the entropy balance equations will be used in this new port-
Hamiltonian formulation.

The main contributions of the present chapter are as follows. First, based on mass
and energy balance equations, a port-Hamiltonian formulation for non-isothermal
mass action kinetics chemical reaction networks which are detailed balanced is de-
veloped. This formulation directly extends the port-Hamiltonian formulation of
isothermal chemical reaction networks of (van der Schaft et al. 2013a) and (van der
Schaft et al. 2013b), in contrast with the irreversible port-Hamiltonian formulation
given in the previous chapter. It exhibits the energy balance and the thermodynamic
principles in an explicit way. Based on the obtained port-Hamiltonian formulation,
we provide a thermodynamic analysis of the existence and characterization of ther-
modynamic equilibria and their asymptotic stability. For the asymptotic stability,
a comparable statement with the one in (Rao and Esposito 2016) is found. Being
directly related with the energy and entropy functions, this port-Hamiltonian for-
mulation is easily applicable to chemical and biological systems. The second contri-
bution of this chapter is the extension of the port-Hamiltonian formulation and the
thermodynamic analysis to non-isothermal chemical reaction networks with exter-
nal ports.

The structure of the chapter is as follows. Sect. 3.2 develops the port-Hamiltonian
formulation of non-isothermal chemical reaction networks, and shows how this for-
mulation is in line with the main laws of thermodynamics. In Sect. 3.3, a thermody-
namic analysis will be carried out, including the characterization of equilibria and
their asymptotic stability. An example, namely a genetic protein synthesis circuit
with internal feedback and cell-to-cell communication, is discussed as an illustra-
tion of the developed theory. Sect. 3.4 extends the previous results to non-isothermal
chemical reaction networks with external ports.

3.2 Modeling

In this section, we will develop a new quasi port-Hamiltonian formulation based
on entropy balance equations, for detailed balanced mass action kinetics chemical
reaction networks, see (Temkin et al. 1996), (Feinberg 1989), (Rao et al. 2013). We
will use the basic notions of chemical reaction networks as introduced in Sect. 2.2.

First, we assume that in the chemical reaction network, the equilibration fol-
lowing any reaction event is much faster than any reaction time scale. Thus, all
intensive thermodynamic variables are well defined and equal everywhere in the
system. Then, we assume that the chemical reaction network is closed and under-
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goes an adiabatic process. That means there is no heat or mass transfer between the
system and the external environment. Moreover, the chemical reaction network is
isochoric so that volume change can be neglected, i.e. dV “ 0.

As opposed to the irreversible port-Hamiltonian formulation generated by the
internal energy in Sect. 2.3, the thermodynamic equilibrium will be discussed for the
dynamical equations of this new quasi port-Hamiltonian system. Since the state vec-
tor will be different as well, we start by rewriting the definition of thermodynamic
equilibrium for non-isothermal isothermal chemical reaction networks, extending
the definitions for isothermal chemical reaction networks, given in e.g. (van der
Schaft et al. 2013a).

Definition 3.1. A vector of concentrations x˚ is called an equilibrium for the dynam-
ics 9x “ Cvpx, T q for a certain temperature T if Cvpx˚, T q “ 0, and a thermodynamic
equilibrium if vpx˚, T q “ 0. A chemical reaction network 9x “ Cvpx, T q is called
detailed-balanced if it admits a thermodynamic equilibrium for every temperature
T .

In order to stress the dependence on T , the thermodynamical equilibrium will
be denoted by x˚pT q. The conditions for existence of a thermodynamic equilibrium
will be discussed in Sect. 3.3.1. Throughout this section we assume that there exists
at least one thermodynamic equilibrium, like in the isothermal case, see e.g. (van der
Schaft et al. 2013a) and (van der Schaft et al. 2013b) . Thus we throughout assume
that the network is detailed-balanced. We will use the existence of this thermody-
namic equilibrium to develop the new quasi port-Hamiltonian formulation.

3.2.1 Mass balance equations

Let us recall the mass balance equations of a detailed balanced reaction network
according to (van der Schaft et al. 2013a). Let x˚pT q P Rm

` be a thermodynamic
equilibrium for a certain temperature T , i.e.,

vpx˚pT q, T q “ 0 (3.1)

Then we define the conductance κjpT q of the jth reaction as:

κjpT q :“ kfj ExppZtr
Sj

lnpx˚pT qq ´
Ef

j

RT
q “ kbjExppZtr

Pj
lnpx˚pT qq ´

Eb
j

RT
q (3.2)
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Furthermore the reaction rate of the jth chemical reaction (2.8) can be rewritten
as

vjpx, T q “ kfj exppZtr
Sj
Lnpxq ´

Ef
j

RT q ´ kbj exppZtr
Pj
Lnpxq ´

Eb
j

RT q

“ κjpT qrexppZtr
Sj
Lnp x

x˚pT q
qq ´ exppZtr

Pj
Lnp x

x˚pT q
qqs

(3.3)

Now define the r ˆ r diagonal matrix of conductances KpT q as

KpT q :“ diagpκ1pT q, . . . , κrpT qq (3.4)

Collecting all the reaction rates in (3.3) and employing the incidence matrix B

defined in Sect. 2.2, the chemical reaction rate vector of a detailed balanced non-
isothermal reaction network can be written as

vpx, T q “ ´KpT qBtrExppZtrLnp
x

x˚pT q
qq (3.5)

Hence the dynamics of a detailed balanced mass action kinetics reaction network
can be expanded as

9x “ Cvpx, T q

“ ´ZBKpT qBtrExppZtrLnp x
x˚pT q

qq

“ ´ZBKpT qBtrExpp
Ztrµ
RT q

“ ´ZLExpp
Ztrµ
RT q

(3.6)

where µ “ RTLnp x
x˚pT q

q is the vector of chemical potentials and L :“ BKpT qBtr is
the weighted Laplacian matrix for the reaction network graph, with weights given
by the conductances κ1pT q, . . . , κrpT q.

Note that the value of the conductances κ1pT q, . . . , κrpT q not only depends on
the temperature T , but also on the choice of the thermodynamic equilibrium x˚pT q.
However, if the reaction network graph is connected, then for any other thermo-
dynamical equilibrium x˚˚pT q for the same temperature T , there exists a positive
constant c0 such that

Kpx˚˚pT q, T q “ c0Kpx˚pT q, T q (3.7)
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Exp pZtrLnp
x

x˚˚pT q
qq “

1

c0
Exp pZtrLnp

x

x˚pT q
qq (3.8)

This property of the matrix K has been proved in (van der Schaft et al. 2013a). It
implies that the dependence on x˚pT q is minor; choosing another thermodynamical
equilibrium only involves a uniform scaling of K, and thus of L. Another well-
known property of L is the fact that the matrix L is independent of the orientation
of the graph (Bollobas 1998).

3.2.2 Energy balance equations

In this section we will express the energy conservation for a closed chemical reaction
network in order to encompass the thermodynamic properties of the system.

Assuming that in the system the variation of the volume may be neglected, i.e.
dV “ 0, Gibbs’ relation reduces to

dU “ µtrdx ` TdS (3.9)

where U denotes the internal energy, S the entropy, and the conjugated intensive
variables are the chemical potential BU

Bx “ µ and the temperature BU
BS “ T . This

implies

dU

dt
“ µtr dx

dt
` T

dS

dt
(3.10)

Using the equation (3.6), the first term on the right-hand side of (3.10) also equals

µtr dx

dt
“ ´µtrZLExpp

Ztrµ

RT
q (3.11)

Since the system is considered to be isolated, the energy balance equation is

dU

dt
“ 0 (3.12)

This implies that the second term in (3.11) equals

T
dS

dt
“ µtrZLExpp

Ztrµ

RT
q (3.13)

In the next section we will combine these equations with (3.6) in order to derive
a port-Hamiltonian formulation of non-isothermal and isolated reaction networks.
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3.2.3 Port-Hamiltonian formulation

In this section, we show how Sect. 3.2.1 and Sect. 3.2.2 can be combined into a port-
Hamiltonian formulation of the dynamics of detailed balanced chemical reaction
networks.

Firstly, we define the state vector z “ rxtr, U str “ rx1, . . . , xm, U s
tr, where x is

the vector of concentrations and U the internal energy. Then we define the Hamil-
tonian function H “ ´S, where S is the entropy. Note that the Gibbs’ relation (3.9)
can also be written in the entropy formulation

dS “

m
ÿ

i“1

p
dS

dxi
qtrdxi `

dS

dU
dU,

where dS
dxi

“ ´
µi

T and dS
dU “ 1

T are the intensive thermodynamic variables conju-
gated to xi and the internal energy U . This implies that the co-state vector corre-
sponding to H “ ´S is

BH

Bz
“

Bp´Sq

Bz
“
“

µ1

T . . . µm

T ´ 1
T

‰tr
(3.14)

Note that µ and T can be expressed as function of the components of this co-state
vector. Now define the skew-symmetric matrix

J p
BH

Bz
pzqq :“

»

—

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

TZLExpp
Ztrµ
RT q

´T pZLExpp
Ztrµ
RT qqtr 0

fi

ffi

ffi

ffi

ffi

fl

(3.15)

and the symmetric matrix

Rp
BH

Bz
pzqq :“

»

—

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

0m

p0mqtr TµtrZLExpp
Ztrµ
RT q

fi

ffi

ffi

ffi

ffi

fl

(3.16)

It follows that the dynamics of the non-isothermal mass action kinetics chemi-
cal reaction network (2.1) given by the mass balance equation (3.6) and the energy
balance equation (3.12), can be written into quasi port-Hamiltonian form

9z “ pJ p
BH

Bz
pzqq ´ Rp

BH

Bz
pzqqq

BH

Bz
pzq (3.17)
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As we will see in Sect. 3.2.4, TµtrZLExpp
Ztrµ
RT q ě 0 and thus R is positive semi-

definite. The formulation (3.17) is called ’quasi port-Hamiltonian’, since the struc-
ture matrices J and R depend on the co-state variables,

BH

Bz
“

Bp´Sq

Bz
“

„

µ1

T
, . . . ,

µm

T
,´

1

T

ȷtr

instead of only on the state variables rx1, . . . , xm, U s
tr as in the irreversible port-

Hamiltonian formulation in (2.21) in Sect. 2.3. This formulation is comparable to the
formulation of the mass balance and energy balance equations such as GENERIC,
suggested, see (Jongschaap and Öttinger 2004), or the port-Hamiltonian formulation
with generating function being the availability function derived from the entropy
function, see (Hoang, Couenne, Jallut and Gorrec 2011).

3.2.4 Entropy balance equation

In this section, we shall relate the positive semi-definiteness of the dissipation ma-
trix R in (3.16) with the second law of thermodynamics. With this in mind let us
compute the time-derivative of the entropy S

dS
dt “

BtrSpzq

Bz 9z

“
BtrSpzq

Bz pJ p BH
Bz pzqq ´ Rp BH

Bz pzqqq BH
Bz pzq

“ r´
µtr

T
1
T s

«

0mˆm TZLExpp
Ztrµ
RT q

´T pZLExpp
Ztrµ
RT qqtr ´TµtrZLExpp

Ztrµ
RT q

ff

„ µ
T

´ 1
T

ȷ

“ 1
T µ

trZLExpp
Ztrµ
RT q

(3.18)

Denote γ “
Ztrµ
RT . It has been shown in (van der Schaft et al. 2013a) (using the

properties of the Laplacian matrix L) that for any γ P Rc,

γtrLExppγq ě 0, (3.19)

while γtrLExppγq “ 0 if and only if Btrγ “ 0. Hence, the entropy balance
equation (3.18) becomes

dS

dt
“ RγtrLExppγq “: σ ě 0 (3.20)
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Here σ is the irreversible entropy source term. Note that in equation (3.20), the
time-derivative of the entropy S is deduced from the port-Hamiltonian formulation
(3.17) defined in Sect. 3.2.3. It is consistent with equation (3.13), which is deduced
from the Gibbs’ relation (3.9).

Furthermore, note that the positivity of the irreversible entropy source term is
equivalent to the positive semi-definiteness of the dissipation matrix Rp BH

Bz pzqq in
(3.16). Indeed the only non-zero term of Rp BH

Bz pzqq is the pm ` 1,m ` 1qth element,
denoted as Rm`1,m`1, which is related to the entropy source term as

Rm`1,m`1 “ σT 2 (3.21)

In summary, the quasi port-Hamiltonian representation of chemical reaction net-
works given in (3.15), (3.16) and (3.17) represents the mass and energy balance equa-
tions. Moreover from its structure, it implies the entropy balance equation. It dif-
fers from the expression of energy and entropy balance equations, see (Qian and
Beard 2005), which are expressed for non-equilibrium biochemical systems. It dif-
fers from the expression in (Rao and Esposito 2016), where the free energy and en-
tropy balance are considered in an isothermal case when the species are diluted in a
solvent, which acts as a thermal bath, while the pressure P is set by the environment.
It differs also from the irreversible port-Hamiltonian representation of the mass and
entropy balance equations of chemical reaction networks in (Ramirez et al. 2014)
and (Wang et al. 2016), which is introduced in the previous chapter, by the fact that
it is based on the energy balance equation instead of on the entropy balance equa-
tion. Note that the description based on the energy balance equation is classical
(Favache et al. 2010), and more easily derived than the description based on the en-
tropy balance equation. Moreover, the quasi port-Hamiltonian formulation given in
(3.15), (3.16) and (3.17) fundamentally differs from the representation of chemical re-
action networks as port Hamiltonian systems in (Otero-Muras et al. 2008) as well, by
the fact that this quasi port-Hamiltonian representation is established on the whole
space of concentration vectors instead of only locally around an equilibrium point,
as in (Otero-Muras et al. 2008).

Finally this quasi port-Hamiltonian directly extends the port-Hamiltonian for-
mulation of isothermal chemical reaction networks obtained in (van der Schaft et al.
2013a) and (van der Schaft et al. 2013b) by adding the energy balance equation to
the dynamical equations.
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Figure 3.1: Synthetic gene circuit.

3.2.5 Example: a genetic circuit with internal feedback and cell-to-
cell communication

The approach of the previous section will be illustrated on a chemical reaction net-
work, taking place in a very common protein synthesis circuit in the cell of E.Coli in
the large intestine of human beings (Pico-Marco et al. 2016).

We first make a short review about this protein synthetic pathway and expres-
sion system. In the large intestine of human beings, it is shown that heterologous
protein synthesis starts by introducing an exogenous protein-coding gene in the cell,
producing the corresponding protein. The ultimate goal of this circuit is to control
the expression of an heterologous protein of interest which could be encoded in the
same coding sequence as LuxI. Therefore, the control of LuxI will be tantamount to
that of the protein of interest except for its translation step (Guimaraes et al. 2014).

The proposed gene synthetic circuit is shown in Figure 3.1 (Pico-Marco et al.
2016). For convenience, here we simplify the gene synthetic circuit which can be
considered as follows: when the cell of E.Coli receives a ’message’ from the environ-
ment (a kind of transcription process from extracellular space into E.Coli cell), three
chemical reactions will take place at the intercellular level:

LuxR ` AHL é LuxR ´ AHL

2pLuxR ´ AHLq é pLuxR ´ AHLq2

pLuxR ´ AHLq2 ` DNA é DNA ´ pLuxR ´ AHLq2
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When the chemical reaction network reaches an equilibrium state, the cell will
send out a ’message’ to the environment (a reversed transcription process). This is a
very efficient gene circuit for adjustment of the concentrations on different kinds of
protein in E.Coli cell, with internal feedback and cell-to-cell communication.

