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Abstract 1	

Inhaled airway challenges provoke bronchoconstriction in susceptible subjects and are a 2	

pivotal tool in the diagnosis and monitoring of obstructive lung diseases, both in the clinic 3	

and in the development of new respiratory medicines. This article reviews the main challenge 4	

agents that are in use today (methacholine, mannitol, adenosine, allergens, endotoxin) and 5	

emphasises the importance of controlling how these agents are administered. There is a 6	

danger that the optimal value of these challenge agents may not be realised due to suboptimal 7	

inhaled delivery; thus considerations for effective and reproducible challenge delivery are 8	

provided. This article seeks to increase awareness of the importance of precise delivery of 9	

inhaled agents used to challenge the airways for diagnosis and research, and is intended as a 10	

stepping stone towards much-needed standardisation and harmonisation in the administration 11	

of inhaled airway challenge agents. 12	

 13	

 14	

Key words: bronchial challenge test, bronchial hyperresponsiveness, asthma, drug delivery, 15	

delivery method optimization, delivery method standardization 16	
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1. Introduction 1	

Inhaled airway challenges are a key tool in the study and diagnosis of obstructive lung 2	

diseases. Bronchial challenge tests that measure bronchial hyperresponsiveness (BHR) of the 3	

airways have established applications in the clinic, where they are used to rule out or confirm 4	

a diagnosis of asthma (1,2). Inhaled airway challenges can also be used to study disease 5	

mechanisms and symptoms other than BHR, either by varying the outcome measure (e.g. 6	

inflammation measured by exhaled nitric oxide or inflammatory cell count) or the stimulus 7	

(e.g. allergen or endotoxin). The various airway challenges thereby allow the monitoring of 8	

disease activity and effectiveness of treatments (3), and they can provide a robust disease 9	

model in early phase clinical trials (4,5). Given the reliance on inhaled airway challenges in 10	

respiratory medicine, there is surprisingly little standardisation of techniques or guidance 11	

regarding the administration of different test agents. In this article we consider various 12	

challenge agents and discuss the importance of standardisation and harmonisation of their 13	

administration methods.  14	

 15	

Historically, bronchial challenge tests have been developed to measure BHR by means of 16	

spirometry and the change in forced expiratory volume in one second (FEV1) is still 17	

considered the primary outcome measure in the recently published technical standard on 18	

methacholine challenge testing (6). However, whether FEV1 is the most appropriate outcome 19	

measure is subject of debate and a recent study points out that the change in effective specific 20	

airway conductance (sGeff) measured with body plethysmography actually has a much larger 21	

diagnostic value than FEV1 for the challenge agent methacholine (7). Other techniques that 22	

can be used to measure airway function after provocation include forced or impulse 23	

oscillometry (airway resistance) (8) and multiple breath nitrogen washout (ventilation 24	

heterogeneity) (9). The relative value of these techniques in challenge testing is beyond the 25	
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scope of this paper. In this review we will refer to the outcome measure in a general way in 1	

appreciation of this on-going discussion. 2	

 3	

2. Inhaled airway challenge agents 4	

Bronchial challenge testing can be performed with a wide range of stimuli, with selection of a 5	

particular agent depending on the aim of the test. BHR can be measured using stimuli that 6	

have either a direct effect on airway smooth muscle (ASM) (e.g. methacholine or histamine) 7	

or an indirect effect where the inhaled agent stimulates inflammatory or neuronal cells (e.g. 8	

mannitol, bradykinin or AMP) (10). Furthermore, certain agents can be used that trigger other 9	

(patho)physiological mechanisms in the airways (e.g. endotoxin-induced inflammation or 10	

allergen-induced responses in allergic subjects), possibly accompanied by BHR in susceptible 11	

subjects. 12	

 13	

2.1 Direct challenge agents 14	

The most commonly used stimulus in bronchial challenge testing is the direct-acting stimulus 15	

methacholine, a synthetic analogue of the neurotransmitter acetylcholine that acts as an 16	

agonist on muscarinic M3 receptors on ASM cells. Histamine, an agonist for the histamine H1 17	

receptors on ASM cells, can also be used, although this compound is associated with more 18	

systemic side effects such as flushing and headache due to vasodilation (11). When a direct-19	

acting stimulus is used the test generally has a high sensitivity for asthma, meaning that the 20	

majority of asthma patients will respond to this stimulus, and the responsiveness increases 21	

with the severity of lung disease (1). However, the specificity is poor since healthy subjects 22	

also respond when the dose is high enough; they are just less sensitive and less reactive to the 23	

stimulus than asthmatic subjects (Figure 1). Even though cut-off values for healthy and 24	

hyperresponsive individuals have been agreed upon (1,6,11), these values can still be 25	
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considered as quite arbitrary due to the many factors affecting lung deposition of the stimulus, 1	

such as the patient’s breathing pattern or the presence of emphysema, inflammation, mucus 2	

deposition and/or oedema. Moreover, it is becoming clear that methacholine can miss newly 3	

diagnosed asthmatic subjects whose symptoms are mild and whose lung function is excellent, 4	

but who demonstrate asthma in terms of significant exercise-induced bronchoconstriction 5	