Let us denote the concentration of the species

LuxR,AHL,LuxR ´ AHL, pLuxR ´ AHLq2,DNA,DNA ´ pLuxR ´ AHLq2

by x1, x2, x3, x4, x5, x6. Hence, the state vector is defined as z “ rx1, . . . , x6, U str and
the gradient vector of Hamiltonian function H “ ´S is given as

dp´Sq

dz
“ r

µ1

T
, . . . ,

µ6

T
,
1

T
str

With m “ 6, r “ 3 and c “ 5, the stoichiometric matrix C P R6ˆ3 is written as

C “

»

—

—

—

—

—

—

—

–

´1 0 0

´1 0 0

1 ´2 0

0 1 ´1

0 0 ´1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The complex composition matrix Z P R6ˆ5 becomes

Z “

»

—

—

—

—

—

—

—

–

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

while the incidence matrix B P R5ˆ3 is

B “

»

—

—

—

—

—

–

´1 0 0

1 ´1 0

0 1 0

0 0 ´1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl
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Since the chemical reactions take place naturally when the cell receives the ’mes-
sage’ from the environment, this means that the activation energies in the Arrhenius
equation are so small that they can be ignored, i.e.,

Ef
j “ 0, j “ 1, . . . , r

Eb
j “ 0, j “ 1, . . . , r

Hence, the matrix of conductances K becomes independent of T , and takes the
form

K “

»

—

—

—

—

–

x˚
3 0 0

0
px˚

3 q2

35 0

0 0
px˚

3 q2x˚
5

4900

fi

ffi

ffi

ffi

ffi

fl

where x˚ “ rx˚
1 , x

˚
2 , x

˚
3 , x

˚
4 , x

˚
5 , x

˚
6 str is a thermodynamic equilibrium. Therefore, the

Laplacian matrix L “ BKBtr P R5ˆ5 is equal to

L “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

x˚
3 ´x˚

3 0 0 0

´x˚
3 x˚

3 `
2x˚2

3

35
´2x˚2

3

35 0 0

0
´2x˚2

3

35
2x˚2

3

35 0 0

0 0 0
x˚2
3 x˚

5

4900
´x˚2

3 x˚
5

4900

0 0 0
´x˚2

3 x˚
5

4900
x˚2
3 x˚

5

4900

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

which is independent of T as well. Therefore, the port-Hamiltonian formulation
(3.17) for the genetic protein synthesis circuit is

»

—

—

—

—

—

—

–

x1

...

x6

U

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ pJ ´ Rq

»

—

—

—

—

—

—

–

µ1

T

...
µ6

T

´ 1
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the matrix pJ ´ Rqp
dp´Sq

dz q can be written as
„

06ˆ6 p

ptr r

ȷ
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where p “ rp1, p2, p3, p4, p5, p6str P R6 and r P R, with

p1 “ ´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

p2 “ ´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

p3 “ Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q ´ T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q

p4 “ T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q ´ T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

p5 “ ´T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

p6 “ ´T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

r “ pµ1 ` µ2qrTx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT s ` µ3r´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

`T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT qs ` µ4r´T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q

`T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT qs ` pµ5 ` µ6qrT
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT qs

3.3 Thermodynamic equilibria and asymptotic stabil-
ity

The discussion in Sect. 3.2 is based on the assumption of existence of a thermody-
namic equilibrium. Starting from the definition of a thermodynamic equilibrium
of non-isothermal chemical reaction networks, we will derive in this section a full
characterization of the set of equilibria, analogous to the case of isothermal chemical
reaction networks in (van der Schaft et al. 2013a).

Subsequently, for stability analysis, we will use as Lyapunov function the avail-
ability function which is directly based on the quasi port-Hamiltonian representa-
tion given in (3.15), (3.16) and (3.17). Note that the use of availability functions for
stability analysis is classical, see e.g. (Keenan 1951), (Hoang, Couenne, Jallut and
Gorrec 2011), (Hoang, Couenne, Jallut and Gorrec 2012).

3.3.1 Thermodynamic equilibria

In this section, the existence of a thermodynamic equilibrium will be derived in the
following linear-algebraic way (Feinberg 1989). Recall the definition of a thermody-
namic equilibrium for non-isothermal chemical reaction networks from Sect. 3.2. Let
z˚ be a thermodynamic equilibrium under a certain temperature T , i.e., vpz˚q “ 0.
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This implies that for any j “ 1, . . . , r,

kfj expp´
Ef

j

RT
q exppZtr

Sj
Lnpx˚qq ´ kbj expp´

Eb
j

RT
q exppZtr

Pj
Lnpx˚qq “ 0

or equivalently

kfj expp´
Ef

j

RT
q exppZtr

Sj
Lnpx˚qq “ kbj expp´

Eb
j

RT
q exppZtr

Pj
Lnpx˚qq

These equations are referred to as the detailed balance equations. Denote

Keq
j pT q :“

kfj
kbj

expp
Eb

j ´ Ef
j

RT
q “ exppZtr

Pj
Lnpx˚q ´ Ztr

Sj
Lnpx˚qq

Collecting all chemical reactions from 1 to r, and making use of the incidence
matrix B, we obtain the following condition for a thermodynamical equilibrium
x˚pT q

KeqpT q “ Exp pBtrZtrLnpx˚pT qqq “ Exp pCtrLnpx˚pT qqq (3.22)

where KeqpT q is the r-dimensional vector with jth element Keq
j pT q, which is de-

pendent on the temperature T . Therefore, for a given temperature T , there exists
a thermodynamic equilibrium x˚pT q P Rm

` if and only if kfj ą 0, kbj ą 0 for all
j “ 1, . . . , r, and

Ln pKeqpT qq P imCtr

In general, the equilibrium concentration x˚pT q may not be unique. Let x˚˚pT q

be another thermodynamic equilibrium for the same temperature T . Then

KeqpT q “ Exp pCtrLnpx˚˚qq “ Exp pCtrLnpx˚qq (3.23)

That is to say, for a certain temperature T , once one thermodynamic equilibrium
x˚pT q is given, the whole set of thermodynamic equilibria at the same tempera-
ture T can be found. Furthermore, since dU “ 0, we have U˚ “ U˚˚. Denote
z˚ “ px˚pT q, U˚q and z˚˚pT q “ px˚˚pT q, U˚˚q, then it follows that the set of ther-
modynamic equilibria for the same temperature T can be written as

ΣT “
␣

z˚˚ “ px˚˚pT q, U˚˚q | CtrLnpx˚˚pT qq “ CtrLnpx˚pT qq, U˚ “ U˚˚
(

(3.24)
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This directly extends the classical result for isothermal chemical reaction net-
works, see e.g. (van der Schaft et al. 2013a). Note that the value of the terms
ExppCtrLnpx˚qq depends on the temperature T , while the relation ExppCtrLnpx˚˚qq “

ExppCtrLnpx˚qq is not dependent on the temperature T .

Since KeqpT q “ Exp pCtrLnpx˚qq as a function of T is monotone and injective, it
follows that the set of thermodynamic equilibria ΣT1 is disjoint from ΣT2 whenever
T1 ‰ T2. I.e., ΣT1 X ΣT2 “ H for any T1 ‰ T2.

3.3.2 Asymptotic stability

For isothermal chemical reaction networks, it was shown in (Horn and Jackson
1972), (van der Schaft et al. 2013a) and (van der Schaft et al. 2013b), that the Gibbs’
free energy can be used as a Lyapunov function for proving asymptotic stability
towards a unique equilibrium depending on the initial condition. In this section
we aim at proving a similar result for the non-isothermal case based on the port-
Hamiltonian formulation obtained in the previous section, employing the availabil-
ity function. Note that this is different from what has been done in Sect. 2.4.2 (as
well in (Ramırez, Le Gorrec, Maschke and Couenne 2013) and (Wang et al. 2016)),
where an energy-based availability function was employed.

We define the entropy-based availability function as

Apzq :“ ´Spzq ` Spzoq `
BtrS

Bz
pzoqpz ´ zoq (3.25)

where zo is a reference point taken as a thermodynamic equilibrium, cf. Sect. 3.2.

Theorem 3.2. Consider a detailed balanced chemical reaction network given by (3.15),
(3.16) and (3.17), with zo a thermodynamic equilibrium. Define Apzq : Rm`1

` Ñ R given
by (3.25). Then A has a strict minimum at zo with Apzoq “ 0, while the time-derivative of
Apzq, dA

dt is less than or equal to zero with equality only at zo.

Proof. It has been proved that for homogeneous mixtures, the entropy function is
necessarily concave (Callen 1960). Moreover, the entropy is strictly concave if at
least one global extensive property (such as volume, total mass, or total mole num-
ber) is fixed, see (Alonso and Ydstie 2001) and (Jillson and Ydstie 2007). Recall the
assumption that the chemical reaction network is isochoric, i.e. dV “ 0, so the en-
tropy is strictly concave and Apzq has a strict minimum at zo. Moreover, the time
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derivative of Apzq is given as

dA
dt “ BA

Bz pzq 9z

“ ´pdS
dz pzq ´ dS

dz pzoqqtr dz
dt

“ ´r
pµoqtr

T o ´
pµqtr

T , 1
T ´ 1

T o s

ˆ

«

0mˆm TZLExpp
Ztrµ
RT q

´T pZLExpp
Ztrµ
RT qqtr ´TµtrZLExpp

Ztrµ
RT q

ff

„ µ
T

´ 1
T

ȷ

“ ´p
µtrZ
T ´

pµoqtrZ
T o qLExpp

Ztrµ
RT q

“ ´RγtrLExppγq ` RpγoqtrLExppγq

(3.26)

where µ “ RTLn x
x˚ is the vector of chemical potentials, µo “ RT oLn xo

x˚ , γ “
Ztrµ
RT “

ZtrLn x
x˚ and γo “

Ztrµo

RT o “ ZtrLn xo

x˚ . Since x˚ and xo are both thermodynamic
equilibria, we obtain from equation (3.23)

CtrLnpxoq “ CtrLnpx˚q,

which is equal to

CtrLnp
xo

x˚
q “ pZBqtrLnp

xo

x˚
q “ 0c

Therefore, we have

BtrpZtrLnp
xo

x˚
qq “ Btrγo “ 0c

Recall that since L is a balanced weighted Laplacian matrix, for any γ P Rc, we
have γtrLExppγq ě 0, while γtrLExppγq “ 0 if and only if Btrγ “ 0 (van der Schaft
et al. 2013a). Hence

pγoqtrLExppγoq “ 0

Therefore the time derivative of Apzq satisfies

dA

dt
“ ´RγtrLExppγq ď 0
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Let the system converge to a point denoted as

z˚ P ΣT˚

and denote the equilibrium temperature associated with the equilibrium point z˚

by T˚. We know that at equilibrium, the entropy is maximal, implying that

dS

dt
|z“z˚ “ 0

This is a classical statement in chemical engineering, and is comparable with the
statement in (Rao and Esposito 2016), where for isothermal systems the Gibbs’ free
energy is minimized. According to equation (3.20), we have

σ|z“z˚ “ 0 (3.27)

and for an isolated system we have

dU “ 0 (3.28)

By using the equations (3.27) and (3.28), the equilibrium point z˚ and T˚ can be
determined. Then, by using a similar argument as in (Feinberg 1995) and (van der
Schaft et al. 2013a) , the following theorem will imply the asymptotic stability to-
wards the set ΣT˚ .

Theorem 3.3. Consider the detailed balanced chemical reaction network given by (3.15),
(3.16) and (3.17) with T P R`. Then for any x1 P Rm

` , T1 P R`, there exists a unique
x˚ P Rm

` and T˚ P R`, such that x˚ ´ x1 P imC, and z˚ “ px˚, U˚px˚, T˚qq P ΣT˚ ,
z˚ P Rm`1

` .

Proof. Let W “ imC. Then WK “ kerCtr. Let z1px1, T1q P Rm`1
` , z˚˚px˚˚, T˚q P

Rm`1
` , where z˚˚px˚˚, T˚q P ΣT˚ is a thermodynamic equilibrium for temperature

T˚. As proved in (Feinberg 1995), (van der Schaft et al. 2013a), there exists a unique
β P kerCtr such that x˚˚Exppβq ´ x1 P imC. Define z˚px˚, T˚q P Rm`1

` with x˚ “

x˚˚Exppβq. Clearly, Ctrβ “ CtrLnp x˚

x˚˚ q “ 0, which is in line with (3.23) so that
z˚px˚, T˚q P ΣT˚ . Moreover, we have x˚ ´ x1 “ x˚˚Expβ ´ x1 P imC.

Combining with Theorem 3.1, this implies that the equilibrium z˚ is asymptot-
ically stable with respect to all initial conditions near z˚. Hence the asymptotic
stability of the quasi port-Hamiltonian system defined by (3.15), (3.16) and (3.17) is
proved.
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3.3.3 Example: a genetic circuit with internal feedback and cell-to-
cell communication (continued)

Recall the genetic protein synthesis circuit described in Sect. 3.2.5. At thermody-
namic equilibrium z˚, we have vpz˚q “ 0. It can be verified that the equilibrium set
ΣT is the 3-dimensional set given as

ΣT “

$

&

%

px˚
1 , . . . , x

˚
6 , T

˚qtr | x˚
1 “

150x˚
3

x˚
2

, x˚
4 “

px˚
3 q2

35 , x˚
6 “

px˚
3 q2x˚

5

4900 ,

x˚
i P Rm

` , i “ 1 . . . 6, T˚ P Rm
`

,

.

-

To study its asymptotic stability, we define the availability function as in (3.25),
i.e.,

Apzq “ ´Spzq ` Spzq `
BtrS

Bz
pzoqpz ´ zoq (3.29)

where the reference point zo is taken to be a thermodynamic equilibrium for the
temperature T . We have Apzq “ 0 at z “ zo, and as discussed in Sect. 2.4, the time
derivative of Apzq can be written as

dA
dt “ ´pdS

dz ´ dS
dz pzoqqtr dz

dt

“ ´RγtrLExppγq ` RγotrLExppγq

“ ´RγtrLExppγq ď 0

(3.30)

Therefore Apzq is a well-defined Lyapunov function. The port-Hamiltonian sys-
tem (3.17) for the genetic protein synthesis circuit is asymptotically stable under
temperature T .

3.4 Chemical reaction networks with ports

In many application areas, the chemical reaction networks under consideration are
not isolated. That is to say, there exists mass exchange or heat exchange between the
chemical reaction network and its environment.

In this section we will extend the port-Hamiltonian formulation for non-
isothermal chemical reaction networks to the case of mass and heat exchange. As in
the previous work, see (Hoang, Couenne, Jallut and Gorrec 2011), (Hoang, Couenne,
Jallut and Gorrec 2012), (Ramırez, Le Gorrec, Maschke and Couenne 2013) and
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(Ramirez et al. 2014), when modeling and control of the Continuous Stirred Tank
Reactor (CSTR), we define ’external ports’ as the inflow/outflow of a mixture. Fur-
thermore, we suppose that the output flow is such that the volume and pressure are
constant (Couenne et al. 2006).

Then equation (2.2) can be rewritten as

9x “ Cv ` Fin ´ Fout (3.31)

where the vectors Fin and Fout are respectively the input and output concentra-
tion flows. Then the previous formulation (3.17) can be extended to non-isothermal
chemical reaction network with external ports as

9z “ pJ p BH
Bz q ´ Rp BH

Bz qq BH
Bz pzq `

„

Fin ´ Fout

∆U

ȷ

(3.32)

where as before the Hamiltonian function is given as H “ ´S with S the entropy of
system. The internal energy U is written as

U “

m
ÿ

i“1

xipcpipT ´ T0q ´ u0iq

where cpi, u0i T0 are respectively the heat capacity at constant pressure, reference
molar energy and reference temperature. With constant volume and pressure the
balance equation for the internal energy U is written as

∆U “ Q `

m
ÿ

i“1

pF i
inh

i
in ´ F i

outh
i
outq

where Q is the heat flux from the environment, and F i
in and F i

out are the ith element
of Fin and Fout. Furthermore, hi

in and hi
out are respectively the input and output

specific enthalpies.
Note that in the port-Hamiltonian formulation for non-isothermal chemical re-

action network with ports (3.32), we still use the thermodynamic equilibrium z˚pT q

for the chemical reaction network without ports under given temperature T , as de-
fined in Sect. 3.2.

As before, in order to verify asymptotic stability, we define the availability equa-
tion as

Apzq “ ´Spzq ` Spzoq `
BtrS

Bz
pzoqpz ´ zoq (3.33)
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It then remains to prove that Apzq is a Lyapunov function. Obviously, we have
Apzoq “ 0.

The main assumption we will make is that ∆F “ Fin ´ Fout is a vector which
can be described by mass action kinetics. That is to say, it can be expanded as

∆F “ ´ZL1ExppZtrLn
x

x˚
q “ ´ZL1Expp

Ztrµ

RT
q

with L1 “ B1K 1pB1qtr a constant balanced weighted Laplacian matrix correspond-
ing to another incidence matrix B1 P Rcˆr1

with r1 P N, and another matrix of con-
ductance K 1 P Rr1ˆr1

, and ∆U “ 0. Note that under this assumption, the external
ports added to the network can be considered as another chemical reaction network,
with m species, r1 chemical reactions and c chemical complexes. Therefore, it can be
represented with the same complex composition matrix Z, but with a different inci-
dence matrix B1 and a different matrix of conductance K 1.

Then the time derivative of Apzq becomes

dA
dt “ ´pdS

dz ´ dS
dz pzoqqtr dz

dt

“ ´r µo

T o ´
µ
T

1
T ´ 1

T o str

˜«

0mˆm TZLExpp
Ztrµ
RT q

´T pZLExpp
Ztrµ
RT qqtr ´TµtrZLExpp

Ztrµ
RT q

ff

`

„

∆F

∆U

ȷ

¸

“ ´p
µ
T ´

µo

T o qtrZLExpp
Ztrµ
RT q ` p

µ
T ´

µo

T o qtr∆F ´ p 1
T ´ 1

T o q∆U

“ ´Rpγ ´ γoqtrLExppγq ´ Rpγ ´ γoqtrL1Exppγq

“ ´RγtrLExppγq ´ RγtrL1Exppγq

Since

´RγtrLExppγq ď 0

´RγtrL1Exppγq ď 0

we have dA
dt ď 0, and thus the port-Hamiltonian system for non-isothermal chemi-

cal reaction networks with ports is asymptotically stable for temperature T . Let us
illustrate this on the following example.
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3.4.1 Example: a genetic circuit with internal feedback and cell-to-
cell communication (continued)

Recall the genetic protein synthesis circuit described in Sect. 3.2.5. Assume that there
exists a port of flows ∆F “ ´ZL1ExppZtrLn x

x˚ q with

L1 “ B

»

–

l1 0 0

0 l2 0

0 0 l3

fi

flBtr “

»

—

—

—

—

—

–

l1 ´l1 0 0 0

´l1 l1 ` 2l2 ´2l2 0 0

0 ´2l2 2l2 0 0

0 0 0 l3 ´l3
0 0 0 ´l3 l3

fi

ffi

ffi

ffi

ffi

ffi

fl

where l1, l2 and l3 are positive constants. Then the port-Hamiltonian formulation
(3.17) extends to

»

—

—

—

—

–

x1

...
x6

U

fi

ffi

ffi

ffi

ffi

fl

“ pJ ´ Rq

»

—

—

—

—

–

µ1

T
...
µ6

T

´ 1
T

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

–

Fin ´ Fout

∆U

fi

ffi

ffi

ffi

fl

where the matrix J ´ R is equal to
„

06ˆ6 p

ptr r

ȷ

where p “ rp1, p2, p3, p4, p5, p6str and r P R, with

p1 “ ´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

p2 “ ´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

p3 “ Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q ´ T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q

p4 “ T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q ´ T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

p5 “ ´T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

p6 “ ´T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT q

r “ pµ1 ` µ2qrTx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT s ` µ3r´Tx˚
3 pexpp

µ1`µ2

RT q ´ exp µ3

RT q

`T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT qs ` pµ5 ` µ6qrT
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT qs

`T
x˚2
3 x5

4900 pexpp
µ4`µ5

RT q ´ exp µ6

RT qs ` µ4r´T
x˚2
3

35 p2 exp µ3

RT ´ 2 exp µ4

RT q
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and with

„

Fin ´ Fout

∆U

ȷ

“

„

∆F

0

ȷ

“

„

´ZL1ExppZtrLn x
x˚ q

0

ȷ

Then the availability function (3.33) can be rewritten as

Apzq “ ´Spzq ` Spzoq `
BtrS

Bz
pzoqpz ´ zoq (3.34)

Apzoq “ 0 and the time derivative of Apzq becomes

dA
dt “ ´pdS

dz ´ dS
dz pzoqqtr dz

dt

“ ´RγtrLExppγq ´ γtrL1Exppγq ď 0

Hence Apzq is a well-defined Lyapunov function. We conclude that the port-
Hamiltonian system for genetic protein synthesis circuit with a specific port ∆F is
asymptotically stable for temperature T .

3.5 Conclusion

In this chapter, a quasi port-Hamiltonian formulation has been developed for non-
isothermal mass action kinetics chemical reaction networks. Expanding the port-
Hamiltonian formulation of isothermal chemical reaction networks, and based on
the mass balance and energy balance equations, this port-Hamiltonian formula-
tion provides us with an explicit way to represent the chemical reaction networks
and their thermodynamic properties, including the entropy balance and the condi-
tions for the existence of thermodynamic equilibrium. Moreover, this quasi port-
Hamiltonian formulation and its thermodynamic analysis have been extended to
non-isothermal chemical reaction networks with external ports. The results have
been illustrated on a chemical reaction network in our body: the genetic circuit with
internal feedback and cell-to-cell communication.

The irreversible port-Hamiltonian formulation given by (2.21) in the previous
chapter, and the quasi port-Hamiltonian formulation given by (3.17) provide us two
way to model non-isothermal chemical reaction networks. We can make use of ei-
ther of them depending on the physical structure of system.





Chapter 4

Port-Hamiltonian structure for inter-
connected chemical reaction networks

4.1 Introduction

In this chapter, we are interested in the interconnection of two chemical reaction
networks governed by mass action kinetics, which separately can be modeled by
the quasi port-Hamiltonian formulation in (3.17). Interconnection of chemical re-
action networks is an interesting subject in chemical and biological domains dis-
cussed in some previous work, see for example (Papachristodoulou and Recht 2007)
and (Prior and Rosseinsky 2003). This chapter is inspired by (van der Schaft et al.
2013a) where the port-Hamiltonian modeling for interconnected chemical reaction
networks have been introduced. The most basic way to connect the chemical reac-
tion networks is through shared boundary chemical species. In this dissertation, in
order to develop a port-Hamiltonian structure for the interconnected chemical re-
action networks, we offer two ways to deal with interconnection by shared species,
one in Sect. 4.2 and another in Sect. 4.3.

In Sect. 4.2, the two chemical reaction networks interconnect to each other by
considering that the two reactors get together and thus the shared species can be
considered directly as the same species, see Figure 4.1. In Sect. 4.3, the intercon-
nection arises from power-port interconnection at the shared chemical species. There
is a sort of transformation of mass and energy between the shared species in each
reactor, see Figure 4.3.

4.2 Interconnection arising from boundary species

In this section, the interconnection can be considered as an interaction of a chemical
reaction network with another chemical reaction network by putting the two chem-
ical reaction networks together and identifying the shared species in each reactor as
the same species.
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Figure 4.1: Interconnection through shared boundary species.

The main idea of interconnection is as follows, see Figure 4.1. Assume that there
are two closed chemical reaction networks, which means they have no mass or en-
ergy exchange with the environment. In each chemical reaction network, the species
can be divided into two groups. One group of species consists of the species that ap-
pear only in one of the chemical reaction networks, called the non-shared species,
denoted as X10 for the network 1 and X20 for the network 2. Another group of
species is the species that appear in both of the two chemical reaction networks,
called the shared chemical species, denoted as Xin. Once the two chemical reac-
tion networks interconnect to each other, the species in the whole chemical reaction
network are denoted by X10, Xin and X20. Note that there may exist complexes,
referred to as shared complexes, which only consist of shared species.

In order to simplify the interconnection, we suppose that the reactions in each
chemical network proceed slowly compared to the diffusion in each reactor and the
heat transfer between the two chemical reaction networks. That means, the temper-
ature T and pressure P can be considered to vary synchronously in each reactor and
we have T “ T1 “ T2 and P “ P1 “ P2.

4.2.1 Notations

Consider two non-isothermal chemical reaction networks which can be modeled
by the port-Hamiltonian formulation (3.17). One is composed of r1 reactions, m1

species and c1 complexes, while the other consists of r2 reactions, m2 species and c2
complexes. In each chemical network, the species can be divided into two groups,
the non-shared and the shared species, i.e., m1 “ m10 ` min and m2 “ m20 ` min.
If there exist shared complexes, then we denote them as cin and thus we have c1 “

c10 ` cin and c2 “ c20 ` cin.
To simplify the notations, define m “ m10 ` min ` m20, c “ c10 ` cin ` c20 and
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r “ r1`r2. Let xi0 P Rmi0
` denote the vector of the non-shared part of concentrations

in the chemical network 1 and 2, and xin P Rmin
` the vector of the shared part of the

concentrations of the two chemical networks. Then the vector of concentrations of
interconnected networks can be written as x̂ “ rx10, xin, x20str P Rm

` . Similarly, let
µi0 P Rmi0

` denote the vector of the non-shared part of the chemical potentials of
each network and µin P Rmin

` the vector of the shared chemical potentials of the two
chemical networks. Then we denote the chemical potentials of the interconnection
of the two chemical networks as µ̂ “ rµ10, µin, µ20str P Rm

` .
Let the incidence matrix of each chemical networks 1 and 2 be denoted as B1

and B2. Then we have B1 “

„

B10

B1
in

ȷ

, B2 “

„

B2
in

B20

ȷ

, where Bi0 P Rci0ˆri denotes

the non-shared part of the incidence matrix in each chemical reaction network, and
Bi

in P Rcinˆri denotes the shared part of the incidence matrix in each chemical reac-
tion network, i “ 1, 2. Therefore, the incidence matrix of the interconnected chemi-
cal reaction network B P Rcˆr is given as

B “

»

–

B10 0

B1
in B2

in

0 B20

fi

fl

The complex composition matrix of network 1 and 2 can be rewritten as

Z1 “

„

Z10 0

Z 1
10 Zin

ȷ

Z2 “

„

Zin Z 1
20

0 Z20

ȷ

where Zi0 P Rmi0ˆci0 denotes the totally non-shared part of the complex composi-
tion matrix in each chemical reaction network, Z 1

i0 P Rminˆci0 denotes the shared
species in the non-shared complexes, and Zin P Rminˆcin the shared part of the com-
plex composition matrix of the chemical network, i “ 1, 2. Then the complex com-
position matrix of the interconnected chemical networks Z P Rmˆc is given as

Z “

»

–

Z10 0 0

Z 1
10 Zin Z 1

20

0 0 Z20

fi

fl

Let Ci denote the stoichiometric matrix of chemical network 1 and 2. Thus
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C1 “ Z1B1 “

„

Z10B10

Z 1
10B10 ` ZinB

1
in

ȷ

C2 “ Z2B2 “

„

Z 1
20B20 ` ZinB

2
in

Z20B20

ȷ

Since C “ ZB, the stoichiometric matrix of the interconnected chemical network
C P Rmˆr can be written as

C “

»

–

Z10 0 0

Z 1
10 Zin Z 1

20

0 0 Z20

fi

fl

»

–

B10 0

B1
in B2

in

0 B20

fi

fl

“

»

–

Z10B10 0

Z 1
10B10 ` ZinB

1
in Z 1

20B20 ` ZinB
2
in

0 Z20B20

fi

fl

Clearly, the stoichiometric matrix of the interconnection of the two chemical net-
works C is a direct combination of C1 and C2.

Remark 4.1. If there exist no shared complex in the interconnected chemical reaction
network, then the incidence matrix takes the form

B “

„

B10 0

0 B20

ȷ

(4.1)

and the complex composition matrix takes the form

Z “

»

–

Z10 0

Z 1
10 Z 1

20

0 Z20

fi

fl (4.2)

while the stoichiometric matrix takes the form

C “ ZB “

»

–

Z10B10 0

Z 1
10B10 Z 1

20B20

0 Z20B20

fi

fl (4.3)

The rˆr matrix of conductances KpT q of the interconnected network is the direct
union of the matrix of conductances of chemical networks 1 and 2, i.e.,
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KpT q “

„

K1pT q 0

0 K2pT q

ȷ

with corresponding weighted Laplacian matrix L “ BKpT qBtr.

4.2.2 Port-Hamiltonian structure

Now the port-Hamiltonian formulation for the interconnected network is ready to
be developed. Here we will use the same state vector and Hamiltonian function as in
Chapter 3. We define the state vector as w “ rx̂tr, U str “ rx10, xin, x20, U s

tr, where
x̂ is the vector of concentrations of the interconnected chemical reaction network,
and U “ U1 ` U2 is the total internal energy, where Ui is the internal energy of the
chemical network i “ 1, 2. Then we define minus the entropy of the interconnected
chemical reaction network ´S as the Hamiltonian function H “ ´S “ ´pS1 ` S2q,
where Si is the entropy of the chemical network i “ 1, 2. This implies that the co-
state vector corresponding to H “ ´S is

BH

Bw
“

Bp´Sq

Bw
“
“

µ10

T
µin

T
µ20

T ´ 1
T

‰tr
(4.4)

Let w˚pT q P Rm
` be a thermodynamic equilibrium for a certain temperature T .

Then the dynamics of the interconnection of the two chemical reaction networks can
be written as

9̂x “ ´ZBKpT qBtrExpp
Ztrµ̂

RT
q (4.5)

dU “ dU1 ` dU2 “ 0 (4.6)

It follows that the balanced interconnected network is given as

9w “

ˆ

Ĵ p
BH

Bw
pwqq ´ R̂p

BH

Bw
pwqq

˙

BH

Bw
pwq (4.7)

where Ĵ is the skew-symmetric matrix

Ĵ p
BH

Bw
pwqq :“

»

—

—

—

–

0 ¨ ¨ ¨ 0 M
...