(12). However, the use of a different predefined threshold value for the outcome measure in 6	

methacholine challenge as compared to exercise-induced bronchoconstriction (i.e., 20% 7	

reduction in FEV1 in the former versus 10–15% reduction in FEV1 in the latter) may explain, 8	

at least in part, such discrepancy. Additionally, testing with methacholine does not allow for 9	

absolute differentiation between patients with asthma or COPD, or indeed other diseases such 10	

as allergic rhinitis (13–16).  11	

 12	

 13	

Figure 1: Dose-response curves to inhaled methacholine in a healthy, mild-asthmatic, and 14	

severe-asthmatic subject, showing both the leftward shift of the curve (hypersensitivity) and 15	

steeper slope (hyperreactivity) that characterise BHR. Reproduced with permission from the 16	

European Respiratory Society (1,117). 17	
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2.2 Indirect challenge agents 1	

In the search for stimuli that produce responses through mechanisms that better reflect the 2	

underlying disease pathology, indirect challenges have been introduced, which exert their 3	

effects on intermediary cells involved in the asthmatic response, rather than acting directly on 4	

ASM. Most indirect stimuli evoke a heterogeneous response by affecting multiple 5	

pathophysiological pathways (3). Especially in the 1980s and 1990s many different potential 6	

indirect stimuli have been investigated, which have been reviewed comprehensively by Van 7	

Schoor et al., first in 2000 (10), and subsequently updated in 2005 by the same authors (17). 8	

In 2003, a European Respiratory Society (ERS) Task Force published their recommendations 9	

on the use of indirect stimuli in diagnosis and monitoring of asthma (3).  10	

 11	

Indirect stimuli can be sub-classified as physical or pharmacological stimuli. Physical stimuli 12	

induce airways obstruction without acting on specific receptors, exemplified by exercise-13	

induced bronchoconstriction or that induced by “fog” challenges with distilled water or 14	

hypotonic aerosols (18,19). Exercise induces dehydration of the airway epithelium, resulting 15	

in an increased osmolarity of the airway lumen and subsequent release of mediators from 16	

mast cells and activation of sensory nerves (20). This process is mimicked during challenge 17	

with hyperosmolar aerosols (21,22). Pharmacological stimuli induce airways obstruction 18	

secondary to the activation of intermediary cell types, such as inflammatory, epithelial, or 19	

neuronal cells, or combinations of these. The effects of indirect agents depend on the specific 20	

cells and receptors involved (10), but many of the stimuli used are known to activate sensory 21	

nerves, for example bradykinin, sulphur dioxide and adenosine (reviewed in (23)). Some 22	

indirect stimuli are endogenous compounds known to be released during airways obstruction, 23	

such as adenosine, AMP, tachykinins and bradykinin (24–31). Another group of indirect-24	

acting stimuli is comprised of sulphur-containing compounds, which originated from the 25	
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observation that sulphur dioxide, a common air pollutant, and sulphites used as preservatives 1	

in food processing, may induce bronchoconstriction in susceptible subjects through activation 2	

of sensory neuronal pathways (32,33). However, lack of reproducible test outcomes has led to 3	

discontinuation of studying several of these stimuli (sulphur dioxide, sodium metabisulphite, 4	

bradykinin and tachykinins) and focus has predominantly shifted to the most easily and 5	

widely applicable indirect stimuli, mannitol (physical) and AMP/adenosine 6	

(pharmacological). 7	

 8	

2.3 Allergen challenge 9	

The preceding “non-specific” bronchial challenge tests are targeted to mechanisms that are 10	

thought to be intrinsic to the underlying hyperresponsive state of the airways in subjects with 11	

asthma. In contrast, so-called “specific” airway challenges can be used to assess the airway 12	

responsiveness to sensitising agents, such as aeroallergens or occupational agents. In allergic 13	

subjects, following sensitisation to an allergen, minute quantities of that allergen are sufficient 14	

to cause an immediate IgE-mediated early asthmatic response (EAR). In approximately 50% 15	

of positive allergen challenges a recurrence of airflow obstruction occurs between 3 to 8 hours 16	

after allergen exposure, the so-called late asthmatic response (LAR) (34), which is associated 17	

with airway inflammation and in some patients can be associated with an increase in BHR to 18	

agents like methacholine (35–37). Often-used outcome measures for inhaled allergen 19	

challenge are a >15% decrease in FEV1, >50% decrease in specific airway conductance, or 20	