. . .
... N

0 ¨ ¨ ¨ 0 O

´M tr ´N tr ´Otr 0

fi

ffi

ffi

ffi

fl

(4.8)
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where the upper right block is expanded as

»

–

M

N

O

fi

fl “ TZLExpp
Ztrµ̂

RT
q

M “ T

„

Z10B10K1pT qBtr
10Expp

Ztr
10µ10`Z

1tr
10 µin

RT q ` Z10B10K1pT qB1tr
in Expp

Ztr
in µin

RT q

ȷ

N “ T

»

—

—

—

—

—

—

—

–

pZinB
1
in ` Z 1

10B10qK1pT qBtr
10Expp

Z
1tr
10 µin`Ztr

10µ10

RT q

`pZinB
1
in ` Z 1

10B10qK1pT qB1tr
in Expp

Ztr
in µin

RT q

`pZinB
2
in ` Z 1

20B20qK2pT qB2tr
in Expp

Ztr
in µin

RT q

`pZinB
2
in ` Z 1

20B20qK2pT qBtr
20Expp

Ztr
20µ20`Z

1tr
20 µin

RT q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

O “ T

„

Z20B20K2pT qB2tr
in Expp

Ztr
in µin

RT q ` Z20B20K2pT qBtr
20Expp

Ztr
20µ20`Z

1tr
20 µin

RT q

ȷ

Furthermore, R̂ is a symmetric matrix which can be written as

R̂p
BH

Bw
pwqq :“

»

—

—

—

–

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

0m

p0mqtr Y

fi

ffi

ffi

ffi

fl

(4.9)

Since we have dU “ 0 for the interconnected network, this implies that

Y “ µtr
10M ` µtr

inN ` µtr
20O

Furthermore, we remark that since dU “ µtrdx ` TdS, we have

dS

dt
“

Y

T 2
(4.10)

We will see in Sect. 4.2.3, Y is related to the entropy source term and Y “ σ̂T 2

where σ̂ is the entropy creation. There will be more discussion about the entropy
balance in the next section.

4.2.3 Entropy balance

In this section, we shall relate the port-Hamiltonian formulation of the intercon-
nected chemical reaction network with the second law of thermodynamics. With
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this in mind let us compute the time-derivative of the entropy S

dS
dt “

BtrSpwq

Bw 9w

“ r´
µtr
10

T ,´
µtr
in

T ,´
µtr
20

T , 1
T s

»

—

—

—

–

0 ¨ ¨ ¨ 0 M
...

. . .
... N

0 ¨ ¨ ¨ 0 O

´M tr ´N tr ´Otr ´Y

fi

ffi

ffi

ffi

fl

»

—

—

–

µ10

T
µin

T
µ20

T

´ 1
T

fi

ffi

ffi

fl

“ 1
T µ̂

trZLExpp
Ztrµ̂
RT q

(4.11)

Denote γ̂ “
Ztrµ̂
RT . It has been shown in (van der Schaft et al. 2013a) (using the

properties of the Laplacian matrix L) that for any γ̂ P Rc

γ̂trLExppγ̂q ě 0, (4.12)

while γ̂trLExppγ̂q “ 0 if and only if Btrγ̂ “ 0. Hence, the entropy balance equation
becomes

dS

dt
“ Rγ̂trLExppγ̂q “: σ̂ ě 0 (4.13)

Here σ̂ is the irreversible entropy source term. Note that the positivity of the
irreversible entropy source term is consistent with the second law of thermodynam-
ics and is due to the positive semi-definiteness of the dissipation matrix R̂ in (4.9).
Indeed the only non-zero term of R̂ is the pm ` 1,m ` 1qth element, denoted as Y ,
which is related to the entropy source term as

Y “ σ̂T 2 (4.14)

and which is in line with equation (4.10). Furthermore, note that the entropy balance
in each chemical reaction network can be expressed as the sum of two distinct contri-
butions. One is due to changes in the non-shared species and thus vanishes at equi-
librium, while the other is due to the interconnection, see (Rao and Esposito 2016)
and (Qian and Beard 2005).

4.2.4 Asymptotic stability

In this section we aim at proving a similar result for the asymptotic stability of the
interconnected chemical reaction network based on the port-Hamiltonian formula-
tion in Sect. 3, employing the entropy-based availability function. Firstly, the strict
concavity of the total entropy S needs to be proved.
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Proposition 4.2. The total entropy of an interconnected chemical network which is com-
posed of two chemical reaction networks with shared chemical species, given in (4.7), (4.8)
and (4.9), is strictly concave.

Proof. Let S1 be the entropy of chemical reaction network 1, and S2 the entropy of
chemical reaction network 2. As has been proved in (Callen 1960), for homoge-
neous mixtures, the entropy function is necessarily concave. Moreover, the entropy
is strictly concave if at least one global extensive property (such as volume, total
mass, or total mole number) is fixed, see (Alonso and Ydstie 2001) and (Jillson and
Ydstie 2007). Thus, since the chemical reaction network is assumed to be isochoric,
i.e. dV “ 0, the entropies S1px1, T q and S2px2, T q are strictly concave. Therefore, we
have

S1pp1 ´ αqx1 ` αx1
1, T q ą p1 ´ αqS1px1, T q ` αS1px1

1, T q

S2pp1 ´ αqx2 ` αx1
2, T q ą p1 ´ αqS2px2, T q ` αS2px1

2, T q

Hence we obtain

Spp1 ´ αqx̂ ` αx̂1, T q “ S1pp1 ´ αqx̂ ` αx̂1, T q ` S2pp1 ´ αqx̂ ` αx̂1, T q

“ S1pp1 ´ αqx1 ` αx1
1, T q ` S2pp1 ´ αqx2 ` αx1

2, T q

ą p1 ´ αqS1px1, T q ` αS1px1
1, T q ` p1 ´ αqS2px2, T q

`αS2px1
2, T q

Collecting the terms, we have p1 ´ αqS1px1, T q ` p1 ´ αqS2px2, T q “ p1 ´ αqSpx̂, T q

and αS1px1
1, T q ` αS2px1

2, T q “ αSpx̂, T q. Hence we obtain

Spp1 ´ αqx̂ ` αx̂1, T q ą p1 ´ αqSpx̂, T q ` αSpx̂, T q

Then as before we define the entropy-based availability function as

Apwq :“ ´Spwq ` Spwoq `
BtrS

Bw
pwoqpw ´ woq (4.15)

where wo P ΣT is a reference point taken to be a thermodynamic equilibrium.

Theorem 4.3. Consider the interconnected chemical reaction network given by (4.7), (4.8)
and (4.9), with A : Rm`1

` Ñ R given by (4.15). Then A has a strict minimum at wo with
Apwoq “ 0, while the time-derivative dA

dt is less than or equal to zero with equality only at
wo.



4.2. Interconnection arising from boundary species 61

Proof. By Proposition 4.2, the total entropy of the interconnected chemical reaction
network is strict concave and A has a strict minimum at wo. Moreover, the time
derivative of Apwq is given as

dA
dt “ BA

Bw pwq 9w

“ ´p dS
dw pwq ´ dS

dw pwoqqtr dw
dt

“ ´

»

—

—

—

–

pµo
10qtr

T o ´
pµ10qtr

T
pµo

inqtr

T o ´
pµinqtr

T
pµo

20qtr

T o ´
pµ20qtr

T
1
T ´ 1

T o

fi

ffi

ffi

ffi

fl

tr »

—

—

—

–

0 ¨ ¨ ¨ 0 M
...

. . .
... N

0 ¨ ¨ ¨ 0 O

´M tr ´N tr ´Otr ´Y

fi

ffi

ffi

ffi

fl

»

—

—

–

µ10

T
µin

T
µ20

T

´ 1
T

fi

ffi

ffi

fl

“ ´p
µ̂trZ
T ´

pµ̂oqtrZ
T o qLExpp

Ztrµ̂
RT q

“ ´Rγ̂trLExppγ̂q ` Rpγ̂oqtrLExppγ̂q

(4.16)

where µ̂ “ RTLn x̂
x̂˚ is the vector of chemical potentials, µ̂o “ RT oLn x̂o

x̂˚ , γ̂ “
Ztrµ̂
RT “

ZtrLn x̂
x̂˚ and γ̂o “

Ztrµ̂o

RT o “ ZtrLn x̂o

x̂˚ . Since x̂˚ and x̂o are both thermodynamic
equilibria, we have

CtrLnpx̂oq “ CtrLnpx̂˚q

which is equivalent to

CtrLnp
x̂o

x̂˚
q “ pZBqtrLnp

x̂o

x̂˚
q “ 0c

BtrpZtrLnp
x̂o

x̂˚
qq “ Btrγ̂o “ 0c

Recall (van der Schaft et al. 2013a) that since L is a balanced weighted Laplacian
matrix, for any γ̂ P Rc, we have γ̂trLExppγ̂q ě 0, while γ̂trLExppγ̂q “ 0 if and only
if Btrγ̂ “ 0. Hence

pγ̂oqtrLExppγ̂oq “ 0

Therefore the time derivative of Apzq satisfies

dA

dt
“ ´Rγ̂trLExppγ̂q ď 0
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Figure 4.2: Interconnection between two simple chemical reaction networks.

4.2.5 Example: interconnection of two chemical reaction networks

Consider an interconnection of two simple chemical reaction networks, see Figure
4.2. The chemical reaction network 1 is composed of 4 species, denoted as X1, X2,
X3 and X5. Denote the forward/backward chemical reaction rate coefficients as
kf1 , kb1 for the chemical reaction 1 and kf2 , kb2 for the chemical reaction 2. Note that
m1 “ 4, r1 “ 2 and c1 “ 4, and let us fix the order of species as X1, X2, X5,
X3, the order of complexes as X1 ` X2, X2 ` X3, X5, X3, and the order of the
reactions as X2 ` X3 é X5, X1 ` X2 é X3. Then the stoichiometric matrix is

C1 “

»

—

—

–

0 ´1

´1 ´1

1 0

´1 1

fi

ffi

ffi

fl

, the complex composition matrix is Z1 “

»

—

—

–

1 0 0 0

1 1 0 0

0 0 1 0

0 1 0 1

fi

ffi

ffi

fl

,

and the incidence matrix is B1 “

»

—

—

–

0 ´1

´1 0

1 0

0 1

fi

ffi

ffi

fl

. Define the matrix of conductances

K1pT q as K1pT q “

„

κ1pT q 0

0 κ2pT q

ȷ

.

The chemical reaction network 2 is composed of 2 species, denoted as X3 and
X4, and kf3 and kb3 are the forward/backward chemical reaction rate coefficient for
the chemical reaction 3. Thus m2 “ 2, r2 “ 1 and c2 “ 2. For the modeling,
let us fix the order of species as X3, X4, and the order of complexes as X3, X4.
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Then the stoichiometric matrix is C2 “

„

´1

1

ȷ

, the complex composition matrix

is Z2 “

„

1 0

0 1

ȷ

and the incidence matrix is B2 “

„

´1

1

ȷ

. Define the matrix of

conductances K2pT q as K2pT q “ κ3pT q.
The shared species between the two chemical reaction networks is X3, and the

shared complex is X3; thus we have min “ 1 and cin “ 1. When the interconnection
takes place, the two reactors combine with each other and the shared species X3

in the two chemical reaction networks can be considered as one species. For the
interconnected chemical reaction network, let us order the species as X1, X2, X5, X3,
X4 (their concentrations are denoted as xi, i “ 1, . . . , 5), the complexes as X1 ` X2,
X5, X2 ` X3, X3, X4, and the chemical reactions as X1 ` X2 é X3, X2 ` X3 é X5,
X3 é X4. Then for the interconnected chemical reaction network, the incidence
matrix is

B “

»

—

—

—

—

—

–

0 ´1 0

´1 0 0

1 0 0

0 1 ´1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

,

the complex composition matrix is

Z “

»

—

—

—

—

—

–

1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 1 0 1 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

,

the stoichiometric matrix is

C “

»

—

—

—

—

—

–

0 ´1 0

´1 ´1 0

1 0 0

´1 1 ´1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

,

while the matrix of conductances is

K1pT q “

»

–

κ1pT q 0 0

0 κ2pT q 0

0 0 κ3pT q

fi

fl ,
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with L “ BKpT qBtr.
Define the state vector w “ rx̂, U str “ rx1, x2, x5, x3, x4, U str with U the total

internal energy, the Hamiltonian function H “ ´S with S the total entropy, and
the co-state vector Bp´Sq

Bw “ r
µ̂
T ,´ 1

T str “ r
µ1

T , µ2

T , µ5

T , µ3

T , µ4

T ,´ 1
T str with µi the chem-

ical potential of ith species, i “ 1, . . . , 5 and T the temperature. Then the port-
Hamiltonian formulation for the interconnected chemical reaction network shown
in Figure 4.2 can be written as

»

—

—

—

—

—

—

—

—

—

–

9x1

9x2

9x5

9x3

9x4

9U

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

0 ¨ ¨ ¨ 0 M1

. . . M2

... 0
... M3

. . . N1

0 ¨ ¨ ¨ 0 O1

´M1 ´M2 ´M3 ´N1 ´O1 Y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

µ1

T
µ2

T
µ5

T
µ3

T
µ4

T

´ 1
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.17)

where

M1 “ Tκ2pT qrExpp
µ1`µ2

RT q ´ Expp
µ3

RT qs

M2 “ Tκ2pT qrExpp
µ1`µ2

RT q ´ Expp
µ3

RT qs ` Tκ1pT qrExpp
µ2`µ3

RT q ´ Expp
µ5

RT qs

M3 “ ´Tκ1pT qrExpp
µ2`µ3

RT q ´ Expp
µ5

RT qs

N1 “ ´Tκ2pT qrExpp
µ1`µ2

RT q ´ Expp
µ3

RT qs ` Tκ1pT qrExpp
µ2`µ3

RT q ´ Expp
µ5

RT qs

´Tκ3pT qrExpp
µ3

RT q ´ Expp
µ4

RT qs

O1 “ Tκ3pT qrExpp
µ3

RT q ´ Expp
µ4

RT qs

Y “ µtr
1 M1 ` µtr

2 M2 ` µtr
5 M3 ` µtr

3 N1 ` µtr
4 O1

4.3 Interconnection arising from port interconnection

In this section, it will be shown that the procedure for interconnection of chemical
reaction networks can be also interpreted as arising from power-port interconnec-
tion at the boundary shared chemical species, see Figure 4.3. When the two chemical
reaction networks connect to each other, there is a transformation of mass and en-
ergy between the two reactors: the fluxes of the boundary shared species add up to
zero, and the difference of the chemical potentials of the boundary shared species
are equal to zero. Thus the interconnection of two chemical reaction networks can
be seen to result from the power-port interconnection constraints
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Figure 4.3: Interconnection through shared boundary species.

µb1 “ µb2

Fb1 ` Fb2 “ 0

with µbi the chemical potential of the boundary shared species in each chemical
reaction network, and Fbi the influx/efflux of the boundary shared species in each
chemical reaction network, i “ 1, 2.

In order to simplify the modeling, we assume that the heat transfer between the
two reactors is much faster than any reaction time scale, so that the temperatures of
two reactor are equal, i.e., T “ T1 “ T2. We suppose that only the shared species can
transfer between the reactors. Moreover, we suppose that the change of pressure P

can be neglected in each reactor and we have P “ P1 “ P2 with P constant.

4.3.1 Port-Hamiltonian structure

Let us denote Zi as the complex composition matrix, Bi as the incidence matrix, Ci

the stoichiometric matrix and Ki the matrix of conductances, and finally the Lapla-
cian matrix Li “ BiKiB

tr
i , for each chemical reaction network, i “ 1, 2.

Let xi be the state vector, Hi “ ´Si with Si the entropies, be the Hamiltonian
function, and BHi

Bxi
“

µi

T with µi the vector of chemical potentials, be the co-state
vector of each chemical reaction network, i “ 1, 2. Since the temperatures in both
reactors are considered to be equal for all time, it is sufficient to consider only mass
balance equations, i.e., the dynamics of the concentrations of the species. Then the
port-Hamiltonian formulation of each chemical reaction network reduces to (3.6),
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9xi “ ´ZiBiKiB
tr
i ExppZtr

i Ln xi

x˚
i

q

“ ´ZiBiKiB
tr
i Expp

Ztr
i µi

RT q

“ ´ZiBiKiB
tr
i Expp

Ztr
i

R
BH
Bx q

with µi “ RTLn xi

x˚
i

.

Define the state vector x “ rx1, x2str, the Hamiltonian function H “ ´S “

´pS1 `S2q, and the co-state vector BH
Bx “ r BH

Bx1
, BH

Bx2
str “ r

µ1

T , µ2

T str, then the dynamics
of the interconnected chemical reaction network can be written as

9x “

„

9x1

9x2

ȷ

“

«

´Z1B1K1B
tr
1 Expp

Ztr
1

R
BH
Bx1

q

´Z2B2K2B
tr
2 Expp

Ztr
2

R
BH
Bx2

q

ff

`

„

Fb1

Fb2

ȷ

“ ´ZBKBtrExppZtr

R
BH
Bx q ` GΛ

“ ´ZLExppZtr

R
BH
Bx q ` GΛ

(4.18)

0 “ µb1 ´ µb2 “ GtrT
BH

Bx
(4.19)

where Λ P Rk is a vector of Lagrange multipliers, G “

„

Cb

´Cb

ȷ

P Rmˆk is a constant

matrix decided by the port interconnection with Fb1 “ ´Fb2 “ CbΛ, k P N, Z “
„

Z1 0

0 Z2

ȷ

is the complex composition matrix, B “

„

B1 0

0 B2

ȷ

is the incidence

matrix, and K “

„

K1 0

0 K2

ȷ

is the matrix of conductance, L “ BKBtr.

Here we introduce the methodology in (van der Schaft 2013) to eliminate the
mass kinetics and power port constraints in the dynamics (4.18) and (4.19). Assume
that the matrix G is a full-rank matrix of rank k. Define a matrix D P Rmˆpm´kq of
rank m ´ k such that DtrG “ GtrD “ 0.

Define a new vector z P Rm such that

z “

„

z1
z2

ȷ

“

„

Dtr

Gtr

ȷ

x

Since the rows of Dtr are orthogonal to the rows of Gtr, the mapping x Ñ z is
a well-defined coordinate transformation. In the new coordinates z, the dynamics
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(4.18) takes the form

9z “

„

z1
z2

ȷ

“

„

Dtr

Gtr

ȷ

9x

“ ´

„

Dtr

Gtr

ȷ

ZLExppZtr

R
BH
Bx q `

„

Dtr

Gtr

ȷ

GΛ

“ ´

„

DtrZL

GtrZL

ȷ

Exp
´

Ztr

R rD,Gs BH̃
Bz

¯

`

„

0

GtrG

ȷ

Λ

“ ´

„

DtrZL

GtrZL

ȷ

Exp
´

1
R rZtrD BH̃

Bz1
, ZtrG BH̃

Bz2
s

¯

`

„

0

GtrG

ȷ

Λ

(4.20)

with H̃ the Hamiltonian function expressed in the new coordinates z.
From (4.19), we obtain

0 “ GtrT
BH

Bx
“ GtrT rD,Gs

BH̃

Bz
“ T r0, GtrGs

BH̃

Bz
(4.21)

which is equivalent to

GtrG
BH̃

Bz2
“ 0 (4.22)

Since the matrix GtrG is invertible, this implies that BH̃
Bz2

“ 0. Then the equation
(4.20) becomes

9z “

„

z1
z2

ȷ

“ ´

„

DtrZL

GtrZL

ȷ

Exp

˜

ZtrD

R

BH̃

Bz1

¸

`

„

0

GtrG

ȷ

Λ (4.23)

Since in (4.23), Λ only influences the z2-dynamics, the constrained dynamics is
determined only by the z1-dynamics. Therefore the dynamics reduces to the form

9z1 “ Z̃BKBtrExpp
Z̃

R

BH̃

Bz1
q (4.24)

with Z̃ “ DtrZ. After elimination of the constraint of equal chemical potentials of
the shared species, the equation (4.24) can thus be seen to result in the dynamics
(4.5) in the previous section.
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Figure 4.4: Port interconnection between two isothermal chemical reaction networks.

4.3.2 Example: interconnection of two isothermal chemical reac-
tion networks

Consider an interconnection of two chemical reaction networks, see Figure 4.4. The
chemical reaction network 1 is composed of 2 species, denoted as X1 and X2, with
kf1 and kb1 the forward/backward chemical reaction rate coefficients. Thus we have
m1 “ 2, r1 “ 1 and c1 “ 2. The chemical reaction network 2 is composed of 2

species, denoted as X2 and X3, with kf2 and kb2 are the forward/backward chemical
reaction rate coefficients. Hence we have m2 “ 2, r2 “ 1 and c2 “ 2. The intercon-
nection takes place when the two chemical reactor are connected to each other by a
tube, and we assume that only the species X2 can pass through this tube.

Denote the complex composition matrix of each chemical reaction network as

Z1 and Z2, with Z1 “

„

1 0

0 1

ȷ

and Z2 “

„

1 0

0 1

ȷ

; denote the incidence matrix

of each chemical reaction network by B1 and B2, with B1 “

„

´1

1

ȷ

and B2 “

„

´1

1

ȷ

; denote the matrix of conductances of each network as K1 and K2, with

K1 “ κ1 P R` and K2 “ κ2 P R`; denote the concentrations of X1 and X2 in
the chemical reaction network 1 as x1

1 and x1
2, the state vector x1 “ rx1

1, x
1
2str, and

the concentrations of X2 and X3 in the chemical reaction network 2 as x2
2 and x2

3,
the state vector x2 “ rx2

2, x
2
3str. Then the dynamics of the interconnected chemical
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reaction network can be written as

»

—

—

—

—

—

–

9x1
1

9x1
2

9x2
2

9x2
3

fi

ffi

ffi

ffi

ffi

ffi

fl

“

«

´Z1B1K1B
tr
1 0

0 ´Z2B2K2B
tr
2

ff

»

–

ExppZtr
1 Ln x1

x˚
1

q

ExppZtr
2 Ln x2

x˚
2

q

fi

fl ` GΛ

“ ´

»

—

—

–

κ1 ´κ1 0 0

´κ1 κ1 0 0

0 0 κ2 ´κ2

0 0 ´κ2 κ2

fi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

x1
1

x1˚
1

x1
2

x1˚
2

x2
2

x2˚
2

x2
3

x2˚
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

–

0

1

´1

0

fi

ffi

ffi

fl

Λ

(4.25)

where G “ r0, 1,´1, 0str, GΛ is the vector of boundary flux between the two chem-
ical reaction networks. The constraint of equal chemical potential of the shared
species X2 is

µ1
2 “ µ2

2 (4.26)

which can be rewritten as

Ln
x1
2

x1˚
2

“ Ln
x2
2

x2˚
2

(4.27)

This is equivalent to

x1
2

x1˚
2

“
x2
2

x2˚
2

(4.28)

and thus the power port constraint can be simply written as

0 “ GtrT
BH

Bx
“ GtrRTLn

x

x˚
(4.29)

A matrix D P R4ˆ3 of rank 3 such that DtrG “ GtrD “ 0 is given by

D “

»

—

—

–

1 0 0

0 1 0

0 1 0

0 0 1

fi

ffi

ffi

fl

(4.30)
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Define the new state vector z “

„

z1
z2

ȷ

“

„

Dtr

Gtr

ȷ

x “

»

—

—

–

x1
1

x1
2 ` x2

2

x2
3

x1
2 ´ x2

2

fi

ffi

ffi

fl

. It can be

checked that the mapping x Ñ z is a well-defined coordinate transformation. The
dynamics (4.25) in the z-coordinates takes the form

9z “

„

Dtr

Gtr

ȷ

9x

“ ´

„

Dtr

Gtr

ȷ

»

—

—

–

κ1 ´κ1 0 0

´κ1 κ1 0 0

0 0 κ2 ´κ2

0 0 ´κ2 κ2

fi

ffi

ffi

fl

Exp
`

1
R

BH
Bx

˘

`

„

Dtr

Gtr

ȷ

GΛ

“ ´

„

Dtr

Gtr

ȷ

»

—

—

–

κ1 ´κ1 0 0

´κ1 κ1 0 0

0 0 κ2 ´κ2

0 0 ´κ2 κ2

fi

ffi

ffi

fl

Exp
´

1
R rD,Gs BH̃

Bz

¯

`

„

0

GtrG

ȷ

Λ

“ ´

»

—

—

–

κ1 ´κ1 0 0

´κ1 κ1 κ2 ´κ2

0 0 ´κ2 κ2

´κ1 κ1 ´κ2 κ2

fi

ffi

ffi

fl

Exp
´

1
R

”

D BH̃
Bz1

, G BH̃
Bz2

ı¯

`

»

—

—

–

0

0

0

2

fi

ffi

ffi

fl

Λ

(4.31)

The constraint (4.29) can be rewritten as

0 “ GtrT BH
Bx “ GtrT rD,Gs BH̃

Bz

“ T r0, GtrGs BH̃
Bz “ T r0, 2s

«

BH̃
Bz1
BH̃
Bz2

ff

(4.32)

which is equivalent to

BH̃

Bz2
“ 0 (4.33)

Since the boundary flux Λ only influences the z2-dynamics, the constrained dy-
namics is determined only by the z1-dynamics. Hence the system reduces to

9z1 “ ´

»

–

κ1 ´κ1 0

´κ1 κ1 κ2

0 0 ´κ2

fi

flExp

˜

D

R

BH̃

Bz1

¸

(4.34)
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It is easy to verify that we will obtain exactly the same formulation if we use the
modeling approach in Sect. 4.2.2.

4.4 Conclusion

In this chapter, we offer two different modeling approaches for the interconnection
of chemical reaction networks in quasi port-Hamiltonian form. The main differ-
ence of the two approaches is the different view on the shared species. Considering
the interconnection of the two chemical reaction networks, the assumption made in
Sect. 4.2 is that the shared species become the same species, while the starting point
of Sect. 4.3 is that there is an inflow and outflow between them. We have proved
that both approaches lead to the same result, and thus we can choose one of the two
modeling approaches according to the specific physical structure of the systems un-
der consideration.





Chapter 5

Stabilization of control contact
systems

5.1 Introduction

It is well-known that the geometric structure of irreversible thermodynamic sys-
tems is based on Gibbs’ fundamental equation. The canonical differential-geometric
structure underlying Gibbs’ relation is called contact structure (Arnold 1989, Eber-
ard et al. 2007, Libermann and Marle 1987). The control input-output contact sys-
tems which have been proposed in (Eberard et al. 2007), are one of the geometric
representations of those thermodynamic systems. Today, some necessary conditions
for the stability of the linearisation of contact vector fields are given in (Favache
et al. 2009) and a new framework of conservative controlled contact systems has
been recently proposed in (Ramirez, Maschke and Sbarbaro 2013a), where the state
and co-state variables are considered as independent variables. However, any state
feedback (except the trivial constant one) does not preserve the contact structure
in closed-loop and thus the closed-loop contact system is no longer a contact sys-
tem. To cope with this challenge, Ramirez et al. proposed a modified contact form
in (Ramirez 2012). By adding the exterior derivative of a function F which fulfills
the condition that it does not depend on the coordinate associated to the Reeb vec-
tor field, it turns out to be possible to keep the contact structure preserved, in the
application of the IDA-PBC method (Ortega et al. 2002).

The problem remains in the study of stability and stabilization for the control
input-output contact system. Favache analyzed the stability of the restriction of con-
tact vector fields to certain invariant Legendre submanifolds at equilibrium points in
her thesis and later, Ramirez proposed a class of structure-preserving state feedback
to keep the closed-loop contact system conservative and proved that the lineariza-
tion of a contact vector field at equilibrium points has at most n stable eigenvalues
when the manifold has dimension 2n ` 1. Therefore, in this chapter, a series of con-
trol designs will be proposed in order to add some constraints while choosing the
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structure-preserving state feedback and to determine the stable invariant Legendre
submanifold on which the closed-loop contact system is partially stable. Using an
analogous methodology, see (Kotyczka 2013), the control synthesis of the structure-
preserving state feedback will be analyzed through the local study of the lineariza-
tion of the closed-loop contact system at an equilibrium point and through the dis-
cussion of the restriction of the desired Hamiltonian function which generates the
stable invariant Legendre submanifold.

The chapter is organized as follows. In Sect. 5.2, we recall the definition of con-
tact systems; in Sect. 5.3, the control synthesis is proposed; and in Sect. 5.4 and 5.5
we apply the previous concepts to two simple thermodynamic models, namely the
heat exchanger and a simple isothermal chemical reaction.

5.2 Structure-preserving feedback of controlled contact
system

In this section, we review some notations and definitions from contact system as
can be found in (Libermann and Marle 2012), (Eberard et al. 2007) and (Favache
et al. 2010).

5.2.1 Controlled contact system

Control contact systems are generalizations of Hamiltonian systems adapted to ir-
reversible Thermodynamical systems. They have been defined and their system-
theoretical and some control properties have been studied in detail, see (Eberard
2006), (Favache et al. 2009) and (Ramirez 2012). Defined by n ` 1 extensive vari-
ables and n intensive variables, contact systems are defined on a thermodynamic
phase space endowed with a contact geometry. In the sequel we recall briefly some
notations and definitions that are used in this chapter and refer to (Libermann and
Marle 1987) for the precise mathematical definitions. First, we start from the defini-
tion of contact manifold, contact form, contact vector field, and the Reeb vector field.

Definition 5.1. A contact structure on M is defined by a 1-form θ of class p2n ` 1q

satisfying θ ^ pdθqn ‰ 0, where ^ denotes the wedge product. θ is called a contact
form and the pair pM, θq is called a contact manifold.

According to Darboux’s theorem for Pfaffian forms of constant class, there exists a
set of canonical coordinates px0, x, pq P R1ˆnˆn which the contact form θ takes the
form
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θ “ dx0 ´

n
ÿ

i“1

pidxi

Definition 5.2. The Reeb vector field E associated with the contact form θ which
is the unique vector field satisfying iEθ “ 1 and iEdθ “ 0, where iE denotes the
contraction by the vector field E.

In canonical coordinates, the Reeb vector field is expressed as E “ B
Bx0

.

Definition 5.3. A vector field X on the contact manifold pM, θq is a contact vector
field if and only if there exists a smooth function ρ P C8pMq such that

LXθ “ ρθ

where LX denotes the Lie derivative with respect to the vector field X .

Every contact vector field can be generated by a contact Hamiltonian K and con-
versely. In a set of canonical coordinates px0, x, pq P R1ˆnˆn, the contact vector field
corresponding to contact Hamiltonian K can be expressed as

XK “

»

–

K

0

0

fi

fl `

»

–

0 0 ´ptr

0 0 ´In
p In 0

fi

fl

»

—

–

BK
Bx0

BK
Bx
BK
Bp

fi

ffi

fl

(5.1)

where In denotes the identity matrix of order n.
By using these definitions, control contact systems are defined as follows (Ramirez

2012).

Definition 5.4. A control contact system affine in the scalar input uptq is defined by
two functions K0 P C8pMq and Kc P C8pMq, with dynamics

dx̃

dt
“ XK0 ` XKcu

where K0 is called internal contact Hamiltonian, and Kc is called the interaction con-
tact Hamiltonian.