>100% increase in specific airway resistance compared to baseline (38). Additional outcome 21	

measures can be the change in non-specific BHR to e.g. methacholine, or the occurrence of 22	

airway inflammation expressed as increase in sputum eosinophils or exhaled nitric oxide (38). 23	

Inhaled allergen challenge has also been widely used as a model to assess the efficacy of 24	

novel therapeutic interventions (39–49). 25	
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2.4 LPS challenge 1	

Another interesting application of the inhaled airway challenge test concept is provocation 2	

with lipopolysaccharide (LPS), also called endotoxin, a major component of the outer 3	

membrane of Gram-negative bacteria that induces fever and inflammation upon systemic 4	

exposure (50). Aerosolised endotoxins are present ubiquitously in the environment in 5	

concentrations that do not elicit immune responses. However, in certain aerosols, like tobacco 6	

smoke and organic dusts, concentrations can be high enough to induce responses in the lungs 7	

(51). Inhalation of endotoxin has been associated with lung inflammation, most notably 8	

neutrophilia (52–54). It can further lead to bronchial obstruction in people with asthma or 9	

other forms of BHR (55,56). Interestingly, it has recently been reported that LPS can elicit 10	

BHR through a mechanism involving cholinergic transmission (57). 11	

 12	

Airway challenge with a nebulised LPS solution has been used mainly to study neutrophilic 13	

inflammatory processes in the lungs and has been developed into a challenge model to 14	

investigate the effect of novel anti-inflammatory drugs under development for the treatment 15	

of diseases that are associated with neutrophil infiltration into the lungs, particularly COPD 16	

and severe asthma, as this challenge is not sensitive to treatment with glucocorticosteroids 17	

(5,58–61). This model has also been used for early proof-of-concept and dose-ranging studies 18	

for novel drugs for the treatment of respiratory diseases in healthy volunteers (58,62). 19	

 20	

3. General considerations for challenge delivery to the lungs 21	

Despite the wide array of challenge test agents, there are relatively few methods used for their 22	

administration. Hence various aspects need to be considered that apply to airway challenge 23	

methodology in general, irrespective of the agent that is used. 24	

 25	
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3.1 Delivered dose 1	

Inhaling a challenge agent usually leads to a dose-dependent response in the lungs. For 2	

challenges that induce BHR, the minimal dose required to obtain a response, as well as the 3	

slope of the dose-response curve, varies amongst patients and defines the severity of their 4	

BHR (1). The aim of such bronchial challenge tests is to induce a pre-defined degree of 5	

bronchoconstriction without risking a response that is too severe, meaning that the dose of the 6	

stimulus requires titration. For this reason, ascending dosing protocols have been developed 7	

in which the stimulus is administered by nebulisation of ascending (usually doubling) 8	

concentrations or doses, after each of which the lung function is measured (1,6,11,63,64). The 9	

concentration or dose is gradually increased and the test continues until a predefined threshold 10	

value for the outcome measure is obtained. The test result is negative when the threshold 11	

value is not reached after administration of the top dose.  12	

 13	

This methodology has been initially developed for direct stimuli (65), but indirect-acting 14	

stimuli are generally administered following similar dosing protocols (3), although different 15	

concentrations (or doses) may be used to accommodate differences in potency, as shown in 16	

Figure 2. For AMP for example, a 16-fold lower potency has been reported compared to 17	

methacholine (66). Allergen exposure should be increased gradually either by extending the 18	

duration of the exposure or increasing the concentration in order to prevent severe acute 19	

reaction (38). For the same safety reason, allergen dose increments should have longer time 20	

intervals (10–15 min) compared to direct or indirect challenge methods (<5 min). Due to their 21	

specific mode of action, as little as a few ng can suffice to elicit the airway response. 22	

Endotoxin challenge on the other hand is usually administered by nebulisation of a fixed dose 23	

in the µg-range. 24	

 25	
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It is clear that due to these differences in dosimetry, the various challenges require different 1	

methods for administration. However, currently no universally standardised methodology is 2	

used in the majority of cases to deliver these different agents. It is important to realise that 3	

this may have important implications that are now largely neglected by the field.  4	

 5	

 6	

Figure 2: Dose ranges of various inhaled airway challenge agents. Allergens and LPS can also be 7	

expressed in biological units and endotoxin units respectively.  8	

 9	

3.2 Administration by nebulisation 10	

Most challenge agents are administered by nebulisation, except for mannitol and an 11	

investigational formulation of adenosine that are both administered as a dry powder (see 12	

below). Preparing nebuliser formulations can be very straightforward, which is the main 13	

reason why nebulisers are often used for off-label or investigational drugs and non-medicinal 14	

compounds, like many of the agents used for challenge testing. However, it has to be 15	

carefully evaluated whether the formulation affects nebuliser performance (in terms of droplet 16	

size and output rate) and, in the case of more complex molecules, whether the nebulisation 17	

process leads to degradation of the agent (e.g. allergens of biological origin). 18	
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Two standardised dosing protocols have been published for administration of methacholine 1	

by nebulisation (6,11). The two methods have different pros and cons, and the choice of 2	

method has been left to the preference of individual investigators/clinicians. The dosimeter 3	

method involves five deep and slow inhalations, which allows for accurate quantification of 4	

the administered dose, thereby making this method suitable for studies that require 5	

administration of an exact dose, such as LPS challenge studies or allergen challenges using a 6	

bolus dose. It has been claimed, however, that such deep breaths have bronchoprotective and 7	

bronchodilatory effects per se (67–69), which may therefore interfere with an accurate 8	

interpretation of the test result. In the newest technical standard on methacholine challenge 9	

testing a deep-breath method is therefore not recommended (6). The other method is the tidal 10	

breathing method in which the stimulus is inhaled during a specified time of calm, tidal 11	

breathing, although the patient’s inhalation flow rate is generally not controlled. This more 12	

shallow way of inhaling does not evoke bronchoprotective and bronchodilatory mechanisms, 13	

but could result in different deposition patterns of the aerosolised challenge compared to the 14	

five-breath dosimeter method, since penetration of the aerosol into the more distal airways is 15	

dependent on the mixing of old and new air in the lungs. Moreover, the total amount that is 16	

inhaled depends on the inspiratory cycle of the subject, but also on the output rate of the 17	

nebuliser. In the first universal (American Thoracic Society) guidelines on methacholine 18	

challenge testing, the output rate had therefore been standardised at 0.13 mL/min (based on 19	

the output rate of the Wright nebuliser that was commonly used for challenge testing), 20	

regardless of the nebuliser that was used (11). However, adjusting the jet pressure to obtain 21	

this output rate may have detrimental effects on the droplet size distribution. As an example, 22	

this has been shown for the SideStream nebuliser (Philips Respironics), where the median 23	

mass aerodynamic diameter (MMAD) increased from 5.1 µm to 8.5 µm when the jet pressure 24	

was reduced from 1.5 bar (manufacturer’s specifications) to 0.5 bar to reach the required 25	
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output rate of 0.13 mL/min (70). To prevent such unforeseen changes, a better strategy is to 1	

control the total administered volume of the solution containing the challenge agent by 2	

altering the nebulisation time rather than using an output rate of the nebuliser outside of the 3	

manufacturer’s specifications, which is now discussed in the recently published European 4	

Respiratory Society technical standard on methacholine challenge testing (6). 5	

 6	

In addition to the effect of jet pressure on droplet size, the type of compound and its 7	

concentration may affect the droplet size distribution as well. For AMP, which has a dose 8	

range exceeding that of methacholine, it has been shown that the increased viscosity of the 9	

more concentrated solutions resulted in a large shift in the aerosol droplet size distribution 10	

(70). In this study, a decrease in MMAD of almost 50% was measured at the highest AMP 11	

concentration (320 mg/mL) compared to saline and the lowest AMP concentrations. These 12	

results indicate that applying methods developed for a certain stimulus and a certain device 13	

cannot simply be used for other compounds or in other situations without verifying their 14	

suitability.  15	

 16	

A third factor that should be accounted for is the evaporation of solvent (water) during 17	

nebulisation. The driving force for evaporation is saturation of the outgoing air with solvent 18	

(71), which leads to an increase in concentration of the remainder of the solution in the 19	

nebuliser cup (70,72). Importantly, evaporative water losses lead to an overestimation of the 20	

administered dose when the output rate is measured gravimetrically (6). Evaporation is an 21	

endothermic effect and the energy needed for this process is drawn from the solution, 22	

resulting in a temperature drop in the nebuliser solution that in turn may affect the output rate 23	

of the nebuliser (72). Calibration of the nebuliser output rate should therefore be performed 24	

under precise operating conditions. Newer jet nebulisers and especially vibrating mesh 25	
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nebulisers exhibit much lower amounts of evaporative loss (6), but still it is preferable to 1	

measure output rate by means of filter measurements (collection of the active compound) 2	

rather than gravimetrically. Such data should either be provided by the manufacturer or can be 3	

obtained in a pharmaceutical lab specialised in inhaled drug delivery.   4	

 5	

In contrast to methacholine, there are no universal standardised protocols for other challenge 6	

agents, although recommendations have been made for similar ascending administration 7	

protocols (3).  8	

 9	

3.3 Aerosol deposition and distribution in the lungs 10	

For optimal efficacy and discriminatory power, inhaled medical aerosols should achieve 11	

maximal delivery to, and deposition in the target area in the lungs. Bronchial challenges that 12	

measure bronchoconstriction should be targeted to the proximal part of the bronchial tree, 13	

where the effects of ASM contraction are most pronounced. This means that the requirements 14	

for aerosol particle size are quite easily met, since an MMAD of roughly 3 to 5 µm should 15	

generally suffice, especially at tidal breathing. Aerosols with particles in this size range have 16	

the additional benefit of increased deposition efficacy, resulting in a higher total lung dose 17	

compared to particles smaller than 1.5 µm (73). It has indeed been found that aerosols with 18	