In the sequel we shall only consider contact Hamiltonians that are invariant for
the Reeb vector field. That is, in canonical coordinates, they do not depend on the
x0 coordinate.
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5.2.2 Structure-preserving feedback

In this section we will recall some results on structure-preserving state feedbacks
u “ αpxq, as shown in (Ramırez et al. 2011). It is shown that there exists a class of
state feedback such that the closed-loop contact system is a contact system, how-
ever with respect to a modified contact structure. This modified contact structure is
defined with respect to modified contact form which is expressed as

θd “ θ ` dF (5.2)

where dF is the differential of a function which is invariant for the Reeb vector field.
The associated feedback α P C8pMq may be written as

αpx, pq “ Φ
1

˝ Kc (5.3)

for some functions Φ P C8pRq. The closed-loop system is defined by vector field
X̂K defined as

X̂K “ XK0 ` αXKc

“ XK0 ` pΦ
1

˝ KcqXKc

(5.4)

This is a contact vector field generated with respect to the modified contact form
θd and the shaped contact Hamiltonian K̂

K̂ “ K0 ` Φ ˝ Kc ` cF (5.5)

where cF P R is a constant. In this dissertation, we assume that the contact Hamil-
tonian K̂ is strict, i.e., the contact vector field X̂K does not depend on the coordinate
x0.

5.3 Stabilization of the closed-loop contact systems

The structure-preserving feedback introduced in (Ramirez 2012), may only achieve
partial stability with respect to a Legendre submanifold of the closed-loop contact
form θd “ θ ` dF . In this section we elaborate on this partial stabilization problem
step by step, by showing how to determine the conditions of equilibria, how to
choose the function Φ defining the structure-preserving feedback αpx, pq as in (5.3),
and thus how to express the stable Legendre submanifold in order to stabilize the
closed-loop contact systems.
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5.3.1 Equilibrium

In this subsection, we analyze the equilibrium conditions of the closed-loop contact
vector field (5.4) with shaped Hamiltonian (5.5) and with respect to the function Φ

defining the feedback α “ Φ1 in equation (5.3). Let us first recall the characteriza-
tion of equilibrium points for the closed-loop contact vector field. px˚

0 , x
˚, p˚q is an

equilibrium point of the closed-loop contact vector field XK “ XK0 ` αXKc with
contact Hamiltonian K̂ given by (5.5) if and only if the three following conditions
are fulfilled (Favache et al. 2009):

K̂ |px˚
0 ,x˚,p˚q“ 0 (5.6)

BK̂

Bp
|px˚

0 ,x˚,p˚q“ 0 (5.7)

BK̂

Bx
|px˚

0 ,x˚,p˚q“ ´p˚ BK̂

Bx0
|px˚

0 ,x˚,p˚q (5.8)

Using the fact that the internal Hamiltonian K0 and the control Hamiltonian
function Kc are invariant for the Reeb vector field, these conditions are equivalent
to

pK0 ` pΦ ˝ KcqKcq |px˚
0 ,x˚,p˚q“ 0 (5.9)

ˆ

BK0

Bp
`

BKc

Bp

`

Φ1 ˝ Kc

˘

˙

|px˚
0 ,x˚,p˚q“ 0 (5.10)

ˆ

BK0

Bx
`

BKc

Bx
pΦ1 ˝ Kcq

˙

|px˚
0 ,x˚,p˚q“ 0 (5.11)

Remark 5.5. Note that the equation (5.9) implies

Φ ˝ Kc |px˚
0 ,x˚,p˚q“ r´K0 ¨ pKcq´1s |px˚

0 ,x˚,p˚q

as long as Kcpx˚
0 , x

˚, p˚q ‰ 0. Furthermore, note that if the equilibrium of the closed-
loop contact system is also an equilibrium of the open-loop contact system, this im-
plies that the Hamiltonian function K0 and the shaped contact Hamiltonian K̂ both
satisfy the equations (5.6), (5.7) and (5.8), thus the equilibrium conditions of closed-
loop contact systems are satisfied if Φ ˝ Kc |px˚

0 ,x˚,p˚q“ 0 and Φ1 ˝ Kc |px˚
0 ,x˚,p˚q“ 0.
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5.3.2 The Jacobian matrix DX̂K of the closed-loop contact vector
field X̂K

In this subsection, we shall express the Jacobian matrix DX̂K in terms of the function
Φ defining the structure-preserving feedback α in (5.3). Then we may use the Root
locus method and look for the closed-loop poles of the system in order to determine
local stability of the contact system.

Consider a closed-loop contact vector field X̂K “ XK0 `αXKc which is generated
by a shaped contact Hamiltonian function K̂ “ K0 ` Φ ˝ Kc ` cF in the canonical
coordinates px0, x, pq. Since K̂ is strict, it has been proven in (Ramirez 2012, chap.4)
that for a strict shaped contact vector field X̂K of the closed-loop contact system, the
Jacobian matrix DX̂K has one eigenvalue 0 and 2n non-zero eigenvalues which are
symmetrical with respect to the imaginary axis.

Therefore, in canonical coordinates px0, x, pq, the Jacobian matrix of the closed-
loop contact vector field can be written as

DX̂K “
BX̂K

Bpx0, x, pq
“ DXK0 ` D pαXKcq “ DXK0 ` D

”

pΦ
1

˝ KcqXKc

ı

(5.12)

where

D
´

pΦ
1

˝ KcqXKc

¯

“ DXKc ¨ pΦ
1

˝ Kcq ` Φ
2

¨
BtrKc

Bx
¨ XKC

We observe that the Jacobian matrix DX̂K depends on K0, Kc, Φ
1
px˚

0 , x
˚, p˚q

and Φ
2
px˚

0 , x
˚, p˚q. Actually, we can get some informations about the value of

Φ
1
px˚

0 , x
˚, p˚q by the equilibrium condition (5.9), (5.10), and (5.11) in Sec. 5.3.1. Hence

the second derivative of Φ, instead of Φpx˚
0 , x

˚, p˚q and Φ1px˚
0 , x

˚, p˚q, determines
the poles of DX̂K.

This resembles the Root Locus method to determine the dynamic behavior of
closed-loop contact system by changing the output gain, that is to say, the value
of

´

Φ
2

˝ KC

¯

px‹
0, x

‹, p‹q. We know that one of the poles is zero, i.e., δ0 “ 0, and

that the remaining 2n poles can be written as δ˘i “ ˘rie
iθ, i “ 1, . . . , n. Then

the determinant of Jacobian matrix of the closed-loop contact vector field can be
rewritten as

detpδI2n`1 ´ DX̂Kq “ δ
n
ź

i“1

pδ ´ δ˘iq “ δ
n
ź

i“1

pδ ˘ rie
iθq (5.13)

Now, the poles of the contact system can be determined by comparing the two
expressions of DX̂K given by (5.12) and (5.13).
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5.3.3 Computation of the stable Legendre submanifold

In this section, a stable submanifold Legendre will be built for the partial stabiliza-
tion of the closed-loop contact system.

Indeed, according to the stable manifold theorem (Marle 2003), for every contact
vector field, there exists a unique submanifold of the contact manifold, which is in-
variant generated by the contact form and with respect to this vector field, tangent
at the equilibrium point, to a stable linear subspace. Normally, since the shaped con-
tact form θd is different form θ and thus X̂K is different from the unshaped vector
field, LUd generated by θd is different from the one generated by θ. Moreover, it is of
interest to check the invariance condition of LUd generated by θd, because for a ther-
modynamic system, LUd is generated by the internal energy Ud of the system. That
is to say, we can shape the internal energy of the system Ud, and even the stability
properties of the system, through shaping the Legendre submanifold LUd generated
by θd.

By considering under which condition the obtained closed-loop contact system
is also conservative, one asks for the closed-loop contact vector field leaving invariant
some Legendre submanifold Ld. This is satisfied if and only if (Ramirez 2012, Page
56)

K0px, pq |Ld
`Φ ˝ Kcpx, pq |Ld

“ ´cF (5.14)

Interestingly, the closed-loop contact system leaves the Legendre submanifold
LUd

invariant, which is derived from a desired function Udpxq. In canonical coordi-
nates px0, x, pq, this Legendre submanifold is given as

LUd :

$

&

%

xd
0 “ Udpxq

x “ x

pd “ BUd

Bx pxq

Using this expression, the equation (5.14) can be rewritten as

K0px,
BUd

Bx
pxqq ` Φ ˝ Kcpx,

BUd

Bx
pxqq “ ´cF (5.15)

This condition turns out to be an equation for Udpxq, which is a first-order partial
differential equation. To solve this equation for Udpxq, the initial condition of Udpxq

is required, which is provided by the closed-loop equilibrium conditions given in
(5.6), (5.7) and (5.8) in Sect. 5.3.1. Now we have to investigate the uniqueness of the
solution of equation (5.15). Since the equation (5.15) is generally non-linear, there
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could exist multiple solutions if it is solvable. Note that by the center manifold the-
orem, it follows that for a hyperbolic equilibrium point, there exists unique stable
and one unstable submanifolds of dimension n which are both Legendre subman-
ifolds. Moreover, at the equilibrium point, the invariant Legendre submanifold is
tangent to a stable linear subspace denoted as Π´. This tangent relation could offer
us some restrictions on the dUd

dx px˚q which enable us to remove invalid solutions for
equation (5.15).

5.3.4 Lyapunov function and availability function

So far we have found the invariant Legendre submanifold on which the closed-loop
contact system is partially stable. In this section, we will analyze the global asymp-
totic stability of closed-loop contact system on the invariant Legendre submanifold
and Lyapunov’s direct method will be exploited.

Recall the conditions for a Lyapunov function under the assumption that the
Lyapunov function depends only on x (Ramirez 2012). Consider a contact man-
ifold pM, θdq and a set of canonical coordinates px1

0, x, pq, a contact vector field
X̂K “ XK0 ` pΦ

1
˝ KcqXKc , with strict contact Hamiltonian K̂ “ K0 ` Φ ˝ Kc,

a Legendre submanifold L Ă M solving the Pfaffian equation θd “ 0, an initial
state px1

0p0q, xp0q, pp0qq P L, and the equilibrium state px
1˚
0 , x˚, p˚q P L of X . Let

V px, pq : M Ñ R be a continuously differentiable function on M such that

V px˚q “ 0 (5.16)

V pxq |Lą 0, ,@px0, x, pq |LP tL ´ px˚
0 , x

˚, p˚qu (5.17)

dV

dt
“ ´

BK0

Bp

BV

Bx
|L `

BK0

Bp

BV

Bx
|L pΦ

1
˝ Kcq |Lă 0,@px0, x, pq P tL ´ px˚

0 , x
˚, p˚qu

(5.18)

Then px0, x, pq “ px˚
0 , x

˚, p˚q is an asymptotically stable equilibrium. Let us de-
fine an availability function, based on the desired Hamiltonian function Ud, as a
Lyapunov function candidate, and as

Apxq “ Udpxq ´ Udpx˚q ´ ktrpx ´ x˚q (5.19)
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Figure 5.1: Two thermodynamic systems interacting through a conducting wall.

where k “ BUd

Bx px˚q. We know, from Sect. 5.3.3, that the desired contact Hamiltonian
Ud is shaped from the shaping of the contact from θd and thus from the structure-
preserving feedback. Therefore, we need to check if the desired Hamiltonian func-
tion obtained from equation (5.15) makes the availability function (5.19) satisfy the
conditions (5.16), (5.17), and (5.18).

It follows that the time derivative of A can be written as

dA
dt “ p BUd

Bx pxq ´ BUd

Bx px˚qqtr dx
dt

“
`

BU
Bx pxq ´ BU

Bx px˚q
˘tr “RJ BU

Bx pxq ` gpx, uq
‰

“ ´ BU
Bx px˚qRJ BU

Bx pxq `
`

BU
Bx pxq ´ BU

Bx px˚q
˘tr

gpx, uq

“ ´γ BU
Bx px˚qJ BU

Bx pxqtS,UuJ `
`

BU
Bx pxq ´ BU

Bx px˚q
˘tr

gpx, uq

(5.20)

Therefore, if the structure-preserving state feedback has been well chosen, in
order that A is a Lyapunov function, it suffices to prove that the right-hand side of
equation (5.20) is less than or equal to zero.

5.4 Example I: the heat exchanger

Consider two simple thermodynamic systems, indexed by 1 and 2, which interact
through a conducting wall, given in Figure 5.1. The dynamics of the interconnected
system can be written as the following equation:

»

–

¨

S1
¨

S2

fi

fl “ λp
1

BU
BS2

´
1

BU
BS1

q

„

0 ´1

1 0

ȷ

«

BU
BS1

BU
BS2

ff

` λe

«

0
1

BU
BS2

´ 1
u

ff

u
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where S1 and S2 are the entropies of subsystem 1 and 2, with λ P R and λe P R
denoting Fourier’s heat conduction coefficients of the interacting wall and of the
external environment. UpS1, S2q “ U1pS1q ` U2pS2q is the internal energy of the
overall system, which is the sum of the internal energy of each subsystem denoted
as U1pS1q and U2pS2q. Furthermore, uptq represents an external heat source which
is the controll input, and Teptq P R` is a time dependent external heat source. This
heat exchanger system can be written as an irreversible port-Hamiltonian system
given by (2.12) in Sect. 2.3, that is,

9x “ Rpx,
BU

Bx
pxqqJ BU

Bx
pxq ` W px,

BU

Bx
q ` gp

BU

Bx
quptq

As follows, define the state vector x “ rS1, S2str, the Hamiltonian function H “

UpS1, S2q and the co-state vector BU
Bx “ r BU

Bx1
, BU

Bx2
str “ rT1, T2str. Furthermore, define

the modulating function as follows:

Rpx,
BU

Bx
q “ λp

1

T2
´

1

T1
q,

J “

„

0 ´1

1 0

ȷ

,

W “ ´λe

„

0

1

ȷ

,

g “
λe

T2

„

0

1

ȷ

,

Making use of the lift of IPHS, let p “ rp1, p2str, we obtain the expression of the
closed-loop contact Hamiltonian K̂ “ K0 ` Φ ˝ Kc given by

K0px, pq “ ´Rpx, BU
Bx qptrJ T pxq ` p BU

Bx ´ pqtrW

“ ´λp 1
T2

´ 1
T1

qpT1p2 ´ T2p1q ´ λepT2 ´ p2q
(5.21)

Kcpx, pq “ p
BU

Bx
´ pqtrg “

λe

T2
pT2 ´ p2q (5.22)
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Then the closed-loop contact vector field is X̂K “ XK0 ` pΦ
1

˝ KcqXKc , where in
canonical coordinates px0, x, pq, the vector field XK0 , XKc are expressed as

XK0
“

»

—

—

–

K0 ´ ptr BK0

Bp

´ BK0
Bp

ptr BK0

Bx0
` BK0

Bx

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

´T2λe

´λT2p 1
T2

´ 1
T1

q

λT1p 1
T2

´ 1
T1

q ´ λe

λp
T2p1

T 2
1

´
p2

T2
q BT1

BS1

λp
T1p2

T 2
2

´
p1

T1
q BT2

BS2
´ λe

BT2

BS2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

XKc “

»

—

—

–

Kc ´ ptr BKc

Bp

´ BKc
Bp

ptr BKc

Bx0
` BKc

Bx

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

λe

0

λe

T2

0

p2λe

T 2
2

BT2

BS2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Recalling the equilibrium conditions of closed-loop contact vector field (5.6),
(5.7) and (5.8) at the equilibrium point px˚

0 , x
˚, p˚q, we have

K̂ |px˚
0 ,x˚,p˚q“ pK0 ` ΦpKcq |px˚

0 ,x˚,p˚q“ 0

BK̂

Bp
|px˚

0 ,x˚,p˚q“

˜«

BK0

Bp1

BK0

Bp2

ff

` Φ1pKcq

«

BKc

Bp1

BKc

Bp2

ff¸

|px˚
0 ,x˚,p˚q“ 0

˜

BK̂

Bx
` pp˚qtr

BK̂

Bx0

¸

|px˚
0 ,x˚,p˚q“

˜«

BK0

Bx1

BK0

Bx2

ff

` Φ1pKcq

«

BKc

Bx1

BKc

Bx2

ff¸

|px˚
0 ,x˚,p˚q“ 0

or equivalently

´λp
1

T2
´

1

T1
qpT1p

˚
2 ´ T2p

˚
1 q ´ λepT2 ´ p˚

2 q ` Φ

ˆ

λe

T2
pT2 ´ p˚

2 q

˙

“ 0

«

λT2p 1
T2

´ 1
T1

q

´λT1p 1
T2

´ 1
T1

q ` λe

ff

` Φ1

ˆ

λe

T2
pT2 ´ p˚

2 q

˙

«

0

´λe

T2

ff

“ 0
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and thus at the equilibrium point, we have

T˚
1 “ T˚

2 “ p˚
1 “ p˚

2 (5.23)

Kcpx˚, p˚q “ 0 (5.24)

ΦpKcpx˚, p˚qq “ Φp0q “ 0 (5.25)

Φ1pKcpx˚, p˚qq “ Φ1p0q “ T˚ (5.26)

Then, by making use of the expression (5.12) and the equations above (5.23),
(5.24), (5.25), and (5.26), we obtain the expression of the Jacobian matrix of closed-
loop contact vector field DX̂K in canonical coordinates px0, x, pq. Namely, at equi-
librium point, the expression of DX̂Kpx˚

0 , x
˚, p˚q defined as in (5.27).