MMADs of 3 and 5 µm result in a lower methacholine PC20 compared to those with an 19	

MMAD of 1 µm (74), which can be attributed to a combination of greater lung deposited dose 20	

and targeting to the proximal airways.  21	

 22	

It could be reasoned that challenges that act on inflammatory processes should be targeted 23	

more distally, as inflammation occurs throughout the lungs. However, investigations into the 24	

effects of particle (droplet) size on airway responsiveness to AMP have thus far been 25	
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inconclusive due to a high number of non-responders to small-particle AMP, which could be 1	

explained by a higher exhaled fraction or the discrepancy between deposition in the peripheral 2	

airways and an outcome measure of the more central airways (FEV1) (75). For allergens, 3	

significant effects of particle size on the response to cat and mite allergen have been found, 4	

with larger particles (around 10 µm) being more effective in inducing the immediate response 5	

(76,77). A study investigating the effect of particle size on responses to endotoxin found a 6	

greater inflammatory response at the bronchial and systemic level when challenged with 7	

larger particles, although it could not be concluded whether this was due to regional 8	

distribution differences or the higher total lung dose (78). 9	

 10	

3.4 Patient-related factors affecting aerosol deposition 11	

Patient-related factors, such as the size and morphology of the oropharynx and bronchial tree, 12	

and the severity of lung disease can also affect aerosol deposition patterns (79). Additionally, 13	

inhalation flow rate has an important influence on the site of deposition (80). A higher flow 14	

rate shifts deposition to the higher airways at the cost of peripheral deposition. The patient’s 15	

flow rate should therefore be adjusted to the type of delivery device being used to prevent loss 16	

of aerosol through deposition in the throat. Newer delivery systems that provide electronic 17	

control over the inhalation flow rate and volume (e.g. APS Pro system, see section 4.1, and 18	

AKITA) can provide better control over the delivered dose and deposition in the lungs (81–19	

83). 20	

 21	

Current medication use of patients undergoing a bronchial challenge has to be accounted for 22	

as well, since these treatments are intended to reduce or prevent the symptoms evoked during 23	

the challenge. To prevent possible confounding effects on the test outcome, lung medications 24	

have to be withheld for a specified time prior to execution of the test. The duration of 25	
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withholding is dependent on the mechanism of action of the drug and ranges from a few hours 1	

for short-acting beta-agonists up to a few days for long-acting anticholinergics or even weeks 2	

for ICS (depending on the challenge agent and the aim of the challenge test). 3	

 4	

4. Optimisation and standardisation of challenge delivery per agent 5	

Both optimisation and standardisation of challenge methods by different agents are urgently 6	

needed, in order to address the issues identified in the preceding section and make scientific 7	

progress towards more precise and rigorously controlled diagnostic procedures. Some efforts 8	

have already been undertaken in this regard, for example with the mannitol test 9	

(Aridol/Osmohale; see section 4.2). 10	

 11	

4.1 Methacholine 12	

Soon after publication of the first universal guidelines for methacholine challenge in 2000, 13	

which recommend both the dosimeter method and tidal breathing method, studies began to 14	

appear that investigated the comparability of the two dosing protocols. The first study 15	

reported similar results (geometric mean PC20 1.8 mg/mL for tidal breathing vs. 1.6 mg/mL 16	

for dosimeter). However, the authors compared different dosing protocols (twofold vs. 17	

fourfold increases in concentration for tidal breathing and dosimeter respectively) (84). 18	

Cockcroft et al. addressed this disparity by comparing identical dosing regimens (doubling 19	

concentrations) and found that the tidal breathing method, which exposes the subject to twice 20	

as much aerosol at each concentration, resulted in a PC20 that was 1.6 (PC20 <1 mg/mL) to 21	

2.1-fold (PC20 >1 mg/mL) lower compared to the dosimeter method (85). This difference 22	

between subjects with mild and severe hyperresponsiveness has been suggested to be 23	

explained by bronchodilator and/or bronchoprotective effects of the inhalation manoeuvre 24	

adopted in the dosimeter method (85,86). Prieto et al. reported a difference of 0.78 doubling 25	
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concentrations, with dosimeter values being higher than tidal breathing values, but found 1	

similar values for slope and level of plateau of the dose-response curve (87). Acknowledging 2	

the difference in administered volume, they performed another study in which they 3	

administered the same volume of challenge. Still an average difference in PC20 of 0.9 4	

doubling concentrations was reported (88). However, when looking at the individual subjects 5	

it can be seen that this difference was mainly caused by a higher number of non-responders 6	

when using the dosimeter method (Figure 3). This may actually indicate that in some subjects 7	

with (mild) asthma the bronchodilatory effect of deep inhalations can indeed effectively 8	

counteract any bronchoconstriction induced by methacholine, as suggested by Cockcroft et al. 9	

(85). Indeed deep-breath methods have now been excluded from the new technical standard 10	

on methacholine challenge for this reason (6).  11	

 12	

 13	

 14	

Figure 3: Comparison of tidal breathing and dosimeter methacholine PC20 in 27 subjects with 15	

suspected asthma. The dashed lines indicate seven subjects in whom no dosimeter PC20 was 16	

obtained. Reproduced with permission from (82). 17	
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More recent investigations into methacholine challenge method optimisation focused on the 1	

delivery systems used, as the nebulisers recommended in the first guidelines (11) had become 2	

obsolete (89). The Aerosol Provocation System (APS) Pro (CareFusion) is especially 3	

noteworthy in this respect. The APS Pro system is a computer-controlled nebuliser system 4	

specifically developed for bronchial challenge testing with methacholine and can be 5	

integrated with other CareFusion systems for spirometry, impulse oscillometry, respiratory 6	

resistance and body plethysmography depending on the outcome measure of choice. The 7	

dosimeter method is the preferred method, although the system can also be used for the tidal 8	

breathing method. The PD20 from a pulse of aerosol of a single methacholine concentration 9	

was found to correlate well with the PC20 obtained with a standard dosimeter test (90). In 10	

vitro studies indicate that these new delivery systems often have a higher output rate than the 11	

systems recommended in the first guidelines, thus a faster delivery of the challenge, which 12	

should be controlled for in terms of exposure time (70,89).  13	

 14	

The plethora of available nebuliser systems (with variable output rates) introduces new 15	

concerns regarding equivalence of the test results obtained with different systems. 16	

Interestingly, it has been found that no differences between test systems are found when the 17	

PD20 is calculated (91,92) instead of the PC20 (91,93), which has led to the recommendation 18	

to use the PD20 as the end-point in the new technical standard (6). On a different note, using 19	

more efficient nebulisers also introduces a risk of extreme individual responses to 20	

methacholine aerosols. Patients who are highly responsive to methacholine may experience 21	

large drops in FEV1 when the full dose is presented to them in a shorter time, which should be 22	

accounted for by thorough safety assessment of using these more efficient nebulisers. 23	

 24	

 25	



	 19	

4.2 Mannitol 1	

Bronchial challenge with mannitol has been developed to overcome technical difficulties (i.e. 2	

the need for filters and scales to determine the administered volume) encountered with 3	

bronchial challenge tests using hypertonic saline (20,94,95). This agent has been shown to 4	

cause contraction of ASM through release of inflammatory mediators such as leukotriene E4 5	

and prostaglandin D2, which are thought to be released from mast cells (96). BHR measured 6	

in response to inhaled mannitol is dependent on the presence of inflammation and can be 7	

reduced by ICS treatment (97,98). The low sensitivity (59.8%) of the mannitol test compared 8	

with the clinical assessment determined in more than 500 subjects was attributed to ICS use 9	

by 75% of the diagnosed asthmatics in this study, as this value greatly improved when ICS-10	

users were excluded from analysis (to 88.7%) (95). This finding supports the concept that 11	

mannitol responsiveness can be used to monitor ICS effectiveness (97,98) and highlights the 12	

growing appreciation that indirect challenge tests are useful for diagnosis and monitoring 13	

treatment of current asthma. Mannitol responsiveness – expressed as the provocative dose that 14	

causes a 15% decrease in FEV1 (PD15) – has been found to correlate well with responsiveness 15	

to bronchial challenge tests with other physical stimuli or AMP (99,100). Bronchial challenge 16	

testing with mannitol may therefore be of particular use in diagnosis of asthma in elite 17	

athletes, who require an official diagnosis of asthma, but whose bronchoconstriction is hard to 18	

induce by exercise in a laboratory setting (101). 19	

 20	

The mannitol challenge test is registered with various regulatory authorities worldwide and is 21	

currently the only fully standardised challenge method. The mannitol formulation consists of 22	

a spray-dried powder with an MMAD of around 3.5 µm that is inhaled with a simple capsule 23	

inhaler device. Benefits of this mannitol test are that it comes in a standardised kit that does 24	

not need any special equipment, and that it is relatively easy to perform. However, a 25	
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drawback of mannitol challenge is the deep inhalation-dependent modality of powder 1	