DX̂Kpx˚, x˚, p˚q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 ´λe
BT2

BS2
`

λ2
e

T˚
BT2

BS2
Φ

2
0 ´

λ2
e

T˚ Φ
2

0 ´ λ
T˚

BT1

BS1

λ
T˚

BT2

BS2
0 0

0 λ
T˚

BT1

BS1
´pλ`λe

T˚ q BT2

BS2
`

λ2
e

T 2
2

BT2

BS2
Φ

2
0 ´

λ2
e

T˚2Φ
2

0 ´ 2λ
T˚ p BT1

BS1
q2 2λ

T˚
BT1

BS1

BT2

BS2

λ
T˚

BT1

BS1
´ λ

T˚
BT1

BS1

0 2λ
T˚

BT1

BS1

BT2

BS2

r´
2pλ`λeq

T˚ `
λ2
e

T˚2Φ
2
sp BT2

BS2
q2

`λe
B2T2

BS2
2

´ λ
T˚

BT2

BS2
rλ`λe

T˚ ´
λ2
e

T˚2Φ
2
s BT2

BS2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.27)

with Φ
2

“ Φ
2
pKcpx˚, p˚qq “ Φ

2
p0q and T˚ “ T˚

1 “ T˚
2 . The determinant of the

Jacobian matrix DX̂Kpx˚
0 , x

˚, p˚q is computed as

detpδIn´DX̂Kq “ δ

»

–

´δ4 `

´

λ2
e

T ‹2Φ
2
B ` A2 ` C2 ` 2D

¯

δ2`
´

2λ3λ2
e

T 5 p BT2

BS2
q2p BT1

BS1
q2Φ

2
´

λ2
e

T ‹2Φ
2
BA2 ` A2C2 ´ 2ACD ` D2

¯

fi

fl
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(5.28)

where

A “
λ

T˚

BT1

BS1
(5.29)

B “
2λ

T˚
p

BT2

BS2
q2 ´ λe

B2T2

BS2
2

`
2λe

T˚
p

BT2

BS2
q2 ´

λ2
e

T˚2
p

BT2

BS2
q2Φ

2
(5.30)

C “ p
λ

T˚
`

λe

T˚
q

BT2

BS2
´

λ2
e

T 2
2

BT2

BS2
Φ

2
(5.31)

D “
λ2

T˚2

BT2

BS2

BT1

BS1
(5.32)

As mentioned in Sect. 5.3.2, the point zero is one of the eigenvalues of the Ja-
cobian matrix DX̂Kpx˚

0 , x
˚, p˚q and the other 2n eigenvalues are symmetrical with

respect to the imaginary axis. Therefore the eigenvalues of the Jacobian matrix
DX̂Kpx˚

0 , x
˚, p˚q are denoted as

δ1 “ rejθ

δ2 “ re´jθ

δ3 “ ´rejθ

δ4 “ ´re´jθ

δ5 “ 0

Hence the determinant of the Jacobian matrix DX̂Kpx˚
0 , x

˚, p˚q should be able to
write in the following way:

detpδIn ´ DX̂Kq “ δpδ ´ δ1qpδ ´ δ2qpδ ´ δ3qpδ ´ δ4q

“ δ
“

δ4 ´ 2rp1 ´ 2sin2θqδ2 ` r4
‰ (5.33)

Comparing the two polynomials above (5.28) and (5.33), we derive the symmet-
rical poles:

r “ pλλe
BT1

BS1

BT2

BS2
q

1
2

1
T p

´2λ2
eΦ

22
0

T 2 `
4λeΦ

2
0

T ´ 1q
1
4

θ “ 1
2arccos

ˆ

λ2p
BT1
BS1

q2`pλ`λeq2p
BT2
BS2

q2`2λ2 BT1
BS1

BT2
BS2

2λλe
BT1
BS1

BT2
BS2

˙
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It is noticeable that we find a relationship between the non-zero poles and the
value of the feedback Φ at equilibrium. Evidently, it is not the feedback Φ itself
but its second derivative Φ

2
which appears in the expression of the non-zero poles.

Besides, among the four expressions above (5.29), (5.30), (5.31), and (5.32), the ex-
pression A and D are independent of the feedback Φ

2
p0q, thus they do not affect

the influence of the feedback on the non-zero poles. On the contrary, owing to the
existence of Φ

2
p0q in the expressions of B and C, the non-zero poles depend also on

pΦ
2
p0qq2 but not on Φ

2
p0q. In addition, we find that once the feedback Φ has been

chosen, the expression of r and θ can be determined and consequently the 2n non-
zero poles (n stable and n unstable) will be placed properly in the complex plane.

Afterwards we continue to analyze the stability of the heat exchanger, using the
center manifold theory shown in Sect. 5.3.3. Obviously, there should be 2n`1 eigen-
values of the Jacobian matrix DX̂K which implies that there should be 2n`1 poles in
the complex plane. Among all the poles, there is a zero pole and the other 2n poles
are symmetrical about the imaginary axis. Therefore, only the poles in the left-half
plane are stable. Therefore, while analyzing the stability of the closed-loop contact
system, we only consider n stable poles located in the left-half complex plane. The
invariant Legendre submanifolds of interest, denoted as LUd

, are given in canonical
coordinates px0, x, pq as

LUd
:

$

&

%

xd
0 “ Udpxq

x “ x

pd “ BUd

Bx pxq

Furthermore, the closed-loop contact Hamiltonian K̂ is zero on the Legendre
submanifold

K̂
ˇ

ˇ

ˇ

LUd

“ pK0 ` Φ ˝ Kcq|LUd
“ 0

This equation becomes a quadratic partial differential equation of first order,
with two variables:

K0px,
BUd

Bx
pxqq ` Φ ˝ Kcpx,

BUd

Bx
pxqq “ ´cF (5.34)

where cF is a constant. Assume that Φpχq “ Kχ with K constant and the equation
(5.34) becomes

rλe ´ λT1p
1

T2
´

1

T1
q ´

Kλe

T2
sp

BUd

Bx2
q ` λT2p

1

T2
´

1

T1
qp

BUd

Bx1
q “ λeT2 ´ kλe
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This quadratic partial differential equation of first order and with two variables,
can be solved by the method of characteristics (Myint-U and Debnath 2007), with
the initial condition (5.23), (5.24), (5.25), and (5.26). Thus, the solution of Udpx1, x2q

can be written as

Udpx1, x2q “ ´Kλex1

λ ´ Kλe

λ
T2

T
1
1

lnpT1 ´ T2q ` Kλe

λ
T o
2

T o1
1

lnpT o
1 ´ T o

2 q

`
λeT

3
2

2T
1
2rpλ`λeqT2´λT1´Kλes

´
λeT

o3
2

2T o1
2 rpλ`λeqT o

2 ´λT o
1 ´Kλes

`f

¨

˚

˚

˚

˚

˚

˚

˝

x2 ´
pλ`λeq

λ x1

´
pλ`λeq

λ
T2

T
1
1

lnpT1 ´ T2q `
pλ`λeq

λ
T o
2

T o1
1

lnpT o
1 ´ T o

2 q

`λeT1`Kλe

pλ`λeqT
1
2

lnrpλ ` λeqT2 ´ pλeT1 ` Kλeqs

´λeTo1`Kλe

pλ`λeqT o1
2

lnrpλ ` λeqT o
2 ´ pλeT

o
1 ` Kλeqs

˛

‹

‹

‹

‹

‹

‹

‚

(5.35)

with T o
2 and T o

1 are the reference temperature of subsystem 1 and 2. So there exists
one stable and one unstable submanifold of dimension n, which are Legendre sub-
manifolds. Based on the center manifold theory, we can construct the characteristic
subspace associated with the stable poles, denoted as Π´, as

Π´ “ kerpδ3I5 ´ DX̂Kq ‘ kerpδ4I5 ´ DX̂Kq

Assume that the kernel of the matrix δ3I5 ´ DX̂K is a vector of dimension R5ˆ1,
denoted as v “ rv0, v1, v2, v3, v4str which fulfills

pδ3Is ´ DX̂Kqv “ r0, 0, 0, 0, 0str

In the same way, we consider the kernel of the matrix δ4I5 ´ DX̂K as a vector of
dimension R5ˆ1, noted as v

1
“ rv

1

0, v
1

1, v
1

2, v
1

3, v
1

4str and we obtain the expression of
the characteristic subspace associated with stable poles Π´:

Π´ “

!

u P R5ˆ1 | u “ k1v ` k2v
1
,@k1, k2 P R

)

Since the invariant Legendre submanifold is tangent with the subspace Π´ at the
equilibrium point, i.e.,

Tx˚LUd “ Π´
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We have

»

–

dUdpx˚q

dxpx˚q

d2Udpx˚q

fi

fl “ w1dx1 ` w2dx2

Obviously, the rank of the matrix Y “ rv, v
1
, w1, w2str is 2. By computing the de-

terminant of the matrix of partial derivatives of Y , we finally obtain the expression
of BUd

Bx1
px˚q and BUd

Bx2
px˚q:

BUd

Bx1
px˚q “ ´

Kλe

λ
´

pλ ` λeq

λ
f

1
px˚

2 ´
pλ ` λeq

λ
x˚
1 q (5.36)

BUd

Bx2
px˚q “ f

1
px˚

2 ´
pλ ` λeq

λ
x˚
1 q (5.37)

At the equilibrium point, we have BUd

Bx1
px˚q “ T˚ and BUd

Bx2
px˚q “ T˚. Therefore

we infer that

K “ T˚ (5.38)

It should be remarked that Ud depends linearly on the structure-preserving feed-
back Φ

2

0. Once the feedback Φ has been chosen, the expression dUdpx‹q can be deter-
mined. These two equations above provide us a general idea while choosing the de-
sired invariant Legendre submanifolds LUd

and the structure-preserving feedback.
Then we compute the availability function (5.19) as

Apxq “ Udpxq ´ Udpx‹q ´ ktrpx ´ x‹q (5.39)

Moreover, this equation satisfies the conditions (5.16) and (5.17), and the time
derivative of A can be derived as

dA
dt “ p BUd

Bx pxq ´ BUd

Bx px˚qqtr dx
dt

“ ´γ BU
Bx px˚qJ BU

Bx pxqtS,UuJ `
`

BU
Bx pxq ´ BU

Bx px˚q
˘tr

gpx, uq

“ ´ λT˚

T1´T2
pT1 ´ T2q2 ` pT2 ´ T˚qu´T2

uT2

“ ´ λT˚

T1´T2
pT1 ´ T2q2 ` pT2 ´ T˚qK´T2

KT2

(5.40)
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The expression in equation (5.40) equals zero at the equilibrium point, while out-
side the equilibrium point, the first term is always less than zero. Hence the closed-
loop system will converge asymptotically to the equilibrium point if the second term
is also less than zero, that is

pT2 ´ T˚q
K ´ T2

KT2
ď 0

The easiest way is to let K “ T˚ which matches with the previous result (5.38).
Therefore, we have Φpχq “ T˚χ and the structure-preserving feedback αpχq “ T˚.

5.5 Example II: a simple isothermal chemical reaction
network

Consider a simple isothermal reaction network given as

X1

kf
1

é
kb
1

X2

Defining the state vector x “ rx1, x2str with x1, x2 the concentration of species X1

and X2, the Hamiltonian function H “ U with U the internal energy of system, and
the co-state vector BU

Bx “ µ with µ “ rµ1, µ2str the vector of chemical potentials. The
input/output concentration flow can be defined as gu “ r0, g2stru with g2 constant
and uptq a time-dependent function. Since the network is isothermal, the dynamics
can be written as

„

9x1

9x2

ȷ

“ ´

„

κ1 ´κ1

´κ1 κ1

ȷ

Exp

ˆ

µ1

µ2

˙

`

„

0

g

ȷ

u (5.41)

with µi “ ln xi

x˚
i

, i “ 1, 2 and κ1 “ kf1x
˚
1 “ kb1x

˚
2 , where x˚

1 and x˚
2 are the value

of the thermodynamic equilibrium.
Let p “ rp1, p2str, then the shaped contact Hamiltonian K̂ “ K0 `Φ ˝Kc is given

by

K0 “ ptr
„

κ1 ´κ1

´κ1 κ1

ȷ

Exp

ˆ

µ1

µ2

˙

“ pp1 ´ p2qκ1pexpµ1 ´ expµ2q

(5.42)
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Kc “ p BU
Bx ´ pqtrgu

“ pµ2 ´ p2qg2u
(5.43)

By using the equilibrium conditions (5.6, (5.7), (5.8), at equilibrium,

µ˚
1 “ µ˚

2 “ p˚
1 “ p˚

2 (5.44)

Kcpx˚, p˚q “ 0 (5.45)

ΦpKcpx˚, p˚qq “ Φp0q “ 0 (5.46)

Φ1pKcpx˚, p˚qq “ Φ1p0q “ 0 (5.47)

The invariant Legendre submanifolds of interest, denoted as LUd
, are in canoni-

cal coordinates px0, x, pq given as

LUd
:

$

&

%

xd
0 “ Udpxq

x “ x

pd “ BUd

Bx pxq

Since the closed-loop contact Hamiltonian K̂ is zero on the Legendre submani-
fold, we have K̂|LUd

“ pK0 ` Φ ˝ Kcq|LUd
“ 0. Assuming that Φpχq “ ρχ2, then we

obtain a partial differential equation with two variables,

K0px,
BUd

Bx
pxqq ` Φ ˝ Kcpx,

BUd

Bx
pxqq “ 0

which can be developed as

rκ1pexpµ1 ´ expµ2qs BU
Bx1

` r´κ1pexpµ1 ´ expµ2q ´ 2ρµ2g
2
2u

2s BU
Bx2

` ρg22u
2p BU

Bx2
q2

“ ´ρµ2
2g

2
2u

2
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By using the method of characteristics (Myint-U and Debnath 2007), with the
equilibrium condition µ˚

1 “ µ˚
2 , the solution of Udpx1, x2q can be written as

Udpx1, x2q “ x1pµ1´qq`
x1

κ1pexpµ1 ´ expµ2q
p´2ρµ2g

2
2u

2`2ρg22u
2qq´ρµ2

2g
2
2u

2 (5.48)

with q “
px1`x2qκ1pexpµ1´expµ2q`2ρµ2g

2
2u

2x1

2ρg2
2u

2x1
. At equilibrium point, we have BUd

Bx1
“

BUd

Bx2
“ µ˚, thus we could infer that

ρ “
κ1

2g22u
2

If we compute the availability function, we will get the same result. Therefore,
we have Φpχq “ κ1

2g2
2u

2χ
2 and the structure-preserving feedback αpχq “ κ1

g2
2u

2χ.

5.6 Conclusion

In this chapter, we considered several control approaches based on structure-
preserving state feedback. After recalling the previous work (Kotyczka 2013), the
local stability of the closed-loop contact system has been studied. Furthermore, the
invariant stable submanifold Legendre has been formulated. Finally, the possibility
of constructing an availability function as candidate Lyapunov function on the Leg-
endre submanifold has been discussed. With these control approaches, we are able
to find some conditions while formulating the structure-preserving feedback. These
results have been illustrated on two examples: the heat exchanger and the simple
chemical reaction network.





Chapter 6

Conclusion

In this chapter, we will review the main contributions and findings presented in
Chapters 2-5. We also provide suggestions for future research in this chapter.

6.1 General conclusion

Some different approaches to the modeling and analysis of non-isothermal chemical
reaction networks have been studied in this dissertation.

The first approach studied is the irreversible port-Hamiltonian formulation gen-
erated by the total internal energy in Chapter 2, which was introduced in (Ramirez,
Maschke and Sbarbaro 2013b). The modeling and thermodynamic analysis for
non-isothermal mass action kinetics chemical reaction networks have been studied,
including the conditions for existence of a thermodynamic equilibrium and their
asymptotic stability.

The second approach studied is the quasi port-Hamiltonian system generated by
the total entropy in Chapter 3. We found that this new quasi port-Hamiltonian sys-
tem is very suitable for the modeling of non-isothermal chemical reaction networks.
The thermodynamic analysis is carried out as well, including the characterization of
equilibria and their asymptotic stability. Moreover, the modeling of interconnection
of chemical reaction networks has been explored in Chapter 4. Two different mod-
eling approaches have been developed in quasi port-Hamiltonian form. It has been
proved that the two modeling approaches are equivalent by eliminating the mass
kinetics and power port constraints.

The third approach studied is the control contact system with structure-
preserving feedback in Chapter 5, which was introduced in (Ramirez 2012). It is
shown in this dissertation that the control contact system with a specific structure-
preserving feedback can be used for the modeling and thermodynamic analysis of
non-isothermal chemical reaction networks. A series of control designs by structure-
preserving state feedback have been studied in order to add some constraints. Local
stability has been carried out to determine the structure-preserving state feedback,
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through the equilibrium conditions for the closed-loop contact system and the Jaco-
bian matrix of the closed-loop contact vector field. Furthermore, the conditions for
local and partial stability on the closed-loop invariant Legendre submanifold have
been given, in order to determine the controlled contact Hamiltonian and to verify
the correctness of the structure-preserving feedback.

6.2 Future research

Some possible research directions are the following.

• For the modeling of open chemical reaction networks: future research includes
different formulations of the external ports, such as the concentration flows or
the heat (energy) flow.

• For the interconnection of chemical reaction networks: it is of interest to fur-
ther study the thermodynamic analysis of the interconnected chemical reac-
tion networks. For example, one of the interesting subjects is the analysis of
the equilibrium (or thermodynamic equilibrium), and another is the entropy
flow (or the energy flow) in the interconnected chemical reaction network.

• For the contact system: in this dissertation, we have applied the control con-
tact system with structure-preserving feedback on a simple chemical reaction
network. The research questions about the application to more complicated
chemical reaction networks, are still open. With more chemical species in the
chemical reaction network, the partial differential equation (5.15) is certainly
more difficult to solve.
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Université Claude Bernhard (Lyon 1).



BIBLIOGRAPHY 99

Ramırez, H., Le Gorrec, Y., Maschke, B. and Couenne, F.: 2013, Passivity based
control of irreversible port hamiltonian systems, IFAC Proceedings Volumes
46(14), 84–89.

Ramırez, H., Maschke, B. and Sbarbaro, D.: 2011, On feedback invariants of con-
trolled conservative contact systems, Proceedings the 9th IEEE International Con-
ference on Control & Automation (IEEE ICCA11), Santiago, Chile.

Ramirez, H., Maschke, B. and Sbarbaro, D.: 2013a, Feedback equivalence of input-
output contact systems, Systems & Control Letters 62(6), 475 – 481.

Ramirez, H., Maschke, B. and Sbarbaro, D.: 2013b, Irreversible port-hamiltonian
systems: A general formulation of irreversible processes with application to
the CSTR, Chemical Engineering Science 89(0), 223 – 234.

Ramirez, H., Sbarbaro, D. and Maschke, B.: 2014, Irreversible port-hamiltonian for-
mulation of chemical reaction networks.

Rao, R. and Esposito, M.: 2016, Nonequilibrium thermodynamics of chemical reac-
tion networks: Wisdom from stochastic thermodynamics, Physical Review 6(4).

Rao, S., van der Schaft, A. J. and Jayawardhana, B.: 2013, A graph-theoretical ap-
proach for the analysis and model reduction of complex-balanced chemical re-
action networks, Journal of Mathematical Chemistry 51(9).

Rao, S., van der Schaft, A. J., Van Eunen, K., Bakker, B. M. and Jayawardhana, B.:
2014, A model reduction method for biochemical reaction networks, BMC sys-
tems biology 8(1), 1.

Sandler, S. I. et al.: 2006, Chemical, biochemical, and engineering thermodynamics, Vol. 4,
John Wiley & Sons Hoboken, NJ.

Temkin, O. N., Zeigarnik, A. V. and Bonchev, D. G.: 1996, Chemical reaction networks:
a graph-theoretical approach.

van der Schaft, A.: 2006, Port-hamiltonian systems: an introductory survey, Proceed-
ings of the International Congress of Mathematicians Vol. III, European Mathemat-
ical Society Publishing House (EMS Ph), madrid,spain, pp. 1339–1365.

van der Schaft, A.: 2013, Port-hamiltonian differential-algebraic systems, Surveys in
Differential-Algebraic Equations I, Springer, pp. 173–226.

van der Schaft, A. J.: 2000, L2-gain and passivity techniques in nonlinear control, Vol. 2,
Springer.



100 BIBLIOGRAPHY

van der Schaft, A. J., Jeltsema, D. et al.: 2014, Port-hamiltonian systems theory:
An introductory overview, Foundations and Trends in Systems and Control 1(2-
3), 173–378.

van der Schaft, A. J. and Maschke, B.: 1995, The hamiltonian formulation of en-
ergy conserving physical systems with external ports, Archiv für Elektronik und
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Summary

In this dissertation, we use different approaches to the geometric modeling and anal-
ysis of non-isothermal mass action kinetics chemical reaction networks. Generally
speaking, these approaches can be divided into two classes: one based on the port-
Hamiltonian system theory, and the other based on the theory of contact systems.

The first approach studied is the irreversible port-Hamiltonian formulation gen-
erated by the total internal energy, which was introduced in (Ramirez, Maschke and
Sbarbaro 2013b). Beginning with the overview of mathematical structure of chemi-
cal reaction networks in the non-isothermal case, we establish the irreversible port-
Hamiltonian formulation of non-isothermal chemical reaction networks and then
investigate its thermodynamic analysis, including the conditions for existence of a
thermodynamic equilibrium and their asymptotic stability.

The second approach studied is the quasi port-Hamiltonian system generated
by the total entropy. In this port-Hamiltonian system, not only the energy balance
equations but also the entropy balance equations will be used. Therefore, we found
that this new quasi port-Hamiltonian system is very suitable for the modeling of
non-isothermal chemical reaction networks. The thermodynamic analysis is carried
out as well, including the characterization of equilibria and their asymptotic stabil-
ity.

Otherwise, based on the new quasi port-Hamiltonian system, the modeling of
interconnection of chemical reaction networks has been explored. This is of im-
portance in the compositional modeling of complex chemical reaction networks as
often encountered in systems biology and chemical engineering. In order to develop
a port-Hamiltonian structure for interconnected chemical reaction networks, we of-
fer two ways to deal with interconnection by shared species; one called the network
interconnection arising from shared boundary species and the other called the in-
terconnection arising from power-port interconnection. Subsequently, it is proved that
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the two modeling approaches are equivalent by eliminating the power port con-
straints and the Lagrangian multipliers in the dynamics.

The third approach studied is the control contact system with structure-
preserving feedback, which was introduced in (Ramirez 2012). It is shown in this
dissertation that the control contact system with a specific structure-preserving feed-
back can be used for the modeling and thermodynamic analysis of non-isothermal
chemical reaction networks. A series of control designs by structure-preserving
state feedback has been studied in order to add some constraints. Local stability
analysis has been carried out to determine the structure-preserving state feedback,
through the equilibrium conditions for the closed-loop contact system and the Ja-
cobian matrix of the closed-loop contact vector field. Furthermore, conditions for
local and partial stability on the closed-loop invariant Legendre submanifold have
been given, in order to determine the controlled contact Hamiltonian and to verify
the correctness of the structure-preserving feedback.



Samenvatting

In dit proefschrift worden verschillende benaderingen gebruikt voor de
meetkundige modellering en analyse van chemische reactienetwerken met vari-
erende temperatuur. Ruw gesproken kunnen deze benaderingen in twee klassen
worden verdeeld: de ene gebaseerd op poort-Hamiltonse systeemtheorie, en de an-
der gebaseerd op de theorie van contactsystemen.

De eerste aanpak is de irreversibele poort-Hamiltonse formulering op basis van
de interne energie, die geintroduceerd werd in Ramirez, Maschke en Sbarbaro in
2013. Beginnend met een overzicht van de wiskundige structuur van chemis-
che reactienetwerken in het niet-isothermische geval wordt een irreversibele poort-
Hamiltonse formulering van niet-isothermische reactienetwerken gegeven. Daarna
volgt een thermodynamische analyse, inclusief de voorwaarden voor het bestaan
van een thermodynamisch evenwicht en de asymptotische stabiliteit van de verza-
meling van thermodynamische evenwichtspunten. De tweede benadering betreft
de quasi poort-Hamiltonse modellering met behulp van de totale entropie. In
dit poort-Hamiltonse systeem wordt niet alleen de energiebalans maar ook de en-
tropiebalansvergelijking gebruikt. Deze nieuwe quasi poort-Hamiltonse formuler-
ing is bijzonder geschikt voor de modellering van niet-isothermische chemische re-
actienetwerken. Ook de thermodynamische analyse wordt in dit kader uitgevoerd,
in het bijzonder de karakterisatie van evenwichtspunten en hun asymptotische sta-
biliteit.

Gebaseerd op deze nieuwe quasi poort-Hamiltonse formulering wordt verder de
interconnectie van chemische reactienetwerken bestudeerd. Dit is van groot belang
voor een compositionele modellering van complexe chemische reactienetwerken
zoals vaak voorkomend in systeembiologie en chemische technologie. Voor
de poort-Hamiltonse formulering van de interconnectie van chemische reac-
tienetwerken worden twee benaderingen gegeven. De ene is gebaseerd op de
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netwerkinterconnectie via gedeelde chemische stoffen, en de tweede is gebaseerd
op vermogensinterconnectie via fluxen en chemische potentialen. Door middel van
het elimineren van de vermogenspoortbeperkingen en hun Lagrange multiplica-
toren wordt aangetoond dat de twee aanpakken equivalent zijn.

Tenslotte wordt de regeling van contactsystemen door middel van structuurbe-
houdende terugkoppeling bestudeerd, zoals geintroduceerd in Ramirez in 2012.
Er wordt aangetoond dat contactsystemen met specifieke structuurbehoudende
terugkoppeling kunnen worden gebruikt voor de thermodynamische modellering
en analyse van niet-isothermische reactienetwerken. Een aantal regelontwerpen die
hierop gebaseerd zijn worden bestudeerd. Een lokale stabiliteitsanalyse wordt uit-
gevoerd om de structuurbehoudende terugkoppeling te bepalen, op basis van even-
wichtsvoorwaarden en de Jacobimatrix van het teruggekoppelde systeem. Verder
worden voorwaarden voor lokale en gedeeltelijke stabiliteit ten opzichte van de
gesloten-lus invariant Legendre deelvarieteit gegeven, alsmede de gesloten-lus con-
tact Hamiltonfunctie.



Résumé

Dans cette thèse, on utilise différentes méthodes pour modéliser géométriquement
et analyser des réseaux de réactions chimiques de cinétique d’action non-
isothermes. En générale, ces méthodes peuvent être divisées en deux groupes: l’une
basée sur la théorie du système port-Hamiltonien et l’autre basée sur la théorie du
système de contact.

La première méthode discutée dans cette thèse est le système port-Hamiltonien
irréversible généré par l’énergie interne totale, appelé IPHS et introduit dans
(Ramirez, Maschke and Sbarbaro 2013b). On commence par les études sur la struc-
ture mathématique des réseaux de réactions chimiques dans le cas non-isotherme,
et puis on établit le système port-Hamiltonien irréversible des réseaux de réactions
chimiques non isothermes. On étudie ensuite sur ses propriétés thermodynamiques,
y compris les conditions d’existence du point d’équilibre thermodynamique et la
stabilité asymptotique du système.

La deuxième méthode étudiée est le système quasi port-Hamiltonien généré par
l’entropie totale du système. Dans ce système quasi port-Hamiltonien, on utilise
non seulement les équations du bilan d’énergie mais aussi les équations du bilan
d’entropie. En conséquence, on trouve que ce nouveau système est très appro-
prié pour la modélisation de réseaux de réactions chimiques non-isothermes. Les
analyses thermodynamiques sont également effectuées, y compris la discussion sur
les sous-ensembles des points d’équilibre thermodynamique et la stabilité asympto-
tique du système.

En plus, la modélisation de l’interconnection des réseaux de réactions chim-
iques a été explorée. Afin de développer une structure port-Hamiltonienne pour un
réseau interconnecté par deux réseaux de réactions chimiques, nous proposons deux
façons possible: l’une s’appelle l’interconnection par les espèces chimiques com-
munes aux frontières et l’autre s’appelle l’interconnection du port de puissance. En
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fait, on prouve que les deux façons sont équivalentes en éliminant les contraintes du
port de puissance et les multiplicateurs Lagrangiens dans les équations dynamiques
du système.

La troisième méthode étudiée est le système de contact avec un retour d’état
préservant la structure, qui a été introduit dans (Ramirez 2012). Une synthèse de
contrôle sur le système de contact contrôlé a été discutée afin d’ajouter certaines
contraintes sur le retour d’état préservant la structure spécifique. On étudie la sta-
bilité locale, y compris les conditions d’équilibre du système de contact en boucle
fermée, la matrice Jacobienne du champ de vecteur de contact en boucle fermée et
la sous-variété Legendre invariante en boucle fermée. On étudie aussi la stabilité
asymptotique du système via l’équation Lyapunov.
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