administration, which has been suggested to counteract bronchoconstriction as discussed in 2	

section 4.1. Moreover, the quantity of powder that needs to be inhaled is large in comparison 3	

to other agents, up to a cumulative dose of 635 mg, as a consequence of its mechanism of 4	

action (i.e. increasing the osmolarity of the lung lining fluid). This in combination with the 5	

low resistance device, and hence a high inspiratory flow rate, can result in cough through a 6	

mechanical cough reflex due to oropharyngeal deposition of the mannitol (102). In a phase III 7	

study investigating the safety and efficacy of inhaled mannitol as a bronchial challenge test, 8	

cough occurred in 535 of 592 (of whom 91 were non-asthmatic) subjects. In some cases, 9	

cough was so severe that the test had to be delayed (one in seven subjects), or even ended 10	

prematurely (one in 100 subjects) (95). Although cough does not occur exclusively in subjects 11	

with asthma, it has been demonstrated that cough in response to inhaled mannitol is 12	

associated with asthma (103), which would be interesting to elucidate further. To which 13	

extent the occurrence of (severe) cough is diagnostic for asthma and to which extent it is due 14	

to oropharyngeal deposition of mannitol could be investigated by provoking subjects with the 15	

same mannitol formulation, but using a high-resistance inhaler device and controlled slow 16	

inhalation to minimise throat deposition. 17	

 18	

4.3 Adenosine 19	

Other efforts towards optimisation have been undertaken with inhaled adenosine. Adenosine 20	

and its precursor AMP have been the subject of a considerable amount of research in 21	

respiratory medicine since the early 1980s. Adenosine, a purine nucleoside involved in many 22	

biological processes, is considered a pro-inflammatory mediator in asthma (104) as it is 23	

thought to induce mast cell degranulation, a process mediated through the A2b receptor, 24	

leading to contraction of ASM and most notably airway eosinophilia (105,106). More 25	
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recently a role for A1 receptors has been implicated in the contraction of ASM from subjects 1	

with asthma induced by adenosine (107), suggesting that adenosine triggers 2	

bronchoconstriction through both inflammatory and neuronal pathways.  3	

 4	

Historically, AMP has been used instead of adenosine because of its much higher aqueous 5	

solubility, which is required for nebulisation, and it is generally assumed that AMP is 6	

converted in vivo to adenosine instantaneously by endonucleotidases when it comes in 7	

contact with lung lining fluid (10). However, because of the above mentioned effects of high 8	

AMP concentrations on aerosol particle size produced by nebulisation (70), an adenosine dry 9	

powder challenge test has been developed that consists of simple spray-dried formulations 10	

containing pure adenosine or adenosine diluted with lactose, which so far have only been 11	

administered with an investigational inhaler device. With this inhaler, the entire dose range of 12	

adenosine (0.04–80 mg) was consistently delivered in the first proof-of-concept studies that 13	

have been performed with this formulation (108–110). So far, these studies justify the chosen 14	

dose range for adenosine and indicate that the response rate and thus diagnosis of asthma can 15	

be improved by the administration of the higher doses that are possible with the powder 16	

formulation. These findings now have to be complemented by studies in healthy subjects and 17	

in subjects with lung diseases other than asthma to determine the specificity and sensitivity of 18	

this test. Since the test concerns a powder for inhalation, any effects on bronchoconstriction 19	

of the deep-inhalation dependent administration should also be considered for this adenosine 20	

challenge test. 21	

 22	

4.4 Occupational agents and allergens 23	

For occupational agents, the suspected causative agent should be delivered in the same 24	

conditions that it is found in the workplace in terms of physical and chemical properties in 25	
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relevant concentrations (38). It is now recognised that there are a large variety of occupational 1	

agents and allergens and therefore a handbook has recently been prepared that summarises the 2	

delivery methods for the most commonly used agents (see online supplement to (38)). This 3	

handbook provides an excellent start towards harmonisation of specific inhaled challenges, 4	

although it could benefit from inclusion of recommendations on nebulisers for those agents 5	

that are administered following a tidal breathing or dosimeter method.  6	

 7	

Allergens are administered in very low doses compared to the nonspecific bronchial 8	

challenges. Nebulisation can therefore in general be considered a suitable administration 9	

method, provided the stability of the agent is checked during storage and upon administration, 10	

particularly for more complex molecules (e.g. antigens). Chemical stability issues upon 11	

storage arise when an agent is sensitive to degradation reactions (e.g. oxidation, hydrolysis), 12	

as these occur faster in aqueous conditions than in the dry state. Additionally, stability can 13	

become an issue when the stresses induced by the nebulisation process itself may damage the 14	

material(s) (e.g. proteins) in the formulation (111,112). 15	

 16	

4.5 LPS 17	

LPS is very stable and can withstand high temperatures and strong shear forces. It can be kept 18	

in solution for up to a month. However, LPS adheres readily and strongly to surfaces such as 19	

glass, for example to the vial in which it is stored. Extra care (e.g. rigorous vortexing) should 20	

therefore be taken in the preparation of the nebuliser solution. Additionally, endotoxins from 21	

different sources can have a different biological activity (potency). Studies report the use of 22	

different sources of LPS and different doses, ranging from 0.5 to 100 µg (5,52–54,59–62). 23	

However, expressing dose in units of weight has little value because of the different 24	

potencies. Variability in the dose delivered to patients is further increased by differences in 25	
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administration method. Both dosimeter and tidal breathing methods have been used to date 1	

and the differences between devices and inhalation manoeuvres inevitably result in 2	

differences in the delivered and deposited doses. 3	

 4	

The lack of control of dose in terms of potency, in addition to differences in administration 5	

methods, complicates the comparison of studies performed over a period of about 30 years. 6	

Studies have been performed in healthy (5,51–54,58–62,113) and diseased subjects 7	

(55,56,114,115), in smokers (116) and non-smokers, but the potency of the LPS was often not 8	

reported. Although a promising disease model, standardisation of the dosing protocol and 9	

administration method should be established before LPS challenge can be accepted as a 10	

validated tool to be used more widely in drug development studies. Other issues that need to 11	

be addressed are the lack of dose-response studies performed in humans and uncertainty 12	

regarding why some people do not respond to LPS inhalation. To study the latter issues, it is 13	

imperative to know the exact dose of LPS that is delivered and its potency. The first steps 14	

forward should be to decide on a preferred administration method (i.e. slow deep inhalation) 15	

and performing a potency measurement of the LPS in the nebuliser solution to be used for 16	

administration. 17	

 18	

5. Conclusions  19	

Inhaled airway challenges are versatile tests that are relatively easy and cheap to perform. 20	

Classical bronchial challenge tests that assess BHR have proven their value in excluding or 21	

confirming a suspected diagnosis of asthma and have been shown to be useful for monitoring 22	

the disease and effectiveness of therapy. These tests can thus help in providing more accurate 23	

information to patient and prescriber as to how to treat an individual patient. As such, 24	

bronchial challenge tests can help in improving the individual patient’s health through better 25	
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treatment of their disease. In research and development, inhaled airway challenge can be 1	

applied even more widely, from studying disease mechanisms to investigating the 2	

effectiveness of new drugs. Careful selection of the challenge agent may provide significant 3	

benefits, in terms of both selecting suitable subjects (e.g. using response to a discriminatory 4	

challenge as an inclusion criterion) and addressing the research question. There is also a lot to 5	

be gained through optimisation and reporting of challenge test posology, especially to ensure 6	

the comparability of studies performed by different laboratories. In general all compounds 7	

described so far would strongly benefit from the development of defined inhalation systems 8	

that provide a reproducible and reliable deposition in the lungs and further standardisation of 9	

administration protocols as has been done for mannitol (Table 1). Improved delivery may 10	

also open doors for revisiting some challenge agents that have been used in the past, but were 11	

abandoned due to lack of reproducibility. Creating a “tool box” of well-characterised 12	

challenge agents with tailored delivery systems would provide a valuable tool for studying 13	

and discriminating different airway diseases, but also for investigating mechanisms and novel 14	

treatments for affecting BHR. 15	

 16	

  17	



	 25	

Table 1: Opportunities to improve the application of bronchial challenge testing 1	

Issue Need 

Delivery method 

optimisation 

Control (and quantification) of delivered dose by optimising the 

production and administration of challenge agent aerosols with suitable 

aerodynamic size distributions. This will require the tailoring of delivery 

methods for each individual challenge agent. 

Standardisation International consensus on best practice.  

Inter-lab comparisons to verify the reproducibility of standard methods.  

Reporting of dose characterisation/validation for all research studies. 

Specific issues for 

mannitol 

Investigate the relative contributions of throat deposition and increased 

airway sensitivity to the occurrence of cough in asthma. 

Specific issues for 

adenosine 

Compare responsiveness to dry powder adenosine challenge to 

responsiveness to nebulised AMP including the response of healthy 

subjects and patients with lung diseases other than asthma.  

Determination of the specificity and sensitivity of dry powder adenosine 

bronchial challenge in patients with asthma. 

Specific issues for 

allergens 

Extension of existing guidelines (37) to include recommendations on 

nebulisers for those agents that are administered following a tidal 

breathing or dosimeter method. 

Verification of chemical stability and tolerance to nebulisation on a 

case-by-case basis. 

Specific issues for LPS Control of test agent potency and reproducibility of delivery (dose and 

lung distribution). 

 2	

 3	

 4	

 5	

  6	
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